1
|
Shi H, Prayer F, Kienast P, Khalaveh F, Nasel C, Binder J, Watzenboeck ML, Weber M, Prayer D, Kasprian G. Multiparametric prenatal imaging characterization of fetal brain edema in Chiari II malformation might help to select candidates for fetal surgery. Eur Radiol 2024; 34:6384-6395. [PMID: 38656710 PMCID: PMC11399183 DOI: 10.1007/s00330-024-10729-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVE To identify brain edema in fetuses with Chiari II malformation using a multiparametric approach including structural T2-weighted, diffusion tensor imaging (DTI) metrics, and MRI-based radiomics. METHODS A single-center retrospective review of MRI scans obtained in fetuses with Chiari II was performed. Brain edema cases were radiologically identified using the following MR criteria: brain parenchymal T2 prolongation, blurring of lamination, and effacement of external CSF spaces. Fractional anisotropy (FA) values were calculated from regions of interest (ROI), including hemispheric parenchyma, internal capsule, and corticospinal tract, and compared group-wise. After 1:1 age matching and manual single-slice 2D segmentation of the fetal brain parenchyma using ITK-Snap, radiomics features were extracted using pyradiomics. Areas under the curve (AUCs) of the features regarding discriminating subgroups were calculated. RESULTS Ninety-one fetuses with Chiari II underwent a total of 101 MRI scans at a median gestational age of 24.4 weeks and were included. Fifty scans were visually classified as Chiari II with brain edema group and showed significantly reduced external CSF spaces compared to the nonedema group (9.8 vs. 18.3 mm, p < 0.001). FA values of all used ROIs were elevated in the edema group (p < 0.001 for all ROIs). The 10 most important radiomics features showed an AUC of 0.81 (95%CI: 0.71, 0.91) for discriminating between Chiari II fetuses with and without edema. CONCLUSIONS Brain edema in fetuses with Chiari II is common and radiologically detectable on T2-weighted fetal MRI sequences, and DTI-based FA values and radiomics features provide further evidence of microstructure differences between subgroups with and without edema. CLINICAL RELEVANCE STATEMENT A more severe phenotype of fetuses with Chiari II malformation is characterized by prenatal brain edema and more postnatal clinical morbidity and disability. Fetal brain edema is a promising prenatal MR imaging biomarker candidate for optimizing the risk-benefit evaluation of selection for fetal surgery. KEY POINTS Brain edema of fetuses prenatally diagnosed with Chiari II malformation is a common, so far unknown, association. DTI metrics and radiomics confirm microstructural differences between the brains of Chiari II fetuses with and without edema. Fetal brain edema may explain worse motor outcomes in this Chiari II subgroup, who may substantially benefit from fetal surgery.
Collapse
Affiliation(s)
- Hui Shi
- Department of Radiology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Road, Guangzhou, China
| | - Florian Prayer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Patric Kienast
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Farjad Khalaveh
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Christian Nasel
- Department of Radiology (Diagnostic and Interventional) (C.N.), University Hospital Tulln - Karl Landsteiner Private University of Health Sciences, Alter Ziegelweg 10, 3430, Tulln, Austria
| | - Julia Binder
- Department of Obstetrics and Feto-maternal Medicine, Medical University of Vienna, Vienna, Austria
| | - Martin L Watzenboeck
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Michael Weber
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
2
|
Amayra I, Ruiz de Lazcano A, Salgueiro M, Anguiano S, Ureña M, Martínez O. Memory in Spina Bifida, from Childhood to Adulthood: A Systematic Review. J Clin Med 2024; 13:5273. [PMID: 39274485 PMCID: PMC11396768 DOI: 10.3390/jcm13175273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Spina bifida (SB) is a rare congenital disease characterized by not only physical but also neuropsychological disturbances. Among these neuropsychological impairments, memory deficits are a significant concern, as they substantially hinder aspects of crucial importance in the lives of individuals with SB such as medical needs or daily life activities. The main objective is to conduct a systematic review of the current evidence on the memory deficits in the SB population, including children, adolescents, and adults. Methods: Four databases (PubMed, SCOPUS, Web of Science, and ProQuest) were systematically screened for eligible studies. Results: The present review reveals cognitive difficulties in different memory types among individuals with SB. These deficits, identified in childhood, seem to persist into adulthood. Specifically, impairments are evident in short-term memory, working memory, and long-term memory. The neuropsychological instruments applied in the studies that were included in this systematic review vary, however, most reach the same conclusions. Conclusions: The present findings underscore the importance of incorporating cognitive assessments, particularly those focused on the memory domain, into routine childhood evaluations for individuals with SB. Early identification of these cognitive difficulties allows for the timely implementation of cognitive interventions that could leverage the inherent plasticity of the developing brain, and prevent or delay the onset of these deficits in later adulthood for people with SB, ultimately improving their functionality and quality of life.
Collapse
Affiliation(s)
- Imanol Amayra
- Neuro-E-Motion Research Team, Department of Psychology, Faculty of Health Sciences, University of Deusto, 48007 Bilbao, Spain
| | - Aitana Ruiz de Lazcano
- Neuro-E-Motion Research Team, Department of Psychology, Faculty of Health Sciences, University of Deusto, 48007 Bilbao, Spain
| | - Monika Salgueiro
- Department of Clinical and Health Psychology and Research Methodology, Faculty of Psychology, University of the Basque Country UPV/EHU, 20018 Donostia, Spain
| | - Samuel Anguiano
- Neuro-E-Motion Research Team, Department of Psychology, Faculty of Health Sciences, University of Deusto, 48007 Bilbao, Spain
| | | | - Oscar Martínez
- Neuro-E-Motion Research Team, Department of Psychology, Faculty of Health Sciences, University of Deusto, 48007 Bilbao, Spain
| |
Collapse
|
3
|
Ji H, Payette K, Speckert A, Tuura R, Grehten P, Kottke R, Ochseinbein-Kölble N, Hagmann C, Mazzone L, Meuli M, Padden B, Hackenberg A, Wille DA, Moehrlen U, Latal B, SPINA BIFIDA STUDY GROUP ZURICH, Jakab A. Thalamic connectivity topography in newborns with spina bifida: association with neurological functional level but not developmental outcome at 2 years. Cereb Cortex 2024; 34:bhad438. [PMID: 37991274 PMCID: PMC10793566 DOI: 10.1093/cercor/bhad438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023] Open
Abstract
Spina bifida affects spinal cord and cerebral development, leading to motor and cognitive delay. We investigated whether there are associations between thalamocortical connectivity topography, neurological function, and developmental outcomes in open spina bifida. Diffusion tensor MRI was used to assess thalamocortical connectivity in 44 newborns with open spina bifida who underwent prenatal surgical repair. We quantified the volume of clusters formed based on the strongest probabilistic connectivity to the frontal, parietal, and temporal cortex. Developmental outcomes were assessed using the Bayley III Scales, while the functional level of the lesion was assessed by neurological examination at 2 years of age. Higher functional level was associated with smaller thalamo-parietal, while lower functional level was associated with smaller thalamo-temporal connectivity clusters (Bonferroni-corrected P < 0.05). Lower functional levels were associated with weaker thalamic temporal connectivity, particularly in the ventrolateral and ventral anterior nuclei. No associations were found between thalamocortical connectivity and developmental outcomes. Our findings suggest that altered thalamocortical circuitry development in open spina bifida may contribute to impaired lower extremity function, impacting motor function and independent ambulation. We hypothesize that the neurologic function might not merely be caused by the spinal cord lesion, but further impacted by the disruption of cerebral neuronal circuitry.
Collapse
Affiliation(s)
- Hui Ji
- Center for MR Research, University Children’s Hospital Zurich, Zurich 8032, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich 8006, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich 8032, Switzerland
| | - Kelly Payette
- Center for MR Research, University Children’s Hospital Zurich, Zurich 8032, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich 8006, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich 8032, Switzerland
| | - Anna Speckert
- Center for MR Research, University Children’s Hospital Zurich, Zurich 8032, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich 8006, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich 8032, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich 8006, Switzerland
| | - Ruth Tuura
- Center for MR Research, University Children’s Hospital Zurich, Zurich 8032, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich 8032, Switzerland
| | - Patrice Grehten
- Children’s Research Center, University Children’s Hospital Zurich, Zurich 8032, Switzerland
- Department of Diagnostic Imaging, University Children’s Hospital Zurich, Zurich 8032, Switzerland
- Zurich Center for Fetal Diagnosis and Therapy, Zurich 8032, Switzerland
- Zurich Center for Spina Bifida, University Children’s Hospital Zurich, Zurich 8032, Switzerland
| | - Raimund Kottke
- Children’s Research Center, University Children’s Hospital Zurich, Zurich 8032, Switzerland
- Department of Diagnostic Imaging, University Children’s Hospital Zurich, Zurich 8032, Switzerland
- Zurich Center for Fetal Diagnosis and Therapy, Zurich 8032, Switzerland
- Zurich Center for Spina Bifida, University Children’s Hospital Zurich, Zurich 8032, Switzerland
| | - Nicole Ochseinbein-Kölble
- Zurich Center for Fetal Diagnosis and Therapy, Zurich 8032, Switzerland
- Department of Obstetrics, University Hospital of Zurich, Zurich 8032, Switzerland
- University of Zurich, Zurich 8006, Switzerland
| | - Cornelia Hagmann
- Children’s Research Center, University Children’s Hospital Zurich, Zurich 8032, Switzerland
- Zurich Center for Spina Bifida, University Children’s Hospital Zurich, Zurich 8032, Switzerland
- Department of Neonatology, University Children's Hospital Zurich, Zurich 8032, Switzerland
| | - Luca Mazzone
- Children’s Research Center, University Children’s Hospital Zurich, Zurich 8032, Switzerland
- Zurich Center for Fetal Diagnosis and Therapy, Zurich 8032, Switzerland
- Zurich Center for Spina Bifida, University Children’s Hospital Zurich, Zurich 8032, Switzerland
- Department of Pediatric Surgery, University Children's Hospital Zurich, Zurich 8032, Switzerland
| | - Martin Meuli
- Zurich Center for Spina Bifida, University Children’s Hospital Zurich, Zurich 8032, Switzerland
- University of Zurich, Zurich 8006, Switzerland
| | - Beth Padden
- Children’s Research Center, University Children’s Hospital Zurich, Zurich 8032, Switzerland
- Zurich Center for Spina Bifida, University Children’s Hospital Zurich, Zurich 8032, Switzerland
- Division of Pediatric Rehabilitation, University Children’s Hospital Zurich, Zurich 8032, Switzerland
| | - Annette Hackenberg
- Children’s Research Center, University Children’s Hospital Zurich, Zurich 8032, Switzerland
- Zurich Center for Spina Bifida, University Children’s Hospital Zurich, Zurich 8032, Switzerland
- University of Zurich, Zurich 8006, Switzerland
- Department of Pediatric Neurology, University Children’s Hospital Zurich, Zurich 8032, Switzerland
| | - David-Alexander Wille
- Department of Pediatric Neurology, Cantonal Hospital of Baden, Baden 5404, Switzerland
| | - Ueli Moehrlen
- Zurich Center for Fetal Diagnosis and Therapy, Zurich 8032, Switzerland
- Zurich Center for Spina Bifida, University Children’s Hospital Zurich, Zurich 8032, Switzerland
- University of Zurich, Zurich 8006, Switzerland
- Department of Pediatric Surgery, University Children's Hospital Zurich, Zurich 8032, Switzerland
| | - Beatrice Latal
- Children’s Research Center, University Children’s Hospital Zurich, Zurich 8032, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich 8006, Switzerland
- University of Zurich, Zurich 8006, Switzerland
- Child Development Center, University Children’s Hospital Zurich, Zurich 8032, Switzerland
| | | | - Andras Jakab
- Center for MR Research, University Children’s Hospital Zurich, Zurich 8032, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich 8006, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich 8006, Switzerland
- University of Zurich, Zurich 8006, Switzerland
| |
Collapse
|
4
|
Mufti N, Chappell J, Aertsen M, Ebner M, Fidon L, Deprest J, David AL, Melbourne A. Assessment of longitudinal brain development using super-resolution magnetic resonance imaging following fetal surgery for open spina bifida. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 62:707-720. [PMID: 37161647 PMCID: PMC10947002 DOI: 10.1002/uog.26244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVES Prenatal surgery is offered for selected fetuses with open spina bifida (OSB) to improve long-term outcome. We studied the effect of fetal OSB surgery on brain development using advanced magnetic resonance imaging (MRI) techniques to quantify the volume, surface area and shape of cerebral structures and to analyze surface curvature by means of parameters that correspond to gyrification. METHODS We compared MRI data from 29 fetuses with OSB before fetal surgery (mean gestational age (GA), 23 + 3 weeks) and at 1 and 6 weeks after surgery, with that of 36 GA-matched control fetuses (GA range, 21 + 2 to 36 + 2 weeks). Automated super-resolution reconstruction provided three-dimensional isotropic volumetric brain images. Unmyelinated white matter, cerebellum and ventricles were segmented automatically and refined manually, after which volume, surface area and shape parameter (volume/surface area) were quantified. Mathematical markers (shape index (SI) and curvedness) were used to measure gyrification. Parameters were assessed according to lesion type (myelomeningocele vs myeloschisis (MS)), postoperative persistence of hindbrain herniation (HH) and the presence of supratentorial anomalies, namely partial agenesis of the corpus callosum (pACC) and heterotopia (HT). RESULTS Growth in ventricular volume per week and change in shape parameter per week were higher at 6 weeks after surgery in fetuses with OSB compared with controls (median, 2500.94 (interquartile range (IQR), 1689.70-3580.80) mm3 /week vs 708.21 (IQR, 474.50-925.00) mm3 /week; P < 0.001 and 0.075 (IQR, 0.047-0.112) mm/week vs 0.022 (IQR, 0.009-0.042) mm/week; P = 0.046, respectively). Ventricular volume growth increased 6 weeks after surgery in cases with pACC (P < 0.001) and those with persistent HH (P = 0.002). During that time period, the change in unmyelinated white-matter shape parameter per week was decreased in OSB fetuses compared with controls (0.056 (IQR, 0.044-0.092) mm/week vs 0.159 (IQR, 0.100-0.247) mm/week; P = 0.002), particularly in cases with persistent HH (P = 0.011), MS (P = 0.015), HT (P = 0.022), HT with corpus callosum anomaly (P = 0.017) and persistent HH with corpus callosum anomaly (P = 0.007). At 6 weeks postoperatively, despite OSB fetuses having a lower rate of change in curvedness compared with controls (0.061 (IQR, 0.040-0.093) mm-1 /week vs 0.094 (IQR, 0.070-0.146) mm-1 /week; P < 0.001), reversing the trend seen at 1 week after surgery (0.144 (IQR, 0.099-0.236) mm-1 /week vs 0.072 (IQR, 0.059-0.081) mm-1 /week; P < 0.001), gyrification, as determined using SI, appeared to be increased in OSB fetuses overall compared with controls. This observation was more prominent in fetuses with pACC and those with severe ventriculomegaly (P-value range, < 0.001 to 0.006). CONCLUSIONS Following fetal OSB repair, volume, shape and curvedness of ventricles and unmyelinated white matter differed significantly compared with those of normal fetuses. Morphological brain changes after fetal surgery were not limited to effects on the circulation of cerebrospinal fluid. These observations may have implications for postnatal neurocognitive outcome. © 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- N. Mufti
- Elizabeth Garrett Anderson Institute for Women's HealthUniversity College LondonLondonUK
- School of Biomedical Engineering and Imaging Sciences (BMEIS)King's College LondonLondonUK
| | - J. Chappell
- School of Biomedical Engineering and Imaging Sciences (BMEIS)King's College LondonLondonUK
| | - M. Aertsen
- Department of RadiologyUniversity Hospitals Katholieke Universiteit (KU) LeuvenLeuvenBelgium
| | - M. Ebner
- School of Biomedical Engineering and Imaging Sciences (BMEIS)King's College LondonLondonUK
| | - L. Fidon
- School of Biomedical Engineering and Imaging Sciences (BMEIS)King's College LondonLondonUK
| | - J. Deprest
- Elizabeth Garrett Anderson Institute for Women's HealthUniversity College LondonLondonUK
- Department of Obstetrics and GynaecologyUniversity Hospitals Katholieke Universiteit (KU) LeuvenLeuvenBelgium
| | - A. L. David
- Elizabeth Garrett Anderson Institute for Women's HealthUniversity College LondonLondonUK
- Department of Obstetrics and GynaecologyUniversity Hospitals Katholieke Universiteit (KU) LeuvenLeuvenBelgium
- National Institute for Health and Care Research University College London Hospitals Biomedical Research CentreLondonUK
| | - A. Melbourne
- School of Biomedical Engineering and Imaging Sciences (BMEIS)King's College LondonLondonUK
- Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| |
Collapse
|
5
|
Aertsen M. The Role of Fetal Brain Magnetic Resonance Imaging in Current Fetal Medicine. J Belg Soc Radiol 2022; 106:130. [PMID: 36569393 PMCID: PMC9756908 DOI: 10.5334/jbsr.3000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
In open spina bifida we studied the use of MRI for the assessment of the posterior fossa and prevalence of supratentorial anomalies before and after in utero repair. New postprocessing techniques were applied to evaluate fetal brain development in this population compared to controls. In fetuses with congenital diaphragmatic hernia, we evaluated the brain development in comparison to controls. Diffusion weighted imaging was applied to study difference between fetuses with proven first trimester cytomegalovirus infection and controls. Finally, we investigated the value of third trimester fetal brain MRI after treatment for complicated monochorionic diamniotic pregnancies.
Collapse
|
6
|
Trigo L, Eixarch E, Bottura I, Dalaqua M, Barbosa AA, De Catte L, Demaerel P, Dymarkowski S, Deprest J, Lapa DA, Aertsen M, Gratacos E. Prevalence of supratentorial anomalies assessed by magnetic resonance imaging in fetuses with open spina bifida. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 59:804-812. [PMID: 34396624 DOI: 10.1002/uog.23761] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/29/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES To determine the prevalence of brain anomalies at the time of preoperative magnetic resonance imaging (MRI) assessment in fetuses eligible for prenatal open spina bifida (OSB) repair, and to explore the relationship between brain abnormalities and features of the spinal defect. METHODS This was a retrospective cross-sectional study, conducted in three fetal medicine centers, of fetuses eligible for OSB fetal surgery repair between January 2009 and December 2019. MRI images obtained as part of the presurgical assessment were re-evaluated by two independent observers, blinded to perinatal results, to assess: (1) the type and area of the defect and its anatomical level; (2) the presence of any structural central nervous system (CNS) anomaly and abnormal ventricular wall; and (3) fetal head and brain biometry. Binary regression analyses were performed and data were adjusted for type of defect, upper level of the lesion (ULL), gestational age (GA) at MRI and fetal medicine center. Multiple logistic regression analysis was performed in order to identify lesion characteristics and brain anomalies associated with a higher risk of presence of abnormal corpus callosum (CC) and/or heterotopia. RESULTS Of 115 fetuses included, 91 had myelomeningocele and 24 had myeloschisis. Anatomical level of the lesion was thoracic in seven fetuses, L1-L2 in 13, L3-L5 in 68 and sacral in 27. Median GA at MRI was 24.7 (interquartile range, 23.0-25.7) weeks. Overall, 52.7% of cases had at least one additional brain anomaly. Specifically, abnormal CC was observed in 50.4% of cases and abnormality of the ventricular wall in 19.1%, of which 4.3% had nodular heterotopia. Factors associated independently with higher risk of abnormal CC and/or heterotopia were non-sacral ULL (odds ratio (OR), 0.51 (95% CI, 0.26-0.97); P = 0.043), larger ventricular width (per mm) (OR, 1.23 (95% CI, 1.07-1.43); P = 0.005) and presence of abnormal cavum septi pellucidi (OR, 3.76 (95% CI, 1.13-12.48); P = 0.031). CONCLUSIONS Half of the fetuses assessed for OSB repair had an abnormal CC and/or an abnormal ventricular wall prior to prenatal repair. The likelihood of brain abnormalities was increased in cases with a non-sacral lesion and wider lateral ventricles. These findings highlight the importance of a detailed preoperative CNS evaluation of fetuses with OSB. © 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- L Trigo
- BCNatal-Fetal Medicine Research Center, Hospital Clínic and Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- My FetUZ Fetal Research Center, Department of Development and Regeneration, Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - E Eixarch
- BCNatal-Fetal Medicine Research Center, Hospital Clínic and Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - I Bottura
- Fetal and Neonatal Therapy Group, Hospital Sabará, São Paulo, Brazil
| | - M Dalaqua
- Department of Radiology, Hospital Israelita Albert Einsten, São Paulo, Brazil
- School of Medicine, Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), São Paulo, Brazil
| | - A A Barbosa
- Fetal and Neonatal Therapy Group, Hospital Sabará, São Paulo, Brazil
- School of Medicine, Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), São Paulo, Brazil
| | - L De Catte
- Department of Radiology, UZ KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, UZ KU Leuven, Leuven, Belgium
| | - P Demaerel
- Department of Radiology, UZ KU Leuven, Leuven, Belgium
| | - S Dymarkowski
- Department of Radiology, UZ KU Leuven, Leuven, Belgium
| | - J Deprest
- My FetUZ Fetal Research Center, Department of Development and Regeneration, Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, UZ KU Leuven, Leuven, Belgium
- Institute of Women's Health, University College London, London, UK
| | - D A Lapa
- Fetal Therapy Program, Hospital Israelita Albert Einsten, São Paulo, Brazil
- Department of Hospital Infantil Sabará, São Paulo, Brazil
| | - M Aertsen
- Department of Radiology, UZ KU Leuven, Leuven, Belgium
| | - E Gratacos
- BCNatal-Fetal Medicine Research Center, Hospital Clínic and Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| |
Collapse
|
7
|
Paschereit F, Schindelmann KH, Hummel M, Schneider J, Stoltenburg-Didinger G, Kaindl AM. Cerebral Abnormalities in Spina Bifida: A Neuropathological Study. Pediatr Dev Pathol 2022; 25:107-123. [PMID: 34614376 PMCID: PMC9109215 DOI: 10.1177/10935266211040500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Spina bifida (SB) is the most common neural tube defect in humans. Here, we analyzed systematically the neuropathological findings of the brain in SB cases. METHODS 79 cases with SB aperta (SBA) and 6 cases with SB occulta (SBO) autopsied at the Charité Neuropathology from 1974 to 2000 were re-evaluated retrospectively. For this, case files and spinal cord as well as brain sections were studied. RESULTS While no brain malformations were detected in SBO cases, 95% of SBA cases had brain malformations. Main brain anomalies identified were hydrocephalus (71%), Chiari II malformation (36%), heterotopia (34%), other cerebellar anomalies (36%), gyrification defects (33%), and ependymal denudation (29%). Hydrocephalus was observed as early as gestational week 17 and was highly associated to Chiari II and ependymal denudation. In 55% SBA was accompanied by further anomalies not primarily affecting the CNS. CONCLUSION We confirm using neuropathologic methods brain malformations in most SBA but none in SBO cases. In addition to our previous radiologic study, we now demonstrate the high prevalence of cerebellar malformations and cerebral heterotopias in SBA. The early detection of hydrocephalus and Chiari II malformation in fetuses raises the question whether these arise parallel rather than in strict temporal sequence.
Collapse
Affiliation(s)
- Fabienne Paschereit
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Berlin, Germany,Department of Pediatric Neurology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Kim Hannah Schindelmann
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Berlin, Germany,Department of Pediatric Neurology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Hummel
- Institute of Pathology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Joanna Schneider
- Department of Pediatric Neurology, Charité—Universitätsmedizin Berlin, Berlin, Germany,Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité—Universitätsmedizin Berlin, Berlin, Germany
| | | | - Angela M Kaindl
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Berlin, Germany,Department of Pediatric Neurology, Charité—Universitätsmedizin Berlin, Berlin, Germany,Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité—Universitätsmedizin Berlin, Berlin, Germany,Angela M Kaindl, Department of Pediatric Neurology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
8
|
Mufti N, Sacco A, Aertsen M, Ushakov F, Ourselin S, Thomson D, Deprest J, Melbourne A, David AL. What brain abnormalities can magnetic resonance imaging detect in foetal and early neonatal spina bifida: a systematic review. Neuroradiology 2022; 64:233-245. [PMID: 34792623 PMCID: PMC8789702 DOI: 10.1007/s00234-021-02853-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/03/2021] [Indexed: 12/02/2022]
Abstract
PURPOSE Open spina bifida (OSB) encompasses a wide spectrum of intracranial abnormalities. With foetal surgery as a new treatment option, robust intracranial imaging is important for comprehensive preoperative evaluation and prognostication. We aimed to determine the incidence of infratentorial and supratentorial findings detected by magnetic resonance imaging (MRI) alone and MRI compared to ultrasound. METHODS Two systematic reviews comparing MRI to ultrasound and MRI alone were conducted on MEDLINE, EMBASE, and Cochrane databases identifying studies of foetal OSB from 2000 to 2020. Intracranial imaging findings were analysed at ≤ 26 or > 26 weeks gestation and neonates (≤ 28 days). Data was independently extracted by two reviewers and meta-analysis was performed where possible. RESULTS Thirty-six studies reported brain abnormalities detected by MRI alone in patients who previously had an ultrasound. Callosal dysgenesis was identified in 4/29 cases (2 foetuses ≤ 26 weeks, 1 foetus under any gestation, and 1 neonate ≤ 28 days) (15.1%, CI:5.7-34.3%). Heterotopia was identified in 7/40 foetuses ≤ 26 weeks (19.8%, CI:7.7-42.2%), 9/36 foetuses > 26 weeks (25.3%, CI:13.7-41.9%), and 64/250 neonates ≤ 28 days (26.9%, CI:15.3-42.8%). Additional abnormalities included aberrant cortical folding and other Chiari II malformation findings such as lower cervicomedullary kink level, tectal beaking, and hypoplastic tentorium. Eight studies compared MRI directly to ultrasound, but due to reporting inconsistencies, it was not possible to meta-analyse. CONCLUSION MRI is able to detect anomalies hitherto underestimated in foetal OSB which may be important for case selection. In view of increasing prenatal OSB surgery, further studies are required to assess developmental consequences of these findings.
Collapse
Affiliation(s)
- Nada Mufti
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- School of Biomedical Engineering and Imaging Sciences (BMEIS), King's College London, London, UK
| | - Adalina Sacco
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- Fetal Medicine Unit, University College London Hospital NHS Foundation Trust, London, UK
| | - Michael Aertsen
- Department of Radiology, University Hospitals Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Fred Ushakov
- Fetal Medicine Unit, University College London Hospital NHS Foundation Trust, London, UK
| | - Sebastian Ourselin
- School of Biomedical Engineering and Imaging Sciences (BMEIS), King's College London, London, UK
| | - Dominic Thomson
- Paediatric Neurosurgery Department, Great Ormond Street Hospital for Children, London, UK
| | - Jan Deprest
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- Department of Obstetrics and Gynaecology, University Hospitals Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Andrew Melbourne
- School of Biomedical Engineering and Imaging Sciences (BMEIS), King's College London, London, UK
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- Department of Obstetrics and Gynaecology, University Hospitals Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Mufti N, Aertsen M, Ebner M, Fidon L, Patel P, Rahman MBA, Brackenier Y, Ekart G, Fernandez V, Vercauteren T, Ourselin S, Thomson D, De Catte L, Demaerel P, Deprest J, David AL, Melbourne A. Cortical spectral matching and shape and volume analysis of the fetal brain pre- and post-fetal surgery for spina bifida: a retrospective study. Neuroradiology 2021; 63:1721-1734. [PMID: 33934181 PMCID: PMC8460513 DOI: 10.1007/s00234-021-02725-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/22/2021] [Indexed: 12/03/2022]
Abstract
PURPOSE A retrospective study was performed to study the effect of fetal surgery on brain development measured by MRI in fetuses with myelomeningocele (MMC). METHODS MRI scans of 12 MMC fetuses before and after surgery were compared to 24 age-matched controls without central nervous system abnormalities. An automated super-resolution reconstruction technique generated isotropic brain volumes to mitigate 2D MRI fetal motion artefact. Unmyelinated white matter, cerebellum and ventricles were automatically segmented, and cerebral volume, shape and cortical folding were thereafter quantified. Biometric measures were calculated for cerebellar herniation level (CHL), clivus-supraocciput angle (CSO), transverse cerebellar diameter (TCD) and ventricular width (VW). Shape index (SI), a mathematical marker of gyrification, was derived. We compared cerebral volume, surface area and SI before and after MMC fetal surgery versus controls. We additionally identified any relationship between these outcomes and biometric measurements. RESULTS MMC ventricular volume/week (mm3/week) increased after fetal surgery (median: 3699, interquartile range (IQR): 1651-5395) compared to controls (median: 648, IQR: 371-896); P = 0.015. The MMC SI is higher pre-operatively in all cerebral lobes in comparison to that in controls. Change in SI/week in MMC fetuses was higher in the left temporal lobe (median: 0.039, IQR: 0.021-0.054), left parietal lobe (median: 0.032, IQR: 0.023-0.039) and right occipital lobe (median: 0.027, IQR: 0.019-0.040) versus controls (P = 0.002 to 0.005). Ventricular volume (mm3) and VW (mm) (r = 0.64), cerebellar volume and TCD (r = 0.56) were moderately correlated. CONCLUSIONS Following fetal myelomeningocele repair, brain volume, shape and SI were significantly different from normal in most cerebral layers. Morphological brain changes after fetal surgery are not limited to hindbrain herniation reversal. These findings may have neurocognitive outcome implications and require further evaluation.
Collapse
Affiliation(s)
- Nada Mufti
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, 1st Floor Charles Bell House, 43-45 Foley Street, W1W 7TS, London, UK.
- School of Biomedical Engineering & Imaging Sciences (BMEIS), King's College London, London, UK.
| | - Michael Aertsen
- Department of Radiology, University Hospitals Katholieke Universiteit (KU), Leuven, Belgium
| | - Michael Ebner
- School of Biomedical Engineering & Imaging Sciences (BMEIS), King's College London, London, UK
- Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Lucas Fidon
- School of Biomedical Engineering & Imaging Sciences (BMEIS), King's College London, London, UK
| | - Premal Patel
- Radiology Department, Great Ormond Street Hospital for Children, London, UK
| | | | - Yannick Brackenier
- School of Biomedical Engineering & Imaging Sciences (BMEIS), King's College London, London, UK
| | - Gregor Ekart
- School of Biomedical Engineering & Imaging Sciences (BMEIS), King's College London, London, UK
| | - Virginia Fernandez
- School of Biomedical Engineering & Imaging Sciences (BMEIS), King's College London, London, UK
| | - Tom Vercauteren
- School of Biomedical Engineering & Imaging Sciences (BMEIS), King's College London, London, UK
- Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Sebastien Ourselin
- School of Biomedical Engineering & Imaging Sciences (BMEIS), King's College London, London, UK
- Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Dominic Thomson
- Paediatric Neurosurgery Department, Great Ormond Street Hospital for Children, London, UK
| | - Luc De Catte
- Department of Obstetrics and Gynaecology, University Hospitals, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
- Cluster 'Women and Child', Dept. Development and Regeneration, Biomedical Sciences, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Philippe Demaerel
- Department of Radiology, University Hospitals Katholieke Universiteit (KU), Leuven, Belgium
| | - Jan Deprest
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, 1st Floor Charles Bell House, 43-45 Foley Street, W1W 7TS, London, UK
- Department of Obstetrics and Gynaecology, University Hospitals, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
- Cluster 'Women and Child', Dept. Development and Regeneration, Biomedical Sciences, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, 1st Floor Charles Bell House, 43-45 Foley Street, W1W 7TS, London, UK
- Department of Obstetrics and Gynaecology, University Hospitals, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
- Cluster 'Women and Child', Dept. Development and Regeneration, Biomedical Sciences, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Andrew Melbourne
- School of Biomedical Engineering & Imaging Sciences (BMEIS), King's College London, London, UK
- Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
10
|
Signs of Reduced Basal Progenitor Levels and Cortical Neurogenesis in Human Fetuses with Open Spina Bifida at 11-15 Weeks of Gestation. J Neurosci 2020; 40:1766-1777. [PMID: 31953373 DOI: 10.1523/jneurosci.0192-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 12/06/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022] Open
Abstract
Open spina bifida (OSB) is one of the most prevalent congenital malformations of the CNS that often leads to severe disabilities. Previous studies reported the volume and thickness of the neocortex to be altered in children and adolescents diagnosed with OSB. Until now, the onset and the underlying cause of the atypical neocortex organization in OSB patients remain largely unknown. To examine the effects of OSB on fetal neocortex development, we analyzed human fetuses of both sexes diagnosed with OSB between 11 and 15 weeks of gestation by immunofluorescence for established neuronal and neural progenitor marker proteins and compared the results with healthy controls of the same, or very similar, gestational age. Our data indicate that neocortex development in OSB fetuses is altered as early as 11 weeks of gestation. We observed a marked reduction in the radial thickness of the OSB neocortex, which appears to be attributable to a massive decrease in the number of deep- and upper-layer neurons per field, and found a marked reduction in the number of basal progenitors (BPs) per field in the OSB neocortex, consistent with an impairment of cortical neurogenesis underlying the neuronal decrease in OSB fetuses. Moreover, our data suggest that the decrease in BP number in the OSB neocortex may be associated with BPs spending a lesser proportion of their cell cycle in M-phase. Together, our findings expand our understanding of the pathophysiology of OSB and support the need for an early fetal therapy (i.e., in the first trimester of pregnancy).SIGNIFICANCE STATEMENT Open spina bifida (OSB) is one of the most prevalent congenital malformations of the CNS. This study provides novel data on neocortex development of human OSB fetuses. Our data indicate that neocortex development in OSB fetuses is altered as early as 11 weeks of gestation. We observed a marked reduction in the radial thickness of the OSB neocortex, which appears to be attributable a decrease in the number of deep- and upper-layer neurons per field, and found a marked reduction in the number of basal progenitors per field, indicating that impaired neurogenesis underlies the neuronal decrease in OSB fetuses. Our findings support the need for an early fetal therapy and expand our understanding of the pathophysiology of OSB.
Collapse
|
11
|
Abstract
A randomized trial demonstrated that fetal spina bifida (SB) repair is safe and effective yet invasive. New less invasive techniques are proposed but are not supported by adequate experimental studies. A validated animal model is needed to bridge the translational gap to the clinic and should mimic the human condition. Introducing a standardized method, we comprehensively and reliably characterize the SB phenotype in two lamb surgical models with and without myelotomy as compared to normal lambs. Hindbrain herniation measured on brain magnetic resonance imaging (MRI) was the primary outcome. Secondary outcomes included gross examination with cerebrospinal fluid (CSF) leakage test, neurological examination with locomotor assessment, whole-body MRI, motor and somatosensory evoked potentials; brain, spinal cord, hindlimb muscles, bladder and rectum histology and/or immunohistochemistry. We show that the myelotomy model best phenocopies the anatomy, etiopathophysiology and symptomatology of non-cystic SB. This encompasses hindbrain herniation, ventriculomegaly, posterior fossa anomalies, loss of brain neurons; lumbar CSF leakage, hindlimb somatosensory-motor deficit with absence of motor and somatosensory evoked potentials due to loss of spinal cord neurons, astroglial cells and myelin; urinary incontinence. This model obtains the highest validity score for SB animal models and is adequate to assess the efficacy of novel fetal therapies.
Collapse
|
12
|
Ware AL, Kulesz PA, Juranek J, Cirino PT, Fletcher JM. Cognitive control and associated neural correlates in adults with spina bifida myelomeningocele. Neuropsychology 2017; 31:411-423. [PMID: 28206781 DOI: 10.1037/neu0000350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Accelerated aging can occur in adult survivors of neurodevelopmental disorders, but has been narrowly studied in spina bifida myelomeningocele (SBM). Since discrete aspects of cognitive control and related neural network macrostructure deteriorate in normal aging, the specificity and trajectory of cognition and neuropathology incurred across adulthood in SBM were examined. METHOD Adults (N = 120) with and without SBM completed working memory span and manipulation tasks, and an inhibitory control task. A subset (n = 53) underwent structural MRI. Effects of group, age, and their interaction on performance and select gray matter volumes were examined. RESULTS Adults with SBM had significantly poorer working memory accuracy and overall inhibitory control performance than typical peers. Age negatively predicted inhibitory control. Group × Age significantly interacted on span accuracy; advanced age related to diminished performance in typical adults, but not in adults with SBM. SBM related to disproportionately enlarged cortical and putamen and reduced hippocampus volumes. Group × Age significantly interacted on cortical, but not subcortical gray matter volumes. Dorsolateral prefrontal, hippocampus, and putamen volumes negatively correlated with cognitive performance. CONCLUSIONS Supporting previous literature, current findings elucidated a profile of executive impairment in SBM that was maintained in a parallel maturational trajectory to typical aging. Accelerated aging in cognitive control or subcortical gray matter was not supported in SBM. However, reductions in anterior and posterior cortical regions were exacerbated in older adults with SBM compared with typical peers. Overall results supported persistent anomalous neurodevelopmental maturation across the life span in SBM that related to diminished cognitive control. (PsycINFO Database Record
Collapse
Affiliation(s)
| | | | - Jenifer Juranek
- Department of Pediatrics, Children's Learning Institute BRAIN Lab, University of Texas Health Science Center at Houston
| | | | | |
Collapse
|
13
|
Are Shunt Revisions Associated with IQ in Congenital Hydrocephalus? A Meta -Analysis. Neuropsychol Rev 2016; 26:329-339. [PMID: 27815765 PMCID: PMC9996637 DOI: 10.1007/s11065-016-9335-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 10/10/2016] [Indexed: 01/26/2023]
Abstract
Although it is generally acknowledged that shunt revisions are associated with reductions in cognitive functions in individuals with congenital hydrocephalus, the literature yields mixed results and is inconclusive. The current study used meta-analytic methods to empirically synthesize studies addressing the association of shunt revisions and IQ in individuals with congenital hydrocephalus. Six studies and three in-house datasets yielded 11 independent samples for meta-analysis. Groups representing lower and higher numbers of shunt revisions were coded to generate effect sizes for differences in IQ scores. Mean effect size across studies was statistically significant, but small (Hedges' g = 0.25, p < 0.001, 95 % CI [0.08, 0.43]) with more shunt revisions associated with lower IQ scores. Results show an association of lower IQ and more shunt revisions of about 3 IQ points, a small effect, but within the error of measurement associated with IQ tests. Although clinical significance of this effect is not clear, results suggest that repeated shunt revisions because of shunt failure is associated with a reduction in cognitive functions.
Collapse
|
14
|
Ware AL, Kulesz PA, Williams VJ, Juranek J, Cirino PT, Fletcher JM. Gray matter integrity within regions of the dorsolateral prefrontal cortical-subcortical network predicts executive function and fine motor dexterity in spina bifida. Neuropsychology 2016; 30:492-501. [PMID: 26752120 PMCID: PMC4840030 DOI: 10.1037/neu0000266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES This study examined microstructural properties of cortical and subcortical gray matter components of the dorsolateral prefrontal (DLPFC) cortical-subcortical circuit in relation to parent-rated executive function and fine motor dexterity performance in youth with spina bifida myelomeningocele (SBM). Aberrant gray matter integrity of the DLPFC, basal ganglia nuclei, and thalamus were hypothesized to differentially relate to neurobehavioral outcomes. METHODS Forty-nine youth between 8 and 18 years (M = 12.34) old with SBM underwent a 3T MRI including diffusion tensor imaging. Neurobehavioral measures of parent-rated executive function and fine motor dexterity were obtained from a standardized neuropsychological evaluation. Relations among indices of gray matter microstructural integrity (mean diffusivity [MD], fractional anisotropy [FA], cortical thickness) and neurobehavior were examined using 3 correlational methods to enhance reliability of brain-behavior relations. RESULTS In SBM, higher FA values in the caudate were associated with poorer behavioral regulation. Higher FA values in the putamen and greater DLPFC thickness were both associated with poorer fine motor dexterity. CONCLUSION Behavioral regulation and FA in the caudate related to behavioral inhibition in SBM. Similarly, associations between fine motor dexterity and indices of gray matter integrity in the putamen and DLPFC support fronto-striatal involvement in motor control in SBM. Examination of these neurobehavioral correlates revealed a pattern of attenuated behavioral impairments when gray matter structure was more similar to that of typically developing youth. (PsycINFO Database Record
Collapse
Affiliation(s)
- Ashley L. Ware
- Department of Psychology and Texas Institute for Measurement, Evaluation and Statistics, University of Houston, 4811 Calhoun Road, 3 Floor, Houston, TX 77204-6022
| | - Paulina A. Kulesz
- Department of Psychology and Texas Institute for Measurement, Evaluation and Statistics, University of Houston, 4811 Calhoun Road, 3 Floor, Houston, TX 77204-6022
| | - Victoria J. Williams
- Department of Psychology and Texas Institute for Measurement, Evaluation and Statistics, University of Houston, 4811 Calhoun Road, 3 Floor, Houston, TX 77204-6022
| | - Jenifer Juranek
- Department of Pediatrics, Children’s Learning Institute BRAIN Lab, University of Texas Health Science Center at Houston, 6655 Travis Street Suite 1000, Houston, Texas 77030
| | - Paul T. Cirino
- Department of Psychology and Texas Institute for Measurement, Evaluation and Statistics, University of Houston, 4811 Calhoun Road, 3 Floor, Houston, TX 77204-6022
| | - Jack M. Fletcher
- Department of Psychology and Texas Institute for Measurement, Evaluation and Statistics, University of Houston, 4811 Calhoun Road, 3 Floor, Houston, TX 77204-6022
| |
Collapse
|
15
|
Bradley KA, Juranek J, Romanowska-Pawliczek A, Hannay HJ, Cirino PT, Dennis M, Kramer LA, Fletcher JM. Plasticity of Interhemispheric Temporal Lobe White Matter Pathways Due to Early Disruption of Corpus Callosum Development in Spina Bifida. Brain Connect 2016; 6:238-48. [PMID: 26798959 DOI: 10.1089/brain.2015.0387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Spina bifida myelomeningocele (SBM) is commonly associated with anomalous development of the corpus callosum (CC) because of congenital partial hypogenesis and hydrocephalus-related hypoplasia. It represents a model disorder to examine the effects of early disruption of CC neurodevelopment and the plasticity of interhemispheric white matter connections. Diffusion tensor imaging was acquired on 76 individuals with SBM and 27 typically developing individuals, aged 8-36 years. Probabilistic tractography was used to isolate the interhemispheric connections between the posterior superior temporal lobes, which typically traverse the posterior third of the CC. Early disruption of CC development resulted in restructuring of interhemispheric connections through alternate commissures, particularly the anterior commissure (AC). These rerouted fibers were present in people with SBM and both CC hypoplasia and hypogenesis. In addition, microstructural integrity was reduced in the interhemispheric temporal tract in people with SBM, indexed by lower fractional anisotropy, axial diffusivity, and higher radial diffusivity. Interhemispheric temporal tract volume was positively correlated with total volume of the CC, such that more severe underdevelopment of the CC was associated with fewer connections between the posterior temporal lobes. Therefore, both the macrostructure and microstructure of this interhemispheric tract were reduced, presumably as a result of more extensive CC malformation. The current findings suggest that early disruption in CC development reroutes interhemispheric temporal fibers through both the AC and more anterior sections of the CC in support of persistent hypotheses that the AC may serve a compensatory function in atypical CC development.
Collapse
Affiliation(s)
- Kailyn A Bradley
- 1 Department of Psychology, University of Houston , Houston, Texas.,2 Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jenifer Juranek
- 3 Department of Pediatrics, Children's Learning Institute, University of Texas Health Science Center at Houston , Houston, Texas
| | - Anna Romanowska-Pawliczek
- 3 Department of Pediatrics, Children's Learning Institute, University of Texas Health Science Center at Houston , Houston, Texas
| | - H Julia Hannay
- 1 Department of Psychology, University of Houston , Houston, Texas
| | - Paul T Cirino
- 1 Department of Psychology, University of Houston , Houston, Texas
| | - Maureen Dennis
- 4 Program in Neurosciences and Mental Health, The Hospital for Sick Children , Toronto, Canada
| | - Larry A Kramer
- 5 Department of Diagnostic and Interventional Radiology, University of Texas Health Science Center at Houston , Houston, Texas
| | - Jack M Fletcher
- 1 Department of Psychology, University of Houston , Houston, Texas
| |
Collapse
|
16
|
Kortekaas R, Nanetti L, Overgoor MLE, de Jong BM, Georgiadis JR. Central Somatosensory Networks Respond to a De Novo Innervated Penis: A Proof of Concept in Three Spina Bifida Patients. J Sex Med 2015; 12:1865-77. [PMID: 26293889 DOI: 10.1111/jsm.12967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Spina bifida (SB) causes low spinal lesions, and patients often have absent genital sensation and a highly impaired sex life. TOMAX (TO MAX-imize sensation, sexuality and quality of life) is a surgical procedure whereby the penis is newly innervated using a sensory nerve originally targeting the inguinal area. Most TOMAX-treated SB patients initially experience penile stimulation as inguinal sensation, but eventually, the perception shifts to penis sensation with erotic feelings. The brain mechanisms mediating this perceptual shift, which are completely unknown, could hold relevance for understanding the brain's role in sexual development. AIM The aim of this study was to study how a newly perceived penis would be mapped onto the brain after a lifelong disconnection. METHODS Three TOMAX-treated SB patients participated in a functional magnetic resonance imagery experiment while glans penis, inguinal area, and index finger were stimulated with a paint brush. MAIN OUTCOME MEASURE Brush stimulation-induced activation of the primary somatosensory cortex (SI) and functional connectivity between SI and remote cerebral regions. RESULTS Stimulation of the re-innervated side of the glans penis and the intact contralateral inguinal area activated a very similar location on SI. Yet, connectivity analysis identified distinct SI functional networks. In all three subjects, the middle cingulate cortex (MCC) and the parietal operculum-insular cortex (OIC) were functionally connected to SI activity during glans penis stimulation, but not to SI activity induced by inguinal stimulation. CONCLUSIONS Investigating central somatosensory network activity to a de novo innervated penis in SB patients is feasible and informative. The consistent involvement of MCC and OIC above and beyond the brain network expected on the basis of inguinal stimulation suggests that these areas mediate the novel penis sensation in these patients. The potential role of MCC and OIC in this process is discussed, along with recommendations for further research.
Collapse
Affiliation(s)
- Rudie Kortekaas
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Luca Nanetti
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Max L E Overgoor
- Department of Plastic, Reconstructive and Hand Surgery, Isala Klinieken, Zwolle, The Netherlands
| | - Bauke M de Jong
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Janniko R Georgiadis
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
17
|
Dennis M, Cirino PT, Simic N, Juranek J, Taylor WP, Fletcher JM. White and grey matter relations to simple, choice, and cognitive reaction time in spina bifida. Brain Imaging Behav 2015; 10:238-51. [DOI: 10.1007/s11682-015-9388-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Abstract
Spina bifida is a birth defect in which the vertebral column is open, often with spinal cord involvement. The most clinically significant subtype is myelomeningocele (open spina bifida), which is a condition characterized by failure of the lumbosacral spinal neural tube to close during embryonic development. The exposed neural tissue degenerates in utero, resulting in neurological deficit that varies with the level of the lesion. Occurring in approximately 1 per 1,000 births worldwide, myelomeningocele is one of the most common congenital malformations, but its cause is largely unknown. The genetic component is estimated at 60-70%, but few causative genes have been identified to date, despite much information from mouse models. Non-genetic maternal risk factors include reduced folate intake, anticonvulsant therapy, diabetes mellitus and obesity. Primary prevention by periconceptional supplementation with folic acid has been demonstrated in clinical trials, leading to food fortification programmes in many countries. Prenatal diagnosis is achieved by ultrasonography, enabling women to seek termination of pregnancy. Individuals who survive to birth have their lesions closed surgically, with subsequent management of associated defects, including the Chiari II brain malformation, hydrocephalus, and urological and orthopaedic sequelae. Fetal surgical repair of myelomeningocele has been associated with improved early neurological outcome compared with postnatal operation. Myelomeningocele affects quality of life during childhood, adolescence and adulthood, posing a challenge for individuals, families and society as a whole. For an illustrated summary of this Primer, visit: http://go.nature.com/fK9XNa.
Collapse
|
19
|
Kulesz PA, Treble-Barna A, Williams VJ, Juranek J, Cirino PT, Dennis M, Fletcher JM. Attention in spina bifida myelomeningocele: Relations with brain volume and integrity. NEUROIMAGE-CLINICAL 2015; 8:72-8. [PMID: 26106529 PMCID: PMC4473288 DOI: 10.1016/j.nicl.2015.03.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 12/02/2022]
Abstract
This study investigated the relations of tectal volume and superior parietal cortex, as well as alterations in tectocortical white matter connectivity, with the orienting and executive control attention networks in individuals with spina bifida myelomeningocele (SBM). Probabilistic diffusion tractography and quantification of tectal and superior parietal cortical volume were performed on 74 individuals aged 8–29 with SBM and a history of hydrocephalus. Behavioral assessments measured posterior (covert orienting) and anterior (conflict resolution, attentional control) attention network functions. Reduced tectal volume was associated with slower covert orienting; reduced superior parietal cortical volume was associated with slower conflict resolution; and increased axial diffusivity and radial diffusivity along both frontal and parietal tectocortical pathways were associated with reduced attentional control. Results suggest that components of both the orienting and executive control attention networks are impaired in SBM. Neuroanatomical disruption to the orienting network appears more robust and a direct consequence of characteristic midbrain dysmorphology; whereas, executive control difficulties may emerge from parietal cortical anomalies and reduced frontal and parietal cortical–subcortical white matter pathways susceptible to the pathophysiological effects of congenital hydrocephalus. We use robust correlations to model structure–function relations. We use a large sample of individuals with spina bifida myelomeningocele. Reduced tectal volume is associated with slower covert orienting. Reduced superior parietal cortical volume is associated with slower conflict resolution. Tectocortical pathways are associated with reduced attentional control.
Collapse
Affiliation(s)
- Paulina A Kulesz
- Department of Psychology, University of Houston, USA ; Texas Institute for Measurement, Evaluation and Statistics, University of Houston, USA
| | - Amery Treble-Barna
- Department of Physical Medicine and Rehabilitation, Cincinnati Children's Hospital Medical Center, USA
| | - Victoria J Williams
- Department of Psychology, University of Houston, USA ; Texas Institute for Measurement, Evaluation and Statistics, University of Houston, USA
| | - Jenifer Juranek
- Department of Pediatrics, University of Texas Health Science Center, USA
| | - Paul T Cirino
- Department of Psychology, University of Houston, USA ; Texas Institute for Measurement, Evaluation and Statistics, University of Houston, USA
| | - Maureen Dennis
- Department Of Surgery And Psychology, University Of Toronto, Canada
| | - Jack M Fletcher
- Department of Psychology, University of Houston, USA ; Texas Institute for Measurement, Evaluation and Statistics, University of Houston, USA
| |
Collapse
|
20
|
Treble-Barna A, Juranek J, Stuebing KK, Cirino PT, Dennis M, Fletcher JM. Prospective and episodic memory in relation to hippocampal volume in adults with spina bifida myelomeningocele. Neuropsychology 2015; 29:92-101. [PMID: 25068670 PMCID: PMC4286421 DOI: 10.1037/neu0000111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The present study examined prospective and episodic memory in relation to age, functional independence, and hippocampal volume in younger to middle-aged adults with spina bifida myelomeningocele (SBM) and typically developing (TD) adults. Prospective and episodic memory, as well as hippocampal volume, was reduced in adults with SBM relative to TD adults. Neither memory performance nor hippocampal volume showed greater decrements in older adults. Lower hippocampal volume was associated with reduced prospective memory in adults with SBM, and this relation was specific to the hippocampus and not to a contrast structure, the amygdala. Prospective memory mediated the relation between hippocampal volume and functional independence in adults with SBM. The results add to emerging evidence for reduced memory function in adults with SBM and provide quantitative evidence for compromised hippocampal macrostructure as a neural correlate of reduced memory in this population.
Collapse
Affiliation(s)
| | - Jenifer Juranek
- Department of Pediatrics, Children's Learning Institute, University of Texas Health Science Center at Houston
| | - Karla K Stuebing
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston
| | | | - Maureen Dennis
- Program in Neurosciences and Mental Health, Department of Psychology, The Hospital for Sick Children
| | | |
Collapse
|
21
|
Kulesz PA, Tian S, Juranek J, Fletcher JM, Francis DJ. Relations between volumetric measures of brain structure and attentional function in spina bifida: utilization of robust statistical approaches. Neuropsychology 2014; 29:212-25. [PMID: 25495830 DOI: 10.1037/neu0000166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Weak structure-function relations for brain and behavior may stem from problems in estimating these relations in small clinical samples with frequently occurring outliers. In the current project, we focused on the utility of using alternative statistics to estimate these relations. METHOD Fifty-four children with spina bifida meningomyelocele performed attention tasks and received MRI of the brain. Using a bootstrap sampling process, the Pearson product-moment correlation was compared with 4 robust correlations: the percentage bend correlation, the Winsorized correlation, the skipped correlation using the Donoho-Gasko median, and the skipped correlation using the minimum volume ellipsoid estimator. RESULTS All methods yielded similar estimates of the relations between measures of brain volume and attention performance. The similarity of estimates across correlation methods suggested that the weak structure-function relations previously found in many studies are not readily attributable to the presence of outlying observations and other factors that violate the assumptions behind the Pearson correlation. CONCLUSIONS Given the difficulty of assembling large samples for brain-behavior studies, estimating correlations using multiple, robust methods may enhance the statistical conclusion validity of studies yielding small, but often clinically significant, correlations.
Collapse
Affiliation(s)
| | - Siva Tian
- Department of Psychology, University of Houston
| | - Jenifer Juranek
- Children's Learning Institute, University of Texas-Houston Health Science
| | | | | |
Collapse
|
22
|
Ware AL, Juranek J, Williams VJ, Cirino PT, Dennis M, Fletcher JM. Anatomical and diffusion MRI of deep gray matter in pediatric spina bifida. NEUROIMAGE-CLINICAL 2014; 5:120-7. [PMID: 25057465 PMCID: PMC4097001 DOI: 10.1016/j.nicl.2014.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/15/2014] [Accepted: 05/20/2014] [Indexed: 01/10/2023]
Abstract
Individuals with spina bifida myelomeningocele (SBM) exhibit brain abnormalities in cortical thickness, white matter integrity, and cerebellar structure. Little is known about deep gray matter macro- and microstructure in this population. The current study utilized volumetric and diffusion-weighted MRI techniques to examine gray matter volume and microstructure in several subcortical structures: basal ganglia nuclei, thalamus, hippocampus, and amygdala. Sixty-six children and adolescents (ages 8–18; M = 12.0, SD = 2.73) with SBM and typically developing (TD) controls underwent T1- and diffusion-weighted neuroimaging. Microstructural results indicated that hippocampal volume was disproportionately reduced, whereas the putamen volume was enlarged in the group with SBM. Microstructural analyses indicated increased mean diffusivity (MD) and fractional anisotropy (FA) in the gray matter of most examined structures (i.e., thalamus, caudate, hippocampus), with the putamen exhibiting a unique pattern of decreased MD and increased FA. These results provide further support that SBM differentially disrupts brain regions whereby some structures are volumetrically normal whereas others are reduced or enlarged. In the hippocampus, volumetric reduction coupled with increased MD may imply reduced cellular density and aberrant organization. Alternatively, the enlarged volume and significantly reduced MD in the putamen suggest increased density. Spina bifida resulted in reduced hippocampal and enlarged putamen volumes. Spina bifida resulted in reduced MD and increased FA in the putamen. Periventricular regions were differentiated by increased MD and FA in spina bifida. Spina bifida resulted in greater FA for all regions, except the hippocampus.
Collapse
Affiliation(s)
- Ashley L Ware
- Department of Psychology, Texas Institute for Measurements, Evaluation and Statistics, University of Houston, 8201 Cullen St., Houston, TX 77204-6602, USA
| | - Jenifer Juranek
- Department of Pediatrics, Children's Learning Institute BRAIN Lab, University of Texas Health Science Center at Houston, 6655 Travis Street Suite 1000, Houston, TX 77030, USA
| | - Victoria J Williams
- Department of Psychology, Texas Institute for Measurements, Evaluation and Statistics, University of Houston, 8201 Cullen St., Houston, TX 77204-6602, USA
| | - Paul T Cirino
- Department of Psychology, Texas Institute for Measurements, Evaluation and Statistics, University of Houston, 8201 Cullen St., Houston, TX 77204-6602, USA
| | - Maureen Dennis
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada
| | - Jack M Fletcher
- Department of Psychology, Texas Institute for Measurements, Evaluation and Statistics, University of Houston, 8201 Cullen St., Houston, TX 77204-6602, USA
| |
Collapse
|
23
|
Dennis M, Spiegler BJ, Juranek JJ, Bigler ED, Snead OC, Fletcher JM. Age, plasticity, and homeostasis in childhood brain disorders. Neurosci Biobehav Rev 2013; 37:2760-73. [PMID: 24096190 PMCID: PMC3859812 DOI: 10.1016/j.neubiorev.2013.09.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 07/29/2013] [Accepted: 09/19/2013] [Indexed: 12/26/2022]
Abstract
It has been widely accepted that the younger the age and/or immaturity of the organism, the greater the brain plasticity, the young age plasticity privilege. This paper examines the relation of a young age to plasticity, reviewing human pediatric brain disorders, as well as selected animal models, human developmental and adult brain disorder studies. As well, we review developmental and childhood acquired disorders that involve a failure of regulatory homeostasis. Our core arguments are as follows:
Collapse
Affiliation(s)
- Maureen Dennis
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| | | | | | | | | | | |
Collapse
|
24
|
Williams VJ, Juranek J, Stuebing K, Cirino PT, Dennis M, Fletcher JM. Examination of frontal and parietal tectocortical attention pathways in spina bifida meningomyelocele using probabilistic diffusion tractography. Brain Connect 2013; 3:512-22. [PMID: 23937233 DOI: 10.1089/brain.2013.0171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abnormalities of the midbrain tectum are common but variable malformations in spina bifida meningomyelocele (SBM) and have been linked to neuropsychological deficits in attention orienting. The degree to which variations in tectum structure influence white matter (WM) connectivity to cortical regions is unknown. To assess the relationship of tectal structure and connectivity to frontal and parietal cortical regions, probabilistic diffusion tractography was performed on 106 individuals (80 SBM, 26 typically developing [TD]) to isolate anterior versus posterior tectocortical WM pathways. Results showed that those with SBM exhibited significantly reduced tectal volume, along with decreased fractional anisotropy (FA) in posterior but not anterior tectocortical WM pathways when compared with TD individuals. The group with SBM also showed greater within-subject discrepancies between frontal and parietal WM integrity compared with the TD group. Of those with SBM, qualitative classification of tectal beaking based on radiological review was associated with increased axial diffusivity across both anterior and posterior tectocortical pathways, relative to individuals with SBM and a normal appearing tectum. These results support previous volumetric findings of greater impairment to posterior versus anterior brain regions in SBM, and quantifiably relate tectal volume, tectocortical WM integrity, and tectal malformations in this population.
Collapse
|
25
|
Contribution of the corticospinal tract to motor impairment in spina bifida. Pediatr Neurol 2012; 47:270-8. [PMID: 22964441 DOI: 10.1016/j.pediatrneurol.2012.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 06/20/2012] [Indexed: 11/22/2022]
Abstract
We aimed to disentangle the proportional contributions of upper and lower motor neuron dysfunction to motor impairment in children with spina bifida. We enrolled 42 children (mean age, 11.2 years; standard deviation, 2.8 years) with spina bifida and 36 control children (mean age, 11.4 years; standard deviation, 2.6 years). Motor impairment was graded to severity scales in children with spina bifida. We recorded motor evoked potentials after transcranial and lumbosacral magnetic stimulation and compound muscle action potentials after electric nerve stimulation. Regarding lower motor neuron function, severely impaired children with spina bifida demonstrated smaller compound muscle action potential areas and lumbosacral motor evoked potential areas than control children; mildly impaired children hardly differed from control children. Compound muscle action potential latencies and lumbosacral motor evoked potential latencies did not differ between children with spina bifida and control children. Regarding upper motor neuron function, children with spina bifida demonstrated smaller transcranial motor evoked potential areas and longer central motor conduction times than control children. The smallest motor evoked potential areas and longest central motor conduction times were observed in severely impaired children. In children with spina bifida, the contribution of upper motor neuron dysfunction to motor impairment is more considerable than expected from clinical neurologic examination.
Collapse
|
26
|
Treble A, Juranek J, Stuebing KK, Dennis M, Fletcher JM. Functional significance of atypical cortical organization in spina bifida myelomeningocele: relations of cortical thickness and gyrification with IQ and fine motor dexterity. Cereb Cortex 2012; 23:2357-69. [PMID: 22875857 DOI: 10.1093/cercor/bhs226] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The cortex in spina bifida myelomeningocele (SBM) is atypically organized, but it is not known how specific features of atypical cortical organization promote or disrupt cognitive and motor function. Relations of deviant cortical thickness and gyrification with IQ and fine motor dexterity were investigated in 64 individuals with SBM and 26 typically developing (TD) individuals, aged 8-28 years. Cortical thickness and 3D local gyrification index (LGI) were quantified from 33 cortical regions per hemisphere using FreeSurfer. Results replicated previous findings, showing regions of higher and lower cortical thickness and LGI in SBM relative to the TD comparison individuals. Cortical thickness and LGI were negatively associated in most cortical regions, though less consistently in the TD group. Whereas cortical thickness and LGI tended to be negatively associated with IQ and fine motor outcomes in regions that were thicker or more gyrified in SBM, associations tended to be positive in regions that were thinner or less gyrified in SBM. The more deviant the levels of cortical thickness and LGI-whether higher or lower relative to the TD group-the more impaired the IQ and fine motor outcomes, suggesting that these cortical atypicalities in SBM are functionally maladaptive, rather than adaptive.
Collapse
Affiliation(s)
- Amery Treble
- Department of Psychology, University of Houston, Houston, TX, USA
| | | | | | | | | |
Collapse
|
27
|
Nabiuni M, Rasouli J, Parivar K, Kochesfehani HM, Irian S, Miyan JA. In vitro effects of fetal rat cerebrospinal fluid on viability and neuronal differentiation of PC12 cells. Fluids Barriers CNS 2012; 9:8. [PMID: 22494846 PMCID: PMC3386012 DOI: 10.1186/2045-8118-9-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 04/11/2012] [Indexed: 12/22/2022] Open
Abstract
Background Fetal cerebrospinal fluid (CSF) contains many neurotrophic and growth factors and has been shown to be capable of supporting viability, proliferation and differentiation of primary cortical progenitor cells. Rat pheochromocytoma PC12 cells have been widely used as an in vitro model of neuronal differentiation since they differentiate into sympathetic neuron-like cells in response to growth factors. This study aimed to establish whether PC12 cells were responsive to fetal CSF and therefore whether they might be used to investigate CSF physiology in a stable cell line lacking the time-specific response patterns of primary cells previously described. Methods In vitro assays of viability, proliferation and differentiation were carried out after incubation of PC12 cells in media with and without addition of fetal rat CSF. An MTT tetrazolium assay was used to assess cell viability and/or cell proliferation. Expression of neural differentiation markers (MAP-2 and β-III tubulin) was determined by immunocytochemistry. Formation and growth of neurites was measured by image analysis. Results PC12 cells differentiate into neuronal cell types when exposed to bFGF. Viability and cell proliferation of PC12 cells cultured in CSF-supplemented medium from E18 rat fetuses were significantly elevated relative to the control group. Neuronal-like outgrowths from cells appeared following the application of bFGF or CSF from E17 and E19 fetuses but not E18 or E20 CSF. Beta-III tubulin was expressed in PC12 cells cultured in any media except that supplemented with E18 CSF. MAP-2 expression was found in control cultures and in those with E17 and E19 CSF. MAP2 was located in neurites except in E17 CSF when the whole cell was positive. Conclusions Fetal rat CSF supports viability and stimulates proliferation and neurogenic differentiation of PC12 cells in an age-dependent way, suggesting that CSF composition changes with age. This feature may be important in vivo for the promotion of normal brain development. There were significant differences in the effects on PC12 cells compared to primary cortical cells. This suggests there is an interaction in vivo between developmental stage of cells and the composition of CSF. The data presented here support an important, perhaps driving role for CSF composition, specifically neurotrophic factors, in neuronal survival, proliferation and differentiation. The effects of CSF on PC12 cells can thus be used to further investigate the role of CSF in driving development without the confounding issues of using primary cells.
Collapse
Affiliation(s)
- Mohammad Nabiuni
- Faculty of Life sciences, The University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK.
| | | | | | | | | | | |
Collapse
|
28
|
Awad RA. Neurogenic bowel dysfunction in patients with spinal cord injury, myelomeningocele, multiple sclerosis and Parkinson’s disease. World J Gastroenterol 2011; 17:5035-48. [PMID: 22171138 PMCID: PMC3235587 DOI: 10.3748/wjg.v17.i46.5035] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/20/2011] [Accepted: 06/27/2011] [Indexed: 02/06/2023] Open
Abstract
Exciting new features have been described concerning neurogenic bowel dysfunction, including interactions between the central nervous system, the enteric nervous system, axonal injury, neuronal loss, neurotransmission of noxious and non-noxious stimuli, and the fields of gastroenterology and neurology. Patients with spinal cord injury, myelomeningocele, multiple sclerosis and Parkinson’s disease present with serious upper and lower bowel dysfunctions characterized by constipation, incontinence, gastrointestinal motor dysfunction and altered visceral sensitivity. Spinal cord injury is associated with severe autonomic dysfunction, and bowel dysfunction is a major physical and psychological burden for these patients. An adult myelomeningocele patient commonly has multiple problems reflecting the multisystemic nature of the disease. Multiple sclerosis is a neurodegenerative disorder in which axonal injury, neuronal loss, and atrophy of the central nervous system can lead to permanent neurological damage and clinical disability. Parkinson's disease is a multisystem disorder involving dopaminergic, noradrenergic, serotoninergic and cholinergic systems, characterized by motor and non-motor symptoms. Parkinson's disease affects several neuronal structures outside the substantia nigra, among which is the enteric nervous system. Recent reports have shown that the lesions in the enteric nervous system occur in very early stages of the disease, even before the involvement of the central nervous system. This has led to the postulation that the enteric nervous system could be critical in the pathophysiology of Parkinson's disease, as it could represent the point of entry for a putative environmental factor to initiate the pathological process. This review covers the data related to the etiology, epidemiology, clinical expression, pathophysiology, genetic aspects, gastrointestinal motor dysfunction, visceral sensitivity, management, prevention and prognosis of neurogenic bowel dysfunction patients with these neurological diseases. Embryological, morphological and experimental studies on animal models and humans are also taken into account.
Collapse
|
29
|
Simos PG, Papanicolaou AC, Castillo EM, Juranek J, Cirino PT, Rezaie R, Fletcher JM. Brain mechanisms for reading and language processing in spina bifida meningomyelocele: a combined magnetic source- and structural magnetic resonance imaging study. Neuropsychology 2011; 25:590-601. [PMID: 21574714 PMCID: PMC3175695 DOI: 10.1037/a0023694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE The development of the ability to process spoken and written language depends upon a network of left hemisphere temporal, parietal, and frontal regions. The present study explored features of brain organization in children with spina bifida meningomyelocele (SBM) and shunted hydrocephalus, who commonly present with precocious development of word reading skills and preservation of vocabulary and grammar skills. METHOD Eight children with SBM were compared with 15 IQ and reading-level matched, typically developing controls on MRI-based morphometric and Magnetic Source Imaging-derived neurophysiological profiles. RESULTS Children with SBM showed reduced magnetic activity in left inferior parietal regions during spoken word recognition and pseudoword reading tasks. We also noted reduced surface area/volume in inferior parietal and posterior temporal regions in SBM and increased gray matter volumes in left middle frontal regions and gyral complexity in left posterior temporal and inferior parietal regions. CONCLUSIONS A complex pattern of changes in cortical morphology and activation may serve as evidence for structural and functional brain reorganization ensuring preservation of language and decoding abilities in children with SBM.
Collapse
|
30
|
Cognitive functions correlate with diffusion tensor imaging metrics in patients with spina bifida cystica. Childs Nerv Syst 2011; 27:723-8. [PMID: 21080174 DOI: 10.1007/s00381-010-1329-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
Abstract
PURPOSE Spina bifida cystica (SBC) is a group of neurodevelopmental defects caused by improper neural tube closure, which may be responsible for deficits in cognitive functions. The purpose of this study was to examine changes in normal appearing deep gray and white matter brain regions in SBC patients compared with controls through diffusion tensor imaging (DTI) and correlate these changes with neuropsychometric tests. METHODS Conventional magnetic resonance imaging and neuropsychometric tests were performed on 13 patients and ten controls. DTI-derived fractional anisotropy (FA) and mean diffusivity (MD) were quantified in different brain regions in controls and patients. RESULTS Significantly decreased FA was observed in caudate nuclei, putamen, genu, splenium, and increased FA was found in middle cerebellar peduncle (MCP) in patients compared with controls. We observed significantly increased MD in genu and splenium. However, increased MD was found in fornix of patients compared with controls. Majority of neuropsychological tests were found to be significantly impaired and some of these showed significant correlation with DTI metrics in genu, splenium, and MCP in these patients. CONCLUSIONS We conclude that DTI metrics are significantly abnormal in deep gray matter nuclei, genu, splenium, and MCP in SBC patients and may provide microstructural basis for neuropsychological abnormalities in these patients.
Collapse
|
31
|
Encinas JL, García-Cabezas MÁ, Barkovich J, Fontecha CG, Peiró JL, Soto GMC, Borrell V, Reillo I, López-Santamaría M, Tovar JA, Farmer DL. Maldevelopment of the cerebral cortex in the surgically induced model of myelomeningocele: implications for fetal neurosurgery. J Pediatr Surg 2011; 46:713-722. [PMID: 21496543 DOI: 10.1016/j.jpedsurg.2010.11.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Revised: 11/10/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022]
Abstract
PURPOSE The purpose of this study is to describe the malformations of cortical development detected in a model of cerebrospinal fluid (CSF) leakage and the influence of surgical closure technique on developmental outcome. METHODS Using a surgically induced model of myelomeningocele (MMC) in sheep, we studied the effects of different repair methods upon the development of hydrocephalus, the presence of the Arnold-Chiari II (AC-II) hindbrain malformation, and cerebral cortex developmental anomalies using gross and histologic (hematoxylin and eosin and Nissl staining) study techniques. RESULTS A malformed cerebral cortex, including 2 anomalous cortical folding patterns, and lower brain weights were observed in the untreated animals. Hydrocephalus and AC-II malformations were also found in this group. These malformations were mostly prevented with prenatal 2-layer closure. CONCLUSIONS Cerebral cortical malformations and hydrocephalus, in addition to the AC-II hindbrain malformation, are disorders caused by fetal CSF leakage. These malformations were prevented with the technique of MMC closure currently used in humans. Both observations magnify the importance of the second hit associated with chronic CSF leakage, in addition to the primary defect causing the MMC, in the development of the malformation complex.
Collapse
Affiliation(s)
- Jose L Encinas
- Department of Pediatric Surgery, Hospital Universitario "La Paz," Madrid, Spain.
| | | | - James Barkovich
- Section of Neuroradiology, Department of Radiology, UCSF, San Francisco, CA
| | - César G Fontecha
- Pediatric Orthopedic Unit, Department of Orthopedic Surgery, Hospital Universitario "Vall D'Hebron," Barcelona, Spain
| | - Jose L Peiró
- Fetal and Neonatal Surgery Unit, Pediatric Surgery Service, Hospital Universitario "Vall D'Hebron," Barcelona, Spain
| | | | - Victor Borrell
- Instituto de Neurociencias CSIC-UMH, Sant Joan d'Alacant, Alicante, Spain
| | - Isabel Reillo
- Instituto de Neurociencias CSIC-UMH, Sant Joan d'Alacant, Alicante, Spain
| | | | - Juan A Tovar
- Department of Pediatric Surgery, Hospital Universitario "La Paz," Madrid, Spain
| | - Diana L Farmer
- Pediatric Surgery Department and Fetal Treatment Laboratory, UCSF, San Francisco, CA
| |
Collapse
|
32
|
Abstract
Spina bifida meningomyelocele (SBM), a congenital neurodevelopmental disorder, involves dysmorphology of the cerebellum, and its most obvious manifestations are motor deficits. This paper reviews cerebellar neuropathology and motor function across several motor systems well studied in SBM in relation to current models of cerebellar motor and timing function. Children and adults with SBM have widespread motor deficits in trunk, upper limbs, eyes, and speech articulators that are broadly congruent with those observed in adults with cerebellar lesions. The structure and function of the cerebellum are correlated with a range of motor functions. While motor learning is generally preserved in SBM, those motor functions requiring predictive signals and precise calibration of the temporal features of movement are impaired, resulting in deficits in smooth movement coordination as well as in the classical cerebellar triad of dysmetria, ataxia, and dysarthria. That motor function in individuals with SBM is disordered in a manner phenotypically similar to that in adult cerebellar lesions, and appears to involve similar deficits in predictive cerebellar motor control, suggests that age-based cerebellar motor plasticity is limited in individuals with this neurodevelopmental disorder.
Collapse
|
33
|
Taylor HG, Filipek PA, Juranek J, Bangert B, Minich N, Hack M. Brain Volumes in Adolescents With Very Low Birth Weight: Effects on Brain Structure and Associations With Neuropsychological Outcomes. Dev Neuropsychol 2011; 36:96-117. [PMID: 21253993 DOI: 10.1080/87565641.2011.540544] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Alexiou GA, Zarifi MK, Georgoulis G, Mpouza E, Prodromou C, Moutafi A, Anagnostakou M, Sfakianos G, Prodromou N. Cerebral abnormalities in infants with myelomeningocele. Neurol Neurochir Pol 2011; 45:18-23. [DOI: 10.1016/s0028-3843(14)60055-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Abstract
INTRODUCTION Individuals with neurodevelopmental disorders have been observed to show accelerated cognitive aging or even dementia as early as 30 and 40 years of age. Memory deficits are an important component of age-related cognitive loss. METHODS In this study, we investigated prospective memory, which is often impaired in aging, in a group of 32 adults with spina bifida meningomyelocele (SBM), including members of the oldest living cohort successfully treated with shunts to divert excess cerebrospinal fluid, ventriculomegaly, and hydrocephalus, who are now around 50 years of age. Seventeen typically developing adults provided a comparison group. RESULTS The SBM and comparison groups differed in the prospective memory total score as well as in both time-based and event-based subscores. Prospective memory was impaired in both older and younger individuals with SBM. However, the percentage of individuals with impaired or poor prospective memory was three times higher in the older SBM group than in the younger SBM group. The results are considered in relation to specific features of the complex brain reorganization in SBM.
Collapse
|
36
|
Juranek J, Dennis M, Cirino PT, El-Messidi L, Fletcher JM. The cerebellum in children with spina bifida and Chiari II malformation: Quantitative volumetrics by region. CEREBELLUM (LONDON, ENGLAND) 2010; 9:240-8. [PMID: 20143197 PMCID: PMC3046026 DOI: 10.1007/s12311-010-0157-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Few volumetric MRI studies of the entire cerebellum have been published; even less quantitative information is available in patients with hindbrain malformations, including the Chiari II malformation which is ubiquitous in patients with spina bifida meningomyelocele (SBM). In the present study, regional volumetric analyses of the cerebellum were conducted in children with SBM/Chiari II and typically developing (TD) children. Total cerebellar volume was significantly reduced in the SBM group relative to the TD group. After correcting for total cerebellum volume, and relative to the TD group, the posterior lobe was significantly reduced in SBM, the corpus medullare was not different, and the anterior lobe was significantly enlarged. Children with thoracic level lesions had smaller cerebellar volumes relative to those with lumbar/sacral lesions, who had smaller volumes compared to TD children. The reduction in cerebellar volume in the group with SBM represents not a change in linear scaling but rather a reconfiguration involving anterior lobe enlargement and posterior lobe reduction.
Collapse
Affiliation(s)
- Jenifer Juranek
- Department of Pediatrics, Children's Learning Institute, University of Texas Health Science Center at Houston, Houston, 77030, USA.
| | | | | | | | | |
Collapse
|
37
|
Kumar M, Gupta RK, Saksena S, Behari S, Malik GK, Kureel SN, Pandey CM, Rathore RKS. A diffusion tensor imaging study of deep gray and white matter brain maturation differences between patients with spina bifida cystica and healthy controls. J Clin Neurosci 2010; 17:879-85. [PMID: 20400314 DOI: 10.1016/j.jocn.2009.09.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 09/09/2009] [Accepted: 09/13/2009] [Indexed: 11/17/2022]
Abstract
The aim of this study was to use diffusion tensor imaging (DTI) to identify differences in the maturation of deep gray matter (GM) and white matter (WM) between patients with spina bifida cystica (SBC) (n=29) with normal-appearing brains on conventional MRI, and age-matched and sex-matched healthy control participants (n=33). Changes in DTI metrics were calculated using a log-linear regression model. We observed increasing fractional anisotropy (FA) with age in the occipital, fornix, cingulum and middle cerebellar peduncles and decreasing FA with age in the genu and splenium of the corpus callosum (CC) and caudate nuclei in patients compared to controls. Increasing FA values in some of the WM structures probably represent faulty WM maturation, whereas decreasing FA values in the CC represents changes secondary to the affected WM fibers contributing to the CC. DTI changes in deep GM and WM in the absence of any abnormality on conventional MRI might provide the basis for cognitive decline in these patients.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Radiodiagnosis, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Jung RE, Segall JM, Grazioplene RG, Qualls C, Sibbitt WL, Roldan CA. Cortical thickness and subcortical gray matter reductions in neuropsychiatric systemic lupus erythematosus. PLoS One 2010; 5:e9302. [PMID: 20352085 PMCID: PMC2844408 DOI: 10.1371/journal.pone.0009302] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 01/29/2010] [Indexed: 01/18/2023] Open
Abstract
Within systemic lupus erythematosus (SLE) patients can be divided into groups with and without central nervous system involvement, the latter being subcategorized as neuropsychiatric systemic lupus erythematosus (NPSLE). While a number of research groups have investigated NPSLE, there remains a lack of consistent application of this diagnostic criteria within neuroimaging studies. Previous neuroimaging research suggests that SLE patients have reduced subcortical and regional gray matter volumes when compared to controls, and that these group differences may be driven by SLE patients with neuropsychiatric symptoms. The current study sought to compare measures of cortical thickness and subcortical structure volume between NPSLE, SLE, and healthy controls. We hypothesized that patients with NPSLE (N = 21) would have thinner cortex and reduced subcortical gray matter volumes when compared to SLE (N = 16) and control subjects (N = 21). All subjects underwent MRI examinations on a 1.5 Tesla Siemens Sonata scanner. Anatomical reconstruction and segmentation were performed using the FreeSurfer image analysis suite. Cortical and subcortical volumes were extracted from FreeSurfer and analyzed for group differences, controlling for age. The NPSLE group exhibited decreased cortical thickness in clusters of the left frontal and parietal lobes as well as in the right parietal and occipital lobes compared to control subjects. Compared to the SLE group, the NPSLE group exhibited comparable thinning in clusters of the frontal and temporal lobes. Controlling for age, we found that between group effects for subcortical gray matter structures were significant for the thalamus (F = 3.06, p = .04), caudate nucleus (F = 3.19, p = .03), and putamen (F = 4.82, p = .005). These results clarify previous imaging work identifying cortical atrophy in a mixed SLE and NPSLE group, and suggest that neuroanatomical abnormalities are specific to SLE patients diagnosed with neuropsychiatric symptoms. Future work should help elucidate the underlying mechanisms underlying the emerging neurobiological profile seen in NPSLE, as well as clarify the apparent lack of overlap between cortical thinning and functional activation results and other findings pointing to increased functional activation during cognitive tasks.
Collapse
Affiliation(s)
- Rex E Jung
- Department of Neurosurgery, University of New Mexico, Albuquerque, New Mexico, United States of America.
| | | | | | | | | | | |
Collapse
|
39
|
Jung RE, Segall JM, Jeremy Bockholt H, Flores RA, Smith SM, Chavez RS, Haier RJ. Neuroanatomy of creativity. Hum Brain Mapp 2010; 31:398-409. [PMID: 19722171 PMCID: PMC2826582 DOI: 10.1002/hbm.20874] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 06/15/2009] [Accepted: 07/07/2009] [Indexed: 12/14/2022] Open
Abstract
Creativity has long been a construct of interest to philosophers, psychologists and, more recently, neuroscientists. Recent efforts have focused on cognitive processes likely to be important to the manifestation of novelty and usefulness within a given social context. One such cognitive process - divergent thinking - is the process by which one extrapolates many possible answers to an initial stimulus or target data set. We sought to link well established measures of divergent thinking and creative achievement (Creative Achievement Questionnaire - CAQ) to cortical thickness in a cohort of young (23.7 +/- 4.2 years), healthy subjects. Three independent judges ranked the creative products of each subject using the consensual assessment technique (Amabile, 1982) from which a "composite creativity index" (CCI) was derived. Structural magnetic resonance imaging was obtained at 1.5 Tesla Siemens scanner. Cortical reconstruction and volumetric segmentation were performed with the FreeSurfer image analysis suite. A region within the lingual gyrus was negatively correlated with CCI; the right posterior cingulate correlated positively with the CCI. For the CAQ, lower left lateral orbitofrontal volume correlated with higher creative achievement; higher cortical thickness was related to higher scores on the CAQ in the right angular gyrus. This is the first study to link cortical thickness measures to psychometric measures of creativity. The distribution of brain regions, associated with both divergent thinking and creative achievement, suggests that cognitive control of information flow among brain areas may be critical to understanding creative cognition.
Collapse
Affiliation(s)
- Rex E Jung
- The Mind Research Network, Albuquerque, New Mexico, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Juranek J, Salman MS. Anomalous development of brain structure and function in spina bifida myelomeningocele. DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2010; 16:23-30. [PMID: 20419768 PMCID: PMC2917986 DOI: 10.1002/ddrr.88] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spina bifida myelomeningocele (SBM) is a specific type of neural tube defect whereby the open neural tube at the level of the spinal cord alters brain development during early stages of gestation. Some structural anomalies are virtually unique to individuals with SBM, including a complex pattern of cerebellar dysplasia known as the Chiari II malformation. Other structural anomalies are not necessarily unique to SBM, including altered development of the corpus callosum and posterior fossa. Within SBM, tremendous heterogeneity is reflected in the degree to which brain structures are atypical in qualitative appearance and quantitative measures of morphometry. Hallmark structural features of SBM include overall reductions in posterior fossa and cerebellum size and volume. Studies of the corpus callosum have shown complex patterns of agenesis or hypoplasia along its rostral-caudal axis, with rostrum and splenium regions particularly susceptible to agenesis. Studies of cortical regions have demonstrated complex patterns of thickening, thinning, and gyrification. Diffusion tensor imaging studies have reported compromised integrity of some specific white matter pathways. Given equally complex ocular motor, motor, and cognitive phenotypes consisting of relative strengths and weaknesses that seem to align with altered structural development, studies of SBM provide new insights to our current understanding of brain structure-function associations.
Collapse
Affiliation(s)
- Jenifer Juranek
- Department of Pediatrics, Children's Learning Institute, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.
| | | |
Collapse
|
41
|
Abstract
We studied the relation between cortical oscillatory rhythms and the structural integrity of the corpus callosum in 21 children with spina bifida and hydrocephalus. Participants underwent resting state neuromagnetic recordings and diffusion tensor imaging. Areas of three segments of the corpus callosum (genu, body, splenium) were derived through diffusion tensor imaging-based morphometrics. Children with spina bifida showed reduced values of spectral power in the theta, alpha and beta bands when compared with age-matched controls, but only in the posterior and temporal regions. Reduced spectral power in posterior regions correlated with decreased area of the posterior segments of the corpus callosum. Atypical cortical oscillatory activity is associated with reduced transcallosal connectivity in children with spina bifida.
Collapse
|
42
|
Dennis M, Hopyan T, Juranek J, Cirino PT, Hasan KM, Fletcher J. Strong-meter and weak-meter rhythm identification in spina bifida meningomyelocele and volumetric parcellation of rhythm-relevant cerebellar regions. Ann N Y Acad Sci 2009; 1169:84-8. [PMID: 19673758 DOI: 10.1111/j.1749-6632.2009.04863.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Children with spina bifida meningomyelocele (SBM) are impaired relative to controls in terms of discriminating strong-meter and weak-meter rhythms, so congenital cerebellar dysmorphologies that affect rhythmic movements also disrupt rhythm perception. Cerebellar parcellations in children with SBM showed an abnormal configuration of volume fractions in cerebellar regions important for rhythm function: a smaller inferior-posterior lobe, and larger anterior and superior-posterior lobes.
Collapse
Affiliation(s)
- Maureen Dennis
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
43
|
Dennis M, Berch DB, Mazzocco MMM. Mathematical learning disabilities in special populations: phenotypic variation and cross-disorder comparisons. ACTA ACUST UNITED AC 2009; 15:80-9. [PMID: 19213019 DOI: 10.1002/ddrr.54] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
What is mathematical learning disability (MLD)? The reviews in this special issue adopt different approaches to defining the construct of MLD. Collectively, they demonstrate the current status of efforts to establish a consensus definition and the challenges faced in this endeavor. In this commentary, we reflect upon the proposed pathways to mathematical learning difficulties and disabilities presented across the reviews. Specifically we consider how each of the reviews contributes to identifying the MLD phenotype by specifying the range of assets and deficits in mathematics, identifying sources of individual variation, and characterizing the natural progression of MLD over the life course. We show how principled comparisons across disorders address issues about the cognitive and behavioral co-morbidities of MLD, and whether commonalities in brain dysmorphology are associated with common mathematics performance profiles. We project the status of MLD research ten years hence with respect to theoretical gains, advances in methodology, and principled intervention studies.
Collapse
Affiliation(s)
- Maureen Dennis
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Departments of Surgery & Psychology, University of Toronto, Toronto, Canada.
| | | | | |
Collapse
|
44
|
Encinas Hernández JL, Soto C, García-Cabezas MA, Pederiva F, Garriboli M, Rodríguez R, Peiró JL, Carceller F, López-Santamaría M, Tovar JA. Brain malformations in the sheep model of myelomeningocele are similar to those found in human disease: preliminary report. Pediatr Surg Int 2008; 24:1335-40. [PMID: 18989683 DOI: 10.1007/s00383-008-2276-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE To examine if brain malformations, similar to those which account for cognitive disorders seen in human disease, are present in an ovine model of myelomeningocele (MMC). METHODS An MMC-like lesion was surgically created in 16 fetal lambs between 60 and 80 days of gestation. Ten did not undergo fetal repair (group A), 2 were repaired with an open two-layer closure (group B), 2 with open bioglue coverage (group C) and 2 with fetoscopic coverage (group D). Lambs were killed and their brains were examined. Two brains from normal unoperated lambs served as controls. RESULTS Thirteen lambs died in utero (81%). Two lambs in group A and 1 in group B were delivered at term. Group A brains showed hydrocephalus and extensive areas of polymicrogyria. There was also an extensive denudation of the ependymal lining under the polymicrogyric areas and the corpus callosum was thinner than normal. No hindbrain herniation was observed. Brains from group B and the control did not show any of these abnormalities. CONCLUSIONS Some of the central nervous system abnormalities associated to MMC in human patients are also found in the uncorrected fetal lamb model of MMC but not in the only survivor to intrauterine coverage. Further studies are necessary to ascertain if these abnormalities can be prevented by coverage of the defect.
Collapse
Affiliation(s)
- Jose Luis Encinas Hernández
- Department of Pediatric Surgery, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Swartwout MD, Cirino PT, Hampson AW, Fletcher JM, Brandt ME, Dennis M. Sustained attention in children with two etiologies of early hydrocephalus. Neuropsychology 2008; 22:765-75. [PMID: 18999350 PMCID: PMC2593153 DOI: 10.1037/a0013373] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Several studies have shown that children with spina bifida meningomyelocele (SBM) and hydrocephalus have attention problems on parent ratings and difficulties in stimulus orienting associated with a posterior brain attention system. Less is known about response control and inhibition associated with an anterior brain attention system. Using the Gordon Vigilance Task (Gordon, 1983), we studied error rate, reaction time, and performance over time for sustained attention, a key anterior attention function, in 101 children with SBM, 17 with aqueductal stenosis (AS; another condition involving congenital hydrocephalus), and 40 typically developing controls (NC). In SBM, we investigated the relation between cognitive attention and parent ratings of inattention and hyperactivity and explored the impact of medical variables. Children with SBM did not differ from AS or NC groups on measures of sustained attention, but they committed more errors and responded more slowly. Approximately one-third of the SBM group had attention symptoms, although parent attention ratings were not associated with task performance. Hydrocephalus does not account for the attention profile of children with SBM, which also reflects the distinctive brain dysmorphologies associated with this condition.
Collapse
Affiliation(s)
- Maegan D Swartwout
- Department of Psychology, University of Houston, Houston, TX 77204-5355, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Dennis M, Sinopoli KJ, Fletcher JM, Schachar R. Puppets, robots, critics, and actors within a taxonomy of attention for developmental disorders. J Int Neuropsychol Soc 2008; 14:673-90. [PMID: 18764966 PMCID: PMC2593155 DOI: 10.1017/s1355617708080983] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This review proposes a new taxonomy of automatic and controlled attention. The taxonomy distinguishes among the role of the attendee (puppet and robot, critic and actor), the attention process (stimulus orienting vs. response control), and the attention operation (activation vs. inhibition vs. adjustment), and identifies cognitive phenotypes by which attention is overtly expressed. We apply the taxonomy to four childhood attention disorders: attention deficit hyperactivity disorder, spina bifida meningomyelocele, traumatic brain injury, and acute lymphoblastic leukemia. Variations in attention are related to specific brain regions that support normal attention processes when intact, and produce disordered attention when impaired. The taxonomy explains group differences in behavioral inattention, hyperactivity, and impulsiveness, as well as medication response. We also discuss issues relevant to theories of the cognitive and neural architecture of attention: functional dissociations within and between automatic and controlled attention; the relative importance of type of brain damage and developmental timing to attention profile; cognitive-energetic models of attention and white matter damage; temporal processing deficits, attention deficits and cerebellar damage; and the issue of cognitive phenotypes as candidate endophenotypes.
Collapse
Affiliation(s)
- Maureen Dennis
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada.
| | | | | | | |
Collapse
|