1
|
Davies-Jenkins CW, Workman CI, Hupfeld KE, Zöllner HJ, Leoutsakos JM, Kraut MA, Barker PB, Smith GS, Oeltzschner G. Multimodal investigation of neuropathology and neurometabolites in mild cognitive impairment and late-life depression with 11C-PiB beta-amyloid PET and 7T magnetic resonance spectroscopy. Neurobiol Aging 2024; 142:27-40. [PMID: 39111221 PMCID: PMC11916921 DOI: 10.1016/j.neurobiolaging.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 09/02/2024]
Abstract
Positron emission tomography (PET) and magnetic resonance spectroscopy (1H-MRS) are complementary techniques that can be applied to study how proteinopathy and neurometabolism relate to cognitive deficits in preclinical stages of Alzheimer's disease (AD)-mild cognitive impairment (MCI) and late-life depression (LLD). We acquired beta-amyloid (Aβ) PET and 7 T 1H-MRS measures of GABA, glutamate, glutathione, N-acetylaspartate, N-acetylaspartylglutamate, myo-inositol, choline, and lactate in the anterior and posterior cingulate cortices (ACC, PCC) in 13 MCI and 9 LLD patients, and 13 controls. We used linear regression to examine associations between metabolites, Aβ, and cognitive scores, and whether metabolites and Aβ explained cognitive scores better than Aβ alone. In the ACC, higher Aβ was associated with lower GABA in controls but not MCI or LLD patients, but results depended upon MRS data quality control criteria. Greater variance in California Verbal Learning Test scores was better explained by a model that combined ACC glutamate and Aβ deposition than by models that only included one of these variables. These findings identify preliminary associations between Aβ, neurometabolites, and cognition.
Collapse
Affiliation(s)
- Christopher W Davies-Jenkins
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Clifford I Workman
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathleen E Hupfeld
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Helge J Zöllner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jeannie-Marie Leoutsakos
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michael A Kraut
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter B Barker
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Gwenn S Smith
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Georg Oeltzschner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
2
|
Song X, Dong M, Feng K, Li J, Hu X, Liu T. Influence of interpersonal distance on collaborative performance in the joint Simon task-An fNIRS-based hyperscanning study. Neuroimage 2024; 285:120473. [PMID: 38040400 DOI: 10.1016/j.neuroimage.2023.120473] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023] Open
Abstract
Collaboration is a critical skill in everyday life. It has been suggested that collaborative performance may be influenced by social factors such as interpersonal distance, which is defined as the perceived psychological distance between individuals. Previous literature has reported that close interpersonal distance may promote the level of self-other integration between interacting members, and in turn, enhance collaborative performance. These studies mainly focused on interdependent collaboration, which requires high levels of shared representations and self-other integration. However, little is known about the effect of interpersonal distance on independent collaboration (e.g., the joint Simon task), in which individuals perform the task independently while the final outcome is determined by the parties. To address this issue, we simultaneously measured the frontal activations of ninety-four pairs of participants using a functional near-infrared spectroscopy (fNIRS)-based hyperscanning technique while they performed a joint Simon task. Behavioral results showed that the Joint Simon Effect (JSE), defined as the RT difference between incongruent and congruent conditions indicating the level of self-other integration between collaborators, was larger in the friend group than in the stranger group. Consistently, the inter-brain neural synchronization (INS) across the dorsolateral and medial parts of the prefrontal cortex was also stronger in the friend group. In addition, INS in the left dorsolateral prefrontal cortex negatively predicted JSE only in the friend group. These results suggest that close interpersonal distance may enhance the shared mental representation among collaborators, which in turn influences their collaborative performance.
Collapse
Affiliation(s)
- Xiaolei Song
- School of Psychology, Shaanxi Normal University, Xi'an, China; Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China.
| | - Meimei Dong
- School of Psychology, Shaanxi Normal University, Xi'an, China; Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Kun Feng
- School of Psychology, Shaanxi Normal University, Xi'an, China; Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Jiaqi Li
- School of Psychology, Shaanxi Normal University, Xi'an, China; Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Xiaofei Hu
- School of Psychology, Shaanxi Normal University, Xi'an, China; Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Tao Liu
- School of Management, Shanghai University, Shanghai, China; Department of Psychology, Fujian Medical University, Fuzhou, China; School of Education, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Smith NM, Ford JN, Haghdel A, Glodzik L, Li Y, D’Angelo D, RoyChoudhury A, Wang X, Blennow K, de Leon MJ, Ivanidze J. Statistical Parametric Mapping in Amyloid Positron Emission Tomography. Front Aging Neurosci 2022; 14:849932. [PMID: 35547630 PMCID: PMC9083453 DOI: 10.3389/fnagi.2022.849932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia, has limited treatment options. Emerging disease modifying therapies are targeted at clearing amyloid-β (Aβ) aggregates and slowing the rate of amyloid deposition. However, amyloid burden is not routinely evaluated quantitatively for purposes of disease progression and treatment response assessment. Statistical Parametric Mapping (SPM) is a technique comparing single-subject Positron Emission Tomography (PET) to a healthy cohort that may improve quantification of amyloid burden and diagnostic performance. While primarily used in 2-[18F]-fluoro-2-deoxy-D-glucose (FDG)-PET, SPM's utility in amyloid PET for AD diagnosis is less established and uncertainty remains regarding optimal normal database construction. Using commercially available SPM software, we created a database of 34 non-APOE ε4 carriers with normal cognitive testing (MMSE > 25) and negative cerebrospinal fluid (CSF) AD biomarkers. We compared this database to 115 cognitively normal subjects with variable AD risk factors. We hypothesized that SPM based on our database would identify more positive scans in the test cohort than the qualitatively rated [11C]-PiB PET (QR-PiB), that SPM-based interpretation would correlate better with CSF Aβ42 levels than QR-PiB, and that regional z-scores of specific brain regions known to be involved early in AD would be predictive of CSF Aβ42 levels. Fisher's exact test and the kappa coefficient assessed the agreement between SPM, QR-PiB PET, and CSF biomarkers. Logistic regression determined if the regional z-scores predicted CSF Aβ42 levels. An optimal z-score cutoff was calculated using Youden's index. We found SPM identified more positive scans than QR-PiB PET (19.1 vs. 9.6%) and that SPM correlated more closely with CSF Aβ42 levels than QR-PiB PET (kappa 0.13 vs. 0.06) indicating that SPM may have higher sensitivity than standard QR-PiB PET images. Regional analysis demonstrated the z-scores of the precuneus, anterior cingulate and posterior cingulate were predictive of CSF Aβ42 levels [OR (95% CI) 2.4 (1.1, 5.1) p = 0.024; 1.8 (1.1, 2.8) p = 0.020; 1.6 (1.1, 2.5) p = 0.026]. This study demonstrates the utility of using SPM with a "true normal" database and suggests that SPM enhances diagnostic performance in AD in the clinical setting through its quantitative approach, which will be increasingly important with future disease-modifying therapies.
Collapse
Affiliation(s)
- Natasha M. Smith
- Department of Radiology and MD Program, Weill Cornell Medicine, New York City, NY, United States
| | - Jeremy N. Ford
- Department of Radiology, Weill Cornell Medicine, New York City, NY, United States
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Arsalan Haghdel
- Department of Radiology and MD Program, Weill Cornell Medicine, New York City, NY, United States
| | - Lidia Glodzik
- Department of Radiology, Weill Cornell Medicine, New York City, NY, United States
| | - Yi Li
- Department of Radiology, Weill Cornell Medicine, New York City, NY, United States
| | - Debra D’Angelo
- Department of Population Health Sciences, Weill Cornell Medicine, New York City, NY, United States
| | - Arindam RoyChoudhury
- Department of Population Health Sciences, Weill Cornell Medicine, New York City, NY, United States
| | - Xiuyuan Wang
- Department of Radiology, Weill Cornell Medicine, New York City, NY, United States
| | - Kaj Blennow
- Department of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Mony J. de Leon
- Department of Radiology, Weill Cornell Medicine, New York City, NY, United States
| | - Jana Ivanidze
- Department of Radiology, Weill Cornell Medicine, New York City, NY, United States
| |
Collapse
|
4
|
Stevens DA, Workman CI, Kuwabara H, Butters MA, Savonenko A, Nassery N, Gould N, Kraut M, Joo JH, Kilgore J, Kamath V, Holt DP, Dannals RF, Nandi A, Onyike CU, Smith GS. Regional amyloid correlates of cognitive performance in ageing and mild cognitive impairment. Brain Commun 2022; 4:fcac016. [PMID: 35233522 PMCID: PMC8882008 DOI: 10.1093/braincomms/fcac016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/03/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Beta-amyloid deposition is one of the earliest pathological markers associated with Alzheimer's disease. Mild cognitive impairment in the setting of beta-amyloid deposition is considered to represent a preclinical manifestation of Alzheimer's disease. In vivo imaging studies are unique in their potential to advance our understanding of the role of beta-amyloid deposition in cognitive deficits in Alzheimer's disease and in mild cognitive impairment. Previous work has shown an association between global cortical measures of beta-amyloid deposition ('amyloid positivity') in mild cognitive impairment with greater cognitive deficits and greater risk of progression to Alzheimer's disease. The focus of the present study was to examine the relationship between the regional distribution of beta-amyloid deposition and specific cognitive deficits in people with mild cognitive impairment and cognitively normal elderly individuals. Forty-seven participants with multi-domain, amnestic mild cognitive impairment (43% female, aged 57-82 years) and 37 healthy, cognitively normal comparison subjects (42% female, aged 55-82 years) underwent clinical and neuropsychological assessments and high-resolution positron emission tomography with the radiotracer 11C-labelled Pittsburgh compound B to measure beta-amyloid deposition. Brain-behaviour partial least-squares analysis was conducted to identify spatial patterns of beta-amyloid deposition that correlated with the performance on neuropsychological assessments. Partial least-squares analysis identified a single significant (P < 0.001) latent variable which accounted for 80% of the covariance between demographic and cognitive measures and beta-amyloid deposition. Performance in immediate verbal recall (R = -0.46 ± 0.07, P < 0.001), delayed verbal recall (R = -0.39 ± 0.09, P < 0.001), immediate visual-spatial recall (R = -0.39 ± 0.08, P < 0.001), delayed visual-spatial recall (R = -0.45 ± 0.08, P < 0.001) and semantic fluency (R = -0.33 ± 0.11, P = 0.002) but not phonemic fluency (R = -0.05 ± 0.12, P < 0.705) negatively covaried with beta-amyloid deposition in the identified regions. Partial least-squares analysis of the same cognitive measures with grey matter volumes showed similar associations in overlapping brain regions. These findings suggest that the regional distribution of beta-amyloid deposition and grey matter volumetric decreases is associated with deficits in executive function and memory in mild cognitive impairment. Longitudinal analysis of these relationships may advance our understanding of the role of beta-amyloid deposition in relation to grey matter volumetric decreases in cognitive decline.
Collapse
Affiliation(s)
- Daniel A. Stevens
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Clifford I. Workman
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hiroto Kuwabara
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Meryl A. Butters
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alena Savonenko
- Department of Pathology (Neuropathology), School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Najilla Nassery
- Department of General Internal Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Neda Gould
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Kraut
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jin Hui Joo
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jessica Kilgore
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Vidya Kamath
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel P. Holt
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Robert F. Dannals
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ayon Nandi
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Chiadi U. Onyike
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Gwenn S. Smith
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
5
|
Smith GS, Kuwabara H, Nandi A, Gould NF, Nassery N, Savonenko A, Joo JH, Kraut M, Brasic J, Holt DP, Hall AW, Mathews WB, Dannals RF, Avramopoulos D, Workman CI. Molecular imaging of beta-amyloid deposition in late-life depression. Neurobiol Aging 2021; 101:85-93. [PMID: 33592548 PMCID: PMC8730327 DOI: 10.1016/j.neurobiolaging.2021.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
Late-life depression (LLD) is associated with an increased risk of all-cause dementia and may involve Alzheimer's disease pathology. Twenty-one LLD patients who met the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, criteria for a current major depressive episode and 21 healthy controls underwent clinical and neuropsychological assessments, magnetic resonance imaging to measure gray matter volumes, and high-resolution positron emission tomography to measure beta-amyloid (Aβ) deposition. Clinical and neuropsychological assessments were repeated after 10-12 weeks of Citalopram or Sertraline treatment (LLD patients only). LLD patients did not differ from healthy controls in baseline neuropsychological function, although patients improved in both depressive symptoms and visual-spatial memory during treatment. Greater Aβ in the left parietal cortex was observed in LLD patients compared with controls. Greater Aβ was correlated with greater depressive symptoms and poorer visual-spatial memory, but not with improvement with treatment. The study of LLD patients with prospective measurements of mood and cognitive responses to antidepressant treatment is an opportunity to understand early neurobiological mechanisms underlying the association between depression and subsequent cognitive decline.
Collapse
Affiliation(s)
- Gwenn S Smith
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Nuclear Medicine and Molecular Imaging.
| | | | - Ayon Nandi
- Division of Nuclear Medicine and Molecular Imaging
| | - Neda F Gould
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Najilla Nassery
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alena Savonenko
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jin Hui Joo
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Kraut
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James Brasic
- Division of Nuclear Medicine and Molecular Imaging
| | | | | | | | | | - Dimitrios Avramopoulos
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clifford I Workman
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Ishii K, Yamada T, Hanaoka K, Kaida H, Miyazaki K, Ueda M, Hanada K, Saigoh K, Sauerbeck J, Rominger A, Bartenstein P, Kimura Y. Regional gray matter-dedicated SUVR with 3D-MRI detects positive amyloid deposits in equivocal amyloid PET images. Ann Nucl Med 2020; 34:856-863. [DOI: 10.1007/s12149-020-01513-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/18/2020] [Indexed: 11/24/2022]
|
7
|
A Classification Algorithm by Combination of Feature Decomposition and Kernel Discriminant Analysis (KDA) for Automatic MR Brain Image Classification and AD Diagnosis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2019:1437123. [PMID: 32082407 PMCID: PMC7012259 DOI: 10.1155/2019/1437123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/25/2019] [Accepted: 10/26/2019] [Indexed: 11/17/2022]
Abstract
Magnetic resonance (MR) imaging is a widely used imaging modality for detection of brain anatomical variations caused by brain diseases such as Alzheimer's disease (AD) and mild cognitive impairment (MCI). AD considered as an irreversible neurodegenerative disorder with progressive memory impairment moreover cognitive functions, while MCI would be considered as a transitional phase amongst age-related cognitive weakening. Numerous machine learning approaches have been examined, aiming at AD computer-aided diagnosis through employing MR image analysis. Conversely, MR brain image changes could be caused by different effects such as aging and dementia. It is still a challenging difficulty to extract the relevant imaging features and classify the subjects of different groups. This paper would propose an automatic classification technique based on feature decomposition and kernel discriminant analysis (KDA) for classifications of progressive MCI (pMCI) vs. normal control (NC), AD vs. NC, and pMCI vs. stable MCI (sMCI). Feature decomposition would be based on dictionary learning, which is used for separation of class-specific components from the non-class-specific components in the features, while KDA would be applied for mapping original nonlinearly separable feature space to the separable features that are linear. The proposed technique would be evaluated by employing T1-weighted MR brain images from 830 subjects comprising 198 AD patients, 167 pMCI, 236 sMCI, and 229 NC from the Alzheimer's disease neuroimaging initiative (ADNI) dataset. Experimental results demonstrate that classification accuracy (ACC) of 90.41%, 84.29%, and 65.94% can be achieved for classification of AD vs. NC, pMCI vs. NC, and pMCI vs. sMCI, respectively, indicating the promising performance of the proposed method.
Collapse
|
8
|
Akamatsu G, Ikari Y, Ohnishi A, Matsumoto K, Nishida H, Yamamoto Y, Senda M. Voxel-based statistical analysis and quantification of amyloid PET in the Japanese Alzheimer's disease neuroimaging initiative (J-ADNI) multi-center study. EJNMMI Res 2019; 9:91. [PMID: 31535240 PMCID: PMC6751233 DOI: 10.1186/s13550-019-0561-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/05/2019] [Indexed: 11/15/2022] Open
Abstract
Background Amyloid PET plays a vital role in detecting the accumulation of in vivo amyloid-β (Aβ). The quantification of Aβ accumulation has been widely performed using the region of interest (ROI)-based mean cortical standardized uptake value ratio (mcSUVR). However, voxel-based statistical analysis has not been well studied. The purpose of this study was to examine the feasibility of analyzing amyloid PET scans by voxel-based statistical analysis. The results were then compared to those with the ROI-based mcSUVR. In total, 166 subjects who underwent 11C-PiB PET in the J-ADNI multi-center study were analyzed. Additionally, 18 Aβ-negative images were collected from other studies to form a normal database. The PET images were spatially normalized to the standard space using an adaptive template method without MRI. The mcSUVR was measured using a pre-defined ROI. Voxel-wise Z-scores within the ROI were calculated using the normal database, after which Z-score maps were generated. A receiver operating characteristic (ROC) analysis was performed to evaluate whether Z-sum (sum of the Z-score) and mcSUVR could be used to classify the scans into positive and negative using the central visual read as the reference standard. PET scans that were equivocal were regarded as positive. Results Sensitivity and specificity were respectively 90.8% and 100% by Z-sum and 91.8% and 98.5% by mcSUVR. Most of the equivocal scans were subsequently classified by both Z-sum and mcSUVR as false negatives. Z-score maps correctly delineated abnormal Aβ accumulation over the same regions as the visual read. Conclusions We examined the usefulness of voxel-based statistical analysis for amyloid PET. This method provides objective Z-score maps and Z-sum values, which were observed to be helpful as an adjunct to visual interpretation especially for cases with mild or limited Aβ accumulation. This approach could improve the Aβ detection sensitivity, reduce inter-reader variability, and allow for detailed monitoring of Aβ deposition. Trial registration The number of the J-ADNI study is UMIN000001374
Collapse
Affiliation(s)
- Go Akamatsu
- Division of Molecular Imaging, Institute of Biomedical Research and Innovation (IBRI), Kobe, Japan. .,Division of Molecular Imaging, Kobe City Medical Center General Hospital, Kobe, Japan. .,National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan.
| | - Yasuhiko Ikari
- Division of Molecular Imaging, Institute of Biomedical Research and Innovation (IBRI), Kobe, Japan.,Division of Molecular Imaging, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Akihito Ohnishi
- Division of Molecular Imaging, Institute of Biomedical Research and Innovation (IBRI), Kobe, Japan.,Division of Molecular Imaging, Kobe City Medical Center General Hospital, Kobe, Japan.,Department of Radiology, Kakogawa Central City Hospital, Kakogawa, Japan
| | - Keiichi Matsumoto
- Division of Molecular Imaging, Institute of Biomedical Research and Innovation (IBRI), Kobe, Japan.,Division of Molecular Imaging, Kobe City Medical Center General Hospital, Kobe, Japan.,Department of Radiological Technology, Faculty of Medical Science, Kyoto College of Medical Science, Kyoto, Japan
| | - Hiroyuki Nishida
- Division of Molecular Imaging, Institute of Biomedical Research and Innovation (IBRI), Kobe, Japan.,Division of Molecular Imaging, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Yasuji Yamamoto
- Division of Molecular Imaging, Institute of Biomedical Research and Innovation (IBRI), Kobe, Japan.,Division of Molecular Imaging, Kobe City Medical Center General Hospital, Kobe, Japan.,Department of Biosignal Pathophysiology, Graduate School of Medicine, Kobe University, Kobe, Japan.,Medical Center for Student Health, Kobe University, Kobe, Japan
| | - Michio Senda
- Division of Molecular Imaging, Institute of Biomedical Research and Innovation (IBRI), Kobe, Japan.,Division of Molecular Imaging, Kobe City Medical Center General Hospital, Kobe, Japan
| | | |
Collapse
|
9
|
Liu M, Paranjpe MD, Zhou X, Duy PQ, Goyal MS, Benzinger TL, Lu J, Wang R, Zhou Y. Sex modulates the ApoE ε4 effect on brain tau deposition measured by 18F-AV-1451 PET in individuals with mild cognitive impairment. Theranostics 2019; 9:4959-4970. [PMID: 31410194 PMCID: PMC6691387 DOI: 10.7150/thno.35366] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/20/2019] [Indexed: 01/25/2023] Open
Abstract
The strongest genetic risk factor for Alzheimer's disease (AD) is the Apolipoprotein E type 4 allele (ApoE ε4). The interaction between sex and ApoE ε4 carrier status on AD risk remains an area of intense investigation. We hypothesized that sex modulates the relationship between ApoE ε4 carrier status and brain tau deposition (a quantitative endophenotype in AD) in individuals with mild cognitive impairment (MCI). Methods: Preprocessed 18F-AV-1451 tau and 18F-AV-45 amyloid PET images, T1-weighted structural magnetic resonance imaging (MRI) scans, demographic information, and cerebrospinal fluid (CSF) total tau (t-tau) and phosphorylated tau (p-tau) measurements from 108 MCI subjects in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were included. After downloading pre-processed images from ADNI, an iterative reblurred Van Cittertiteration partial volume correction (PVC) method was applied to all PET images. MRIs were used for PET spatial normalization. Regions of interest (ROIs) were defined in standard space, and standardized uptake value ratio (SUVR) images relative to cerebellum were computed. ApoE ε4 by sex interaction analyses on 18F-AV-1451 and CSF tau (t-tau, p-tau) were assessed using generalized linear models. The association between 18F-AV-1451 SUVR and CSF tau (t-tau, p-tau) was assessed. Results: After applying PVC and controlling for age, education level and global cortical 18F-AV-45 SUVR, we found that the entorhinal cortex, amygdala, parahippocampal gyrus, posterior cingulate, and occipital ROIs exhibited a significant ApoE ε4 by sex interaction effect (false discovery rate P < 0.1) among MCI individuals. We also found a significant ApoE ε4 by sex interaction effect on CSF t-tau and p-tau. 18F-AV-1451 SUVR in the 5 ROIs with ApoE ε4 by sex interaction was significantly correlated with CSF p-tau and t-tau. Conclusions: Our findings suggest that women are more susceptible to ApoE ε4-associated accumulation of neurofibrillary tangles in MCI compared to males. Both CSF tau (p-tau, t-tau) and brain tau PET are robust quantitative biomarkers for studying ApoE ε4 by sex effects on brain tau deposition in MCI participants.
Collapse
Affiliation(s)
- Min Liu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Manish D Paranjpe
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, MA, United States of America
| | - Xin Zhou
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Phan Q. Duy
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, United States of America
| | - Manu S Goyal
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Tammie L.S. Benzinger
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Yun Zhou
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| |
Collapse
|
10
|
The Relationship of Current Cognitive Activity to Brain Amyloid Burden and Glucose Metabolism. Am J Geriatr Psychiatry 2018; 26:977-984. [PMID: 29885987 PMCID: PMC6482956 DOI: 10.1016/j.jagp.2018.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/20/2018] [Accepted: 03/29/2018] [Indexed: 11/20/2022]
Abstract
Several studies have investigated how lifetime cognitive engagement affects levels of amyloid-beta (Aβ) deposition in the brain. However, there has been some disagreement, leaving the relationship of cognitive activity (CA) to Aβ a largely open question. The present study investigated the relationship between CA, Aβ deposition, and glucose metabolism. One hundred nine cognitively normal participants underwent Pittsburgh Compound-B (PiB) and [18F]fluorodeoxyglucose-positron emission tomography and completed a questionnaire designed to measure current CA. Statistical analyses revealed significant differences in PiB retention between those in the high and low CA groups. Linear regression models revealed a significant negative relationship between PiB retention and CA and a significant positive relationship between glucose metabolism and CA. These data suggest that CA may have a direct beneficial effect on the pathophysiology of AD or reflect another underlying process that results in both higher CA and lower AD pathophysiology.
Collapse
|
11
|
Wilckens KA, Tudorascu DL, Snitz BE, Price JC, Aizenstein HJ, Lopez OL, Erickson KI, Lopresti BJ, Laymon CM, Minhas D, Mathis CA, Buysse DJ, Klunk WE, Cohen AD. Sleep moderates the relationship between amyloid beta and memory recall. Neurobiol Aging 2018; 71:142-148. [PMID: 30138767 DOI: 10.1016/j.neurobiolaging.2018.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/18/2018] [Accepted: 07/17/2018] [Indexed: 12/21/2022]
Abstract
Amyloid-β (Aβ) accumulation is a hallmark of Alzheimer's disease, although Aβ alone may be insufficient to cause impairments. Modifiable health factors, including sleep, may mitigate functional symptoms of neurodegeneration. We assessed whether sleep moderated the relationship between Aβ and cognitive performance in 41 older adults, mean age 83 years. Sleep measures included actigraphy-assessed wake after sleep onset and total sleep time. Cognitive performance was assessed with memory recall, cognitive flexibility, and verbal fluency. Memory recall was assessed with the Rey-Osterrieth Complex Figure task, cognitive flexibility with the Trail Making test, and verbal fluency with FAS word generation. Aβ was assessed with a global measure of Pittsburgh Compound B. Wake after sleep onset moderated the relationship between Aβ and memory, with a stronger positive association for Aβ and forgetting in those with poorer sleep. These results suggest a possible protective role of sleep in preclinical Alzheimer's disease.
Collapse
Affiliation(s)
- Kristine A Wilckens
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Dana L Tudorascu
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Beth E Snitz
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Julie C Price
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Howard J Aizenstein
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Charles M Laymon
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Davneet Minhas
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daniel J Buysse
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Shokouhi S, Campbell D, Brill AB, Gwirtsman HE. Longitudinal Positron Emission Tomography in Preventive Alzheimer's Disease Drug Trials, Critical Barriers from Imaging Science Perspective. Brain Pathol 2018; 26:664-71. [PMID: 27327527 PMCID: PMC5958602 DOI: 10.1111/bpa.12399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 06/16/2016] [Indexed: 12/30/2022] Open
Abstract
Recent Alzheimer's trials have recruited cognitively normal people at risk for Alzheimer's dementia. Due to the lack of clinical symptoms in normal population, conventional clinical outcome measures are not suitable for these early trials. While several groups are developing new composite cognitive tests that could serve as potential outcome measures by detecting subtle cognitive changes in normal people, there is a need for longitudinal brain imaging techniques that can correlate with temporal changes in these new tests and provide additional objective measures of neuropathological changes in brain. Positron emission tomography (PET) is a nuclear medicine imaging procedure based on the measurement of annihilation photons after positron emission from radiolabeled molecules that allow tracking of biological processes in body, including the brain. PET is a well-established in vivo imaging modality in Alzheimer's disease diagnosis and research due to its capability of detecting abnormalities in three major hallmarks of this disease. These include (1) amyloid beta plaques; (2) neurofibrillary tau tangles and (3) decrease in neuronal activity due to loss of nerve cell connection and death. While semiquantitative PET imaging techniques are commonly used to set discrete cut-points to stratify abnormal levels of amyloid accumulation and neurodegeneration, they are suboptimal for detecting subtle longitudinal changes. In this study, we have identified and discussed four critical barriers in conventional longitudinal PET imaging that may be particularly relevant for early Alzheimer's disease studies. These include within and across subject heterogeneity of AD-affected brain regions, PET intensity normalization, neuronal compensations in early disease stages and cerebrovascular amyloid deposition.
Collapse
Affiliation(s)
- Sepideh Shokouhi
- Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center
| | - Desmond Campbell
- Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center
| | - Aaron B Brill
- Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center
| | | | | |
Collapse
|
13
|
El-Gamal FEA, Elmogy MM, Ghazal M, Atwan A, Casanova MF, Barnes GN, Keynton R, El-Baz AS, Khalil A. A Novel Early Diagnosis System for Mild Cognitive Impairment Based on Local Region Analysis: A Pilot Study. Front Hum Neurosci 2018; 11:643. [PMID: 29375343 PMCID: PMC5767309 DOI: 10.3389/fnhum.2017.00643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/18/2017] [Indexed: 11/24/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disorder that accounts for 60–70% of cases of dementia in the elderly. An early diagnosis of AD is usually hampered for many reasons including the variable clinical and pathological features exhibited among affected individuals. This paper presents a computer-aided diagnosis (CAD) system with the primary goal of improving the accuracy, specificity, and sensitivity of diagnosis. In this system, PiB-PET scans, which were obtained from the ADNI database, underwent five essential stages. First, the scans were standardized and de-noised. Second, an Automated Anatomical Labeling (AAL) atlas was utilized to partition the brain into 116 regions or labels that served for local (region-based) diagnosis. Third, scale-invariant Laplacian of Gaussian (LoG) was used, per brain label, to detect the discriminant features. Fourth, the regions' features were analyzed using a general linear model in the form of a two-sample t-test. Fifth, the support vector machines (SVM) and their probabilistic variant (pSVM) were constructed to provide local, followed by global diagnosis. The system was evaluated on scans of normal control (NC) vs. mild cognitive impairment (MCI) (19 NC and 65 MCI scans). The proposed system showed superior accuracy, specificity, and sensitivity as compared to other related work.
Collapse
Affiliation(s)
- Fatma E A El-Gamal
- Faculty of Computers and Information, Information Technology Department, Mansoura University, Mansoura, Egypt.,BioImaging Laboratory, Department of Bioengineering, University of Louisville, Louisville, KY, United States
| | - Mohammed M Elmogy
- Faculty of Computers and Information, Information Technology Department, Mansoura University, Mansoura, Egypt.,BioImaging Laboratory, Department of Bioengineering, University of Louisville, Louisville, KY, United States
| | - Mohammed Ghazal
- BioImaging Laboratory, Department of Bioengineering, University of Louisville, Louisville, KY, United States.,Department of Electrical and Computer Engineering, College of Engineering, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Ahmed Atwan
- Faculty of Computers and Information, Information Technology Department, Mansoura University, Mansoura, Egypt
| | - Manuel F Casanova
- School of Medicine, University of South Carolina, Greenville, SC, United States
| | - Gregory N Barnes
- University of Louisville Autism Center, Department of Neurology, University of Louisville, Louisville, KY, United States
| | - Robert Keynton
- Department of Bioengineering, University of Louisville, Louisville, KY, United States
| | - Ayman S El-Baz
- BioImaging Laboratory, Department of Bioengineering, University of Louisville, Louisville, KY, United States
| | - Ashraf Khalil
- Department of Computer Science and Information Technology, College of Engineering, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
14
|
Miwa K, Wagatsuma K, Yamao T, Kamitaka Y, Matsubara K, Akamatsu G, Imabayashi E. [Quantitative Assessment in Amyloid-PET Imaging]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2017; 73:1165-1174. [PMID: 29151550 DOI: 10.6009/jjrt.2017_jsrt_73.11.1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kenta Miwa
- Department of Radiological Sciences, School of Health Sciences, International University of Health and Welfare.,Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology.,Integrative Brain Imaging Center, National Center of Neurology and Psychiatry
| | - Kei Wagatsuma
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology
| | - Tensho Yamao
- Department of Radiological Sciences, School of Health Sciences, International University of Health and Welfare
| | - Yuto Kamitaka
- Department of Radiological Sciences, School of Health Sciences, International University of Health and Welfare
| | - Keisuke Matsubara
- Department of Radiology and Nuclear Medicine, Research Institute for Brain and Blood Vessels-Akita
| | - Go Akamatsu
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology
| | - Etsuko Imabayashi
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry
| |
Collapse
|
15
|
Abstract
Approximately 30 % of Americans suffer from chronic pain disorders, such as fibromyalgia (FM), which can cause debilitating pain. Many pain-killing drugs prescribed for chronic pain disorders are highly addictive, have limited clinical efficacy, and do not treat the cognitive symptoms reported by many patients. The neurobiological substrates of chronic pain are largely unknown, but evidence points to altered dopaminergic transmission in aberrant pain perception. We sought to characterize the dopamine (DA) system in individuals with FM. Positron emission tomography (PET) with [(18)F]fallypride (FAL) was used to assess changes in DA during a working memory challenge relative to a baseline task, and to test for associations between baseline D2/D3 availability and experimental pain measures. Twelve female subjects with FM and 11 female controls completed study procedures. Subjects received one FAL PET scan while performing a "2-back" task, and one while performing a "0-back" (attentional control, "baseline") task. FM subjects had lower baseline FAL binding potential (BP) in several cortical regions relative to controls, including anterior cingulate cortex. In FM subjects, self-reported spontaneous pain negatively correlated with FAL BP in the left orbitofrontal cortex and parahippocampal gyrus. Baseline BP was significantly negatively correlated with experimental pain sensitivity and tolerance in both FM and CON subjects, although spatial patterns of these associations differed between groups. The data suggest that abnormal DA function may be associated with differential processing of pain perception in FM. Further studies are needed to explore the functional significance of DA in nociception and cognitive processing in chronic pain.
Collapse
|
16
|
Akamatsu G, Ohnishi A, Aita K, Ikari Y, Yamamoto Y, Senda M. Technical Considerations on Scanning and Image Analysis for Amyloid PET in Dementia. Nihon Hoshasen Gijutsu Gakkai Zasshi 2017; 73:298-308. [PMID: 28428473 DOI: 10.6009/jjrt.2017_jsrt_73.4.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Brain imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET), can provide essential and objective information for the early and differential diagnosis of dementia. Amyloid PET is especially useful to evaluate the amyloid-β pathological process as a biomarker of Alzheimer's disease. This article reviews critical points about technical considerations on the scanning and image analysis methods for amyloid PET. Each amyloid PET agent has its own proper administration instructions and recommended uptake time, scan duration, and the method of image display and interpretation. In addition, we have introduced general scanning information, including subject positioning, reconstruction parameters, and quantitative and statistical image analysis. We believe that this article could make amyloid PET a more reliable tool in clinical study and practice.
Collapse
Affiliation(s)
- Go Akamatsu
- Division of Molecular Imaging, Institute of Biomedical Research and Innovation.,Division of Radiological Technology, Institute of Biomedical Research and Innovation
| | - Akihito Ohnishi
- Division of Molecular Imaging, Institute of Biomedical Research and Innovation.,Department of Radiology, Kobe University Hospital
| | - Kazuki Aita
- Division of Molecular Imaging, Institute of Biomedical Research and Innovation
| | - Yasuhiko Ikari
- Division of Molecular Imaging, Institute of Biomedical Research and Innovation
| | - Yasuji Yamamoto
- Department of Biosignal Pathophysiology, Graduate School of Medicine, Kobe University.,Medical Center for Student Health, Kobe University
| | - Michio Senda
- Division of Molecular Imaging, Institute of Biomedical Research and Innovation
| |
Collapse
|
17
|
Grimmer T, Wutz C, Alexopoulos P, Drzezga A, Förster S, Förstl H, Goldhardt O, Ortner M, Sorg C, Kurz A. Visual Versus Fully Automated Analyses of 18F-FDG and Amyloid PET for Prediction of Dementia Due to Alzheimer Disease in Mild Cognitive Impairment. J Nucl Med 2015; 57:204-7. [PMID: 26585056 DOI: 10.2967/jnumed.115.163717] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/03/2015] [Indexed: 01/31/2023] Open
Abstract
UNLABELLED Biomarkers of Alzheimer disease (AD) can be imaged in vivo and can be used for diagnostic and prognostic purposes in people with cognitive decline and dementia. Indicators of amyloid deposition such as (11)C-Pittsburgh compound B ((11)C-PiB) PET are primarily used to identify or rule out brain diseases that are associated with amyloid pathology but have also been deployed to forecast the clinical course. Indicators of neuronal metabolism including (18)F-FDG PET demonstrate the localization and severity of neuronal dysfunction and are valuable for differential diagnosis and for predicting the progression from mild cognitive impairment (MCI) to dementia. It is a matter of debate whether to analyze these images visually or using automated techniques. Therefore, we compared the usefulness of both imaging methods and both analyzing strategies to predict dementia due to AD. METHODS In MCI participants, a baseline examination, including clinical and imaging assessments, and a clinical follow-up examination after a planned interval of 24 mo were performed. RESULTS Of 28 MCI patients, 9 developed dementia due to AD, 2 developed frontotemporal dementia, and 1 developed moderate dementia of unknown etiology. The positive and negative predictive values and the accuracy of visual and fully automated analyses of (11)C-PiB for the prediction of progression to dementia due to AD were 0.50, 1.00, and 0.68, respectively, for the visual and 0.53, 1.00, and 0.71, respectively, for the automated analyses. Positive predictive value, negative predictive value, and accuracy of fully automated analyses of (18)F-FDG PET were 0.37, 0.78, and 0.50, respectively. Results of visual analyses were highly variable between raters but were superior to automated analyses. CONCLUSION Both (18)F-FDG and (11)C-PiB imaging appear to be of limited use for predicting the progression from MCI to dementia due to AD in short-term follow-up, irrespective of the strategy of analysis. On the other hand, amyloid PET is extremely useful to rule out underlying AD. The findings of the present study favor a fully automated method of analysis for (11)C-PiB assessments and a visual analysis by experts for (18)F-FDG assessments.
Collapse
Affiliation(s)
- Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany
| | - Carolin Wutz
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany
| | - Panagiotis Alexopoulos
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital of Cologne, Cologne, Germany; and
| | - Stefan Förster
- Department of Nuclear Medicine, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany
| | - Hans Förstl
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany
| | - Oliver Goldhardt
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany
| | - Marion Ortner
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany
| | - Christian Sorg
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany
| | - Alexander Kurz
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar der Technischen Universität München, Munich, Germany
| |
Collapse
|
18
|
Hirao K, Pontone GM, Smith GS. Molecular imaging of neuropsychiatric symptoms in Alzheimer's and Parkinson's disease. Neurosci Biobehav Rev 2015; 49:157-70. [PMID: 25446948 PMCID: PMC4806385 DOI: 10.1016/j.neubiorev.2014.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 10/27/2014] [Accepted: 11/12/2014] [Indexed: 01/14/2023]
Abstract
Neuropsychiatric symptoms (NPS) are very common in neurodegenerative diseases and are a major contributor to disability and caregiver burden. There is accumulating evidence that NPS may be a prodrome and/or a "risk factor" of neurodegenerative diseases. The medications used to treat these symptoms in younger patients are not very effective in patients with neurodegenerative disease and may have serious side effects. An understanding of the neurobiology of NPS is critical for the development of more effective intervention strategies. Targeting these symptoms may also have implications for prevention of cognitive or motor decline. Molecular brain imaging represents a bridge between basic and clinical observations and provides many opportunities for translation from animal models and human post-mortem studies to in vivo human studies. Molecular brain imaging studies in Alzheimer's disease (AD) and Parkinson's disease (PD) are reviewed with a primary focus on positron emission tomography studies of NPS. Future directions for the field of molecular imaging in AD and PD to understand the neurobiology of NPS will be discussed.
Collapse
Affiliation(s)
- Kentaro Hirao
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Gregory M Pontone
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA
| | - Gwenn S Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA.
| |
Collapse
|
19
|
Increased brain amyloid deposition in patients with a lifetime history of major depression: evidenced on 18F-florbetapir (AV-45/Amyvid) positron emission tomography. Eur J Nucl Med Mol Imaging 2014; 41:714-22. [PMID: 24233127 DOI: 10.1007/s00259-013-2627-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/31/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE The literature suggests that a history of depression is associated with an increased risk of developing Alzheimer's disease (AD). The aim of this study was to examine brain amyloid accumulation in patients with lifetime major depression using (18)F-florbetapir (AV-45/Amyvid) PET imaging in comparison with that in nondepressed subjects. METHODS The study groups comprised 25 depressed patients and 11 comparison subjects who did not meet the diagnostic criteria for AD or amnestic mild cognitive impairment. Vascular risk factors, homocysteine and apolipoprotein E (ApoE) genotype were also examined. The standard uptake value ratio (SUVR) of each volume of interest was analysed using whole the cerebellum as the reference region. RESULTS Patients with a lifetime history of major depression had higher (18)F-florbetapir SUVRs in the precuneus (1.06 ± 0.08 vs. 1.00 ± 0.06, p = 0.045) and parietal region (1.05 ± 0.08 vs. 0.98 ± 0.07, p = 0.038) than the comparison subjects. Voxel-wise analysis revealed a significantly increased SUVR in depressed patients in the frontal, parietal, temporal and occipital areas (p < 0.01). There were no significant associations between global (18)F-florbetapir SUVRs and prior depression episodes, age at onset of depression, or time since onset of first depression. CONCLUSION Increased (18)F-florbetapir binding values were found in patients with late-life major depression relative to comparison subjects in specific brain regions, despite no differences in age, sex, education, Mini Mental Status Examination score, vascular risk factor score, homocysteine and ApoE ε4 genotype between the two groups. A longitudinal follow-up study with a large sample size would be worthwhile.
Collapse
|
20
|
Schmidt ME, Chiao P, Klein G, Matthews D, Thurfjell L, Cole PE, Margolin R, Landau S, Foster NL, Mason NS, De Santi S, Suhy J, Koeppe RA, Jagust W. The influence of biological and technical factors on quantitative analysis of amyloid PET: Points to consider and recommendations for controlling variability in longitudinal data. Alzheimers Dement 2014; 11:1050-68. [PMID: 25457431 DOI: 10.1016/j.jalz.2014.09.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 08/05/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
In vivo imaging of amyloid burden with positron emission tomography (PET) provides a means for studying the pathophysiology of Alzheimer's and related diseases. Measurement of subtle changes in amyloid burden requires quantitative analysis of image data. Reliable quantitative analysis of amyloid PET scans acquired at multiple sites and over time requires rigorous standardization of acquisition protocols, subject management, tracer administration, image quality control, and image processing and analysis methods. We review critical points in the acquisition and analysis of amyloid PET, identify ways in which technical factors can contribute to measurement variability, and suggest methods for mitigating these sources of noise. Improved quantitative accuracy could reduce the sample size necessary to detect intervention effects when amyloid PET is used as a treatment end point and allow more reliable interpretation of change in amyloid burden and its relationship to clinical course.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Susan Landau
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Norman L Foster
- Division of Cognitive Neurology, University of Utah, Salt Lake City, UT, USA
| | - N Scott Mason
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Robert A Koeppe
- Division of Nuclear Medicine, University of Michigan, Ann Arbor, MI, USA
| | - William Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | | |
Collapse
|
21
|
He W, Liu D, Radua J, Li G, Han B, Sun Z. Meta-analytic Comparison Between PIB-PET and FDG-PET Results in Alzheimer’s Disease and MCI. Cell Biochem Biophys 2014; 71:17-26. [DOI: 10.1007/s12013-014-0138-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
|
23
|
Klupp E, Förster S, Grimmer T, Tahmasian M, Yakushev I, Sorg C, Yousefi BH, Drzezga A. In Alzheimer's Disease, Hypometabolism in Low-Amyloid Brain Regions May Be a Functional Consequence of Pathologies in Connected Brain Regions. Brain Connect 2014; 4:371-83. [PMID: 24870443 DOI: 10.1089/brain.2013.0212] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Elisabeth Klupp
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan Förster
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Timo Grimmer
- Department of Psychiatry, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Masoud Tahmasian
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Igor Yakushev
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Christian Sorg
- TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- Department of Neuroradiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Behrooz H. Yousefi
- TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- Pharmaceutical Radiochemistry, Technische Universität München, Garching, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
24
|
Cohen AD, Klunk WE. Early detection of Alzheimer's disease using PiB and FDG PET. Neurobiol Dis 2014; 72 Pt A:117-22. [PMID: 24825318 DOI: 10.1016/j.nbd.2014.05.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 04/24/2014] [Accepted: 05/02/2014] [Indexed: 12/16/2022] Open
Abstract
Use of biomarkers in the detection of early and preclinical Alzheimer's disease (AD) has become of central importance following publication of the NIA-Alzheimer's Association revised criteria for the diagnosis of AD, mild cognitive impairment (MCI) and preclinical AD. The use of in vivo amyloid imaging agents, such a Pittsburgh Compound-B and markers of neurodegeneration, such as fluoro-2-deoxy-D-glucose (FDG) is able to detect early AD pathological processes and subsequent neurodegeneration. Imaging with PiB and FDG thus has many potential clinical benefits: early or perhaps preclinical detection of disease and accurately distinguishing AD from dementias of other etiologies in patients presenting with mild or atypical symptoms or confounding comorbidities in which the diagnostic distinction is difficult to make clinically. From a research perspective, this allows us to study relationships between amyloid pathology and changes in cognition, brain structure, and function across the continuum from normal aging to MCI to AD. The present review focuses on use of PiB and FDG-PET and their relationship to one another.
Collapse
Affiliation(s)
- Ann D Cohen
- Department of Psychiatry, University of Pittsburgh School of Medicine, USA.
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh School of Medicine, USA; Department of Neurology, University of Pittsburgh School of Medicine, USA
| |
Collapse
|
25
|
von Reutern B, Grünecker B, Yousefi BH, Henriksen G, Czisch M, Drzezga A. Voxel-based analysis of amyloid-burden measured with [(11)C]PiB PET in a double transgenic mouse model of Alzheimer's disease. Mol Imaging Biol 2014; 15:576-84. [PMID: 23572425 DOI: 10.1007/s11307-013-0625-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE The purpose of this study is to validate the feasibility of a voxel-based analysis of in vivo amyloid-β positron emission tomography (PET) imaging studies in transgenic mouse models of Alzheimer's disease. PROCEDURES We performed [(11)C]PiB PET imaging in 20 APP/PS1 mice and 16 age-matched controls, and histologically determined the individual amyloid-β plaque load. Using SPM software, we performed a voxel-based group comparison plus a regression analysis between PiB retention and actual plaque load, both thresholded at p FWE < 0.05. In addition, we carried out an individual ROI analysis in every animal. RESULTS The automated voxel-based group comparison allowed us to identify voxels with significantly increased PiB retention in the cortical and hippocampal regions in transgenic animals compared to controls. The voxel-based regression analysis revealed a significant association between this signal increase and the actual cerebral plaque load. The validity of these results was corroborated by the individual ROI-based analysis. CONCLUSIONS Voxel-based analysis of in vivo amyloid-β PET imaging studies in mouse models of Alzheimer's disease is feasible and allows studying the PiB retention patterns in whole brain maps. Furthermore, the selected approach in our study also allowed us to establish a quantitative relation between tracer retention and actual plaque pathology in the brain in a voxel-wise manner.
Collapse
Affiliation(s)
- Boris von Reutern
- Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, 52425, Jülich, Germany,
| | | | | | | | | | | |
Collapse
|
26
|
Kepe V, Moghbel MC, Långström B, Zaidi H, Vinters HV, Huang SC, Satyamurthy N, Doudet D, Mishani E, Cohen RM, Høilund-Carlsen PF, Alavi A, Barrio JR. Amyloid-β positron emission tomography imaging probes: a critical review. J Alzheimers Dis 2014; 36:613-31. [PMID: 23648516 DOI: 10.3233/jad-130485] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The rapidly rising prevalence and cost of Alzheimer's disease in recent decades has made the imaging of amyloid-β deposits the focus of intense research. Several amyloid imaging probes with purported specificity for amyloid-β plaques are currently at various stages of FDA approval. However, a number of factors appear to preclude these probes from clinical utilization. As the available "amyloid specific" positron emission tomography imaging probes have failed to demonstrate diagnostic value and have shown limited utility for monitoring therapeutic interventions in humans, a debate on their significance has emerged. The aim of this review is to identify and discuss critically the scientific issues contributing to the extensive inconsistencies reported in the literature on their purported in vivo amyloid specificity and potential utilization in patients.
Collapse
Affiliation(s)
- Vladimir Kepe
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California-Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Albrecht DS, Kareken DA, Christian BT, Dzemidzic M, Yoder KK. Cortical dopamine release during a behavioral response inhibition task. Synapse 2014; 68:266-74. [PMID: 24677429 DOI: 10.1002/syn.21736] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 01/30/2013] [Accepted: 02/10/2013] [Indexed: 01/09/2023]
Abstract
Dopamine (DA) dysregulation within fronto-striatal circuitry may underlie impulsivity in alcohol and other substance use disorders. To date, no one has directly demonstrated DA release during a task requiring the control of impulsive behavior. The current study was conducted to determine whether a response inhibition task (stop signal task; SST) would elicit detectable extrastriatal DA release in healthy controls. We hypothesized that DA release would be detected in regions previously implicated in different aspects of inhibitory control. [(18) F]Fallypride (FAL) PET imaging was performed in nine healthy males (24.6 ± 4.1 y.o.) to assess changes in cortical DA during a SST relative to a baseline "Go" task. On separate days, subjects received one FAL scan during the SST, and one FAL scan during a "Go" control; task-order was counter-balanced across subjects. Parametric BPND images were generated and analyzed with SPM8. Voxel-wise analysis indicated significant SST-induced DA release in several cortical regions involved in inhibitory control, including the insula, cingulate cortex, orbitofrontal cortex, precuneus, and supplementary motor area. There was a significant positive correlation between stop signal reaction time and DA release in the left orbitofrontal cortex, right middle frontal gyrus, and right precentral gyrus. These data support the feasibility of using FAL PET to study DA release during response inhibition, enabling investigation of relationships between DA function and impulsive behavior.
Collapse
Affiliation(s)
- Daniel S Albrecht
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, 46202; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | | | | | | | | |
Collapse
|
28
|
Racine AM, Adluru N, Alexander AL, Christian BT, Okonkwo OC, Oh J, Cleary CA, Birdsill A, Hillmer AT, Murali D, Barnhart TE, Gallagher CL, Carlsson CM, Rowley HA, Dowling NM, Asthana S, Sager MA, Bendlin BB, Johnson SC. Associations between white matter microstructure and amyloid burden in preclinical Alzheimer's disease: A multimodal imaging investigation. NEUROIMAGE-CLINICAL 2014; 4:604-14. [PMID: 24936411 PMCID: PMC4053642 DOI: 10.1016/j.nicl.2014.02.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/29/2014] [Accepted: 02/10/2014] [Indexed: 10/30/2022]
Abstract
Some cognitively healthy individuals develop brain amyloid accumulation, suggestive of incipient Alzheimer's disease (AD), but the effect of amyloid on other potentially informative imaging modalities, such as Diffusion Tensor Imaging (DTI), in characterizing brain changes in preclinical AD requires further exploration. In this study, a sample (N = 139, mean age 60.6, range 46 to 71) from the Wisconsin Registry for Alzheimer's Prevention (WRAP), a cohort enriched for AD risk factors, was recruited for a multimodal imaging investigation that included DTI and [C-11]Pittsburgh Compound B (PiB) positron emission tomography (PET). Participants were grouped as amyloid positive (Aβ+), amyloid indeterminate (Aβi), or amyloid negative (Aβ-) based on the amount and pattern of amyloid deposition. Regional voxel-wise analyses of four DTI metrics, fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (Da), and radial diffusivity (Dr), were performed based on amyloid grouping. Three regions of interest (ROIs), the cingulum adjacent to the corpus callosum, hippocampal cingulum, and lateral fornix, were selected based on their involvement in the early stages of AD. Voxel-wise analysis revealed higher FA among Aβ+ compared to Aβ- in all three ROIs and in Aβi compared to Aβ- in the cingulum adjacent to the corpus callosum. Follow-up exploratory whole-brain analyses were consistent with the ROI findings, revealing multiple regions where higher FA was associated with greater amyloid. Lower fronto-lateral gray matter MD was associated with higher amyloid burden. Further investigation showed a negative correlation between MD and PiB signal, suggesting that Aβ accumulation impairs diffusion. Interestingly, these findings in a largely presymptomatic sample are in contradistinction to relationships reported in the literature in symptomatic disease stages of Mild Cognitive Impairment and AD, which usually show higher MD and lower FA. Together with analyses showing that cognitive function in these participants is not associated with any of the four DTI metrics, the present results suggest an early relationship between PiB and DTI, which may be a meaningful indicator of the initiating or compensatory mechanisms of AD prior to cognitive decline.
Collapse
Key Words
- AD risk
- ANCOVA, Analysis of Covariance
- ANTs, Advanced Normalization Tools
- APOE4, apolipoprotein E gene ε4
- Alzheimer's disease
- Amyloid imaging
- Aβ+, amyloid positive
- Aβi, amyloid indeterminate
- Aβ−, amyloid negative
- BET, Brain Extraction Tool
- Cingulum–CC, cingulum adjacent to corpus callosum
- Cingulum–HC, hippocampal cingulum (projecting to medial temporal lobe)
- DTI, Diffusion Tensor Imaging
- DTI-TK, Diffusion Tensor Imaging Toolkit
- DVR, distribution volume ratio
- Da, axial diffusivity
- Dr, radial diffusivity
- FA, fractional anisotropy
- FH, (parental) family history
- FSL, FMRIB Software Library
- FUGUE, FMRIB's utility for geometrically unwarping EPIs
- FWE, family wise error
- GM, gray matter
- HARDI, high angular resolution diffusion imaging
- ICBM, International Consortium for Brain Mapping
- MD, mean diffusivity
- PCC, posterior cingulate cortex
- PIB, Pittsburgh compound B
- PRELUDE, phase region expanding labeler for unwrapping discrete estimates
- RAVLT, Rey Auditory Verbal Learning Test
- SPM, Statistical Parametric Mapping
- TMT, Trail Making Test
- WASI, Wechsler Abbreviated Scale of Intelligence
- WM, white matter
- WRAP, Wisconsin Registry for Alzheimer's Prevention
- WRAT, Wide Range Achievement Test
- White matter
Collapse
Affiliation(s)
- Annie M Racine
- Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Nagesh Adluru
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andrew L Alexander
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA ; Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI 53705, USA ; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| | - Bradley T Christian
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA ; Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ozioma C Okonkwo
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI 53705, USA ; Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Jennifer Oh
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI 53705, USA ; Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Caitlin A Cleary
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI 53705, USA ; Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Alex Birdsill
- Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Ansel T Hillmer
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA ; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| | - Dhanabalan Murali
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA ; Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Catherine L Gallagher
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI 53705, USA ; Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Cynthia M Carlsson
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI 53705, USA ; Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Howard A Rowley
- Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA ; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - N Maritza Dowling
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI 53705, USA ; Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sanjay Asthana
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI 53705, USA ; Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA ; Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Mark A Sager
- Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA ; Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Barbara B Bendlin
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI 53705, USA ; Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sterling C Johnson
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI 53705, USA ; Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA ; Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA ; Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
29
|
Grimmer T, Goldhardt O, Guo LH, Yousefi BH, Förster S, Drzezga A, Sorg C, Alexopoulos P, Förstl H, Kurz A, Perneczky R. LRP-1 polymorphism is associated with global and regional amyloid load in Alzheimer's Disease in humans in-vivo. NEUROIMAGE-CLINICAL 2014; 4:411-6. [PMID: 24596678 PMCID: PMC3939495 DOI: 10.1016/j.nicl.2014.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/14/2014] [Accepted: 01/30/2014] [Indexed: 01/26/2023]
Abstract
Objective Impaired amyloid clearance has been proposed to contribute to β-amyloid deposition in sporadic late-onset Alzheimer's disease (AD). Low density lipoprotein receptor-related protein 1 (LRP-1) is involved in the active outward transport of β-amyloid across the blood–brain barrier (BBB). The C667T polymorphism (rs1799986) of the LRP-1 gene has been inconsistently associated with AD in genetic studies. We aimed to elucidate the association of this polymorphism with in-vivo brain amyloid load of AD patients using amyloid PET with [11C]PiB. Materials and methods 72 patients with very mild to moderate AD were examined with amyloid PET and C667T polymorphism was obtained using TaqMan PCR assays. The association of C667T polymorphism with global and regional amyloid load was calculated using linear regression and voxel based analysis, respectively. The effect of the previously identified modulator of amyloid uptake, the apolipoprotein E genotype, on this association was also determined. Results The regression analysis between amyloid load and C667T polymorphism was statistically significant (p = 0.046, β = 0.236). In an additional analysis ApoE genotype and gender were identified to explain further variability of amyloid load. Voxel based analysis revealed a significant (p < 0.05) association between C667T polymorphism and amyloid uptake in the temporo-parietal cortex bilaterally. ApoE did not interact significantly with the LRP-1 polymorphism. Discussion In conclusion, C667T polymorphism of LRP-1 is moderately but significantly associated with global and regional amyloid deposition in AD. The relationship appears to be independent of the ApoE genotype. This finding is compatible with the hypothesis that impaired amyloid clearance contributes to amyloid deposition in late-onset sporadic AD. Impaired drainage systems are discussed to be causative for AD. LRP-1 transports Aß from the brain. LRP-1 polymorphism is associated with amyloid deposition in-vivo in-human. Results are compatible with the hypothesis of impaired drainage systems in AD.
Collapse
Affiliation(s)
- Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Oliver Goldhardt
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Liang-Hao Guo
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Behrooz H Yousefi
- Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675 Munich, Germany ; Pharmaceutical Radiochemistry, Faculties of Chemistry and Medicine, Technische Universität München, Walther-Meißner-Str. 3, 85748 Garching, Germany
| | - Stefan Förster
- Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Christian Sorg
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Panagiotis Alexopoulos
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Hans Förstl
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Alexander Kurz
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675 Munich, Germany ; Neuroepidemiology and Ageing Research Unit, School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology and Medicine, London, UK
| |
Collapse
|
30
|
Zhou L, Salvado O, Dore V, Bourgeat P, Raniga P, Macaulay SL, Ames D, Masters CL, Ellis KA, Villemagne VL, Rowe CC, Fripp J, AIBL Research Group. MR-less surface-based amyloid assessment based on 11C PiB PET. PLoS One 2014; 9:e84777. [PMID: 24427295 PMCID: PMC3888418 DOI: 10.1371/journal.pone.0084777] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/18/2013] [Indexed: 12/01/2022] Open
Abstract
Background β-amyloid (Aβ) plaques in brain's grey matter (GM) are one of the pathological hallmarks of Alzheimer's disease (AD), and can be imaged in vivo using Positron Emission Tomography (PET) with 11C or 18F radiotracers. Estimating Aβ burden in cortical GM has been shown to improve diagnosis and monitoring of AD. However, lacking structural information in PET images requires such assessments to be performed with anatomical MRI scans, which may not be available at different clinical settings or being contraindicated for particular reasons. This study aimed to develop an MR-less Aβ imaging quantification method that requires only PET images for reliable Aβ burden estimations. Materials and Methods The proposed method has been developed using a multi-atlas based approach on 11C-PiB scans from 143 subjects (75 PiB+ and 68 PiB- subjects) in AIBL study. A subset of 20 subjects (PET and MRI) were used as atlases: 1) MRI images were co-registered with tissue segmentation; 2) 3D surface at the GM-WM interfacing was extracted and registered to a canonical space; 3) Mean PiB retention within GM was estimated and mapped to the surface. For other participants, each atlas PET image (and surface) was registered to the subject's PET image for PiB estimation within GM. The results are combined by subject-specific atlas selection and Bayesian fusion to generate estimated surface values. Results All PiB+ subjects (N = 75) were highly correlated between the MR-dependent and the PET-only methods with Intraclass Correlation (ICC) of 0.94, and an average relative difference error of 13% (or 0.23 SUVR) per surface vertex. All PiB- subjects (N = 68) revealed visually akin patterns with a relative difference error of 16% (or 0.19 SUVR) per surface vertex. Conclusion The demonstrated accuracy suggests that the proposed method could be an effective clinical inspection tool for Aβ imaging scans when MRI images are unavailable.
Collapse
Affiliation(s)
- Luping Zhou
- CSIRO Preventative Health Flagship, CSIRO Computational Informatics, The Australian e-Health Research Centre, Herston, Australia
- Department of Computer Science and Software Engineering, University of Wollongong, Wollongong, Australia
- * E-mail:
| | - Olivier Salvado
- CSIRO Preventative Health Flagship, CSIRO Computational Informatics, The Australian e-Health Research Centre, Herston, Australia
| | - Vincent Dore
- CSIRO Preventative Health Flagship, CSIRO Computational Informatics, The Australian e-Health Research Centre, Herston, Australia
| | - Pierrick Bourgeat
- CSIRO Preventative Health Flagship, CSIRO Computational Informatics, The Australian e-Health Research Centre, Herston, Australia
| | - Parnesh Raniga
- CSIRO Preventative Health Flagship, CSIRO Computational Informatics, The Australian e-Health Research Centre, Herston, Australia
| | - S. Lance Macaulay
- CSIRO Preventative-Health National Research Flagship, Parkville, Australia
| | - David Ames
- National Ageing Research Institute, Parkville, Australia
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, The University of Melbourne, Kew, Parkville, Australia
| | - Colin L. Masters
- Mental Health Research Institute/Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Kathryn A. Ellis
- Mental Health Research Institute/Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, The University of Melbourne, Kew, Parkville, Australia
| | - Victor L. Villemagne
- Department of Nuclear Medicine and Centre for PET, Austin Hospital, Heidelberg, Australia
| | - Christopher C. Rowe
- Department of Nuclear Medicine and Centre for PET, Austin Hospital, Heidelberg, Australia
| | - Jurgen Fripp
- CSIRO Preventative Health Flagship, CSIRO Computational Informatics, The Australian e-Health Research Centre, Herston, Australia
| | | |
Collapse
|
31
|
Mathis CA, Kuller LH, Klunk WE, Snitz BE, Price JC, Weissfeld LA, Rosario BL, Lopresti BJ, Saxton JA, Aizenstein HJ, McDade EM, Kamboh MI, DeKosky ST, Lopez OL. In vivo assessment of amyloid-β deposition in nondemented very elderly subjects. Ann Neurol 2013; 73:751-61. [PMID: 23596051 PMCID: PMC3725727 DOI: 10.1002/ana.23797] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/19/2012] [Accepted: 10/29/2012] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This study examined amyloid-β (Aβ) deposition in 190 nondemented subjects aged ≥82 years to determine the proportion of Aβ-positive scans and associations with cognition, apolipoprotein E (APOE) status, brain volume, and Ginkgo biloba (Gb) treatment. METHODS Subjects who agreed to participate had a brain magnetic resonance imaging and positron emission tomography scan with (11) C-labeled Pittsburgh compound B (PiB) following completion of a Gb treatment clinical trial. The youngest subject in this imaging study was 82 years, and the mean age of the subjects was 85.5 years at the time of the scans; 152 (80%) were cognitively normal, and 38 (20%) were diagnosed with mild cognitive impairment (MCI) at the time of the PiB study. RESULTS A high proportion of the cognitively normal subjects (51%) and MCI subjects (68%) were PiB-positive. The APOE*4 allele was more prevalent in PiB-positive than in PiB-negative subjects (30% vs 6%). Measures of memory, language, and attentional functions were worse in PiB-positive than in PiB-negative subjects, when both normal and MCI cases were analyzed together; however, no significant associations were observed within either normal or MCI subject groups alone. There was no relationship between Gb treatment and Aβ deposition as determined by PiB. INTERPRETATION The data revealed a 55% prevalence of PiB positivity in nondemented subjects age >80 years and 85% PiB positivity in the APOE*4 nondemented elderly subjects. The findings also showed that long-term exposure to Gb did not affect the prevalence of cerebral Aβ deposition.
Collapse
Affiliation(s)
- Chester A Mathis
- Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cohen AD, Rabinovici GD, Mathis CA, Jagust WJ, Klunk WE, Ikonomovic MD. Using Pittsburgh Compound B for in vivo PET imaging of fibrillar amyloid-beta. ADVANCES IN PHARMACOLOGY 2013; 64:27-81. [PMID: 22840744 DOI: 10.1016/b978-0-12-394816-8.00002-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of Aβ-PET imaging agents has allowed for detection of fibrillar Aβ deposition in vivo and marks a major advancement in understanding the role of Aβ in Alzheimer's disease (AD). Imaging Aβ thus has many potential clinical benefits: early or perhaps preclinical detection of disease and accurately distinguishing AD from dementias of other non-Aβ causes in patients presenting with mild or atypical symptoms or confounding comorbidities (in which the distinction is difficult to make clinically). From a research perspective, imaging Aβ allows us to study relationships between amyloid pathology and changes in cognition, brain structure, and function across the continuum from normal aging to mild cognitive impairment (MCI) to AD; and to monitor the effectiveness of anti-Aβ drugs and relate them to neurodegeneration and clinical symptoms. Here, we will discuss the application of one of the most broadly studied and widely used Aβ imaging agents, Pittsburgh Compound-B (PiB).
Collapse
Affiliation(s)
- Ann D Cohen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
33
|
Striatal D(2)/D(3) receptor availability is inversely correlated with cannabis consumption in chronic marijuana users. Drug Alcohol Depend 2013; 128:52-7. [PMID: 22909787 PMCID: PMC3532956 DOI: 10.1016/j.drugalcdep.2012.07.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/21/2012] [Accepted: 07/29/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND Although the incidence of cannabis abuse/dependence in Americans is rising, the neurobiology of cannabis addiction is not well understood. Imaging studies have demonstrated deficits in striatal D(2)/D(3) receptor availability in several substance-dependent populations. However, this has not been studied in currently using chronic cannabis users. OBJECTIVE The purpose of this study was to compare striatal D(2)/D(3) receptor availability between currently using chronic cannabis users and healthy controls. METHODS Eighteen right-handed males age 18-34 were studied. Ten subjects were chronic cannabis users; eight were demographically matched controls. Subjects underwent a [(11)C]raclopride (RAC) PET scan. Striatal RAC binding potential (BP(ND)) was calculated on a voxel-wise basis. Prior to scanning, urine samples were obtained from cannabis users for quantification of urine Δ-9-tetrahydrocannabinol (THC) and THC metabolites (11-nor-Δ-9-THC-9-carboxylic acid; THC-COOH and 11-hydroxy-THC;OH-THC). RESULTS There were no differences in D(2)/D(3) receptor availability between cannabis users and controls. Voxel-wise analyses revealed that RAC BP(ND) values were negatively associated with both urine levels of cannabis metabolites and self-report of recent cannabis consumption. CONCLUSIONS In this sample, current cannabis use was not associated with deficits in striatal D(2)/D(3) receptor availability. There was an inverse relationship between chronic cannabis use and striatal RAC BP(ND). Additional studies are needed to identify the neurochemical consequences of chronic cannabis use on the dopamine system.
Collapse
|
34
|
Edison P, Carter SF, Rinne JO, Gelosa G, Herholz K, Nordberg A, Brooks DJ, Hinz R. Comparison of MRI based and PET template based approaches in the quantitative analysis of amyloid imaging with PIB-PET. Neuroimage 2012; 70:423-33. [PMID: 23261639 DOI: 10.1016/j.neuroimage.2012.12.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 11/10/2012] [Accepted: 12/10/2012] [Indexed: 11/15/2022] Open
Abstract
RATIONALE [(11)C]Pittsburgh compound-B (PIB) has been the most widely used positron emission tomography (PET) imaging agent for brain amyloid. Several longitudinal studies evaluating the progression of Alzheimer's disease (AD), and numerous therapeutic intervention studies are underway using [(11)C]PIB PET as an AD biomarker. Quantitative analysis of [(11)C]PIB data requires the definition of regional volumes of interest. This investigation systematically compared two data analysis routes both using a probabilistic brain atlas with 11 bilateral regions. Route 1 used individually segmented structural magnetic resonance images (MRI) for each subject while Route 2 used a standardised [(11)C]PIB PET template. METHODS A total of 54 subjects, 20 with probable Alzheimer's disease (AD), 14 with amnestic Mild Cognitive Impairment (MCI) and 20 age-matched healthy controls, were scanned at two imaging centres either in London (UK) or in Turku (Finland). For all subjects structural volumetric MRI and [(11)C]PIB PET scans were acquired. Target-to-cerebellum ratios 40 min to 60 min post injection were used as outcome measures. Regional read outs for grey matter target regions were generated for both routes. Based on a composite neocortical, frontal, posterior cingulate, combined posterior cingulate and frontal cortical regions, scans were categorised into either 'PIB negative' (PIB-) or 'PIB positive' (PIB+) using previously reported cut-off target-to-cerebellar ratios of 1.41, 1.5 and 1.6, respectively. RESULTS Target-to-cerebellum ratios were greater when defined with a [(11)C]PIB PET template than with individual MRIs for all cortical regions regardless of diagnosis. This difference was highly significant for controls (p<0.001, paired samples t-test), less significant for MCIs and borderline for ADs. Assignment of subjects to raised or normal categories was the same with both routes with a 1.6 cut-off while with lower cut off using frontal cortex, and combined frontal cortex and posterior cingulate demonstrated similar results, while posterior cingulate alone demonstrated significantly higher proportion of controls as amyloid positive by Route 2. CONCLUSIONS Definition of cortical grey matter regions is more accurate when individually segmented MRIs (Route 1) were used rather than a population-based PET template (Route 2). The impact of this difference depends on the grey-to-white matter contrast in the PET images; specifically seen in healthy controls with high white matter and low grey matter uptake. When classifying AD, MCI and control subjects as normal or abnormal using large cortical regions; discordance was found between the MRI and template approach for those few subjects who presented with cortex-to-cerebellum ratios very close to the pre-assigned cut-off. However, posterior cingulate alone demonstrated significant discordance in healthy controls using template based approach. This study, therefore, demonstrates that the use of a [(11)C]PIB PET template (Route 2) is adequate for clinical diagnostic purposes, while MRI based analysis (Route 1) remains more appropriate for clinical research.
Collapse
Affiliation(s)
- P Edison
- Division of Neuroscience, Imperial College London, Hammersmith Campus, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
D'Angelo GM, Weissfeld LA. Application of copulas to improve covariance estimation for partial least squares. Stat Med 2012; 32:685-96. [PMID: 22961807 DOI: 10.1002/sim.5533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 04/27/2012] [Accepted: 05/25/2012] [Indexed: 11/07/2022]
Abstract
Dimension reduction techniques, such as partial least squares, are useful for computing summary measures and examining relationships in complex settings. Partial least squares requires an estimate of the covariance matrix as a first step in the analysis, making this estimate critical to the results. In addition, the covariance matrix also forms the basis for other techniques in multivariate analysis, such as principal component analysis and independent component analysis. This paper has been motivated by an example from an imaging study in Alzheimer's disease where there is complete separation between Alzheimer's and control subjects for one of the imaging modalities. This separation occurs in one block of variables and does not occur with the second block of variables resulting in inaccurate estimates of the covariance. We propose the use of a copula to obtain estimates of the covariance in this setting, where one set of variables comes from a mixture distribution. Simulation studies show that the proposed estimator is an improvement over the standard estimators of covariance. We illustrate the methods from the motivating example from a study in the area of Alzheimer's disease.
Collapse
Affiliation(s)
- Gina M D'Angelo
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, U.S.A.
| | | |
Collapse
|
36
|
Quantitative longitudinal interrelationships between brain metabolism and amyloid deposition during a 2-year follow-up in patients with early Alzheimer's disease. Eur J Nucl Med Mol Imaging 2012; 39:1927-36. [PMID: 22926714 DOI: 10.1007/s00259-012-2230-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 08/09/2012] [Indexed: 01/18/2023]
Abstract
PURPOSE Similar regional anatomical distributions were reported for fibrillary amyloid deposition [measured by (11)C-Pittsburgh compound B (PIB) positron emission tomography (PET)] and brain hypometabolism [measured by (18)F-fluorodeoxyglucose (FDG) PET] in numerous Alzheimer's disease (AD) studies. However, there is a lack of longitudinal studies evaluating the interrelationships of these two different pathological markers in the same AD population. Our most recent AD study suggested that the longitudinal pattern of hypometabolism anatomically follows the pattern of amyloid deposition with temporal delay, which indicates that neuronal dysfunction may spread within the anatomical pattern of amyloid pathology. Based on this finding we now hypothesize that in early AD patients quantitative longitudinal decline in hypometabolism may be related to the amount of baseline amyloid deposition during a follow-up period of 2 years. METHODS Fifteen patients with mild probable AD underwent baseline (T1) and follow-up (T2) examination after 24 ± 2.1 months with [(18)F]FDG PET, [(11)C]PIB PET, structural T1-weighted MRI and neuropsychological testing [Consortium to Establish a Registry for Alzheimer's Disease (CERAD) neuropsychological battery]. Longitudinal cognitive measures and quantitative PET measures of amyloid deposition and metabolism [standardized uptake value ratios (SUVRs)] were obtained using volume of interest (VOI)-based approaches in the frontal-lateral-retrosplenial (FLR) network and in predefined bihemispheric brain regions after partial volume effect (PVE) correction of PET data. Statistical group comparisons (SUVRs and cognitive measures) between patients and 15 well-matched elderly controls who had undergone identical imaging procedures once as well as Pearson's correlation analyses within patients were performed. RESULTS Group comparison revealed significant cognitive decline and increased mean PIB/decreased FDG SUVRs in the FLR network as well as in several AD-typical regions in patients relative to controls. Concurrent with cognitive decline patients showed longitudinal increase in mean PIB/decrease in mean FDG SUVRs over time in the FLR network and in several AD-typical brain regions. Correlation analyses of FLR network SUVRs in patients revealed significant positive correlations between PIB T1 and delta FDG (FDG T1-T2) SUVRs, between PIB T1 and PIB T2 SUVRs, between FDG T1 and PIB T2 SUVRs as well as between FDG T1 and FDG T2 SUVRs, while significant negative correlations were found between FDG T1 and delta PIB (PIB T1-T2) SUVRs as well as between FDG T2 and delta FDG (FDG T1-T2) SUVRs. These findings were confirmed in locoregional correlation analyses, revealing significant associations in the same directions for two left hemispheric regions and nine right hemispheric regions, showing the strongest association for bilateral precuneus. CONCLUSION Baseline amyloid deposition in patients with mild probable AD was associated with longitudinal metabolic decline. Additionally, mildly decreased/relatively preserved baseline metabolism was associated with a longitudinal increase in amyloid deposition. The latter bidirectional associations were present in the whole AD-typical FLR network and in several highly interconnected hub regions (i.e. in the precuneus). Our longitudinal findings point to a bidirectional quantitative interrelationship of the two investigated AD pathologies, comprising an initial relative maintenance of neuronal activity in already amyloid-positive hub regions (neuronal compensation), followed by accelerated amyloid deposition, accompanied by functional neuronal decline (neuronal breakdown) along with cognitive decline.
Collapse
|
37
|
Regional expansion of hypometabolism in Alzheimer's disease follows amyloid deposition with temporal delay. Biol Psychiatry 2012; 71:792-7. [PMID: 21679929 DOI: 10.1016/j.biopsych.2011.04.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 03/26/2011] [Accepted: 04/20/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND Cross-sectional imaging studies suggest that patterns of hypometabolism (measured by [(18)F] fluorodeoxyglucose positron emission tomography [FDG-PET]) and amyloid deposition (measured by [(11)C] Pittsburgh Compound B [PiB]- PET) in Alzheimer's disease (AD) show some overlap with each other. This indicates that neuronal dysfunction might spread within the anatomical pattern of amyloid deposition. The aim of this study was to examine longitudinal regional patterns of amyloid deposition and hypometabolism in the same population of mild AD subjects and to establish their regional relationship to each other. METHODS Twenty patients with mild AD underwent baseline (BL) and follow-up (FU) examination with [(18)F] FDG-PET and [(11)C] PiB-PET. Voxel-by-voxel statistical group comparison (SPM5) was performed between patient BL- and FU-PET data as well as between patients and 15 PiB-negative elderly control subjects, who had undergone identical imaging procedures. To obtain objective measures of regional overlap, Dice similarity coefficients (DSC) between the imaging findings were calculated. RESULTS Compared with elderly control subjects, AD patients showed typical patterns of BL hypometabolism and BL amyloid deposition, with a similarity of 40% (DSC). Amyloid deposition was more extended than hypometabolism at BL and showed only minor changes over time, whereas significant expansion of hypometabolism was observed, almost exclusively within areas already affected by BL amyloid deposition. Thus, increased similarity of FU hypometabolism with BL amyloid deposition was found (DSC: 47%). CONCLUSIONS Longitudinal regional expansion of cerebral hypometabolism, as a measure of neuronal dysfunction in AD, seems to follow the anatomical pattern of amyloid deposition with temporal delay. This indicates that amyloid-based disruption of neuronal integrity might contribute to the regional expansion of neuronal dysfunction.
Collapse
|
38
|
Zhou Y, Sojkova J, Resnick SM, Wong DF. Relative equilibrium plot improves graphical analysis and allows bias correction of standardized uptake value ratio in quantitative 11C-PiB PET studies. J Nucl Med 2012; 53:622-8. [PMID: 22414634 PMCID: PMC3449083 DOI: 10.2967/jnumed.111.095927] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Both the standardized uptake value ratio (SUVR) and the Logan plot result in biased distribution volume ratios (DVRs) in ligand-receptor dynamic PET studies. The objective of this study was to use a recently developed relative equilibrium-based graphical (RE) plot method to improve and simplify the 2 commonly used methods for quantification of (11)C-Pittsburgh compound B ((11)C-PiB) PET. METHODS The overestimation of DVR in SUVR was analyzed theoretically using the Logan and the RE plots. A bias-corrected SUVR (bcSUVR) was derived from the RE plot. Seventy-eight (11)C-PiB dynamic PET scans (66 from controls and 12 from participants with mild cognitive impaired [MCI] from the Baltimore Longitudinal Study of Aging) were acquired over 90 min. Regions of interest (ROIs) were defined on coregistered MR images. Both the ROI and the pixelwise time-activity curves were used to evaluate the estimates of DVR. DVRs obtained using the Logan plot applied to ROI time-activity curves were used as a reference for comparison of DVR estimates. RESULTS Results from the theoretic analysis were confirmed by human studies. ROI estimates from the RE plot and the bcSUVR were nearly identical to those from the Logan plot with ROI time-activity curves. In contrast, ROI estimates from DVR images in frontal, temporal, parietal, and cingulate regions and the striatum were underestimated by the Logan plot (controls, 4%-12%; MCI, 9%-16%) and overestimated by the SUVR (controls, 8%-16%; MCI, 16%-24%). This bias was higher in the MCI group than in controls (P < 0.01) but was not present when data were analyzed using either the RE plot or the bcSUVR. CONCLUSION The RE plot improves pixelwise quantification of (11)C-PiB dynamic PET, compared with the conventional Logan plot. The bcSUVR results in lower bias and higher consistency of DVR estimates than of SUVR. The RE plot and the bcSUVR are practical quantitative approaches that improve the analysis of (11)C-PiB studies.
Collapse
Affiliation(s)
- Yun Zhou
- Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD 21287-0807, USA.
| | | | | | | |
Collapse
|
39
|
White matter hyperintensities predict amyloid increase in Alzheimer's disease. Neurobiol Aging 2012; 33:2766-73. [PMID: 22410648 DOI: 10.1016/j.neurobiolaging.2012.01.016] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 01/12/2012] [Accepted: 01/27/2012] [Indexed: 11/22/2022]
Abstract
Impaired amyloid clearance probably contributes to increased amyloid deposition in sporadic Alzheimer's disease (AD). Diminished perivascular drainage due to cerebral small-vessel disease (CSVD) has been proposed as a cause of reduced amyloid clearance. White matter hyperintensities (WMHs) are considered to reflect CSVD and can be measured using fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI). Amyloid deposition can be determined in vivo using Pittsburgh compound B ([11C]PiB) positron emission tomography (PET). We aimed to elucidate the association between WMH and the progression of amyloid deposition in patients with AD. Twenty-two patients with probable AD underwent FLAIR-MRI and [11C]PiB-PET examinations at baseline (BL) and after a mean follow-up (FU) interval of 28 months. The relationship between BL-WMH and the progression of cerebral amyloid between BL and FU was examined using a regions-of-interest (ROI) approach. The region-specific variability of this relationship was analyzed using a voxel-based method. The longitudinal analysis revealed a statistically significant association between the amount of BL-WMH and the progression of amyloid load between BL and FU (p = 0.006, adjusted R2 = 0.375, standardized coefficient β = 0.384). The association was particularly observed in parieto-occipital regions and tended to be closer in regions adjacent to the brain surface. According to our knowledge, this is the first in vivo study in human being supporting the hypothesis that impaired amyloid clearance along perivascular drainage pathways may contribute to β-amyloid deposition in sporadic AD. The extent of WMH might be a relevant factor to be assessed in antiamyloid drug trials.
Collapse
|
40
|
Gold BT, Keller JN. Preface for the special issue of imaging brain aging and neurodegenerative disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822:315-6. [PMID: 22265024 DOI: 10.1016/j.bbadis.2012.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/02/2011] [Accepted: 12/02/2011] [Indexed: 10/14/2022]
Affiliation(s)
- Brian T Gold
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
41
|
Acosta O, Fripp J, Doré V, Bourgeat P, Favreau JM, Chételat G, Rueda A, Villemagne VL, Szoeke C, Ames D, Ellis KA, Martins RN, Masters CL, Rowe CC, Bonner E, Gris F, Xiao D, Raniga P, Barra V, Salvado O. Cortical surface mapping using topology correction, partial flattening and 3D shape context-based non-rigid registration for use in quantifying atrophy in Alzheimer's disease. J Neurosci Methods 2011; 205:96-109. [PMID: 22226742 DOI: 10.1016/j.jneumeth.2011.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/13/2011] [Accepted: 12/20/2011] [Indexed: 11/16/2022]
Abstract
Magnetic resonance (MR) provides a non-invasive way to investigate changes in the brain resulting from aging or neurodegenerative disorders such as Alzheimer's disease (AD). Performing accurate analysis for population studies is challenging because of the interindividual anatomical variability. A large set of tools is found to perform studies of brain anatomy and population analysis (FreeSurfer, SPM, FSL). In this paper we present a newly developed surface-based processing pipeline (MILXCTE) that allows accurate vertex-wise statistical comparisons of brain modifications, such as cortical thickness (CTE). The brain is first segmented into the three main tissues: white matter, gray matter and cerebrospinal fluid, after CTE is computed, a topology corrected mesh is generated. Partial inflation and non-rigid registration of cortical surfaces to a common space using shape context are then performed. Each of the steps was firstly validated using MR images from the OASIS database. We then applied the pipeline to a sample of individuals randomly selected from the AIBL study on AD and compared with FreeSurfer. For a population of 50 individuals we found correlation of cortical thickness in all the regions of the brain (average r=0.62 left and r=0.64 right hemispheres). We finally computed changes in atrophy in 32 AD patients and 81 healthy elderly individuals. Significant differences were found in regions known to be affected in AD. We demonstrated the validity of the method for use in clinical studies which provides an alternative to well established techniques to compare different imaging biomarkers for the study of neurodegenerative diseases.
Collapse
Affiliation(s)
- Oscar Acosta
- CSIRO Preventative Health National Research Flagship, ICTC, The Australian e-Health Research Centre-BioMedIA, Herston, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hautzel H, Müller HW, Herzog H, Grandt R. Cognition-induced modulation of serotonin in the orbitofrontal cortex: A controlled cross-over PET study of a delayed match-to-sample task using the 5-HT2a receptor antagonist [18F]altanserin. Neuroimage 2011; 58:905-11. [DOI: 10.1016/j.neuroimage.2011.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 05/17/2011] [Accepted: 06/06/2011] [Indexed: 12/23/2022] Open
|
43
|
Anomalous PiB enhancement in the superior sagittal and transverse venous sinuses. Alzheimer Dis Assoc Disord 2011; 26:186-90. [PMID: 21909018 DOI: 10.1097/wad.0b013e31822de18c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pittsburgh compound-B (PiB), an amyloid-binding positron emission tomography (PET) tracer, is widely used for imaging amyloid-β in those with and at risk for Alzheimer disease. Here, we report on an otherwise normal 68-year-old female with abnormally high and very focal PiB retention. Coregistered T1-weighted magnetic resonance imaging and dynamic 2-fluoro-2-deoxy-D-glucose (FDG) images confirmed that the focal PiB enhancement was in the superior sagittal and transverse sinuses, outside of the adjacent cortex. Flow through the venous vasculature was normal as assessed by dynamic FDG PET imaging. These features supported the conclusion that PiB retention was not simply due to a hemodynamic abnormality, but may have represented PiB binding to fibrillar deposits of a β-sheet protein (ie, amyloid), whose nature is currently unclear.
Collapse
|
44
|
A modified method of 3D-SSP analysis for amyloid PET imaging using [11C]BF-227. Ann Nucl Med 2011; 25:732-9. [DOI: 10.1007/s12149-011-0518-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
|
45
|
van Norden AGW, van Dijk EJ, de Laat KF, Scheltens P, Olderikkert MGM, de Leeuw FE. Dementia: Alzheimer pathology and vascular factors: from mutually exclusive to interaction. Biochim Biophys Acta Mol Basis Dis 2011; 1822:340-9. [PMID: 21777675 DOI: 10.1016/j.bbadis.2011.07.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/30/2011] [Accepted: 07/06/2011] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Both its incidence and prevalence are expected to increase exponentially as populations' age worldwide. Despite impressive efforts of research worldwide, neither cure nor effective preventive strategy is available for this devastating disease. Currently there are several hypotheses on what causes AD, with the amyloid hypothesis being the most investigated and accepted hypothesis over the past 20 years. However the exact role of amyloid-β in the onset and progression of AD is not yet fully understood, and even the validity of the amyloid hypothesis itself is still being discussed. This debate is fuelled by the vascular hypothesis, as increasing epidemiological, neuroimaging, pathological, pharmacotherapeutic and clinical studies suggest that vascular pathology plays a key role in the onset and progression of AD. We here will discuss arguments in favor and limitations of both hypotheses within the framework of available literature, but also provide arguments for convergence of both hypotheses. Finally we propose approaches that may aid in unraveling the etiology and treatment of AD. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.
Collapse
Affiliation(s)
- Anouk G W van Norden
- Department of Neurology, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
46
|
Yoder KK, Albrecht DS, Kareken DA, Federici LM, Perry KM, Patton EA, Zheng QH, Mock BH, O'Connor S, Herring CM. Test-retest variability of [¹¹C]raclopride-binding potential in nontreatment-seeking alcoholics. Synapse 2011; 65:553-61. [PMID: 20963816 PMCID: PMC3077540 DOI: 10.1002/syn.20874] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 10/05/2010] [Indexed: 01/18/2023]
Abstract
Knowledge of the reproducibility of striatal [¹¹C]raclopride (RAC) binding is important for studies that use RAC PET paradigms to estimate changes in striatal dopamine (DA) during pharmacological and cognitive challenges. To our knowledge, no baseline test-retest data exist for nontreatment-seeking alcoholics (NTS). We determined the test-retest reproducibility of baseline RAC binding potential (BP(ND) ) in 12 male NTS subjects. Subjects were scanned twice with single-bolus RAC PET on separate days. Striatal RAC BP (BP(ND) ) for left and right dorsal caudate, dorsal putamen, and ventral striatum was estimated using the Multilinear Reference Tissue Method (MRTM) and Logan Graphical Analysis (LGA) with a reference region. Test-retest variability (TRV), % change in BP(ND) between scan days, and the intraclass correlation coefficient (ICC) were used as metrics of reproducibility. For MRTM, TRV for striatal RAC binding in NTS subjects was ±6.5% and ±7.1% for LGA. Average striatal ICCs were 0.94 for both methods (P < 0.0001). Striatal BP(ND) values were similar to those reported previously for detoxified alcoholics. The results demonstrate that baseline striatal RAC binding is highly reproducible in NTS subjects, with a low variance similar to that reported for healthy control subjects.
Collapse
Affiliation(s)
- Karmen K Yoder
- Indiana University Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
de Rover M, Pironti VA, McCabe JA, Acosta-Cabronero J, Arana FS, Morein-Zamir S, Hodges JR, Robbins TW, Fletcher PC, Nestor PJ, Sahakian BJ. Hippocampal dysfunction in patients with mild cognitive impairment: a functional neuroimaging study of a visuospatial paired associates learning task. Neuropsychologia 2011; 49:2060-70. [PMID: 21477602 DOI: 10.1016/j.neuropsychologia.2011.03.037] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 03/23/2011] [Accepted: 03/27/2011] [Indexed: 11/23/2022]
Abstract
Mild cognitive impairment (MCI) patients report memory problems greater than those normally expected with ageing, but do not fulfil criteria for clinically probable Alzheimer's disease. Accumulating evidence demonstrates that impaired performance on the Paired Associates Learning (PAL) test from the Cambridge Neuropsychological Test Automated Battery (CANTAB) may be sensitive and specific for early and differential diagnosis of Alzheimer's disease. We adapted the basic CANTAB PAL task for functional magnetic resonance imaging (fMRI) in order to examine the functional brain deficits, at encoding and retrieval separately, in patients with MCI compared to healthy matched volunteers. As well as investigating the main effects of encoding and retrieval, we characterized neural responses in the two groups to increasing memory load. We focused on changes in BOLD response in the hippocampus and related structures, as an a priori region of interest based on what is known about the neuropathology of the early stages of Alzheimer's disease and previous information on the neural substrates of the PAL task. We also used structural MRI in the same patients to assess accompanying structural brain abnormalities associated with MCI. In terms of the BOLD response, the bilateral hippocampal activation in the MCI and control groups depended upon load, the MCI patients activating significantly more than controls at low loads and significantly less at higher loads. There were no other differences between MCI patients and controls in terms of the neural networks activated during either encoding or retrieval of the PAL task, including the prefrontal, cingulate and temporal cortex. The functional deficit in hippocampal activation in the MCI patients was accompanied by structural differences in the same location, suggesting that the decrease in hippocampal activation may be caused by a decrease in the amount of grey matter. This is one of the first studies to have used both encoding and retrieval phases of a memory paradigm for fMRI in MCI patients, and to have shown that the BOLD response in MCI patients can show both hyperactivation and hypoactivation in the same individuals as a function of memory load and encoding/retrieval. The findings suggest that performance on PAL might be a useful cognitive biomarker for early detection of Alzheimer's disease, especially when used in conjunction with neuroimaging.
Collapse
Affiliation(s)
- Mischa de Rover
- MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Drzezga A, Becker JA, Van Dijk KRA, Sreenivasan A, Talukdar T, Sullivan C, Schultz AP, Sepulcre J, Putcha D, Greve D, Johnson KA, Sperling RA. Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden. ACTA ACUST UNITED AC 2011; 134:1635-46. [PMID: 21490054 PMCID: PMC3102239 DOI: 10.1093/brain/awr066] [Citation(s) in RCA: 283] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Disruption of functional connectivity between brain regions may represent an early functional consequence of β-amyloid pathology prior to clinical Alzheimer's disease. We aimed to investigate if non-demented older individuals with increased amyloid burden demonstrate disruptions of functional whole-brain connectivity in cortical hubs (brain regions typically highly connected to multiple other brain areas) and if these disruptions are associated with neuronal dysfunction as measured with fluorodeoxyglucose-positron emission tomography. In healthy subjects without cognitive symptoms and patients with mild cognitive impairment, we used positron emission tomography to assess amyloid burden and cerebral glucose metabolism, structural magnetic resonance imaging to quantify atrophy and novel resting state functional magnetic resonance imaging processing methods to calculate whole-brain connectivity. Significant disruptions of whole-brain connectivity were found in amyloid-positive patients with mild cognitive impairment in typical cortical hubs (posterior cingulate cortex/precuneus), strongly overlapping with regional hypometabolism. Subtle connectivity disruptions and hypometabolism were already present in amyloid-positive asymptomatic subjects. Voxel-based morphometry measures indicate that these findings were not solely a consequence of regional atrophy. Whole-brain connectivity values and metabolism showed a positive correlation with each other and a negative correlation with amyloid burden. These results indicate that disruption of functional connectivity and hypometabolism may represent early functional consequences of emerging molecular Alzheimer's disease pathology, evolving prior to clinical onset of dementia. The spatial overlap between hypometabolism and disruption of connectivity in cortical hubs points to a particular susceptibility of these regions to early Alzheimer's-type neurodegeneration and may reflect a link between synaptic dysfunction and functional disconnection.
Collapse
Affiliation(s)
- Alexander Drzezga
- Department of Radiology, Massachusetts General Hospital and Harvard University Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Barthel H, Gertz HJ, Dresel S, Peters O, Bartenstein P, Buerger K, Hiemeyer F, Wittemer-Rump SM, Seibyl J, Reininger C, Sabri O. Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer's disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol 2011; 10:424-35. [PMID: 21481640 DOI: 10.1016/s1474-4422(11)70077-1] [Citation(s) in RCA: 438] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Imaging with amyloid-β PET can potentially aid the early and accurate diagnosis of Alzheimer's disease. Florbetaben (¹⁸F) is a promising ¹⁸F-labelled amyloid-β-targeted PET tracer in clinical development. We aimed to assess the sensitivity and specificity of florbetaben (¹⁸F) PET in discriminating between patients with probable Alzheimer's disease and elderly healthy controls. METHODS We did a multicentre, open-label, non-randomised phase 2 study in 18 centres in Australia, Germany, Switzerland, and the USA. Imaging with florbetaben (¹⁸F) PET was done on patients with probable Alzheimer's disease (age 55 years or older, mini-mental state examination [MMSE] score=18-26, clinical dementia rating [CDR]=0·5-2·0) and age-matched healthy controls (MMSE ≥ 28, CDR=0). Our primary objective was to establish the diagnostic efficacy of the scans in differentiating between patients with probable disease and age-matched healthy controls on the basis of neocortical tracer uptake pattern 90-110 min post-injection. PET images were assessed visually by three readers masked to the clinical diagnosis and all other clinical findings, and quantitatively by use of pre-established brain volumes of interest to obtain standard uptake value ratios (SUVRs), taking the cerebellar cortex as the reference region. This study is registered with ClinicalTrials.gov, number NCT00750282. FINDINGS 81 participants with probable Alzheimer's disease and 69 healthy controls were assessed. Independent visual assessment of the PET scans showed a sensitivity of 80% (95% CI 71-89) and a specificity of 91% (84-98) for discriminating participants with Alzheimer's disease from healthy controls. The SUVRs in all neocortical grey-matter regions in participants with Alzheimer's disease were significantly higher (p < 0·0001) compared with the healthy controls, with the posterior cingulate being the best discriminator. Linear discriminant analysis of regional SUVRs yielded a sensitivity of 85% and a specificity of 91%. Regional SUVRs also correlated well with scores of cognitive impairment such as the MMSE and the word-list memory and word-list recall scores (r -0·27 to -0·33, p ≤ 0·021). APOE ɛ4 was more common in participants with positive PET images compared with those with negative scans (65%vs 22% [p=0·027] in patients with Alzheimer's disease; 50%vs 16% [p = 0·074] in healthy controls). No safety concerns were noted. INTERPRETATION We provide verification of the efficacy, safety, and biological relevance of florbetaben (¹⁸F) amyloid-β PET and suggest its potential as a visual adjunct in the diagnostic algorithm of dementia. FUNDING Bayer Schering Pharma AG.
Collapse
Affiliation(s)
- Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Illán I, Górriz J, López M, Ramírez J, Salas-Gonzalez D, Segovia F, Chaves R, Puntonet C. Computer aided diagnosis of Alzheimer’s disease using component based SVM. Appl Soft Comput 2011. [DOI: 10.1016/j.asoc.2010.08.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|