1
|
Wu J, Qin F, Tian F, Li H, Yong X, Liu T, Zhang H, Wu D. Age-specific optimization of the T 2-weighted MRI contrast in infant and toddler brain. Magn Reson Med 2025; 93:1014-1025. [PMID: 39428905 DOI: 10.1002/mrm.30339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/26/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024]
Abstract
PURPOSE In 0-2-year-old brains, the T2-weighted (T2w) contrast between white matter (WM) and gray matter (GM) is weaker compared with that in adult brains and rapidly changes with age. This study aims to design variable-flip-angle (VFA) trains in 3D fast spin-echo sequence that adapt to the dynamically changing relaxation times to improve the contrast in the T2w images of the developing brains. METHODS T1 and T2 relaxation times in 0-2-year-old brains were measured, and several age groups were defined according to the age-dependent pattern of T2 values. Based on the static pseudo-steady-state theory and the extended phase graph algorithm, VFA trains were designed for each age group to maximize WM/GM contrast, constrained by the maximum specific absorption rate and overall signal intensity. The optimized VFA trains were compared with the default one used for adult brains based on the relative contrast between WM and GM. Dice coefficient was used to demonstrate the advantage of contrast-improved images as inputs for automatic tissue segmentation in infant brains. RESULTS The 0-2-year-old pool was divided into groups of 0-8 months, 8-12 months, and 12-24 months. The optimal VFA trains were tested in each age group in comparison with the default sequence. Quantitative analyses demonstrated improved relative contrasts in infant and toddler brains by 1.5-2.3-fold at different ages. The Dice coefficient for contrast-optimized images was improved compared with default images (p < 0.001). CONCLUSION An effective strategy was proposed to improve the 3D T2w contrast in 0-2-year-old brains.
Collapse
Affiliation(s)
- Jiani Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fenjie Qin
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Fengyu Tian
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Haotian Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xingwang Yong
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tingting Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongxi Zhang
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Henschel L, Kügler D, Zöllei L, Reuter M. VINNA for neonates: Orientation independence through latent augmentations. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-26. [PMID: 39575178 PMCID: PMC11576933 DOI: 10.1162/imag_a_00180] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/16/2024] [Accepted: 04/19/2024] [Indexed: 11/24/2024]
Abstract
A robust, fast, and accurate segmentation of neonatal brain images is highly desired to better understand and detect changes during development and disease, specifically considering the rise in imaging studies for this cohort. Yet, the limited availability of ground truth datasets, lack of standardized acquisition protocols, and wide variations of head positioning in the scanner pose challenges for method development. A few automated image analysis pipelines exist for newborn brain Magnetic Resonance Image (MRI) segmentation, but they often rely on time-consuming non-linear spatial registration procedures and require resampling to a common resolution, subject to loss of information due to interpolation and down-sampling. Without registration and image resampling, variations with respect to head positions and voxel resolutions have to be addressed differently. In deep learning, external augmentations such as rotation, translation, and scaling are traditionally used to artificially expand the representation of spatial variability, which subsequently increases both the training dataset size and robustness. However, these transformations in the image space still require resampling, reducing accuracy specifically in the context of label interpolation. We recently introduced the concept of resolution-independence with the Voxel-size Independent Neural Network framework, VINN. Here, we extend this concept by additionally shifting all rigid-transforms into the network architecture with a four degree of freedom (4-DOF) transform module, enabling resolution-aware internal augmentations (VINNA) for deep learning. In this work, we show that VINNA (i) significantly outperforms state-of-the-art external augmentation approaches, (ii) effectively addresses the head variations present specifically in newborn datasets, and (iii) retains high segmentation accuracy across a range of resolutions (0.5-1.0 mm). Furthermore, the 4-DOF transform module together with internal augmentations is a powerful, general approach to implement spatial augmentation without requiring image or label interpolation. The specific network application to newborns will be made publicly available as VINNA4neonates.
Collapse
Affiliation(s)
- Leonie Henschel
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - David Kügler
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Lilla Zöllei
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Martin Reuter
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Mhlanga ST, Viriri S. Deep learning techniques for isointense infant brain tissue segmentation: a systematic literature review. Front Med (Lausanne) 2023; 10:1240360. [PMID: 38193036 PMCID: PMC10773803 DOI: 10.3389/fmed.2023.1240360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/01/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction To improve comprehension of initial brain growth in wellness along with sickness, it is essential to precisely segment child brain magnetic resonance imaging (MRI) into white matter (WM) and gray matter (GM), along with cerebrospinal fluid (CSF). Nonetheless, in the isointense phase (6-8 months of age), the inborn myelination and development activities, WM along with GM display alike stages of intensity in both T1-weighted and T2-weighted MRI, making tissue segmentation extremely difficult. Methods The comprehensive review of studies related to isointense brain MRI segmentation approaches is highlighted in this publication. The main aim and contribution of this study is to aid researchers by providing a thorough review to make their search for isointense brain MRI segmentation easier. The systematic literature review is performed from four points of reference: (1) review of studies concerning isointense brain MRI segmentation; (2) research contribution and future works and limitations; (3) frequently applied evaluation metrics and datasets; (4) findings of this studies. Results and discussion The systemic review is performed on studies that were published in the period of 2012 to 2022. A total of 19 primary studies of isointense brain MRI segmentation were selected to report the research question stated in this review.
Collapse
Affiliation(s)
| | - Serestina Viriri
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
4
|
Keles E, Bagci U. The past, current, and future of neonatal intensive care units with artificial intelligence: a systematic review. NPJ Digit Med 2023; 6:220. [PMID: 38012349 PMCID: PMC10682088 DOI: 10.1038/s41746-023-00941-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 10/05/2023] [Indexed: 11/29/2023] Open
Abstract
Machine learning and deep learning are two subsets of artificial intelligence that involve teaching computers to learn and make decisions from any sort of data. Most recent developments in artificial intelligence are coming from deep learning, which has proven revolutionary in almost all fields, from computer vision to health sciences. The effects of deep learning in medicine have changed the conventional ways of clinical application significantly. Although some sub-fields of medicine, such as pediatrics, have been relatively slow in receiving the critical benefits of deep learning, related research in pediatrics has started to accumulate to a significant level, too. Hence, in this paper, we review recently developed machine learning and deep learning-based solutions for neonatology applications. We systematically evaluate the roles of both classical machine learning and deep learning in neonatology applications, define the methodologies, including algorithmic developments, and describe the remaining challenges in the assessment of neonatal diseases by using PRISMA 2020 guidelines. To date, the primary areas of focus in neonatology regarding AI applications have included survival analysis, neuroimaging, analysis of vital parameters and biosignals, and retinopathy of prematurity diagnosis. We have categorically summarized 106 research articles from 1996 to 2022 and discussed their pros and cons, respectively. In this systematic review, we aimed to further enhance the comprehensiveness of the study. We also discuss possible directions for new AI models and the future of neonatology with the rising power of AI, suggesting roadmaps for the integration of AI into neonatal intensive care units.
Collapse
Affiliation(s)
- Elif Keles
- Northwestern University, Feinberg School of Medicine, Department of Radiology, Chicago, IL, USA.
| | - Ulas Bagci
- Northwestern University, Feinberg School of Medicine, Department of Radiology, Chicago, IL, USA
- Northwestern University, Department of Biomedical Engineering, Chicago, IL, USA
- Department of Electrical and Computer Engineering, Chicago, IL, USA
| |
Collapse
|
5
|
Zwick BF, Safdar S, Bourantas GC, Joldes GR, Hyde DE, Warfield SK, Wittek A, Miller K. Image data and computational grids for computing brain shift and solving the electrocorticography forward problem. Data Brief 2023; 48:109122. [PMID: 37128587 PMCID: PMC10147975 DOI: 10.1016/j.dib.2023.109122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023] Open
Abstract
This article describes the dataset applied in the research reported in NeuroImage article "Patient-specific solution of the electrocorticography forward problem in deforming brain" [1] that is available for download from the Zenodo data repository (https://zenodo.org/record/7687631) [2]. Preoperative structural and diffusion-weighted magnetic resonance (MR) and postoperative computed tomography (CT) images of a 12-year-old female epilepsy patient under evaluation for surgical intervention were obtained retrospectively from Boston Children's Hospital. We used these images to conduct the analysis at The University of Western Australia's Intelligent Systems for Medicine Laboratory using SlicerCBM [3], our open-source software extension for the 3D Slicer medical imaging platform. As part of the analysis, we processed the images to extract the patient-specific brain geometry; created computational grids, including a tetrahedral grid for the meshless solution of the biomechanical model and a regular hexahedral grid for the finite element solution of the electrocorticography forward problem; predicted the postoperative MRI and DTI that correspond to the brain configuration deformed by the placement of subdural electrodes using biomechanics-based image warping; and solved the patient-specific electrocorticography forward problem to compute the electric potential distribution within the patient's head using the original preoperative and predicted postoperative image data. The well-established and open-source file formats used in this dataset, including Nearly Raw Raster Data (NRRD) files for images, STL files for surface geometry, and Visualization Toolkit (VTK) files for computational grids, allow other research groups to easily reuse the data presented herein to solve the electrocorticography forward problem accounting for the brain shift caused by implantation of subdural grid electrodes.
Collapse
Affiliation(s)
- Benjamin F. Zwick
- Intelligent Systems for Medicine Laboratory, The University of Western Australia, 35 Stirling Highway, Perth, WA, Australia
- Corresponding author.
| | - Saima Safdar
- Intelligent Systems for Medicine Laboratory, The University of Western Australia, 35 Stirling Highway, Perth, WA, Australia
| | - George C. Bourantas
- Intelligent Systems for Medicine Laboratory, The University of Western Australia, 35 Stirling Highway, Perth, WA, Australia
| | - Grand R. Joldes
- Intelligent Systems for Medicine Laboratory, The University of Western Australia, 35 Stirling Highway, Perth, WA, Australia
| | - Damon E. Hyde
- Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Simon K. Warfield
- Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Adam Wittek
- Intelligent Systems for Medicine Laboratory, The University of Western Australia, 35 Stirling Highway, Perth, WA, Australia
| | - Karol Miller
- Intelligent Systems for Medicine Laboratory, The University of Western Australia, 35 Stirling Highway, Perth, WA, Australia
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Patient-specific solution of the electrocorticography forward problem in deforming brain. Neuroimage 2022; 263:119649. [PMID: 36167268 DOI: 10.1016/j.neuroimage.2022.119649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Invasive intracranial electroencephalography (iEEG), or electrocorticography (ECoG), measures electric potential directly on the surface of the brain and can be used to inform treatment planning for epilepsy surgery. Combined with numerical modeling it can further improve accuracy of epilepsy surgery planning. Accurate solution of the iEEG forward problem, which is a crucial prerequisite for solving the iEEG inverse problemin epilepsy seizure onset zone localization, requires accurate representation of the patient's brain geometry and tissue electrical conductivity after implantation of electrodes. However, implantation of subdural grid electrodes causes the brain to deform, which invalidates preoperatively acquired image data. Moreover, postoperative magnetic resonance imaging (MRI) is incompatible with implanted electrodes and computed tomography (CT) has insufficient range of soft tissue contrast, which precludes both MRI and CT from being used to obtain the deformed postoperative geometry. In this paper, we present a biomechanics-based image warping procedure using preoperative MRI for tissue classification and postoperative CT for locating implanted electrodes to perform non-rigid registration of the preoperative image data to the postoperative configuration. We solve the iEEG forward problem on the predicted postoperative geometry using the finite element method (FEM) which accounts for patient-specific inhomogeneity and anisotropy of tissue conductivity. Results for the simulation of a current source in the brain show large differences in electric potential predicted by the models based on the original images and the deformed images corresponding to the brain geometry deformed by placement of invasive electrodes. Computation of the lead field matrix (useful for solution of the iEEG inverse problem) also showed significant differences between the different models. The results suggest that rapid and accurate solution of the forward problem in a deformed brain for a given patient is achievable.
Collapse
|
7
|
Segmentation of Infant Brain Using Nonnegative Matrix Factorization. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study develops an atlas-based automated framework for segmenting infants’ brains from magnetic resonance imaging (MRI). For the accurate segmentation of different structures of an infant’s brain at the isointense age (6–12 months), our framework integrates features of diffusion tensor imaging (DTI) (e.g., the fractional anisotropy (FA)). A brain diffusion tensor (DT) image and its region map are considered samples of a Markov–Gibbs random field (MGRF) that jointly models visual appearance, shape, and spatial homogeneity of a goal structure. The visual appearance is modeled with an empirical distribution of the probability of the DTI features, fused by their nonnegative matrix factorization (NMF) and allocation to data clusters. Projecting an initial high-dimensional feature space onto a low-dimensional space of the significant fused features with the NMF allows for better separation of the goal structure and its background. The cluster centers in the latter space are determined at the training stage by the K-means clustering. In order to adapt to large infant brain inhomogeneities and segment the brain images more accurately, appearance descriptors of both the first-order and second-order are taken into account in the fused NMF feature space. Additionally, a second-order MGRF model is used to describe the appearance based on the voxel intensities and their pairwise spatial dependencies. An adaptive shape prior that is spatially variant is constructed from a training set of co-aligned images, forming an atlas database. Moreover, the spatial homogeneity of the shape is described with a spatially uniform 3D MGRF of the second-order for region labels. In vivo experiments on nine infant datasets showed promising results in terms of the accuracy, which was computed using three metrics: the 95-percentile modified Hausdorff distance (MHD), the Dice similarity coefficient (DSC), and the absolute volume difference (AVD). Both the quantitative and visual assessments confirm that integrating the proposed NMF-fused DTI feature and intensity MGRF models of visual appearance, the adaptive shape prior, and the shape homogeneity MGRF model is promising in segmenting the infant brain DTI.
Collapse
|
8
|
Korom M, Camacho MC, Filippi CA, Licandro R, Moore LA, Dufford A, Zöllei L, Graham AM, Spann M, Howell B, Shultz S, Scheinost D. Dear reviewers: Responses to common reviewer critiques about infant neuroimaging studies. Dev Cogn Neurosci 2022; 53:101055. [PMID: 34974250 PMCID: PMC8733260 DOI: 10.1016/j.dcn.2021.101055] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/28/2021] [Accepted: 12/26/2021] [Indexed: 01/07/2023] Open
Abstract
The field of adult neuroimaging relies on well-established principles in research design, imaging sequences, processing pipelines, as well as safety and data collection protocols. The field of infant magnetic resonance imaging, by comparison, is a young field with tremendous scientific potential but continuously evolving standards. The present article aims to initiate a constructive dialog between researchers who grapple with the challenges and inherent limitations of a nascent field and reviewers who evaluate their work. We address 20 questions that researchers commonly receive from research ethics boards, grant, and manuscript reviewers related to infant neuroimaging data collection, safety protocols, study planning, imaging sequences, decisions related to software and hardware, and data processing and sharing, while acknowledging both the accomplishments of the field and areas of much needed future advancements. This article reflects the cumulative knowledge of experts in the FIT'NG community and can act as a resource for both researchers and reviewers alike seeking a deeper understanding of the standards and tradeoffs involved in infant neuroimaging.
Collapse
Affiliation(s)
- Marta Korom
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA.
| | - M Catalina Camacho
- Division of Biology and Biomedical Sciences (Neurosciences), Washington University School of Medicine, St. Louis, MO, USA.
| | - Courtney A Filippi
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Roxane Licandro
- Institute of Visual Computing and Human-Centered Technology, Computer Vision Lab, TU Wien, Vienna, Austria; Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research, Medical University of Vienna, Vienna, Austria
| | - Lucille A Moore
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Alexander Dufford
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Lilla Zöllei
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Alice M Graham
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Marisa Spann
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Brittany Howell
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Department of Human Development and Family Science, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Sarah Shultz
- Division of Autism & Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Marcus Autism Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| | - Dustin Scheinost
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
9
|
Sui Y, Afacan O, Gholipour A, Warfield SK. Fast and High-Resolution Neonatal Brain MRI Through Super-Resolution Reconstruction From Acquisitions With Variable Slice Selection Direction. Front Neurosci 2021; 15:636268. [PMID: 34220414 PMCID: PMC8242183 DOI: 10.3389/fnins.2021.636268] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/19/2021] [Indexed: 12/18/2022] Open
Abstract
The brain of neonates is small in comparison to adults. Imaging at typical resolutions such as one cubic mm incurs more partial voluming artifacts in a neonate than in an adult. The interpretation and analysis of MRI of the neonatal brain benefit from a reduction in partial volume averaging that can be achieved with high spatial resolution. Unfortunately, direct acquisition of high spatial resolution MRI is slow, which increases the potential for motion artifact, and suffers from reduced signal-to-noise ratio. The purpose of this study is thus that using super-resolution reconstruction in conjunction with fast imaging protocols to construct neonatal brain MRI images at a suitable signal-to-noise ratio and with higher spatial resolution than can be practically obtained by direct Fourier encoding. We achieved high quality brain MRI at a spatial resolution of isotropic 0.4 mm with 6 min of imaging time, using super-resolution reconstruction from three short duration scans with variable directions of slice selection. Motion compensation was achieved by aligning the three short duration scans together. We applied this technique to 20 newborns and assessed the quality of the images we reconstructed. Experiments show that our approach to super-resolution reconstruction achieved considerable improvement in spatial resolution and signal-to-noise ratio, while, in parallel, substantially reduced scan times, as compared to direct high-resolution acquisitions. The experimental results demonstrate that our approach allowed for fast and high-quality neonatal brain MRI for both scientific research and clinical studies.
Collapse
Affiliation(s)
- Yao Sui
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Onur Afacan
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Ali Gholipour
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Simon K. Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Learning U-Net Based Multi-Scale Features in Encoding-Decoding for MR Image Brain Tissue Segmentation. SENSORS 2021; 21:s21093232. [PMID: 34067101 PMCID: PMC8124734 DOI: 10.3390/s21093232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022]
Abstract
Accurate brain tissue segmentation of MRI is vital to diagnosis aiding, treatment planning, and neurologic condition monitoring. As an excellent convolutional neural network (CNN), U-Net is widely used in MR image segmentation as it usually generates high-precision features. However, the performance of U-Net is considerably restricted due to the variable shapes of the segmented targets in MRI and the information loss of down-sampling and up-sampling operations. Therefore, we propose a novel network by introducing spatial and channel dimensions-based multi-scale feature information extractors into its encoding-decoding framework, which is helpful in extracting rich multi-scale features while highlighting the details of higher-level features in the encoding part, and recovering the corresponding localization to a higher resolution layer in the decoding part. Concretely, we propose two information extractors, multi-branch pooling, called MP, in the encoding part, and multi-branch dense prediction, called MDP, in the decoding part, to extract multi-scale features. Additionally, we designed a new multi-branch output structure with MDP in the decoding part to form more accurate edge-preserving predicting maps by integrating the dense adjacent prediction features at different scales. Finally, the proposed method is tested on datasets MRbrainS13, IBSR18, and ISeg2017. We find that the proposed network performs higher accuracy in segmenting MRI brain tissues and it is better than the leading method of 2018 at the segmentation of GM and CSF. Therefore, it can be a useful tool for diagnostic applications, such as brain MRI segmentation and diagnosing.
Collapse
|
11
|
Structural Changes in the Cortico-Ponto-Cerebellar Axis at Birth are Associated with Abnormal Neurological Outcomes in Childhood. Clin Neuroradiol 2021; 31:1005-1020. [PMID: 33944956 DOI: 10.1007/s00062-021-01017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/04/2021] [Indexed: 10/21/2022]
Abstract
White matter lesions in hypoxic-ischemic encephalopathy (HIE) are considered to be the important substrate of frequent neurological consequences in preterm infants. The aim of the study was to analyze volumes and tractographic parameters of the cortico-ponto-cerebellar axis to assess alterations in the periventricular fiber system and crossroads, corticopontine and corticospinal pathways and prospective transsynaptic changes of the cerebellum.Term infants (control), premature infants without (normotypic) and with perinatal HIE (HIE) underwent brain magnetic resonance imaging at term-equivalent age (TEA) and at 2 years. Cerebrum, cerebellum, brainstem divisions and ventrodorsal compartments volumetric analysis were performed, as well as fractional anisotropy (FA) and apparent diffusion coefficient (ADC) of corticopontine, corticospinal pathways and middle cerebellar peduncles. Amiel-Tison scale at TEA and the Hempel test at 2 years were assessed.Cerebellum, brainstem and its compartments volumes were decreased in normotypic and HIE groups at TEA, while at 2 years volumes were significantly reduced in the HIE group, accompanied by decreased volume and FA and increased ADC of corticopontine and corticospinal pathways. Negative association of the brainstem, cerebellum, mesencephalon, pons, corticopontine volumes and corticospinal pathway FA at TEA with the neurological score at 2 years. Cerebellum and pons volumes presented as potential prognostic indicators of neurological outcomes.Our findings agree that these pathways, as a part of the periventricular fiber system and crossroads, exhibit lesion-induced reaction and vulnerability in HIE. Structural differences between normotypic and HIE group at the 2 years suggest a different developmental structural plasticity.
Collapse
|
12
|
Sun Y, Gao K, Wu Z, Li G, Zong X, Lei Z, Wei Y, Ma J, Yang X, Feng X, Zhao L, Le Phan T, Shin J, Zhong T, Zhang Y, Yu L, Li C, Basnet R, Ahmad MO, Swamy MNS, Ma W, Dou Q, Bui TD, Noguera CB, Landman B, Gotlib IH, Humphreys KL, Shultz S, Li L, Niu S, Lin W, Jewells V, Shen D, Li G, Wang L. Multi-Site Infant Brain Segmentation Algorithms: The iSeg-2019 Challenge. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1363-1376. [PMID: 33507867 PMCID: PMC8246057 DOI: 10.1109/tmi.2021.3055428] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To better understand early brain development in health and disorder, it is critical to accurately segment infant brain magnetic resonance (MR) images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). Deep learning-based methods have achieved state-of-the-art performance; h owever, one of the major limitations is that the learning-based methods may suffer from the multi-site issue, that is, the models trained on a dataset from one site may not be applicable to the datasets acquired from other sites with different imaging protocols/scanners. To promote methodological development in the community, the iSeg-2019 challenge (http://iseg2019.web.unc.edu) provides a set of 6-month infant subjects from multiple sites with different protocols/scanners for the participating methods. T raining/validation subjects are from UNC (MAP) and testing subjects are from UNC/UMN (BCP), Stanford University, and Emory University. By the time of writing, there are 30 automatic segmentation methods participated in the iSeg-2019. In this article, 8 top-ranked methods were reviewed by detailing their pipelines/implementations, presenting experimental results, and evaluating performance across different sites in terms of whole brain, regions of interest, and gyral landmark curves. We further pointed out their limitations and possible directions for addressing the multi-site issue. We find that multi-site consistency is still an open issue. We hope that the multi-site dataset in the iSeg-2019 and this review article will attract more researchers to address the challenging and critical multi-site issue in practice.
Collapse
|
13
|
Dou H, Karimi D, Rollins CK, Ortinau CM, Vasung L, Velasco-Annis C, Ouaalam A, Yang X, Ni D, Gholipour A. A Deep Attentive Convolutional Neural Network for Automatic Cortical Plate Segmentation in Fetal MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1123-1133. [PMID: 33351755 PMCID: PMC8016740 DOI: 10.1109/tmi.2020.3046579] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fetal cortical plate segmentation is essential in quantitative analysis of fetal brain maturation and cortical folding. Manual segmentation of the cortical plate, or manual refinement of automatic segmentations is tedious and time-consuming. Automatic segmentation of the cortical plate, on the other hand, is challenged by the relatively low resolution of the reconstructed fetal brain MRI scans compared to the thin structure of the cortical plate, partial voluming, and the wide range of variations in the morphology of the cortical plate as the brain matures during gestation. To reduce the burden of manual refinement of segmentations, we have developed a new and powerful deep learning segmentation method. Our method exploits new deep attentive modules with mixed kernel convolutions within a fully convolutional neural network architecture that utilizes deep supervision and residual connections. We evaluated our method quantitatively based on several performance measures and expert evaluations. Results show that our method outperforms several state-of-the-art deep models for segmentation, as well as a state-of-the-art multi-atlas segmentation technique. We achieved average Dice similarity coefficient of 0.87, average Hausdorff distance of 0.96 mm, and average symmetric surface difference of 0.28 mm on reconstructed fetal brain MRI scans of fetuses scanned in the gestational age range of 16 to 39 weeks (28.6± 5.3). With a computation time of less than 1 minute per fetal brain, our method can facilitate and accelerate large-scale studies on normal and altered fetal brain cortical maturation and folding.
Collapse
|
14
|
Liu M, Lepage C, Kim SY, Jeon S, Kim SH, Simon JP, Tanaka N, Yuan S, Islam T, Peng B, Arutyunyan K, Surento W, Kim J, Jahanshad N, Styner MA, Toga AW, Barkovich AJ, Xu D, Evans AC, Kim H. Robust Cortical Thickness Morphometry of Neonatal Brain and Systematic Evaluation Using Multi-Site MRI Datasets. Front Neurosci 2021; 15:650082. [PMID: 33815050 PMCID: PMC8010150 DOI: 10.3389/fnins.2021.650082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Abstract
The human brain grows the most dramatically during the perinatal and early post-natal periods, during which pre-term birth or perinatal injury that may alter brain structure and lead to developmental anomalies. Thus, characterizing cortical thickness of developing brains remains an important goal. However, this task is often complicated by inaccurate cortical surface extraction due to small-size brains. Here, we propose a novel complex framework for the reconstruction of neonatal WM and pial surfaces, accounting for large partial volumes due to small-size brains. The proposed approach relies only on T1-weighted images unlike previous T2-weighted image-based approaches while only T1-weighted images are sometimes available under the different clinical/research setting. Deep neural networks are first introduced to the neonatal magnetic resonance imaging (MRI) pipeline to address the mis-segmentation of brain tissues. Furthermore, this pipeline enhances cortical boundary delineation using combined models of the cerebrospinal fluid (CSF)/GM boundary detection with edge gradient information and a new skeletonization of sulcal folding where no CSF voxels are seen due to the limited resolution. We also proposed a systematic evaluation using three independent datasets comprising 736 pre-term and 97 term neonates. Qualitative assessment for reconstructed cortical surfaces shows that 86.9% are rated as accurate across the three site datasets. In addition, our landmark-based evaluation shows that the mean displacement of the cortical surfaces from the true boundaries was less than a voxel size (0.532 ± 0.035 mm). Evaluating the proposed pipeline (namely NEOCIVET 2.0) shows the robustness and reproducibility across different sites and different age-groups. The mean cortical thickness measured positively correlated with post-menstrual age (PMA) at scan (p < 0.0001); Cingulate cortical areas grew the most rapidly whereas the inferior temporal cortex grew the least rapidly. The range of the cortical thickness measured was biologically congruent (1.3 mm at 28 weeks of PMA to 1.8 mm at term equivalent). Cortical thickness measured on T1 MRI using NEOCIVET 2.0 was compared with that on T2 using the established dHCP pipeline. It was difficult to conclude that either T1 or T2 imaging is more ideal to construct cortical surfaces. NEOCIVET 2.0 has been open to the public through CBRAIN (https://mcin-cnim.ca/technology/cbrain/), a web-based platform for processing brain imaging data.
Collapse
Affiliation(s)
- Mengting Liu
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Claude Lepage
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Sharon Y Kim
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Seun Jeon
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Sun Hyung Kim
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Julia Pia Simon
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Nina Tanaka
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Shiyu Yuan
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tasfiya Islam
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Bailin Peng
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Knarik Arutyunyan
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Wesley Surento
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Justin Kim
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Neda Jahanshad
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Arthur W Toga
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Anthony James Barkovich
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Alan C Evans
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Hosung Kim
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
15
|
Zöllei L, Iglesias JE, Ou Y, Grant PE, Fischl B. Infant FreeSurfer: An automated segmentation and surface extraction pipeline for T1-weighted neuroimaging data of infants 0-2 years. Neuroimage 2020; 218:116946. [PMID: 32442637 PMCID: PMC7415702 DOI: 10.1016/j.neuroimage.2020.116946] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/03/2020] [Accepted: 05/12/2020] [Indexed: 01/23/2023] Open
Abstract
The development of automated tools for brain morphometric analysis in infants has lagged significantly behind analogous tools for adults. This gap reflects the greater challenges in this domain due to: 1) a smaller-scaled region of interest, 2) increased motion corruption, 3) regional changes in geometry due to heterochronous growth, and 4) regional variations in contrast properties corresponding to ongoing myelination and other maturation processes. Nevertheless, there is a great need for automated image-processing tools to quantify differences between infant groups and other individuals, because aberrant cortical morphologic measurements (including volume, thickness, surface area, and curvature) have been associated with neuropsychiatric, neurologic, and developmental disorders in children. In this paper we present an automated segmentation and surface extraction pipeline designed to accommodate clinical MRI studies of infant brains in a population 0-2 year-olds. The algorithm relies on a single channel of T1-weighted MR images to achieve automated segmentation of cortical and subcortical brain areas, producing volumes of subcortical structures and surface models of the cerebral cortex. We evaluated the algorithm both qualitatively and quantitatively using manually labeled datasets, relevant comparator software solutions cited in the literature, and expert evaluations. The computational tools and atlases described in this paper will be distributed to the research community as part of the FreeSurfer image analysis package.
Collapse
Affiliation(s)
- Lilla Zöllei
- Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA.
| | - Juan Eugenio Iglesias
- Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA; Center for Medical Image Computing, University College London, United Kingdom; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, USA
| | - Yangming Ou
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, USA
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, USA
| | - Bruce Fischl
- Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, USA
| |
Collapse
|
16
|
Wu D, Chang L, Ernst TM, Caffo BS, Oishi K. Developmental score of the infant brain: characterizing diffusion MRI in term- and preterm-born infants. Brain Struct Funct 2020; 225:2431-2445. [PMID: 32804327 DOI: 10.1007/s00429-020-02132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
Abstract
Large-scale longitudinal neuroimaging studies of the infant brain allow us to map the spatiotemporal development of the brain in its early phase. While the postmenstrual age (PMA) is commonly used as a time index to analyze longitudinal MRI data, the nonlinear relationship between PMA and MRI data imposes challenges for downstream analyses. We propose a mathematical model that provides a Developmental Score (DevS) as a data-driven time index to characterize the brain development based on MRI features. 319 diffusion tensor imaging (DTI) datasets were collected from 87 term-born and 66 preterm-born infants at multiple visits, which were automatically segmented based on the JHU neonatal atlas. The mean diffusivity (MD) and fractional anisotropy (FA) in 126 brain parcels were used in the model to derive DevS. We demonstrate that transforming the time index from PMA to DevS improves the linearity of the longitudinal changes in MD and FA in both gray and white matter structures. More importantly, regional developmental differences in DTI metrics between preterm- and term-born infants were identified more clearly using DevS, e.g. 79 structures showed significantly different regression patterns in MD between preterm- and term-born infants, compared to only 27 structures that showed group differences using PMA as the index. Therefore, the DevS model facilitates linear analyses of DTI metrics in the infant brain, and provides a useful tool to characterize altered brain development due to preterm-birth.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Linda Chang
- Departments of Diagnostic Radiology and Nuclear Medicine, and Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas M Ernst
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brian S Caffo
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kenichi Oishi
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Traylor 217, 720 Rutland Ave, Baltimore, MD, 21215, USA.
| |
Collapse
|
17
|
Katušić A, Raguž M, Žunić Išasegi I. Brain tissue volumes at term-equivalent age are associated with early motor behavior in very preterm infants. Int J Dev Neurosci 2020; 80:409-417. [PMID: 32433785 DOI: 10.1002/jdn.10039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 11/10/2022] Open
Abstract
Preterm birth is associated with a wide range of adverse developmental outcomes, including sensory, motor, cognitive and language impairments, and behavioral or attention problems. Subtle motor deficits that might emerge in premature infants with no evident or with mild brain injury encompass qualitative and quantitative aspects of motor behavior. This prospective cohort study provided an evaluation of the relationship between brain tissue volumes revealed by magnetic resonance imaging (MRI) at term-equivalent age and motor behavior in infancy in very preterm infants (total number = 40; mean gestational age = 28 weeks + 4 days; mean birth weight = 1190 g) without evident or with mild brain injury. Infants were recruited at birth and assessed at 12 months corrected age using the tool for qualitative and quantitative assessment of motor behavior, infant motor profile. The brain tissue was segmented first using advanced segmentation techniques and the volumes were measured by summing the volumes of all voxels belonging to a particular tissue class. The associations between volumetric brain MRI measures with motor behavior were explored using linear regression analyses. Results showed that larger total brain volumes were associated with higher motor score. Similar relationships were documented for parietal lobe, deep gray matter, and cerebellum volumes. Volumetric quantitative data of brain structures may serve as biomarkers for subtle motor deficits described in very preterm born infants without or with mild brain lesions apparent on MRI.
Collapse
Affiliation(s)
- Ana Katušić
- Croatian Institute for Brain Research, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marina Raguž
- Department of Neurosurgery, School of Medicine, University Hospital Dubrava, University of Zagreb, Zagreb, Croatia
| | - Iris Žunić Išasegi
- Croatian Institute for Brain Research, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
18
|
Kim J, Jung Y, Barcus R, Bachevalier JH, Sanchez MM, Nader MA, Whitlow CT. Rhesus Macaque Brain Developmental Trajectory: A Longitudinal Analysis Using Tensor-Based Structural Morphometry and Diffusion Tensor Imaging. Cereb Cortex 2020; 30:4325-4335. [PMID: 32239147 PMCID: PMC7325797 DOI: 10.1093/cercor/bhaa015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/09/2020] [Accepted: 01/17/2020] [Indexed: 12/28/2022] Open
Abstract
The typical developmental trajectory of brain structure among nonhuman primates (NHPs) remains poorly understood. In this study, we characterized the normative trajectory of developmental change among a cohort of rhesus monkeys (n = 28), ranging in age from 2 to 22 months, using structural MRI datasets that were longitudinally acquired every 3-4 months. We hypothesized that NHP-specific transient intracranial volume decreases reported during late infancy would be part of the typical developmental process, which is driven by volumetric contraction of gray matter in primary functional areas. To this end, we performed multiscale analyses from the whole brain to voxel level, characterizing regional heterogeneity, hemispheric asymmetry, and sexual dimorphism in developmental patterns. The longitudinal trajectory of brain development was explained by three different regional volumetric growth patterns (exponentially decreasing, undulating, and linearly increasing), which resulted in developmental brain volume curves with transient brain volumetric decreases. White matter (WM) fractional anisotropy increased with age, corresponding to WM volume increases, while mean diffusivity (MD) showed biphasic patterns. The longitudinal trajectory of brain development in young rhesus monkeys follows typical maturation patterns seen in humans, but regional volumetric and MD changes are more dynamic in rhesus monkeys compared with humans, with marked decreases followed by "rebound-like" increases.
Collapse
Affiliation(s)
- Jeongchul Kim
- Radiology Informatics and Image Processing Laboratory (RIIPL), Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Youngkyoo Jung
- Radiology Informatics and Image Processing Laboratory (RIIPL), Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Richard Barcus
- Radiology Informatics and Image Processing Laboratory (RIIPL), Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jocelyne H Bachevalier
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Mar M Sanchez
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Clinical and Translational Science Institute, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Christopher T Whitlow
- Radiology Informatics and Image Processing Laboratory (RIIPL), Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Clinical and Translational Science Institute, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
19
|
Wang G, Hu Y, Li X, Wang M, Liu C, Yang J, Jin C. Impacts of skull stripping on construction of three-dimensional T1-weighted imaging-based brain structural network in full-term neonates. Biomed Eng Online 2020; 19:41. [PMID: 32493402 PMCID: PMC7268688 DOI: 10.1186/s12938-020-00785-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/21/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Skull stripping remains a challenge for neonatal brain MR image analysis. However, little is known about the accuracy of how skull stripping affects the neonatal brain tissue segmentation and subsequent network construction. This paper therefore aimed to clarify this issue by comparing two automatic (FMRIB Software Library's Brain Extraction Tool, BET; Infant Brain Extraction and Analysis Toolbox, iBEAT) and a semiautomatic (iBEAT with manual correction) processes in constructing 3D T1-weighted imaging (T1WI)-based brain structural network. METHODS Twenty-two full-term neonates (gestational age, 37-42 weeks; boys/girls, 13/9) without abnormalities on MRI who underwent brain 3D T1WI were retrospectively recruited. Two automatic (BET and iBEAT) and a semiautomatic preprocessing (iBEAT with manual correction) workflows were separately used to perform the skull stripping. Brain tissue segmentation and volume calculation were performed by a Johns Hopkins atlas-based method. Sixty-four gray matter regions were selected as nodes; volume covariance network and its properties (clustering coefficient, Cp; characteristic path length, Lp; local efficiency, Elocal; global efficiency, Eglobal) were calculated by GRETNA. Analysis of variance (ANOVA) was used to compare the differences in the calculated volume between three workflows. RESULTS There were significant differences in volumes of 50 brain regions between the three workflows (P < 0.05). Three neonatal brain structural networks presented small-world topology. The semiautomatic workflow showed remarkably decreased Cp, increased Lp, decreased Elocal, and decreased Eglobal, in contrast to the two automatic ones. CONCLUSIONS Imperfect skull stripping indeed affected the accuracy of brain structural network in full-term neonates.
Collapse
Affiliation(s)
- Geliang Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Yajie Hu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Xianjun Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Miaomiao Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Congcong Liu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Chao Jin
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
20
|
Ding Y, Acosta R, Enguix V, Suffren S, Ortmann J, Luck D, Dolz J, Lodygensky GA. Using Deep Convolutional Neural Networks for Neonatal Brain Image Segmentation. Front Neurosci 2020; 14:207. [PMID: 32273836 PMCID: PMC7114297 DOI: 10.3389/fnins.2020.00207] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Deep learning neural networks are especially potent at dealing with structured data, such as images and volumes. Both modified LiviaNET and HyperDense-Net performed well at a prior competition segmenting 6-month-old infant magnetic resonance images, but neonatal cerebral tissue type identification is challenging given its uniquely inverted tissue contrasts. The current study aims to evaluate the two architectures to segment neonatal brain tissue types at term equivalent age. METHODS Both networks were retrained over 24 pairs of neonatal T1 and T2 data from the Developing Human Connectome Project public data set and validated on another eight pairs against ground truth. We then reported the best-performing model from training and its performance by computing the Dice similarity coefficient (DSC) for each tissue type against eight test subjects. RESULTS During the testing phase, among the segmentation approaches tested, the dual-modality HyperDense-Net achieved the best statistically significantly test mean DSC values, obtaining 0.94/0.95/0.92 for the tissue types and took 80 h to train and 10 min to segment, including preprocessing. The single-modality LiviaNET was better at processing T2-weighted images than processing T1-weighted images across all tissue types, achieving mean DSC values of 0.90/0.90/0.88 for gray matter, white matter, and cerebrospinal fluid, respectively, while requiring 30 h to train and 8 min to segment each brain, including preprocessing. DISCUSSION Our evaluation demonstrates that both neural networks can segment neonatal brains, achieving previously reported performance. Both networks will be continuously retrained over an increasingly larger repertoire of neonatal brain data and be made available through the Canadian Neonatal Brain Platform to better serve the neonatal brain imaging research community.
Collapse
Affiliation(s)
- Yang Ding
- The Canadian Neonatal Brain Platform (CNBP), Montreal, QC, Canada
| | - Rolando Acosta
- The Canadian Neonatal Brain Platform (CNBP), Montreal, QC, Canada
| | - Vicente Enguix
- The Canadian Neonatal Brain Platform (CNBP), Montreal, QC, Canada
| | - Sabrina Suffren
- The Canadian Neonatal Brain Platform (CNBP), Montreal, QC, Canada
| | - Janosch Ortmann
- Department of Management and Technology, Université du Québec à Montréal, Montreal, QC, Canada
| | - David Luck
- The Canadian Neonatal Brain Platform (CNBP), Montreal, QC, Canada
| | - Jose Dolz
- Laboratory for Imagery, Vision and Artificial Intelligence (LIVIA), École de Technologie Supérieure, Montreal, QC, Canada
| | - Gregory A. Lodygensky
- Laboratory for Imagery, Vision and Artificial Intelligence (LIVIA), École de Technologie Supérieure, Montreal, QC, Canada
| |
Collapse
|
21
|
Mostapha M, Styner M. Role of deep learning in infant brain MRI analysis. Magn Reson Imaging 2019; 64:171-189. [PMID: 31229667 PMCID: PMC6874895 DOI: 10.1016/j.mri.2019.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 12/17/2022]
Abstract
Deep learning algorithms and in particular convolutional networks have shown tremendous success in medical image analysis applications, though relatively few methods have been applied to infant MRI data due numerous inherent challenges such as inhomogenous tissue appearance across the image, considerable image intensity variability across the first year of life, and a low signal to noise setting. This paper presents methods addressing these challenges in two selected applications, specifically infant brain tissue segmentation at the isointense stage and presymptomatic disease prediction in neurodevelopmental disorders. Corresponding methods are reviewed and compared, and open issues are identified, namely low data size restrictions, class imbalance problems, and lack of interpretation of the resulting deep learning solutions. We discuss how existing solutions can be adapted to approach these issues as well as how generative models seem to be a particularly strong contender to address them.
Collapse
Affiliation(s)
- Mahmoud Mostapha
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America.
| | - Martin Styner
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America; Neuro Image Research and Analysis Lab, Department of Psychiatry, University of North Carolina at Chapel Hill, NC 27599, United States of America.
| |
Collapse
|
22
|
Deep CNN ensembles and suggestive annotations for infant brain MRI segmentation. Comput Med Imaging Graph 2019; 79:101660. [PMID: 31785402 DOI: 10.1016/j.compmedimag.2019.101660] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/30/2019] [Accepted: 09/24/2019] [Indexed: 01/02/2023]
Abstract
Precise 3D segmentation of infant brain tissues is an essential step towards comprehensive volumetric studies and quantitative analysis of early brain development. However, computing such segmentations is very challenging, especially for 6-month infant brain, due to the poor image quality, among other difficulties inherent to infant brain MRI, e.g., the isointense contrast between white and gray matter and the severe partial volume effect due to small brain sizes. This study investigates the problem with an ensemble of semi-dense fully convolutional neural networks (CNNs), which employs T1-weighted and T2-weighted MR images as input. We demonstrate that the ensemble agreement is highly correlated with the segmentation errors. Therefore, our method provides measures that can guide local user corrections. To the best of our knowledge, this work is the first ensemble of 3D CNNs for suggesting annotations within images. Our quasi-dense architecture allows the efficient propagation of gradients during training, while limiting the number of parameters, requiring one order of magnitude less parameters than popular medical image segmentation networks such as 3D U-Net (Çiçek, et al.). We also investigated the impact that early or late fusions of multiple image modalities might have on the performances of deep architectures. We report evaluations of our method on the public data of the MICCAI iSEG-2017 Challenge on 6-month infant brain MRI segmentation, and show very competitive results among 21 teams, ranking first or second in most metrics.
Collapse
|
23
|
Zöllei L, Jaimes C, Saliba E, Grant PE, Yendiki A. TRActs constrained by UnderLying INfant anatomy (TRACULInA): An automated probabilistic tractography tool with anatomical priors for use in the newborn brain. Neuroimage 2019; 199:1-17. [PMID: 31132451 PMCID: PMC6688923 DOI: 10.1016/j.neuroimage.2019.05.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 10/26/2022] Open
Abstract
The ongoing myelination of white-matter fiber bundles plays a significant role in brain development. However, reliable and consistent identification of these bundles from infant brain MRIs is often challenging due to inherently low diffusion anisotropy, as well as motion and other artifacts. In this paper we introduce a new tool for automated probabilistic tractography specifically designed for newborn infants. Our tool incorporates prior information about the anatomical neighborhood of white-matter pathways from a training data set. In our experiments, we evaluate this tool on data from both full-term and prematurely born infants and demonstrate that it can reconstruct known white-matter tracts in both groups robustly, even in the presence of differences between the training set and study subjects. Additionally, we evaluate it on a publicly available large data set of healthy term infants (UNC Early Brain Development Program). This paves the way for performing a host of sophisticated analyses in newborns that we have previously implemented for the adult brain, such as pointwise analysis along tracts and longitudinal analysis, in both health and disease.
Collapse
Affiliation(s)
- Lilla Zöllei
- Massachusetts General Hospital, Boston, United States.
| | | | | | | | | |
Collapse
|
24
|
Automated Ventricular System Segmentation in Paediatric Patients Treated for Hydrocephalus Using Deep Learning Methods. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3059170. [PMID: 31360710 PMCID: PMC6642766 DOI: 10.1155/2019/3059170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/31/2019] [Accepted: 06/23/2019] [Indexed: 11/24/2022]
Abstract
Hydrocephalus is a common neurological condition that can have traumatic ramifications and can be lethal without treatment. Nowadays, during therapy radiologists have to spend a vast amount of time assessing the volume of cerebrospinal fluid (CSF) by manual segmentation on Computed Tomography (CT) images. Further, some of the segmentations are prone to radiologist bias and high intraobserver variability. To improve this, researchers are exploring methods to automate the process, which would enable faster and more unbiased results. In this study, we propose the application of U-Net convolutional neural network in order to automatically segment CT brain scans for location of CSF. U-Net is a neural network that has proven to be successful for various interdisciplinary segmentation tasks. We optimised training using state of the art methods, including “1cycle” learning rate policy, transfer learning, generalized dice loss function, mixed float precision, self-attention, and data augmentation. Even though the study was performed using a limited amount of data (80 CT images), our experiment has shown near human-level performance. We managed to achieve a 0.917 mean dice score with 0.0352 standard deviation on cross validation across the training data and a 0.9506 mean dice score on a separate test set. To our knowledge, these results are better than any known method for CSF segmentation in hydrocephalic patients, and thus, it is promising for potential practical applications.
Collapse
|
25
|
Age-specific optimization of T1-weighted brain MRI throughout infancy. Neuroimage 2019; 199:387-395. [PMID: 31154050 DOI: 10.1016/j.neuroimage.2019.05.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/10/2019] [Accepted: 05/28/2019] [Indexed: 12/16/2022] Open
Abstract
The infant brain undergoes drastic morphological and functional development during the first year of life. Three-dimensional T1-weighted Magnetic Resonance Imaging (3D T1w-MRI) is a major tool to characterize the brain anatomy, which however, manifests inherently low and rapidly changing contrast between white matter (WM) and gray matter (GM) in the infant brains (0-12 month-old). Despite the prior efforts made to maximize tissue contrast in the neonatal brains (≤1 months), optimization of imaging methods in the rest of the infancy (1-12 months) is not fully addressed, while brains in the latter period exhibit even more challenging contrast. Here, we performed a systematic investigation to improve the contrast between cortical GM and subcortical WM throughout the infancy. We first performed simultaneous T1 and proton density mapping in a normally developing infant cohort at 3T (n = 57). Based on the evolution of T1 relaxation times, we defined three age groups and simulated the relative tissue contrast between WM and GM in each group. Age-specific imaging strategies were proposed according to the Bloch simulation: inversion time (TI) around 800 ms for the 0-3 month-old group, dual TI at 500 ms and 700 ms for the 3-7 month-old group, and TI around 700 ms for 7-12 month-old group, using a centrically encoded 3D-MPRAGE sequence at 3T. Experimental results with varying TIs in each group confirmed improved contrast at the proposed optimal TIs, even in 3-7 month-old infants who had nearly isointense contrast. We further demonstrated the advantage of improved relative contrast in segmenting the neonatal brains using a multi-atlas segmentation method. The proposed age-specific optimization strategies can be easily adapted to routine clinical examinations, and the improved image contrast would facilitate quantitative analysis of the infant brain development.
Collapse
|
26
|
Dolz J, Gopinath K, Yuan J, Lombaert H, Desrosiers C, Ben Ayed I. HyperDense-Net: A Hyper-Densely Connected CNN for Multi-Modal Image Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:1116-1126. [PMID: 30387726 DOI: 10.1109/tmi.2018.2878669] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Recently, dense connections have attracted substantial attention in computer vision because they facilitate gradient flow and implicit deep supervision during training. Particularly, DenseNet that connects each layer to every other layer in a feed-forward fashion and has shown impressive performances in natural image classification tasks. We propose HyperDenseNet, a 3-D fully convolutional neural network that extends the definition of dense connectivity to multi-modal segmentation problems. Each imaging modality has a path, and dense connections occur not only between the pairs of layers within the same path but also between those across different paths. This contrasts with the existing multi-modal CNN approaches, in which modeling several modalities relies entirely on a single joint layer (or level of abstraction) for fusion, typically either at the input or at the output of the network. Therefore, the proposed network has total freedom to learn more complex combinations between the modalities, within and in-between all the levels of abstraction, which increases significantly the learning representation. We report extensive evaluations over two different and highly competitive multi-modal brain tissue segmentation challenges, iSEG 2017 and MRBrainS 2013, with the former focusing on six month infant data and the latter on adult images. HyperDenseNet yielded significant improvements over many state-of-the-art segmentation networks, ranking at the top on both benchmarks. We further provide a comprehensive experimental analysis of features re-use, which confirms the importance of hyper-dense connections in multi-modal representation learning. Our code is publicly available.
Collapse
|
27
|
Nie D, Wang L, Adeli E, Lao C, Lin W, Shen D. 3-D Fully Convolutional Networks for Multimodal Isointense Infant Brain Image Segmentation. IEEE TRANSACTIONS ON CYBERNETICS 2019; 49:1123-1136. [PMID: 29994385 PMCID: PMC6230311 DOI: 10.1109/tcyb.2018.2797905] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Accurate segmentation of infant brain images into different regions of interest is one of the most important fundamental steps in studying early brain development. In the isointense phase (approximately 6-8 months of age), white matter and gray matter exhibit similar levels of intensities in magnetic resonance (MR) images, due to the ongoing myelination and maturation. This results in extremely low tissue contrast and thus makes tissue segmentation very challenging. Existing methods for tissue segmentation in this isointense phase usually employ patch-based sparse labeling on single modality. To address the challenge, we propose a novel 3-D multimodal fully convolutional network (FCN) architecture for segmentation of isointense phase brain MR images. Specifically, we extend the conventional FCN architectures from 2-D to 3-D, and, rather than directly using FCN, we intuitively integrate coarse (naturally high-resolution) and dense (highly semantic) feature maps to better model tiny tissue regions, in addition, we further propose a transformation module to better connect the aggregating layers; we also propose a fusion module to better serve the fusion of feature maps. We compare the performance of our approach with several baseline and state-of-the-art methods on two sets of isointense phase brain images. The comparison results show that our proposed 3-D multimodal FCN model outperforms all previous methods by a large margin in terms of segmentation accuracy. In addition, the proposed framework also achieves faster segmentation results compared to all other methods. Our experiments further demonstrate that: 1) carefully integrating coarse and dense feature maps can considerably improve the segmentation performance; 2) batch normalization can speed up the convergence of the networks, especially when hierarchical feature aggregations occur; and 3) integrating multimodal information can further boost the segmentation performance.
Collapse
|
28
|
Feng L, Li H, Oishi K, Mishra V, Song L, Peng Q, Ouyang M, Wang J, Slinger M, Jeon T, Lee L, Heyne R, Chalak L, Peng Y, Liu S, Huang H. Age-specific gray and white matter DTI atlas for human brain at 33, 36 and 39 postmenstrual weeks. Neuroimage 2019; 185:685-698. [PMID: 29959046 PMCID: PMC6289605 DOI: 10.1016/j.neuroimage.2018.06.069] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/21/2018] [Accepted: 06/25/2018] [Indexed: 01/24/2023] Open
Abstract
During the 3rd trimester, dramatic structural changes take place in the human brain, underlying the neural circuit formation. The survival rate of premature infants has increased significantly in recent years. The large morphological differences of the preterm brain at 33 or 36 postmenstrual weeks (PMW) from the brain at 40PMW (full term) make it necessary to establish age-specific atlases for preterm brains. In this study, with high quality (1.5 × 1.5 × 1.6 mm3 imaging resolution) diffusion tensor imaging (DTI) data obtained from 84 healthy preterm and term-born neonates, we established age-specific preterm and term-born brain templates and atlases at 33, 36 and 39PMW. Age-specific DTI templates include a single-subject template, a population-averaged template with linear transformation and a population-averaged template with nonlinear transformation. Each of the age-specific DTI atlases includes comprehensive labeling of 126 major gray matter (GM) and white matter (WM) structures, specifically 52 cerebral cortical structures, 40 cerebral WM structures, 22 brainstem and cerebellar structures and 12 subcortical GM structures. From 33 to 39 PMW, dramatic morphological changes of delineated individual neural structures such as ganglionic eminence and uncinate fasciculus were revealed. The evaluation based on measurements of Dice ratio and L1 error suggested reliable and reproducible automated labels from the age-matched atlases compared to labels from manual delineation. Applying these atlases to automatically and effectively delineate microstructural changes of major WM tracts during the 3rd trimester was demonstrated. The established age-specific DTI templates and atlases of 33, 36 and 39 PMW brains may be used for not only understanding normal functional and structural maturational processes but also detecting biomarkers of neural disorders in the preterm brains.
Collapse
Affiliation(s)
- Lei Feng
- Department of Radiology, Children's Hospital of Philadelphia, PA, USA; Research Center for Sectional and Imaging Anatomy, Shandong University Cheeloo College of Medicine, Shandong, China
| | - Hang Li
- Department of Radiology, Children's Hospital of Philadelphia, PA, USA; Department of Radiology, Beijing Children's Hospital Affiliated to Capital Medical University, National Center for Children's Health, Beijing, China
| | - Kenichi Oishi
- Department of Radiology, Johns Hopkins University, MD, USA
| | - Virendra Mishra
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, TX, USA
| | - Limei Song
- Department of Radiology, Children's Hospital of Philadelphia, PA, USA; Research Center for Sectional and Imaging Anatomy, Shandong University Cheeloo College of Medicine, Shandong, China
| | - Qinmu Peng
- Department of Radiology, Children's Hospital of Philadelphia, PA, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Minhui Ouyang
- Department of Radiology, Children's Hospital of Philadelphia, PA, USA; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, TX, USA
| | - Jiaojian Wang
- Department of Radiology, Children's Hospital of Philadelphia, PA, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Michelle Slinger
- Department of Radiology, Children's Hospital of Philadelphia, PA, USA
| | - Tina Jeon
- Department of Radiology, Children's Hospital of Philadelphia, PA, USA
| | - Lizette Lee
- Department of Pediatrics, University of Texas Southwestern Medical Center, TX, USA
| | - Roy Heyne
- Department of Pediatrics, University of Texas Southwestern Medical Center, TX, USA
| | - Lina Chalak
- Department of Pediatrics, University of Texas Southwestern Medical Center, TX, USA
| | - Yun Peng
- Department of Radiology, Beijing Children's Hospital Affiliated to Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shuwei Liu
- Research Center for Sectional and Imaging Anatomy, Shandong University Cheeloo College of Medicine, Shandong, China
| | - Hao Huang
- Department of Radiology, Children's Hospital of Philadelphia, PA, USA; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, TX, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, USA.
| |
Collapse
|
29
|
Individual variation in longitudinal postnatal development of the primate brain. Brain Struct Funct 2019; 224:1185-1201. [PMID: 30637493 DOI: 10.1007/s00429-019-01829-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022]
Abstract
Quantifying individual variation in postnatal brain development can provide insight into cognitive diversity within a population and the aetiology of common neuropsychiatric and neurodevelopmental disorders. Non-invasive studies of the non-human primate can aid understanding of human brain development, facilitating longitudinal analysis during early postnatal development when comparative human populations are difficult to sample. In this study, we perform analysis of a longitudinal MRI dataset of 32 macaques, each with up to five magnetic resonance imaging (MRI) scans acquired between 3 and 36 months of age. Using nonlinear mixed effects model we derive growth trajectories for whole brain, cortical and subcortical grey matter, cerebral white matter and cerebellar volume. We then test the association between individual variation in postnatal tissue volumes and birth weight. We report nonlinear growth models for all tissue compartments, as well as significant variation in total intracranial volume between individuals. We also demonstrate that regional subcortical grey matter varies both in total volume and rate of change between individuals and is associated with differences in birth weight. This supports evidence that birth weight may act as a marker of subsequent brain development and highlights the importance of longitudinal MRI analysis in developmental studies.
Collapse
|
30
|
Hannoun S, Tutunji R, El Homsi M, Saaybi S, Hourani R. Automatic Thalamus Segmentation on Unenhanced 3D T1 Weighted Images: Comparison of Publicly Available Segmentation Methods in a Pediatric Population. Neuroinformatics 2018; 17:443-450. [DOI: 10.1007/s12021-018-9408-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
An iterative multi-atlas patch-based approach for cortex segmentation from neonatal MRI. Comput Med Imaging Graph 2018; 70:73-82. [PMID: 30296626 DOI: 10.1016/j.compmedimag.2018.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/10/2018] [Accepted: 09/13/2018] [Indexed: 11/21/2022]
Abstract
Brain structure analysis in the newborn is a major health issue. This is especially the case for preterm neonates, in order to obtain predictive information related to the child development. In particular, the cortex is a structure of interest, that can be observed in magnetic resonance imaging (MRI). However, neonatal MRI data present specific properties that make them challenging to process. In this context, multi-atlas approaches constitute an efficient strategy, taking advantage of images processed beforehand. The method proposed in this article relies on such a multi-atlas strategy. More precisely, it uses two paradigms: first, a non-local model based on patches; second, an iterative optimization scheme. Coupling both concepts allows us to consider patches related not only to the image information, but also to the current segmentation. This strategy is compared to other multi-atlas methods proposed in the literature. Experiments on dHCP datasets show that the proposed approach provides robust cortex segmentation results.
Collapse
|
32
|
A systematic review of structural MRI biomarkers in autism spectrum disorder: A machine learning perspective. Int J Dev Neurosci 2018; 71:68-82. [DOI: 10.1016/j.ijdevneu.2018.08.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 11/19/2022] Open
|
33
|
Wang L, Li G, Adeli E, Liu M, Wu Z, Meng Y, Lin W, Shen D. Anatomy-guided joint tissue segmentation and topological correction for 6-month infant brain MRI with risk of autism. Hum Brain Mapp 2018; 39:2609-2623. [PMID: 29516625 PMCID: PMC5951769 DOI: 10.1002/hbm.24027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/01/2018] [Accepted: 02/19/2018] [Indexed: 01/14/2023] Open
Abstract
Tissue segmentation of infant brain MRIs with risk of autism is critically important for characterizing early brain development and identifying biomarkers. However, it is challenging due to low tissue contrast caused by inherent ongoing myelination and maturation. In particular, at around 6 months of age, the voxel intensities in both gray matter and white matter are within similar ranges, thus leading to the lowest image contrast in the first postnatal year. Previous studies typically employed intensity images and tentatively estimated tissue probabilities to train a sequence of classifiers for tissue segmentation. However, the important prior knowledge of brain anatomy is largely ignored during the segmentation. Consequently, the segmentation accuracy is still limited and topological errors frequently exist, which will significantly degrade the performance of subsequent analyses. Although topological errors could be partially handled by retrospective topological correction methods, their results may still be anatomically incorrect. To address these challenges, in this article, we propose an anatomy-guided joint tissue segmentation and topological correction framework for isointense infant MRI. Particularly, we adopt a signed distance map with respect to the outer cortical surface as anatomical prior knowledge, and incorporate such prior information into the proposed framework to guide segmentation in ambiguous regions. Experimental results on the subjects acquired from National Database for Autism Research demonstrate the effectiveness to topological errors and also some levels of robustness to motion. Comparisons with the state-of-the-art methods further demonstrate the advantages of the proposed method in terms of both segmentation accuracy and topological correctness.
Collapse
Affiliation(s)
- Li Wang
- IDEA Lab, Department of Radiology and BRICUniversity of North Carolina at Chapel HillNorth Carolina
| | - Gang Li
- IDEA Lab, Department of Radiology and BRICUniversity of North Carolina at Chapel HillNorth Carolina
| | - Ehsan Adeli
- IDEA Lab, Department of Radiology and BRICUniversity of North Carolina at Chapel HillNorth Carolina
| | - Mingxia Liu
- IDEA Lab, Department of Radiology and BRICUniversity of North Carolina at Chapel HillNorth Carolina
| | - Zhengwang Wu
- IDEA Lab, Department of Radiology and BRICUniversity of North Carolina at Chapel HillNorth Carolina
| | - Yu Meng
- IDEA Lab, Department of Radiology and BRICUniversity of North Carolina at Chapel HillNorth Carolina
- Department of Computer ScienceUniversity of North Carolina at Chapel HillNorth Carolina
| | - Weili Lin
- MRI Lab, Department of Radiology and BRICUniversity of North Carolina at Chapel HillNorth Carolina
| | - Dinggang Shen
- IDEA Lab, Department of Radiology and BRICUniversity of North Carolina at Chapel HillNorth Carolina
- Department of Brain and Cognitive EngineeringKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
34
|
Peyvandi S, Latal B, Miller SP, McQuillen PS. The neonatal brain in critical congenital heart disease: Insights and future directions. Neuroimage 2018; 185:776-782. [PMID: 29787864 DOI: 10.1016/j.neuroimage.2018.05.045] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/18/2018] [Accepted: 05/18/2018] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental outcomes are impaired in survivors of critical congenital heart disease (CHD) in several developmental domains including motor, cognitive and sensory outcomes. These deficits can extend into the adolescent and early adulthood years. The cause of these neurodevelopmental impairments is multi-factorial and includes patient specific risk factors, cardiac anatomy and physiology as well as brain changes seen on MRI. Advances in imaging techniques have identified delayed brain development in the neonate with critical CHD as well as acquired brain injury. These abnormalities are seen even before corrective neonatal cardiac surgery. This review focuses on describing brain changes seen on MRI in neonates with CHD, risk factors for these changes and the association with neurodevelopmental outcome. There is an emerging focus on the impact of cardiovascular physiology on brain health and the complex heart-brain interplay that influences ultimate neurodevelopmental outcome in these patients.
Collapse
Affiliation(s)
- Shabnam Peyvandi
- Division of Pediatric Cardiology, University of California San Francisco Benioff Children's Hospital, USA.
| | - Beatrice Latal
- University Children's Hospital Zurich, Child Development Center and Children's Research Center, Zurich, Switzerland
| | - Steven P Miller
- University of Toronto, Hospital for Sick Children, Department of Neurology, Canada
| | - Patrick S McQuillen
- Division of Critical Care, University of California San Francisco Benioff Children's Hospital, USA
| |
Collapse
|
35
|
The challenge of cerebral magnetic resonance imaging in neonates: A new method using mathematical morphology for the segmentation of structures including diffuse excessive high signal intensities. Med Image Anal 2018; 48:75-94. [PMID: 29852312 DOI: 10.1016/j.media.2018.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 11/20/2022]
Abstract
Preterm birth is a multifactorial condition associated with increased morbidity and mortality. Diffuse excessive high signal intensity (DEHSI) has been recently described on T2-weighted MR sequences in this population and thought to be associated with neuropathologies. To date, no robust and reproducible method to assess the presence of white matter hyperintensities has been developed, perhaps explaining the current controversy over their prognostic value. The aim of this paper is to propose a new semi-automated framework to detect DEHSI on neonatal brain MR images having a particular pattern due to the physiological lack of complete myelination of the white matter. A novel method for semi- automatic segmentation of neonatal brain structures and DEHSI, based on mathematical morphology and on max-tree representations of the images is thus described. It is a mandatory first step to identify and clinically assess homogeneous cohorts of neonates for DEHSI and/or volume of any other segmented structures. Implemented in a user-friendly interface, the method makes it straightforward to select relevant markers of structures to be segmented, and if needed, apply eventually manual corrections. This method responds to the increasing need for providing medical experts with semi-automatic tools for image analysis, and overcomes the limitations of visual analysis alone, prone to subjectivity and variability. Experimental results demonstrate that the method is accurate, with excellent reproducibility and with very few manual corrections needed. Although the method was intended initially for images acquired at 1.5T, which corresponds to the usual clinical practice, preliminary results on images acquired at 3T suggest that the proposed approach can be generalized.
Collapse
|
36
|
Li T, Zhou F, Zhu Z, Shu H, Zhu H. A Label-fusion-aided Convolutional Neural Network for Isointense Infant Brain Tissue Segmentation. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2018; 2018:692-695. [PMID: 30555624 DOI: 10.1109/isbi.2018.8363668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The extremely low tissue contrast in white matter during an infant's isointense stage (6-8 months) of brain development presents major difficulty when segmenting brain image regions for analysis. We sought to develop a label-fusion-aided deep-learning approach for automatically segmenting isointense infant brain images into white matter, gray matter and cerebrospinal fluid using T1- and T2-weighted magnetic resonance images. A key idea of our approach is to apply the fully convolutional neural network (FCNN) to individual brain regions determined by a traditional registration-based segmentation method instead of training a single model for the whole brain. This provides more refined segmentation results by capturing more region-specific features. We show that this method outperforms traditional joint label fusion and FCNN-only methods in terms of Dice coefficients using the dataset from iSEG MICCAI Grand Challenge 2017.
Collapse
Affiliation(s)
- Tengfei Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center Houston, TX 77030, USA
| | - Fan Zhou
- Department of Biostatistics, The University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA
| | - Ziliang Zhu
- Department of Biostatistics, The University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA
| | - Hai Shu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center Houston, TX 77030, USA
| | - Hongtu Zhu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center Houston, TX 77030, USA.,Department of Biostatistics, The University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA
| |
Collapse
|
37
|
Makropoulos A, Counsell SJ, Rueckert D. A review on automatic fetal and neonatal brain MRI segmentation. Neuroimage 2018; 170:231-248. [DOI: 10.1016/j.neuroimage.2017.06.074] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/06/2017] [Accepted: 06/26/2017] [Indexed: 01/18/2023] Open
|
38
|
Computational neuroanatomy of baby brains: A review. Neuroimage 2018; 185:906-925. [PMID: 29574033 DOI: 10.1016/j.neuroimage.2018.03.042] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/23/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
The first postnatal years are an exceptionally dynamic and critical period of structural, functional and connectivity development of the human brain. The increasing availability of non-invasive infant brain MR images provides unprecedented opportunities for accurate and reliable charting of dynamic early brain developmental trajectories in understanding normative and aberrant growth. However, infant brain MR images typically exhibit reduced tissue contrast (especially around 6 months of age), large within-tissue intensity variations, and regionally-heterogeneous, dynamic changes, in comparison with adult brain MR images. Consequently, the existing computational tools developed typically for adult brains are not suitable for infant brain MR image processing. To address these challenges, many infant-tailored computational methods have been proposed for computational neuroanatomy of infant brains. In this review paper, we provide a comprehensive review of the state-of-the-art computational methods for infant brain MRI processing and analysis, which have advanced our understanding of early postnatal brain development. We also summarize publically available infant-dedicated resources, including MRI datasets, computational tools, grand challenges, and brain atlases. Finally, we discuss the limitations in current research and suggest potential future research directions.
Collapse
|
39
|
Makropoulos A, Robinson EC, Schuh A, Wright R, Fitzgibbon S, Bozek J, Counsell SJ, Steinweg J, Vecchiato K, Passerat-Palmbach J, Lenz G, Mortari F, Tenev T, Duff EP, Bastiani M, Cordero-Grande L, Hughes E, Tusor N, Tournier JD, Hutter J, Price AN, Teixeira RPAG, Murgasova M, Victor S, Kelly C, Rutherford MA, Smith SM, Edwards AD, Hajnal JV, Jenkinson M, Rueckert D. The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction. Neuroimage 2018. [PMID: 29409960 DOI: 10.1101/125526] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Developing Human Connectome Project (dHCP) seeks to create the first 4-dimensional connectome of early life. Understanding this connectome in detail may provide insights into normal as well as abnormal patterns of brain development. Following established best practices adopted by the WU-MINN Human Connectome Project (HCP), and pioneered by FreeSurfer, the project utilises cortical surface-based processing pipelines. In this paper, we propose a fully automated processing pipeline for the structural Magnetic Resonance Imaging (MRI) of the developing neonatal brain. This proposed pipeline consists of a refined framework for cortical and sub-cortical volume segmentation, cortical surface extraction, and cortical surface inflation, which has been specifically designed to address considerable differences between adult and neonatal brains, as imaged using MRI. Using the proposed pipeline our results demonstrate that images collected from 465 subjects ranging from 28 to 45 weeks post-menstrual age (PMA) can be processed fully automatically; generating cortical surface models that are topologically correct, and correspond well with manual evaluations of tissue boundaries in 85% of cases. Results improve on state-of-the-art neonatal tissue segmentation models and significant errors were found in only 2% of cases, where these corresponded to subjects with high motion. Downstream, these surfaces will enhance comparisons of functional and diffusion MRI datasets, supporting the modelling of emerging patterns of brain connectivity.
Collapse
Affiliation(s)
- Antonios Makropoulos
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Emma C Robinson
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom.
| | - Andreas Schuh
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Robert Wright
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Sean Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jelena Bozek
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Johannes Steinweg
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Katy Vecchiato
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Jonathan Passerat-Palmbach
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Gregor Lenz
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Filippo Mortari
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Tencho Tenev
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Eugene P Duff
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Matteo Bastiani
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Emer Hughes
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Nora Tusor
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Jacques-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Rui Pedro A G Teixeira
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Maria Murgasova
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Suresh Victor
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Christopher Kelly
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| |
Collapse
|
40
|
Makropoulos A, Robinson EC, Schuh A, Wright R, Fitzgibbon S, Bozek J, Counsell SJ, Steinweg J, Vecchiato K, Passerat-Palmbach J, Lenz G, Mortari F, Tenev T, Duff EP, Bastiani M, Cordero-Grande L, Hughes E, Tusor N, Tournier JD, Hutter J, Price AN, Teixeira RPAG, Murgasova M, Victor S, Kelly C, Rutherford MA, Smith SM, Edwards AD, Hajnal JV, Jenkinson M, Rueckert D. The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction. Neuroimage 2018; 173:88-112. [PMID: 29409960 DOI: 10.1016/j.neuroimage.2018.01.054] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 12/11/2022] Open
Abstract
The Developing Human Connectome Project (dHCP) seeks to create the first 4-dimensional connectome of early life. Understanding this connectome in detail may provide insights into normal as well as abnormal patterns of brain development. Following established best practices adopted by the WU-MINN Human Connectome Project (HCP), and pioneered by FreeSurfer, the project utilises cortical surface-based processing pipelines. In this paper, we propose a fully automated processing pipeline for the structural Magnetic Resonance Imaging (MRI) of the developing neonatal brain. This proposed pipeline consists of a refined framework for cortical and sub-cortical volume segmentation, cortical surface extraction, and cortical surface inflation, which has been specifically designed to address considerable differences between adult and neonatal brains, as imaged using MRI. Using the proposed pipeline our results demonstrate that images collected from 465 subjects ranging from 28 to 45 weeks post-menstrual age (PMA) can be processed fully automatically; generating cortical surface models that are topologically correct, and correspond well with manual evaluations of tissue boundaries in 85% of cases. Results improve on state-of-the-art neonatal tissue segmentation models and significant errors were found in only 2% of cases, where these corresponded to subjects with high motion. Downstream, these surfaces will enhance comparisons of functional and diffusion MRI datasets, supporting the modelling of emerging patterns of brain connectivity.
Collapse
Affiliation(s)
- Antonios Makropoulos
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Emma C Robinson
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom.
| | - Andreas Schuh
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Robert Wright
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Sean Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jelena Bozek
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Johannes Steinweg
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Katy Vecchiato
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Jonathan Passerat-Palmbach
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Gregor Lenz
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Filippo Mortari
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Tencho Tenev
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Eugene P Duff
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Matteo Bastiani
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Emer Hughes
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Nora Tusor
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Jacques-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Rui Pedro A G Teixeira
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Maria Murgasova
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Suresh Victor
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Christopher Kelly
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| |
Collapse
|
41
|
Cherukuri V, Ssenyonga P, Warf BC, Kulkarni AV, Monga V, Schiff SJ. Learning Based Segmentation of CT Brain Images: Application to Postoperative Hydrocephalic Scans. IEEE Trans Biomed Eng 2017; 65:1871-1884. [PMID: 29989926 DOI: 10.1109/tbme.2017.2783305] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Hydrocephalus is a medical condition in which there is an abnormal accumulation of cerebrospinal fluid (CSF) in the brain. Segmentation of brain imagery into brain tissue and CSF [before and after surgery, i.e., preoperative (pre-op) versus postoperative (post-op)] plays a crucial role in evaluating surgical treatment. Segmentation of pre-op images is often a relatively straightforward problem and has been well researched. However, segmenting post-op computational tomographic (CT) scans becomes more challenging due to distorted anatomy and subdural hematoma collections pressing on the brain. Most intensity- and feature-based segmentation methods fail to separate subdurals from brain and CSF as subdural geometry varies greatly across different patients and their intensity varies with time. We combat this problem by a learning approach that treats segmentation as supervised classification at the pixel level, i.e., a training set of CT scans with labeled pixel identities is employed. METHODS Our contributions include: 1) a dictionary learning framework that learns class (segment) specific dictionaries that can efficiently represent test samples from the same class while poorly represent corresponding samples from other classes; 2) quantification of associated computation and memory footprint; and 3) a customized training and test procedure for segmenting post-op hydrocephalic CT images. RESULTS Experiments performed on infant CT brain images acquired from the CURE Children's Hospital of Uganda reveal the success of our method against the state-of-the-art alternatives. We also demonstrate that the proposed algorithm is computationally less burdensome and exhibits a graceful degradation against a number of training samples, enhancing its deployment potential.
Collapse
|
42
|
A fast stochastic framework for automatic MR brain images segmentation. PLoS One 2017; 12:e0187391. [PMID: 29136034 PMCID: PMC5685492 DOI: 10.1371/journal.pone.0187391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/19/2017] [Indexed: 12/05/2022] Open
Abstract
This paper introduces a new framework for the segmentation of different brain structures (white matter, gray matter, and cerebrospinal fluid) from 3D MR brain images at different life stages. The proposed segmentation framework is based on a shape prior built using a subset of co-aligned training images that is adapted during the segmentation process based on first- and second-order visual appearance characteristics of MR images. These characteristics are described using voxel-wise image intensities and their spatial interaction features. To more accurately model the empirical grey level distribution of the brain signals, we use a linear combination of discrete Gaussians (LCDG) model having positive and negative components. To accurately account for the large inhomogeneity in infant MRIs, a higher-order Markov-Gibbs Random Field (MGRF) spatial interaction model that integrates third- and fourth- order families with a traditional second-order model is proposed. The proposed approach was tested and evaluated on 102 3D MR brain scans using three metrics: the Dice coefficient, the 95-percentile modified Hausdorff distance, and the absolute brain volume difference. Experimental results show better segmentation of MR brain images compared to current open source segmentation tools.
Collapse
|
43
|
Peyvandi S, Kim H, Lau J, Barkovich AJ, Campbell A, Miller S, Xu D, McQuillen P. The association between cardiac physiology, acquired brain injury, and postnatal brain growth in critical congenital heart disease. J Thorac Cardiovasc Surg 2017; 155:291-300.e3. [PMID: 28918207 DOI: 10.1016/j.jtcvs.2017.08.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/10/2017] [Accepted: 08/05/2017] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To assess the trajectory of perioperative brain growth in relationship to cardiac diagnosis and acquired brain injuries. METHODS This was a cohort study of term neonates with hypoplastic left heart syndrome (HLHS) and d-transposition of the great arteries (d-TGA). Subjects underwent magnetic resonance imaging of the brain pre- and postoperatively to determine the severity of brain injury and total and regional brain volumes by the use of automated morphometry. Comparisons were made by cardiac lesion and injury status. RESULTS A total of 79 subjects were included (49, d-TGA; 30, HLHS). Subjects with HLHS had more postoperative brain injury (55.6% vs 30.4%, P = .03) and more severe brain injury (moderate-to-severe white matter [WM] injury, P = .01). Total and regional perioperative brain growth was not different by brain injury status (either pre- or postoperative). However, subjects with moderate-to-severe WM injury had a slower rate of brain growth in WM and gray matter compared with those with no injury. Subjects with HLHS had a slower rate of growth globally and in WM and deep gray matter as compared with d-TGA (total brain volume: 12 cm3/wk vs 7 cm3; WM: 2.1 cm3/wk vs 0.6 cm3; deep gray matter: 1.5 cm3/wk vs 0.7 cm3; P < .001), after we adjusted for gestational age at scan and the presence of brain injury. This difference remained after excluding subjects with moderate-to-severe WM injury. CONCLUSIONS Neonates with HLHS have a slower rate of global and regional brain growth compared with d-TGA, likely related to inherent physiologic differences postoperatively. These findings demonstrate the complex interplay between cardiac lesion, brain injury, and brain growth.
Collapse
Affiliation(s)
- Shabnam Peyvandi
- Department of Pediatrics, Division of Cardiology, University of California San Francisco, San Francisco, Calif.
| | - Hosung Kim
- Department of Neurology, University of Southern California, Los Angeles, Calif
| | - Joanne Lau
- Department of Radiology, University of California San Francisco, San Francisco, Calif
| | - A James Barkovich
- Department of Radiology, University of California San Francisco, San Francisco, Calif
| | - Andrew Campbell
- Department of Pediatric Cardiovascular and Thoracic Surgery, University of British Columbia, Vancouver, Canada
| | - Steven Miller
- Department of Neurology, the University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Duan Xu
- Department of Radiology, University of California San Francisco, San Francisco, Calif
| | - Patrick McQuillen
- Division of Critical Care, University of California San Francisco, San Francisco, Calif
| |
Collapse
|
44
|
Niwa T, Suzuki K, Sugiyama N, Imai Y. Regional volumetric assessment of the brain in moderately preterm infants (30-35 gestational weeks) scanned at term-equivalent age on magnetic resonance imaging. Early Hum Dev 2017; 111:36-41. [PMID: 28575725 DOI: 10.1016/j.earlhumdev.2017.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND Early volume analyses of the infantile brain may help predict neurodevelopmental outcome. However, brain volumes are not well understood in moderately preterm infants at term-equivalent age (TEA). AIM This study retrospectively investigated the relationship between regional brain volumes and infant gestational age (GA) at birth in moderately preterm infants (30-35weeks' GA) on magnetic resonance imaging (MRI) at TEA. METHODS Forty infants scanned at TEA were enrolled. Regional brain volumes were estimated by manual segmentation on MRI, and their relationship with GA at birth was assessed. RESULTS The regional volumes of the cerebral hemispheres and deep gray matter were larger (Spearman ρ=0.40, P=0.01, and Spearman ρ=0.48, P<0.01, respectively), and volumes of the lateral ventricles were smaller (Spearman ρ=-0.32, P=0.04) in infants born at a later GA. The volumes of the cerebral hemispheres of the infants born at 30weeks' GA were significantly smaller than those born at 33 and 35weeks' GA (P<0.05). No associations were found between the volume of the cerebellum and brainstem, and GA at birth (Spearman ρ=0.24, P=0.13, and Spearman ρ=0.24, P=0.14, respectively). CONCLUSIONS The volumes of the cerebral hemispheres at TEA may be smaller in infants born at 30weeks' GA, whereas those of the cerebellum and brainstem may not be correlated with GA among moderately preterm infants.
Collapse
Affiliation(s)
- Tetsu Niwa
- Department of Radiology, Tokai University School of Medicine, Isehara, Japan.
| | - Keiji Suzuki
- Department of Pediatrics, Tokai University School of Medicine, Isehara, Japan
| | - Nobuyoshi Sugiyama
- Department of Pediatrics, Tokai University School of Medicine, Isehara, Japan
| | - Yutaka Imai
- Department of Radiology, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
45
|
Wang L, Gao Y, Li G, Shi F, Lin W, Shen D. LATEST: Local AdapTivE and Sequential Training for Tissue Segmentation of Isointense Infant Brain MR Images. MEDICAL COMPUTER VISION AND BAYESIAN AND GRAPHICAL MODELS FOR BIOMEDICAL IMAGING : MICCAI 2016 INTERNATIONAL WORKSHOP, MCV AND BAMBI, ATHENS, GREECE, OCTOBER 21, 2016 : REVISED SELECTED PAPERS 2017; 2017:26-34. [PMID: 29202135 PMCID: PMC5705093 DOI: 10.1007/978-3-319-61188-4_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Accurate segmentation of isointense infant (~6 months of age) brain MRIs is of great importance, however, a very challenging task, due to extremely low tissue contrast caused by ongoing myelination processes. In this work, we propose a novel learning method based on Local AdapTivE and Sequential Training (LATEST) for segmentation. Specifically, random forest technique is employed to train a local classifier (a single decision tree) for each voxel in the common space based on the neighboring training samples from atlases. Then, for each given voxel, all trained nearby individual classifiers (decision trees) are grouped together to form a forest. Moreover, the estimated probabilities are further used as additional source images to train the next set of local classifiers for refining tissue classification. By iteratively training the subsequent classifiers based on the updated tissue probability maps, a sequence of local classifiers can be built for accurate tissue segmentation.
Collapse
Affiliation(s)
- Li Wang
- IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Yaozong Gao
- IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, NC, USA
| | - Gang Li
- IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Feng Shi
- IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Weili Lin
- MRI Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Dinggang Shen
- IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
46
|
Abstract
This review covers computer-assisted analysis of images in the field of medical imaging. Recent advances in machine learning, especially with regard to deep learning, are helping to identify, classify, and quantify patterns in medical images. At the core of these advances is the ability to exploit hierarchical feature representations learned solely from data, instead of features designed by hand according to domain-specific knowledge. Deep learning is rapidly becoming the state of the art, leading to enhanced performance in various medical applications. We introduce the fundamentals of deep learning methods and review their successes in image registration, detection of anatomical and cellular structures, tissue segmentation, computer-aided disease diagnosis and prognosis, and so on. We conclude by discussing research issues and suggesting future directions for further improvement.
Collapse
Affiliation(s)
- Dinggang Shen
- Department of Radiology, University of North Carolina, Chapel Hill, North Carolina 27599;
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea;
| | - Guorong Wu
- Department of Radiology, University of North Carolina, Chapel Hill, North Carolina 27599;
| | - Heung-Il Suk
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea;
| |
Collapse
|
47
|
Ou Y, Zöllei L, Retzepi K, Castro V, Bates SV, Pieper S, Andriole KP, Murphy SN, Gollub RL, Grant PE. Using clinically acquired MRI to construct age-specific ADC atlases: Quantifying spatiotemporal ADC changes from birth to 6-year old. Hum Brain Mapp 2017; 38:3052-3068. [PMID: 28371107 PMCID: PMC5426959 DOI: 10.1002/hbm.23573] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 12/19/2022] Open
Abstract
Diffusion imaging is critical for detecting acute brain injury. However, normal apparent diffusion coefficient (ADC) maps change rapidly in early childhood, making abnormality detection difficult. In this article, we explored clinical PACS and electronic healthcare records (EHR) to create age-specific ADC atlases for clinical radiology reference. Using the EHR and three rounds of multiexpert reviews, we found ADC maps from 201 children 0-6 years of age scanned between 2006 and 2013 who had brain MRIs with no reported abnormalities and normal clinical evaluations 2+ years later. These images were grouped in 10 age bins, densely sampling the first 1 year of life (5 bins, including neonates and 4 quarters) and representing the 1-6 year age range (an age bin per year). Unbiased group-wise registration was used to construct ADC atlases for 10 age bins. We used the atlases to quantify (a) cross-sectional normative ADC variations; (b) spatiotemporal heterogeneous ADC changes; and (c) spatiotemporal heterogeneous volumetric changes. The quantified age-specific whole-brain and region-wise ADC values were compared to those from age-matched individual subjects in our study and in multiple existing independent studies. The significance of this study is that we have shown that clinically acquired images can be used to construct normative age-specific atlases. These first of their kind age-specific normative ADC atlases quantitatively characterize changes of myelination-related water diffusion in the first 6 years of life. The quantified voxel-wise spatiotemporal ADC variations provide standard references to assist radiologists toward more objective interpretation of abnormalities in clinical images. Our atlases are available at https://www.nitrc.org/projects/mgh_adcatlases. Hum Brain Mapp 38:3052-3068, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yangming Ou
- Psychiatric Neuroimaging, Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolCharlestownMassachusetts
- Laboratory for Computational NeuroimagingAthinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownMassachusetts
- Quantitative Tumor Imaging at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownMassachusetts
- Fetal‐Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusetts
| | - Lilla Zöllei
- Laboratory for Computational NeuroimagingAthinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownMassachusetts
| | - Kallirroi Retzepi
- Psychiatric Neuroimaging, Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolCharlestownMassachusetts
- Laboratory for Computational NeuroimagingAthinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownMassachusetts
| | - Victor Castro
- Research Computing, Partners Healthcare, 1 Constitution CenterCharlestownMassachusetts
- Laboratory of Computer ScienceMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusetts
| | - Sara V. Bates
- Division of Newborn Medicine, Department of PediatricsMassachusetts General Hospital for Children, Harvard Medical SchoolBostonMassachusetts
| | | | - Katherine P. Andriole
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusetts
| | - Shawn N. Murphy
- Research Computing, Partners Healthcare, 1 Constitution CenterCharlestownMassachusetts
- Laboratory of Computer ScienceMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusetts
| | - Randy L. Gollub
- Psychiatric Neuroimaging, Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolCharlestownMassachusetts
- Laboratory for Computational NeuroimagingAthinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestownMassachusetts
| | - Patricia Ellen Grant
- Fetal‐Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical SchoolBostonMassachusetts
| |
Collapse
|
48
|
Benkarim OM, Sanroma G, Zimmer VA, Muñoz-Moreno E, Hahner N, Eixarch E, Camara O, González Ballester MA, Piella G. Toward the automatic quantification of in utero brain development in 3D structural MRI: A review. Hum Brain Mapp 2017; 38:2772-2787. [PMID: 28195417 DOI: 10.1002/hbm.23536] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/13/2017] [Accepted: 01/25/2017] [Indexed: 11/08/2022] Open
Abstract
Investigating the human brain in utero is important for researchers and clinicians seeking to understand early neurodevelopmental processes. With the advent of fast magnetic resonance imaging (MRI) techniques and the development of motion correction algorithms to obtain high-quality 3D images of the fetal brain, it is now possible to gain more insight into the ongoing maturational processes in the brain. In this article, we present a review of the major building blocks of the pipeline toward performing quantitative analysis of in vivo MRI of the developing brain and its potential applications in clinical settings. The review focuses on T1- and T2-weighted modalities, and covers state of the art methodologies involved in each step of the pipeline, in particular, 3D volume reconstruction, spatio-temporal modeling of the developing brain, segmentation, quantification techniques, and clinical applications. Hum Brain Mapp 38:2772-2787, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | | | - Emma Muñoz-Moreno
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), IDIBAPS, University of Barcelona, Spain.,Experimental 7T MRI Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Nadine Hahner
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), IDIBAPS, University of Barcelona, Spain
| | - Elisenda Eixarch
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), IDIBAPS, University of Barcelona, Spain
| | - Oscar Camara
- DTIC, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Gemma Piella
- DTIC, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
49
|
Serag A, Wilkinson AG, Telford EJ, Pataky R, Sparrow SA, Anblagan D, Macnaught G, Semple SI, Boardman JP. SEGMA: An Automatic SEGMentation Approach for Human Brain MRI Using Sliding Window and Random Forests. Front Neuroinform 2017; 11:2. [PMID: 28163680 PMCID: PMC5247463 DOI: 10.3389/fninf.2017.00002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/05/2017] [Indexed: 11/29/2022] Open
Abstract
Quantitative volumes from brain magnetic resonance imaging (MRI) acquired across the life course may be useful for investigating long term effects of risk and resilience factors for brain development and healthy aging, and for understanding early life determinants of adult brain structure. Therefore, there is an increasing need for automated segmentation tools that can be applied to images acquired at different life stages. We developed an automatic segmentation method for human brain MRI, where a sliding window approach and a multi-class random forest classifier were applied to high-dimensional feature vectors for accurate segmentation. The method performed well on brain MRI data acquired from 179 individuals, analyzed in three age groups: newborns (38–42 weeks gestational age), children and adolescents (4–17 years) and adults (35–71 years). As the method can learn from partially labeled datasets, it can be used to segment large-scale datasets efficiently. It could also be applied to different populations and imaging modalities across the life course.
Collapse
Affiliation(s)
- Ahmed Serag
- MRC Centre for Reproductive Health, University of Edinburgh Edinburgh, UK
| | | | - Emma J Telford
- MRC Centre for Reproductive Health, University of Edinburgh Edinburgh, UK
| | - Rozalia Pataky
- MRC Centre for Reproductive Health, University of Edinburgh Edinburgh, UK
| | - Sarah A Sparrow
- MRC Centre for Reproductive Health, University of Edinburgh Edinburgh, UK
| | - Devasuda Anblagan
- MRC Centre for Reproductive Health, University of EdinburghEdinburgh, UK; Centre for Clinical Brain Sciences, University of EdinburghEdinburgh, UK
| | - Gillian Macnaught
- Clinical Research Imaging Centre, University of Edinburgh Edinburgh, UK
| | - Scott I Semple
- Clinical Research Imaging Centre, University of EdinburghEdinburgh, UK; Centre for Cardiovascular Science, University of EdinburghEdinburgh, UK
| | - James P Boardman
- MRC Centre for Reproductive Health, University of EdinburghEdinburgh, UK; Centre for Clinical Brain Sciences, University of EdinburghEdinburgh, UK
| |
Collapse
|
50
|
Gentillon H, Stefańczyk L, Strzelecki M, Respondek-Liberska M. Texture analysis of the developing human brain using customization of a knowledge-based system. F1000Res 2017. [DOI: 10.12688/f1000research.10401.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Pattern recognition software originally designed for geospatial and other technical applications could be trained by physicians and used as texture-analysis tools for evidence-based practice, in order to improve diagnostic imaging examination during pregnancy.Methods: Various machine-learning techniques and customized datasets were assessed for training of an integrable knowledge-based system (KBS), to determine a hypothetical methodology for texture classification of closely-related anatomical structures in fetal brain magnetic resonance (MR) images. Samples were manually categorized according to the magnetic field of the MRI scanner (i.e. 1.5-tesla (1.5T), 3-tesla (3T)), rotational planes (i.e. coronal, sagittal and axial), and signal weighting (i.e. spin-lattice, spin-spin, relaxation, proton density). In the machine-learning sessions, the operator manually selected relevant regions of interest (ROI) in 1.5/3T MR images. Semi-automatic procedures in MaZda/B11 were performed to determine optimal parameter sets for ROI classification. Four classes were defined: ventricles, thalamus, grey matter, and white matter. Various textures analysis methods were tested. The KBS performed automatic data pre-processing and semi-automatic classification of ROIs.Results: After testing 3456 ROIs, statistical binary classification revealed that combination of reduction techniques with linear discriminant algorithms (LDA) or nonlinear discriminant algorithms (NDA) yielded the best scoring in terms of sensitivity (both 100%, 95% CI: 99.79-100), specificity (both 100%, 95% CI: 99.79-100) and Fisher coefficient (≈E+4, ≈E+5, respectively). Conclusions: LDA and NDA in MaZda can be useful data mining tools for screening a population of interest subjected to a clinical test.
Collapse
|