1
|
Suematsu N, Vazquez AL, Kozai TDY. Activation and depression of neural and hemodynamic responses induced by the intracortical microstimulation and visual stimulation in the mouse visual cortex. J Neural Eng 2024; 21:026033. [PMID: 38537268 PMCID: PMC11002944 DOI: 10.1088/1741-2552/ad3853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Objective. Intracortical microstimulation (ICMS) can be an effective method for restoring sensory perception in contemporary brain-machine interfaces. However, the mechanisms underlying better control of neuronal responses remain poorly understood, as well as the relationship between neuronal activity and other concomitant phenomena occurring around the stimulation site.Approach. Different microstimulation frequencies were investigatedin vivoon Thy1-GCaMP6s mice using widefield and two-photon imaging to evaluate the evoked excitatory neural responses across multiple spatial scales as well as the induced hemodynamic responses. Specifically, we quantified stimulation-induced neuronal activation and depression in the mouse visual cortex and measured hemodynamic oxyhemoglobin and deoxyhemoglobin signals using mesoscopic-scale widefield imaging.Main results. Our calcium imaging findings revealed a preference for lower-frequency stimulation in driving stronger neuronal activation. A depressive response following the neural activation preferred a slightly higher frequency stimulation compared to the activation. Hemodynamic signals exhibited a comparable spatial spread to neural calcium signals. Oxyhemoglobin concentration around the stimulation site remained elevated during the post-activation (depression) period. Somatic and neuropil calcium responses measured by two-photon microscopy showed similar dependence on stimulation parameters, although the magnitudes measured in soma was greater than in neuropil. Furthermore, higher-frequency stimulation induced a more pronounced activation in soma compared to neuropil, while depression was predominantly induced in soma irrespective of stimulation frequencies.Significance. These results suggest that the mechanism underlying depression differs from activation, requiring ample oxygen supply, and affecting neurons. Our findings provide a novel understanding of evoked excitatory neuronal activity induced by ICMS and offer insights into neuro-devices that utilize both activation and depression phenomena to achieve desired neural responses.
Collapse
Affiliation(s)
- Naofumi Suematsu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Alberto L Vazquez
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, United States of America
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, United States of America
| |
Collapse
|
2
|
Suematsu N, Vazquez AL, Kozai TD. Activation and depression of neural and hemodynamic responses induced by the intracortical microstimulation and visual stimulation in the mouse visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.01.573814. [PMID: 38260671 PMCID: PMC10802282 DOI: 10.1101/2024.01.01.573814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Objective . Intracortical microstimulation can be an effective method for restoring sensory perception in contemporary brain-machine interfaces. However, the mechanisms underlying better control of neuronal responses remain poorly understood, as well as the relationship between neuronal activity and other concomitant phenomena occurring around the stimulation site. Approach . Different microstimulation frequencies were investigated in vivo on Thy1-GCaMP6s mice using widefield and two-photon imaging to evaluate the evoked excitatory neural responses across multiple spatial scales as well as the induced hemodynamic responses. Specifically, we quantified stimulation-induced neuronal activation and depression in the mouse visual cortex and measured hemodynamic oxyhemoglobin and deoxyhemoglobin signals using mesoscopic-scale widefield imaging. Main results . Our calcium imaging findings revealed a preference for lower-frequency stimulation in driving stronger neuronal activation. A depressive response following the neural activation preferred a slightly higher frequency stimulation compared to the activation. Hemodynamic signals exhibited a comparable spatial spread to neural calcium signals. Oxyhemoglobin concentration around the stimulation site remained elevated during the post-activation (depression) period. Somatic and neuropil calcium responses measured by two-photon microscopy showed similar dependence on stimulation parameters, although the magnitudes measured in soma was greater than in neuropil. Furthermore, higher-frequency stimulation induced a more pronounced activation in soma compared to neuropil, while depression was predominantly induced in soma irrespective of stimulation frequencies. Significance . These results suggest that the mechanism underlying depression differs from activation, requiring ample oxygen supply, and affecting neurons. Our findings provide a novel understanding of evoked excitatory neuronal activity induced by intracortical microstimulation and offer insights into neuro-devices that utilize both activation and depression phenomena to achieve desired neural responses.
Collapse
|
3
|
Chou W, Lin BS, Hsu HC, Chiu RH, Lin BS. Intelligent Headband System for Evaluating Rehabilitation Effectiveness. IEEE Trans Neural Syst Rehabil Eng 2023; 31:1180-1187. [PMID: 37022455 DOI: 10.1109/tnsre.2023.3241998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stroke is an acute cerebrovascular condition causing damage to cranial nerves and requires subsequent rehabilitation treatment. In clinical practice, the effectiveness of rehabilitation is usually subjectively assessed by experienced physicians or using global prognostic scales. Several brain imaging techniques, such as positron emission tomography, functional magnetic resonance imaging, and computed tomography angiography, can be applied in rehabilitation effectiveness evaluation, but their complexity and long measurement times limit the activity of patients during measurement. This paper proposes an intelligent headband system based on near-infrared spectroscopy. An optical headband continuously and noninvasively monitors changes in hemoglobin parameters in the brain. The system's wearable headband and wireless transmission provide convenience of use. According to the change of hemoglobin parameters during rehabilitation exercise, several indexes were also defined to evaluate the state of cardiopulmonary function and further build the neural network model of the cardiopulmonary function evaluation. Finally, the relationship between the defined indexes and the cardiopulmonary function state were investigated and the neural network model for the cardiopulmonary function evaluation was also applied in the rehabilitation effect evaluation. The experimental results show the cardiopulmonary function state could reflect on most of the defined indexes and the output of neural network model, and the rehabilitation therapy could also improve the cardiopulmonary function.
Collapse
|
4
|
Kato T. Vector-based analysis of cortical activity associated with dumbbell exercise using functional near-infrared spectroscopy. Front Sports Act Living 2022; 4:838189. [PMID: 36172342 PMCID: PMC9510593 DOI: 10.3389/fspor.2022.838189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/17/2022] [Indexed: 11/29/2022] Open
Abstract
The mechanisms via which the brain and muscles work together remain poorly understood. The use of vector-based fNIRS, to propose a new metric and imaging method to understand neural activation during dumbbell-lifting exercises. This method can simultaneously measure oxyhemoglobin (oxyHb) and deoxyHb levels so that the angle k: Arctan (deoxyHb/oxyHb) represents the degree of oxygen exchange in the brain and can be used to quantify the distribution of oxygen consumption. The amplitude L of the vector reflects the intensity of the response caused by the amount of change in Hb. This study used vector-based fNIRS to simultaneously measure the left primary motor cortex (left M1), multiple peripheral regions, and the right biceps brachii muscle. The subjects were seven healthy adults. The task was a dumbbell-lifting exercise involving flexion and extension of the elbow joints of both arms. Dumbbell weights of 0 (no dumbbell), 4.5, and 9.5 kg were used. During dumbbell exercise, oxygen exchange increased in the left M1, indicating increased local oxygen consumption. Around the left M1, the cerebral oxygen exchange decreased, and oxygen supply increased without cerebral oxygen consumption. The spatial agreement between the maximum value of oxygen exchange k and L during the task was <20%. Therefore, the dumbbell-lifting exercise task study reported here supported the hypothesis that cerebral oxygen consumption associated with neural activation does not coincide with the distribution of cerebral oxygen supply. The relationship between the brain oxygen supply from the site of increased oxygen exchange in the brain and its surrounding areas can be quantified using the vector method fNIRS.
Collapse
Affiliation(s)
- Toshinori Kato
- Department of Brain Environmental Research, KatoBrain Co., Ltd., Tokyo, Japan
| |
Collapse
|
5
|
Arai M, Kato H, Kato T. Functional quantification of oral motor cortex at rest and during tasks using activity phase ratio: A zero-setting vector functional near-infrared spectroscopy study. Front Physiol 2022; 13:833871. [PMID: 36213249 PMCID: PMC9539688 DOI: 10.3389/fphys.2022.833871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Oral frailty associated with oral hypokinesia may cause dementia. Functional near-infrared spectroscopy (fNIRS) can be used while the participants are in seating position with few restrictions. Thus, it is useful for assessing brain function, particularly oral motor activity. However, methods for identifying oral motor cortex (OMC) activation via the scalp have not been established. The current study aimed to detect OMC activation, an indicator of activity phase ratio (APR), which reflects increased oxygen consumption (0 < [deoxyhemoglobin (ΔDeoxyHb) or 0 < {[ΔDeoxyHb- oxyhemoglobin (ΔOxyHb)/√2]}, via fNIRS to accurately identify local brain activity. The APR, calculated via zero-set vector analysis, is a novel index for quantifying brain function both temporally and spatially at rest and during tasks. In total, 14 healthy participants performed bite tasks for 3 s per side for 10 times while in the sitting position. Then, time-series data on concentration changes in ΔOxyHb and ΔDeoxyHb were obtained via fNIRS. The anatomical location of the OMC was determined using a pooled data set of three-dimensional magnetic resonance images collected in advance from 40 healthy adults. In the zero-set vector analysis, the average change in ΔOxyHb and ΔDeoxyHb concentrations was utilized to calculate the APR percentage in 140 trials. The significant regions (z-score of ≥2.0) of the APR and ΔOxyHb in the task were compared. During the bite task, the APR significantly increased within the estimated OMC region (56–84 mm lateral to Cz and 4–20 mm anterior to Cz) in both the right and left hemispheres. By contrast, the ΔOxyHb concentrations increased on the bite side alone beyond the OMC region. The mean APR at rest for 2 s before the task showed 59.5%–62.2% in the left and right OMCs. The average APR for 3 s during the task showed 75.3% for the left OMC and 75.7% for the right OMC during the left bite task, and 65.9% for the left OMC and 80.9% for the right OMC during the right bite task. Interestingly, the average increase in APR for the left and right OMCs for the left bite task and the right bite task was 13.9% and 13.7%, respectively, showing almost a close match. The time course of the APR was more limited to the bite task segment than that of ΔOxyHb or ΔDexyHb concentration, and it increased in the OMC. Hence, the APR can quantitatively monitor both the resting and active states of the OMC in the left and right hemispheres. Using the zero-set vector-based fNIRS, the APR can be a valid indicator of oral motor function and bite force.
Collapse
Affiliation(s)
- Masaaki Arai
- Department of Oral Biomedical Research, Total Health Advisers Co., Chiba, Japan
| | - Hikaru Kato
- Department of Brain Environmental Research, KatoBrain Co., Ltd., Tokyo, Japan
| | - Toshinori Kato
- Department of Brain Environmental Research, KatoBrain Co., Ltd., Tokyo, Japan
- Correspondence: Toshinori Kato,
| |
Collapse
|
6
|
Oelschlägel M, Polanski WH, Morgenstern U, Steiner G, Kirsch M, Koch E, Schackert G, Sobottka SB. Characterization of cortical hemodynamic changes following sensory, visual, and speech activation by intraoperative optical imaging utilizing phase-based evaluation methods. Hum Brain Mapp 2022; 43:598-615. [PMID: 34590384 PMCID: PMC8720199 DOI: 10.1002/hbm.25674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/14/2021] [Indexed: 11/12/2022] Open
Abstract
Alterations within cerebral hemodynamics are the intrinsic signal source for a wide variety of neuroimaging techniques. Stimulation of specific functions leads due to neurovascular coupling, to changes in regional cerebral blood flow, oxygenation and volume. In this study, we investigated the temporal characteristics of cortical hemodynamic responses following electrical, tactile, visual, and speech activation for different stimulation paradigms using Intraoperative Optical Imaging (IOI). Image datasets from a total of 22 patients that underwent surgical resection of brain tumors were evaluated. The measured reflectance changes at different light wavelength bands, representing alterations in regional cortical blood volume (CBV), and deoxyhemoglobin (HbR) concentration, were assessed by using Fourier-based evaluation methods. We found a decrease of CBV connected to an increase of HbR within the contralateral primary sensory cortex (SI) in patients that were prolonged (30 s/15 s) electrically stimulated. Additionally, we found differences in amplitude as well as localization of activated areas for different stimulation patterns. Contrary to electrical stimulation, prolonged tactile as well as prolonged visual stimulation are provoking increases in CBV within the corresponding activated areas (SI, visual cortex). The processing of the acquired data from awake patients performing speech tasks reveals areas with increased, as well as areas with decreased CBV. The results lead us to the conclusion, that the CBV decreases in connection with HbR increases in SI are associated to processing of nociceptive stimuli and that stimulation type, as well as paradigm have a nonnegligible impact on the temporal characteristics of the following hemodynamic response.
Collapse
Affiliation(s)
- Martin Oelschlägel
- Department of Anesthesiology and Intensive Care Medicine, Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Clinical Sensoring and Monitoring, Dresden, Saxony, Germany
| | - Witold H Polanski
- Department of Neurosurgery, Technische Universität Dresden, Carl Gustav Carus University Hospital Dresden, Dresden, Saxony, Germany
| | - Ute Morgenstern
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Institute of Biomedical Engineering, Dresden, Saxony, Germany
| | - Gerald Steiner
- Department of Anesthesiology and Intensive Care Medicine, Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Clinical Sensoring and Monitoring, Dresden, Saxony, Germany
| | - Matthias Kirsch
- Department of Neurosurgery, Technische Universität Dresden, Carl Gustav Carus University Hospital Dresden, Dresden, Saxony, Germany.,Department of Neurosurgery, Asklepios Kliniken Schildautal Seesen, Seesen, Saxony, Germany
| | - Edmund Koch
- Department of Anesthesiology and Intensive Care Medicine, Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Clinical Sensoring and Monitoring, Dresden, Saxony, Germany
| | - Gabriele Schackert
- Department of Neurosurgery, Technische Universität Dresden, Carl Gustav Carus University Hospital Dresden, Dresden, Saxony, Germany
| | - Stephan B Sobottka
- Department of Neurosurgery, Technische Universität Dresden, Carl Gustav Carus University Hospital Dresden, Dresden, Saxony, Germany
| |
Collapse
|
7
|
Sokolov AY, Volynsky MA, Zaytsev VV, Osipchuk AV, Kamshilin AA. Advantages of imaging photoplethysmography for migraine modeling: new optical markers of trigemino-vascular activation in rats. J Headache Pain 2021; 22:18. [PMID: 33794769 PMCID: PMC8015037 DOI: 10.1186/s10194-021-01226-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/12/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Existent animal models of migraine are not without drawbacks and limitations. The aim of our study was to evaluate imaging photoplethysmography (PPG) as a method of assessing intracranial blood flow in rats and its changes in response to electrical stimulation of dural trigeminal afferents. METHODS Experiments were carried out with 32 anesthetized adult male Wistar rats. Trigeminovascular system (TVS) was activated by means of electrical stimulation of dural afferents through a closed cranial window (CCW). Parameters of meningeal blood flow were monitored using a PPG imaging system under green illumination with synchronous recording of an electrocardiogram (ECG) and systemic arterial blood pressure (ABP). Two indicators related to blood-flow parameters were assessed: intrinsic optical signals (OIS) and the amplitude of pulsatile component (APC) of the PPG waveform. Moreover, we carried out pharmacological validation of these indicators by determining their sensitivity to anti-migraine drugs: valproic acid and sumatriptan. For statistical analysis the non-parametric tests with post-hoc Bonferroni correction was used. RESULTS Significant increase of both APC and OIS was observed due to CCW electrical stimulation. Compared to saline (n = 11), intravenous administration of both the sumatriptan (n = 11) and valproate (n = 10) by using a cumulative infusion regimen (three steps performed 30 min apart) lead to significant inhibitory effect on the APC response to the stimulation. In contrast, intravenous infusion of any substance or saline did not affect the OIS response to the stimulation. It was found that infusion of either sumatriptan or valproate did not affect the response of ABP or heart rate to the stimulation. CONCLUSIONS Imaging PPG can be used in an animal migraine model as a method for contactless assessment of intracranial blood flow. We have identified two new markers of TVS activation, one of which (APC) was pharmacologically confirmed to be associated with migraine. Monitoring of changes in APC caused by CCW electrical stimulation (controlling efficiency of stimulation by OIS) can be considered as a new way to assess the peripheral mechanism of action of anti-migraine interventions.
Collapse
Affiliation(s)
- Alexey Y. Sokolov
- Department of Neuropharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Maxim A. Volynsky
- Faculty of Applied Optics, ITMO University, Saint Petersburg, Russia
| | - Valery V. Zaytsev
- Faculty of Applied Optics, ITMO University, Saint Petersburg, Russia
- Research Laboratory of Neuromodulation, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Anastasiia V. Osipchuk
- Department of Neuropharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Alexei A. Kamshilin
- Research Laboratory of Neuromodulation, Almazov National Medical Research Centre, Saint Petersburg, Russia
- Laboratory of New Functional Materials for Photonics, Institute of Automation and Control, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
8
|
Multimodal Detection for Cryptogenic Epileptic Seizures Based on Combined Micro Sensors. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5734932. [PMID: 32964037 PMCID: PMC7492941 DOI: 10.1155/2020/5734932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/24/2020] [Accepted: 08/17/2020] [Indexed: 12/02/2022]
Abstract
The cryptogenic epilepsy of the neocortex is a disease in which the seizure is accompanied by intense cerebral nerve electrical activities but the lesions are not observed. It is difficult to locate disease foci. Electrocorticography (ECoG) is one of the gold standards in seizure focus localization. This method detects electrical signals, and its limitations are inadequate resolution which is only 10 mm and lack of depth information. In order to solve these problems, our new method with implantable micro ultrasound transducer (MUT) and photoplethysmogram (PPG) device detects blood changes to achieve higher resolution and provide depth information. The basis of this method is the neurovascular coupling mechanism, which shows that intense neural activity leads to sufficient cerebral blood volume (CBV). The neurovascular coupling mechanism established the relationship between epileptic electrical signals and CBV. The existence of mechanism enables us to apply our new methods on the basis of ECoG. Phantom experiments and in vivo experiments were designed to verify the proposed method. The first phantom experiments designed a phantom with two channels at different depths, and the MUT was used to detect the depth where the blood concentration changed. The results showed that the MUT detected the blood concentration change at the depth of 12 mm, which is the position of the second channel. In the second phantom experiments where a PPG device and MUT were used to monitor the change of blood concentration in a thick tube, the results showed that the trend of superficial blood concentration change provided by the PPG device is the same as that provided by the MUT within the depth of 2.5 mm. Finally, in the verification of in vivo experiments, the blood concentration changes on the surface recorded by the PPG device and the changes at a certain depth recorded by the MUT all matched the seizure status shown by ECoG. These results confirmed the effectiveness of the combined micro sensors.
Collapse
|
9
|
Afzal Khan MN, Raheel Bhutta M, Hong KS. Effect of stimulation duration to the existence of initial dip. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:390-393. [PMID: 33018010 DOI: 10.1109/embc44109.2020.9175930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, we investigate the effect of stimulation durations on the hemodynamic responses (HRs) in the somatosensory cortex. In doing so, the relationship between stimulation duration and the initial dip is also investigated. The HRs are measured using functional near-infrared spectroscopy (fNIRS). The HR signals related to finger poking are acquired from the left somatosensory cortex. Two different stimulation durations (i.e., 1 and 5 sec) were tested in this study. From the results of the study, it is concluded that the stimulation duration of 1 sec (short stimulus) evokes initial dip in the somatosensory cortex, but it disappears as the stimulation duration gets longer. Therefore, the 1-sec stimulation duration can serve the purpose of the fNIRS-based brain-computer interface.
Collapse
|
10
|
Oelschlägel M, Meyer T, Morgenstern U, Wahl H, Gerber J, Reiß G, Koch E, Steiner G, Kirsch M, Schackert G, Sobottka SB. Mapping of language and motor function during awake neurosurgery with intraoperative optical imaging. Neurosurg Focus 2020; 48:E3. [PMID: 32006940 DOI: 10.3171/2019.11.focus19759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/15/2019] [Indexed: 11/06/2022]
Abstract
Intraoperative optical imaging (IOI) is a marker-free, contactless, and noninvasive imaging technique that is able to visualize metabolic changes of the brain surface following neuronal activation. Although it has been used in the past mainly for the identification of functional brain areas under general anesthesia, the authors investigated the potential of the method during awake surgery. Measurements were performed in 10 patients who underwent resection of lesions within or adjacent to cortical language or motor sites. IOI was applied in 3 different scenarios: identification of motor areas by using finger-tapping tasks, identification of language areas by using speech tasks (overt and silent speech), and a novel approach-the application of IOI as a feedback tool during direct electrical stimulation (DES) mapping of language. The functional maps, which were calculated from the IOI data (activity maps), were qualitatively compared with the functional MRI (fMRI) and the electrophysiological testing results during the surgical procedure to assess their potential benefit for surgical decision-making.The results reveal that the intraoperative identification of motor sites with IOI in good agreement with the preoperatively acquired fMRI and the intraoperative electrophysiological measurements is possible. Because IOI provides spatially highly resolved maps with minimal additional hardware effort, the application of the technique for motor site identification seems to be beneficial in awake procedures. The identification of language processing sites with IOI was also possible, but in the majority of cases significant differences between fMRI, IOI, and DES were visible, and therefore according to the authors' findings the IOI results are too unspecific to be useful for intraoperative decision-making with respect to exact language localization. For this purpose, DES mapping will remain the method of choice.Nevertheless, the IOI technique can provide additional value during the language mapping procedure with DES. Using a simple difference imaging approach, the authors were able to visualize and calculate the spatial extent of activation for each stimulation. This might enable surgeons in the future to optimize the mapping process. Additionally, differences between tumor and nontumor stimulation sites were observed with respect to the spatial extent of the changes in cortical optical properties. These findings provide further evidence that the method allows the assessment of the functional state of neurovascular coupling and is therefore suited for the delineation of pathologically altered tissue.
Collapse
Affiliation(s)
- Martin Oelschlägel
- 1Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden
| | - Tobias Meyer
- 2ABX-CRO Advanced Pharmaceutical Services Forschungsgesellschaft mbH, Dresden
| | - Ute Morgenstern
- 3Institute of Biomedical Engineering, Faculty of Electrical and Computer Engineering, Technische Universität Dresden
| | - Hannes Wahl
- 4Institute and Polyclinic of Diagnostic and Interventional Neuroradiology, Carl Gustav Carus University Hospital, Technische Universität Dresden
| | - Johannes Gerber
- 4Institute and Polyclinic of Diagnostic and Interventional Neuroradiology, Carl Gustav Carus University Hospital, Technische Universität Dresden
| | - Gilfe Reiß
- 6Department of Neurosurgery, Carl Gustav Carus University Hospital, Technische Universität Dresden, Saxony, Germany
| | - Edmund Koch
- 1Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden
| | - Gerald Steiner
- 1Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden
| | - Matthias Kirsch
- 5Department of Neurosurgery, Asklepios Kliniken Schildautal Seesen; and
| | - Gabriele Schackert
- 6Department of Neurosurgery, Carl Gustav Carus University Hospital, Technische Universität Dresden, Saxony, Germany
| | - Stephan B Sobottka
- 6Department of Neurosurgery, Carl Gustav Carus University Hospital, Technische Universität Dresden, Saxony, Germany
| |
Collapse
|
11
|
Lemée JM, Berro DH, Bernard F, Chinier E, Leiber LM, Menei P, Ter Minassian A. Resting-state functional magnetic resonance imaging versus task-based activity for language mapping and correlation with perioperative cortical mapping. Brain Behav 2019; 9:e01362. [PMID: 31568681 PMCID: PMC6790308 DOI: 10.1002/brb3.1362] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/19/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Preoperative language mapping using functional magnetic resonance imaging (fMRI) aims to identify eloquent areas in the vicinity of surgically resectable brain lesions. fMRI methodology relies on the blood-oxygen-level-dependent (BOLD) analysis to identify brain language areas. Task-based fMRI studies the BOLD signal increase in brain areas during a language task to identify brain language areas, which requires patients' cooperation, whereas resting-state fMRI (rsfMRI) allows identification of functional networks without performing any explicit task through the analysis of the synchronicity of spontaneous BOLD signal oscillation between brain areas. The aim of this study was to compare preoperative language mapping using rsfMRI and task fMRI to cortical mapping (CM) during awake craniotomies. METHODS Fifty adult patients surgically treated for a brain lesion were enrolled. All patients had a presurgical language mapping with both task fMRI and rsfMRI. Identified language networks were compared to perioperative language mapping using electric cortical stimulation. RESULTS Resting-state fMRI was able to detect brain language areas during CM with a sensitivity of 100% compared to 65.6% with task fMRI. However, we were not able to perform a specificity analysis and compare task-based and rest fMRI with our perioperative setting in the current study. In second-order analysis, task fMRI imaging included main nodes of the SN and main areas involved in semantics were identified in rsfMRI. CONCLUSION Resting-state fMRI for presurgical language mapping is easy to implement, allowing the identification of functional brain language network with a greater sensitivity than task-based fMRI, at the cost of some precautions and a lower specificity. Further study is required to compare both the sensitivity and the specificity of the two methods and to evaluate the clinical value of rsfMRI as an alternative tool for the presurgical identification of brain language areas.
Collapse
Affiliation(s)
- Jean-Michel Lemée
- Department of Neurosurgery, University Hospital of Angers, Angers, France.,INSERM CRCINA Équipe 17, Bâtiment IRIS, Angers, France
| | | | - Florian Bernard
- Department of Neurosurgery, University Hospital of Angers, Angers, France.,Angers Medical Faculty, Anatomy Laboratory, Angers, France
| | - Eva Chinier
- Department of Physical Medicine and Rehabilitation, University Hospital of Angers, Nantes, France
| | | | - Philippe Menei
- Department of Neurosurgery, University Hospital of Angers, Angers, France.,INSERM CRCINA Équipe 17, Bâtiment IRIS, Angers, France
| | - Aram Ter Minassian
- Department of Anesthesiology, University Hospital of Angers, Angers, France.,LARIS EA 7315, Image Signal et Sciences du Vivant, Angers Teaching Hospital, Angers, France
| |
Collapse
|
12
|
Roland JL, Hacker CD, Snyder AZ, Shimony JS, Zempel JM, Limbrick DD, Smyth MD, Leuthardt EC. A comparison of resting state functional magnetic resonance imaging to invasive electrocortical stimulation for sensorimotor mapping in pediatric patients. Neuroimage Clin 2019; 23:101850. [PMID: 31077983 PMCID: PMC6514367 DOI: 10.1016/j.nicl.2019.101850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/21/2019] [Accepted: 05/02/2019] [Indexed: 01/11/2023]
Abstract
Localizing neurologic function within the brain remains a significant challenge in clinical neurosurgery. Invasive mapping with direct electrocortical stimulation currently is the clinical gold standard but is impractical in young or cognitively delayed patients who are unable to reliably perform tasks. Resting state functional magnetic resonance imaging non-invasively identifies resting state networks without the need for task performance, hence, is well suited to pediatric patients. We compared sensorimotor network localization by resting state fMRI to cortical stimulation sensory and motor mapping in 16 pediatric patients aged 3.1 to 18.6 years. All had medically refractory epilepsy that required invasive electrographic monitoring and stimulation mapping. The resting state fMRI data were analyzed using a previously trained machine learning classifier that has previously been evaluated in adults. We report comparable functional localization by resting state fMRI compared to stimulation mapping. These results provide strong evidence for the utility of resting state functional imaging in the localization of sensorimotor cortex across a wide range of pediatric patients.
Collapse
Affiliation(s)
- Jarod L Roland
- Department of Neurological Surgery, Washington University in St. Louis, St. Louis, MO, United States of America.
| | - Carl D Hacker
- Department of Neurological Surgery, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Abraham Z Snyder
- Mallinckrodt Institute Radiology, Washington University in St. Louis, St. Louis, MO, United States of America; Neurology, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Joshua S Shimony
- Mallinckrodt Institute Radiology, Washington University in St. Louis, St. Louis, MO, United States of America
| | - John M Zempel
- Neurology, Washington University in St. Louis, St. Louis, MO, United States of America
| | - David D Limbrick
- Department of Neurological Surgery, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Matthew D Smyth
- Department of Neurological Surgery, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Eric C Leuthardt
- Department of Neurological Surgery, Washington University in St. Louis, St. Louis, MO, United States of America; Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America; Neuroscience, Washington University in St. Louis, St. Louis, MO, United States of America; Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States of America; Center for Innovation in Neuroscience and Technology, Washington University in St. Louis, St. Louis, MO, United States of America; Brain Laser Center, Washington University in St. Louis, St. Louis, MO, United States of America
| |
Collapse
|
13
|
Ezzyat Y, Rizzuto DS. Direct brain stimulation during episodic memory. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018. [DOI: 10.1016/j.cobme.2018.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Hong KS, Zafar A. Existence of Initial Dip for BCI: An Illusion or Reality. Front Neurorobot 2018; 12:69. [PMID: 30416440 PMCID: PMC6212489 DOI: 10.3389/fnbot.2018.00069] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 10/03/2018] [Indexed: 01/21/2023] Open
Abstract
A tight coupling between the neuronal activity and the cerebral blood flow (CBF) is the motivation of many hemodynamic response (HR)-based neuroimaging modalities. The increase in neuronal activity causes the increase in CBF that is indirectly measured by HR modalities. Upon functional stimulation, the HR is mainly categorized in three durations: (i) initial dip, (ii) conventional HR (i.e., positive increase in HR caused by an increase in the CBF), and (iii) undershoot. The initial dip is a change in oxygenation prior to any subsequent increase in CBF and spatially more specific to the site of neuronal activity. Despite additional evidence from various HR modalities on the presence of initial dip in human and animal species (i.e., cat, rat, and monkey); the existence/occurrence of an initial dip in HR is still under debate. This article reviews the existence and elusive nature of the initial dip duration of HR in intrinsic signal optical imaging (ISOI), functional magnetic resonance imaging (fMRI), and functional near-infrared spectroscopy (fNIRS). The advent of initial dip and its elusiveness factors in ISOI and fMRI studies are briefly discussed. Furthermore, the detection of initial dip and its role in brain-computer interface using fNIRS is examined in detail. The best possible application for the initial dip utilization and its future implications using fNIRS are provided.
Collapse
Affiliation(s)
- Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, South Korea.,Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
| | - Amad Zafar
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| |
Collapse
|
15
|
Closed-loop stimulation of temporal cortex rescues functional networks and improves memory. Nat Commun 2018; 9:365. [PMID: 29410414 PMCID: PMC5802791 DOI: 10.1038/s41467-017-02753-0] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/20/2017] [Indexed: 01/12/2023] Open
Abstract
Memory failures are frustrating and often the result of ineffective encoding. One approach to improving memory outcomes is through direct modulation of brain activity with electrical stimulation. Previous efforts, however, have reported inconsistent effects when using open-loop stimulation and often target the hippocampus and medial temporal lobes. Here we use a closed-loop system to monitor and decode neural activity from direct brain recordings in humans. We apply targeted stimulation to lateral temporal cortex and report that this stimulation rescues periods of poor memory encoding. This system also improves later recall, revealing that the lateral temporal cortex is a reliable target for memory enhancement. Taken together, our results suggest that such systems may provide a therapeutic approach for treating memory dysfunction.
Collapse
|
16
|
Oelschlägel M, Meyer T, Schackert G, Kirsch M, Sobottka SB, Morgenstern U. Intraoperative optical imaging of metabolic changes after direct cortical stimulation – a clinical tool for guidance during tumor resection? ACTA ACUST UNITED AC 2018; 63:587-594. [DOI: 10.1515/bmt-2017-0156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/24/2017] [Indexed: 11/15/2022]
Abstract
Abstract
Brain tumor resection is even today one of the most challenging disciplines in neurosurgery. The current state of the art for the identification of tumor tissue during the surgical procedure comprises a wide variety of different tools, each with its own limitations and drawbacks. In this paper, we present a novel approach, the use of optical imaging in connection with direct electrical cortical stimulation (DCS), for identification of impaired tumor tissue and functional intact normal brain tissue under intraoperative conditions. Measurements with an optical imaging setup were performed as a proof of concept on three patients who underwent tumor resection of superficial gliomas. Direct electrical stimulations were applied on tumor tissue and surrounding brain tissue in each patient and characteristic features from the observed changes in the optical properties were compared between the different groups. The results reveal that in all patients a differentiation between non-functional tumor tissue and functional intact brain tissue was possible, and the technique might be a useful clinical tool in the future.
Collapse
Affiliation(s)
- Martin Oelschlägel
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden , Institut für Biomedizinische Technik , D – 01307 Dresden , Germany , Phone: +49 351 463 32118, Fax: +49 351 463 36026
| | - Tobias Meyer
- Institute of Biomedical Engineering, Faculty of Electrical and Computer Engineering , Technische Universität Dresden , 01307 Dresden , Germany
- ABX-CRO Advanced Pharmaceutical Services Forschungsgesellschaft m.b.H. , 01307 Dresden , Germany
| | - Gabriele Schackert
- Department of Neurosurgery, Faculty of Medicine Carl Gustav Carus , Technische Universität Dresden , 01307 Dresden , Germany
| | - Matthias Kirsch
- Department of Neurosurgery, Faculty of Medicine Carl Gustav Carus , Technische Universität Dresden , 01307 Dresden , Germany
| | - Stephan B. Sobottka
- Department of Neurosurgery, Faculty of Medicine Carl Gustav Carus , Technische Universität Dresden , 01307 Dresden , Germany
| | - Ute Morgenstern
- Institute of Biomedical Engineering, Faculty of Electrical and Computer Engineering , Technische Universität Dresden , 01307 Dresden , Germany
| |
Collapse
|
17
|
Ledo A, Lourenço CF, Laranjinha J, Gerhardt GA, Barbosa RM. Combined in Vivo Amperometric Oximetry and Electrophysiology in a Single Sensor: A Tool for Epilepsy Research. Anal Chem 2017; 89:12383-12390. [DOI: 10.1021/acs.analchem.7b03452] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ana Ledo
- Center
for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- BrainSense, Limitada, Biocant Park, 3060-197 Cantanhede, Portugal
| | - Cátia F. Lourenço
- Center
for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - João Laranjinha
- Center
for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Faculty
of Pharmacy, University of Coimbra, Azinhaga de Santa Coimbra, 3000-548 Coimbra, Portugal
| | - Greg A. Gerhardt
- Center for Microelectrode
Technology, Department of Neuroscience, University of Kentucky Medical Center, Lexington, Kentucky 40536, United States
| | - Rui M. Barbosa
- Center
for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Faculty
of Pharmacy, University of Coimbra, Azinhaga de Santa Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
18
|
Kim E, Anguluan E, Kim JG. Monitoring cerebral hemodynamic change during transcranial ultrasound stimulation using optical intrinsic signal imaging. Sci Rep 2017; 7:13148. [PMID: 29030623 PMCID: PMC5640689 DOI: 10.1038/s41598-017-13572-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/25/2017] [Indexed: 12/27/2022] Open
Abstract
Transcranial ultrasound stimulation (tUS) is a promising non-invasive approach to modulate brain circuits. The application is gaining popularity, however the full effect of ultrasound stimulation is still unclear and further investigation is needed. This study aims to apply optical intrinsic signal imaging (OISI) for the first time, to simultaneously monitor the wide-field cerebral hemodynamic change during tUS on awake animal with high spatial and temporal resolution. Three stimulation paradigms were delivered using a single-element focused transducer operating at 425 kHz in pulsed mode having the same intensity (ISPPA = 1.84 W/cm2, ISPTA = 129 mW/cm2) but varying pulse repetition frequencies (PRF). The results indicate a concurrent hemodynamic change occurring with all actual tUS but not under a sham stimulation. The stimulation initiated the increase of oxygenated hemoglobin (HbO) and decrease of deoxygenated hemoglobin (RHb). A statistically significant difference (p < 0.05) was found in the amplitude change of hemodynamics evoked by varying PRF. Moreover, the acoustic stimulation was able to trigger a global as well as local cerebral hemodynamic alteration in the mouse cortex. Thus, the implementation of OISI offers the possibility of directly investigating brain response in an awake animal during tUS through cerebral hemodynamic change.
Collapse
Affiliation(s)
- Evgenii Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Eloise Anguluan
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Jae Gwan Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea. .,Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.
| |
Collapse
|
19
|
Morone KA, Neimat JS, Roe AW, Friedman RM. Review of functional and clinical relevance of intrinsic signal optical imaging in human brain mapping. NEUROPHOTONICS 2017; 4:031220. [PMID: 28630881 PMCID: PMC5466092 DOI: 10.1117/1.nph.4.3.031220] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/12/2017] [Indexed: 05/30/2023]
Abstract
Intrinsic signal optical imaging (ISOI) within the first decade of its use in humans showed its capacity as a precise functional mapping tool. It is a powerful tool that can be used intraoperatively to help a surgeon to directly identify functional areas of the cerebral cortex. Its use is limited to the intraoperative setting as it requires a craniotomy and durotomy for direct visualization of the brain. It has been applied in humans to study language, somatosensory and visual cortices, cortical hemodynamics, epileptiform activity, and lesion delineation. Despite studies showing clear evidence of its usefulness in clinical care, its clinical use in humans has not grown. Impediments imposed by imaging in a human operating room setting have hindered such work. However, recent studies have been aimed at overcoming obstacles in clinical studies establishing the benefits of its use to patients. This review provides a description of ISOI and its use in human studies with an emphasis on the challenges that have hindered its widespread use and the recent studies that aim to overcome these hurdles. Clinical studies establishing the benefits of its use to patients would serve as the impetus for continued development and use in humans.
Collapse
Affiliation(s)
- Katherine A. Morone
- Vanderbilt University Medical Center, Department of Neurology, Nashville, Tennessee, United States
| | - Joseph S. Neimat
- University of Louisville School of Medicine, Department of Neurosurgery, Louisville, Kentucky, United States
| | - Anna W. Roe
- Oregon Health and Science University, Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, United States
- Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, HuaJiaChi Campus, Hangzhou, China
| | - Robert M. Friedman
- Oregon Health and Science University, Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, United States
| |
Collapse
|
20
|
Direct Brain Stimulation Modulates Encoding States and Memory Performance in Humans. Curr Biol 2017; 27:1251-1258. [PMID: 28434860 DOI: 10.1016/j.cub.2017.03.028] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/24/2017] [Accepted: 03/13/2017] [Indexed: 11/21/2022]
Abstract
People often forget information because they fail to effectively encode it. Here, we test the hypothesis that targeted electrical stimulation can modulate neural encoding states and subsequent memory outcomes. Using recordings from neurosurgical epilepsy patients with intracranially implanted electrodes, we trained multivariate classifiers to discriminate spectral activity during learning that predicted remembering from forgetting, then decoded neural activity in later sessions in which we applied stimulation during learning. Stimulation increased encoding-state estimates and recall if delivered when the classifier indicated low encoding efficiency but had the reverse effect if stimulation was delivered when the classifier indicated high encoding efficiency. Higher encoding-state estimates from stimulation were associated with greater evidence of neural activity linked to contextual memory encoding. In identifying the conditions under which stimulation modulates memory, the data suggest strategies for therapeutically treating memory dysfunction.
Collapse
|
21
|
Tsytsarev V, Akkentli F, Pumbo E, Tang Q, Chen Y, Erzurumlu RS, Papkovsky DB. Planar implantable sensor for in vivo measurement of cellular oxygen metabolism in brain tissue. J Neurosci Methods 2017; 281:1-6. [PMID: 28219725 DOI: 10.1016/j.jneumeth.2017.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/13/2017] [Accepted: 02/15/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Brain imaging methods are continually improving. Imaging of the cerebral cortex is widely used in both animal experiments and charting human brain function in health and disease. Among the animal models, the rodent cerebral cortex has been widely used because of patterned neural representation of the whiskers on the snout and relative ease of activating cortical tissue with whisker stimulation. NEW METHOD We tested a new planar solid-state oxygen sensor comprising a polymeric film with a phosphorescent oxygen-sensitive coating on the working side, to monitor dynamics of oxygen metabolism in the cerebral cortex following sensory stimulation. RESULTS Sensory stimulation led to changes in oxygenation and deoxygenation processes of activated areas in the barrel cortex. We demonstrate the possibility of dynamic mapping of relative changes in oxygenation in live mouse brain tissue with such a sensor. COMPARISON WITH EXISTING METHOD Oxygenation-based functional magnetic resonance imaging (fMRI) is very effective method for functional brain mapping but have high costs and limited spatial resolution. Optical imaging of intrinsic signal (IOS) does not provide the required sensitivity, and voltage-sensitive dye optical imaging (VSDi) has limited applicability due to significant toxicity of the voltage-sensitive dye. Our planar solid-state oxygen sensor imaging approach circumvents these limitations, providing a simple optical contrast agent with low toxicity and rapid application. CONCLUSIONS The planar solid-state oxygen sensor described here can be used as a tool in visualization and real-time analysis of sensory-evoked neural activity in vivo. Further, this approach allows visualization of local neural activity with high temporal and spatial resolution.
Collapse
Affiliation(s)
- Vassiliy Tsytsarev
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, HSF-2, 21201 MD, Baltimore, USA.
| | - Fatih Akkentli
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, HSF-2, 21201 MD, Baltimore, USA.
| | - Elena Pumbo
- Center for Genetic Medicine, Children's National Medical Center, Washington DC, 111 Michigan Avenue, NW Washington, DC 20010, USA.
| | - Qinggong Tang
- Fischell Department of Bioengineering, University of Maryland, College Park, Kim Engineering Building, College Park, MD 20740, USA.
| | - Yu Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, Kim Engineering Building, College Park, MD 20740, USA.
| | - Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, HSF-2, 21201 MD, Baltimore, USA.
| | - Dmitri B Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building 1.28, College Road, Cork, Ireland.
| |
Collapse
|
22
|
Huang Y, Mao M, Zhang Z, Zhou H, Zhao Y, Duan L, Kreplin U, Xiao X, Zhu C. Test-retest reliability of the prefrontal response to affective pictures based on functional near-infrared spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:16011. [PMID: 28114450 DOI: 10.1117/1.jbo.22.1.016011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) is being increasingly applied to affective and social neuroscience research; however, the reliability of this method is still unclear. This study aimed to evaluate the test–retest reliability of the fNIRS-based prefrontal response to emotional stimuli. Twenty-six participants viewed unpleasant and neutral pictures, and were simultaneously scanned by fNIRS in two sessions three weeks apart. The reproducibility of the prefrontal activation map was evaluated at three spatial scales (mapwise, clusterwise, and channelwise) at both the group and individual levels. The influence of the time interval was also explored and comparisons were made between longer (intersession) and shorter (intrasession) time intervals. The reliabilities of the activation map at the group level for the mapwise (up to 0.88, the highest value appeared in the intersession assessment) and clusterwise scales (up to 0.91, the highest appeared in the intrasession assessment) were acceptable, indicating that fNIRS may be a reliable tool for emotion studies, especially for a group analysis and under larger spatial scales. However, it should be noted that the individual-level and the channelwise fNIRS prefrontal responses were not sufficiently stable. Future studies should investigate which factors influence reliability, as well as the validity of fNIRS used in emotion studies.
Collapse
Affiliation(s)
- Yuxia Huang
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning, 19 Xin Jie Kou Wai Da Jie, Hai Dian District, Beijing 100875, China
| | - Mengchai Mao
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning, 19 Xin Jie Kou Wai Da Jie, Hai Dian District, Beijing 100875, China
| | - Zong Zhang
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning, 19 Xin Jie Kou Wai Da Jie, Hai Dian District, Beijing 100875, China
| | - Hui Zhou
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning, 19 Xin Jie Kou Wai Da Jie, Hai Dian District, Beijing 100875, China
| | - Yang Zhao
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning, 19 Xin Jie Kou Wai Da Jie, Hai Dian District, Beijing 100875, China
| | - Lian Duan
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning, 19 Xin Jie Kou Wai Da Jie, Hai Dian District, Beijing 100875, China
| | - Ute Kreplin
- Massey University, School of Psychology, 3.26 Psychology Building, Tennent Drive, Palmerston North 4474, Manawalu, New Zealand
| | - Xiang Xiao
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning, 19 Xin Jie Kou Wai Da Jie, Hai Dian District, Beijing 100875, China
| | - Chaozhe Zhu
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning, 19 Xin Jie Kou Wai Da Jie, Hai Dian District, Beijing 100875, China
| |
Collapse
|
23
|
Sim J, Jo A, Kang BM, Lee S, Bang OY, Heo C, Jhon GJ, Lee Y, Suh M. Cerebral Hemodynamics and Vascular Reactivity in Mild and Severe Ischemic Rodent Middle Cerebral Artery Occlusion Stroke Models. Exp Neurobiol 2016; 25:130-8. [PMID: 27358581 PMCID: PMC4923357 DOI: 10.5607/en.2016.25.3.130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 01/20/2023] Open
Abstract
Ischemia can cause decreased cerebral neurovascular coupling, leading to a failure in the autoregulation of cerebral blood flow. This study aims to investigate the effect of varying degrees of ischemia on cerebral hemodynamic reactivity using in vivo real-time optical imaging. We utilized direct cortical stimulation to elicit hyper-excitable neuronal activation, which leads to induced hemodynamic changes in both the normal and middle cerebral artery occlusion (MCAO) ischemic stroke groups. Hemodynamic measurements from optical imaging accurately predict the severity of occlusion in mild and severe MCAO animals. There is neither an increase in cerebral blood volume nor in vessel reactivity in the ipsilateral hemisphere (I.H) of animals with severe MCAO. The pial artery in the contralateral hemisphere (C.H) of the severe MCAO group reacted more slowly than both hemispheres in the normal and mild MCAO groups. In addition, the arterial reactivity of the I.H in the mild MCAO animals was faster than the normal animals. Furthermore, artery reactivity is tightly correlated with histological and behavioral results in the MCAO ischemic group. Thus, in vivo optical imaging may offer a simple and useful tool to assess the degree of ischemia and to understand how cerebral hemodynamics and vascular reactivity are affected by ischemia.
Collapse
Affiliation(s)
- Jeongeun Sim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Korea
| | - Areum Jo
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Korea
| | - Bok-Man Kang
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Sohee Lee
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Korea
| | - Oh Young Bang
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Chaejeong Heo
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Korea
| | - Gil-Ja Jhon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Youngmi Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Korea.; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Korea.; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| |
Collapse
|
24
|
A soft, transparent, freely accessible cranial window for chronic imaging and electrophysiology. Sci Rep 2016; 6:27818. [PMID: 27283875 PMCID: PMC4901295 DOI: 10.1038/srep27818] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/23/2016] [Indexed: 11/11/2022] Open
Abstract
Chronic in vivo imaging and electrophysiology are important for better understanding of neural functions and circuits. We introduce the new cranial window using soft, penetrable, elastic, and transparent, silicone-based polydimethylsiloxane (PDMS) as a substitute for the skull and dura in both rats and mice. The PDMS can be readily tailored to any size and shape to cover large brain area. Clear and healthy cortical vasculatures were observed up to 15 weeks post-implantation. Real-time hemodynamic responses were successfully monitored during sensory stimulation. Furthermore, the PDMS window allowed for easy insertion of microelectrodes and micropipettes into the cortical tissue for electrophysiological recording and chemical injection at any location without causing any fluid leakage. Longitudinal two-photon microscopic imaging of Cx3Cr1+/− GFP transgenic mice was comparable with imaging via a conventional glass-type cranial window, even immediately following direct intracortical injection. This cranial window will facilitate direct probing and mapping for long-term brain studies.
Collapse
|
25
|
Hong KS, Naseer N. Reduction of Delay in Detecting Initial Dips from Functional Near-Infrared Spectroscopy Signals Using Vector-Based Phase Analysis. Int J Neural Syst 2016; 26:1650012. [DOI: 10.1142/s012906571650012x] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this paper, we present a systematic method to reduce the time lag in detecting initial dips using a vector-based phase diagram and an autoregressive moving average with exogenous signals (ARMAX) model-based [Formula: see text]-step-ahead prediction algorithm. With functional near-infrared spectroscopy (fNIRS), signals related to mental arithmetic and right-hand clenching are acquired from the prefrontal and left primary motor cortices, respectively. The interrelationship between oxygenated hemoglobin, deoxygenated hemoglobin, total hemoglobin and cerebral oxygen exchange are related to initial dips. Specifically, a threshold value from the resting state hemodynamics is incorporated, as a decision criterion, into the vector-based phase diagram to determine the occurrence of initial dips. To further reduce the time lag, a [Formula: see text]-step-ahead prediction method is applied to predict the occurrence of the dips. A combination of the threshold criterion and the prediction method resulted in the delay time of about 0.9[Formula: see text]s. The results demonstrate that rapid detection of initial dip is possible and therefore can be used for real-time brain–computer interfacing.
Collapse
Affiliation(s)
- Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University; 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea
| | - Noman Naseer
- Department of Cogno-Mechatronics Engineering, Pusan National University; 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
26
|
Song Y, Riera JJ, Bhatia S, Ragheb J, Garcia C, Weil AG, Jayakar P, Lin WC. Intraoperative optical mapping of epileptogenic cortices during non-ictal periods in pediatric patients. Neuroimage Clin 2016; 11:423-434. [PMID: 27104137 PMCID: PMC4827725 DOI: 10.1016/j.nicl.2016.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 01/27/2023]
Abstract
Complete removal of epileptogenic cortex while preserving eloquent areas is crucial in patients undergoing epilepsy surgery. In this manuscript, the feasibility was explored of developing a new methodology based on dynamic intrinsic optical signal imaging (DIOSI) to intraoperatively detect and differentiate epileptogenic from eloquent cortices in pediatric patients with focal epilepsy. From 11 pediatric patients undergoing epilepsy surgery, negatively-correlated hemodynamic low-frequency oscillations (LFOs, ~ 0.02-0.1 Hz) were observed from the exposed epileptogenic and eloquent cortical areas, as defined by electrocorticography (ECoG), using a DIOSI system. These LFOs were classified into multiple groups in accordance with their unique temporal profiles. Causal relationships within these groups were investigated using the Granger causality method, and 83% of the ECoG-defined epileptogenic cortical areas were found to have a directed influence on one or more cortical areas showing LFOs within the field of view of the imaging system. To understand the physiological origins of LFOs, blood vessel density was compared between epileptogenic and normal cortical areas and a statistically-significant difference (p < 0.05) was detected. The differences in blood-volume and blood-oxygenation dynamics between eloquent and epileptogenic cortices were also uncovered using a stochastic modeling approach. This, in turn, yielded a means by which to separate epileptogenic from eloquent cortex using hemodynamic LFOs. The proposed methodology detects epileptogenic cortices by exploiting the effective connectivity that exists within cortical regions displaying LFOs and the biophysical features contributed by the altered vessel networks within the epileptogenic cortex. It could be used in conjunction with existing technologies for epileptogenic/eloquent cortex localization and thereby facilitate clinical decision-making.
Collapse
Affiliation(s)
- Yinchen Song
- Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, EC 2600, Miami, FL 33174, United States
| | - Jorge J Riera
- Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, EC 2600, Miami, FL 33174, United States
| | - Sanjiv Bhatia
- Division of Neurosurgery, Nicklaus Children's Hospital, 3100 SW 62nd Ave, Miami, FL 33155, United States
| | - John Ragheb
- Division of Neurosurgery, Nicklaus Children's Hospital, 3100 SW 62nd Ave, Miami, FL 33155, United States
| | - Claudia Garcia
- Division of Neurosurgery, Nicklaus Children's Hospital, 3100 SW 62nd Ave, Miami, FL 33155, United States
| | - Alexander G Weil
- Division of Neurosurgery, Nicklaus Children's Hospital, 3100 SW 62nd Ave, Miami, FL 33155, United States
| | - Prasanna Jayakar
- Division of Neurosurgery, Nicklaus Children's Hospital, 3100 SW 62nd Ave, Miami, FL 33155, United States
| | - Wei-Chiang Lin
- Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, EC 2600, Miami, FL 33174, United States.
| |
Collapse
|
27
|
Ma Z, Cao P, Sun P, Zhao L, Li L, Tong S, Lu Y, Yan Y, Chen Y, Chai X. Inverted optical intrinsic response accompanied by decreased cerebral blood flow are related to both neuronal inhibition and excitation. Sci Rep 2016; 6:21627. [PMID: 26860040 PMCID: PMC4748280 DOI: 10.1038/srep21627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/27/2016] [Indexed: 01/27/2023] Open
Abstract
Negative hemodynamic response has been widely reported in blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging studies, however its origin is still controversial. Optical intrinsic signal (OIS) imaging can be used to study brain activity by simultaneously recording hemodynamic signals at different wavelengths with high spatial resolution. In this study, we found transcorneal electrical stimulation (TcES) could elicit both positive OIS response (POR) and negative OIS response (NOR) in cats’ visual cortex. We then investigated the property of this negative response to TcES and its relationship with cerebral blood flow (CBF) and neuronal activity. Results from laser speckle contrast imaging showed decreased CBF in the NOR region while increased CBF in the POR region. Both planar and laminar electrophysiological recordings in the middle (500–700 μm) cortical layers demonstrated that decreased and increased neuronal activities were coexisted in the NOR region. Furthermore, decreased neuronal activity was also detected in the deep cortical layers in the NOR region. This work provides evidence that the negative OIS together with the decreased CBF should be explained by mechanisms of both neuronal inhibition and excitation within middle cortical layers. Our results would be important for interpreting neurophysiological mechanisms underlying the negative BOLD signals.
Collapse
Affiliation(s)
- Zengguang Ma
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengjia Cao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengcheng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linna Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liming Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiliang Lu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Yan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yao Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyu Chai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
28
|
Seong M, Phillips Z, Mai PM, Yeo C, Song C, Lee K, Kim JG. Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:27001. [PMID: 26886805 DOI: 10.1117/1.jbo.21.2.027001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/21/2016] [Indexed: 05/03/2023]
Abstract
A combined diffuse speckle contrast analysis (DSCA)-near-infrared spectroscopy (NIRS) system is proposed to simultaneously measure qualitative blood flow and blood oxygenation changes in human tissue. The system employs an optical switch to alternate two laser sources at two different wavelengths and a CCD camera to capture the speckle image. Therefore, an optical density can be measured from two wavelengths for NIRS measurements and a speckle contrast can be calculated for DSCA measurements. In order to validate the system, a flow phantom test and an arm occlusion protocol for arterial and venous occlusion were performed. Shorter exposure times (<1 ms ) show a higher drop (between 50% and 66%) and recovery of 1/K²S values after occlusion (approximately 150%), but longer exposure time (3 ms) shows more consistent hemodynamic changes. For four subjects, the 1/K²S values dropped to an average of 82.1±4.0% during the occlusion period and the average recovery of 1/K²S values after occlusion was 109.1±0.8% . There was also an approximately equivalent amplitude change in oxyhemoglobin (OHb) and deoxyhemoglobin (RHb) during arterial occlusion (max RHb=0.0085±0.0024 mM/DPF, min OHb=-0.0057±0.0044 mM/DPF). The sensitivity of the system makes it a suitable modality to observe qualitative hemodynamic trends during induced physiological changes.
Collapse
Affiliation(s)
- Myeongsu Seong
- Gwangju Institute of Science and Technology, Department of Medical System Engineering, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Zephaniah Phillips
- Gwangju Institute of Science and Technology, School of Information and Communications, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Phuong Minh Mai
- Gwangju Institute of Science and Technology, School of Information and Communications, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Chaebeom Yeo
- Daegu Gyeongbuk Institute of Science and Technology, Department of Robotic Engineering, 333 Techno Jungang-Daero, Hyeongpung-myeon, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Cheol Song
- Daegu Gyeongbuk Institute of Science and Technology, Department of Robotic Engineering, 333 Techno Jungang-Daero, Hyeongpung-myeon, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Kijoon Lee
- Daegu Gyeongbuk Institute of Science and Technology, School of Basic Sciences, 333 Techno Jungang-Daero, Hyeongpung-myeon, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Jae Gwan Kim
- Gwangju Institute of Science and Technology, Department of Medical System Engineering, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of KoreabGwangju Institute of Science and Technology, School of Information and Communications, 123 Cheomdangwagi-
| |
Collapse
|
29
|
Choi M, Humar M, Kim S, Yun SH. Step-Index Optical Fiber Made of Biocompatible Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:4081-6. [PMID: 26045317 PMCID: PMC4503511 DOI: 10.1002/adma.201501603] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/03/2015] [Indexed: 05/20/2023]
Abstract
A biocompatible step-index optical fiber made of poly(ethylene glycol) and alginate hydrogels is demonstrated. The fabricated fiber exhibits excellent light-guiding efficiency in biological tissues. Moreover, the core of hydrogel fibers can be easily doped with functional molecules and nanoparticles for localized light emission, sensing, and therapy.
Collapse
Affiliation(s)
- Myunghwan Choi
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St, UP-5, Cambridge, Massachusetts 02139, USA; Global Biomedical Engineering, Sungkyunkwan University, Center for Neuroscience and Imaging Research, Institute for Basic Science, 2066, Seobu-ro, Jangan-Gu, Suwon-Si, Gyeong Gi-Do, South Korea
| | - Matjaž Humar
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St, UP-5, Cambridge, Massachusetts 02139, USA; Condensed Matter Department, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Seonghoon Kim
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St, UP-5, Cambridge, Massachusetts 02139, USA; Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yusong-Gu, Daejon 305-701, Korea
| | - Seok-Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St, UP-5, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
30
|
Cornelius NR, Nishimura N, Suh M, Schwartz TH, Doerschuk PC. A mathematical model relating cortical oxygenated and deoxygenated hemoglobin flows and volumes to neural activity. J Neural Eng 2015; 12:046013. [PMID: 26045465 DOI: 10.1088/1741-2560/12/4/046013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To describe a toolkit of components for mathematical models of the relationship between cortical neural activity and space-resolved and time-resolved flows and volumes of oxygenated and deoxygenated hemoglobin motivated by optical intrinsic signal imaging (OISI). APPROACH Both blood flow and blood volume and both oxygenated and deoxygenated hemoglobin and their interconversion are accounted for. Flow and volume are described by including analogies to both resistive and capacitive electrical circuit elements. Oxygenated and deoxygenated hemoglobin and their interconversion are described by generalization of Kirchhoff's laws based on well-mixed compartments. MAIN RESULTS Mathematical models built from this toolkit are able to reproduce experimental single-stimulus OISI results that are described in papers from other research groups and are able to describe the response to multiple-stimuli experiments as a sublinear superposition of responses to the individual stimuli. SIGNIFICANCE The same assembly of tools from the toolkit but with different parameter values is able to describe effects that are considered distinctive, such as the presence or absence of an initial decrease in oxygenated hemoglobin concentration, indicating that the differences might be due to unique parameter values in a subject rather than different fundamental mechanisms.
Collapse
Affiliation(s)
- Nathan R Cornelius
- Department of Biomedical Engineering, Weill Hall, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
31
|
An Update on Cerebral Oxygenation Monitoring, an Innovative Application in Cardiac Arrest and Neurological Emergencies. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-13761-2_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
32
|
Comparison of high gamma electrocorticography and fMRI with electrocortical stimulation for localization of somatosensory and language cortex. Clin Neurophysiol 2014; 126:121-30. [PMID: 24845600 DOI: 10.1016/j.clinph.2014.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/17/2014] [Accepted: 04/16/2014] [Indexed: 11/23/2022]
Abstract
OBJECTIVE We investigated the contribution of electrocortical stimulation (ECS), induced high gamma electrocorticography (hgECoG) and functional magnetic resonance imaging (fMRI) for the localization of somatosensory and language cortex. METHODS 23 Epileptic patients with subdural electrodes underwent a protocol of somatosensory stimulation and/or an auditory semantic decision task. 14 Patients did the same protocol with fMRI prior to implantation. RESULTS ECS resulted in the identification of thumb somatosensory cortex in 12/16 patients. Taking ECS as a gold standard, hgECoG and fMRI identified 53.6/33% of true positive and 4/12% of false positive contacts, respectively. The hgECoG false positive sites were all found in the hand area of the post-central gyrus. ECS localized language-related sites in 7/12 patients with hgECoG and fMRI showing 50/64% of true positive and 8/23% of false positive contacts, respectively. All but one of the hgECoG/fMRI false positive contacts were located in plausible language areas. Four patients showed post-surgical impairments: the resection included the sites positively indicated by ECS, hgECoG and fMRI in 3 patients and a positive hgECoG site in one patient. CONCLUSIONS HgECoG and fMRI provide additional localization information in patients who cannot sufficiently collaborate during ECS. SIGNIFICANCE HgECoG and fMRI make the cortical mapping procedure more flexible not only by identifying priority cortical sites for ECS or when ECS is not feasible, but also when ECS does not provide any result.
Collapse
|
33
|
Patel KS, Zhao M, Ma H, Schwartz TH. Imaging preictal hemodynamic changes in neocortical epilepsy. Neurosurg Focus 2014; 34:E10. [PMID: 23544406 DOI: 10.3171/2013.1.focus12408] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The ability to predict seizure occurrence is extremely important to trigger abortive therapies and to warn patients and their caregivers. Optical imaging of hemodynamic parameters such as blood flow, blood volume, and tissue and hemoglobin oxygenation has already been shown to successfully localize epileptic events with high spatial and temporal resolution. The ability to actually predict seizure occurrence using hemodynamic parameters is less well explored. METHODS In this article, the authors critically review data from the literature on neocortical epilepsy and optical imaging, and they discuss the preictal hemodynamic changes and their application in neurosurgery. RESULTS Recent optical mapping studies have demonstrated preictal hemodynamic changes in both human and animal neocortex. CONCLUSIONS Optical measurements of blood flow and oxygenation may become increasingly important for predicting and localizing epileptic events. The ability to successfully predict ictal onsets may be useful to trigger closed-loop abortive therapies.
Collapse
Affiliation(s)
- Kunal S Patel
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, New York 10065, USA
| | | | | | | |
Collapse
|
34
|
Doi H, Nishitani S, Shinohara K. NIRS as a tool for assaying emotional function in the prefrontal cortex. Front Hum Neurosci 2013; 7:770. [PMID: 24302904 PMCID: PMC3831266 DOI: 10.3389/fnhum.2013.00770] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/26/2013] [Indexed: 11/25/2022] Open
Abstract
Despite having relatively poor spatial and temporal resolution, near-infrared spectroscopy (NIRS) has several methodological advantages compared with other non-invasive measurements of neural activation. For instance, the unique characteristics of NIRS give it potential as a tool for investigating the role of the prefrontal cortex (PFC) in emotion processing. However, there are several obstacles in the application of NIRS to emotion research. In this mini-review, we discuss the findings of studies that used NIRS to assess the effects of PFC activation on emotion. Specifically, we address the methodological challenges of NIRS measurement with respect to the field of emotion research, and consider potential strategies for mitigating these problems. In addition, we show that two fields of research, investigating (i) biological predisposition influencing PFC responses to emotional stimuli and (ii) neural mechanisms underlying the bi-directional interaction between emotion and action, have much to gain from the use of NIRS. With the present article, we aim to lay the foundation for the application of NIRS to the above-mentioned fields of emotion research.
Collapse
Affiliation(s)
- Hirokazu Doi
- Graduate School of Biomedical Sciences, Nagasaki University Nagasaki, Japan
| | | | | |
Collapse
|
35
|
Sobottka SB, Meyer T, Kirsch M, Koch E, Steinmeier R, Morgenstern U, Schackert G. Intraoperative optical imaging of intrinsic signals: a reliable method for visualizing stimulated functional brain areas during surgery. J Neurosurg 2013; 119:853-63. [DOI: 10.3171/2013.5.jns122155] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Intraoperative optical imaging (IOI) is an experimental technique used for visualizing functional brain areas after surgical exposure of the cerebral cortex. This technique identifies areas of local changes in blood volume and oxygenation caused by stimulation of specific brain functions. The authors describe a new IOI method, including innovative data analysis, that can facilitate intraoperative functional imaging on a routine basis. To evaluate the reliability and validity of this approach, they used the new IOI method to demonstrate visualization of the median nerve area of the somatosensory cortex.
Methods
In 41 patients with tumor lesions adjacent to the postcentral gyrus, lesions were surgically removed by using IOI during stimulation of the contralateral median nerve. Optical properties of the cortical tissue were measured with a sensitive camera system connected to a surgical microscope. Imaging was performed by using 9 cycles of alternating prolonged stimulation and rest periods of 30 seconds. Intraoperative optical imaging was based on blood volume changes detected by using a filter at an isosbestic wavelength (λ = 568 nm). A spectral analysis algorithm was used to improve computation of the activity maps. Movement artifacts were compensated for by an elastic registration algorithm. For validation, intraoperative conduction of the phase reversal over the central sulcus and postoperative evaluation of the craniotomy site were used.
Results
The new method and analysis enabled significant differentiation (p < 0.005) between functional and nonfunctional tissue. The identification and visualization of functionally intact somatosensory cortex was highly reliable; sensitivity was 94.4% and specificity was almost 100%. The surgeon was provided with a 2D high-resolution activity map within 12 minutes. No method-related side effects occurred in any of the 41 patients.
Conclusions
The authors' new approach makes IOI a contact-free and label-free optical technique that can be used safely in a routine clinical setup. Intraoperative optical imaging can be used as an alternative to other methods for the identification of sensory cortex areas and offers the added benefit of a high-resolution map of functional activity. It has great potential for visualizing and monitoring additional specific functional brain areas such as the visual, motor, and speech cortex. A prospective national multicenter clinical trial is currently being planned.
Collapse
Affiliation(s)
| | - Tobias Meyer
- 1Department of Neurosurgery, University Hospital Carl Gustav Carus
- 2Institute for Biomedical Engineering
| | - Matthias Kirsch
- 1Department of Neurosurgery, University Hospital Carl Gustav Carus
| | - Edmund Koch
- 3Clinical Sensoring and Monitoring, Faculty of Medicine Carl Gustav Carus, Technical University of Dresden, Dresden; and
| | - Ralf Steinmeier
- 4Department of Neurosurgery, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | | | | |
Collapse
|
36
|
Vector-based phase classification of initial dips during word listening using near-infrared spectroscopy. Neuroreport 2013; 23:947-51. [PMID: 22989928 DOI: 10.1097/wnr.0b013e328359833b] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study examined the classification of initial dips during passive listening to single words by analysis of vectors of deoxyHb and oxyHb measurements simultaneously derived from near-infrared spectroscopy. The initial dip response during a single-word 1.5-s task in 13 healthy participants was significant only in the language area, which includes the left posterior superior temporal gyrus and angular gyrus. Event-related vectors of responses to comprehended words moved significantly into phase 4, a dip phase, whereas vectors of responses to unknown words moved into a nondip phase (P<0.05). The same results were reproduced after previously unknown words were learnt by the participants. Among the five dip phases, reflecting variations in transient oxygen metabolic regulation during a task, the frequency of occurrence of hypoxic-ischemic initial dips (decreased oxyHb) was around three times that of the canonical dip (increased deoxyHb and oxyHb). Phase classification of event-related vectors enhances the slight amount of oxygen exchange that occurs in word recognition, which has been difficult to detect because of its small amplitude.
Collapse
|
37
|
Heo C, Lee SY, Jo A, Jung S, Suh M, Lee YH. Flexible, transparent, and noncytotoxic graphene electric field stimulator for effective cerebral blood volume enhancement. ACS NANO 2013; 7:4869-4878. [PMID: 23651168 DOI: 10.1021/nn305884w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Enhancing cerebral blood volume (CBV) of a targeted area without causing side effects is a primary strategy for treating cerebral hypoperfusion. Here, we report a new nonpharmaceutical and nonvascular surgical method to increase CBV. A flexible, transparent, and skin-like biocompatible graphene electrical field stimulator was placed directly onto the cortical brain, and a noncontact electric field was applied at a specific local blood vessel. Effective CBV increases in the blood vessels of mouse brains were directly observed from in vivo optical recordings of intrinsic signal imaging. The CBV was significantly increased in arteries of the stimulated area, but neither tissue damage nor unnecessary neuronal activation was observed. No transient hypoxia was observed. This technique provides a new method to treat cerebral blood circulation deficiencies at local vessels and can be applied to brain regeneration and rehabilitation.
Collapse
Affiliation(s)
- Chaejeong Heo
- IBS Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science, Daejeon 305-811, Korea
| | | | | | | | | | | |
Collapse
|
38
|
Detectability of absorption and reduced scattering coefficients in frequency-domain measurements using a realistic head phantom. SENSORS 2012; 13:152-64. [PMID: 23262479 PMCID: PMC3574670 DOI: 10.3390/s130100152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 11/17/2022]
Abstract
Detection limits of the changes in absorption and reduced scattering coefficients were investigated using a frequency-domain near-infrared system in a realistic head phantom. The results were quantified in terms of the maximum detectable depth for different activation volumes in the range of 0.8-20 microliters. The non-linear relation between the maximum detectable depth and the magnitude of changes in the absorption coefficient conform well with the Born approximation to the diffusion equation. The minimal detectable changes in the reduced scattering coefficient measured in terms of the phase signal were found to be approximately twice as large as that of the absorption coefficient using the AC signal for the same volume and at the same depth. The phase delay, which can be used to quantify the fast neuronal optical response in the human brain, showed a linear dependence on the reciprocal of the reduced scattering coefficient, as predicted by the Rytov approximation.
Collapse
|
39
|
Borchers S, Himmelbach M, Logothetis N, Karnath HO. Direct electrical stimulation of human cortex - the gold standard for mapping brain functions? Nat Rev Neurosci 2011; 13:63-70. [PMID: 22127300 DOI: 10.1038/nrn3140] [Citation(s) in RCA: 267] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite its clinical relevance, direct electrical stimulation (DES) of the human brain is surprisingly poorly understood. Although we understand several aspects of electrical stimulation at the cellular level, surface DES evokes a complex summation effect in a large volume of brain tissue, and the effect is difficult to predict as it depends on many local and remote physiological and morphological factors. The complex stimulation effects are reflected in the heterogeneity of behavioural effects that are induced by DES, which range from evocation to inhibition of responses - sometimes even when DES is applied at the same cortical site. Thus, it is a misconception that DES - in contrast to other neuroscience techniques - allows us to draw unequivocal conclusions about the role of stimulated brain areas.
Collapse
Affiliation(s)
- Svenja Borchers
- Center for Neurology, Division of Neuropsychology, University of Tübingen, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
40
|
Schwartz TH, Hong SB, Bagshaw AP, Chauvel P, Bénar CG. Preictal changes in cerebral haemodynamics: review of findings and insights from intracerebral EEG. Epilepsy Res 2011; 97:252-66. [PMID: 21855297 DOI: 10.1016/j.eplepsyres.2011.07.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/29/2011] [Accepted: 07/27/2011] [Indexed: 12/29/2022]
Abstract
The possibility of recording changes in brain signals occurring before epileptic seizures is of considerable interest, both as markers for seizure anticipation and as a window into the mechanisms of seizure generation. Several studies have reported preictal changes on electrophysiological traces. More recently, observations have been made of changes occurring on haemodynamic signals before interictal events or before seizures, often without concurrent changes observed on electrophysiology. We present here a critical review of these findings, in optical imaging, SPECT and fMRI, followed by a discussion based on data from intracerebral EEG.
Collapse
Affiliation(s)
- Theodore H Schwartz
- Department of Neurosurgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
Interictal spikes (IISs) represent burst firing of a small focal population of hypersynchronous, hyperexcitable cells. Whether cerebral blood flow (CBF) is adequate to meet the metabolic demands of this dramatic increase in membrane excitability is unknown. Positron emission tomography, single photon emission computed tomography, and functional magnetic resonance imaging studies have shown increases in CBF and hypometabolism, thus indicating the likelihood of adequate perfusion. We measured tissue oxygenation and CBF in a rat model of IIS using oxygen electrodes and laser-Doppler flowmetry. A ∼3-second dip in tissue oxygenation was shown, followed by more prolonged tissue hyperoxygenation, in spite of a 25% increase in CBF. Increases in the number of spikes, as well as in their amplitude and spike width further amplified these responses, and a decrease in interspike interval decreased the CBF response. Altering the anesthetic did not influence our results. Taken together, these findings indicate that frequent, high-amplitude IISs may produce significant tissue hypoxia, which has implications for patients with epilepsy and noninvasive techniques of seizure localization.
Collapse
|
42
|
Park SS, Hong M, Song CK, Jhon GJ, Lee Y, Suh M. Real-time in vivo simultaneous measurements of nitric oxide and oxygen using an amperometric dual microsensor. Anal Chem 2011; 82:7618-24. [PMID: 20715758 DOI: 10.1021/ac1013496] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper reports a real-time study of the codynamical changes in the release of endogenous nitric oxide (NO) and oxygen (O(2)) consumption in a rat neocortex in vivo upon electrical stimulation using an amperometric NO/O(2) dual microsensor. Electrical stimulation induced transient cerebral hypoxia due to the increased metabolic demands that were not met by the blood volume inside the stimulated cortical region. A NO/O(2) dual microsensor was successfully used to monitor the pair of real-time dynamic changes in the tissue NO and O(2) contents. At the onset of electrical stimulation, there was an immediate decrease in the cortical tissue O(2) followed by a subsequent increase in the cortical tissue NO content. The averages of the maximum normalized concentration changes induced by the stimulation were a 0.41 (±0.04)-fold decrease in the O(2) and a 3.6 (±0.9)-fold increase in the NO concentrations when compared with the corresponding normalized basal levels. The peak increase in NO was always preceded by the peak decrease in O(2) in all animals (n = 11). The delay between the maximum decrease in O(2) and the maximum increase in NO varied from 3.1 to 54.8 s. This rather wide variation in the temporal associations was presumably attributed to the sparse distribution of NOS-containing neurons and the individual animal's differences in brain vasculatures, which suggests that a sensor with fine spatial resolution is needed to measure the location-specific real-time NO and O(2) contents. In summary, the developed NO/O(2) dual microsensor is effective for measuring the NO and O(2) contents in vivo. This study provides direct support for the dynamic role of NO in regulating the cerebral hemodynamics, particularly related to the tissue oxygenation.
Collapse
Affiliation(s)
- Sarah S Park
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| | | | | | | | | | | |
Collapse
|
43
|
Cox MP, Ma H, Bahlke ME, Beck JH, Schwartz TH, Kymissis I. LED-Based Optical Device for Chronic In Vivo Cerebral Blood Volume Measurement. IEEE TRANSACTIONS ON ELECTRON DEVICES 2010; 57:174-177. [PMID: 22039308 PMCID: PMC3203522 DOI: 10.1109/ted.2009.2033652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We demonstrate a reflectivity-based cerebral blood volume sensor comprised of surface-mount light-emitting diodes on a flexible substrate with integrated photodetectors in a form factor suitable for direct brain contact and chronic implantation. This reflectivity monitor is able to measure blood flow through the change of the surface reflectivity and, through this mechanism, detect the cerebral-blood-volume changes associated with epileptic seizures with a signal-to-noise (SNR) response of 42 dB. The device is tested in an in vivo model confirming its compatibility and sensitivity. The data taken demonstrate that placing the sensor into direct brain contact improves the SNR by more than four orders of magnitude over current noncontact technologies.
Collapse
Affiliation(s)
- Marshall P. Cox
- Columbia Laboratory for Unconventional Electronics, Department of Electrical Engineering, Columbia University, New York, NY 10027 USA
| | - Hongtao Ma
- Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY 10021 USA
| | - Matthias E. Bahlke
- Columbia Laboratory for Unconventional Electronics, Department of Electrical Engineering, Columbia University, New York, NY 10027 USA
| | - Jonathan H. Beck
- Columbia Laboratory for Unconventional Electronics, Department of Electrical Engineering, Columbia University, New York, NY 10027 USA
| | - Theodore H. Schwartz
- Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY 10021 USA
| | - Ioannis Kymissis
- Columbia Laboratory for Unconventional Electronics, Department of Electrical Engineering, Columbia University, New York, NY 10027 USA
| |
Collapse
|
44
|
Sheth SA, Prakash N, Guiou M, Toga AW. Validation and visualization of two-dimensional optical spectroscopic imaging of cerebral hemodynamics. Neuroimage 2009; 47 Suppl 2:T36-43. [PMID: 19013531 PMCID: PMC2753669 DOI: 10.1016/j.neuroimage.2008.09.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 09/18/2008] [Accepted: 09/29/2008] [Indexed: 10/21/2022] Open
Abstract
Perfusion-based functional brain imaging techniques such as fMRI and optical intrinsic signal (OIS) imaging are becoming increasingly important in both neuroscience research and intraoperative brain mapping. Recent studies have applied a spectroscopic approach to OIS imaging data, which we will call "two-dimensional optical spectroscopy" (2DOS), generating images of functional changes in hemoglobin oxygenation and blood volume. This improvement comes at the cost of several assumptions. Whereas the "gold standard" technique of fiber spectroscopy decomposes reflected light over a spectral axis, 2DOS retains both spatial dimensions by acquiring images at several wavelengths, sacrificing spectral resolution for the extra spatial dimension. Furthermore, 2DOS data are acquired interleaved within or between trials, but combined during the spectroscopic analysis as if acquired simultaneously. Thus far, the few studies employing this approach have assumed both that the reduced spectral resolution is tolerable, and that sufficient trial averaging can compensate for the temporally staggered data acquisition. To test these assumptions, we compared 2DOS results to those produced by traditional fiber spectroscopy by observing the hemodynamic response to hindpaw electrical stimulation over primary somatosensory cortex in anesthetized rats. Comparisons revealed low fitting residuals and a high level of correlation between the two, but noteworthy differences in response magnitudes. Inspection of individual timecourses revealed a lower signal-to-noise ratio for 2DOS data. For visualization and interpretation of the 2DOS images, we present a parameterized visualization strategy, in which oxy-, deoxy-, and total hemoglobin are assigned to individual color channels. The resulting composite image conveniently displays the evolution of hemodynamic responses through parenchymal and vascular compartments in space and time.
Collapse
Affiliation(s)
- Sameer A Sheth
- Department of Neurosurgery, Massachusetts General Hospital, 55 Fruit Street, White 502, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
45
|
Keller CJ, Cash SS, Narayanan S, Wang C, Kuzniecky R, Carlson C, Devinsky O, Thesen T, Doyle W, Sassaroli A, Boas DA, Ulbert I, Halgren E. Intracranial microprobe for evaluating neuro-hemodynamic coupling in unanesthetized human neocortex. J Neurosci Methods 2009; 179:208-18. [PMID: 19428529 PMCID: PMC2680793 DOI: 10.1016/j.jneumeth.2009.01.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 01/27/2009] [Accepted: 01/29/2009] [Indexed: 10/21/2022]
Abstract
Measurement of the blood-oxygen-level dependent (BOLD) response with fMRI has revolutionized cognitive neuroscience and is increasingly important in clinical care. The BOLD response reflects changes in deoxy-hemoglobin concentration, blood volume, and blood flow. These hemodynamic changes ultimately result from neuronal firing and synaptic activity, but the linkage between these domains is complex, poorly understood, and may differ across species, cortical areas, diseases, and cognitive states. We describe here a technique that can measure neural and hemodynamic changes simultaneously from cortical microdomains in waking humans. We utilize a "laminar optode," a linear array of microelectrodes for electrophysiological measures paired with a micro-optical device for hemodynamic measurements. Optical measurements include laser Doppler to estimate cerebral blood flow as well as point spectroscopy to estimate oxy- and deoxy-hemoglobin concentrations. The microelectrode array records local field potential gradients (PG) and multi-unit activity (MUA) at 24 locations spanning the cortical depth, permitting estimation of population trans-membrane current flows (Current Source Density, CSD) and population cell firing in each cortical lamina. Comparison of the laminar CSD/MUA profile with the origins and terminations of cortical circuits allows activity in specific neuronal circuits to be inferred and then directly compared to hemodynamics. Access is obtained in epileptic patients during diagnostic evaluation for surgical therapy. Validation tests with relatively well-understood manipulations (EKG, breath-holding, cortical electrical stimulation) demonstrate the expected responses. This device can provide a new and robust means for obtaining detailed, quantitative data for defining neurovascular coupling in awake humans.
Collapse
Affiliation(s)
- Corey J Keller
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ma H, Geneslaw A, Zhao M, Suh M, Perry C, Schwartz TH. The importance of latency in the focality of perfusion and oxygenation changes associated with triggered afterdischarges in human cortex. J Cereb Blood Flow Metab 2009; 29:1003-14. [PMID: 19293822 DOI: 10.1038/jcbfm.2009.26] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The spatiotemporal dynamics of neurovascular coupling during epilepsy are not well understood, and there are little data from studies of the human brain. We investigated changes in total hemoglobin (Hbt) and hemoglobin oxygenation in patients undergoing epilepsy surgery with intraoperative intrinsic optical spectroscopy (IOS) during triggered afterdischarges (ADs). We found an early (approximately 0.5 secs) focal dip in hemoglobin oxygenation, arising precisely in the stimulated gyrus that lasted for 11.5+/-10.0 secs, approximately the length of the AD (10.4+/-4.4 secs). A later oxygen overshoot and increase in blood volume occurred in the adjacent surrounding gyri. After a significant delay (approximately 20 to 30 secs), the overshoot and blood volume signal became extremely focal to the area of the onset of the AD. A smaller very late undershoot, the last phase of the 'triphasic' response, was also identified, although localization was inconsistent. In this study, we show that a 'late focal overshoot' and late Hbt signal may be extremely useful, in addition to the early dip, for the localization of seizure onset. It is likely that a separate mechanism underlies the persistent focal increase in cerebral blood volume after a long-duration cortical stimulation, compared with the nonspecific mechanism that causes the initial increase in cerebral blood flow.
Collapse
Affiliation(s)
- Hongtao Ma
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, New York 10065, USA
| | | | | | | | | | | |
Collapse
|
47
|
Maehara G, Taya S, Kojima H. Changes in hemoglobin concentration in the lateral occipital regions during shape recognition: a near-infrared spectroscopy study. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:062109. [PMID: 18163812 DOI: 10.1117/1.2815720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
By using near-infrared spectroscopy (NIRS), we measured the changes in the oxygenated and deoxygenated hemoglobin (oxy-Hb and deoxy-Hb, respectively) concentrations while performing visual tasks. We conducted experiments using two tasks: a shape recognition task and a position recognition task. It was found that the oxy-Hb concentration was substantially higher in the lateral occipital regions during shape recognition than during position recognition. The changes in the oxy-Hb concentration were considered to reflect the activation difference between the two tasks. No difference was observed in the oxy-Hb concentration during the memorization of shape and memorization of position. The deoxy-Hb concentration was different between the two tasks only when different stimuli were used but not when identical stimuli were used. In addition, it was suggested that the deoxy-Hb concentration is more sensitive to activation difference between the hemispheres and the activation at some regions. Measurements of the oxy-Hb and deoxy-Hb concentrations would reflect different aspects of cortical activations. The present results showed that measuring the oxy-Hb and deoxy-Hb concentrations separately can differentiate the activation of the regional cortical functions.
Collapse
Affiliation(s)
- Goro Maehara
- Kanazawa University, Department of Psychology, Kakuma, Kanazawa 920-1192, Japan.
| | | | | |
Collapse
|
48
|
Zhao M, Suh M, Ma H, Perry C, Geneslaw A, Schwartz TH. Focal Increases in Perfusion and Decreases in Hemoglobin Oxygenation Precede Seizure Onset in Spontaneous Human Epilepsy. Epilepsia 2007; 48:2059-67. [PMID: 17666071 DOI: 10.1111/j.1528-1167.2007.01229.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Optical recording of intrinsic signals provides the highest combined spatial and temporal resolution with broad spatial sampling for measuring cerebral blood volume (CBV) and hemoglobin oxygenation in cerebral cortex. Few opportunities arise to apply this laboratory method to record spontaneous seizures in unanesthetized human brain during neurosurgery. We report such a rare opportunity in a man with recurrent focal epilepsy arising from a cavernous malformation. METHODS We recorded intrinsic optical signals (IOS) from human cortex intraoperatively during spontaneous seizures arising from brain surrounding a small cavernous malformation in an awake patient using only local anesthesia with simultaneous electrocorticography. The IOS was recorded at two wavelengths, one an isosbestic point for hemoglobin to measure CBV (570 nm) and the other at a wavelength more sensitive to deoxygenated hemoglobin (Hbr) (610 nm). A modified Beer-Lambert calculation was used on two separate but similar seizures to approximate changes in Hbr, CBV as well as oxygenated hemoglobin (HbO(2)). RESULTS Electrographically recorded seizures (n = 3) elicited a focal increase in both Hbr and CBV that lasted for the duration of the seizure, indicating that perfusion was inadequate to meet metabolic demand. Remarkably, these hemodynamic changes preceded the onset of the seizures by approximately 20 s and occurred focally over the known location of the lesion and the seizure onsets. DISCUSSION These findings demonstrate that the hemoglobin becomes deoxygenated in spite of large increase in CBV during spontaneous human focal seizures and that optically recorded hemodynamic events can be used both to predict and localize human focal epilepsy. Such data may someday be useful to assist in the presurgical evaluation of patients considered for epilepsy surgery and to predict the timing and location of seizure onsets.
Collapse
Affiliation(s)
- Mingrui Zhao
- Department of Neurosurgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, 525 East 68th Street, New York, NY 10021, U.S.A
| | | | | | | | | | | |
Collapse
|
49
|
Hillman EMC. Optical brain imaging in vivo: techniques and applications from animal to man. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:051402. [PMID: 17994863 PMCID: PMC2435254 DOI: 10.1117/1.2789693] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Optical brain imaging has seen 30 years of intense development, and has grown into a rich and diverse field. In-vivo imaging using light provides unprecedented sensitivity to functional changes through intrinsic contrast, and is rapidly exploiting the growing availability of exogenous optical contrast agents. Light can be used to image microscopic structure and function in vivo in exposed animal brain, while also allowing noninvasive imaging of hemodynamics and metabolism in a clinical setting. This work presents an overview of the wide range of approaches currently being applied to in-vivo optical brain imaging, from animal to man. Techniques include multispectral optical imaging, voltage sensitive dye imaging and speckle-flow imaging of exposed cortex, in-vivo two-photon microscopy of the living brain, and the broad range of noninvasive topography and tomography approaches to near-infrared imaging of the human brain. The basic principles of each technique are described, followed by examples of current applications to cutting-edge neuroscience research. In summary, it is shown that optical brain imaging continues to grow and evolve, embracing new technologies and advancing to address ever more complex and important neuroscience questions.
Collapse
Affiliation(s)
- Elizabeth M C Hillman
- Columbia University, Laboratory for Functional Optical Imaging, Department of Biomedical Engineering, 351ET, 1210 Amsterdam Avenue, New York, New York 10027, USA.
| |
Collapse
|
50
|
Zhang N, Gore JC, Chen LM, Avison MJ. Dependence of BOLD signal change on tactile stimulus intensity in SI of primates. Magn Reson Imaging 2007; 25:784-94. [PMID: 17614230 DOI: 10.1016/j.mri.2007.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 03/24/2007] [Indexed: 10/23/2022]
Abstract
Recently, we have demonstrated that the fine-digit topography (millimeter sized) previously identified in the primary somatosensory cortex (SI), using electrophysiology and intrinsic signal optical imaging, can also be mapped with submillimeter resolution using blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging at high field. In the present study, we have examined the dependence of BOLD signal response on stimulus intensity in two subregions of SI, Areas 3b and 1. In a region(s)-of-interest (ROI) analysis of Area 3b, BOLD signal amplitude increased linearly with increasing amplitude of an 8-Hz vibrotactile stimulus, and BOLD signal was sustained throughout the stimulation period. In contrast, in Area 1, a significant BOLD signal response was only observed with more intense stimuli, and ROI analysis of the dependence of BOLD response showed no significant dependence on stimulus intensity. In addition, activation was not sustained throughout the period of stimulation. Differing responses of Areas 3b and 1 suggest potentially divergent roles for subregions of SI cortices in vibrotactile intensity encoding. Moreover, this study underscores the importance of imaging at small spatial scales. In this case, such high-resolution imaging allows differentiation between area-specific roles in intensity encoding and identifies anatomic targets for detailed electrophysiological studies of somatosensory neuronal populations with different coding properties. These experiments illustrate the value of nonhuman primates for characterizing the dependence of the BOLD signal response on stimulus parameters and on underlying neural response properties.
Collapse
Affiliation(s)
- Na Zhang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232-2310, USA
| | | | | | | |
Collapse
|