1
|
Zeng H, Jin Z. The role of ferroptosis in Alzheimer's disease: Mechanisms and therapeutic potential (Review). Mol Med Rep 2025; 32:192. [PMID: 40341407 PMCID: PMC12076055 DOI: 10.3892/mmr.2025.13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/27/2025] [Indexed: 05/10/2025] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by insidious onset and progressive symptom deterioration. It extends beyond a simple aging process, involving irreversible and progressive neurological degeneration that impairs brain function through multiple etiologies. Iron dysregulation is implicated in the pathophysiology of AD; however, the precise mechanisms remain unclear. Additionally, vitamin E and selenium are key in regulating ferroptosis through their antioxidant properties. The present review examined the mechanistic pathways by which ferroptosis contributes to AD, the regulatory roles of vitamin E, selenium, ferrostatin‑1, N‑acetylcysteine and curcumin, and their potential as therapeutic agents to mitigate neurodegeneration.
Collapse
Affiliation(s)
- Heng Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhaohui Jin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
2
|
Khodadadi H, Łuczyńska K, Winiarczyk D, Leszczyński P, Taniguchi H. NFE2L1 as a central regulator of proteostasis in neurodegenerative diseases: interplay with autophagy, ferroptosis, and the proteasome. Front Mol Neurosci 2025; 18:1551571. [PMID: 40375958 PMCID: PMC12078313 DOI: 10.3389/fnmol.2025.1551571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/14/2025] [Indexed: 05/18/2025] Open
Abstract
Maintaining proteostasis is critical for neuronal health, with its disruption underpinning the progression of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases. Nuclear Factor Erythroid 2-Related Factor 1 (NFE2L1) has emerged as a key regulator of proteostasis, integrating proteasome function, autophagy, and ferroptosis to counteract oxidative stress and protein misfolding. This review synthesizes current knowledge on the role of NFE2L1 in maintaining neuronal homeostasis, focusing on its mechanisms for mitigating proteotoxic stress and supporting cellular health, offering protection against neurodegeneration. Furthermore, we discuss the pathological implications of NFE2L1 dysfunction and explore its potential as a therapeutic target. By highlighting gaps in the current understanding and presenting future research directions, this review aims to elucidate NFE2L1's role in advancing treatment strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Hossein Khodadadi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Kamila Łuczyńska
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
- The Second Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, Warsaw, Poland
| | - Dawid Winiarczyk
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Paweł Leszczyński
- Department of Stem Cell Bioengineering Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| |
Collapse
|
3
|
Liu X, Hao S, Sun S, Xie J, Hou Z. Increased cortical iron deposition in glioma patients: a quantitative susceptibility mapping study. J Neurooncol 2025:10.1007/s11060-025-05027-8. [PMID: 40238026 DOI: 10.1007/s11060-025-05027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVES This study aimed to evaluate how cortical gray matter iron, measured using quantitative susceptibility mapping (QSM), changes in glioma patients and its relationship to cognitive scores. MATERIALS AND METHODS This study included 121 glioma patients (45.42 ± 11.59 years; 61 females and 60 males) and 42 healthy controls (39.93 ± 10.37 years; 19 females and 23 males). The participants underwent cognitive assessment and brain magnetic resonance imaging using a 3D multi-echo gradient-echo sequence on a 3.0 T scanner. ITK-SNAP was used to measure the susceptibility values reflecting the iron content in the regions of interest (ROIs). We used analysis of covariance to investigate the differences in susceptibility between glioma patients and healthy controls in each brain region. Pearson's correlation analysis assessed the relationship between cortical magnetic susceptibility values and cognitive scores (MoCA). RESULTS The frontal (p < 0.001), precentral gyrus (p < 0.001), postcentral gyrus (p < 0.001), parietal (p < 0.001), insular (p < 0.001), occipital (p < 0.001), and temporal cortices (p < 0.001) showed higher magnetic susceptibility in glioma patients than in healthy controls. There was a negative correlation between MoCA scores and magnetic susceptibility values in each brain region, precentral gyrus with significant differences (r = -0.253, p = 0.028). CONCLUSION We quantified cortical magnetic susceptibility values reflecting the iron content in glioma patients using QSM and assessed participants' cognitive function using MoCA, and found that cortical iron deposition was increased in different brain regions and that cognitive decline in glioma patients may be associated with elevated iron content in the precentral gyrus.
Collapse
Affiliation(s)
- Xinlong Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, 100070, China
| | - Shuyu Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, 100070, China
| | - Shengjun Sun
- Department of Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, 100070, China
| | - Jian Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, 100070, China.
| | - Zonggang Hou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
4
|
Hagiwara A, Kamio S, Kikuta J, Nakaya M, Uchida W, Fujita S, Nikola S, Akasahi T, Wada A, Kamagata K, Aoki S. Decoding Brain Development and Aging: Pioneering Insights From MRI Techniques. Invest Radiol 2025; 60:162-174. [PMID: 39724579 PMCID: PMC11801466 DOI: 10.1097/rli.0000000000001120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/26/2024] [Indexed: 12/28/2024]
Abstract
ABSTRACT The aging process induces a variety of changes in the brain detectable by magnetic resonance imaging (MRI). These changes include alterations in brain volume, fluid-attenuated inversion recovery (FLAIR) white matter hyperintense lesions, and variations in tissue properties such as relaxivity, myelin, iron content, neurite density, and other microstructures. Each MRI technique offers unique insights into the structural and compositional changes occurring in the brain due to normal aging or neurodegenerative diseases. Age-related brain volume changes encompass a decrease in gray matter and an increase in ventricular volume, associated with cognitive decline. White matter hyperintensities, detected by FLAIR, are common and linked to cognitive impairments and increased risk of stroke and dementia. Tissue relaxometry reveals age-related changes in relaxivity, aiding the distinction between normal aging and pathological conditions. Myelin content, measurable by MRI, changes with age and is associated with cognitive and motor function alterations. Iron accumulation, detected by susceptibility-sensitive MRI, increases in certain brain regions with age, potentially contributing to neurodegenerative processes. Diffusion MRI provides detailed insights into microstructural changes such as neurite density and orientation. Neurofluid imaging, using techniques like gadolinium-based contrast agents and diffusion MRI, reveals age-related changes in cerebrospinal and interstitial fluid dynamics, crucial for brain health and waste clearance. This review offers a comprehensive overview of age-related brain changes revealed by various MRI techniques. Understanding these changes helps differentiate between normal aging and pathological conditions, aiding the development of interventions to mitigate age-related cognitive decline and other symptoms. Recent advances in machine learning and artificial intelligence have enabled novel methods for estimating brain age, offering also potential biomarkers for neurological and psychiatric disorders.
Collapse
|
5
|
Calabro FJ, Parr AC, Sydnor VJ, Hetherington H, Prasad KM, Ibrahim TS, Sarpal DK, Famalette A, Verma P, Luna B. Leveraging ultra-high field (7T) MRI in psychiatric research. Neuropsychopharmacology 2024; 50:85-102. [PMID: 39251774 PMCID: PMC11525672 DOI: 10.1038/s41386-024-01980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024]
Abstract
Non-invasive brain imaging has played a critical role in establishing our understanding of the neural properties that contribute to the emergence of psychiatric disorders. However, characterizing core neurobiological mechanisms of psychiatric symptomatology requires greater structural, functional, and neurochemical specificity than is typically obtainable with standard field strength MRI acquisitions (e.g., 3T). Ultra-high field (UHF) imaging at 7 Tesla (7T) provides the opportunity to identify neurobiological systems that confer risk, determine etiology, and characterize disease progression and treatment outcomes of major mental illnesses. Increases in scanner availability, regulatory approval, and sequence availability have made the application of UHF to clinical cohorts more feasible than ever before, yet the application of UHF approaches to the study of mental health remains nascent. In this technical review, we describe core neuroimaging methodologies which benefit from UHF acquisition, including high resolution structural and functional imaging, single (1H) and multi-nuclear (e.g., 31P) MR spectroscopy, and quantitative MR techniques for assessing brain tissue iron and myelin. We discuss advantages provided by 7T MRI, including higher signal- and contrast-to-noise ratio, enhanced spatial resolution, increased test-retest reliability, and molecular and neurochemical specificity, and how these have begun to uncover mechanisms of psychiatric disorders. Finally, we consider current limitations of UHF in its application to clinical cohorts, and point to ongoing work that aims to overcome technical hurdles through the continued development of UHF hardware, software, and protocols.
Collapse
Affiliation(s)
- Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerie J Sydnor
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Konasale M Prasad
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Tamer S Ibrahim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deepak K Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alyssa Famalette
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Piya Verma
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Kong L, Liu Y, Li J, Wang Y, Ji P, Shi Q, Han M, Xu H, Li W, Li W. Ginsenoside Rg1 alleviates chronic inflammation-induced neuronal ferroptosis and cognitive impairments via regulation of AIM2 - Nrf2 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118205. [PMID: 38641079 DOI: 10.1016/j.jep.2024.118205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng is a valuable herb in traditional Chinese medicine. Modern research has shown that it has various benefits, including tonifying vital energy, nourishing and strengthening the body, calming the mind, improving cognitive function, regulating fluids, and returning blood pressure, etc. Rg1 is a primary active component of ginseng. It protects hippocampal neurons, improves synaptic plasticity, enhances cognitive function, and boosts immunity. Furthermore, it exhibits anti-aging and anti-fatigue properties and holds great potential for preventing and managing neurodegenerative diseases (NDDs). AIM OF THE STUDY The objective of this study was to examine the role of Rg1 in treating chronic inflammatory NDDs and its molecular mechanisms. MATERIALS AND METHODS In vivo, we investigated the protective effects of Rg1 against chronic neuroinflammation and cognitive deficits in mice induced by 200 μg/kg lipopolysaccharide (LPS) for 21 days using behavioral tests, pathological sections, Western blot, qPCR and immunostaining. In vitro experiments involved the stimulation of HT22 cells with 10 μg/ml of LPS, verification of the therapeutic effect of Rg1, and elucidation of its potential mechanism of action using H2DCFDA staining, BODIPY™ 581/591 C11, JC-1 staining, Western blot, and immunostaining. RESULTS Firstly, it was found that Rg1 significantly improved chronic LPS-induced behavioral and cognitive dysfunction in mice. Further studies showed that Rg1 significantly attenuated LPS-induced neuronal damage by reducing levels of IL-6, IL-1β and ROS, and inhibiting AIM2 inflammasome. Furthermore, chronic LPS exposure induced the onset of neuronal ferroptosis by increasing the lipid peroxidation product MDA and regulating the ferroptosis-associated proteins Gpx4, xCT, FSP1, DMT1 and TfR, which were reversed by Rg1 treatment. Additionally, Rg1 was found to activate Nrf2 and its downstream antioxidant enzymes, such as HO1 and NQO1, both in vivo and in vitro. In vitro studies also showed that the Nrf2 inhibitor ML385 could inhibit the anti-inflammatory, antioxidant, and anti-ferroptosis effects of Rg1. CONCLUSIONS This study demonstrated that Rg1 administration ameliorated chronic LPS-induced cognitive deficits and neuronal ferroptosis in mice by inhibiting neuroinflammation and oxidative stress. The underlying mechanisms may be related to the inhibition of AIM2 inflammasome and activation of Nrf2 signaling. These findings provide valuable insights into the treatment of chronic neuroinflammation and associated NDDs.
Collapse
Affiliation(s)
- Liangliang Kong
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| | - Yan Liu
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| | - Jingwei Li
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| | - Yanyan Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Pengmin Ji
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| | - Qifeng Shi
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| | - Min Han
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| | - Hanyang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Weiping Li
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| | - Weizu Li
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
7
|
Rubin M, Pagani E, Preziosa P, Meani A, Storelli L, Margoni M, Filippi M, Rocca MA. Cerebrospinal Fluid-In Gradient of Cortical and Deep Gray Matter Damage in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200271. [PMID: 38896808 PMCID: PMC11197989 DOI: 10.1212/nxi.0000000000200271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/19/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND AND OBJECTIVES A CSF-in gradient in cortical and thalamic gray matter (GM) damage has been found in multiple sclerosis (MS). We concomitantly explored the patterns of cortical, thalamic, and caudate microstructural abnormalities at progressive distances from CSF using a multiparametric MRI approach. METHODS For this cross-sectional study, from 3T 3D T1-weighted scans, we sampled cortical layers at 25%-50%-75% depths from pial surface and thalamic and caudate bands at 2-3-4 voxels from the ventricular-GM interface. Using linear mixed models, we tested between-group comparisons of magnetization transfer ratio (MTR) and R2* layer-specific z-scores, CSF-in across-layer z-score changes, and their correlations with clinical (disease duration and disability) and structural (focal lesions, brain, and choroid plexus volume) MRI measures. RESULTS We enrolled 52 patients with MS (33 relapsing-remitting [RRMS], 19 progressive [PMS], mean age: 46.4 years, median disease duration: 15.1 years, median: EDSS 2.0) and 70 controls (mean age 41.5 ± 12.8). Compared with controls, RRMS showed lower MTR values in the outer and middle cortical layers (false-discovery rate [FDR]-p ≤ 0.025) and lower R2* values in all 3 cortical layers (FDR-p ≤ 0.016). PMS had lower MTR values in the outer and middle cortical (FDR-p ≤ 0.016) and thalamic (FDR-p ≤ 0.048) layers, and in the outer caudate layer (FDR-p = 0.024). They showed lower R2* values in the outer cortical layer (FDR-p = 0.003) and in the outer thalamic layer (FDR-p = 0.046) and higher R2* values in all 3 caudate layers (FDR-p ≤ 0.031). Both RRMS and PMS had a gradient of damage, with lower values closer to the CSF, for cortical (FDR-p ≤ 0.002) and thalamic (FDR-p ≤ 0.042) MTR. PMS showed a gradient of damage for cortical R2* (FDR-p = 0.005), thalamic R2* (FDR-p = 0.004), and caudate MTR (FDR-p ≤ 0.013). Lower MTR and R2* of outer cortical, thalamic, and caudate layers and steeper gradient of damage toward the CSF were significantly associated with older age, higher T2-hyperintense white matter lesion volume, higher thalamic lesion volume, and lower brain volume (β ≥ 0.08, all FDR-p ≤ 0.040). Lower MTR of outer caudate layer was associated with more severe disability (β = -0.26, FDR-p = 0.040). No correlations with choroid plexus volume were found. DISCUSSION CSF-in damage gradients are heterogeneous among different GM regions and through MS course, possibly reflecting different dynamics of demyelination and iron loss/accumulation.
Collapse
Affiliation(s)
- Martina Rubin
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Preziosa
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Meani
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Loredana Storelli
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Margoni
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
8
|
Zhao P, Yuan Q, Liang C, Ma Y, Zhu X, Hao X, Li X, Shi J, Fu Q, Fan H, Wang D. GPX4 degradation contributes to fluoride-induced neuronal ferroptosis and cognitive impairment via mtROS-chaperone-mediated autophagy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172069. [PMID: 38582117 DOI: 10.1016/j.scitotenv.2024.172069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Ferroptosis is a newly recognized type of programmed cell death that is implicated in the pathophysiological process of neurological disorders. Our previous studies have revealed that exposure to high concentrations of fluoride for long periods of time induces hippocampal neural injury and cognitive deficits. However, whether ferroptosis is involved in fluoride-induced neuronal death and the underlying mechanism remain unknown. In this study, the results indicated that exposure to high fluoride triggered ferroptosis in SH-SY5Y cells and in the hippocampus of mice. Fluoride exposure accelerated the lysosomal degradation of GPX4 and led to neuronal ferroptosis, while GPX4 overexpression protected SH-SY5Y cells against fluoride-induced neurotoxicity. Intriguingly, the enhanced chaperone-mediated autophagy (CMA) induced by fluoride stimulation was responsible for GPX4 degradation because the inhibition of CMA activity by LAMP2A knockdown effectively prevented fluoride-induced GPX4 loss. Furthermore, mitochondrial ROS (mtROS) accumulation caused by fluoride contributed to CMA activation-mediated GPX4 degradation and subsequent neuronal ferroptosis. Notably, the ferroptosis-specific inhibitor ferrostatin-1 (Fer-1) or the ROS scavenger N-acetyl-L-cysteine (NAC) alleviated fluoride-evoked hippocampal neuronal death and synaptic injury as well as cognitive deficits in mice. The present studies indicates that ferroptosis is a novel mechanism of fluoride-induced neurotoxicity and that chronic fluoride exposure facilitates GPX4 degradation via mtROS chaperone-mediated autophagy, leading to neuronal ferroptosis and cognitive impairment.
Collapse
Affiliation(s)
- Pu Zhao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Quan Yuan
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China; Henan Province Rongkang Hospital, Luoyang, China
| | - Chen Liang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yilu Ma
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiaoying Zhu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xueqin Hao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xinyu Li
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Jian Shi
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Qizhi Fu
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Hua Fan
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China.
| | - Dongmei Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
9
|
Jiang Z, Qi G, He X, Yu Y, Cao Y, Zhang C, Zou W, Yuan H. Ferroptosis in Osteocytes as a Target for Protection Against Postmenopausal Osteoporosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307388. [PMID: 38233202 PMCID: PMC10966575 DOI: 10.1002/advs.202307388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/18/2023] [Indexed: 01/19/2024]
Abstract
Ferroptosis is a necrotic form of iron-dependent regulatory cell death. Estrogen withdrawal can interfere with iron metabolism, which is responsible for the pathogenesis of postmenopausal osteoporosis (PMOP). Here, it is demonstrated that estrogen withdrawal induces iron accumulation in the skeleton and the ferroptosis of osteocytes, leading to reduced bone mineral density. Furthermore, the facilitatory effect of ferroptosis of osteocytes is verified in the occurrence and development of postmenopausal osteoporosis is associated with over activated osteoclastogenesis using a direct osteocyte/osteoclast coculture system and glutathione peroxidase 4 (GPX4) knockout ovariectomized mice. In addition, the nuclear factor erythroid derived 2-related factor-2 (Nrf2) signaling pathway is confirmed to be a crucial factor in the ferroptosis of osteocytic cells. Nrf2 regulates the expression of nuclear factor kappa-B ligand (RANKL) by regulating the DNA methylation level of the RANKL promoter mediated by DNA methyltransferase 3a (Dnmt3a), which is as an important mechanism in osteocytic ferroptosis-mediated osteoclastogenesis. Taken together, this data suggests that osteocytic ferroptosis is involved in PMOP and can be targeted to tune bone homeostasis.
Collapse
Affiliation(s)
- Zengxin Jiang
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalNo. 600 Yishan RoadShanghai200233China
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Guobin Qi
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Xuecheng He
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalNo. 600 Yishan RoadShanghai200233China
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Yifan Yu
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalNo. 600 Yishan RoadShanghai200233China
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Yuting Cao
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalNo. 600 Yishan RoadShanghai200233China
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Changqing Zhang
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalNo. 600 Yishan RoadShanghai200233China
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Weiguo Zou
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Hengfeng Yuan
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalNo. 600 Yishan RoadShanghai200233China
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| |
Collapse
|
10
|
Zeng W, Cai J, Zhang L, Peng Q. Iron Deposition in Parkinson's Disease: A Mini-Review. Cell Mol Neurobiol 2024; 44:26. [PMID: 38393383 PMCID: PMC10891198 DOI: 10.1007/s10571-024-01459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Iron deposition is crucial pathological changes observed in patients with Parkinson's disease (PD). Recently, scientists have actively explored therapeutic approaches targeting iron deposition in PD. However, several clinical studies have failed to yield consistent results. In this review, we provide an overview of iron deposition in PD, from both basic research and clinical perspectives. PD patients exhibit abnormalities in various iron metabolism-related proteins, leading to disruptions in iron distribution, transport, storage, and circulation, ultimately resulting in iron deposition. Excess iron can induce oxidative stress and iron-related cell death, and exacerbate mitochondrial dysfunction, contributing to the progression of PD pathology. Magnetic resonance imaging studies have indicated that the characteristics of iron deposition in the brains of PD patients vary. Iron deposition correlates with the clinical symptoms of PD, and patients with different disease courses and clinical presentations display distinct patterns of iron deposition. These iron deposition patterns may contribute to PD diagnosis. Iron deposition is a promising target for PD treatment. However, further research is required to elucidate the underlying mechanisms and their impacts on PD.
Collapse
Affiliation(s)
- Weiqi Zeng
- Department of Neurology, The First People's Hospital of Foshan, Foshan, China
| | - Jin Cai
- Department of Cardiology, The Second Hospital of Zhangzhou, Zhangzhou, China
| | - Lei Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qiwei Peng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Kim HW, Lee S, Yang JH, Moon Y, Lee J, Moon WJ. Cortical Iron Accumulation as an Imaging Marker for Neurodegeneration in Clinical Cognitive Impairment Spectrum: A Quantitative Susceptibility Mapping Study. Korean J Radiol 2023; 24:1131-1141. [PMID: 37899522 PMCID: PMC10613848 DOI: 10.3348/kjr.2023.0490] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/19/2023] [Accepted: 08/22/2023] [Indexed: 10/31/2023] Open
Abstract
OBJECTIVE Cortical iron deposition has recently been shown to occur in Alzheimer's disease (AD). In this study, we aimed to evaluate how cortical gray matter iron, measured using quantitative susceptibility mapping (QSM), differs in the clinical cognitive impairment spectrum. MATERIALS AND METHODS This retrospective study evaluated 73 participants (mean age ± standard deviation, 66.7 ± 7.6 years; 52 females and 21 males) with normal cognition (NC), 158 patients with mild cognitive impairment (MCI), and 48 patients with AD dementia. The participants underwent brain magnetic resonance imaging using a three-dimensional multi-dynamic multi-echo sequence on a 3-T scanner. We employed a deep neural network (QSMnet+) and used automatic segmentation software based on FreeSurfer v6.0 to extract anatomical labels and volumes of interest in the cortex. We used analysis of covariance to investigate the differences in susceptibility among the clinical diagnostic groups in each brain region. Multivariable linear regression analysis was performed to study the association between susceptibility values and cognitive scores including the Mini-Mental State Examination (MMSE). RESULTS Among the three groups, the frontal (P < 0.001), temporal (P = 0.004), parietal (P = 0.001), occipital (P < 0.001), and cingulate cortices (P < 0.001) showed a higher mean susceptibility in patients with MCI and AD than in NC subjects. In the combined MCI and AD group, the mean susceptibility in the cingulate cortex (β = -216.21, P = 0.019) and insular cortex (β = -276.65, P = 0.001) were significant independent predictors of MMSE scores after correcting for age, sex, education, regional volume, and APOE4 carrier status. CONCLUSION Iron deposition in the cortex, as measured by QSMnet+, was higher in patients with AD and MCI than in NC participants. Iron deposition in the cingulate and insular cortices may be an early imaging marker of cognitive impairment related neurodegeneration.
Collapse
Affiliation(s)
- Hyeong Woo Kim
- Department of Radiology, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Subin Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jin Ho Yang
- Department of Radiology, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Yeonsil Moon
- Department of Neurology, Konkuk University Medical Center, Seoul, Republic of Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Jongho Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Won-Jin Moon
- Department of Radiology, Konkuk University Medical Center, Seoul, Republic of Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Yan R, Lin B, Jin W, Tang L, Hu S, Cai R. NRF2, a Superstar of Ferroptosis. Antioxidants (Basel) 2023; 12:1739. [PMID: 37760042 PMCID: PMC10525540 DOI: 10.3390/antiox12091739] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Ferroptosis is an iron-dependent and lipid peroxidation-driven cell death cascade, occurring when there is an imbalance of redox homeostasis in the cell. Nuclear factor erythroid 2-related factor 2 (NFE2L2, also known as NRF2) is key for cellular antioxidant responses, which promotes downstream genes transcription by binding to their antioxidant response elements (AREs). Numerous studies suggest that NRF2 assumes an extremely important role in the regulation of ferroptosis, for its various functions in iron, lipid, and amino acid metabolism, and so on. Many pathological states are relevant to ferroptosis. Abnormal suppression of ferroptosis is found in many cases of cancer, promoting their progression and metastasis. While during tissue damages, ferroptosis is recurrently promoted, resulting in a large number of cell deaths and even dysfunctions of the corresponding organs. Therefore, targeting NRF2-related signaling pathways, to induce or inhibit ferroptosis, has become a great potential therapy for combating cancers, as well as preventing neurodegenerative and ischemic diseases. In this review, a brief overview of the research process of ferroptosis over the past decade will be presented. In particular, the mechanisms of ferroptosis and a focus on the regulation of ferroptosis by NRF2 will be discussed. Finally, the review will briefly list some clinical applications of targeting the NRF2 signaling pathway in the treatment of diseases.
Collapse
Affiliation(s)
| | | | | | | | - Shuming Hu
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (R.Y.); (B.L.); (W.J.); (L.T.)
| | - Rong Cai
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (R.Y.); (B.L.); (W.J.); (L.T.)
| |
Collapse
|
13
|
Zhao D, Yang K, Guo H, Zeng J, Wang S, Xu H, Ge A, Zeng L, Chen S, Ge J. Mechanisms of ferroptosis in Alzheimer's disease and therapeutic effects of natural plant products: A review. Biomed Pharmacother 2023; 164:114312. [PMID: 37210894 DOI: 10.1016/j.biopha.2023.114312] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 05/23/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), are characterized by massive loss of specific neurons. It is a progressive disabling, severe and fatal complex disease. Due to its complex pathogenesis and limitations of clinical treatment strategies, it poses a serious medical challenge and medical burden worldwide. The pathogenesis of AD is not clear, and its potential biological mechanisms include aggregation of soluble amyloid to form insoluble amyloid plaques, abnormal phosphorylation of tau protein and formation of intracellular neurofibrillary tangles (NFT), neuroinflammation, ferroptosis, oxidative stress and metal ion disorders. Among them, ferroptosis is a newly discovered programmed cell death induced by iron-dependent lipid peroxidation and reactive oxygen species. Recent studies have shown that ferroptosis is closely related to AD, but the mechanism remains unclear. It may be induced by iron metabolism, amino acid metabolism and lipid metabolism affecting the accumulation of iron ions. Some iron chelating agents (deferoxamine, deferiprone), chloroiodohydroxyquine and its derivatives, antioxidants (vitamin E, lipoic acid, selenium), chloroiodohydroxyquine and its derivatives Fer-1, tet, etc. have been shown in animal studies to be effective in AD and exert neuroprotective effects. This review summarizes the mechanism of ferroptosis in AD and the regulation of natural plant products on ferroptosis in AD, in order to provide reference information for future research on the development of ferroptosis inhibitors.
Collapse
Affiliation(s)
- Da Zhao
- Hunan University of Chinese Medicine, Changsha, China
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | - Hua Guo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Shanshan Wang
- Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Liuting Zeng
- Hunan University of Chinese Medicine, Changsha, China
| | - Shaowu Chen
- Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, China.
| |
Collapse
|
14
|
Lotan A, Luza S, Opazo CM, Ayton S, Lane DJR, Mancuso S, Pereira A, Sundram S, Weickert CS, Bousman C, Pantelis C, Everall IP, Bush AI. Perturbed iron biology in the prefrontal cortex of people with schizophrenia. Mol Psychiatry 2023; 28:2058-2070. [PMID: 36750734 PMCID: PMC10575779 DOI: 10.1038/s41380-023-01979-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Despite loss of grey matter volume and emergence of distinct cognitive deficits in young adults diagnosed with schizophrenia, current treatments for schizophrenia do not target disruptions in late maturational reshaping of the prefrontal cortex. Iron, the most abundant transition metal in the brain, is essential to brain development and function, but in excess, it can impair major neurotransmission systems and lead to lipid peroxidation, neuroinflammation and accelerated aging. However, analysis of cortical iron biology in schizophrenia has not been reported in modern literature. Using a combination of inductively coupled plasma-mass spectrometry and western blots, we quantified iron and its major-storage protein, ferritin, in post-mortem prefrontal cortex specimens obtained from three independent, well-characterised brain tissue resources. Compared to matched controls (n = 85), among schizophrenia cases (n = 86) we found elevated tissue iron, unlikely to be confounded by demographic and lifestyle variables, by duration, dose and type of antipsychotic medications used or by copper and zinc levels. We further observed a loss of physiologic age-dependent iron accumulation among people with schizophrenia, in that the iron level among cases was already high in young adulthood. Ferritin, which stores iron in a redox-inactive form, was paradoxically decreased in individuals with the disorder. Such iron-ferritin uncoupling could alter free, chemically reactive, tissue iron in key reasoning and planning areas of the young-adult schizophrenia cortex. Using a prediction model based on iron and ferritin, our data provide a pathophysiologic link between perturbed cortical iron biology and schizophrenia and indicate that achievement of optimal cortical iron homeostasis could offer a new therapeutic target.
Collapse
Affiliation(s)
- Amit Lotan
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Psychiatry and the Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Sandra Luza
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton, VIC, Australia
| | - Carlos M Opazo
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia.
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton, VIC, Australia.
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Serafino Mancuso
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton, VIC, Australia
| | - Avril Pereira
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton, VIC, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Mental Health Program, Monash Health, Melbourne, VIC, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Chad Bousman
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton, VIC, Australia
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Departments of Medical Genetics, Psychiatry, Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada
- The Cooperative Research Centre (CRC) for Mental Health, Melbourne, VIC, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton, VIC, Australia
- North Western Mental Health, Melbourne, VIC, Australia
| | - Ian P Everall
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton, VIC, Australia
- North Western Mental Health, Melbourne, VIC, Australia
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia.
- The Cooperative Research Centre (CRC) for Mental Health, Melbourne, VIC, Australia.
| |
Collapse
|
15
|
van Gelderen P, Li X, de Zwart JA, Beck ES, Okar SV, Huang Y, Lai K, Sulam J, van Zijl PCM, Reich DS, Duyn JH, Liu J. Effect of motion, cortical orientation and spatial resolution on quantitative imaging of cortical R 2* and magnetic susceptibility at 0.3 mm in-plane resolution at 7 T. Neuroimage 2023; 270:119992. [PMID: 36858332 PMCID: PMC10278242 DOI: 10.1016/j.neuroimage.2023.119992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023] Open
Abstract
MR images of the effective relaxation rate R2* and magnetic susceptibility χ derived from multi-echo T2*-weighted (T2*w) MRI can provide insight into iron and myelin distributions in the brain, with the potential of providing biomarkers for neurological disorders. Quantification of R2* and χ at submillimeter resolution in the cortex in vivo has been difficult because of challenges such as head motion, limited signal to noise ratio, long scan time, and motion related magnetic field fluctuations. This work aimed to improve the robustness for quantifying intracortical R2* and χ and analyze the effects from motion, spatial resolution, and cortical orientation. T2*w data was acquired with a spatial resolution of 0.3 × 0.3 × 0.4 mm3 at 7 T and downsampled to various lower resolutions. A combined correction for motion and B0 changes was deployed using volumetric navigators. Such correction improved the T2*w image quality rated by experienced image readers and test-retest reliability of R2* and χ quantification with reduced median inter-scan differences up to 10 s-1 and 5 ppb, respectively. R2* and χ near the line of Gennari, a cortical layer high in iron and myelin, were as much as 10 s-1 and 10 ppb higher than the region at adjacent cortical depth. In addition, a significant effect due to the cortical orientation relative to the static field (B0) was observed in χ with a peak-to-peak amplitude of about 17 ppb. In retrospectively downsampled data, the capability to distinguish different cortical depth regions based on R2* or χ contrast remained up to isotropic 0.5 mm resolution. This study highlights the unique characteristics of R2* and χ along the cortical depth at submillimeter resolution and the need for motion and B0 corrections for their robust quantification in vivo.
Collapse
Affiliation(s)
- Peter van Gelderen
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, NINDS, NIH, Bethesda, MD, United States of America
| | - Xu Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States of America; Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD, United States of America
| | - Jacco A de Zwart
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, NINDS, NIH, Bethesda, MD, United States of America
| | - Erin S Beck
- Translational Neurology Section, NINDS, NIH, Bethesda, MD, United States of America; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States of America
| | - Serhat V Okar
- Translational Neurology Section, NINDS, NIH, Bethesda, MD, United States of America
| | - Yujia Huang
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - KuoWei Lai
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America; Department of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Jeremias Sulam
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Peter C M van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States of America; Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD, United States of America
| | - Daniel S Reich
- Translational Neurology Section, NINDS, NIH, Bethesda, MD, United States of America
| | - Jeff H Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, NINDS, NIH, Bethesda, MD, United States of America
| | - Jiaen Liu
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, United States of America.
| |
Collapse
|
16
|
Liang X, Wei Y, Hou X, Guo Q, Liang H, Zeng K, Tu P, Zhang Q. Triterpenoids from Uncaria macrophylla as ferroptosis inhibitors. PHYTOCHEMISTRY 2023; 206:113530. [PMID: 36455653 DOI: 10.1016/j.phytochem.2022.113530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Seven undescribed triterpenoids were obtained from the ethanol extract of the dried stems of Uncaria macrophylla Wall. (Rubiaceae).All of the isolates were urs-28-oic acid or olean-28-oic acid skeletons, including three triterpenoids with rare 3β,23-(1R-4-hydroxy-butyl-1,1-dioxy) or 23-(2R-tetrahydrofuran-2-oxy) substituents. Five triterpenoids showed promising inhibitory activity against erastin-induced ferroptosis in PC12 cells, while 3β,6α,23-trihydroxy-olean-12-en-28-oic acid was the most significant inhibitor to resist ferroptosis by activating the Nrf2/SLC7A11/GPx4 axis with an EC50 value of 4.2 ± 0.7 μM.
Collapse
Affiliation(s)
- Xiaomin Liang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yuding Wei
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xingzi Hou
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Qiang Guo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Hong Liang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Qingying Zhang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
17
|
Yan D, Wu Z, Qi X. Ferroptosis-Related Metabolic Mechanism and Nanoparticulate Anticancer Drug Delivery Systems Based on Ferroptosis. Saudi Pharm J 2023; 31:554-568. [PMID: 37063438 PMCID: PMC10102556 DOI: 10.1016/j.jsps.2023.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Ferroptosis is a new type of cell death discovered in recent years that distinguishes from apoptosis and necrosis, mainly caused by the imbalance between the production and degradation of lipid reactive oxygen species in cells. Although the mechanism of ferroptosis is not yet clear, the phenomenon of ferroptosis has attracted widespread attention from researchers and has become a new hotspot in anti-tumor research. Studies have shown that ferroptosis is involved in the occurrence and development of a variety of diseases such as nervous system diseases, cardiovascular diseases and cancer. And inhibiting or inducing the occurrence of ferroptosis can effectively intervene in related diseases. At the same time, nanotechnology, by virtue of its distinct advantages, has been widely used in the development of nanodrug delivery systems. This review outlines current the advance on the intersection of ferroptosis and biomedical nanotechnology. In this review, the discovery and characteristics of ferroptosis, the mechanism of occurrence and the relationship with disease are summarized. More importantly, we summarized the strategies for inducing ferroptosis based on nanoparticulate drug delivery systems for cancer treatment.
Collapse
|
18
|
Wallace TE, Kober T, Stockmann JP, Polimeni JR, Warfield SK, Afacan O. Real-time shimming with FID navigators. Magn Reson Med 2022; 88:2548-2563. [PMID: 36093989 PMCID: PMC9529812 DOI: 10.1002/mrm.29421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022]
Abstract
PURPOSE To implement a method for real-time field control using rapid FID navigator (FIDnav) measurements and evaluate the efficacy of the proposed approach for mitigating dynamic field perturbations and improvingT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality. METHODS FIDnavs were embedded in a gradient echo sequence and a subject-specific linear calibration model was generated on the scanner to facilitate rapid shim updates in response to measured FIDnav signals. To confirm the accuracy of FID-navigated field updates, phantom and volunteer scans were performed with online updates of the scanner B0 shim settings. To evaluate improvement inT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality with real-time shimming, 10 volunteers were scanned at 3T while performing deep-breathing and nose-touching tasks designed to modulate the B0 field. Quantitative image quality metrics were compared with and without FID-navigated field control. An additional volunteer was scanned at 7T to evaluate performance at ultra-high field. RESULTS Applying measured FIDnav shim updates successfully compensated for applied global and linear field offsets in phantoms and across all volunteers. FID-navigated real-time shimming led to a substantial reduction in field fluctuations and a consequent improvement inT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality in volunteers performing deep-breathing and nose-touching tasks, with 7.57% ± 6.01% and 8.21% ± 10.90% improvement in peak SNR and structural similarity, respectively. CONCLUSION FIDnavs facilitate rapid measurement and application of field coefficients for slice-wise B0 shimming. The proposed approach can successfully counteract spatiotemporal field perturbations and substantially improvesT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality, which is important for a variety of clinical and research applications, particularly at ultra-high field.
Collapse
Affiliation(s)
- Tess E Wallace
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jason P Stockmann
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Jonathan R Polimeni
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Onur Afacan
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
lncRNA ZFAS1 Positively Facilitates Endothelial Ferroptosis via miR-7-5p/ACSL4 Axis in Diabetic Retinopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9004738. [PMID: 36092160 PMCID: PMC9453005 DOI: 10.1155/2022/9004738] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022]
Abstract
Accumulating evidence has suggested the significant role of long noncoding RNAs (lncRNA) in regulating ferroptosis, while its regulatory mechanism in diabetic retinopathy (DR) remains unelucidated. In this work, we first demonstrated that lncRNA zinc finger antisense 1 (ZFAS1) is upregulated in high glucose-cultured human retinal endothelial cells (hRECs) and ZFAS1 inhibition attenuated high glucose- (HG-) induced ferroptosis, which was evidenced by cell viability, total iron and ferrous iron levels, reactive oxygen species (ROS) level, and Glutathione Peroxidase 4 (GPX4) expression detection. Mechanistically, we validated that ZFAS1 may act as a competing endogenous RNA by competitively binding with microRNA-7-5p (miR-7-5p) and modulating the expression of its downstream molecule acyl-CoA synthetase long-chain family member 4 (ACSL4), which is now identified as a classic driver gene of ferroptosis process. In conclusion, our results demonstrate that HG-induced ZFAS1 elevation activates ferroptosis in hRECs and the ZFAS1/miR-7-5p/ACSL4 axis may serve as a therapeutic target for endothelial dysfunction in DR.
Collapse
|
20
|
Zachariou V, Bauer CE, Powell DK, Gold BT. Ironsmith: An Automated Pipeline for QSM-based Data Analyses. Neuroimage 2021; 249:118835. [PMID: 34936923 PMCID: PMC8935985 DOI: 10.1016/j.neuroimage.2021.118835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/27/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
Quantitative susceptibility mapping (QSM) is an MRI-based, computational method for anatomically localizing and measuring concentrations of specific biomarkers in tissue such as iron. Growing research suggests QSM is a viable method for evaluating the impact of iron overload in neurological disorders and on cognitive performance in aging. Several software toolboxes are currently available to reconstruct QSM maps from 3D GRE MR Images. However, few if any software packages currently exist that offer fully automated pipelines for QSM-based data analyses: from DICOM images to region-of-interest (ROI) based QSM values. Even less QSM-based software exist that offer quality control measures for evaluating the QSM output. Here, we address these gaps in the field by introducing and demonstrating the reliability and external validity of Ironsmith; an open-source, fully automated pipeline for creating and processing QSM maps, extracting QSM values from subcortical and cortical brain regions (89 ROIs) and evaluating the quality of QSM data using SNR measures and assessment of outlier regions on phase images. Ironsmith also features automatic filtering of QSM outlier values and precise CSF-only QSM reference masks that minimize partial volume effects. Testing of Ironsmith revealed excellent intra- and inter-rater reliability. Finally, external validity of Ironsmith was demonstrated via an anatomically selective relationship between motor performance and Ironsmith-derived QSM values in motor cortex. In sum, Ironsmith provides a freely-available, reliable, turn-key pipeline for QSM-based data analyses to support research on the impact of brain iron in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Valentinos Zachariou
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 United States.
| | - Christopher E Bauer
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 United States
| | - David K Powell
- Department of Neuroscience, Magnetic Resonance Imaging and Spectroscopy Center, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 United States
| | - Brian T Gold
- Department of Neuroscience, Sanders-Brown Center on Aging, Magnetic Resonance Imaging and Spectroscopy Center, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 United States.
| |
Collapse
|
21
|
Zhang H, Zhang E, Hu H. Role of Ferroptosis in Non-Alcoholic Fatty Liver Disease and Its Implications for Therapeutic Strategies. Biomedicines 2021; 9:biomedicines9111660. [PMID: 34829889 PMCID: PMC8615581 DOI: 10.3390/biomedicines9111660] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the chronic liver disease with the highest incidence throughout the world, but its pathogenesis has not been fully elucidated. Ferroptosis is a novel form of programmed cell death caused by iron-dependent lipid peroxidation. Abnormal iron metabolism, lipid peroxidation, and accumulation of polyunsaturated fatty acid phospholipids (PUFA-PLs) can all trigger ferroptosis. Emerging evidence indicates that ferroptosis plays a critical role in the pathological progression of NAFLD. Because the liver is the main organ for iron storage and lipid metabolism, ferroptosis is an ideal target for liver diseases. Inhibiting ferroptosis may become a new therapeutic strategy for the treatment of NAFLD. In this article, we describe the role of ferroptosis in the progression of NAFLD and its related mechanisms. This review will highlight further directions for the treatment of NAFLD and the selection of corresponding drugs that target ferroptosis.
Collapse
Affiliation(s)
- Han Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100080, China;
| | - Enxiang Zhang
- Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
- Correspondence: (E.Z.); (H.H.)
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100080, China;
- Correspondence: (E.Z.); (H.H.)
| |
Collapse
|
22
|
MacDonald ME, Pike GB. MRI of healthy brain aging: A review. NMR IN BIOMEDICINE 2021; 34:e4564. [PMID: 34096114 DOI: 10.1002/nbm.4564] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
We present a review of the characterization of healthy brain aging using MRI with an emphasis on morphology, lesions, and quantitative MR parameters. A scope review found 6612 articles encompassing the keywords "Brain Aging" and "Magnetic Resonance"; papers involving functional MRI or not involving imaging of healthy human brain aging were discarded, leaving 2246 articles. We first consider some of the biogerontological mechanisms of aging, and the consequences of aging in terms of cognition and onset of disease. Morphological changes with aging are reviewed for the whole brain, cerebral cortex, white matter, subcortical gray matter, and other individual structures. In general, volume and cortical thickness decline with age, beginning in mid-life. Prevalent silent lesions such as white matter hyperintensities, microbleeds, and lacunar infarcts are also observed with increasing frequency. The literature regarding quantitative MR parameter changes includes T1 , T2 , T2 *, magnetic susceptibility, spectroscopy, magnetization transfer, diffusion, and blood flow. We summarize the findings on how each of these parameters varies with aging. Finally, we examine how the aforementioned techniques have been used for age prediction. While relatively large in scope, we present a comprehensive review that should provide the reader with sound understanding of what MRI has been able to tell us about how the healthy brain ages.
Collapse
Affiliation(s)
- M Ethan MacDonald
- Department of Electrical and Software Engineering, University of Calgary, Calgary, Alberta, Canada
- Departments of Radiology and Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
- Healthy Brain Aging Laboratory, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - G Bruce Pike
- Departments of Radiology and Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
- Healthy Brain Aging Laboratory, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
23
|
Abstract
Vitamin E, discovered in 1922, is essential for pregnant rats to carry their babies to term. However, 100 years later, the molecular mechanisms for the vitamin E requirement during embryogenesis remain unknown. Vitamin E's role during pregnancy has been difficult to study and thus, a vitamin E-deficient (E-) zebrafish embryo model was developed. Vitamin E deficiency in zebrafish embryos initiates lipid peroxidation, depletes a specific phospholipid (DHA-phosphatidyl choline), causes secondary deficiencies of choline, betaine and critical thiols (such as glutathione), and dysregulates energy metabolism. Vitamin E deficiency not only distorts the carefully programmed development of the nervous system, but it leads to defects in several developing organs. Both the α-tocopherol transfer protein and vitamin E are necessary for embryonic development, neurogenesis and cognition in this model and likely in human embryos. Elucidation of the control mechanisms for the cellular and metabolic pathways involved in the molecular dysregulation caused by vitamin E deficiency will lead to important insights into abnormal neurogenesis and embryonic malformations.
Collapse
|
24
|
Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA, Lei P. Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther 2021; 6:49. [PMID: 33536413 PMCID: PMC7858612 DOI: 10.1038/s41392-020-00428-9] [Citation(s) in RCA: 775] [Impact Index Per Article: 193.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Ferroptosis is an iron-dependent cell death, which is different from apoptosis, necrosis, autophagy, and other forms of cell death. The process of ferroptotic cell death is defined by the accumulation of lethal lipid species derived from the peroxidation of lipids, which can be prevented by iron chelators (e.g., deferiprone, deferoxamine) and small lipophilic antioxidants (e.g., ferrostatin, liproxstatin). This review summarizes current knowledge about the regulatory mechanism of ferroptosis and its association with several pathways, including iron, lipid, and cysteine metabolism. We have further discussed the contribution of ferroptosis to the pathogenesis of several diseases such as cancer, ischemia/reperfusion, and various neurodegenerative diseases (e.g., Alzheimer's disease and Parkinson's disease), and evaluated the therapeutic applications of ferroptosis inhibitors in clinics.
Collapse
Affiliation(s)
- Hong-Fa Yan
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Center for Biotherapy, 610041, Chengdu, China
| | - Ting Zou
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Qing-Zhang Tuo
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Center for Biotherapy, 610041, Chengdu, China
| | - Shuo Xu
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Center for Biotherapy, 610041, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Hua Li
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Abdel Ali Belaidi
- Melbourne Dementia Research Centre and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Center for Biotherapy, 610041, Chengdu, China.
| |
Collapse
|
25
|
The role of transferrins and iron-related proteins in brain iron transport: applications to neurological diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 123:133-162. [PMID: 33485481 DOI: 10.1016/bs.apcsb.2020.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Iron transport in the central nervous system (CNS) is a highly regulated process in which several important proteins participate to ensure this important metal reaches its sites of action. However, iron accumulation has been shown to be a common factor in different neurological disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Multiple Sclerosis, and Sanfilippo syndrome. This review is divided into four parts. The first part describes brain iron transport in homeostasis, mentioning the main proteins involved, whereas the second part contrasts the consequences of iron dysregulation, elaborating on its role in the aforementioned neurodegenerative diseases. The third part details the functions of the main proteins involved in brain iron homeostasis and their role in neurodegeneration. In the fourth part, in order to highlight the importance of transport proteins, the focus is set on human serum transferrin, the main iron transport protein. This final part describes perspectives about the mechanisms and chemical properties of human transferrin for the development of potential targeted drug delivery systems across the blood-brain barrier (BBB) or enhancers for the treatment of neurological diseases.
Collapse
|
26
|
Al-Radaideh A, El-Haj N, Hijjawi N. Iron deposition and atrophy in cerebral grey matter and their possible association with serum iron in relapsing-remitting multiple sclerosis. Clin Imaging 2020; 69:238-242. [PMID: 32977196 DOI: 10.1016/j.clinimag.2020.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/17/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE The present study was carried out to investigate any possible linkage between cerebral grey matter volumetric, iron changes, white matter's lesions load and serum iron levels in a group of relapsing-remitting multiple sclerosis (RRMS) patients. MATERIALS AND METHODS Sixty-five RRMS patients along with thirty-four age-matched healthy controls (HCs) were recruited. Serum samples were isolated from blood samples which were collected in vacutainer plain tubes individually from both groups. Both groups were scanned at 1.5 T magnetic resonance imaging (MRI) using the following 3D sequences; T1-weighted gradient echo (MPRAGE), T2*-weighted gradient echo and T2-weighted fluid-attenuated inversion recovery (FLAIR). RESULTS Significant differences were observed between the RRMS patients and HCs for cortical and deep grey matter (dGM) volumes where cortical and dGM volumes in RRMS patient were significantly smaller than those in HCs. While iron deposition in the cortex, putamen (PT) and globus pallidus (GP) of RRMS patients were significantly higher than those of HCs, iron levels in thalamus (TH) and serum were significantly lower in RRMS compared to those in HCs. Except for T2 lesion load, none of volumetric measures showed any association with patients' disability status. Cerebral grey matter's iron changes did not show any association with those of serum. CONCLUSION Smaller cortical and subcortical grey matter volumes in RRMS patients compared to HCs were detected. None of the volumetric measures showed any association with patients' disability status. RRMS patients showed increased iron levels in the PT, GP and cortex and decreased levels in the TH and serum.
Collapse
Affiliation(s)
- Ali Al-Radaideh
- Department of Medical Imaging, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan.
| | - Nawal El-Haj
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Nawal Hijjawi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
27
|
Zachariou V, Bauer CE, Seago ER, Raslau FD, Powell DK, Gold BT. Cortical iron disrupts functional connectivity networks supporting working memory performance in older adults. Neuroimage 2020; 223:117309. [PMID: 32861788 PMCID: PMC7821351 DOI: 10.1016/j.neuroimage.2020.117309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Excessive brain iron negatively affects working memory and related processes but the impact of cortical iron on task-relevant, cortical brain networks is unknown. We hypothesized that high cortical iron concentration may disrupt functional circuitry within cortical networks supporting working memory performance. Fifty-five healthy older adults completed an N-Back working memory paradigm while functional magnetic resonance imaging (fMRI) was performed. Participants also underwent quantitative susceptibility mapping (QSM) imaging for assessment of non-heme brain iron concentration. Additionally, pseudo continuous arterial spin labeling scans were obtained to control for potential contributions of cerebral blood volume and structural brain images were used to control for contributions of brain volume. Task performance was positively correlated with strength of task-based functional connectivity (tFC) between brain regions of the frontoparietal working memory network. However, higher cortical iron concentration was associated with lower tFC within this frontoparietal network and with poorer working memory performance after controlling for both cerebral blood flow and brain volume. Our results suggest that high cortical iron concentration disrupts communication within frontoparietal networks supporting working memory and is associated with reduced working memory performance in older adults.
Collapse
Affiliation(s)
- Valentinos Zachariou
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA.
| | - Christopher E Bauer
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA
| | - Elayna R Seago
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA
| | - Flavius D Raslau
- Department of Radiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA
| | - David K Powell
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA; Magnetic Resonance Imaging and Spectroscopy Center, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA
| | - Brian T Gold
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA; Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA; Magnetic Resonance Imaging and Spectroscopy Center, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA.
| |
Collapse
|
28
|
Song X, Long D. Nrf2 and Ferroptosis: A New Research Direction for Neurodegenerative Diseases. Front Neurosci 2020; 14:267. [PMID: 32372896 PMCID: PMC7186402 DOI: 10.3389/fnins.2020.00267] [Citation(s) in RCA: 382] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/09/2020] [Indexed: 12/19/2022] Open
Abstract
Ferroptosis is a kind of regulated cell death (RCD) caused by the redox state disorder of intracellular microenvironment controlled by glutathione (GSH) peroxidase 4 (GPX4), which is inhibited by iron chelators and lipophilic antioxidants. In addition to classical regulatory mechanisms, new regulatory factors for ferroptosis have been discovered in recent years, such as the P53 pathway, the activating transcription factor (ATF)3/4 pathway, Beclin 1 (BECN1) pathway, and some non-coding RNA. Ferroptosis is closely related to cancer treatment, neurodegenerative diseases, ischemia–reperfusion of organ, neurotoxicity, and others, in particular, in the field of neurodegenerative diseases treatment has aroused people’s interest. The nuclear factor E2 related factor 2 (Nrf2/NFE2L2) has been proved to play a key role in neurodegenerative disease treatment and ferroptosis regulation. Ferroptosis promotes the progression of neurodegenerative diseases, while the expression of Nrf2 and its target genes (Ho-1, Nqo-1, and Trx) has been declined with aging; therefore, there is still insufficient evidence for ferroptosis and Nrf2 regulatory networks in the field of neurodegenerative diseases. In this review, we will provide a brief overview of ferroptosis regulatory mechanisms, as well as an emphasis on the mechanism of Nrf2 regulating ferroptosis. We also highlight the role of ferroptosis and Nrf2 during the process of neurodegenerative diseases and investigate a theoretical basis for further research on the relationship between Nrf2 and ferroptosis in the process of neurodegenerative diseases treatment.
Collapse
Affiliation(s)
- Xiaohua Song
- School of Public Health, University of South China, Hengyang, China
| | - Dingxin Long
- School of Public Health, University of South China, Hengyang, China
| |
Collapse
|
29
|
Regional iron distribution and soluble ferroprotein profiles in the healthy human brain. Prog Neurobiol 2019; 186:101744. [PMID: 31870805 DOI: 10.1016/j.pneurobio.2019.101744] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 12/25/2022]
Abstract
Iron is essential for brain development and health where its redox properties are used for a number of neurological processes. However, iron is also a major driver of oxidative stress if not properly controlled. Brain iron distribution is highly compartmentalised and regulated by a number of proteins and small biomolecules. Here, we examine heterogeneity in regional iron levels in 10 anatomical structures from seven post-mortem human brains with no apparent neuropathology. Putamen contained the highest levels, and most case-to-case variability, of iron compared with the other regions examined. Partitioning of iron between cytosolic and membrane-bound iron was generally consistent in each region, with a slightly higher proportion (55 %) in the 'insoluble' phase. We expand on this using the Allen Human Brain Atlas to examine patterns between iron levels and transcriptomic expression of iron regulatory proteins and using quantitative size exclusion chromatography-inductively coupled plasma-mass spectrometry to assess regional differences in the molecular masses to which cytosolic iron predominantly binds. Approximately 60 % was associated with ferritin, equating to approximately 25 % of total tissue iron essentially in storage. This study is the first of its kind in human brain tissue, providing a valuable resource and new insight for iron biologists and neuroscientists, alike.
Collapse
|
30
|
Wallace TE, Afacan O, Kober T, Warfield SK. Rapid measurement and correction of spatiotemporal B 0 field changes using FID navigators and a multi-channel reference image. Magn Reson Med 2019; 83:575-589. [PMID: 31463976 DOI: 10.1002/mrm.27957] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE To measure spatiotemporal B0 field changes in real time using FID navigators (FIDnavs) and to demonstrate the efficacy of retrospectively correcting high-resolution T 2 * -weighted images using a novel FIDnav framework. METHODS A forward model of the complex FIDnav signals was generated by simulating the effect of changes in the underlying B0 inhomogeneity coefficients, with spatial encoding provided by a multi-channel reference image. Experiments were performed at 3T to assess the accuracy of B0 field estimates from FIDnavs acquired from a 64-channel head coil under different shim settings and in 5 volunteers performing deep-breathing and nose-touching tasks designed to modulate the B0 field. Second-order, in-plane spherical harmonic (SH) inhomogeneity coefficients estimated from FIDnavs were incorporated into an iterative reconstruction to retrospectively correct 2D gradient-echo images acquired in both axial and sagittal planes. RESULTS Spatiotemporal B0 field changes measured from rapidly acquired FIDnavs were in good agreement with the results of second-order SH fitting to the measured field maps. FIDnav field estimates accounted for a significant proportion of the ΔB0 variance induced by deep breathing (64 ± 21%) and nose touching (67 ± 34%) across all volunteers. Ghosting, blurring, and intensity modulation artifacts in T 2 * -weighted images, induced by spatiotemporal field changes, were visibly reduced following retrospective correction with FIDnav inhomogeneity coefficients. CONCLUSIONS Spatially resolved B0 inhomogeneity changes up to second order can be characterized in real time using the proposed approach. Retrospective FIDnav correction substantially improves T 2 * -weighted image quality in the presence of strong B0 field modulations, with potential for real-time shimming.
Collapse
Affiliation(s)
- Tess E Wallace
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Boston, Massachussetts.,Harvard Medical School, Boston, Massachussetts
| | - Onur Afacan
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Boston, Massachussetts.,Harvard Medical School, Boston, Massachussetts
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Boston, Massachussetts.,Harvard Medical School, Boston, Massachussetts
| |
Collapse
|
31
|
Sharma SK, Bansal MP, Sandhir R. Altered dietary selenium influences brain iron content and behavioural outcomes. Behav Brain Res 2019; 372:112011. [PMID: 31212061 DOI: 10.1016/j.bbr.2019.112011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023]
Abstract
Selenium (Se) is an essential micronutrient that provides antioxidant defence through selenoproteins, but at high concentrations, deleterious effects have been reported. The present study examines the antioxidant response in brain regions and behavioural functions in mice under various dietary Se paradigms; Se-deficient, Se-adequate and Se-excess. Se levels were found to be reduced in the cortex and hippocampus of Se-deficient animals, whereas no change was observed in animals on Se-excess diet. In the hippocampus, iron (Fe) levels increased in animals on Se-deficient and Se-excess diets. Moreover, in Se-deficient animals, Fe levels increased in cortex also. Interestingly, Se content in the hair positively correlated with the dietary Se intake. Total and Se-dependent glutathione peroxidase activity decreased in the cortex, hippocampus and cerebellum of animals on Se-deficient diet. On the other hand, the activity of these enzymes decreased in the cortex of animals on Se-excess diet. Further, lipid peroxidation increased in the cortex of animals on Se-deficient diet and in the hippocampus of animals on Se-excess diet. Cognitive functions assessed by Morris water maze and Y-maze tests revealed deficits in Se-deficient state. However, in Se-excess state cognitive deficits were observed only in Y-maze test. These findings suggest that long-term dietary variation in Se influences oxidative stress that impacts cognitive functions. Therefore, it is suggested that maintenance of Se status during postnatal development may be crucial for mental health.
Collapse
Affiliation(s)
- Sunil Kumar Sharma
- Department of Biochemistry, Basic Medical Sciences Block-II, Panjab University, Sector-25, Chandigarh 160014, India
| | - Mohinder Pal Bansal
- Department of Biophysics, Basic Medical Sciences Block-II, Panjab University, Sector-25, Chandigarh 160014, India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Sciences Block-II, Panjab University, Sector-25, Chandigarh 160014, India.
| |
Collapse
|
32
|
Microstructural imaging of human neocortex in vivo. Neuroimage 2018; 182:184-206. [DOI: 10.1016/j.neuroimage.2018.02.055] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/13/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
|
33
|
Santana-Codina N, Mancias JD. The Role of NCOA4-Mediated Ferritinophagy in Health and Disease. Pharmaceuticals (Basel) 2018; 11:E114. [PMID: 30360520 PMCID: PMC6316710 DOI: 10.3390/ph11040114] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/26/2022] Open
Abstract
Nuclear receptor coactivator 4 (NCOA4) is a selective cargo receptor that mediates the autophagic degradation of ferritin ("ferritinophagy"), the cytosolic iron storage complex. NCOA4-mediated ferritinophagy maintains intracellular iron homeostasis by facilitating ferritin iron storage or release according to demand. Ferritinophagy is involved in iron-dependent physiological processes such as erythropoiesis, where NCOA4 mediates ferritin iron release for mitochondrial heme synthesis. Recently, ferritinophagy has been shown to regulate ferroptosis, a newly described form of iron-dependent cell death mediated by excess lipid peroxidation. Dysregulation of iron metabolism and ferroptosis have been described in neurodegeneration, cancer, and infection, but little is known about the role of ferritinophagy in the pathogenesis of these diseases. Here, we will review the biochemical regulation of NCOA4, its contribution to physiological processes and its role in disease. Finally, we will discuss the potential of activating or inhibiting ferritinophagy and ferroptosis for therapeutic purposes.
Collapse
Affiliation(s)
- Naiara Santana-Codina
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Institute of Medicine, Room 221, 4 Blackfan Circle, Boston, MA 02215, USA.
| | - Joseph D Mancias
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Institute of Medicine, Room 221, 4 Blackfan Circle, Boston, MA 02215, USA.
| |
Collapse
|
34
|
Peng F, Xie F, Muzik O. Alteration of Copper Fluxes in Brain Aging: A Longitudinal Study in Rodent Using 64CuCl 2-PET/CT. Aging Dis 2018; 9:109-118. [PMID: 29392086 PMCID: PMC5772849 DOI: 10.14336/ad.2017.1025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 10/25/2017] [Indexed: 12/20/2022] Open
Abstract
Brain aging is associated with changes of various metabolic pathways. Copper is required for brain development and function, but little is known about changes in copper metabolism during brain aging. The objective of this study was to investigate alteration of copper fluxes in the aging mouse brain with positron emission tomography/computed tomography using 64CuCl2 as a radiotracer (64CuCl2-PET/CT). A longitudinal study was conducted in C57BL/6 mice (n = 5) to measure age-dependent brain and whole-body changes of 64Cu radioactivity using PET/CT after oral administration of 64CuCl2 as a radiotracer. Cerebral 64Cu uptake at 13 months of age (0.17 ± 0.05 %ID/g) was higher than the cerebral 64Cu uptake at 5 months of age (0.11 ± 0.06 %ID/g, p < 0.001), followed by decrease to (0.14 ± 0.04 %ID/g, p = 0.02) at 26 months of age. In contrast, cerebral 18F-FDG uptake was highest at 5 months of age (7.8 ± 1.2 %ID/g) and decreased to similar values at 12 (5.2 ± 1.1 %ID/g, p < 0.001) and 22 (5.6 ± 1.1 %ID/g, p < 0.001) months of age. The findings demonstrated alteration of copper fluxes associated with brain aging and the time course of brain changes in copper fluxes differed from changes in brain glucose metabolism across time, suggesting independent underlying physiological processes. Hence, age-dependent changes of cerebral copper fluxes might represent a novel metabolic biomarker for assessment of human brain aging process with PET/CT using 64CuCl2 as a radiotracer.
Collapse
Affiliation(s)
- Fangyu Peng
- Department of Radiology, and
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX75390, USA
| | | | - Otto Muzik
- Department of Pediatrics and
- Department of Radiology, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
35
|
Al-Radaideh A, Athamneh I, Alabadi H, Hbahbih M. Cortical and Subcortical Morphometric and Iron Changes in Relapsing-Remitting Multiple Sclerosis and Their Association with White Matter T2 Lesion Load. Clin Neuroradiol 2018; 29:51-64. [DOI: 10.1007/s00062-017-0654-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/08/2017] [Indexed: 01/05/2023]
|
36
|
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang D, Torti FM, Torti SV, Toyokuni S, Woerpel KA, Zhang DD. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell 2017; 171:273-285. [PMID: 28985560 PMCID: PMC5685180 DOI: 10.1016/j.cell.2017.09.021] [Citation(s) in RCA: 4801] [Impact Index Per Article: 600.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 02/07/2023]
Abstract
Ferroptosis is a form of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides to lethal levels. Emerging evidence suggests that ferroptosis represents an ancient vulnerability caused by the incorporation of polyunsaturated fatty acids into cellular membranes, and cells have developed complex systems that exploit and defend against this vulnerability in different contexts. The sensitivity to ferroptosis is tightly linked to numerous biological processes, including amino acid, iron, and polyunsaturated fatty acid metabolism, and the biosynthesis of glutathione, phospholipids, NADPH, and coenzyme Q10. Ferroptosis has been implicated in the pathological cell death associated with degenerative diseases (i.e., Alzheimer's, Huntington's, and Parkinson's diseases), carcinogenesis, stroke, intracerebral hemorrhage, traumatic brain injury, ischemia-reperfusion injury, and kidney degeneration in mammals and is also implicated in heat stress in plants. Ferroptosis may also have a tumor-suppressor function that could be harnessed for cancer therapy. This Primer reviews the mechanisms underlying ferroptosis, highlights connections to other areas of biology and medicine, and recommends tools and guidelines for studying this emerging form of regulated cell death.
Collapse
Affiliation(s)
- Brent R Stockwell
- Department of Biological Sciences, Columbia University, 550 West 120(th) Street, MC 4846, New York, NY 10027, USA; Department of Chemistry, Columbia University, 550 West 120(th) Street, MC 4846, New York, NY 10027, USA.
| | - José Pedro Friedmann Angeli
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), München, Germany
| | - Hülya Bayir
- Department of Critical Care Medicine, Safar Center for Resuscitation Research and Center for Free Radical and Antioxidant Health, University of Pittsburgh and Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), München, Germany
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, German Cancer Consortium (DKTK), partner site Frankfurt, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sergio Gascón
- Ludwig-Maximilians University of Munich, Physiological Genomics, Biomedical Center (BMC), Planegg-Martinsried, Germany; Institute for Stem Cell Research, Helmholtz Center Munich at the Biomedical Center (BMC), Grosshaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Stavroula K Hatzios
- Department of Molecular, Cellular and Developmental Biology and Department of Chemistry, Yale University, New Haven, CT 06511, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kay Noel
- Collaborative Medicinal Development, LLC, Sausalito, CA, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andreas Linkermann
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
| | - Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, USA
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Gabriela C Pagnussat
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | | | - Qitao Ran
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX, USA
| | | | - Konstantin Salnikow
- Division of Cancer Biology, National Cancer Institute, NIH, Rockville, MD 20850, USA
| | - Daolin Tang
- The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Protein Modification and Degradation Laboratory, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Frank M Torti
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Suzy V Torti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - K A Woerpel
- Department of Chemistry, New York University, New York, NY, USA
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| |
Collapse
|