1
|
Shariatzadeh M, Payán-Gómez C, Kzhyshkowska J, Dik WA, Leenen PJM. Polarized Macrophages Show Diverse Pro-Angiogenic Characteristics Under Normo- and Hyperglycemic Conditions. Int J Mol Sci 2025; 26:4846. [PMID: 40429986 PMCID: PMC12111939 DOI: 10.3390/ijms26104846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/10/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Angiogenesis plays a crucial role in solid tumor growth. Ischemia and inflammation induce various angiogenic mediators, and patient metabolic conditions importantly influence this process. Macrophages closely interact with the vascular system and regulate angiogenesis through pro/anti-angiogenic factors. Traditionally, pro-angiogenic activity has been attributed to M2-like macrophages. We question this, as recent evidence suggests that also M1-like macrophages can be pro-angiogenic. Therefore, the aim is to identify the pro/anti-angiogenic gene expression profiles of human polarized macrophages unbiasedly. We also examine the effect of hyperglycemia on angiogenic gene expression, reflecting its role in diabetes and other metabolic conditions. Bioinformatic analysis was performed on the angiogenesis-related gene expression profiles of CD14+ monocyte-derived M1(IFN-γ)- and M2(IL-4)-polarized macrophages. The top differentially expressed genes were selected for validation. Macrophages were generated in vitro and polarized to M1(IFN-γ) and M2(IL-4/IL-6) cells under standard/hyperglycemic conditions. After immunophenotypic confirmation, selected gene expression was quantified using qPCR. IL-4 and IL-6 induce distinct M2-like phenotypes with mixed pro/anti-angiogenic gene expression. Remarkably, IFN-γ stimulation also increases several pro-angiogenic genes. Hyperglycemia affects the angiogenic expression profile in both M1- and M2-like macrophages, although distinctive identities remain intact. The pro-angiogenic phenotype is not limited to M2-polarized macrophages. Both M1- and M2-like macrophages express complex pro/anti-angiogenic gene profiles, which are only mildly influenced by hyperglycemia.
Collapse
Affiliation(s)
- Mahnaz Shariatzadeh
- Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - César Payán-Gómez
- Academic Direction, Universidad Nacional de Colombia, Sede de La Paz, Cesar 202010, Colombia;
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany;
- German Red Cross Blood Service Baden-Württemberg—Hessen, 89081 Ulm, Germany
| | - Willem A. Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Pieter J. M. Leenen
- Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
2
|
Zhang L, Li Y, Wu Z, Shen Q, Zeng C, Liu H, Zhang X, Yang J, Liu Q, Tang D, Ou K, Fang Y. Metrnl inhibits choroidal neovascularization by attenuating the choroidal inflammation via inactivating the UCHL-1/NF-κB signaling pathway. Front Immunol 2024; 15:1379586. [PMID: 38745648 PMCID: PMC11091344 DOI: 10.3389/fimmu.2024.1379586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Objective Choroidal neovascularization (CNV) represents the predominant form of advanced wet Age-related Macular Degeneration (wAMD). Macrophages play a pivotal role in the pathological progression of CNV. Meteorin-like (Metrnl), a novel cytokine known for its anti-inflammatory properties in macrophages, is the focus of our investigation into its mechanism of action and its potential to impede CNV progression. Methods Cell viability was evaluated through CCK-8 and EdU assays following Metrnl treatment. Expression levels of inflammatory cytokines and proteins were assessed using quantitative reverse-transcription polymerase chain reaction(qRT-PCR), enzyme-linked immunosorbent assay (ELISA), and western blot techniques. Protein-protein interactions were identified through protein mass spectrometry and co-immunoprecipitation (Co-IP). Additionally, in vivo and in vitro neovascularization models were employed to evaluate angiogenesis. Results Our results revealed downregulated Metrnl levels in the choroid-sclera complex of CNV mice, the aqueous humor of wAMD patients, and activated macrophages. Metrnl overexpression demonstrated a reduction in pro-inflammatory cytokine production, influenced endothelial cell function, and suppressed angiogenesis in choroid explants and CNV models. Through protein mass spectrometry and Co-IP, we confirmed Metrnl binds to UCHL-1 to modulate the NF-κB signaling pathway. This interaction inhibited the transcription and expression of pro-inflammatory cytokines, ultimately suppressing angiogenesis. Conclusion In summary, our findings indicate that Metrnl down-regulates macrophage pro-inflammatory cytokine secretion via the UCHL-1/NF-κB signaling pathway. This mechanism alleviates the inflammatory microenvironment and effectively inhibits choroidal neovascularization.
Collapse
Affiliation(s)
- Lanyue Zhang
- Department of Ophthalmology, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Youjian Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Arts and Sciences, Chongqing, China
| | - Zhengyu Wu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Arts and Sciences, Chongqing, China
| | - Qiang Shen
- Department of Ophthalmology, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Chunqin Zeng
- Department of Ophthalmology, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Han Liu
- Department of Ophthalmology, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Xuedong Zhang
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaxing Yang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Arts and Sciences, Chongqing, China
| | - Qiaoling Liu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Arts and Sciences, Chongqing, China
| | - Dianyong Tang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Arts and Sciences, Chongqing, China
| | - Kepeng Ou
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation (IATTI), Chongqing University of Arts and Sciences, Chongqing, China
| | - Yanhong Fang
- Department of Ophthalmology, Chongqing University Jiangjin Hospital, Chongqing, China
| |
Collapse
|
3
|
Brandli A, Vessey KA, Fletcher EL. The contribution of pattern recognition receptor signalling in the development of age related macular degeneration: the role of toll-like-receptors and the NLRP3-inflammasome. J Neuroinflammation 2024; 21:64. [PMID: 38443987 PMCID: PMC10913318 DOI: 10.1186/s12974-024-03055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss, characterised by the dysfunction and death of the photoreceptors and retinal pigment epithelium (RPE). Innate immune cell activation and accompanying para-inflammation have been suggested to contribute to the pathogenesis of AMD, although the exact mechanism(s) and signalling pathways remain elusive. Pattern recognition receptors (PRRs) are essential activators of the innate immune system and drivers of para-inflammation. Of these PRRs, the two most prominent are (1) Toll-like receptors (TLR) and (2) NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3)-inflammasome have been found to modulate the progression of AMD. Mutations in TLR2 have been found to be associated with an increased risk of developing AMD. In animal models of AMD, inhibition of TLR and NLRP3 has been shown to reduce RPE cell death, inflammation and angiogenesis signalling, offering potential novel treatments for advanced AMD. Here, we examine the evidence for PRRs, TLRs2/3/4, and NLRP3-inflammasome pathways in macular degeneration pathogenesis.
Collapse
Affiliation(s)
- Alice Brandli
- Department of Anatomy and Physiology, The University of Melbourne, Grattan St, Parkville, Victoria, 3010, Australia
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Kirstan A Vessey
- Department of Anatomy and Physiology, The University of Melbourne, Grattan St, Parkville, Victoria, 3010, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Grattan St, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
4
|
Fu Y, Zhang Z, Webster KA, Paulus YM. Treatment Strategies for Anti-VEGF Resistance in Neovascular Age-Related Macular Degeneration by Targeting Arteriolar Choroidal Neovascularization. Biomolecules 2024; 14:252. [PMID: 38540673 PMCID: PMC10968528 DOI: 10.3390/biom14030252] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 05/04/2024] Open
Abstract
Despite extensive use of intravitreal anti-vascular endothelial growth factor (anti-VEGF) biologics for over a decade, neovascular age-related macular degeneration (nAMD) or choroidal neovascularization (CNV) continues to be a major cause of irreversible vision loss in developed countries. Many nAMD patients demonstrate persistent disease activity or experience declining responses over time despite anti-VEGF treatment. The underlying mechanisms of anti-VEGF resistance are poorly understood, and no effective treatment strategies are available to date. Here we review evidence from animal models and clinical studies that supports the roles of neovascular remodeling and arteriolar CNV formation in anti-VEGF resistance. Cholesterol dysregulation, inflammation, and ensuing macrophage activation are critically involved in arteriolar CNV formation and anti-VEGF resistance. Combination therapy by neutralizing VEGF and enhancing cholesterol removal from macrophages is a promising strategy to combat anti-VEGF resistance in CNV.
Collapse
Affiliation(s)
- Yingbin Fu
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA; (Z.Z.); (K.A.W.)
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhao Zhang
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA; (Z.Z.); (K.A.W.)
| | - Keith A. Webster
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA; (Z.Z.); (K.A.W.)
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yannis M. Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA;
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
5
|
Huang L, Ye L, Li R, Zhang S, Qu C, Li S, Li J, Yang M, Wu B, Chen R, Huang G, Gong B, Li Z, Yang H, Yu M, Shi Y, Wang C, Chen W, Yang Z. Dynamic human retinal pigment epithelium (RPE) and choroid architecture based on single-cell transcriptomic landscape analysis. Genes Dis 2023; 10:2540-2556. [PMID: 37554187 PMCID: PMC10404887 DOI: 10.1016/j.gendis.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022] Open
Abstract
The retinal pigment epithelium (RPE) and choroid are located behind the human retina and have multiple functions in the human visual system. Knowledge of the RPE and choroid cells and their gene expression profiles are fundamental for understanding retinal disease mechanisms and therapeutic strategies. Here, we sequenced the RNA of about 0.3 million single cells from human RPE and choroids across two regions and seven ages, revealing regional and age differences within the human RPE and choroid. Cell-cell interactions highlight the broad connectivity networks between the RPE and different choroid cell types. Moreover, the transcription factors and their target genes change during aging. The coding of somatic variations increases during aging in the human RPE and choroid at the single-cell level. Moreover, we identified ELN as a candidate for improving RPE degeneration and choroidal structure during aging. The mapping of the molecular architecture of the human RPE and choroid improves our understanding of the human vision support system and offers potential insights into the intervention targets for retinal diseases.
Collapse
Affiliation(s)
- Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
| | - Lin Ye
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Runze Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Shanshan Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Chao Qu
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Jie Li
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Biao Wu
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | - Ran Chen
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | - Guo Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Bo Gong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Zheng Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Hongjie Yang
- Department of Organ Transplant Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Man Yu
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Changguan Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100730, China
| | - Wei Chen
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
| |
Collapse
|
6
|
Elbaz-Hayoun S, Rinsky B, Hagbi-Levi S, Grunin M, Chowers I. CCR1 mediates Müller cell activation and photoreceptor cell death in macular and retinal degeneration. eLife 2023; 12:e81208. [PMID: 37903056 PMCID: PMC10615370 DOI: 10.7554/elife.81208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/04/2023] [Indexed: 11/01/2023] Open
Abstract
Mononuclear cells are involved in the pathogenesis of retinal diseases, including age-related macular degeneration (AMD). Here, we examined the mechanisms that underlie macrophage-driven retinal cell death. Monocytes were extracted from patients with AMD and differentiated into macrophages (hMdɸs), which were characterized based on proteomics, gene expression, and ex vivo and in vivo properties. Using bioinformatics, we identified the signaling pathway involved in macrophage-driven retinal cell death, and we assessed the therapeutic potential of targeting this pathway. We found that M2a hMdɸs were associated with retinal cell death in retinal explants and following adoptive transfer in a photic injury model. Moreover, M2a hMdɸs express several CCRI (C-C chemokine receptor type 1) ligands. Importantly, CCR1 was upregulated in Müller cells in models of retinal injury and aging, and CCR1 expression was correlated with retinal damage. Lastly, inhibiting CCR1 reduced photic-induced retinal damage, photoreceptor cell apoptosis, and retinal inflammation. These data suggest that hMdɸs, CCR1, and Müller cells work together to drive retinal and macular degeneration, suggesting that CCR1 may serve as a target for treating these sight-threatening conditions.
Collapse
Affiliation(s)
- Sarah Elbaz-Hayoun
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Batya Rinsky
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Shira Hagbi-Levi
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Michelle Grunin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Itay Chowers
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
7
|
Zhang X, Du S, Yang D, Jin X, Zhang Y, Wang D, Wang H, Zhang Y, Zhu M. LncRNA MALAT1 knockdown inhibits the development of choroidal neovascularization. Heliyon 2023; 9:e19503. [PMID: 37810031 PMCID: PMC10558713 DOI: 10.1016/j.heliyon.2023.e19503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
In the pathogenesis of age-related macular degeneration, long non-coding RNAs have become important regulators. This study aimed to investigate the role of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in the progression of choroidal neovascularization (CNV) and the underlying mechanisms. The in vivo and in vitro model of CNV was established using laser-induced mouse CNV model and human choroidal vascular endothelial cells (HCVECs) exposed to hypoxia respectively. We explore the role of MALAT1 in the pathogenesis of CNV by using the small interference RNA both in vivo and in vitro. MALAT1 expression was found to be upregulated in the retinal pigment epithelial-choroidal complexes. MALAT1 knockdown inhibited CNV development and leakage in vivo and decreased HCVECs proliferation, migration, and tube formation in vitro. MALAT1 performed the task as a miR-17-5p sponge to regulate the expression of vascular endothelial growth factor A (VEGFA) and E26 transformation specific-1 (ETS1). This study provides a new perspective on the pathogenesis of CNV and suggests that the axis MALAT/miR-17-5p/VEGFA or ETS1 may be an effective therapeutic target for CNV.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Changchun Aier Eye Hospital, Aier Eye Hospital Group, Changchun, Nanguang District, Jilin Province, China
| | - Shu Du
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Defeng Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xuemei Jin
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuan Zhang
- Changchun Aier Eye Hospital, Aier Eye Hospital Group, Changchun, Nanguang District, Jilin Province, China
| | - Diya Wang
- Changchun Aier Eye Hospital, Aier Eye Hospital Group, Changchun, Nanguang District, Jilin Province, China
| | - Huixia Wang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yan Zhang
- Changchun Aier Eye Hospital, Aier Eye Hospital Group, Changchun, Nanguang District, Jilin Province, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
8
|
Vofo BN, Chowers I. Suppressing Inflammation for the Treatment of Diabetic Retinopathy and Age-Related Macular Degeneration: Dazdotuftide as a Potential New Multitarget Therapeutic Candidate. Biomedicines 2023; 11:1562. [PMID: 37371657 PMCID: PMC10295757 DOI: 10.3390/biomedicines11061562] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are major causes of blindness globally. The primary treatment option for DME and neovascular AMD (nAMD) is anti-vascular endothelial growth factor (VEGF) compounds, but this treatment modality often yields insufficient results, and monthly injections can place a burden on the health system and patients. Although various inflammatory pathways and mediators have been recognized as key players in the development of DR and AMD, there are limited treatment options targeting these pathways. Molecular pathways that are interlinked, or triggers of multiple inflammatory pathways, could be promising targets for drug development. This review focuses on the role of inflammation in the pathogenesis of DME and AMD and presents current anti-inflammatory compounds, as well as a potential multitarget anti-inflammatory compound (dazdotuftide) that could be a candidate treatment option for the management of DME and AMD.
Collapse
Affiliation(s)
| | - Itay Chowers
- Department of Ophthalmology, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel;
| |
Collapse
|
9
|
Zhang Z, Shen MM, Fu Y. Combination of AIBP, apoA-I, and Aflibercept Overcomes Anti-VEGF Resistance in Neovascular AMD by Inhibiting Arteriolar Choroidal Neovascularization. Invest Ophthalmol Vis Sci 2022; 63:2. [PMID: 36318195 PMCID: PMC9639697 DOI: 10.1167/iovs.63.12.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Purpose Anti-VEGF resistance represents a major unmet clinical need in the management of choroidal neovascularization (CNV). We have previously reported that a combination of AIBP, apoA-I, and an anti-VEGF antibody overcomes anti-VEGF resistance in laser-induced CNV in old mice in prevention experiments. The purpose of this work is to conduct a more clinically relevant study to assess the efficacy of the combination of AIBP, apoA-I, and aflibercept in the treatment of anti-VEGF resistance of experimental CNV at different time points after laser photocoagulation. Methods To understand the pathobiology of anti-VEGF resistance, we performed comprehensive examinations of the vascular morphology of laser-induced CNV in young mice that are highly responsive to anti-VEGF treatment, and in old mice that are resistant to anti-VEGF therapy by indocyanine green angiography (ICGA), fluorescein angiography (FA), optical coherence tomography (OCT), and Alexa 568 isolectin labeled choroid flatmounts. We examined the efficacy of the combination therapy of AIBP, apoA-I, and aflibercept intravitreally delivered at 2, 4, and 7 days after laser photocoagulation in the treatment of CNV in old mice. Results Laser-induced CNV in young and old mice exhibited cardinal features of capillary and arteriolar CNV, respectively. The combination therapy and the aflibercept monotherapy were equally effective in treating capillary CNV in young mice. In old mice, the combination therapy was effective in treating anti-VEGF resistance by potently inhibiting arteriolar CNV, whereas aflibercept monotherapy was ineffective. Conclusions Combination therapy of AIBP, apoA-I, and aflibercept overcomes anti-VEGF resistance in experimental CNV in old mice by inhibiting arteriolar CNV.
Collapse
Affiliation(s)
- Zhao Zhang
- Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, United States
| | - Megan M. Shen
- Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, United States
| | - Yingbin Fu
- Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
10
|
Heloterä H, Kaarniranta K. A Linkage between Angiogenesis and Inflammation in Neovascular Age-Related Macular Degeneration. Cells 2022; 11:cells11213453. [PMID: 36359849 PMCID: PMC9654543 DOI: 10.3390/cells11213453] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of visual impairment in the aging population with a limited understanding of its pathogenesis and the number of patients are all the time increasing. AMD is classified into two main forms: dry and neovascular AMD (nAMD). Dry AMD is the most prevalent form (80–90%) of AMD cases. Neovascular AMD (10–20% of AMD cases) is treated with monthly or more sparsely given intravitreal anti-vascular endothelial growth factor inhibitors, but unfortunately, not all patients respond to the current treatments. A clinical hallmark of nAMD is choroidal neovascularization. The progression of AMD is initially characterized by atrophic alterations in the retinal pigment epithelium, as well as the formation of lysosomal lipofuscin and extracellular drusen deposits. Cellular damage caused by chronic oxidative stress, protein aggregation and inflammatory processes may lead to advanced geographic atrophy and/or choroidal neovascularization and fibrosis. Currently, it is not fully known why different AMD phenotypes develop. In this review, we connect angiogenesis and inflammatory regulators in the development of nAMD and discuss therapy challenges and hopes.
Collapse
Affiliation(s)
- Hanna Heloterä
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
- Correspondence:
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
| |
Collapse
|
11
|
Rinsky B, Beykin G, Grunin M, Amer R, Khateb S, Tiosano L, Almeida D, Hagbi-Levi S, Elbaz-Hayoun S, Chowers I. Analysis of the Aqueous Humor Proteome in Patients With Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2021; 62:18. [PMID: 34406330 PMCID: PMC8374990 DOI: 10.1167/iovs.62.10.18] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/06/2021] [Indexed: 01/24/2023] Open
Abstract
Purpose Age-related macular degeneration (AMD) is associated with altered gene and protein expression in the retina. We characterize the aqueous humor (AH) proteome in AMD to gain insight into the pathogenesis of the disease and identify potential biomarkers. Methods AH was collected from age and gender matched neovascular AMD (nvAMD; n = 10) patients and controls (n = 10). AH was pooled to create two samples (nvAMD and control), followed by intensity-based label-free quantification (MS1). Functional and bioinformatic analysis were then performed. A validation set (20 controls, 15 atrophic AMD and 15 nvAMD) was tested via multiplex ELISA for nine differentially expressed proteins according to the MS1 findings. Results MS1 identified 674 proteins in the AH. 239 proteins were upregulated in nvAMD (nvAMD/control > 2, peptide tags (PT) > 2), and 86 proteins were downregulated (nvAMD/control < 0.5, PT > 2). Functional analysis of proteins upregulated in AMD demonstrated enrichment for platelet degranulation (enrichment score (ES):28.1), negative regulation of endopeptidase activity (ES:18.8), cellular protein metabolic process (ES:11.8), epidermal growth factor-like domain (ES:10.3), sushi/SCR/CCP (ES:10.1), and complement/coagulation cascades (ES:9.2). AMD protein clusters were upregulated for 3/6 (χ2 < 0.05 compared to randomization). Validation via ELISA confirmed MS1 in 2/9 proteins (Clusterin and Serpin A4, P < 0.05), while 3/9 showed differential expression between aAMD and nvAMD (Clusterin, Serpin A4, and TF P < 0.05). Receiver operating characteristic curve calculation identified the area under the curve of 0.82 for clusterin as a biomarker for distinction of AMD. Conclusions AH proteomics in AMD patients identified several proteins and functional clusters with altered expression. Further research should confirm if these proteins may serve as biomarkers or therapeutic target for the disease.
Collapse
Affiliation(s)
- Batya Rinsky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Gala Beykin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Michelle Grunin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Radgonde Amer
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Samer Khateb
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Liran Tiosano
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Diego Almeida
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Shira Hagbi-Levi
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Sarah Elbaz-Hayoun
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Itay Chowers
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
12
|
Dando SJ, Kazanis R, McMenamin PG. Myeloid Cells in the Mouse Retina and Uveal Tract Respond Differently to Systemic Inflammatory Stimuli. Invest Ophthalmol Vis Sci 2021; 62:10. [PMID: 34379096 PMCID: PMC8363776 DOI: 10.1167/iovs.62.10.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/03/2021] [Indexed: 01/14/2023] Open
Abstract
Purpose In spite of clear differences in tissue function and significance to ocular disease, little is known about how immune responses differ between the retina and uveal tract. To this end we compared the effects of acute systemic inflammation on myeloid cells within the mouse retina, iris-ciliary body, and choroid. Methods Systemic inflammation was induced in Cx3cr1gfp/gfp and CD11c-eYFP Crb1wt/wtmice by intraperitoneal lipopolysaccharide (LPS). In vivo fundus imaging was performed at two, 24, and 48 hours after LPS, and ocular tissue wholemounts were immunostained and studied by confocal microscopy. Flow cytometry was used to investigate the expression of activation markers (MHC class II, CD80, CD86) on myeloid cell populations at 24 hours. For functional studies, retinal microglia were isolated from LPS-exposed mice and cocultured with naïve OT-II CD4+ T-cells and ovalbumin peptide. T-cell proliferation was measured by flow cytometry and cytokine assays. Results Systemic LPS altered the density and morphology of retinal microglia; however, retinal microglia did not upregulate antigen presentation markers and failed to stimulate naïve CD4+ T-cell proliferation in vitro. In contrast, uveal tract myeloid cells displayed a phenotype consistent with late-activated antigen-presenting cells at 24 hours. Systemic LPS induced remodeling of myeloid populations within the uveal tract, particularly in the choroid, where dendritic cells were partially displaced by macrophages at 24 hours. Conclusions The disparate myeloid cell responses in the retina and uveal tract after systemic LPS highlight differential regulation of innate immunity within these tissue environments, observations that underpin and advance our understanding of ocular immune privilege.
Collapse
Affiliation(s)
- Samantha J. Dando
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Brisbane, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Renee Kazanis
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Paul G. McMenamin
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| |
Collapse
|
13
|
Gu BJ, Huang X, Avula PK, Caruso E, Drysdale C, Vessey KA, Ou A, Fowler C, Liu TH, Lin Y, Horton A, Masters CL, Wiley JS, Guymer RH, Fletcher EL. Deficits in Monocyte Function in Age Related Macular Degeneration: A Novel Systemic Change Associated With the Disease. Front Med (Lausanne) 2021; 8:634177. [PMID: 33816525 PMCID: PMC8010137 DOI: 10.3389/fmed.2021.634177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/24/2021] [Indexed: 12/25/2022] Open
Abstract
Age-related macular degeneration (AMD) is characterized by the accumulation of debris in the posterior eye. In this study we evaluated peripheral blood monocyte phagocytic function at various stages of AMD and in aged matched control participants. Real-time tri-color flow cytometry was used to quantify phagocytic function of peripheral blood monocyte subsets (non-classic, intermediate and classic) isolated from subjects with intermediate or late AMD and compared with age matched healthy controls. Assessment of phagocytic function of monocytes isolated from those with and without reticular pseudodrusen was also made, and the effect of glatiramer acetate on phagocytic function assessed. Phagocytic function was reduced in all subjects with AMD, irrespective of stage of disease. However, there was no correlation between phagocytic function and drusen load, nor any difference between the level of phagocytosis in those with or without reticular pseudodrusen. Treatment with glatiramer acetate increased phagocytosis of classical and non-classical monocytes, normalizing the reduction in phagocytosis observed in those with AMD. These findings suggest that defective systemic phagocytosis is associated with both intermediate and late stages of AMD, highlighting a potential role in the accumulation of debris that occurs early in the disease process. Assessing peripheral monocyte phagocytic function provides further insights into the etiology of this disease and offer a novel therapeutic target.
Collapse
Affiliation(s)
- Ben J Gu
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Huang
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Pavan K Avula
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Emily Caruso
- Department of Surgery (Ophthalmology), Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, East Melbourne, VIC, Australia
| | - Candace Drysdale
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Kirstan A Vessey
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, Australia
| | - Amber Ou
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Christopher Fowler
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Tian-Hua Liu
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Yong Lin
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Adam Horton
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - James S Wiley
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Robyn H Guymer
- Department of Surgery (Ophthalmology), Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, East Melbourne, VIC, Australia
| | - Erica L Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Combination of apolipoprotein-A-I/apolipoprotein-A-I binding protein and anti-VEGF treatment overcomes anti-VEGF resistance in choroidal neovascularization in mice. Commun Biol 2020; 3:386. [PMID: 32678293 PMCID: PMC7367303 DOI: 10.1038/s42003-020-1113-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/29/2020] [Indexed: 11/08/2022] Open
Abstract
Many patients of choroidal neovascularization (CNV) are unresponsive to the current anti-VEGF treatment. The mechanisms for anti-VEGF resistance are poorly understood. We explore the unique property of the apolipoprotein A-I (apoA-I) binding protein (AIBP) that enhances cholesterol efflux from endothelial cells and macrophages to thereby limit angiogenesis and inflammation to tackle anti-VEGF resistance in CNV. We show that laser-induced CNV in mice with increased age showed increased resistance to anti-VEGF treatment, which correlates with increased lipid accumulation in macrophages. The combination of AIBP/apoA-I and anti-VEGF treatment overcomes anti-VEGF resistance and effectively suppresses CNV. Furthermore, macrophage depletion in old mice restores CNV sensitivity to anti-VEGF treatment and blunts the synergistic effect of combination therapy. These results suggest that cholesterol-laden macrophages play a critical role in inducing anti-VEGF resistance in CNV. Combination therapy by neutralizing VEGF and enhancing cholesterol removal from macrophages is a promising strategy to combat anti-VEGF resistance in CNV.
Collapse
|
15
|
Bo Q, Shen M, Xiao M, Liang J, Zhai Y, Zhu H, Jiang M, Wang F, Luo X, Sun X. 3-Methyladenine Alleviates Experimental Subretinal Fibrosis by Inhibiting Macrophages and M2 Polarization Through the PI3K/Akt Pathway. J Ocul Pharmacol Ther 2020; 36:618-628. [PMID: 32552228 DOI: 10.1089/jop.2019.0112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose: To explore the effects of 3-methyladenine (3-MA), a selective inhibitor of phosphatidylinositol-3-kinase (PI3K), on experimental subretinal fibrosis (SRF) in mice. Methods: The SRF mouse model was established by 532 nm laser photocoagulation at each fundus of mice on day 0. 3-MA was administered every 2 days from day 0 to 35. Immunofluorescence of choroidal flat mounts was performed to evaluate the size of SRF area, local macrophages, and polarization, respectively. Besides, Western blot analysis was carried out to assess the expression levels of macrophage polarization-related genes, Arg-1, Ym-1, and transforming growth factor-β2 (TGF-β2). Co-culture and migration experiments were used to demonstrate the inhibitory effect of 3-MA on fibroblasts. The gene knockout and Western blot analysis were used to explore the signal pathways related to macrophage polarization. Results: Compared with the control group, the 3-MA-treated group showed significantly less size of SRF area. 3-MA treatment reduced both circulating and local macrophages, and counteracted M2 polarization. Moreover, 3-MA inhibited fibroblast recruitment. Mechanistically, we proved that 3-MA inhibits macrophage M2 polarization by suppressing PI3K/Akt signal pathway rather than the PI3K-autophagy-related signal pathway. Conclusions: 3-MA exerts antifibrotic effects on experimental SRF by targeting circulating and local macrophages and M2 polarization, through PI3K/Akt signal pathway. These results support the potential use of 3-MA as a new therapeutic modality for SRF associated with neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Qiyu Bo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengxi Shen
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meichun Xiao
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Liang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Yuanqi Zhai
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Hong Zhu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Mei Jiang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Fenghua Wang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xueting Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
16
|
Bioinformatical Analysis of miRNA-mRNA Interaction Network Underlying Macrophage Aging and Cholesterol-Responsive Difference between Young and Aged Macrophages. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9267475. [PMID: 32626771 PMCID: PMC7306864 DOI: 10.1155/2020/9267475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/28/2020] [Accepted: 05/18/2020] [Indexed: 01/28/2023]
Abstract
Purpose Macrophage aging is involved with the occurrence and progression of age-related macular degeneration (AMD). The purpose of this study was to identify the specific microRNAs (miRNA), mRNAs, and their interactions underlying macrophage aging and response to cholesterol through bioinformatical analysis in order to get a better understanding of the mechanism of AMD. Methods The microarray data were obtained from Gene Expression Omnibus (accession GSE111304 and GSE111382). The age-related differentially expressed genes in macrophages were identified using R software. Further miRNA-mRNA interactions were analyzed through miRWalk, mirTarBase, starBase, and then produced by Cytoscape. The functional annotations including Gene Ontology and KEGG pathways of the miRNA target genes were performed by the DAVID and the STRING database. In addition, protein-protein interaction network was constructed to identify the key genes in response to exogenous cholesterol. Results When comparing aged and young macrophages, a total of 14 miRNAs and 101 mRNAs were detected as differentially expressed. Besides, 19 validated and 544 predicted miRNA-mRNA interactions were detected. Lipid metabolic process was found to be associated with macrophage aging through functional annotations of the miRNA targets. After being treated with oxidized and acetylated low-density lipoprotein, miR-714 and 16 mRNAs differentially expressed in response to both kinds of cholesterol between aged and young macrophages. Among them, 6 miRNA-mRNA predicted pairs were detected. The functional annotations were mainly related to lipid metabolism process and farnesyl diphosphate farnesyl transferase 1 (FDFT1) was identified to be the key gene in the difference of response to cholesterol between aged and young macrophages. Conclusions Lipid metabolic process was critical in both macrophage aging and response to cholesterol thus was regarded to be associated with the occurrence and progression of AMD. Moreover, miR-714-FDFT1 may modulate cholesterol homeostasis in aged macrophages and have the potential to be a novel therapeutic target for AMD.
Collapse
|
17
|
Subhi Y, Krogh Nielsen M, Molbech CR, Krüger Falk M, Singh A, Hviid TVF, Nissen MH, Sørensen TL. Association of CD11b+ Monocytes and Anti-Vascular Endothelial Growth Factor Injections in Treatment of Neovascular Age-Related Macular Degeneration and Polypoidal Choroidal Vasculopathy. JAMA Ophthalmol 2020; 137:515-522. [PMID: 30844038 DOI: 10.1001/jamaophthalmol.2019.0010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Importance CD11b+ immune cells have been implicated in the formation of choroidal neovascularization in experimental studies on animals and disease-association studies on humans. However, the clinical importance of such observations remains unknown. Objective To investigate whether the proportion of CD11b+ circulating monocytes is associated with the number of anti-vascular endothelial growth factor (anti-VEGF) injections in neovascular age-related macular degeneration (AMD) and polypoidal choroidal vasculopathy (PCV). Design, Setting, and Participants These observational cohort studies collected data from January 1, 2010, through December 31, 2013, and from January 1, 2015, through December 31, 2018. Fresh venous blood samples were acquired for flow cytometric immune studies in patients with neovascular AMD or PCV receiving treatment with aflibercept or ranibizumab as needed for 36 months. Patients (n = 81) without immune diseases were consecutively recruited from a single center in Denmark. Exposures Proportion of CD11b+ circulating monocytes. Main Outcomes and Measures The estimation of the number of intravitreal anti-VEGF injections given at 12, 24, and 36 months by the proportion of CD11b+ circulating monocytes and the correlation between these values. The angiogenic role of CD11b+ circulating monocytes was further evaluated by investigating the expression of the known proangiogenic receptor CCR2. Results Eighty-one patients were included in the analysis (54% women; mean [SD] age, 76 [7] years). The proportion of CD11b+ monocytes at baseline positively estimated the future number of anti-VEGF injections at 12 (ρ = 0.77; 95% CI, 0.35-0.93; P = .004), 24 (ρ = 0.82; 95% CI, 0.44-0.95; P = .002), and 36 (ρ = 0.78; 95% CI, 0.34-0.94; P = .005) months. This association was also found retrospectively in a larger sample of patients with neovascular AMD at 12 (ρ = 0.46; 95% CI, 0.16-0.68; P = .004), 24 (ρ = 0.49; 95% CI, 0.20-0.70; P = .002), and 36 (ρ = 0.65; 95% CI, 0.41-0.80; P < .001) months and patients with PCV at 12 (ρ = 0.27; 95% CI, -0.28 to 0.68; P = .30), 24 (ρ = 0.60; 95% CI, 0.12-0.85; P = .02), and 36 (ρ = 0.70; 95% CI, 0.27-0.90; P = .005) months, suggesting that this association is not specific to AMD but rather reflects VEGF activity in neovascularization. CD11b+ monocytes highly coexpressed CCR2, an important monocytic marker of proangiogenic activity. Conclusions and Relevance Results of this study demonstrated that the proportion of circulating CD11b+ monocytes estimated and correlated with the number of anti-VEGF injections in patients with neovascular AMD and PCV. Additional longitudinal studies are needed to determine whether these findings have clinical relevance to influence treatment algorithms or provide novel targets for medical therapy.
Collapse
Affiliation(s)
- Yousif Subhi
- Clinical Eye Research Division, Department of Ophthalmology, Zealand University Hospital Roskilde, Roskilde, Denmark.,Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Marie Krogh Nielsen
- Clinical Eye Research Division, Department of Ophthalmology, Zealand University Hospital Roskilde, Roskilde, Denmark.,Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Christopher Rue Molbech
- Clinical Eye Research Division, Department of Ophthalmology, Zealand University Hospital Roskilde, Roskilde, Denmark.,Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Mads Krüger Falk
- Department of Ophthalmology, Zealand University Hospital Næstved, Næstved, Denmark
| | - Amardeep Singh
- Department of Clinical Sciences Lund, Division of Ophthalmology, Skane University Hospital, Lund University, Lund, Sweden
| | - Thomas Vauvert Faurschou Hviid
- Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.,Centre for Immune Regulation and Reproductive Immunology (CIRRI), Department of Clinical Biochemistry, Zealand University Hospital, Roskilde, Denmark
| | - Mogens Holst Nissen
- Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.,Eye Research Unit, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Torben Lykke Sørensen
- Clinical Eye Research Division, Department of Ophthalmology, Zealand University Hospital Roskilde, Roskilde, Denmark.,Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Promiscuous Chemokine Antagonist (BKT130) Suppresses Laser-Induced Choroidal Neovascularization by Inhibition of Monocyte Recruitment. J Immunol Res 2019; 2019:8535273. [PMID: 31467935 PMCID: PMC6701410 DOI: 10.1155/2019/8535273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/05/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Abstract
Background Age-related macular degeneration (AMD), the most common cause of blindness in the developed world, usually affects individuals older than 60 years of age. The majority of visual loss in this disease is attributable to the development of choroidal neovascularization (CNV). Mononuclear phagocytes, including monocytes and their tissue descendants, macrophages, have long been implicated in the pathogenesis of neovascular AMD (nvAMD). Current therapies for nvAMD are based on targeting vascular endothelial growth factor (VEGF). This study is aimed at assessing if perturbation of chemokine signaling and mononuclear cell recruitment may serve as novel complementary therapeutic targets for nvAMD. Methods A promiscuous chemokine antagonist (BKT130), aflibercept treatment, or combined BKT130+aflibercept treatment was tested in an in vivo laser-induced model of choroidal neovascularization (LI-CNV) and in an ex vivo choroidal sprouting assay (CSA). Quantification of CD11b+ cell in the CNV area was performed, and mRNA levels of genes implicated in CNV growth were measured in the retina and RPE-choroid. Results BKT130 reduced the CNV area and recruitment of CD11b+ cells by 30-35%. No effect of BKT130 on macrophages' proangiogenic phenotype was demonstrated ex vivo, but a lower VEGFA and CCR2 expression was found in the RPE-choroid and a lower expression of TNFα and NOS1 was found in both RPE-choroid and retinal tissues in the LI-CNV model under treatment with BKT130. Conclusions Targeting monocyte recruitment via perturbation of chemokine signaling can reduce the size of experimental CNV and should be evaluated as a potential novel therapeutic modality for nvAMD.
Collapse
|
19
|
Chen M, Chan CC, Xu H. Cholesterol homeostasis, macrophage malfunction and age-related macular degeneration. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:S55. [PMID: 30613630 DOI: 10.21037/atm.2018.10.31] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mei Chen
- The Wellcome-Wolfson Institute for Experimental Medicine, Centre for Experimental Medicine, Queen's University Belfast, UK
| | - Chi-Chao Chan
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Heping Xu
- The Wellcome-Wolfson Institute for Experimental Medicine, Centre for Experimental Medicine, Queen's University Belfast, UK.,Aier Eye Institute, Aier Eye Hospital Group, Aier School of Ophthalmology, Central South University, Changsha 410015, China
| |
Collapse
|
20
|
Lin JB, Sene A, Santeford A, Fujiwara H, Sidhu R, Ligon MM, Shankar VA, Ban N, Mysorekar IU, Ory DS, Apte RS. Oxysterol Signatures Distinguish Age-Related Macular Degeneration from Physiologic Aging. EBioMedicine 2018; 32:9-20. [PMID: 29903570 PMCID: PMC6021272 DOI: 10.1016/j.ebiom.2018.05.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 01/16/2023] Open
Abstract
Macrophage aging is pathogenic in numerous diseases, including age-related macular degeneration (AMD), a leading cause of blindness in older adults. Although prior studies have explored the functional consequences of macrophage aging, less is known about its cellular basis or what defines the transition from physiologic aging to disease. Here, we show that despite their frequent self-renewal, macrophages from old mice exhibited numerous signs of aging, such as impaired oxidative respiration. Transcriptomic profiling of aged murine macrophages revealed dysregulation of diverse cellular pathways, especially in cholesterol homeostasis, that manifested in altered oxysterol signatures. Although the levels of numerous oxysterols in human peripheral blood mononuclear cells and plasma exhibited age-associated changes, plasma 24-hydroxycholesterol levels were specifically associated with AMD. These novel findings demonstrate that oxysterol levels can discriminate disease from physiologic aging. Furthermore, modulation of cholesterol homeostasis may be a novel strategy for treating age-associated diseases in which macrophage aging is pathogenic.
Collapse
Affiliation(s)
- Jonathan B Lin
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Neuroscience Graduate Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Abdoulaye Sene
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrea Santeford
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Hideji Fujiwara
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Rohini Sidhu
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Marianne M Ligon
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vikram A Shankar
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Norimitsu Ban
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Indira U Mysorekar
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Rajendra S Apte
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
21
|
Pe'er J, Chowers I. Centennial Anniversary of the Department of Ophthalmology of the Hadassah Medical Center, 1918-2018. Am J Ophthalmol 2018; 190:xxii-xxviii. [PMID: 29559411 DOI: 10.1016/j.ajo.2018.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/05/2018] [Accepted: 03/11/2018] [Indexed: 11/24/2022]
Affiliation(s)
- Jacob Pe'er
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Itay Chowers
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
22
|
Lin JB, Moolani HV, Sene A, Sidhu R, Kell P, Lin JB, Dong Z, Ban N, Ory DS, Apte RS. Macrophage microRNA-150 promotes pathological angiogenesis as seen in age-related macular degeneration. JCI Insight 2018; 3:120157. [PMID: 29618664 DOI: 10.1172/jci.insight.120157] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/06/2018] [Indexed: 12/30/2022] Open
Abstract
Macrophage aging is pathogenic in diseases of the elderly, including age-related macular degeneration (AMD), a leading cause of blindness in older adults. However, the role of microRNAs, which modulate immune processes, in regulating macrophage dysfunction and thereby promoting age-associated diseases is underexplored. Here, we report that microRNA-150 (miR-150) coordinates transcriptomic changes in aged murine macrophages, especially those associated with aberrant lipid trafficking and metabolism in AMD pathogenesis. Molecular profiling confirmed that aged murine macrophages exhibit dysregulated ceramide and phospholipid profiles compared with young macrophages. Of translational relevance, upregulation of miR-150 in human peripheral blood mononuclear cells was also significantly associated with increased odds of AMD, even after controlling for age. Mechanistically, miR-150 directly targets stearoyl-CoA desaturase-2, which coordinates macrophage-mediated inflammation and pathologic angiogenesis, as seen in AMD, in a VEGF-independent manner. Together, our results implicate miR-150 as pathogenic in AMD and provide potentially novel molecular insights into diseases of aging.
Collapse
Affiliation(s)
- Jonathan B Lin
- Department of Ophthalmology and Visual Sciences.,Neuroscience Graduate Program, Division of Biology and Biomedical Sciences
| | | | | | - Rohini Sidhu
- Diabetic Cardiovascular Disease Center.,Department of Medicine, and
| | - Pamela Kell
- Diabetic Cardiovascular Disease Center.,Department of Medicine, and
| | | | - Zhenyu Dong
- Department of Ophthalmology and Visual Sciences
| | | | - Daniel S Ory
- Diabetic Cardiovascular Disease Center.,Department of Medicine, and
| | - Rajendra S Apte
- Department of Ophthalmology and Visual Sciences.,Diabetic Cardiovascular Disease Center.,Department of Medicine, and.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
23
|
Zhou YD, Yoshida S, Peng YQ, Kobayashi Y, Zhang LS, Tang LS. Diverse roles of macrophages in intraocular neovascular diseases: a review. Int J Ophthalmol 2017; 10:1902-1908. [PMID: 29259911 PMCID: PMC5733520 DOI: 10.18240/ijo.2017.12.18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022] Open
Abstract
Macrophages are involved in angiogenesis, and might also contribute to the pathogenesis of intraocular neovascular diseases. Recent studies indicated that macrophages exert different functions in the process of intraocular neovascularization, and the polarization of M1 and M2 phenotypes plays extremely essential roles in the diverse functions of macrophages. Moreover, a large number of cytokines released by macrophages not only participate in macrophage polarization, but also associate with retinal and choroidal neovascular diseases. Therefore, macrophage might be considered as a novel therapeutic target to the treatment of pathological neovascularization in the eye. This review mainly summarizes diverse roles of macrophages and discusses the possible mechanisms in retinal and choroidal neovascularization.
Collapse
Affiliation(s)
- Ye-Di Zhou
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Ying-Qian Peng
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Yoshiyuki Kobayashi
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Lu-Si Zhang
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Luo-Sheng Tang
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| |
Collapse
|
24
|
Ren Z, Qin T, Qiu F, Song Y, Lin D, Ma Y, Li J, Huang Y. Immunomodulatory effects of hydroxyethylated Hericium erinaceus polysaccharide on macrophages RAW264.7. Int J Biol Macromol 2017; 105:879-885. [DOI: 10.1016/j.ijbiomac.2017.07.104] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 11/29/2022]
|