1
|
Nilsson J, Mecca AP, Ashton NJ, Salardini E, O'Dell RS, Carson RE, Benedet AL, Blennow K, Zetterberg H, van Dyck CH, Brinkmalm A. Associations between fluid biomarkers and PET imaging ([ 11 C]UCB-J) of synaptic pathology in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646290. [PMID: 40236111 PMCID: PMC11996329 DOI: 10.1101/2025.03.31.646290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
INTRODUCTION Positron Emission Tomography (PET) imaging with ligands for synaptic vesicle glycoprotein 2A (SV2A) has emerged as a promising methodology for measuring synaptic density in Alzheimer's disease (AD). We investigate the relationship between SV2A PET and CSF synaptic protein changes of AD patients. METHOD Twenty-one participants with early AD and 7 cognitively normal (CN) individuals underwent [ 11 C]UCB-J PET. We used mass spectrometry to measure a panel of synaptic proteins in CSF. RESULTS In the AD group, higher levels of syntaxin-7 and PEBP-1 were associated with lower global synaptic density. In the total sample, lower global synaptic density was associated with higher levels of AP2B1, neurogranin, γ-synuclein, GDI-1, PEBP-1, syntaxin-1B, and syntaxin-7 but not with the levels of the neuronal pentraxins or 14-3-3 zeta/delta. CONCLUSION Reductions of synaptic density found in AD compared to CN participants using [ 11 C]UCB-J PET were observed to be associated with CSF biomarker levels of synaptic proteins.
Collapse
|
2
|
Giorgio J, Soleimani-Meigooni DN, Janabi M, Baker SL, Chen X, Toueg TN, Weimer R, Zinnhardt B, Green A, Rabinovici GD, Jagust WJ. Imaging Synaptic Density in Aging and Alzheimer Disease with [ 18F]SynVesT-1. J Nucl Med 2025; 66:620-625. [PMID: 40049743 PMCID: PMC11960604 DOI: 10.2967/jnumed.124.269005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/29/2025] [Indexed: 04/03/2025] Open
Abstract
Synaptic density imaging with PET is a relatively new approach to monitoring synaptic injury in neurodegenerative diseases. However, there are remaining technical and clinical questions, including questions on reference region selection and on how specific phenotypic presentations and symptoms of Alzheimer disease (AD) are reflected in alterations in synaptic density. Methods: Using a synaptic vesicle glycoprotein 2A (SV2A) PET ligand radiolabeled with the 18F isotope ([18F]SynVesT-1), we performed sensitivity analyses to determine the optimal reference tissue modeling approach to derive whole-brain ratio images. Using these whole-brain images from a sample of young adults, older adults, and patients with varied phenotypic presentations of AD, we then contrasted regional SV2A density and in vivo AD biomarkers. Results: Reference tissue optimization concluded that a cerebellar gray matter reference region is best for deriving whole-brain ratio images. Using these images, we found a strong inverse association between [18F]SynVesT-1 PET uptake and amyloid β and tau PET deposition. Finally, we found that individuals with a lower temporal gray matter volume but higher temporal [18F]SynVesT-1 PET uptake show preserved performance on the mini-mental state examination. Conclusion: [18F]SynVesT-1 PET shows a close association with in vivo AD pathology, and preserved SV2A density may be a possible marker for resilience to neurodegeneration.
Collapse
Affiliation(s)
- Joseph Giorgio
- Department of Neuroscience, University of California Berkeley, Berkeley, California;
- School of Psychological Sciences, College of Engineering, Science, and the Environment, University of Newcastle, Newcastle, New South Wales, Australia
| | - David N Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California
| | - Mustafa Janabi
- Lawrence Berkeley National Laboratory, Berkeley, California
| | | | - Xi Chen
- Department of Neuroscience, University of California Berkeley, Berkeley, California
- Department of Psychology, Stony Brook University, Stony Brook, New York
| | - Tyler N Toueg
- Department of Neuroscience, University of California Berkeley, Berkeley, California
| | | | | | - Ari Green
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California
| | - William J Jagust
- Department of Neuroscience, University of California Berkeley, Berkeley, California
- Lawrence Berkeley National Laboratory, Berkeley, California
| |
Collapse
|
3
|
Stein-O'Brien GL, Palaganas R, Meyer EM, Redding-Ochoa J, Pletnikova O, Guo H, Bell WR, Troncoso JC, Huganir RL, Morris M. Transcriptional signatures of hippocampal tau pathology in primary age-related tauopathy and Alzheimer's disease. Cell Rep 2025; 44:115422. [PMID: 40085647 PMCID: PMC12019863 DOI: 10.1016/j.celrep.2025.115422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 12/17/2024] [Accepted: 02/20/2025] [Indexed: 03/16/2025] Open
Abstract
In primary age-related tauopathy (PART) and Alzheimer's disease (AD), tau aggregates share a similar structure and anatomic distribution, which is distinct from tau pathology in other diseases. However, transcriptional similarities between PART and AD and gene expression changes within tau-pathology-bearing neurons are largely unknown. Using GeoMx spatial transcriptomics, mRNA was quantified in hippocampal neurons with and without tau pathology in PART and AD. Synaptic genes were down-regulated in disease overall but up-regulated in tau-pathology-positive neurons. Two transcriptional signatures were associated with intraneuronal tau, both validated in a cortical AD dataset. Genes in the up-regulated signature were enriched in calcium regulation and synaptic function. Notably, transcriptional changes associated with intraneuronal tau in PART and AD were similar, suggesting a possible mechanistic relationship. These findings highlight the power of molecular analysis stratified by pathology and provide insight into common pathways associated with tau pathology in PART and AD.
Collapse
Affiliation(s)
- Genevieve L Stein-O'Brien
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Baltimore, MD 21218, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ryan Palaganas
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ernest M Meyer
- UPMC Hillman Cancer Center Cytometry Facility, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Haidan Guo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - William R Bell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Baltimore, MD 21218, USA
| | - Meaghan Morris
- Kavli Neuroscience Discovery Institute, Baltimore, MD 21218, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
4
|
Zheng C, Xia W, Zhang J. Rock inhibitors in Alzheimer's disease. FRONTIERS IN AGING 2025; 6:1547883. [PMID: 40182055 PMCID: PMC11965611 DOI: 10.3389/fragi.2025.1547883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025]
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disease and cause of dementia. AD pathology primarily involves the formation of amyloid β (Aβ) plaques and neurofibrillary tangles containing hyperphosphorylated tau (p-tau). While Aβ targeted treatments have shown clinical promise, other aspects of AD pathology such as microgliosis, astrocytosis, synaptic loss, and hypometabolism may be viable targets for treatment. Among notable novel therapeutic approaches, the Ras homolog (Rho)-associated kinases (ROCKs) are being investigated as targets for AD treatment, based on the observations that ROCK1/2 levels are elevated in AD, and activation or inhibition of ROCKs changes dendritic/synaptic structures, protein aggregate accumulation, inflammation, and gliosis. This review will highlight key findings on the effects of ROCK inhibition in Aβ and ptau pathologies, as well as its effects on neuroinflammation, synaptic density, and potentially metabolism and bioenergetics.
Collapse
Affiliation(s)
- Chao Zheng
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Departments of Psychiatry, Chemistry, Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Weiming Xia
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, United States
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Biological Sciences, University of Massachusetts Kennedy College of Science, Lowell, MA, United States
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
5
|
Tang C, Vanderlinden G, Schroyen G, Deprez S, Van Laere K, Koole M. A support vector machine-based approach to guide the selection of a pseudo-reference region for brain PET quantification. J Cereb Blood Flow Metab 2025; 45:568-577. [PMID: 39397394 PMCID: PMC11563559 DOI: 10.1177/0271678x241290912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/07/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
A Support Vector Machine (SVM) based approach was developed to identify a pseudo-reference region for brain PET scans with the aim of reducing interscan and intersubject variability. By training a binary linear SVM classifier with PET datasets from two different groups, potential pseudo-reference regions were identified by considering their regional average or total contribution to the classification score. This approach was evaluated in three cohorts with different brain PET tracers: (1) 11C-PiB PET scans of Alzheimer's disease (AD) patients and age-matched controls (OC); (2) baseline and blocking scans of an 11C-UCB-J PET occupancy study; and (3) 18F-DPA-714 PET scans for healthy controls (HC) and chemo-treated women with breast cancer (BC). In the first cohort, cerebellum, brainstem, and subcortical white matter were confirmed as pseudo-reference regions. The same regions were identified for the second cohort using either the VT maps or the SUV images. In the third cohort, cerebellum and brainstem were identified as pseudo-reference regions, alongside subcortical white matter and temporal cortex. In addition, the SVM-based approach demonstrated robust performance even with a reduced number of subjects, therefore confirming its applicability in identifying pseudo-reference regions without a priori assumptions and with only limited data across different PET tracers.
Collapse
Affiliation(s)
- Chunmeng Tang
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Greet Vanderlinden
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Gwen Schroyen
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Sabine Deprez
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Division of Nuclear Medicine, University Hospitals UZ Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Jauregi-Zinkunegi A, Betthauser T, Carlsson CM, Bendlin BB, Okonkwo O, Chin NA, Asthana S, Langhough RE, Johnson SC, Mueller KD, Bruno D. Delayed primacy recall in AVLT is associated with medial temporal tau PET burden in cognitively unimpaired adults. Cortex 2025; 184:47-57. [PMID: 39799781 DOI: 10.1016/j.cortex.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/14/2024] [Accepted: 12/17/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) can be diagnosed by in vivo abnormalities of amyloid-β plaques (A) and tau accumulation (T) biomarkers. Previous studies have shown that analyses of serial position performance in episodic memory tests, and especially, delayed primacy, are associated with AD pathology even in individuals who are cognitively unimpaired. The earliest signs of cortical tau pathology are observed in medial temporal lobe (MTL) regions, yet it is unknown if serial position markers are also associated with early tau load in these regions. This study of cognitively unimpaired older individuals examined whether serial position scores in word-list recall cross-sectionally predicted tau PET load in the MTL, and were able to discriminate between biomarker profiles, based on AT classification. METHODS Data from 490 participants (mean age = 68.8 ± 7.2) were extracted from two cohorts, which were merged into one sample. Linear regression analyses were carried out with regional volume-controlled tau (18F-MK-6240) PET SUVR of the entorhinal cortex (EC), parahippocampal cortex (PHC) and hippocampus (H) as outcomes, cross-sectional memory scores from the Rey Auditory Verbal Learning Test as predictors (total and delayed recall, along with serial position scores) and control variables, in separate analyses for each outcome and predictor. The sample was then stratified by biomarker profile and ANCOVAs were conducted with the strongest scores from the regression analyses, AT groups as fixed factor and the covariates. RESULTS Higher delayed primacy significantly predicted lower tau PET in EC, PHC, and H, cross-sectionally. Higher total recall scores predicted lower EC tau, but delayed primacy showed the best model fit, as indicated by AICs. ANCOVAs showed that AVLT metrics did not significantly discriminate between A-T- and A+T+, after correcting for multiple comparisons. CONCLUSIONS Serial position analysis of word-list recall, particularly delayed primacy, may be a valuable tool for identifying in vivo tau pathology in cognitively unimpaired individuals.
Collapse
Affiliation(s)
| | - Tobey Betthauser
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Cynthia M Carlsson
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Geriatric Research Education and Clinical Center of the Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Geriatric Research Education and Clinical Center of the Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Ozioma Okonkwo
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Geriatric Research Education and Clinical Center of the Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Nathaniel A Chin
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Division of Geriatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Division of Geriatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Rebecca E Langhough
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Geriatric Research Education and Clinical Center of the Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Kimberly D Mueller
- Division of Geriatrics, University of Wisconsin-Madison, Madison, WI, USA; Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA
| | - Davide Bruno
- School of Psychology, Liverpool John Moores University, United Kingdom
| |
Collapse
|
7
|
Vanderlinden G, Koole M, Michiels L, Lemmens R, Vandenbulcke M, Van Laere K. Longitudinal synaptic loss versus tau Braak staging in amnestic mild cognitive impairment. Alzheimers Dement 2025; 21:e14412. [PMID: 39732507 PMCID: PMC11848342 DOI: 10.1002/alz.14412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 12/30/2024]
Abstract
INTRODUCTION The longitudinal progression of synaptic loss in Alzheimer's disease (AD) and how it is affected by tau pathology remains poorly understood. METHODS Thirty patients with amnestic mild cognitive impairment (aMCI) and 26 healthy controls underwent cognitive evaluations and tau, synaptic vesicle protein 2A (SV2A), and amyloid positron emission tomography. Twenty-one aMCI underwent 2-year follow-up (FU) investigations. RESULTS Tau levels in aMCI increased longitudinally in Braak regions III through VI but not in Braak regions I and II. SV2A decreased longitudinally in all Braak regions in aMCI. Baseline tau was negatively associated with longitudinal SV2A loss in early Braak regions and with SV2A at FU across regions. Baseline tau and longitudinal change in SV2A were associated with longitudinal cognitive decline. DISCUSSION Tau accumulation reaches a plateau in early Braak regions already in the aMCI stage of AD. In early Braak regions, the association between baseline tau and longitudinal SV2A loss might reflect synaptic dysfunction caused by tau pathology. HIGHLIGHTS Tau accumulation reached a plateau in early Braak regions in amnestic mild cognitive impairment (aMCI) patients. aMCI patients show widespread longitudinal decrease in synaptic vesicle protein 2A (SV2A) over 2 years. Baseline tau was predictive for longitudinal SV2A loss. The tau-SV2A relation showed individual variability and was negative across patients. Baseline tau and longitudinal SV2A change were associated with change in cognition.
Collapse
Affiliation(s)
- Greet Vanderlinden
- Nuclear Medicine and Molecular ImagingImaging and PathologyKU LeuvenLeuvenBelgium
- Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Michel Koole
- Nuclear Medicine and Molecular ImagingImaging and PathologyKU LeuvenLeuvenBelgium
- Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Laura Michiels
- Leuven Brain InstituteKU LeuvenLeuvenBelgium
- Department of NeurologyUniversity Hospitals UZ LeuvenLeuvenBelgium
- VIBCenter for Brain & Disease ResearchLaboratory of NeurobiologyLeuvenBelgium
- Department of NeurosciencesKU LeuvenLeuvenBelgium
| | - Robin Lemmens
- Leuven Brain InstituteKU LeuvenLeuvenBelgium
- Department of NeurologyUniversity Hospitals UZ LeuvenLeuvenBelgium
- VIBCenter for Brain & Disease ResearchLaboratory of NeurobiologyLeuvenBelgium
- Department of NeurosciencesKU LeuvenLeuvenBelgium
| | - Mathieu Vandenbulcke
- Leuven Brain InstituteKU LeuvenLeuvenBelgium
- Department of Geriatric PsychiatryUniversity Hospitals UZ LeuvenLeuvenBelgium
- NeuropsychiatryResearch Group Psychiatry, KU LeuvenLeuvenBelgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular ImagingImaging and PathologyKU LeuvenLeuvenBelgium
- Leuven Brain InstituteKU LeuvenLeuvenBelgium
- Division of Nuclear MedicineUniversity Hospitals UZ LeuvenLeuvenBelgium
| |
Collapse
|
8
|
Zhang S, Wang X, Gao X, Chen X, Li L, Li G, Liu C, Miao Y, Wang R, Hu K. Radiopharmaceuticals and their applications in medicine. Signal Transduct Target Ther 2025; 10:1. [PMID: 39747850 PMCID: PMC11697352 DOI: 10.1038/s41392-024-02041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025] Open
Abstract
Radiopharmaceuticals involve the local delivery of radionuclides to targeted lesions for the diagnosis and treatment of multiple diseases. Radiopharmaceutical therapy, which directly causes systematic and irreparable damage to targeted cells, has attracted increasing attention in the treatment of refractory diseases that are not sensitive to current therapies. As the Food and Drug Administration (FDA) approvals of [177Lu]Lu-DOTA-TATE, [177Lu]Lu-PSMA-617 and their complementary diagnostic agents, namely, [68Ga]Ga-DOTA-TATE and [68Ga]Ga-PSMA-11, targeted radiopharmaceutical-based theranostics (radiotheranostics) are being increasingly implemented in clinical practice in oncology, which lead to a new era of radiopharmaceuticals. The new generation of radiopharmaceuticals utilizes a targeting vector to achieve the accurate delivery of radionuclides to lesions and avoid off-target deposition, making it possible to improve the efficiency and biosafety of tumour diagnosis and therapy. Numerous studies have focused on developing novel radiopharmaceuticals targeting a broader range of disease targets, demonstrating remarkable in vivo performance. These include high tumor uptake, prolonged retention time, and favorable pharmacokinetic properties that align with clinical standards. While radiotheranostics have been widely applied in tumor diagnosis and therapy, their applications are now expanding to neurodegenerative diseases, cardiovascular diseases, and inflammation. Furthermore, radiotheranostic-empowered precision medicine is revolutionizing the cancer treatment paradigm. Diagnostic radiopharmaceuticals play a pivotal role in patient stratification and treatment planning, leading to improved therapeutic outcomes in targeted radionuclide therapy. This review offers a comprehensive overview of the evolution of radiopharmaceuticals, including both FDA-approved and clinically investigated agents, and explores the mechanisms of cell death induced by radiopharmaceuticals. It emphasizes the significance and future prospects of theranostic-based radiopharmaceuticals in advancing precision medicine.
Collapse
Grants
- 82372002 National Natural Science Foundation of China (National Science Foundation of China)
- 0104002 Beijing Nova Program
- L248087; L234044 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences (No. 2022-RC350-04), the CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001), the National Key Research and Development Program of China (No. 2022YFE0111700),the Fundamental Research Funds for the Central Universities (Nos. 3332023044 and 3332023151), the CIRP Open Fund of Radiation Protection Laboratories (No. ZHYLYB2021005), and the China National Nuclear Corporation Young Talent Program.
- Fundamental Research Funds for the Central Universities,Nos. 3332023044
- Fundamental Research Funds for the Central Universities,Nos. 3332023151
- he Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences,No. 2022-RC350-04;the CAMS Innovation Fund for Medical Sciences,Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001;the National Key Research and Development Program of China,No. 2022YFE0111700
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xueyao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Linger Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Guoqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Can Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Yuan Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 2019RU066, 730000, Lanzhou, China.
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
9
|
Lu X, Ji B, Huang G, Ding H. Advances in synaptic PET imaging and intervention with synapse-targeted small-molecular drugs for dementia diagnosis and therapy. FUNDAMENTAL RESEARCH 2025; 5:63-71. [PMID: 40166112 PMCID: PMC11955051 DOI: 10.1016/j.fmre.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/02/2025] Open
Abstract
Dementia is characterized by synaptic and neuronal dysfunction in disease-specific brain regions. Repeated failure of dementia clinical trials with therapeutic drugs targeting abnormal protein aggregates has caused researchers to shift their focus to synaptic functions and increased the importance of clinically available imaging for synaptic density and the development of synapse-targeted intervention. Synaptic density imaging with positron emission tomography (PET) tracer enables non-invasive detection of synaptic loss and hence investigates the association with other neuropathological events exemplified by disease-specific abnormal protein accumulation. Many studies have reviewed the progress of synaptic density imaging; however, to our knowledge, there is no article yet that summarizes the research progress of multimodal imaging of synaptic density tracers combined with other dementia biomarkers. Moreover, synaptic function intervention for dementia therapy has not yet been summarized. In this review, first we detail the progress of synaptic density imaging including tracer development and preclinical/clinical application, followed by a discussion of multimodal imaging of synaptic density tracers combined with classic dementia biomarkers in the clinical research stage. Finally, we briefly summarize the synapse-targeted drugs for dementia therapy.
Collapse
Affiliation(s)
- Xiuhong Lu
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- School of pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of pharmacy, Fudan University, Shanghai 201203, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Hong Ding
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
10
|
Li B, Chen H, Zheng Y, Xu X, You Z, Huang Q, Huang Y, Guan Y, Zhao J, Liu J, Xie F, Wang J, Xu W, Zhang J, Deng Y. Loss of synaptic density in nucleus basalis of meynert indicates distinct neurodegeneration in Alzheimer's disease: the RJNB-D study. Eur J Nucl Med Mol Imaging 2024; 52:134-144. [PMID: 39112615 DOI: 10.1007/s00259-024-06862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/26/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND The nucleus basalis of Meynert (NBM) is known to play a crucial role in the development and pathogenesis of Alzheimer's Disease (AD), particularly the cholinergic system within the NBM. However, the relationship between synaptic loss in the NBM and the clinical profile of AD remains unclear. METHODS In our study, we included 44 Aβ-negative normal controls (CN) and 76 Aβ-positive participants with cognitive impairment (CI). All participants underwent structural and diffusion magnetic resonance imaging (MRI), as well as positron emission tomography (PET) imaging to measure synaptic vesicle glycoprotein 2 A (SV2A) levels (Trial registration: NCT05623124. Registered 21 November 2022). The SV2A standardized uptake value ratios (SUVR) distribution in the NBM of CN participants was used as the reference norm. We investigated the association between NBM synaptic density and clinical performance, traditional AD biomarkers, and white matter tracts that passed the NBM. RESULTS Participants with cognitive impairment (CI) who had NBM synaptic density below 1.5 standard deviations (SD) or 0.5 SD of the norm exhibited worse cognitive performance compared to cognitively normal (CN) individuals. Crucially, the extent of deviation in synaptic density from the norm was directly proportional to the severity of cognitive impairment and neurodegeneration biomarkers. Furthermore, among patients with cognitive impairment, synaptic loss in the NBM was associated with potential impairment in the density and organization of neurites within the white matter tracts connected to the NBM. Finally, neurite density index in the medial tracts may play a mediating role in the relationship between NBM synaptic density and MMSE scores. CONCLUSION The extent that synaptic density in NBM deviated from the norm suggested the extent of worse cognitive performance and severe neurodegeneration. Furthermore, cognitive impairment associated with synaptic loss in the NBM may be mediated by its pathological impact on NBM white matter tracts.
Collapse
Affiliation(s)
- Binyin Li
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haijuan Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yingting Zheng
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaomeng Xu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhiwen You
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qi Huang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jun Liu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Clinical Neuroscience Center, Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Wang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Xu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junfang Zhang
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yulei Deng
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Clinical Neuroscience Center, Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
11
|
Howes O, Marcinkowska J, Turkheimer FE, Carr R. Synaptic changes in psychiatric and neurological disorders: state-of-the art of in vivo imaging. Neuropsychopharmacology 2024; 50:164-183. [PMID: 39134769 PMCID: PMC11525650 DOI: 10.1038/s41386-024-01943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 11/01/2024]
Abstract
Synapses are implicated in many neuropsychiatric illnesses. Here, we provide an overview of in vivo techniques to index synaptic markers in patients. Several positron emission tomography (PET) tracers for synaptic vesicle glycoprotein 2 A (SV2A) show good reliability and selectivity. We review over 50 clinical studies including over 1700 participants, and compare findings in healthy ageing and across disorders, including addiction, schizophrenia, depression, posttraumatic stress disorder, and neurodegenerative disorders, including tauopathies, Huntington's disease and α-synucleinopathies. These show lower SV2A measures in cortical brain regions across most of these disorders relative to healthy volunteers, with the most well-replicated findings in tauopathies, whilst changes in Huntington's chorea, Parkinson's disease, corticobasal degeneration and progressive supranuclear palsy are predominantly subcortical. SV2A PET measures are correlated with functional connectivity across brain networks, and a number of other measures of brain function, including glucose metabolism. However, the majority of studies found no relationship between grey matter volume measured with magnetic resonance imaging and SV2A PET measures. Cognitive dysfunction, in domains including working memory and executive function, show replicated inverse relationships with SV2A measures across diagnoses, and initial findings also suggest transdiagnostic relationships with mood and anxiety symptoms. This suggests that synaptic abnormalities could be a common pathophysiological substrate underlying cognitive and, potentially, affective symptoms. We consider limitations of evidence and future directions; highlighting the need to develop postsynaptic imaging markers and for longitudinal studies to test causal mechanisms.
Collapse
Affiliation(s)
- Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England.
- South London & the Maudsley NHS Trust, London, England.
- London Institute of Medical Sciences, London, England.
| | - Julia Marcinkowska
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Richard Carr
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
- South London & the Maudsley NHS Trust, London, England
- London Institute of Medical Sciences, London, England
| |
Collapse
|
12
|
Young JJ, O'Dell RS, Naganawa M, Toyonaga T, Chen MK, Nabulsi NB, Huang Y, Cooper E, Miller A, Lam J, Bates K, Ruan A, Nelsen K, Salardini E, Carson RE, van Dyck CH, Mecca AP. Validation of a Simplified Tissue-to-Reference Ratio Measurement Using SUVR to Assess Synaptic Density Alterations in Alzheimer Disease with [ 11C]UCB-J PET. J Nucl Med 2024; 65:1782-1785. [PMID: 39299782 PMCID: PMC11533916 DOI: 10.2967/jnumed.124.267419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024] Open
Abstract
Simplified methods of acquisition and quantification would facilitate the use of synaptic density imaging in multicenter and longitudinal studies of Alzheimer disease (AD). We validated a simplified tissue-to-reference ratio method using SUV ratios (SUVRs) for estimating synaptic density with [11C]UCB-J PET. Methods: Participants included 31 older adults with AD and 16 with normal cognition. The distribution volume ratio (DVR) using simplified reference tissue model 2 was compared with SUVR at short scan windows using a whole-cerebellum reference region. Results: Synaptic density was reduced in AD participants using DVR or SUVR. SUVR using later scan windows (60-90 or 70-90 min) was minimally biased, with the strongest correlation with DVR. Effect sizes using SUVR at these late time windows were minimally reduced compared with effect sizes with DVR. Conclusion: A simplified tissue-to-reference method may be useful for multicenter and longitudinal studies seeking to measure synaptic density in AD.
Collapse
Affiliation(s)
- Juan J Young
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
- VA Connecticut Healthcare System, West Haven, Connecticut
| | - Ryan S O'Dell
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Ming-Kai Chen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Nabeel B Nabulsi
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Emma Cooper
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Alyssa Miller
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Jessica Lam
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
| | - Kara Bates
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
| | - Audrey Ruan
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Kimberly Nelsen
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Elaheh Salardini
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Christopher H van Dyck
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut; and
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| | - Adam P Mecca
- Alzheimer's Disease Research Unit, Yale School of Medicine, New Haven, Connecticut;
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
13
|
Hu NW, Ondrejcak T, Klyubin I, Yang Y, Walsh DM, Livesey FJ, Rowan MJ. Patient-derived tau and amyloid-β facilitate long-term depression in vivo: role of tumour necrosis factor-α and the integrated stress response. Brain Commun 2024; 6:fcae333. [PMID: 39391333 PMCID: PMC11465085 DOI: 10.1093/braincomms/fcae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/22/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Alzheimer's disease is characterized by a progressive cognitive decline in older individuals accompanied by the deposition of two pathognomonic proteins amyloid-β and tau. It is well documented that synaptotoxic soluble amyloid-β aggregates facilitate synaptic long-term depression, a major form of synaptic weakening that correlates with cognitive status in Alzheimer's disease. Whether synaptotoxic tau, which is also associated strongly with progressive cognitive decline in patients with Alzheimer's disease and other tauopathies, also causes facilitation remains to be clarified. Young male adult and middle-aged rats were employed. Synaptotoxic tau and amyloid-β were obtained from different sources including (i) aqueous brain extracts from patients with Alzheimer's disease and Pick's disease tauopathy; (ii) the secretomes of induced pluripotent stem cell-derived neurons from individuals with trisomy of chromosome 21; and (iii) synthetic amyloid-β. In vivo electrophysiology was performed in urethane anaesthetized animals. Evoked field excitatory postsynaptic potentials were recorded from the stratum radiatum in the CA1 area of the hippocampus with electrical stimulation to the Schaffer collateral-commissural pathway. To study the enhancement of long-term depression, relatively weak low-frequency electrical stimulation was used to trigger peri-threshold long-term depression. Synaptotoxic forms of tau or amyloid-β were administered intracerebroventricularly. The ability of agents that inhibit the cytokine tumour necrosis factor-α or the integrated stress response to prevent the effects of amyloid-β or tau on long-term depression was assessed after local or systemic injection, respectively. We found that diffusible tau from Alzheimer's disease or Pick's disease patients' brain aqueous extracts or the secretomes of trisomy of chromosome 21 induced pluripotent stem cell-derived neurons, like Alzheimer's disease brain-derived amyloid-β and synthetic oligomeric amyloid-β, potently enhanced synaptic long-term depression in live rats. We further demonstrated that long-term depression facilitation by both tau and amyloid-β was age-dependent, being more potent in middle-aged compared with young animals. Finally, at the cellular level, we provide pharmacological evidence that tumour necrosis factor-α and the integrated stress response are downstream mediators of long-term depression facilitation by both synaptotoxic tau and amyloid-β. Overall, these findings reveal the promotion of an age-dependent synaptic weakening by both synaptotoxic tau and amyloid-β. Pharmacologically targeting shared mechanisms of tau and amyloid-β synaptotoxicity, such as tumour necrosis factor-α or the integrated stress response, provides an attractive strategy to treat early Alzheimer's disease.
Collapse
Affiliation(s)
- Neng-Wei Hu
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tomas Ondrejcak
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
| | - Yin Yang
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Frederick J Livesey
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, University College London, London WC1N 1DZ, UK
| | - Michael J Rowan
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
| |
Collapse
|
14
|
Fernandes M, Chiaravalloti A, Cassetta E, Placidi F, Mercuri NB, Liguori C. Sleep Fragmentation and Sleep-Wake Cycle Dysregulation Are Associated with Cerebral Tau Burden in Patients with Mild Cognitive Impairment due to Alzheimer's Disease: A Case Series. J Alzheimers Dis Rep 2024; 8:1275-1283. [PMID: 39434815 PMCID: PMC11491934 DOI: 10.3233/adr-230187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/14/2024] [Indexed: 10/23/2024] Open
Abstract
Background Although disturbed sleep is frequent in patients with mild cognitive impairment (MCI) and dementia due to Alzheimer's disease (AD), the association between sleep and tau pathology is unclear. Objective This case series focused on measuring the sleep-wake rhythm over 7 days through actigraphy in patients diagnosed with MCI due to AD. Further, the association between sleep-wake cycle and tau deposition measured through positron emission tomography (PET) was explored. Methods This case series included 6 MCI due to AD patients (2 women and 4 men, mean age 73.17±5.53 years), who completed neuropsychological testing, 7-day actigraphy, and tau PET imaging with radiolabeled compounds aimed to estimate the density and distribution of aggregated tau neurofibrillary tangles in the brain. Results The case series indicated that patients with MCI due to AD who exhibited greater tau deposition in the frontal, parietal, and limbic regions, as well as in the precuneus and olfactory regions, also showed increased sleep fragmentation, as measured through actigraphy. Conclusion The findings from this case series suggest a potential link between tau deposition in key brain regions associated with AD and both sleep fragmentation and sleep-wake cycle dysregulation in a small sample of patients with MCI due to AD. These preliminary results warrant further investigation in larger, more comprehensive studies to confirm and expand upon these findings.
Collapse
Affiliation(s)
- Mariana Fernandes
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Emanuele Cassetta
- Fatebenefratelli Foundation, Associazione Fatebenefratelli Per la Ricerca Division, Fatebenefratelli Hospital, Rome, Italy
| | - Fabio Placidi
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
15
|
Bruno D, Jauregi-Zinkunegi A, Betthauser T, Carlsson C, Bendlin BB, Okonkwo O, Chin NA, Asthana S, Langhough RE, Johnson SC, Mueller KD. Story recall performance and AT classification via positron emission tomography: A comparison of logical memory and Craft Story 21. J Neurol Sci 2024; 464:123148. [PMID: 39096836 PMCID: PMC11587782 DOI: 10.1016/j.jns.2024.123148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/05/2024] [Accepted: 07/20/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND Early detection of Alzheimer's disease (AD) is one of the critical components of the global response to the growing dementia crisis. Analysis of serial position performance in story recall tests has yielded sensitive metrics for the prediction of AD at low cost. In this study, we examined whether serial position markers in two story recall tests (the logical memory test, LMT, and the Craft Story 21 test, CST) were sensitive to cross-sectional biomarker-based assessment of in vivo neuropathology. METHODS Participants were selected from the Wisconsin Registry of Alzheimer's Prevention (n = 288; WRAP) and the Alzheimer's Disease Research Center (n = 156; ADRC), both from the University of Wisconsin-Madison. Average age at PET was 68.9 (6.7) and 67.0 (8.0), respectively. Data included tau and PiB PET, and LMT for WRAP participants and CST for ADRC participants. Two sets of Bayesian analyses (logistic regressions and ANCOVAs) were conducted within each cohort, separately. RESULTS Results indicated that the A+T+ classification was best predicted, cross-sectionally, by the recency ratio (Rr), indexing how much of the end of the story was forgotten between initial learning and delayed assessment. Rr outperformed traditional scores and discriminated between A+T+ and A+T-/A-T-, in both cohorts. CONCLUSIONS Overall, this study confirms that serial position analysis of LMT and CST data, and particularly Rr as an index of recency loss, is a valuable tool for the identification of in vivo tau pathology in individuals free of dementia. Diagnostic considerations are discussed.
Collapse
Affiliation(s)
- Davide Bruno
- School of Psychology, Liverpool John Moores University, UK.
| | | | - Tobey Betthauser
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Cynthia Carlsson
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; Geriatric Research Education and Clinical Center, William S. Middleton Veterans Hospital, Madison, WI, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Ozioma Okonkwo
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Nathaniel A Chin
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Rebecca E Langhough
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; Geriatric Research Education and Clinical Center, William S. Middleton Veterans Hospital, Madison, WI, USA
| | - Kimberly D Mueller
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Department of Communication Sciences and Disorders, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
16
|
Bavarsad MS, Grinberg LT. SV2A PET imaging in human neurodegenerative diseases. Front Aging Neurosci 2024; 16:1380561. [PMID: 38699560 PMCID: PMC11064927 DOI: 10.3389/fnagi.2024.1380561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
This manuscript presents a thorough review of synaptic vesicle glycoprotein 2A (SV2A) as a biomarker for synaptic integrity using Positron Emission Tomography (PET) in neurodegenerative diseases. Synaptic pathology, characterized by synaptic loss, has been linked to various brain diseases. Therefore, there is a need for a minimally invasive approach to measuring synaptic density in living human patients. Several radiotracers targeting synaptic vesicle protein 2A (SV2A) have been created and effectively adapted for use in human subjects through PET scans. SV2A is an integral glycoprotein found in the membranes of synaptic vesicles in all synaptic terminals and is widely distributed throughout the brain. The review delves into the development of SV2A-specific PET radiotracers, highlighting their advancements and limitations in neurodegenerative diseases. Among these tracers, 11C-UCB-J is the most used so far. We summarize and discuss an increasing body of research that compares measurements of synaptic density using SV2A PET with other established indicators of neurodegenerative diseases, including cognitive performance and radiological findings, thus providing a comprehensive analysis of SV2A's effectiveness and reliability as a diagnostic tool in contrast to traditional markers. Although the literature overall suggests the promise of SV2A as a diagnostic and therapeutic monitoring tool, uncertainties persist regarding the superiority of SV2A as a biomarker compared to other available markers. The review also underscores the paucity of studies characterizing SV2A distribution and loss in human brain tissue from patients with neurodegenerative diseases, emphasizing the need to generate quantitative neuropathological maps of SV2A density in cases with neurodegenerative diseases to fully harness the potential of SV2A PET imaging in clinical settings. We conclude by outlining future research directions, stressing the importance of integrating SV2A PET imaging with other biomarkers and clinical assessments and the need for longitudinal studies to track SV2A changes throughout neurodegenerative disease progression, which could lead to breakthroughs in early diagnosis and the evaluation of new treatments.
Collapse
Affiliation(s)
| | - Lea T. Grinberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
| |
Collapse
|
17
|
Kumar A, Scarpa M, Nordberg A. Tracing synaptic loss in Alzheimer's brain with SV2A PET-tracer UCB-J. Alzheimers Dement 2024; 20:2589-2605. [PMID: 38363009 PMCID: PMC11032538 DOI: 10.1002/alz.13720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/17/2024]
Abstract
INTRODUCTION Synaptic loss is an early prominent feature of Alzheimer's disease (AD). The recently developed novel synaptic vesicle 2A protein (SV2A) PET-tracer UCB-J has shown great promise in tracking synaptic loss in AD. However, there have been discrepancies between the findings and a lack of mechanistic insight. METHODS Here we report the first extensive pre-clinical validation studies for UCB-J in control (CN; n = 11) and AD (n = 11) brains using a multidimensional approach of post-mortem brain imaging techniques, radioligand binding, and biochemical studies. RESULTS AND DISCUSSION We demonstrate that UCB-J could target SV2A protein with high specificity and depict synaptic loss at synaptosome levels in AD brain regions compared to CNs. UCB-J showed highest synaptic loss in AD hippocampus followed in descending order by frontal cortex, temporal cortex, parietal cortex, and cerebellum. 3H-UCB-J large brain-section autoradiography and cellular/subcellular fractions binding studies indicated potential off-target interaction with phosphorylated tau (p-tau) species in AD brains, which could have subsequent clinical implications for imaging studies. HIGHLIGHTS Synaptic positron emission tomography (PET)-tracer UCB-J could target synaptic vesicle 2A protein (SV2A) with high specificity in Alzheimer's disease (AD) and control brains. Synaptic PET-tracer UCB-J could depict synaptic loss at synaptosome levels in AD brain regions compared to control. Potential off-target interaction of UCB-J with phosphorylated tau (p-tau) species at cellular/subcellular levels could have subsequent clinical implications for imaging studies, warranting further investigations.
Collapse
Affiliation(s)
- Amit Kumar
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Miriam Scarpa
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Agneta Nordberg
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
- Theme Inflammation and AgingKarolinska University HospitalStockholmSweden
| |
Collapse
|
18
|
DiFilippo A, Jonaitis E, Makuch R, Gambetti B, Fleming V, Ennis G, Barnhart T, Engle J, Bendlin B, Johnson S, Handen B, Krinsky-McHale S, Hartley S, Christian B. Measurement of synaptic density in Down syndrome using PET imaging: a pilot study. Sci Rep 2024; 14:4676. [PMID: 38409349 PMCID: PMC10897336 DOI: 10.1038/s41598-024-54669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
Down syndrome (DS) is the most prevalent genetic cause of intellectual disability, resulting from trisomy 21. Recently, positron emission tomography (PET) imaging has been used to image synapses in vivo. The motivation for this pilot study was to investigate whether synaptic density in low functioning adults with DS can be evaluated using the PET radiotracer [11C]UCB-J. Data were acquired from low functioning adults with DS (n = 4) and older neurotypical (NT) adults (n = 37). Motion during the scans required the use of a 10-minute acquisition window for the calculation of synaptic density using SUVR50-60,CS which was determined to be a suitable approximation for specific binding in this analysis using dynamic data from the NT group. Of the regions analyzed a large effect was observed when comparing DS and NT hippocampus and cerebral cortex synaptic density as well as hippocampus and cerebellum volumes. In this pilot study, PET imaging of [11C]UCB-J was successfully completed and synaptic density measured in low functioning DS adults. This work provides the basis for studies where synaptic density may be compared between larger groups of NT adults and adults with DS who have varying degrees of baseline cognitive status.
Collapse
Affiliation(s)
- Alexandra DiFilippo
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| | - Erin Jonaitis
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Renee Makuch
- University of Wisconsin-Madison Waisman Center, Madison, WI, USA
| | - Brianna Gambetti
- University of Wisconsin-Madison Waisman Center, Madison, WI, USA
| | - Victoria Fleming
- University of Wisconsin-Madison Waisman Center, Madison, WI, USA
| | - Gilda Ennis
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Todd Barnhart
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Jonathan Engle
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Barbara Bendlin
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Sterling Johnson
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Benjamin Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sharon Krinsky-McHale
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Sigan Hartley
- University of Wisconsin-Madison Waisman Center, Madison, WI, USA
| | - Bradley Christian
- Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin-Madison Waisman Center, Madison, WI, USA
| |
Collapse
|
19
|
Holmes SE, Honhar P, Tinaz S, Naganawa M, Hilmer AT, Gallezot JD, Dias M, Yang Y, Toyonaga T, Esterlis I, Mecca A, Van Dyck C, Henry S, Ropchan J, Nabulsi N, Louis ED, Comley R, Finnema SJ, Carson RE, Matuskey D. Synaptic loss and its association with symptom severity in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:42. [PMID: 38402233 PMCID: PMC10894197 DOI: 10.1038/s41531-024-00655-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
Parkinson's disease (PD) is the fastest growing neurodegenerative disease, but at present there is no cure, nor any disease-modifying treatments. Synaptic biomarkers from in vivo imaging have shown promise in imaging loss of synapses in PD and other neurodegenerative disorders. Here, we provide new clinical insights from a cross-sectional, high-resolution positron emission tomography (PET) study of 30 PD individuals and 30 age- and sex-matched healthy controls (HC) with the radiotracer [11C]UCB-J, which binds to synaptic vesicle glycoprotein 2A (SV2A), and is therefore, a biomarker of synaptic density in the living brain. We also examined a measure of relative brain perfusion from the early part of the same PET scan. Our results provide evidence for synaptic density loss in the substantia nigra that had been previously reported, but also extend this to other early-Braak stage regions known to be affected in PD (brainstem, caudate, olfactory cortex). Importantly, we also found a direct association between synaptic density loss in the nigra and severity of symptoms in patients. A greater extent and wider distribution of synaptic density loss in PD patients with longer illness duration suggests that [11C]UCB-J PET can be used to measure synapse loss with disease progression. We also demonstrate lower brain perfusion in PD vs. HC groups, with a greater extent of abnormalities in those with longer duration of illness, suggesting that [11C]UCB-J PET can simultaneously provide information on changes in brain perfusion. These results implicate synaptic imaging as a useful PD biomarker for future disease-modifying interventions.
Collapse
Affiliation(s)
- Sophie E Holmes
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Praveen Honhar
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering and Applied Sciences, Yale University, New Haven, CT, USA
| | - Sule Tinaz
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Mika Naganawa
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Ansel T Hilmer
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering and Applied Sciences, Yale University, New Haven, CT, USA
| | | | - Mark Dias
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Yanghong Yang
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Takuya Toyonaga
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Adam Mecca
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | | - Shannan Henry
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Jim Ropchan
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Nabeel Nabulsi
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern Medical Center, New Haven, CT, USA
| | | | | | - Richard E Carson
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering and Applied Sciences, Yale University, New Haven, CT, USA
| | - David Matuskey
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
20
|
Walker JM, Orr ME, Orr TC, Thorn EL, Christie TD, Yokoda RT, Vij M, Ehrenberg AJ, Marx GA, McKenzie AT, Kauffman J, Selmanovic E, Wisniewski T, Drummond E, White CL, Crary JF, Farrell K, Kautz TF, Daoud EV, Richardson TE. Spatial proteomics of hippocampal subfield-specific pathology in Alzheimer's disease and primary age-related tauopathy. Alzheimers Dement 2024; 20:783-797. [PMID: 37777848 PMCID: PMC10916977 DOI: 10.1002/alz.13484] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 10/02/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) and primary age-related tauopathy (PART) both harbor 3R/4R hyperphosphorylated-tau (p-tau)-positive neurofibrillary tangles (NFTs) but differ in the spatial p-tau development in the hippocampus. METHODS Using Nanostring GeoMx Digital Spatial Profiling, we compared protein expression within hippocampal subregions in NFT-bearing and non-NFT-bearing neurons in AD (n = 7) and PART (n = 7) subjects. RESULTS Proteomic measures of synaptic health were inversely correlated with the subregional p-tau burden in AD and PART, and there were numerous differences in proteins involved in proteostasis, amyloid beta (Aβ) processing, inflammation, microglia, oxidative stress, and neuronal/synaptic health between AD and PART and between definite PART and possible PART. DISCUSSION These results suggest subfield-specific proteome differences that may explain some of the differences in Aβ and p-tau distribution and apparent pathogenicity. In addition, hippocampal neurons in possible PART may have more in common with AD than with definite PART, highlighting the importance of Aβ in the pathologic process. HIGHLIGHTS Synaptic health is inversely correlated with local p-tau burden. The proteome of NFT- and non-NFT-bearing neurons is influenced by the presence of Aβ in the hippocampus. Neurons in possible PART cases share more proteomic similarities with neurons in ADNC than they do with neurons in definite PART cases.
Collapse
|
21
|
Visser M, O'Brien JT, Mak E. In vivo imaging of synaptic density in neurodegenerative disorders with positron emission tomography: A systematic review. Ageing Res Rev 2024; 94:102197. [PMID: 38266660 DOI: 10.1016/j.arr.2024.102197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Positron emission tomography (PET) with radiotracers that bind to synaptic vesicle glycoprotein 2 A (SV2A) enables quantification of synaptic density in the living human brain. Assessing the regional distribution and severity of synaptic density loss will contribute to our understanding of the pathological processes that precede atrophy in neurodegeneration. In this systematic review, we provide a discussion of in vivo SV2A PET imaging research for quantitative assessment of synaptic density in various dementia conditions: amnestic Mild Cognitive Impairment and Alzheimer's disease, Frontotemporal dementia, Progressive supranuclear palsy and Corticobasal degeneration, Parkinson's disease and Dementia with Lewy bodies, Huntington's disease, and Spinocerebellar Ataxia. We discuss the main findings concerning group differences and clinical-cognitive correlations, and explore relations between SV2A PET and other markers of pathology. Additionally, we touch upon synaptic density in healthy ageing and outcomes of radiotracer validation studies. Studies were identified on PubMed and Embase between 2018 and 2023; last searched on the 3rd of July 2023. A total of 36 studies were included, comprising 5 on normal ageing, 21 clinical studies, and 10 validation studies. Extracted study characteristics were participant details, methodological aspects, and critical findings. In summary, the small but growing literature on in vivo SV2A PET has revealed different spatial patterns of synaptic density loss among various neurodegenerative disorders that correlate with cognitive functioning, supporting the potential role of SV2A PET imaging for differential diagnosis. SV2A PET imaging shows tremendous capability to provide novel insights into the aetiology of neurodegenerative disorders and great promise as a biomarker for synaptic density reduction. Novel directions for future synaptic density research are proposed, including (a) longitudinal imaging in larger patient cohorts of preclinical dementias, (b) multi-modal mapping of synaptic density loss onto other pathological processes, and (c) monitoring therapeutic responses and assessing drug efficacy in clinical trials.
Collapse
Affiliation(s)
- Malouke Visser
- Department of Psychiatry, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, United Kingdom; Neuropsychology and Rehabilitation Psychology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - John T O'Brien
- Department of Psychiatry, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Elijah Mak
- Department of Psychiatry, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, United Kingdom.
| |
Collapse
|
22
|
Silva-Rudberg JA, Salardini E, O'Dell RS, Chen MK, Ra J, Georgelos JK, Morehouse MR, Melino KP, Varma P, Toyonaga T, Nabulsi NB, Huang Y, Carson RE, van Dyck CH, Mecca AP. Assessment of Gray Matter Microstructure and Synaptic Density in Alzheimer's Disease: A Multimodal Imaging Study With DTI and SV2A PET. Am J Geriatr Psychiatry 2024; 32:17-28. [PMID: 37673749 PMCID: PMC10840732 DOI: 10.1016/j.jagp.2023.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 08/05/2023] [Indexed: 09/08/2023]
Abstract
OBJECTIVE Multimodal imaging techniques have furthered our understanding of how different aspects of Alzheimer's disease (AD) pathology relate to one another. Diffusion tensor imaging (DTI) measures such as mean diffusivity (MD) may be a surrogate measure of the changes in gray matter structure associated with AD. Positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A) has been used to quantify synaptic loss, which is the major pathological correlate of cognitive impairment in AD. In this study, we investigated the relationship between gray matter microstructure and synaptic density. METHODS DTI was used to measure MD and [11C]UCB-J PET to measure synaptic density in 33 amyloid-positive participants with AD and 17 amyloid-negative cognitively normal (CN) participants aged 50-83. Univariate regression analyses were used to assess the association between synaptic density and MD in both the AD and CN groups. RESULTS Hippocampal MD was inversely associated with hippocampal synaptic density in participants with AD (r = -0.55, p <0.001, df = 31) but not CN (r = 0.13, p = 0.62, df = 15). Exploratory analyses across other regions known to be affected in AD suggested widespread inverse associations between synaptic density and MD in the AD group. CONCLUSION In the setting of AD, an increase in gray matter MD is inversely associated with synaptic density. These co-occurring changes may suggest a link between synaptic loss and gray matter microstructural changes in AD. Imaging studies of gray matter microstructure and synaptic density may allow important insights into AD-related neuropathology.
Collapse
Affiliation(s)
- Jason A Silva-Rudberg
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT.
| | - Elaheh Salardini
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Ryan S O'Dell
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Ming-Kai Chen
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Jocelyn Ra
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Jamie K Georgelos
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Mackenzie R Morehouse
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Kaitlyn P Melino
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT
| | - Pradeep Varma
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Nabeel B Nabulsi
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging (M-KC, PV, TT, NBN, YH, REC), Yale University School of Medicine, New Haven, CT
| | - Christopher H van Dyck
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Neuroscience (CHvD), Yale University School of Medicine, New Haven, CT; Department of Neurology (CHvD), Yale University School of Medicine, New Haven, CT
| | - Adam P Mecca
- Alzheimer's Disease Research Unit (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT; Department of Psychiatry (JAS-R, ES, RSO, JR, JKG, MRM, KPM, CHvD, APM), Yale University School of Medicine, New Haven, CT.
| |
Collapse
|
23
|
Hiya S, Maldonado-Díaz C, Walker JM, Richardson TE. Cognitive symptoms progress with limbic-predominant age-related TDP-43 encephalopathy stage and co-occurrence with Alzheimer disease. J Neuropathol Exp Neurol 2023; 83:2-10. [PMID: 37966908 PMCID: PMC10746699 DOI: 10.1093/jnen/nlad098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is a neuropathologic entity characterized by transactive response DNA-binding protein of 43-kDa (TDP-43)-immunoreactive inclusions that originate in the amygdala and then progress to the hippocampi and middle frontal gyrus. LATE-NC may mimic Alzheimer disease clinically and often co-occurs with Alzheimer disease neuropathologic change (ADNC). This report focuses on the cognitive effects of isolated and concomitant LATE-NC and ADNC. Cognitive/neuropsychological, neuropathologic, genetic, and demographic variables were analyzed in 28 control, 31 isolated LATE-NC, 244 isolated ADNC, and 172 concurrent LATE-NC/ADNC subjects from the National Alzheimer's Coordinating Center. Cases with LATE-NC and ADNC were significantly older than controls; cases with ADNC had a significantly higher proportion of cases with at least one APOE ε4 allele. Both LATE-NC and ADNC exhibited deleterious effects on overall cognition proportional to their neuropathological stages; concurrent LATE-NC/ADNC exhibited the worst overall cognitive effect. Multivariate logistic regression analysis determined an independent risk of cognitive impairment for progressive LATE-NC stages (OR 1.66; p = 0.0256) and ADNC levels (OR 3.41; p < 0.0001). These data add to the existing knowledge on the clinical consequences of LATE-NC pathology and the growing literature on the effects of multiple concurrent neurodegenerative pathologies.
Collapse
Affiliation(s)
- Satomi Hiya
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carolina Maldonado-Díaz
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
24
|
Morris M, Coste GI, Redding-Ochoa J, Guo H, Graves AR, Troncoso JC, Huganir RL. Hippocampal synaptic alterations associated with tau pathology in primary age-related tauopathy. J Neuropathol Exp Neurol 2023; 82:836-844. [PMID: 37595576 PMCID: PMC10516464 DOI: 10.1093/jnen/nlad064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023] Open
Abstract
Primary age-related tauopathy (PART) is characterized by aggregation of tau in the mesial temporal lobe in older individuals. High pathologic tau stage (Braak stage) or a high burden of hippocampal tau pathology has been associated with cognitive impairment in PART. However, the potential underlying mechanisms are not well understood. Cognitive impairment in many neurodegenerative diseases correlates with synaptic loss, raising the question of whether synaptic loss also occurs in PART. To address this, we investigated synaptic changes associated with tau Braak stage and high tau pathology burden in PART using synaptophysin and phospho-tau immunofluorescence. We compared 12 cases of definite PART with 6 controls and 6 Alzheimer disease cases. In this study, the hippocampal CA2 region showed loss of synaptophysin puncta and intensity in cases of PART with either a high stage (Braak IV) or a high burden of neuritic tau pathology. There was also loss of synaptophysin intensity in CA3 associated with a high stage or high burden of tau pathology. Loss of synaptophysin was present in Alzheimer disease, but the pattern appeared distinct. These novel findings suggest the presence of synaptic loss associated with either a high hippocampal tau burden or a Braak stage IV in PART.
Collapse
Affiliation(s)
- Meaghan Morris
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gabrielle I Coste
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Haidan Guo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Austin R Graves
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Engineering, Baltimore, Maryland, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Stein-O’Brien GL, Palaganas R, Meyer EM, Redding-Ochoa J, Pletnikova O, Guo H, Bell WR, Troncoso JC, Huganir RL, Morris M. Transcriptional Signatures of Hippocampal Tau Pathology in Primary Age-Related Tauopathy and Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.12.23295440. [PMID: 37745408 PMCID: PMC10516095 DOI: 10.1101/2023.09.12.23295440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background Tau pathology is common in age-related neurodegenerative diseases. Tau pathology in primary age-related tauopathy (PART) and in Alzheimer's disease (AD) has a similar biochemical structure and anatomic distribution, which is distinct from tau pathology in other diseases. However, the molecular changes associated with intraneuronal tau pathology in PART and AD, and whether these changes are similar in the two diseases, is largely unexplored. Methods Using GeoMx spatial transcriptomics, mRNA was quantified in CA1 pyramidal neurons with tau pathology and adjacent neurons without tau pathology in 6 cases of PART and 6 cases of AD, and compared to 4 control cases without pathology. Transcriptional changes were analyzed for differential gene expression and for coordinated patterns of gene expression associated with both disease state and intraneuronal tau pathology. Results Synaptic gene changes and two novel gene expression signatures associated with intraneuronal tau were identified in PART and AD. Overall, gene expression changes associated with intraneuronal tau pathology were similar in PART and AD. Synaptic gene expression was decreased overall in neurons in AD and PART compared to control cases. However, this decrease was largely driven by neurons lacking tau pathology. Synaptic gene expression was increased in tau-positive neurons compared to tau-negative neurons in disease. Two novel gene expression signatures associated with intraneuronal tau were identified by examining coordinated patterns of gene expression. Genes in the up-regulated expression pattern were enriched in calcium regulation and synaptic function pathways, specifically in synaptic exocytosis. These synaptic gene changes and intraneuronal tau expression signatures were confirmed in a published transcriptional dataset of cortical neurons with tau pathology in AD. Conclusions PART and AD show similar transcriptional changes associated with intraneuronal tau pathology in CA1 pyramidal neurons, raising the possibility of a mechanistic relationship between the tau pathology in the two diseases. Intraneuronal tau pathology was also associated with increased expression of genes associated with synaptic function and calcium regulation compared to tau-negative disease neurons. The findings highlight the power of molecular analysis stratified by pathology in neurodegenerative disease and provide novel insight into common molecular pathways associated with intraneuronal tau in PART and AD.
Collapse
Affiliation(s)
- Genevieve L Stein-O’Brien
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Single Cell Training and Analysis Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Baltimore, MD
| | - Ryan Palaganas
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ernest M. Meyer
- UPMC Hillman Cancer Center Cytometry Facility, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY
| | - Haidan Guo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William R Bell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Baltimore, MD
| | - Meaghan Morris
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Lorentzen IM, Espenes J, Eliassen IV, Hessen E, Waterloo K, Nakling A, Gísladóttir B, Jarholm J, Fladby T, Kirsebom BE. Investigating the relationship between allocentric spatial working memory and biomarker status in preclinical and prodromal Alzheimer's disease. APPLIED NEUROPSYCHOLOGY. ADULT 2023:1-13. [PMID: 37552673 DOI: 10.1080/23279095.2023.2236262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The 4 Mountain Test (4MT) is a test of allocentric spatial working memory and has been proposed as an earlier marker of predementia Alzheimer's disease (AD) than episodic verbal memory. We here compare the 4MT to the CERAD word list memory recall in both cognitively normal (CN) and mild cognitive impairment (MCI) cases with or without cerebrospinal fluid markers (CSF) of Alzheimer's disease pathology. Linear regression was used to assess the influence of CSF determined Aβ-plaque (Aβ-/+) or neurofibrillary tau tangles (Tau-/+) on 4MT and CERAD recall performance. Analyses were performed in the full sample and the CN and MCI sub-samples. Pearson correlations were calculated to examine the relationship between 4MT and tests of psychomotor speed, verbal memory, cognitive flexibility, verbal fluency, and visuo-spatial perception. Analyses showed no significant differences in 4MT scores between Aβ-/Aβ+, nor Tau-/Tau + participants, irrespective of cognitive status. In contrast, CERAD recall scores were lower in both Aβ+ compared to Aβ- (p<.01), and Tau + compared to Tau- participants (p<.01) in the full sample analyses. There were no significant differences in CERAD recall performance between Aβ- vs. Aβ+ and Tau- vs. to Tau + in the in CN/MCI sub-samples. 4MT scores were significantly correlated with tests of psychomotor speed, cognitive flexibility, and visuo-spatial perception in the full sample analyses. In conclusion, the CERAD recall outperformed the 4MT as a cognitive marker of CSF determined AD pathology. This suggests that allocentric working memory, as measured by the 4MT, may not be used as an early marker of predementia AD.
Collapse
Affiliation(s)
- Ingrid Myrvoll Lorentzen
- Department of Psychology, Faculty of Health Sciences, The Arctic University of Norway, Tromsø, Norway
| | - Jacob Espenes
- Department of Psychology, Faculty of Health Sciences, The Arctic University of Norway, Tromsø, Norway
| | - Ingvild Vøllo Eliassen
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Erik Hessen
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Knut Waterloo
- Department of Psychology, Faculty of Health Sciences, The Arctic University of Norway, Tromsø, Norway
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway
| | - Arne Nakling
- Institute of Clinical Medicine, University of Bergen, Norway
| | - Berglind Gísladóttir
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Department of Clinical Molecular Biology (EpiGen), University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Jonas Jarholm
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bjørn-Eivind Kirsebom
- Department of Psychology, Faculty of Health Sciences, The Arctic University of Norway, Tromsø, Norway
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
27
|
Puliatti G, Li Puma DD, Aceto G, Lazzarino G, Acquarone E, Mangione R, D'Adamio L, Ripoli C, Arancio O, Piacentini R, Grassi C. Intracellular accumulation of tau oligomers in astrocytes and their synaptotoxic action rely on Amyloid Precursor Protein Intracellular Domain-dependent expression of Glypican-4. Prog Neurobiol 2023; 227:102482. [PMID: 37321444 PMCID: PMC10472746 DOI: 10.1016/j.pneurobio.2023.102482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/26/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023]
Abstract
Several studies including ours reported the detrimental effects of extracellular tau oligomers (ex-oTau) on glutamatergic synaptic transmission and plasticity. Astrocytes greatly internalize ex-oTau whose intracellular accumulation alters neuro/gliotransmitter handling thereby negatively affecting synaptic function. Both amyloid precursor protein (APP) and heparan sulfate proteoglycans (HSPGs) are required for oTau internalization in astrocytes but the molecular mechanisms underlying this phenomenon have not been clearly identified yet. Here we found that a specific antibody anti-glypican 4 (GPC4), a receptor belonging to the HSPG family, significantly reduced oTau uploading from astrocytes and prevented oTau-induced alterations of Ca2+-dependent gliotransmitter release. As such, anti-GPC4 spared neurons co-cultured with astrocytes from the astrocyte-mediated synaptotoxic action of ex-oTau, thus preserving synaptic vesicular release, synaptic protein expression and hippocampal LTP at CA3-CA1 synapses. Of note, the expression of GPC4 depended on APP and, in particular, on its C-terminal domain, AICD, that we found to bind Gpc4 promoter. Accordingly, GPC4 expression was significantly reduced in mice in which either APP was knocked-out or it contained the non-phosphorylatable amino acid alanine replacing threonine 688, thus becoming unable to produce AICD. Collectively, our data indicate that GPC4 expression is APP/AICD-dependent, it mediates oTau accumulation in astrocytes and the resulting synaptotoxic effects.
Collapse
Affiliation(s)
- Giulia Puliatti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Domenica Donatella Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, Italy
| | - Giuseppe Aceto
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, Italy
| | - Giacomo Lazzarino
- UniCamillus - Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, Rome 00131, Italy
| | - Erica Acquarone
- Taub Institute, Department of Pathology and Cell Biology, and Department of Medicine, Columbia University, 630W 168th Street, New York, NY 10032, USA
| | - Renata Mangione
- Department of Basic biotechnological sciences, intensivological and perioperative clinics, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Luciano D'Adamio
- Institute of Brain Health, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ 07103, USA
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, Italy
| | - Ottavio Arancio
- Taub Institute, Department of Pathology and Cell Biology, and Department of Medicine, Columbia University, 630W 168th Street, New York, NY 10032, USA
| | - Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, Italy.
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, Italy
| |
Collapse
|
28
|
Zhao Q, Du X, Chen W, Zhang T, Xu Z. Advances in diagnosing mild cognitive impairment and Alzheimer's disease using 11C-PIB- PET/CT and common neuropsychological tests. Front Neurosci 2023; 17:1216215. [PMID: 37492405 PMCID: PMC10363609 DOI: 10.3389/fnins.2023.1216215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/15/2023] [Indexed: 07/27/2023] Open
Abstract
Alzheimer's disease (AD) is a critical health issue worldwide that has a negative impact on patients' quality of life, as well as on caregivers, society, and the environment. Positron emission tomography (PET)/computed tomography (CT) and neuropsychological scales can be used to identify AD and mild cognitive impairment (MCI) early, provide a differential diagnosis, and offer early therapies to impede the course of the illness. However, there are few reports of large-scale 11C-PIB-PET/CT investigations that focus on the pathology of AD and MCI. Therefore, further research is needed to determine how neuropsychological test scales and PET/CT measurements of disease progression interact.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xinxin Du
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Wenhong Chen
- Department of Sleep Medicine, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, Guangxi, China
| | - Ting Zhang
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Rehabilitation Therapeutics, School of Nursing of Jilin University, Changchun, Jilin, China
| | - Zhuo Xu
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
29
|
O'Dell RS, Higgins-Chen A, Gupta D, Chen MK, Naganawa M, Toyonaga T, Lu Y, Ni G, Chupak A, Zhao W, Salardini E, Nabulsi NB, Huang Y, Arnsten AFT, Carson RE, van Dyck CH, Mecca AP. Principal component analysis of synaptic density measured with [ 11C]UCB-J PET in early Alzheimer's disease. Neuroimage Clin 2023; 39:103457. [PMID: 37422964 PMCID: PMC10338149 DOI: 10.1016/j.nicl.2023.103457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/01/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Synaptic loss is considered an early pathological event and major structural correlate of cognitive impairment in Alzheimer's disease (AD). We used principal component analysis (PCA) to identify regional patterns of covariance in synaptic density using [11C]UCB-J PET and assessed the association between principal components (PC) subject scores with cognitive performance. METHODS [11C]UCB-J binding was measured in 45 amyloid + participants with AD and 19 amyloid- cognitively normal participants aged 55-85. A validated neuropsychological battery assessed performance across five cognitive domains. PCA was applied to the pooled sample using distribution volume ratios (DVR) standardized (z-scored) by region from 42 bilateral regions of interest (ROI). RESULTS Parallel analysis determined three significant PCs explaining 70.2% of the total variance. PC1 was characterized by positive loadings with similar contributions across the majority of ROIs. PC2 was characterized by positive and negative loadings with strongest contributions from subcortical and parietooccipital cortical regions, respectively, while PC3 was characterized by positive and negative loadings with strongest contributions from rostral and caudal cortical regions, respectively. Within the AD group, PC1 subject scores were positively correlated with performance across all cognitive domains (Pearson r = 0.24-0.40, P = 0.06-0.006), PC2 subject scores were inversely correlated with age (Pearson r = -0.45, P = 0.002) and PC3 subject scores were significantly correlated with CDR-sb (Pearson r = 0.46, P = 0.04). No significant correlations were observed between cognitive performance and PC subject scores in CN participants. CONCLUSIONS This data-driven approach defined specific spatial patterns of synaptic density correlated with unique participant characteristics within the AD group. Our findings reinforce synaptic density as a robust biomarker of disease presence and severity in the early stages of AD.
Collapse
Affiliation(s)
- Ryan S O'Dell
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA.
| | - Albert Higgins-Chen
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA; Pain Research, Informatics, Multi-morbidities, and Education Center, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Dhruva Gupta
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA
| | - Ming-Kai Chen
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Yihuan Lu
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Gessica Ni
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA
| | - Anna Chupak
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA
| | - Wenzhen Zhao
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA
| | - Elaheh Salardini
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA
| | - Nabeel B Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, P.O. Box 208001, New Haven, CT 06520, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520, USA
| | - Christopher H van Dyck
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, P.O. Box 208001, New Haven, CT 06520, USA; Department of Neurology, Yale University School of Medicine, P.O. Box 208018, New Haven, CT 06520, USA
| | - Adam P Mecca
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8(th) Floor, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA.
| |
Collapse
|
30
|
Morris M, Coste GI, Redding-Ochoa J, Guo H, Graves AR, Troncoso JC, Huganir RL. Hippocampal Synaptic Alterations Associated with Tau Pathology in Primary Age-Related Tauopathy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.22.23286323. [PMID: 36865237 PMCID: PMC9980270 DOI: 10.1101/2023.02.22.23286323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Primary Age-Related Tauopathy (PART) is characterized by the aggregation of tau in the mesial temporal lobe in older individuals. High pathologic tau stage (Braak stage) or a high burden of hippocampal tau pathology have been associated with cognitive impairment in PART. However, the underlying mechanisms of cognitive impairment in PART are not well understood. Cognitive impairment in many neurodegenerative diseases correlates with synaptic loss, raising the question of whether synaptic loss occurs in PART. To address this, we investigated synaptic changes associated with tau Braak stage and a high tau pathology burden in PART using synaptophysin and phospho-tau immunofluorescence. We compared twelve cases of definite PART with six young controls and six Alzheimer's disease cases. In this study, we identified loss of synaptophysin puncta and intensity in the CA2 region of the hippocampus in cases of PART with either a high stage (Braak IV) or a high burden of neuritic tau pathology. There was also loss of synaptophysin intensity in CA3 associated with a high stage or high burden of tau pathology. Loss of synaptophysin signal was present in AD, but the pattern was distinct from that seen in PART. These novel findings suggest the presence of synaptic loss in PART associated with either a high hippocampal tau burden or a Braak stage IV. These synaptic changes raise the possibility that synaptic loss in PART could contribute to cognitive impairment, though future studies including cognitive assessments are needed to address this question.
Collapse
Affiliation(s)
- Meaghan Morris
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Gabrielle I Coste
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Haidan Guo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Austin R Graves
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
- Kavli Neuroscience Discovery Institute, Baltimore, MD
- Department of Biomedical Engineering, Johns Hopkins University School of Engineering, Baltimore, MD
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
- Kavli Neuroscience Discovery Institute, Baltimore, MD
| |
Collapse
|
31
|
Zhang J, Wang J, Xu X, You Z, Huang Q, Huang Y, Guo Q, Guan Y, Zhao J, Liu J, Xu W, Deng Y, Xie F, Li B. In vivo synaptic density loss correlates with impaired functional and related structural connectivity in Alzheimer's disease. J Cereb Blood Flow Metab 2023; 43:977-988. [PMID: 36718002 PMCID: PMC10196742 DOI: 10.1177/0271678x231153730] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023]
Abstract
Synapse loss has been considered as a major pathological change in Alzheimer's disease (AD). It remains unclear about whether and how synapse loss relates to functional and structural connectivity dysfunction in AD. We measured synaptic vesicle glycoprotein 2 A (SV2A) binding using 18F-SynVesT-1 PET to evaluate synaptic alterations in 33 participants with AD, 31 with mild cognitive impairment (MCI), and 30 controls. We examined the correlation between synaptic density and cognitive function. Functional MRI was performed to analyze functional connectivity in lower synaptic density regions. We tracked the white matter tracts between impaired functional connectivity regions using Diffusion MRI. In AD group, lower synaptic density in bilateral cortex and hippocampus was found when compared with controls. The synaptic density changes in right insular cortex and bilateral caudal middle frontal gyrus (MFG) were correlated with cognitive decline. Among them, right MFG synaptic density was positively associated with right MFG - bilateral superior frontal gyrus (SFG) functional connectivity. AD had lower probability of tract (POT) between right MFG and SFG than controls, which was significantly associated with global cognition. These findings provide evidence supporting synapse loss contributes to functional and related structural connectivity alterations underlying cognitive impairment of AD.
Collapse
Affiliation(s)
- Junfang Zhang
- Department of Neurology and
Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Jie Wang
- Department of Nuclear Medicine
& PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaomeng Xu
- Department of Neurology and
Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Zhiwen You
- Department of Nuclear Medicine,
Shanghai East Hospital, Tongji University School of Medicine, Shanghai,
China
| | - Qi Huang
- Department of Nuclear Medicine
& PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiyun Huang
- PET Center, Department of Radiology
and Biomedical Imaging, Yale University School of Medicine, New Haven,
Connecticut, USA
| | - Qihao Guo
- Department of Gerontology, Shanghai
Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yihui Guan
- Department of Nuclear Medicine
& PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Zhao
- Department of Nuclear Medicine,
Shanghai East Hospital, Tongji University School of Medicine, Shanghai,
China
| | - Jun Liu
- Department of Neurology and
Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
- Clinical Neuroscience Center,
Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Wei Xu
- Department of Neurology and
Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Yulei Deng
- Department of Neurology and
Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
- Clinical Neuroscience Center,
Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
- Department of Neurology, Ruijin
Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine,
Shanghai, China
| | - Fang Xie
- Department of Nuclear Medicine
& PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Binyin Li
- Department of Neurology and
Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
- Clinical Neuroscience Center,
Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
- Department of Neurology, Ruijin
Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine,
Shanghai, China
| |
Collapse
|
32
|
Mikkelsen JD, Kaad S, Aripaka SS, Finsen B. Synaptic vesicle glycoprotein 2A (SV2A) levels in the cerebral cortex in patients with Alzheimer's disease: a radioligand binding study in postmortem brains. Neurobiol Aging 2023; 129:50-57. [PMID: 37269646 DOI: 10.1016/j.neurobiolaging.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/04/2023] [Accepted: 05/03/2023] [Indexed: 06/05/2023]
Abstract
Histological and biochemical analyses in postmortem tissues have demonstrated neurodegenerative changes in the cerebral cortex in patients with Alzheimer's disease (AD), and it has been suggested that this represents a loss of synapses. PET imaging of the (pre)synaptic vesicular glycoprotein 2A (SV2A) has demonstrated a reduction in synapse density in AD in the hippocampus but not consistently in the neocortex. This investigation examines the level of [3H]UCB-J binding in postmortem cortical tissue from patients with AD and matched healthy controls using autoradiography. Among the neocortical areas examined, the binding was significantly lower only in the middle frontal gyrus in AD compared to matched controls. No differences were observed in the parietal, temporal, or occipital cortex. The binding levels in the frontal cortex in the AD cohort displayed large variability among subjects, and this revealed a highly significant negative association with the age of the patient. These results demonstrate low UCB-J binding in the frontal cortex of patients with AD, and this biomarker correlates negatively with age, which may further indicate that SV2A could be an important biomarker in AD patients.
Collapse
Affiliation(s)
- Jens D Mikkelsen
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark; Institute of Neuroscience, University of Copenhagen, Copenhagen, Denmark; Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Sif Kaad
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Sanjay S Aripaka
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Bente Finsen
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
33
|
Hamza EA, Moustafa AA, Tindle R, Karki R, Nalla S, Hamid MS, El Haj M. Effect of APOE4 Allele and Gender on the Rate of Atrophy in the Hippocampus, Entorhinal Cortex, and Fusiform Gyrus in Alzheimer's Disease. Curr Alzheimer Res 2023; 19:CAR-EPUB-130079. [PMID: 36892120 DOI: 10.2174/1567205020666230309113749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND The hippocampus, entorhinal cortex, and fusiform gyrus are brain areas that deteriorate during early-stage Alzheimer's disease (AD). The ApoE4 allele has been identified as a risk factor for AD development, is linked to an increase in the aggregation of amyloid ß (Aß) plaques in the brain, and is responsible for atrophy of the hippocampal area. However, to our knowledge, the rate of deterioration over time in individuals with AD, with or without the ApoE4 allele, has not been investigated. METHOD In this study, we, for the first time, analyze atrophy in these brain structures in AD patients with and without the ApoE4 using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. RESULTS It was found that the rate of decrease in the volume of these brain areas over 12 months was related to the presence of ApoE4. Further, we found that neural atrophy was not different for female and male patients, unlike prior studies, suggesting that the presence of ApoE4 is not linked to the gender difference in AD. CONCLUSION Our results confirm and extend previous findings, showing that the ApoE4 allele gradually impacts brain regions impacted by AD.
Collapse
Affiliation(s)
- Eid Abo Hamza
- Faculty of Education, Department of Mental Health, Tanta University, Egypt
- College of Education, Humanities & Social Sciences, Al Ain University, UAE
| | - Ahmed A Moustafa
- School of Psychology, Faculty of Society and Design, Bond University, Gold Coast, Queensland, Australia
- Department of Human Anatomy and Physiology, the Faculty of Health Sciences, University of Johannesburg, South Africa
| | - Richard Tindle
- Department of Psychology, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Rasu Karki
- Department of Psychology, Western Sydney University, Penrith, NSW, 2214, Australia
| | - Shahed Nalla
- Department of Human Anatomy and Physiology, the Faculty of Health Sciences, University of Johannesburg, South Africa
| | | | - Mohamad El Haj
- Laboratoire de Psychologie des Pays de la Loire (LPPL - EA 4638), Nantes Université, Univ. Angers., Nantes, F-44000, France
- Clinical Gerontology Department, CHU Nantes, Bd Jacques Monod,Nantes, F44093, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
34
|
Tzioras M, McGeachan RI, Durrant CS, Spires-Jones TL. Synaptic degeneration in Alzheimer disease. Nat Rev Neurol 2023; 19:19-38. [PMID: 36513730 DOI: 10.1038/s41582-022-00749-z] [Citation(s) in RCA: 206] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/15/2022]
Abstract
Alzheimer disease (AD) is characterized by progressive cognitive decline in older individuals accompanied by the presence of two pathological protein aggregates - amyloid-β and phosphorylated tau - in the brain. The disease results in brain atrophy caused by neuronal loss and synapse degeneration. Synaptic loss strongly correlates with cognitive decline in both humans and animal models of AD. Indeed, evidence suggests that soluble forms of amyloid-β and tau can cause synaptotoxicity and spread through neural circuits. These pathological changes are accompanied by an altered phenotype in the glial cells of the brain - one hypothesis is that glia excessively ingest synapses and modulate the trans-synaptic spread of pathology. To date, effective therapies for the treatment or prevention of AD are lacking, but understanding how synaptic degeneration occurs will be essential for the development of new interventions. Here, we highlight the mechanisms through which synapses degenerate in the AD brain, and discuss key questions that still need to be answered. We also cover the ways in which our understanding of the mechanisms of synaptic degeneration is leading to new therapeutic approaches for AD.
Collapse
Affiliation(s)
- Makis Tzioras
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Robert I McGeachan
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK.,The Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Claire S Durrant
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK. .,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
35
|
Carson RE, Naganawa M, Toyonaga T, Koohsari S, Yang Y, Chen MK, Matuskey D, Finnema SJ. Imaging of Synaptic Density in Neurodegenerative Disorders. J Nucl Med 2022; 63:60S-67S. [PMID: 35649655 DOI: 10.2967/jnumed.121.263201] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
PET technology has produced many radiopharmaceuticals that target specific brain proteins and other measures of brain function. Recently, a new approach has emerged to image synaptic density by targeting the synaptic vesicle protein 2A (SV2A), an integral glycoprotein in the membrane of synaptic vesicles and widely distributed throughout the brain. Multiple SV2A ligands have been developed and translated to human use. The most successful of these to date is 11C-UCB-J, because of its high uptake, moderate metabolism, and effective quantification with a 1-tissue-compartment model. Further, since SV2A is the target of the antiepileptic drug levetiracetam, human blocking studies have characterized specific binding and potential reference regions. Regional brain SV2A levels were shown to correlate with those of synaptophysin, another commonly used marker of synaptic density, providing the basis for SV2A PET imaging to have broad utility across neuropathologic diseases. In this review, we highlight the development of SV2A tracers and the evaluation of quantification methods, including compartment modeling and simple tissue ratios. Mouse and rat models of neurodegenerative diseases have been studied with small-animal PET, providing validation by comparison to direct tissue measures. Next, we review human PET imaging results in multiple neurodegenerative disorders. Studies on Parkinson disease and Alzheimer disease have progressed most rapidly at multiple centers, with generally consistent results of patterns of SV2A or synaptic loss. In Alzheimer disease, the synaptic loss patterns differ from those of amyloid, tau, and 18F-FDG, although intertracer and interregional correlations have been found. Smaller studies have been reported in other disorders, including Lewy body dementia, frontotemporal dementia, Huntington disease, progressive supranuclear palsy, and corticobasal degeneration. In conclusion, PET imaging of SV2A has rapidly developed, and qualified radioligands are available. PET studies on humans indicate that SV2A loss might be specific to disease-associated brain regions and consistent with synaptic density loss. The recent availability of new 18F tracers, 18F-SynVesT-1 and 18F-SynVesT-2, will substantially broaden the application of SV2A PET. Future studies are needed in larger patient cohorts to establish the clinical value of SV2A PET and its potential for diagnosis and progression monitoring of neurodegenerative diseases, as well as efficacy assessment of disease-modifying therapies.
Collapse
Affiliation(s)
- Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut;
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - Sheida Koohsari
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - Yanghong Yang
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - Ming-Kai Chen
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut; and
| | - Sjoerd J Finnema
- Neuroscience Discovery Research, Translational Imaging, AbbVie, North Chicago, Illinois
| |
Collapse
|
36
|
Rossi R, Arjmand S, Bærentzen SL, Gjedde A, Landau AM. Synaptic Vesicle Glycoprotein 2A: Features and Functions. Front Neurosci 2022; 16:864514. [PMID: 35573314 PMCID: PMC9096842 DOI: 10.3389/fnins.2022.864514] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/05/2022] [Indexed: 01/05/2023] Open
Abstract
In recent years, the field of neuroimaging dramatically moved forward by means of the expeditious development of specific radioligands of novel targets. Among these targets, the synaptic vesicle glycoprotein 2A (SV2A) is a transmembrane protein of synaptic vesicles, present in all synaptic terminals, irrespective of neurotransmitter content. It is involved in key functions of neurons, focused on the regulation of neurotransmitter release. The ubiquitous expression in gray matter regions of the brain is the basis of its candidacy as a marker of synaptic density. Following the development of molecules derived from the structure of the anti-epileptic drug levetiracetam, which selectively binds to SV2A, several radiolabeled markers have been synthetized to allow the study of SV2A distribution with positron emission tomography (PET). These radioligands permit the evaluation of in vivo changes of SV2A distribution held to be a potential measure of synaptic density in physiological and pathological conditions. The use of SV2A as a biomarker of synaptic density raises important questions. Despite numerous studies over the last decades, the biological function and the expressional properties of SV2A remain poorly understood. Some functions of SV2A were claimed, but have not been fully elucidated. While the expression of SV2A is ubiquitous, stronger associations between SV2A and Υ amino butyric acid (GABA)-ergic rather than glutamatergic synapses were observed in some brain structures. A further issue is the unclear interaction between SV2A and its tracers, which reflects a need to clarify what really is detected with neuroimaging tools. Here, we summarize the current knowledge of the SV2A protein and we discuss uncertain aspects of SV2A biology and physiology. As SV2A expression is ubiquitous, but likely more strongly related to a certain type of neurotransmission in particular circumstances, a more extensive knowledge of the protein would greatly facilitate the analysis and interpretation of neuroimaging results by allowing the evaluation not only of an increase or decrease of the protein level, but also of the type of neurotransmission involved.
Collapse
Affiliation(s)
- Rachele Rossi
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simone Larsen Bærentzen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Albert Gjedde
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|