1
|
Liu Y, Huang C, Cheng X, Qu W, Wang X, Liu S, Zhang J, Li Y, Huang X, Zhu J, Ma D, Shu Q, Li X. Exposure to the prenatal enriched environment alters maternal gut microbiota and promotes embryonic neurodevelopment via activating the AHR-Src pathway. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2870-4. [PMID: 40434619 DOI: 10.1007/s11427-024-2870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/25/2024] [Indexed: 05/29/2025]
Abstract
The signals from the maternal environment play pivotal roles in regulating fetal neurodevelopment. Postnatal enriched environment (EE) exposure promotes neurogenesis and neurodevelopment. However, the roles of prenatal EE on fetal neurodevelopment and the underlying mechanisms remain largely unknown. This study shows that prenatal EE exposure promotes neuronal development and regulates the expression of neurodevelopmental genes in fetal mice. The prenatal EE altered the maternal microbiota and enhanced the Lactobacillus levels in the maternal mice. It also significantly elevated indole-3-propionic acid (IPA), a metabolite produced by Lactobacillus, in both the maternal serum and fetal brains. IPA promoted the proliferation and neuronal differentiation of embryonic neural progenitor cells (eNPCs) by activating the aryl hydrocarbon receptor (AHR)-Src-Erk1/2 pathway in vitro and in vivo. Administration of Lactobacillus reuteri and IPA to pregnant mice also enhanced embryonic neurogenesis and neurodevelopment. Collectively, our study has revealed the essential function and underlying mechanisms of prenatal EE in regulating fetal neurodevelopment.
Collapse
Affiliation(s)
- Yuhan Liu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
- The Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Chenna Huang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
- The Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Xuejun Cheng
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Wenzheng Qu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Xueyi Wang
- Shuangpu Health Service Center, Hangzhou, 310024, China
| | - Suxiao Liu
- Center for Reproductive Medicine, Department of Obstetrics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Jinyu Zhang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Ying Li
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Xiaoli Huang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Jinpiao Zhu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Daqing Ma
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK.
| | - Qiang Shu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| | - Xuekun Li
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
- The Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
2
|
Hervais-Adelman A, Townsend SW. How did vocal communication come to dominate human language? A view from the womb. PLoS Biol 2025; 23:e3003141. [PMID: 40233095 PMCID: PMC12021287 DOI: 10.1371/journal.pbio.3003141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/24/2025] [Indexed: 04/17/2025] Open
Abstract
Whether human language evolved via a gestural or a vocal route remains an unresolved and contentious issue. Given the existence of two preconditions-a "language faculty" and the capacity for imitative learning both vocally and manually-there is no compelling evidence for gesture being inherently inferior to vocalization as a mode of linguistic expression; indeed, signed languages are capable of the same expressive range as spoken ones. Here, we revisit this conundrum, championing recent methodological advances in human neuroimaging (specifically, in utero functional magnetic resonance imaging) as a window into the role of the prenatal gestational period in language evolution, a critical, yet currently underexplored environment in which fetuses are exposed to, and become attuned to, spoken language. In this Unsolved Mystery, we outline how, compared to visual sensitivity, the ontogenically earlier development of auditory sensitivity, beginning in utero and persisting for several months post-partum, alongside the relative permeability of the uterine environment to sound, but not light, may constitute a small but significant contribution to the current dominance of spoken language.
Collapse
Affiliation(s)
- Alexis Hervais-Adelman
- Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
- Zurich Centre for Linguistics, University of Zurich, Zurich, Switzerland
- Institute for the Interdisciplinary Study of Language Evolution, University of Zurich, Zurich, Switzerland
| | - Simon W. Townsend
- Institute for the Interdisciplinary Study of Language Evolution, University of Zurich, Zurich, Switzerland
- Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Bartha‐Doering L, Giordano V, Mandl S, Benavides‐Varela S, Weiskopf A, Mader J, Andrejevic J, Adrian N, Ashmawy LE, Appel P, Seidl R, Doering S, Berger A, Alexopoulos J. Lateralization of Neural Speech Discrimination at Birth Is a Predictor for Later Language Development. Dev Sci 2025; 28:e13609. [PMID: 39807603 PMCID: PMC11730390 DOI: 10.1111/desc.13609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/12/2024] [Accepted: 12/22/2024] [Indexed: 01/16/2025]
Abstract
Newborns are able to neurally discriminate between speech and nonspeech right after birth. To date it remains unknown whether this early speech discrimination and the underlying neural language network is associated with later language development. Preterm-born children are an interesting cohort to investigate this relationship, as previous studies have shown that preterm-born neonates exhibit alterations of speech processing and have a greater risk of later language deficits. This investigation also holds clinical importance, as differences in neonatal speech discrimination and its functional networks may serve as predictors of later language outcomes. We therefore investigated neural speech discrimination using functional near-infrared spectroscopy in 92 preterm- and term-born neonates and its predictive value for language development in 45 of them. Three to five years later, preterm-born and term-born children did not significantly differ in language comprehension, sentence production, the use of morphological rules, or phonological short-term memory. In addition, the gestational age at birth was not a significant predictor of language development. Neural speech discrimination, in contrast, was strongly correlated with later phonological short-term memory. However, not the extent of speech discrimination, but rather its lateralization, was a predictor of language development. Children with less right hemisphere involvement-and therefore more left-lateralized speech discrimination at birth-showed better development of phonological short-term memory three to five years later. These findings suggest that the ability of fetuses to form memory traces is reflected by neonatal abilities to neurally discriminate speech, which in turn is a predictor for later phonological short-term memory.
Collapse
Affiliation(s)
- Lisa Bartha‐Doering
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Vito Giordano
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Sophie Mandl
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | | | - Anna Weiskopf
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Johannes Mader
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
- Austrian Institute of TechnologyViennaAustria
| | - Julia Andrejevic
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Nadine Adrian
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Lisa Emilia Ashmawy
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Patrick Appel
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Rainer Seidl
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Stephan Doering
- Department of Psychoanalysis and PsychotherapyMedical University of ViennaViennaAustria
| | - Angelika Berger
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Johanna Alexopoulos
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
- Department of Psychoanalysis and PsychotherapyMedical University of ViennaViennaAustria
| |
Collapse
|
4
|
Wallois F, Moghimi S. Revisiting the functional monitoring of brain development in premature neonates. A new direction in clinical care and research. Semin Fetal Neonatal Med 2024; 29:101556. [PMID: 39528364 DOI: 10.1016/j.siny.2024.101556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The first 1000 days of life are of paramount importance for neonatal development. Premature newborns are exposed early to the external environment, modifying the fetal exposome and leading to overexposure in some sensory domains and deprivation in others. The resulting neurodevelopmental effects may persist throughout the individual's lifetime. Several neonatal neuromonitoring techniques can be used to investigate neural mechanisms in early postnatal development. EEG is the most widely used, as it is easy to perform, even at the patient's bedside. It is not expensive and provides information with a high temporal resolution and relatively good spatial resolution when performed in high-density mode. Functional near-infrared spectroscopy (fNIRS), a technique for monitoring vascular network dynamics, can also be used at the patient's bedside. It is not expensive and has a good spatial resolution at the cortical surface. These two techniques can be combined for simultaneous monitoring of the neuronal and vascular networks in premature newborns, providing insight into neurodevelopment before term. However, the extent to which more general conclusions about fetal development can be drawn from findings for premature neonates remains unclear due to considerable differences in environmental and medical situations. Fetal MEG (fMEG, as an alternative to EEG for preterm infants) and fMRI (as an alternative to fNIRS for preterm infants) can also be used to investigate fetal neurodevelopment on a trimester-specific basis. These techniques should be used for validation purposes as they are the only tools available for evaluating neuronal dysfunction in the fetus at the time of the gene-environment interactions influencing transient neuronal progenitor populations in brain structures. But what do these techniques tell us about early neurodevelopment? We address this question here, from two points of view. We first discuss spontaneous neural activity and its electromagnetic and hemodynamic correlates. We then explore the effects of stimulating the immature developing brain with information from exogenous sources, reviewing the available evidence concerning the characteristics of electromagnetic and hemodynamic responses. Once the characteristics of the correlates of neural dynamics have been determined, it will be essential to evaluate their possible modulation in the context of disease and in at-risk populations. Evidence can be collected with various neuroimaging techniques targeting both spontaneous and exogenously driven neural activity. A multimodal approach combining the neuromonitoring of different functional compartments (neuronal and vascular) is required to improve our understanding of the normal functioning and dysfunction of the brain and to identify neurobiomarkers for predicting the neurodevelopmental outcome of premature neonate and fetus. Such an approach would provide a framework for exploring early neurodevelopment, paving the way for the development of tools for earlier diagnosis in these vulnerable populations, thereby facilitating preventive, rescue and reparative neurotherapeutic interventions.
Collapse
Affiliation(s)
- Fabrice Wallois
- Inserm U 1105, Department of Pediatric Clinical Neurophysiology, University Hospital, Amiens, France; Inserm U 1105, Multimodal Analysis of Brain Function Research Group (GRAMFC), Université de Picardie, Amiens, France.
| | - Sahar Moghimi
- Inserm U 1105, Multimodal Analysis of Brain Function Research Group (GRAMFC), Université de Picardie, Amiens, France
| |
Collapse
|
5
|
Bernardes LS, Fernandes AM, Carvalho MA, Ottolia J, Hamani M, Oliveira I, Kubota GT, da Silva VA, Veloso A, de Carvalho MHB, de Amorim Filho AG, Arenholt LTS, Leutscher PC, de Andrade DC. Assessment of Human Fetuses Undergoing Acute Pain: Validation of the Fetal-7 Scale. THE JOURNAL OF PAIN 2024; 25:104527. [PMID: 38599264 DOI: 10.1016/j.jpain.2024.104527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Improvements in fetal ultrasound have allowed for the diagnosis and treatment of fetal diseases in the uterus, often through surgery. However, little attention has been drawn to the assessment of fetal pain. To address this gap, a fetal pain scoring system, known as the Fetal-7 scale, was developed. The present study is a full validation of the Fetal-7 scale. The validation involved 2 steps: 1) 4 fetuses with the indication of surgery were evaluated in 3 conditions perioperatively: acute pain, rest, and under loud sound stimulation. Facial expressions were assessed by 30 raters using screenshots from 4D high-definition ultrasound films; 2) assessment of sensitivity and specificity of the Fetal-7 scale in 54 healthy fetuses and 2 fetuses undergoing acute pain after preoperative anesthetic intramuscular injection. There was high internal consistency with Cronbach's alpha (α) of .99. Intrarater reliability of the Fetal-7 scale (test-retest) calculated by intraclass correlation coefficient was .95, and inter-rater reliability was .99. The scale accurately differentiated between healthy fetuses at rest and those experiencing acute pain (sensitivity of 100% and specificity of 94.4%). The Fetal-7 scale is a valid tool for assessing acute pain-related behavior in third-trimester fetuses and may be of value in guiding analgesic procedures efficacy in these patients. Further research is warranted to explore the presence of postoperative pain in fetuses and its effects after birth. PERSPECTIVE: Recordings with 3-dimensional ultrasound of human fetuses undergoing preoperative anesthetic injections revealed complex facial expressions during acute pain, similar to those collected in newborns. This study presented the validation process and cut-off value of the Fetal-7 scale, paving the way for the study of pain before birth in humans.
Collapse
Affiliation(s)
- Lisandra S Bernardes
- Center for Clinical Research, North Denmark Regional Hospital, Hjoerring, Denmark; Gynecology and Obstetrics Department, University of Sao Paulo, São Paulo, Brazil; Gynecology and obstetrics, SEPACO Maternity Hospital, São Paulo, Brazil; Department of Gynecology and Obstetrics, North Denmark Regional Hospital, Hjoerring, Denmark.
| | - Ana M Fernandes
- Pain Center, Department of Neurology, University of Sao Paulo, São Paulo, Brazil
| | - Mariana A Carvalho
- Gynecology and Obstetrics Department, University of Sao Paulo, São Paulo, Brazil; Gynecology and obstetrics, SEPACO Maternity Hospital, São Paulo, Brazil
| | - Juliana Ottolia
- Gynecology and Obstetrics Department, University of Sao Paulo, São Paulo, Brazil; Gynecology and obstetrics, SEPACO Maternity Hospital, São Paulo, Brazil
| | - Michele Hamani
- Pain Center, Department of Neurology, University of Sao Paulo, São Paulo, Brazil
| | - Inaeh Oliveira
- Pain Center, Department of Neurology, University of Sao Paulo, São Paulo, Brazil
| | - Gabriel T Kubota
- Pain Center, Department of Neurology, University of Sao Paulo, São Paulo, Brazil
| | - Valquíria A da Silva
- Pain Center, Department of Neurology, University of Sao Paulo, São Paulo, Brazil
| | - Adriano Veloso
- Computational Science Department, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Louise T S Arenholt
- Center for Clinical Research, North Denmark Regional Hospital, Hjoerring, Denmark; Department of Gynecology and Obstetrics, North Denmark Regional Hospital, Hjoerring, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Peter C Leutscher
- Center for Clinical Research, North Denmark Regional Hospital, Hjoerring, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Daniel C de Andrade
- Center for Neuroplasticity and Pain, Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark; Pain Center, Department of Neurology, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Buzi G, Eustache F, Droit-Volet S, Desaunay P, Hinault T. Towards a neurodevelopmental cognitive perspective of temporal processing. Commun Biol 2024; 7:987. [PMID: 39143328 PMCID: PMC11324894 DOI: 10.1038/s42003-024-06641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/26/2024] [Indexed: 08/16/2024] Open
Abstract
The ability to organize and memorize the unfolding of events over time is a fundamental feature of cognition, which develops concurrently with the maturation of the brain. Nonetheless, how temporal processing evolves across the lifetime as well as the links with the underlying neural substrates remains unclear. Here, we intend to retrace the main developmental stages of brain structure, function, and cognition linked to the emergence of timing abilities. This neurodevelopmental perspective aims to untangle the puzzling trajectory of temporal processing aspects across the lifetime, paving the way to novel neuropsychological assessments and cognitive rehabilitation strategies.
Collapse
Affiliation(s)
- Giulia Buzi
- Inserm, U1077, EPHE, UNICAEN, Normandie Université, PSL Université Paris, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen, France
| | - Francis Eustache
- Inserm, U1077, EPHE, UNICAEN, Normandie Université, PSL Université Paris, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen, France
| | - Sylvie Droit-Volet
- Université Clermont Auvergne, LAPSCO, CNRS, UMR 6024, Clermont-Ferrand, France
| | - Pierre Desaunay
- Inserm, U1077, EPHE, UNICAEN, Normandie Université, PSL Université Paris, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen, France
- Service de Psychiatrie de l'enfant et de l'adolescent, CHU de Caen, Caen, France
| | - Thomas Hinault
- Inserm, U1077, EPHE, UNICAEN, Normandie Université, PSL Université Paris, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen, France.
| |
Collapse
|
7
|
Wu Y, De Asis-Cruz J, Limperopoulos C. Brain structural and functional outcomes in the offspring of women experiencing psychological distress during pregnancy. Mol Psychiatry 2024; 29:2223-2240. [PMID: 38418579 PMCID: PMC11408260 DOI: 10.1038/s41380-024-02449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 03/01/2024]
Abstract
In-utero exposure to maternal psychological distress is increasingly linked with disrupted fetal and neonatal brain development and long-term neurobehavioral dysfunction in children and adults. Elevated maternal psychological distress is associated with changes in fetal brain structure and function, including reduced hippocampal and cerebellar volumes, increased cerebral cortical gyrification and sulcal depth, decreased brain metabolites (e.g., choline and creatine levels), and disrupted functional connectivity. After birth, reduced cerebral and cerebellar gray matter volumes, increased cerebral cortical gyrification, altered amygdala and hippocampal volumes, and disturbed brain microstructure and functional connectivity have been reported in the offspring months or even years after exposure to maternal distress during pregnancy. Additionally, adverse child neurodevelopment outcomes such as cognitive, language, learning, memory, social-emotional problems, and neuropsychiatric dysfunction are being increasingly reported after prenatal exposure to maternal distress. The mechanisms by which prenatal maternal psychological distress influences early brain development include but are not limited to impaired placental function, disrupted fetal epigenetic regulation, altered microbiome and inflammation, dysregulated hypothalamic pituitary adrenal axis, altered distribution of the fetal cardiac output to the brain, and disrupted maternal sleep and appetite. This review will appraise the available literature on the brain structural and functional outcomes and neurodevelopmental outcomes in the offspring of pregnant women experiencing elevated psychological distress. In addition, it will also provide an overview of the mechanistic underpinnings of brain development changes in stress response and discuss current treatments for elevated maternal psychological distress, including pharmacotherapy (e.g., selective serotonin reuptake inhibitors) and non-pharmacotherapy (e.g., cognitive-behavior therapy). Finally, it will end with a consideration of future directions in the field.
Collapse
Affiliation(s)
- Yao Wu
- Developing Brain Institute, Children's National Hospital, Washington, DC, 20010, USA
| | | | - Catherine Limperopoulos
- Developing Brain Institute, Children's National Hospital, Washington, DC, 20010, USA.
- Department of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, 20010, USA.
| |
Collapse
|
8
|
Degano G, Donhauser PW, Gwilliams L, Merlo P, Golestani N. Speech prosody enhances the neural processing of syntax. Commun Biol 2024; 7:748. [PMID: 38902370 PMCID: PMC11190187 DOI: 10.1038/s42003-024-06444-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Human language relies on the correct processing of syntactic information, as it is essential for successful communication between speakers. As an abstract level of language, syntax has often been studied separately from the physical form of the speech signal, thus often masking the interactions that can promote better syntactic processing in the human brain. However, behavioral and neural evidence from adults suggests the idea that prosody and syntax interact, and studies in infants support the notion that prosody assists language learning. Here we analyze a MEG dataset to investigate how acoustic cues, specifically prosody, interact with syntactic representations in the brains of native English speakers. More specifically, to examine whether prosody enhances the cortical encoding of syntactic representations, we decode syntactic phrase boundaries directly from brain activity, and evaluate possible modulations of this decoding by the prosodic boundaries. Our findings demonstrate that the presence of prosodic boundaries improves the neural representation of phrase boundaries, indicating the facilitative role of prosodic cues in processing abstract linguistic features. This work has implications for interactive models of how the brain processes different linguistic features. Future research is needed to establish the neural underpinnings of prosody-syntax interactions in languages with different typological characteristics.
Collapse
Affiliation(s)
- Giulio Degano
- Department of Psychology, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland.
| | - Peter W Donhauser
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| | - Laura Gwilliams
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Paola Merlo
- Department of Linguistics, University of Geneva, Geneva, Switzerland
- University Centre for Informatics, University of Geneva, Geneva, Switzerland
| | - Narly Golestani
- Department of Psychology, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
- Brain and Language Lab, Cognitive Science Hub, University of Vienna, Vienna, Austria
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Harford EE, Holt LL, Abel TJ. Unveiling the development of human voice perception: Neurobiological mechanisms and pathophysiology. CURRENT RESEARCH IN NEUROBIOLOGY 2024; 6:100127. [PMID: 38511174 PMCID: PMC10950757 DOI: 10.1016/j.crneur.2024.100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The human voice is a critical stimulus for the auditory system that promotes social connection, informs the listener about identity and emotion, and acts as the carrier for spoken language. Research on voice processing in adults has informed our understanding of the unique status of the human voice in the mature auditory cortex and provided potential explanations for mechanisms that underly voice selectivity and identity processing. There is evidence that voice perception undergoes developmental change starting in infancy and extending through early adolescence. While even young infants recognize the voice of their mother, there is an apparent protracted course of development to reach adult-like selectivity for human voice over other sound categories and recognition of other talkers by voice. Gaps in the literature do not allow for an exact mapping of this trajectory or an adequate description of how voice processing and its neural underpinnings abilities evolve. This review provides a comprehensive account of developmental voice processing research published to date and discusses how this evidence fits with and contributes to current theoretical models proposed in the adult literature. We discuss how factors such as cognitive development, neural plasticity, perceptual narrowing, and language acquisition may contribute to the development of voice processing and its investigation in children. We also review evidence of voice processing abilities in premature birth, autism spectrum disorder, and phonagnosia to examine where and how deviations from the typical trajectory of development may manifest.
Collapse
Affiliation(s)
- Emily E. Harford
- Department of Neurological Surgery, University of Pittsburgh, USA
| | - Lori L. Holt
- Department of Psychology, The University of Texas at Austin, USA
| | - Taylor J. Abel
- Department of Neurological Surgery, University of Pittsburgh, USA
- Department of Bioengineering, University of Pittsburgh, USA
| |
Collapse
|
10
|
Fuchino Y, Kato I, Htun Y, Takano Y, Konishi Y, Koyano K, Nakamura S, Tanaka N, Kusaka T, Konishi Y. Developmental changes in neonatal hemodynamics during tactile stimulation using whole-head functional near-infrared spectroscopy. Neuroimage 2023; 284:120465. [PMID: 37993003 DOI: 10.1016/j.neuroimage.2023.120465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023] Open
Abstract
Neural-activity-associated hemodynamic changes have been used to noninvasively measure brain function in the early developmental stages. However, the temporal changes in their hemodynamics are not always consistent with adults. Studies have not evaluated developmental changes for a long period using the same stimuli; therefore, this study examined the normalized relative changes in oxygenated hemoglobin (Δ[oxy-Hb]) in full-term infants and compared them with neonates up to 10 months of age during the administration of tactile vibration stimuli to their limbs using whole-head functional near-infrared spectroscopy. The time to peak of normalized Δ[oxy-Hb] was not affected by age. The amplitude of normalized Δ[oxy-Hb] showed an effect of age in broader areas, including sensorimotor-related but excluding supplementary motor area; the amplitude of normalized Δ[oxy-Hb] decreased the most in the 1-2-month-old group and later increased with development. We hypothesized that these results may reflect developmental changes in neural activity, vasculature, and blood oxygenation.
Collapse
Affiliation(s)
- Yutaka Fuchino
- Language Sciences, Department of Human Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Hachioji, Tokyo, Japan; Research Center for Language, Brain and Genetics, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.
| | - Ikuko Kato
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yinmon Htun
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yuji Takano
- Department of Psychology, Faculty of Human Environment, University of Human Environments, Okazaki, Japan
| | - Yukihiko Konishi
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kosuke Koyano
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Shinji Nakamura
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Naoki Tanaka
- Research Institute of Industrial Technology, Toyo University, Kawagoe, Saitama, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yukuo Konishi
- Center for Baby Science, Doshisha University, Kizugawa, Kyoto, Japan
| |
Collapse
|
11
|
Wermke K, Clad F, Blum D, Cebulla M, Shehata-Dieler W. Melody of Vocants: Fixed Pattern or Shaped by Hearing? Folia Phoniatr Logop 2023; 76:151-163. [PMID: 37517387 DOI: 10.1159/000533288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023] Open
Abstract
INTRODUCTION Vocants as infants' first vocalic utterances are produced laryngeally while the vocal tract is maintained in a neutral position. These "primitive" sounds have sometimes been described as largely innate and, therefore, as sounding alike in both healthy and hearing-impaired young infants. OBJECTIVE The objective of this study is to compare melody features of vocants, recorded during face-to-face interaction, between infants (N = 8) with profound congenital sensorineural hearing loss (HI group) and age-matched (N = 18) controls (CO) group. The question was as follows: does a lack of auditory feedback have a noticeable effect on melodic features of vocants? METHODS The cooing database totalled 6,998 vocalizations (HI: N = 2,847; CO: N = 4,151), all of which had been recorded during the observation period of 60-181 days of age. Identification of the vocants (N = 1,148) was based on broadband spectrograms (KAY-CSL) and auditory impressions. Fundamental frequency (F0) analyses were performed (PRAAT) and the pattern of the F0 contour (melody) analysed using specific in-lab software (CDAP, pw-project). Generalized mixed linear models were used to perform group comparisons. RESULTS There was a clear predominance of a simple rising-falling pattern (single melody arcs) in vocants of both groups. Nonetheless, significantly more complex contours, particularly, double-arc structures, were found in vocants of the CO group. Moreover, vocants of the HI group were shorter than those uttered by the CO group, while the mean F0 did not significantly differ. CONCLUSION Vocants are characterized by both, innate features, found in HI and CO groups, and features that additionally require a functioning auditory system. Even at an early pre-linguistic stage, somatosensory sensations cannot compensate for a lack of auditory feedback. Vocants might be relevant in the early diagnosis of hearing disorders and assessments of the effectiveness of, or adjustments required to, hearing aids.
Collapse
Affiliation(s)
- Kathleen Wermke
- Center for Pre-Speech Development and Developmental Disorders, University Hospital Würzburg, Würzburg, Germany
| | - Fabian Clad
- Center for Pre-Speech Development and Developmental Disorders, University Hospital Würzburg, Würzburg, Germany
| | - Daria Blum
- Center for Pre-Speech Development and Developmental Disorders, University Hospital Würzburg, Würzburg, Germany
| | - Mario Cebulla
- Comprehensive Hearing Center (CHC), Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Wafaa Shehata-Dieler
- Comprehensive Hearing Center (CHC), Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Petanjek Z, Banovac I, Sedmak D, Hladnik A. Dendritic Spines: Synaptogenesis and Synaptic Pruning for the Developmental Organization of Brain Circuits. ADVANCES IN NEUROBIOLOGY 2023; 34:143-221. [PMID: 37962796 DOI: 10.1007/978-3-031-36159-3_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Synaptic overproduction and elimination is a regular developmental event in the mammalian brain. In the cerebral cortex, synaptic overproduction is almost exclusively correlated with glutamatergic synapses located on dendritic spines. Therefore, analysis of changes in spine density on different parts of the dendritic tree in identified classes of principal neurons could provide insight into developmental reorganization of specific microcircuits.The activity-dependent stabilization and selective elimination of the initially overproduced synapses is a major mechanism for generating diversity of neural connections beyond their genetic determination. The largest number of overproduced synapses was found in the monkey and human cerebral cortex. The highest (exceeding adult values by two- to threefold) and most protracted overproduction (up to third decade of life) was described for associative layer IIIC pyramidal neurons in the human dorsolateral prefrontal cortex.Therefore, the highest proportion and extraordinarily extended phase of synaptic spine overproduction is a hallmark of neural circuitry in human higher-order associative areas. This indicates that microcircuits processing the most complex human cognitive functions have the highest level of developmental plasticity. This finding is the backbone for understanding the effect of environmental impact on the development of the most complex, human-specific cognitive and emotional capacities, and on the late onset of human-specific neuropsychiatric disorders, such as autism and schizophrenia.
Collapse
Affiliation(s)
- Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia.
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia.
| | - Ivan Banovac
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dora Sedmak
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Hladnik
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
13
|
Mencía S, Alonso C, Pallás-Alonso C, López-Herce J, Maternal and Child Health and Development Network II (SAMID II). Evaluation and Treatment of Pain in Fetuses, Neonates and Children. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1688. [PMID: 36360416 PMCID: PMC9689143 DOI: 10.3390/children9111688] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 08/03/2023]
Abstract
The perception of pain is individual and differs between children and adults. The structures required to feel pain are developed at 24 weeks of gestation. However, pain assessment is complicated, especially in neonates, infants and preschool-age children. Clinical scales adapted to age are the most used methods for assessing and monitoring the degree of pain in children. They evaluate several behavioral and/or physiological parameters related to pain. Some monitors detect the physiological changes that occur in association with painful stimuli, but they do not yet have a clear clinical use. Multimodal analgesia is recommended for pain treatment with non-pharmacological and pharmacological interventions. It is necessary to establish pharmacotherapeutic protocols for analgesia adjusted to the acute or chronic, type and intensity of pain, as well as age. The most used analgesics in children are paracetamol, ibuprofen, dipyrone, opioids (morphine and fentanyl) and local anesthetics. Patient-controlled analgesia is an adequate alternative for adolescent and older children in specific situations, such as after surgery. In patients with severe or persistent pain, it is very important to consult with specific pain services.
Collapse
Affiliation(s)
- Santiago Mencía
- Pediatric Intensive Care Service, Gregorio Marañón General University Hospital, Health Research Institute of Gregorio Marañón Madrid, 28029 Madrid, Spain
- Departamento de Salud Pública y Maternoinfantil, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Carlos III Institute, 28029 Madrid, Spain
| | - Clara Alonso
- Carlos III Institute, 28029 Madrid, Spain
- Department of Neonatology, 12 de Octubre University Hospital, 28041 Madrid, Spain
| | - Carmen Pallás-Alonso
- Departamento de Salud Pública y Maternoinfantil, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Carlos III Institute, 28029 Madrid, Spain
- Department of Neonatology, 12 de Octubre University Hospital, 28041 Madrid, Spain
| | - Jesús López-Herce
- Pediatric Intensive Care Service, Gregorio Marañón General University Hospital, Health Research Institute of Gregorio Marañón Madrid, 28029 Madrid, Spain
- Departamento de Salud Pública y Maternoinfantil, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Carlos III Institute, 28029 Madrid, Spain
| | | |
Collapse
|
14
|
Massimello F, Billeci L, Canu A, Montt-Guevara MM, Impastato G, Varanini M, Giannini A, Simoncini T, Mannella P. Music Modulates Autonomic Nervous System Activity in Human Fetuses. Front Med (Lausanne) 2022; 9:857591. [PMID: 35492323 PMCID: PMC9046697 DOI: 10.3389/fmed.2022.857591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Context Fetal Autonomic Nervous sysTem Evaluation (FANTE) is a non-invasive tool that evaluates the autonomic nervous system activity in a fetus. Autonomic nervous system maturation and development during prenatal life are pivotal for the survival and neuropsychiatric development of the baby. Objective Aim of the study is to evaluate the effect of music stimulation on fetal heart rate and specific parameters linked to ANS activity, in particular fetal heart rate variability. Methods Thirty-two women between the 32nd and 38th week with a singleton uncomplicated pregnancy were recruited. All FANTE data collections were acquired using a 10-derivation electrocardiograph placed on the maternal abdomen. In each session (5 min basal, 10 min with music stimulus, and 5 min post-stimulus), FANTE was registered. The music stimulus was "Clair de lune" Debussy, played through headphones on the mother's abdomen (CTR: 31927). Results Music does not change the mean value of fetal heart rate. However, indices of total fetal heart rate variability statistically increase (RRsd p = 0.037, ANNsd p = 0.039, SD2 p = 0.019) during music stimulation in comparison to the basal phase. Heart rate variability increase depends mainly on the activation of parasympathetic branches (CVI p = 0.013), meanwhile, no significant changes from basal to stimulation phase were observed for indices of sympathetic activity. All the parameters of heart rate variability and parasympathetic activity remained activated in the post-stimulus phase compared to the stimulus phase. In the post-stimulus phase, sympathetic activity resulted in a significant reduction (LFn p = 0.037). Conclusion Music can influence the basal activity of the fetal autonomic nervous system, enhancing heart rate variability, without changing fetal heart rate mean value. Music is enabled to induce a relaxation state in a near-to-term fetus, mediated by parasympathetic activation and by a parallel sympathetic inhibition.
Collapse
Affiliation(s)
- Francesca Massimello
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lucia Billeci
- Institute of Clinical Physiology, National Research Council of Italy (CNR-IFC), Pisa, Italy
| | - Alessio Canu
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Gaia Impastato
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maurizio Varanini
- Institute of Clinical Physiology, National Research Council of Italy (CNR-IFC), Pisa, Italy
| | - Andrea Giannini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Tommaso Simoncini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paolo Mannella
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
15
|
Alexopoulos J, Giordano V, Janda C, Benavides‐Varela S, Seidl R, Doering S, Berger A, Bartha‐Doering L. The duration of intrauterine development influences discrimination of speech prosody in infants. Dev Sci 2021; 24:e13110. [PMID: 33817911 PMCID: PMC11475226 DOI: 10.1111/desc.13110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/17/2021] [Accepted: 03/05/2021] [Indexed: 11/26/2022]
Abstract
Auditory speech discrimination is essential for normal language development. Children born preterm are at greater risk of language developmental delays. Using functional near-infrared spectroscopy at term-equivalent age, the present study investigated early discrimination of speech prosody in 62 neonates born between week 23 and 41 of gestational age (GA). We found a significant positive correlation between GA at birth and neural discrimination of forward versus backward speech at term-equivalent age. Cluster analysis identified a critical threshold at around week 32 of GA, pointing out the existence of subgroups. Infants born before week 32 of GA exhibited a significantly different pattern of hemodynamic response to speech stimuli compared to infants born at or after week 32 of GA. Thus, children born before the GA of 32 weeks are especially vulnerable to early speech discrimination deficits. To support their early language development, we therefore suggest a close follow-up and additional speech and language therapy especially in the group of children born before week 32 of GA.
Collapse
Affiliation(s)
- Johanna Alexopoulos
- Department of Psychoanalysis and PsychotherapyMedical University of ViennaViennaAustria
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Vito Giordano
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Charlotte Janda
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | | | - Rainer Seidl
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Stephan Doering
- Department of Psychoanalysis and PsychotherapyMedical University of ViennaViennaAustria
| | - Angelika Berger
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Lisa Bartha‐Doering
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| |
Collapse
|
16
|
Poćwierz-Marciniak I, Harciarek M. The Effect of Musical Stimulation and Mother's Voice on the Early Development of Musical Abilities: A Neuropsychological Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8467. [PMID: 34444216 PMCID: PMC8393253 DOI: 10.3390/ijerph18168467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022]
Abstract
An infant's early contact with music affects its future development in a broad sense, including the development of musical aptitude. Contact with the mother's voice, both prenatally and after birth, is also extremely important for creating an emotional bond between the infant and the mother. This article discusses the role that auditory experience-both typically musical and that associated with the mother's voice-plays in fetal, neonatal, and infant development, particularly in terms of musical aptitude. Attempts have also been made to elucidate the neuropsychological mechanisms underlying the positive effects that appropriate musical stimulation can have on a child's development.
Collapse
|
17
|
Ghio M, Cara C, Tettamanti M. The prenatal brain readiness for speech processing: A review on foetal development of auditory and primordial language networks. Neurosci Biobehav Rev 2021; 128:709-719. [PMID: 34274405 DOI: 10.1016/j.neubiorev.2021.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Despite consolidated evidence for the prenatal ability to elaborate and respond to sounds and speech stimuli, the ontogenetic functional brain maturation of language responsiveness in the foetus is still poorly understood. Recent advances in in-vivo foetal neuroimaging have contributed to a finely detailed picture of the anatomo-functional hallmarks that define the prenatal neurodevelopment of auditory and language-related networks. Here, we first outline available evidence for the prenatal development of auditory and language-related brain structures and of their anatomical connections. Second, we focus on functional connectivity data showing the emergence of auditory and primordial language networks in the foetal brain. Third, we recapitulate functional neuroimaging studies assessing the prenatal readiness for sound processing, as a crucial prerequisite for the foetus to experientially respond to spoken language. In conclusion, we suggest that the state of the art has reached sufficient maturity to directly assess the neural mechanisms underlying the prenatal readiness for speech processing and to evaluate whether foetal neuromarkers can predict the postnatal development of language acquisition abilities and disabilities.
Collapse
Affiliation(s)
- Marta Ghio
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Italy
| | - Cristina Cara
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Italy
| | - Marco Tettamanti
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Italy.
| |
Collapse
|
18
|
Analgesia for fetal pain during prenatal surgery: 10 years of progress. Pediatr Res 2021; 89:1612-1618. [PMID: 32971529 DOI: 10.1038/s41390-020-01170-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/28/2022]
Abstract
Some doubts on the necessity and safety of providing analgesia to the fetus during prenatal surgery were raised 10 years ago. They were related to four matters: fetal sleep due to neuroinhibitors in fetal blood, the immaturity of the cerebral cortex, safety, and the need for fetal direct analgesia. These objections now seem obsolete. This review shows that neuroinhibitors give fetuses at most some transient sedation, but not a complete analgesia, that the cerebral cortex is not indispensable to feel pain, when subcortical structures for pain perception are present, and that maternal anesthesia seems not sufficient to anesthetize the fetus. Current drugs used for maternal analgesia pass through the placenta only partially so that they cannot guarantee a sufficient analgesia to the fetus. Extraction indices, that is, how much each analgesic drug crosses the placenta, are provided here. We here report safety guidelines for fetal direct analgesia. In conclusion, the human fetus can feel pain when it undergoes surgical interventions and direct analgesia must be provided to it. IMPACT: Fetal pain is evident in the second half of pregnancy. Progress in the physiology of fetal pain, which is reviewed in this report, supports the notion that the fetus reacts to painful interventions during fetal surgery. Evidence here reported shows that it is an error to believe that the fetus is in a continuous and unchanging state of sedation and analgesia. Data are given that disclose that drugs used for maternal analgesia cross the placenta only partially, so that they cannot guarantee a sufficient analgesia to the fetus. Safety guidelines are given for fetal direct analgesia.
Collapse
|
19
|
Sorting pain out of salience: assessment of pain facial expressions in the human fetus. Pain Rep 2021; 6:e882. [PMID: 33537520 PMCID: PMC7850725 DOI: 10.1097/pr9.0000000000000882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/02/2020] [Accepted: 11/07/2020] [Indexed: 11/25/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. Acute pain facial expressions can be detected/scored in human fetuses. We propose a seven-item scale to differentiate pain facial expressions from rest/acoustic stimuli ones. Introduction: The question of whether the human fetus experiences pain has received substantial attention in recent times. With the advent of high-definition 4-dimensional ultrasound (4D-US), it is possible to record fetal body and facial expressions. Objective: To determine whether human fetuses demonstrate discriminative acute behavioral responses to nociceptive input. Methods: This cross-sectional study included 5 fetuses with diaphragmatic hernia with indication of intrauterine surgery (fetoscopic endoluminal tracheal occlusion) and 8 healthy fetuses, who were scanned with 4D-US in 1 of 3 conditions: (1) acute pain group: Fetuses undergoing intrauterine surgery were assessed in the preoperative period during the anesthetic injection into the thigh; (2) control group at rest: Facial expressions at rest were recorded during scheduled ultrasound examinations; and (3) control group acoustic startle: Fetal facial expressions were recorded during acoustic stimulus (500–4000 Hz; 60–115 dB). Results: Raters blinded to the fetuses’ groups scored 65 pictures of fetal facial expressions based on the presence of 12 items (facial movements). Analyses of redundancy and usefulness excluded 5 items for being of low discrimination capacity (P>0.2). The final version of the pain assessment tool consisted of a total of 7 items: brow lowering/eyes squeezed shut/deepening of the nasolabial furrow/open lips/horizontal mouth stretch/vertical mouth stretch/neck deflection. Odd ratios for a facial expression to be detected in acute pain compared with control conditions ranged from 11 (neck deflection) to 1,400 (horizontal mouth stretch). Using the seven-item final tool, we showed that 5 is the cutoff value discriminating pain from nonpainful startle and rest. Conclusions: This study inaugurates the possibility to study pain responses during the intrauterine life, which may have implications for the postoperative management of pain after intrauterine surgical interventions
Collapse
|
20
|
Aberrant auditory system and its developmental implications for autism. SCIENCE CHINA-LIFE SCIENCES 2021; 64:861-878. [DOI: 10.1007/s11427-020-1863-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/06/2020] [Indexed: 12/26/2022]
|
21
|
Sa de Almeida J, Meskaldji DE, Loukas S, Lordier L, Gui L, Lazeyras F, Hüppi PS. Preterm birth leads to impaired rich-club organization and fronto-paralimbic/limbic structural connectivity in newborns. Neuroimage 2020; 225:117440. [PMID: 33039621 DOI: 10.1016/j.neuroimage.2020.117440] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Prematurity disrupts brain development during a critical period of brain growth and organization and is known to be associated with an increased risk of neurodevelopmental impairments. Investigating whole-brain structural connectivity alterations accompanying preterm birth may provide a better comprehension of the neurobiological mechanisms related to the later neurocognitive deficits observed in this population. Using a connectome approach, we aimed to study the impact of prematurity on neonatal whole-brain structural network organization at term-equivalent age. In this cohort study, twenty-four very preterm infants at term-equivalent age (VPT-TEA) and fourteen full-term (FT) newborns underwent a brain MRI exam at term age, comprising T2-weighted imaging and diffusion MRI, used to reconstruct brain connectomes by applying probabilistic constrained spherical deconvolution whole-brain tractography. The topological properties of brain networks were quantified through a graph-theoretical approach. Furthermore, edge-wise connectivity strength was compared between groups. Overall, VPT-TEA infants' brain networks evidenced increased segregation and decreased integration capacity, revealed by an increased clustering coefficient, increased modularity, increased characteristic path length, decreased global efficiency and diminished rich-club coefficient. Furthermore, in comparison to FT, VPT-TEA infants had decreased connectivity strength in various cortico-cortical, cortico-subcortical and intra-subcortical networks, the majority of them being intra-hemispheric fronto-paralimbic and fronto-limbic. Inter-hemispheric connectivity was also decreased in VPT-TEA infants, namely through connections linking to the left precuneus or left dorsal cingulate gyrus - two regions that were found to be hubs in FT but not in VPT-TEA infants. Moreover, posterior regions from Default-Mode-Network (DMN), namely precuneus and posterior cingulate gyrus, had decreased structural connectivity in VPT-TEA group. Our finding that VPT-TEA infants' brain networks displayed increased modularity, weakened rich-club connectivity and diminished global efficiency compared to FT infants suggests a delayed transition from a local architecture, focused on short-range connections, to a more distributed architecture with efficient long-range connections in those infants. The disruption of connectivity in fronto-paralimbic/limbic and posterior DMN regions might underlie the behavioral and social cognition difficulties previously reported in the preterm population.
Collapse
Affiliation(s)
- Joana Sa de Almeida
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Djalel-Eddine Meskaldji
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland; Institute of Mathematics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Serafeim Loukas
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland; Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lara Lordier
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Laura Gui
- Department of Radiology and Medical Informatics, Center of BioMedical Imaging (CIBM), University of Geneva, Geneva, Switzerland
| | - François Lazeyras
- Department of Radiology and Medical Informatics, Center of BioMedical Imaging (CIBM), University of Geneva, Geneva, Switzerland
| | - Petra S Hüppi
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
22
|
Scott TE, Aboudi D, Kase JS. Low-Grade Intraventricular Hemorrhage and Neurodevelopmental Outcomes at 24-42 Months of Age. J Child Neurol 2020; 35:578-584. [PMID: 32438867 DOI: 10.1177/0883073820922638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Infants with high-grade (III-IV) intraventricular hemorrhage have been reported to have worse neurodevelopmental outcomes than those without, but outcomes of infants with low-grade (I-II) intraventricular hemorrhage are mixed. We sought to compare neurodevelopmental outcomes of infants with low-grade intraventricular hemorrhage to those with no intraventricular hemorrhage. This is a retrospective cohort study of very preterm (≤32 weeks' gestation) infants evaluated between 24 and 42 months chronologic age using the Bayley Scales of Infant Development, 3rd edition, to determine neurodevelopmental outcomes. Linear regression was used to control for potential confounders. There was no difference in outcome scores between groups when controlling for confounding variables. Infants with low-grade intraventricular hemorrhage, however, had higher rates of enrollment in early intervention services (64% vs 49%, P = .023). Low-grade intraventricular hemorrhage itself may not significantly increase the risk of neurodevelopmental impairment through the first 3 years of life considering other conditions of prematurity.
Collapse
Affiliation(s)
- Theresa E Scott
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, NY, USA
| | - David Aboudi
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, NY, USA
| | - Jordan S Kase
- The Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, NY, USA
| |
Collapse
|
23
|
A pilot study: Auditory steady-state responses (ASSR) can be measured in human fetuses using fetal magnetoencephalography (fMEG). PLoS One 2020; 15:e0235310. [PMID: 32697776 PMCID: PMC7375519 DOI: 10.1371/journal.pone.0235310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/14/2020] [Indexed: 11/19/2022] Open
Abstract
Background Auditory steady-state responses (ASSRs) are ongoing evoked brain responses to continuous auditory stimuli that play a role for auditory processing of complex sounds and speech perception. Transient auditory event-related responses (AERRs) have previously been recorded using fetal magnetoencephalography (fMEG) but involve different neurological pathways. Previous studies in children and adults demonstrated that the cortical components of the ASSR are significantly affected by state of consciousness and by maturational changes in neonates and young infants. To our knowledge, this is the first study to investigate ASSRs in human fetuses. Methods 47 fMEG sessions were conducted with 24 healthy pregnant women in three gestational age groups (30–32 weeks, 33–35 weeks and 36–39 weeks). The stimulation consisted of amplitude-modulated (AM) tones with a duration of one second, a carrier frequency (CF) of 500 Hz and a modulation frequency (MF) of 27 Hz or 42 Hz. Both tones were presented in a random order with equal probability adding up to 80–100 repetitions per tone. The ASSR across trials was quantified by assessing phase synchrony in the cortical signals at the stimulation frequency. Results and conclusion Ten out of 47 recordings were excluded due to technical problems or maternal movements. Analysis of the included 37 fetal recordings revealed a statistically significant response for the phase coherence between trials for the MF of 27 Hz but not for 42 Hz. An exploratory subgroup analysis moreover suggested an advantage in detectability for fetal behavioral state 2F (active asleep) compared to 1F (quiet asleep) detected using fetal heart rate. In conclusion, this pilot study is the first description of a method to detect human ASSRs in fetuses. The findings warrant further investigations of the developing fetal brain.
Collapse
|
24
|
Kostović I. The enigmatic fetal subplate compartment forms an early tangential cortical nexus and provides the framework for construction of cortical connectivity. Prog Neurobiol 2020; 194:101883. [PMID: 32659318 DOI: 10.1016/j.pneurobio.2020.101883] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/05/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
The most prominent transient compartment of the primate fetal cortex is the deep, cell-sparse, synapse-containing subplate compartment (SPC). The developmental role of the SPC and its extraordinary size in humans remain enigmatic. This paper evaluates evidence on the development and connectivity of the SPC and discusses its role in the pathogenesis of neurodevelopmental disorders. A synthesis of data shows that the subplate becomes a prominent compartment by its expansion from the deep cortical plate (CP), appearing well-delineated on MR scans and forming a tangential nexus across the hemisphere, consisting of an extracellular matrix, randomly distributed postmigratory neurons, multiple branches of thalamic and long corticocortical axons. The SPC generates early spontaneous non-synaptic and synaptic activity and mediates cortical response upon thalamic stimulation. The subplate nexus provides large-scale interareal connectivity possibly underlying fMR resting-state activity, before corticocortical pathways are established. In late fetal phase, when synapses appear within the CP, transient the SPC coexists with permanent circuitry. The histogenetic role of the SPC is to provide interactive milieu and capacity for guidance, sorting, "waiting" and target selection of thalamocortical and corticocortical pathways. The new evolutionary role of the SPC and its remnant white matter neurons is linked to the increasing number of associative pathways in the human neocortex. These roles attributed to the SPC are regulated using a spatiotemporal gene expression during critical periods, when pathogenic factors may disturb vulnerable circuitry of the SPC, causing neurodevelopmental cognitive circuitry disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Salata 12, 10000 Zagreb, Croatia.
| |
Collapse
|
25
|
Adam-Darque A, Pittet MP, Grouiller F, Rihs TA, Leuchter RHV, Lazeyras F, Michel CM, Hüppi PS. Neural Correlates of Voice Perception in Newborns and the Influence of Preterm Birth. Cereb Cortex 2020; 30:5717-5730. [PMID: 32518940 DOI: 10.1093/cercor/bhaa144] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 12/30/2022] Open
Abstract
Maternal voice is a highly relevant stimulus for newborns. Adult voice processing occurs in specific brain regions. Voice-specific brain areas in newborns and the relevance of an early vocal exposure on these networks have not been defined. This study investigates voice perception in newborns and the impact of prematurity on the cerebral processes. Functional magnetic resonance imaging (fMRI) and high-density electroencephalography (EEG) were used to explore the brain responses to maternal and stranger female voices in full-term newborns and preterm infants at term-equivalent age (TEA). fMRI results and the EEG oddball paradigm showed enhanced processing for voices in preterms at TEA than in full-term infants. Preterm infants showed additional cortical regions involved in voice processing in fMRI and a late mismatch response for maternal voice, considered as a first trace of a recognition process based on memory representation. Full-term newborns showed increased cerebral activity to the stranger voice. Results from fMRI, oddball, and standard auditory EEG paradigms highlighted important change detection responses to novelty after birth. These findings suggest that the main components of the adult voice-processing networks emerge early in development. Moreover, an early postnatal exposure to voices in premature infants might enhance their capacity to process voices.
Collapse
Affiliation(s)
- Alexandra Adam-Darque
- Division of Development and Growth, Department of Pediatrics, Geneva University Hospitals, 1205 Geneva, Switzerland.,Laboratory of Cognitive Neurorehabilitation, Division of Neurorehabilitation, Department of Clinical Neuroscience, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Marie P Pittet
- Division of Development and Growth, Department of Pediatrics, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Frédéric Grouiller
- Department of Radiology and Medical Informatics, University of Geneva, 1205 Geneva, Switzerland.,Swiss Centre for Affective Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Tonia A Rihs
- Functional Brain Mapping Laboratory, Department of Neurosciences, University of Geneva, 1205 Geneva, Switzerland
| | - Russia Ha-Vinh Leuchter
- Division of Development and Growth, Department of Pediatrics, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - François Lazeyras
- Department of Radiology and Medical Informatics, University of Geneva, 1205 Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Neurosciences, University of Geneva, 1205 Geneva, Switzerland
| | - Petra S Hüppi
- Division of Development and Growth, Department of Pediatrics, Geneva University Hospitals, 1205 Geneva, Switzerland
| |
Collapse
|
26
|
Padilla N, Lagercrantz H. Making of the mind. Acta Paediatr 2020; 109:883-892. [PMID: 31922622 DOI: 10.1111/apa.15167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 12/23/2022]
Abstract
The essence of the mind is consciousness. It emerged early during evolution and ontogeny appears to follow the same process as phylogeny. Consciousness comes from multiple sources, including visual, auditory, sensorimotor and proprioceptive senses. These gradually combine during development to build a unified consciousness, due to the constant interactions between the brain, body, and environment. In the human the emergence of consciousness depends on the activation of the cortex by thalamocortical connections around 24 weeks after conception. Then, the human foetus can be potentially conscious, as it is aware of its body and reacts to touch, smell and sound and shows social expressions in response to external stimuli. However, it is mainly asleep and probably not aware of itself and its environment. In contrast, the newborn infant is awake after its first breaths of air and can be aware of its own self and others, express emotions and share feelings. The development of consciousness is a progressive, stepwise, structural and functional evolution of multiple intricate components. The infant fulfils some of the more basic criteria for consciousness. However, there are some important missing pieces at this stage, as it cannot remember the past and anticipate the future.
Collapse
Affiliation(s)
- Nelly Padilla
- Department of Women's and Children's Health Karolinska Institute Stockholm Sweden
| | - Hugo Lagercrantz
- Department of Women's and Children's Health Karolinska Institute Stockholm Sweden
| |
Collapse
|
27
|
Goldberg E, McKenzie CA, de Vrijer B, Eagleson R, de Ribaupierre S. Fetal Response to a Maternal Internal Auditory Stimulus. J Magn Reson Imaging 2020; 52:139-145. [PMID: 31951084 DOI: 10.1002/jmri.27033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Functional MRI (fMRI) is a noninvasive method to investigate the neural correlates of brain development. Insight into the rapidly developing brain in utero is limited, and fetal fMRI can be used to gain a greater understanding of the developmental process. Fetal brain fMRI is typically limited to resting-state fMRI due to the difficulty to instruct or provide a stimulus to the fetus. Previous studies have employed auditory task fMRI with an external sound stimulus directly on the abdomen of the mother; however, this practice has since been deemed unsafe for the developing fetus. PURPOSE To investigate a reliable and safe paradigm to study the development of fetal brain networks, we postulated that an internal task, such as the mother's singing, as the auditory stimulus would result in activation in the fetal primary auditory cortex. STUDY TYPE Cohort. POPULATION Pregnant women with singleton pregnancies (n = 9; 33-38 weeks gestational age). FIELD STRENGTH/SEQUENCE All subjects underwent two task-based block design blood oxygen level-dependent (BOLD) at 1.5T or 3T. ASSESSMENT Each volume was assessed for fetal motion and manually reoriented and realigned to correct for fetal motion. Once the motion was corrected, a gestational age-matched parcellated atlas with regions of interest overlaid onto the activation map was used to determine which regions in the brain had activation during task phases. STATISTICAL TESTS First Level Analysis. MRI data were analyzed using SPM 12 as a task fMRI. RESULTS Eight subjects had activation on the right Heschl's gyrus; six fetuses demonstrated activation on the left when exposed to the internal acoustic stimulus. Additionally, activation was found on the right and left middle cingulate cortex (MCC) and the left putamen. DATA CONCLUSION Maternal singing can be used as an internal stimulus to activate the auditory network and Heschl's gyrus during fetal fMRI. Level of Evidence 2 Technical Efficacy Stage 2 J. Magn. Reson. Imaging 2020;52:139-145.
Collapse
Affiliation(s)
- Estee Goldberg
- Biomedical Engineering, Western University, London, Ontario, Canada
| | - Charles A McKenzie
- Biomedical Engineering, Western University, London, Ontario, Canada.,Medical Biophysics, Western University, London, Ontario, Canada.,Children's Health Research Institute, Western University, London, Ontario, Canada
| | - Barbra de Vrijer
- Children's Health Research Institute, Western University, London, Ontario, Canada.,Department of Obstetrics and Gynaecology, Western University, London, Ontario, Canada
| | - Roy Eagleson
- Biomedical Engineering, Western University, London, Ontario, Canada.,Brain and Mind Institute, Professor of Engineering, Western University, London, Ontario, Canada
| | - Sandrine de Ribaupierre
- Biomedical Engineering, Western University, London, Ontario, Canada.,Medical Biophysics, Western University, London, Ontario, Canada.,Children's Health Research Institute, Western University, London, Ontario, Canada.,Brain and Mind Institute, Professor of Engineering, Western University, London, Ontario, Canada.,Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| |
Collapse
|
28
|
Gélat P, David AL, Haqhenas SR, Henriques J, Thibaut de Maisieres A, White T, Jauniaux E. Evaluation of fetal exposure to external loud noise using a sheep model: quantification of in utero acoustic transmission across the human audio range. Am J Obstet Gynecol 2019; 221:343.e1-343.e11. [PMID: 31152712 DOI: 10.1016/j.ajog.2019.05.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/18/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND There is mounting evidence that neural memory traces are formed by auditory learning in utero and that premature newborns are particularly sensitive to the intense, sustained noises or impulses sounds associated with the use of intensive care equipment. One area of critical importance is the determination of sound level exposure in utero associated with maternal occupation. The attenuation factors provided by the abdomen and tissue as well as the routes by which the inner ear receives stimulation need careful consideration and investigation to provide prenatal protection from external sound levels and frequencies that may cause harm. OBJECTIVE To measure how sound from external sound sources is transmitted to the fetus inside the uterus of a pregnant sheep in 6 Hz frequency steps between 100 Hz and 20 kHz (ie, across most of the human audio range). STUDY DESIGN We measured acoustic transfer characteristics in vivo in 6 time-mated singleton pregnant Romney ewes (gestational age, 103-130 days, weight, 54-74 kg). Under general anesthesia and at hysterotomy, a calibrated hydrophone was attached to the occiput of the fetal head within the amniotic sac. Two calibrated microphones were positioned in the operating theater, close to the head and to the body of each ewe. Initial experiments were carried out on 3 pregnant ewes 3 days after transport recovery to inform the data acquisition protocol. This was followed by detailed data acquisition of 3 pregnant ewes under general anesthesia, using external white noise signals. Voltage signals were acquired with 2 calibrated microphones, located near the head and the body of each ewe and with a calibrated hydrophone located in the amniotic fluid. RESULTS Measurement of acoustic transmission through the maternal abdominal and uterine walls indicates that frequency contents above 10 kHz are transmitted into the amniotic sac and that some frequencies are attenuated by as little as 3 dB. CONCLUSION This study provides new data about in utero sound transmission of external noise sources beyond physiological noise (cardiovascular, respiratory, and intestinal sounds), which help quantity the potential for fetal physiological damage resulting from exposure to high levels of noise during pregnancy. Fine-frequency acoustic attenuation characteristics are essential to inform standards and clinical recommendations on exposure of pregnant women to noise. Such transfer functions may also inform the design of filters to produce an optimal acoustic setting for maternal occupational noise exposure, use of magnetic resonance imaging during pregnancy, and for neonatal incubators.
Collapse
|
29
|
Afacan O, Estroff JA, Yang E, Barnewolt CE, Connolly SA, Parad RB, Mulkern RV, Warfield SK, Gholipour A. Fetal Echoplanar Imaging: Promises and Challenges. Top Magn Reson Imaging 2019; 28:245-254. [PMID: 31592991 PMCID: PMC6788763 DOI: 10.1097/rmr.0000000000000219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fetal magnetic resonance imaging (MRI) has been gaining increasing interest in both clinical radiology and research. Echoplanar imaging (EPI) offers a unique potential, as it can be used to acquire images very fast. It can be used to freeze motion, or to get multiple images with various contrast mechanisms that allow studying the microstructure and function of the fetal brain and body organs. In this article, we discuss the current clinical and research applications of fetal EPI. This includes T2*-weighted imaging to better identify blood products and vessels, using diffusion-weighted MRI to investigate connections of the developing brain and using functional MRI (fMRI) to identify the functional networks of the developing brain. EPI can also be used as an alternative structural sequence when banding or standing wave artifacts adversely affect the mainstream sequences used routinely in structural fetal MRI. We also discuss the challenges with EPI acquisitions, and potential solutions. As EPI acquisitions are inherently sensitive to susceptibility artifacts, geometric distortions limit the use of high-resolution EPI acquisitions. Also, interslice motion and transmit and receive field inhomogeneities may create significant artifacts in fetal EPI. We conclude by discussing promising research directions to overcome these challenges to improve the use of EPI in clinical and research applications.
Collapse
Affiliation(s)
- Onur Afacan
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Judy A. Estroff
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Advanced Fetal Care Center, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Edward Yang
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Advanced Fetal Care Center, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Carol E. Barnewolt
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Advanced Fetal Care Center, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Susan A. Connolly
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Advanced Fetal Care Center, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Richard B. Parad
- Advanced Fetal Care Center, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Robert V. Mulkern
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Simon K. Warfield
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Ali Gholipour
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
30
|
Abstract
Fetal pain is difficult to assess, because the main feature needed to spot pain, is the subject's capability of declaring it. Nonetheless, much can be affirmed about this issue. In this review we first report the epochs of the development of human nociceptive pathways; then we review since when they are functioning. We also review the latest data about the new topic of analgesia and prenatal surgery and about the scarce effect on fetal pain sentience of the natural sedatives fetuses produce. It appears that pain is a neuroadaptive phenomenon that emerges in the middle of pregnancy, at about 20-22 weeks of gestation, and becomes more and more evident for bystanders and significant for the fetus, throughout the rest of the pregnancy.
Collapse
Affiliation(s)
- Carlo V Bellieni
- Neonatal Intensive Care Unit, University Hospital of Siena, Italy.
| |
Collapse
|
31
|
Daneshvarfard F, Abrishami Moghaddam H, Dehaene-Lambertz G, Kongolo G, Wallois F, Mahmoudzadeh M. Neurodevelopment and asymmetry of auditory-related responses to repetitive syllabic stimuli in preterm neonates based on frequency-domain analysis. Sci Rep 2019; 9:10654. [PMID: 31337810 PMCID: PMC6650479 DOI: 10.1038/s41598-019-47064-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 07/01/2019] [Indexed: 11/20/2022] Open
Abstract
Sensory development of the human brain begins prenatally, allowing cortical auditory responses to be recorded at an early age in preterm infants. Despite several studies focusing on the temporal characteristics of preterm infants' cortical responses, few have been conducted on frequency analysis of these responses. In this study, we performed frequency and coherence analysis of preterm infants' auditory responses to series of syllables and also investigated the functional brain asymmetry of preterm infants for the detection of the regularity of auditory stimuli. Cortical auditory evoked potentials (CAEPs) were recorded in 16 preterm infants with a mean recording age of 31.48 weeks gestational age (29.57-34.14 wGA) in response to a repetitive syllabic stimulus. Peak amplitudes of the frequency response at the target frequency and the first harmonic, as well as the phase coherence (PC) at the target frequency were extracted as age-dependent variables. A functional asymmetry coefficient was defined as a lateralization index for the amplitude of the target frequency at each electrode site. While the findings revealed a significant positive correlation between the mean amplitude at the target frequency vs. age (R2 = 0.263, p = 0.042), no significant correlation was observed for age-related changes of the mean amplitude at the first harmonic. A significant correlation was also observed between the mean PC and age (R2 = 0.318, p = 0.023). A right hemisphere lateralization over many channels was also generally observed. The results demonstrate that rightward lateralization for slow rate modulation, previously observed in adults, children and newborns, appears to be in place at a very young age, even in preterm infants.
Collapse
Affiliation(s)
- Farveh Daneshvarfard
- INSERM U1105, Université de Picardie, CURS, Amiens, France
- Faculty of Electrical and Computer Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Hamid Abrishami Moghaddam
- INSERM U1105, Université de Picardie, CURS, Amiens, France.
- Faculty of Electrical and Computer Engineering, K.N. Toosi University of Technology, Tehran, Iran.
| | - Ghislaine Dehaene-Lambertz
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, CNRS, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France
| | - Guy Kongolo
- INSERM U1105, Université de Picardie, CURS, Amiens, France
- INSERM U1105, Neonatal ICU, South University Hospital, Amiens, France
| | - Fabrice Wallois
- INSERM U1105, Université de Picardie, CURS, Amiens, France.
- INSERM U1105, Unit Exploration Fonctionnelles du Système Nerveux Pédiatrique, South University Hospital, Amiens, France.
| | - Mahdi Mahmoudzadeh
- INSERM U1105, Université de Picardie, CURS, Amiens, France
- INSERM U1105, Unit Exploration Fonctionnelles du Système Nerveux Pédiatrique, South University Hospital, Amiens, France
| |
Collapse
|
32
|
Liu J, Tsang T, Jackson L, Ponting C, Jeste SS, Bookheimer SY, Dapretto M. Altered lateralization of dorsal language tracts in 6-week-old infants at risk for autism. Dev Sci 2019; 22:e12768. [PMID: 30372577 PMCID: PMC6470045 DOI: 10.1111/desc.12768] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 10/11/2018] [Accepted: 10/22/2018] [Indexed: 12/31/2022]
Abstract
Altered structural connectivity has been identified as a possible biomarker of autism spectrum disorder (ASD) risk in the developing brain. Core features of ASD include impaired social communication and early language delay. Thus, examining white matter tracts associated with language may lend further insight into early signs of ASD risk and the mechanisms that underlie language impairments associated with the disorder. Evidence of altered structural connectivity has previously been detected in 6-month-old infants at high familial risk for developing ASD. However, as language processing begins in utero, differences in structural connectivity between language regions may be present in the early infant brain shortly after birth. Here we investigated key white matter pathways of the dorsal language network in 6-week-old infants at high (HR) and low (LR) risk for ASD to identify atypicalities in structural connectivity that may predict altered developmental trajectories prior to overt language delays and the onset of ASD symptomatology. Compared to HR infants, LR infants showed higher fractional anisotropy (FA) in the left superior longitudinal fasciculus (SLF); in contrast, in the right SLF, HR infants showed higher FA than LR infants. Additionally, HR infants showed more rightward lateralization of the SLF. Across both groups, measures of FA and lateralization of these pathways at 6 weeks of age were related to later language development at 18 months of age as well as ASD symptomatology at 36 months of age. These findings indicate that early differences in the structure of language pathways may provide an early predictor of future language development and ASD risk.
Collapse
Affiliation(s)
- Janelle Liu
- Interdepartmental Neuroscience Program, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tawny Tsang
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lisa Jackson
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, USA
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Carolyn Ponting
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shafali S. Jeste
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Susan Y. Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Cognitive Neurosciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
33
|
Chorna O, Filippa M, De Almeida JS, Lordier L, Monaci MG, Hüppi P, Grandjean D, Guzzetta A. Neuroprocessing Mechanisms of Music during Fetal and Neonatal Development: A Role in Neuroplasticity and Neurodevelopment. Neural Plast 2019; 2019:3972918. [PMID: 31015828 PMCID: PMC6446122 DOI: 10.1155/2019/3972918] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/06/2019] [Accepted: 02/24/2019] [Indexed: 01/17/2023] Open
Abstract
The primary aim of this viewpoint article is to examine recent literature on fetal and neonatal processing of music. In particular, we examine the behavioral, neurophysiological, and neuroimaging literature describing fetal and neonatal music perception and processing to the first days of term equivalent life. Secondly, in light of the recent systematic reviews published on this topic, we discuss the impact of music interventions on the potential neuroplasticity pathways through which the early exposure to music, live or recorded, may impact the fetal, preterm, and full-term infant brain. We conclude with recommendations for music stimuli selection and its role within the framework of early socioemotional development and environmental enrichment.
Collapse
Affiliation(s)
- O. Chorna
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - M. Filippa
- Division of Development and Growth, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
- Social Science Department, University of Valle d'Aosta, Aosta, Italy
| | - J. Sa De Almeida
- Division of Development and Growth, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| | - L. Lordier
- Division of Development and Growth, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| | - M. G. Monaci
- Social Science Department, University of Valle d'Aosta, Aosta, Italy
| | - P. Hüppi
- Division of Development and Growth, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| | - D. Grandjean
- Swiss Center for Affective Sciences and Department of Psychology and Educational Sciences, University of Geneva, Switzerland
| | - A. Guzzetta
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
34
|
Haslbeck FB, Bassler D. Music From the Very Beginning-A Neuroscience-Based Framework for Music as Therapy for Preterm Infants and Their Parents. Front Behav Neurosci 2018; 12:112. [PMID: 29922135 PMCID: PMC5996156 DOI: 10.3389/fnbeh.2018.00112] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
Human and animal studies demonstrate that early auditory experiences influence brain development. The findings are particularly crucial following preterm birth as the plasticity of auditory regions, and cortex development are heavily dependent on the quality of auditory stimulation. Brain maturation in preterm infants may be affected among other things by the overwhelming auditory environment of the neonatal intensive care unit (NICU). Conversely, auditory deprivation, (e.g., the lack of the regular intrauterine rhythms of the maternal heartbeat and the maternal voice) may also have an impact on brain maturation. Therefore, a nurturing enrichment of the auditory environment for preterm infants is warranted. Creative music therapy (CMT) addresses these demands by offering infant-directed singing in lullaby-style that is continually adapted to the neonate’s needs. The therapeutic approach is tailored to the individual developmental stage, entrained to the breathing rhythm, and adapted to the subtle expressions of the newborn. Not only the therapist and the neonate but also the parents play a role in CMT. In this article, we describe how to apply music therapy in a neonatal intensive care environment to support very preterm infants and their families. We speculate that the enriched musical experience may promote brain development and we critically discuss the available evidence in support of our assumption.
Collapse
Affiliation(s)
| | - Dirk Bassler
- Department of Neonatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Fetal auditory evoked responses to onset of amplitude modulated sounds. A fetal magnetoencephalography (fMEG) study. Hear Res 2018. [DOI: 10.1016/j.heares.2018.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Monson BB, Eaton-Rosen Z, Kapur K, Liebenthal E, Brownell A, Smyser CD, Rogers CE, Inder TE, Warfield SK, Neil JJ. Differential Rates of Perinatal Maturation of Human Primary and Nonprimary Auditory Cortex. eNeuro 2018; 5:ENEURO.0380-17.2017. [PMID: 29354680 PMCID: PMC5773280 DOI: 10.1523/eneuro.0380-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022] Open
Abstract
Primary and nonprimary cerebral cortex mature along different timescales; however, the differences between the rates of maturation of primary and nonprimary cortex are unclear. Cortical maturation can be measured through changes in tissue microstructure detectable by diffusion magnetic resonance imaging (MRI). In this study, diffusion tensor imaging (DTI) was used to characterize the maturation of Heschl's gyrus (HG), which contains both primary auditory cortex (pAC) and nonprimary auditory cortex (nAC), in 90 preterm infants between 26 and 42 weeks postmenstrual age (PMA). The preterm infants were in different acoustical environments during their hospitalization: 46 in open ward beds and 44 in single rooms. A control group consisted of 15 term-born infants. Diffusion parameters revealed that (1) changes in cortical microstructure that accompany cortical maturation had largely already occurred in pAC by 28 weeks PMA, and (2) rapid changes were taking place in nAC between 26 and 42 weeks PMA. At term equivalent PMA, diffusion parameters for auditory cortex were different between preterm infants and term control infants, reflecting either delayed maturation or injury. No effect of room type was observed. For the preterm group, disturbed maturation of nonprimary (but not primary) auditory cortex was associated with poorer language performance at age two years.
Collapse
Affiliation(s)
- Brian B. Monson
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Zach Eaton-Rosen
- Translational Imaging Group, University College London, London, WC1E 7JE United Kingdom
| | - Kush Kapur
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Einat Liebenthal
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Abraham Brownell
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Christopher D. Smyser
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63130
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63130
| | - Cynthia E. Rogers
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63130
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63130
| | - Terrie E. Inder
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Simon K. Warfield
- Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Jeffrey J. Neil
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
37
|
Nunes RG, Ferrazzi G, Price AN, Hutter J, Gaspar AS, Rutherford MA, Hajnal JV. Inner-volume echo volumar imaging (IVEVI) for robust fetal brain imaging. Magn Reson Med 2017; 80:279-285. [PMID: 29115686 DOI: 10.1002/mrm.26998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 11/08/2022]
Abstract
PURPOSE Fetal functional MRI studies using conventional 2-dimensional single-shot echo-planar imaging sequences may require discarding a large data fraction as a result of fetal and maternal motion. Increasing the temporal resolution using echo volumar imaging (EVI) could provide an effective alternative strategy. Echo volumar imaging was combined with inner volume (IV) imaging (IVEVI) to locally excite the fetal brain and acquire full 3-dimensional images, fast enough to freeze most fetal head motion. METHODS IVEVI was implemented by modifying a standard multi-echo echo-planar imaging sequence. A spin echo with orthogonal excitation and refocusing ensured localized excitation. To introduce T2* weighting and to save time, the k-space center was shifted relative to the spin echo. Both single and multi-shot variants were tested. Acoustic noise was controlled by adjusting the amplitude and switching frequency of the readout gradient. Image-based shimming was used to minimize B0 inhomogeneities within the fetal brain. RESULTS The sequence was first validated in an adult. Eight fetuses were scanned using single-shot IVEVI at a 3.5 × 3.5 × 5.0 mm3 resolution with a readout duration of 383 ms. Multishot IVEVI showed reduced geometric distortions along the second phase-encode direction. CONCLUSIONS Fetal EVI remains challenging. Although effective echo times comparable to the T2* values of fetal cortical gray matter at 3 T could be achieved, controlling acoustic noise required longer readouts, leading to substantial distortions in single-shot images. Although multishot variants enabled us to reduce susceptibility-induced geometric distortions, sensitivity to motion was increased. Future studies should therefore focus on improvements to multishot variants. Magn Reson Med 80:279-285, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Rita G Nunes
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Giulio Ferrazzi
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Anthony N Price
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Jana Hutter
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Andreia S Gaspar
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Mary A Rutherford
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Joseph V Hajnal
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Centre for the Developing Brain, King's College London, London, United Kingdom
| |
Collapse
|
38
|
Brain regions and functional interactions supporting early word recognition in the face of input variability. Proc Natl Acad Sci U S A 2017; 114:7588-7593. [PMID: 28674020 DOI: 10.1073/pnas.1617589114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Perception and cognition in infants have been traditionally investigated using habituation paradigms, assuming that babies' memories in laboratory contexts are best constructed after numerous repetitions of the very same stimulus in the absence of interference. A crucial, yet open, question regards how babies deal with stimuli experienced in a fashion similar to everyday learning situations-namely, in the presence of interfering stimuli. To address this question, we used functional near-infrared spectroscopy to test 40 healthy newborns on their ability to encode words presented in concomitance with other words. The results evidenced a habituation-like hemodynamic response during encoding in the left-frontal region, which was associated with a progressive decrement of the functional connections between this region and the left-temporal, right-temporal, and right-parietal regions. In a recognition test phase, a characteristic neural signature of recognition recruited first the right-frontal region and subsequently the right-parietal ones. Connections originating from the right-temporal regions to these areas emerged when newborns listened to the familiar word in the test phase. These findings suggest a neural specialization at birth characterized by the lateralization of memory functions: the interplay between temporal and left-frontal regions during encoding and between temporo-parietal and right-frontal regions during recognition of speech sounds. Most critically, the results show that newborns are capable of retaining the sound of specific words despite hearing other stimuli during encoding. Thus, habituation designs that include various items may be as effective for studying early memory as repeated presentation of a single word.
Collapse
|
39
|
Wild CJ, Linke AC, Zubiaurre-Elorza L, Herzmann C, Duffy H, Han VK, Lee DSC, Cusack R. Adult-like processing of naturalistic sounds in auditory cortex by 3- and 9-month old infants. Neuroimage 2017. [PMID: 28648887 DOI: 10.1016/j.neuroimage.2017.06.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Functional neuroimaging has been used to show that the developing auditory cortex of very young human infants responds, in some way, to sound. However, impoverished stimuli and uncontrolled designs have made it difficult to attribute brain responses to specific auditory features, and thus made it difficult to assess the maturity of feature tuning in auditory cortex. To address this, we used functional magnetic resonance imaging (fMRI) to measure the brain activity evoked by naturalistic sounds (a series of sung lullabies) in two groups of infants (3 and 9 months) and adults. We developed a novel analysis method - inter-subject regression (ISR) - to quantify the similarity of cortical responses between infants and adults, and to decompose components of the response due to different auditory features. We found that the temporal pattern of activity in infant auditory cortex shared similarity with adults. Some of this shared response could be attributed to simple acoustic features, such as frequency, pitch, envelope, but other parts were not, suggesting that even more complex adult-like features are represented in auditory cortex in early infancy.
Collapse
Affiliation(s)
- Conor J Wild
- Brain and Mind Institute, Western University, London, Canada.
| | - Annika C Linke
- Brain and Mind Institute, Western University, London, Canada
| | | | | | - Hester Duffy
- Brain and Mind Institute, Western University, London, Canada
| | - Victor K Han
- Children's Health Research Institute, London, Canada
| | - David S C Lee
- Children's Health Research Institute, London, Canada
| | - Rhodri Cusack
- Brain and Mind Institute, Western University, London, Canada; Children's Health Research Institute, London, Canada; School of Psychology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
40
|
Beat-to-Beat Variability During Auditory Music in Fetus and Mother: A Clinical Trial. WOMEN’S HEALTH BULLETIN 2017. [DOI: 10.5812/whb.13083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Mahmoudzadeh M, Wallois F, Kongolo G, Goudjil S, Dehaene-Lambertz G. Functional Maps at the Onset of Auditory Inputs in Very Early Preterm Human Neonates. Cereb Cortex 2017; 27:2500-2512. [PMID: 27102655 DOI: 10.1093/cercor/bhw103] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
During the last trimester of human gestation, neurons reach their final destination and establish long- and short-distance connections. Due to the difficulties obtaining functional data at this age, the characteristics of the functional architecture at the onset of sensory thalamocortical connectivity in humans remain largely unknown. In particular, it is unknown to what extent responses evoked by an external stimulus are general or already sensitive to certain stimuli. In the present study, we recorded high-density event-related potentials (ERPs) in 19 neonates, tested ten weeks before term (28-32 weeks gestational age (wGA), that is, at an average age of 30 wGA) by means of a syllable discrimination task (i.e., a phonetic change: ba vs. ga; and a voice change: male vs. female voice). We first observed that the syllables elicited 4 peaks with distinct topographies implying a progression of the sensory input along a processing hierarchy; second, repetition induced a decrease in the amplitude (repetition suppression) of these peaks, but their latencies and topographies remained stable; and third, a change of stimulus generated mismatch responses, which were more precisely time-locked to event onset in the case of a phonetic change than in the case of a voice change. A hierarchical and parallel functional architecture is therefore able to process environmental sounds in a timely precise fashion, well before term birth. This elaborate functional architecture at the onset of extrinsic neural activity suggests that specialized areas weakly dependent on the environment are present in the perisylvian region as part of the genetic endowment of the human species.
Collapse
Affiliation(s)
- Mahdi Mahmoudzadeh
- INSERM, U1105, GRAMFC, Université de Picardie, CHU Nord, Amiens F80000, France
| | - Fabrice Wallois
- INSERM, U1105, GRAMFC, Université de Picardie, CHU Nord, Amiens F80000, France
| | - Guy Kongolo
- INSERM, U1105, GRAMFC, Université de Picardie, CHU Nord, Amiens F80000, France
| | - Sabrina Goudjil
- INSERM, U1105, GRAMFC, Université de Picardie, CHU Nord, Amiens F80000, France
| | - Ghislaine Dehaene-Lambertz
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, CNRS, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, Gif/Yvette 91191, France
| |
Collapse
|
42
|
BOŞNAK MEHMET, KURT AKİFHAKAN, YAMAN SELMA. BEYNİMİZİN MÜZİK FİZYOLOJİSİ. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNIVERSITESI TIP FAKÜLTESI DERGISI 2017. [DOI: 10.17517/ksutfd.296621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
43
|
Blazejewska AI, Seshamani S, McKown SK, Caucutt JS, Dighe M, Gatenby C, Studholme C. 3D in utero quantification of T2* relaxation times in human fetal brain tissues for age optimized structural and functional MRI. Magn Reson Med 2016; 78:909-916. [PMID: 27699879 DOI: 10.1002/mrm.26471] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 08/21/2016] [Accepted: 08/29/2016] [Indexed: 11/05/2022]
Abstract
PURPOSE Maximization of the blood oxygen level-dependent (BOLD) functional MRI (fMRI) contrast requires the echo time of the MR sequence to match the T2* value of the tissue of interest, which is expected to be higher in the fetal brain compared with the brain of a child or an adult. METHODS T2* values of the cortical plate/cortical gray matter tissue in utero in healthy fetuses from mid-gestation onward (20-36 gestational weeks) were measured using 3D T2* maps calculated from 2D dual-echo T2*-weighted data corrected for between-slice motion and reconstructed in 1.0 mm3 isotropic resolution from a sequence of multiple time points, together with 1.0 mm3 isotropic resolution T2-weighted structural data. RESULTS Mean T2* relaxation times of the cortical tissue were about twice as high as those reported previously in adults. In a supporting experiment applying single seed analysis, default mode and auditory networks appeared better localized and less noisy while using an echo time of 100 ms versus 43 ms. The results of the previous study reporting a trend for T2* values to decrease with fetal age were reproduced and extended to include cortical tissues and subjects in earlier gestation (20-26 gestational weeks). CONCLUSION The first measurement of T2* values in fetal cortical tissues suggested the appropriate echo time range for fetal BOLD fMRI protocol optimization to be 130-190 ms. Magn Reson Med 78:909-916, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Anna I Blazejewska
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | | | - Susan K McKown
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Jason S Caucutt
- Institute of Translational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Manjiri Dighe
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | | | - Colin Studholme
- Department of Pediatrics, University of Washington, Seattle, Washington, USA.,Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
44
|
Abstract
Zusammenfassung.Spracherwerb stellt eine zentrale Entwicklungsaufgabe in den ersten Lebensjahren eines Kindes dar. Misslingt die Bewältigung, dann treten in der sozial-emotionalen und kognitiven (schulischen) Entwicklung eines Kindes massive Probleme auf. Treten Sprachprobleme auf, kann man zwischen primären und sekundären Sprachstörungen unterscheiden. Störungen der Sprachentwicklung stellen die häufigste umschriebene Entwicklungsstörung dar. Die Prävalenz beträgt in Deutschland zwischen 5 bis 8 %, wobei Jungen ungefähr doppelt so häufig betroffen sind wie Mädchen. Die Symptomatik ist jedoch durch eine hohe Variabilität in den Erscheinungsformen geprägt, zudem besteht eine sehr große Altersabhängigkeit. Die Diagnostik und Behandlung ist interdisziplinär ausgerichtet.
Collapse
Affiliation(s)
- Franz Petermann
- Zentrum für Klinische Psychologie und Rehabilitation der Universität Bremen
| |
Collapse
|
45
|
Cusack R, Ball G, Smyser CD, Dehaene-Lambertz G. A neural window on the emergence of cognition. Ann N Y Acad Sci 2016; 1369:7-23. [PMID: 27164193 PMCID: PMC4874873 DOI: 10.1111/nyas.13036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 01/23/2016] [Accepted: 02/11/2016] [Indexed: 11/30/2022]
Abstract
Can babies think? A fundamental challenge for cognitive neuroscience is to answer when brain functions begin and in what form they first emerge. This is challenging with behavioral tasks, as it is difficult to communicate to an infant what a task requires, and motor function is impoverished, making execution of the appropriate response difficult. To circumvent these requirements, neuroimaging provides a complementary route for assessing the emergence of cognition. Starting from the prerequisites of cognitive function and building stepwise, we review when the cortex forms and when it becomes gyrated and regionally differentiated. We then discuss when white matter tracts mature and when functional brain networks arise. Finally, we assess the responsiveness of these brain systems to external events. We find that many cognitive systems are observed surprisingly early. Some emerge before birth, with activations in the frontal lobe even in the first months of gestation. These discoveries are changing our understanding of the nature of cognitive networks and their early function, transforming cognitive neuroscience, and opening new windows for education and investigation. Infant neuroimaging also has tremendous clinical potential, for both detecting atypical development and facilitating earlier intervention. Finally, we discuss the key technical developments that are enabling this nascent field.
Collapse
Affiliation(s)
- Rhodri Cusack
- Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Gareth Ball
- Centre for the Developing Brain, King’s College London, London, United Kingdom
| | - Christopher D. Smyser
- Departments of Neurology, Pediatrics and Radiology, Washington University, St Louis, Missouri
| | - Ghislaine Dehaene-Lambertz
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, CNRS, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, Gif/Yvette, France
| |
Collapse
|
46
|
Levman J, Takahashi E. Multivariate Analyses Applied to Healthy Neurodevelopment in Fetal, Neonatal, and Pediatric MRI. Front Neuroanat 2016; 9:163. [PMID: 26834576 PMCID: PMC4720794 DOI: 10.3389/fnana.2015.00163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/04/2015] [Indexed: 11/13/2022] Open
Abstract
Multivariate analysis (MVA) is a class of statistical and pattern recognition techniques that involve the processing of data that contains multiple measurements per sample. MVA can be used to address a wide variety of neurological medical imaging related challenges including the evaluation of healthy brain development, the automated analysis of brain tissues and structures through image segmentation, evaluating the effects of genetic and environmental factors on brain development, evaluating sensory stimulation's relationship with functional brain activity and much more. Compared to adult imaging, pediatric, neonatal and fetal imaging have attracted less attention from MVA researchers, however, recent years have seen remarkable MVA research growth in pre-adult populations. This paper presents the results of a systematic review of the literature focusing on MVA applied to healthy subjects in fetal, neonatal and pediatric magnetic resonance imaging (MRI) of the brain. While the results of this review demonstrate considerable interest from the scientific community in applications of MVA technologies in brain MRI, the field is still young and significant research growth will continue into the future.
Collapse
Affiliation(s)
- Jacob Levman
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical SchoolBoston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestown, MA, USA
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical SchoolBoston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestown, MA, USA
| |
Collapse
|
47
|
Shaw KE, Bortfeld H. Sources of Confusion in Infant Audiovisual Speech Perception Research. Front Psychol 2015; 6:1844. [PMID: 26696919 PMCID: PMC4678229 DOI: 10.3389/fpsyg.2015.01844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 11/13/2015] [Indexed: 12/01/2022] Open
Abstract
Speech is a multimodal stimulus, with information provided in both the auditory and visual modalities. The resulting audiovisual signal provides relatively stable, tightly correlated cues that support speech perception and processing in a range of contexts. Despite the clear relationship between spoken language and the moving mouth that produces it, there remains considerable disagreement over how sensitive early language learners-infants-are to whether and how sight and sound co-occur. Here we examine sources of this disagreement, with a focus on how comparisons of data obtained using different paradigms and different stimuli may serve to exacerbate misunderstanding.
Collapse
Affiliation(s)
- Kathleen E. Shaw
- Department of Psychology, University of ConnecticutStorrs, CT, USA
| | - Heather Bortfeld
- Psychological Sciences, University of California, MercedMerced, CA, USA
- Haskins LaboratoriesNew Haven, CT, USA
| |
Collapse
|
48
|
The functional foetal brain: A systematic preview of methodological factors in reporting foetal visual and auditory capacity. Dev Cogn Neurosci 2015; 13:43-52. [PMID: 25967364 PMCID: PMC6990098 DOI: 10.1016/j.dcn.2015.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 02/07/2023] Open
Abstract
Due to technological advancements in functional brain imaging, foetal brain responses to visual and auditory stimuli is a growing area of research despite being relatively small with much variation between research laboratories. A number of inconsistencies between studies are, nonetheless, present in the literature. This article aims to explore the potential contribution of methodological factors to variation in reports of foetal neural responses to external stimuli. Some of the variation in reports can be explained by methodological differences in aspects of study design, such as brightness and wavelength of light source. In contrast to visual foetal processing, auditory foetal processing has been more frequently investigated and findings are more consistent between different studies. This is an early preview of an emerging field with many articles reporting small sample sizes with techniques that are yet to be replicated. We suggest areas for improvement for the field as a whole, such as the standardisation of stimulus delivery and a more detailed reporting of methods and results. This will improve our understanding of foetal functional response to light and sound. We suggest that enhanced technology will allow for a more reliable description of the developmental trajectory of foetal processing of light stimuli.
Collapse
|
49
|
Tocchio S, Kline-Fath B, Kanal E, Schmithorst VJ, Panigrahy A. MRI evaluation and safety in the developing brain. Semin Perinatol 2015; 39:73-104. [PMID: 25743582 PMCID: PMC4380813 DOI: 10.1053/j.semperi.2015.01.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences, such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility-weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5-T and 3-T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges, and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, and sedation considerations, and a discussion of current technologies such as MRI conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners.
Collapse
Affiliation(s)
- Shannon Tocchio
- Pediatric Imaging Research Center, Department of Radiology Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Beth Kline-Fath
- Department of Radiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Emanuel Kanal
- Director, Magnetic Resonance Services; Professor of Neuroradiology; Department of Radiology, University of Pittsburgh Medical Center (UPMC)
| | - Vincent J. Schmithorst
- Pediatric Imaging Research Center, Department of Radiology Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Ashok Panigrahy
- Pediatric Imaging Research Center, Department of Radiology Children׳s Hospital of Pittsburgh of UPMC, University of Pittsburgh Medical Center, Pittsburgh, PA.
| |
Collapse
|
50
|
Lahav A, Skoe E. An acoustic gap between the NICU and womb: a potential risk for compromised neuroplasticity of the auditory system in preterm infants. Front Neurosci 2014; 8:381. [PMID: 25538543 PMCID: PMC4256984 DOI: 10.3389/fnins.2014.00381] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/08/2014] [Indexed: 11/17/2022] Open
Abstract
The intrauterine environment allows the fetus to begin hearing low-frequency sounds in a protected fashion, ensuring initial optimal development of the peripheral and central auditory system. However, the auditory nursery provided by the womb vanishes once the preterm newborn enters the high-frequency (HF) noisy environment of the neonatal intensive care unit (NICU). The present article draws a concerning line between auditory system development and HF noise in the NICU, which we argue is not necessarily conducive to fostering this development. Overexposure to HF noise during critical periods disrupts the functional organization of auditory cortical circuits. As a result, we theorize that the ability to tune out noise and extract acoustic information in a noisy environment may be impaired, leading to increased risks for a variety of auditory, language, and attention disorders. Additionally, HF noise in the NICU often masks human speech sounds, further limiting quality exposure to linguistic stimuli. Understanding the impact of the sound environment on the developing auditory system is an important first step in meeting the developmental demands of preterm newborns undergoing intensive care.
Collapse
Affiliation(s)
- Amir Lahav
- Department of Pediatrics and Newborn Medicine, Brigham and Women's Hospital Boston, MA, USA ; Department of Pediatrics, Harvard Medical School, MassGeneral Hospital for Children Boston, MA, USA
| | - Erika Skoe
- Department of Speech, Language, and Hearing Sciences, Department of Psychology Affiliate, Cognitive Sciences Program Affiliate, University of Connecticut Storrs, CT, USA
| |
Collapse
|