1
|
Xia Y, Shi Y. Diffusion MRI harmonization via personalized template mapping. Hum Brain Mapp 2024; 45:e26661. [PMID: 38520363 PMCID: PMC10960558 DOI: 10.1002/hbm.26661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/17/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
One fundamental challenge in diffusion magnetic resonance imaging (dMRI) harmonization is to disentangle the contributions of scanner-related effects from the variable brain anatomy for the observed imaging signals. Conventional harmonization methods rely on establishing an atlas space to resolve anatomical variability and generate a unified inter-site mapping function. However, this approach is limited in accounting for the misalignment of neuroanatomy that still widely persists even after registration, especially in regions close to cortical boundaries. To overcome this challenge, we propose a personalized framework in this paper to more effectively address the confounding from the misalignment of neuroanatomy in dMRI harmonization. Instead of using a common template representing site-effects for all subjects, the main novelty of our method is the adaptive computation of personalized templates for both source and target scanning sites to estimate the inter-site mapping function. We integrate our method with the rotation invariant spherical harmonics (RISH) features to achieve the harmonization of dMRI signals between sites. In our experiments, the proposed approach is applied to harmonize the dMRI data acquired from two scanning platforms: Siemens Prisma and GE MR750 from the Adolescent Brain Cognitive Development dataset and compared with a state-of-the-art method based on RISH features. Our results indicate that the proposed harmonization framework achieves superior performance not only in reducing inter-site variations due to scanner differences but also in preserving sex-related biological variability in original cohorts. Moreover, we assess the impact of harmonization on the estimation of fiber orientation distributions and show the robustness of the personalized harmonization procedure in preserving the fiber orientation of original dMRI signals.
Collapse
Affiliation(s)
- Yihao Xia
- USC Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Electrical and Computer Engineering, Viterbi School of EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Yonggang Shi
- USC Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Electrical and Computer Engineering, Viterbi School of EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
2
|
Kanazawa Y, Ikemitsu N, Kinjo Y, Harada M, Hayashi H, Taniguchi Y, Ito K, Bito Y, Matsumoto Y, Haga A. Differences of white matter structure for diffusion kurtosis imaging using voxel-based morphometry and connectivity analysis. BJR Open 2024; 6:tzad003. [PMID: 38352183 PMCID: PMC10860519 DOI: 10.1093/bjro/tzad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/13/2023] [Accepted: 10/17/2023] [Indexed: 02/16/2024] Open
Abstract
Objectives In a clinical study, diffusion kurtosis imaging (DKI) has been used to visualize and distinguish white matter (WM) structures' details. The purpose of our study is to evaluate and compare the diffusion tensor imaging (DTI) and DKI parameter values to obtain WM structure differences of healthy subjects. Methods Thirteen healthy volunteers (mean age, 25.2 years) were examined in this study. On a 3-T MRI system, diffusion dataset for DKI was acquired using an echo-planner imaging sequence, and T1-weghted (T1w) images were acquired. Imaging analysis was performed using Functional MRI of the brain Software Library (FSL). First, registration analysis was performed using the T1w of each subject to MNI152. Second, DTI (eg, fractional anisotropy [FA] and each diffusivity) and DKI (eg, mean kurtosis [MK], radial kurtosis [RK], and axial kurtosis [AK]) datasets were applied to above computed spline coefficients and affine matrices. Each DTI and DKI parameter value for WM areas was compared. Finally, tract-based spatial statistics (TBSS) analysis was performed using each parameter. Results The relationship between FA and kurtosis parameters (MK, RK, and AK) for WM areas had a strong positive correlation (FA-MK, R2 = 0.93; FA-RK, R2 = 0.89) and a strong negative correlation (FA-AK, R2 = 0.92). When comparing a TBSS connection, we found that this could be observed more clearly in MK than in RK and FA. Conclusions WM analysis with DKI enable us to obtain more detailed information for connectivity between nerve structures. Advances in knowledge Quantitative indices of neurological diseases were determined using segmenting WM regions using voxel-based morphometry processing of DKI images.
Collapse
Affiliation(s)
- Yuki Kanazawa
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Natsuki Ikemitsu
- Division of Radiological Technology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Yuki Kinjo
- Department of Radiology, Higashihiroshima Medical Center, National Hospital Organization, Hiroshima 739-0041, Japan
| | - Masafumi Harada
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hiroaki Hayashi
- College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa 920-0942, Japan
| | - Yo Taniguchi
- FUJIFILM Healthcare Corporation, Tokyo 107-0052, Japan
| | - Kosuke Ito
- FUJIFILM Healthcare Corporation, Tokyo 107-0052, Japan
| | | | - Yuki Matsumoto
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Akihiro Haga
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
3
|
Fu L, Guan LN, Zuo H. Long period changes of hippocampal diffusion kurtosis imaging and its correlation with cognitive dysfunction after incomplete cerebral ischemia-reperfusion in rats. Exp Brain Res 2023; 241:2807-2816. [PMID: 37878109 DOI: 10.1007/s00221-023-06723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023]
Abstract
This study aims to summarize the changes of functional diffusion kurtosis imaging (DKI) parameters in the bilateral hippocampal CA1 region of the hemorrhagic shock reperfusion (HSR) model of rats and their correlation with cognitive dysfunction. Adult male Sprague-Dawley rats (9-10 weeks of age, weighing 350-400 g) were randomized into the HSR group (n = 30) and the sham-operated group (Sham) (n = 30). Rats in the HSR group and the Sham group were subdivided into five time points (1, 2, 4, 8, and 12 weeks) for examination. Diffusion kurtosis imaging (DKI) was performed. Cognitive dysfunction was analyzed by the Morris Water Maze. The correlation between the DKI parameters and cognitive dysfunction was analyzed by the Spearman correlation. In the HSR group, the values of axial kurtosis (Ka), radial kurtosis (Kr), and mean kurtosis (MK) in the bilateral hippocampal CA1 of rats at 1, 2, 4, 8 and 12 weeks after the surgery were significantly higher. The rats in the HSR group had significantly longer escape latency than in the Sham group. The rats in the HSR group had significantly shorter time and shorter distance in target quadrant than those in the Sham group. The escape latency had positive correlation with MK, Ka, and Kr. The distance and the time in target quadrant had negative correlation with MK, Ka, and Kr. The parameters get from the DKI could accurately evaluate the abnormal blood perfusion and microstructure changes in hippocampal CA1 area of the incomplete cerebral ischemia reperfusion rats induced by HSR. MK, Ka, and Kr values could reflect the decreased learning and memory ability in HSR rat model.
Collapse
Affiliation(s)
- Lan Fu
- Department of Computed Tomography Diagnosis, Cangzhou Central Hospital, No. 16 Xinhua Western Road, Yunhe District, Cangzhou, 061000, Hebei, China.
| | - Lin-Na Guan
- Department of Computed Tomography Diagnosis, Cangzhou Central Hospital, No. 16 Xinhua Western Road, Yunhe District, Cangzhou, 061000, Hebei, China
| | - Hongye Zuo
- Department of Computed Tomography Diagnosis, Cangzhou Central Hospital, No. 16 Xinhua Western Road, Yunhe District, Cangzhou, 061000, Hebei, China
| |
Collapse
|
4
|
Shao Y, Li L, Peng W, Lu W, Wang Y. Age-related changes in the healthy adult visual pathway: evidence from diffusion tensor imaging with fixel-based analysis. RADIOLOGIE (HEIDELBERG, GERMANY) 2023; 63:73-81. [PMID: 37603069 DOI: 10.1007/s00117-023-01192-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/06/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND AND PURPOSE Fixel-based analysis (FBA) is a new method that overcomes the technical limitations of diffusion tensor imaging (DTI) by enabling the characterization of multiple fiber populations within a voxel, and provides biologically meaningful indicators. This study aimed to explore age-related changes in the visual pathway in healthy adults and to observe differences in imaging quality between data collected using different b‑values. METHODS In this prospective cross-sectional study, brain DTI scans which were collected with more than six uniformly distributed gradient directions and higher b‑values (up to 2000 s/mm2) than traditional DTI were performed in 72 healthy adults across the adult lifespan (20-79 years). After image preprocessing, FBA was used to process the dataset. At the same time, conventional DTI metrics were also calculated. RESULTS Pearson's correlation analysis showed that DTI parameters of white matter (optic nerve, optic chiasma, optic tract, and optic radiation) in the optic pathway were correlated with age. FA values were negatively correlated with age, while MD/AD/RD showed a positive correlation (P < 0.05). FBA showed that the index including FD/FC/FDC tended to decline with age (P < 0.05). Linear regression analysis showed a linear relationship between DTI metrics of the dataset collected by b‑values of 1000 and 2000 s/mm2 (P < 0.05). CONCLUSION FBA provides a useful method to assess age-related changes in the visual pathway, which is sensitive to diffusion. In addition, the b‑value influences DTI parameters and signal-to-noise ratio of the image.
Collapse
Affiliation(s)
- Yan Shao
- The Second Affiliated Hospital of Shandong First Medical University, 271000, Taian, Shandong, China
| | - Li Li
- The Second Affiliated Hospital of Shandong First Medical University, 271000, Taian, Shandong, China
| | - Wei Peng
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430000, Wuhan, Hubei, China
| | - Weizhao Lu
- The Second Affiliated Hospital of Shandong First Medical University, 271000, Taian, Shandong, China
| | - Yi Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, 271000, Taian, Shandong, China.
| |
Collapse
|
5
|
Martinie O, Karan P, Traverse E, Mercier C, Descoteaux M, Robert MT. The Challenge of Diffusion Magnetic Resonance Imaging in Cerebral Palsy: A Proposed Method to Identify White Matter Pathways. Brain Sci 2023; 13:1386. [PMID: 37891755 PMCID: PMC10605121 DOI: 10.3390/brainsci13101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Cerebral palsy (CP), a neuromotor disorder characterized by prenatal brain lesions, leads to white matter alterations and sensorimotor deficits. However, the CP-related diffusion neuroimaging literature lacks rigorous and consensual methodology for preprocessing and analyzing data due to methodological challenges caused by the lesion extent. Advanced methods are available to reconstruct diffusion signals and can update current advances in CP. Our study demonstrates the feasibility of analyzing diffusion CP data using a standardized and open-source pipeline. Eight children with CP (8-12 years old) underwent a single diffusion magnetic resonance imaging (MRI) session on a 3T scanner (Achieva 3.0T (TX), Philips Healthcare Medical Systems, Best, The Netherlands). Exclusion criteria were contraindication to MRI and claustrophobia. Anatomical and diffusion images were acquired. Data were corrected and analyzed using Tractoflow 2.3.0 version, an open-source and robust tool. The tracts were extracted with customized procedures based on existing atlases and freely accessed standardized libraries (ANTs, Scilpy). DTI, CSD, and NODDI metrics were computed for each tract. Despite lesion heterogeneity and size, we successfully reconstructed major pathways, except for a participant with a larger lesion. Our results highlight the feasibility of identifying and quantifying subtle white matter pathways. Ultimately, this will increase our understanding of the clinical symptoms to provide precision medicine and optimize rehabilitation.
Collapse
Affiliation(s)
- Ophélie Martinie
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC G1M 2S8, Canada; (O.M.); (E.T.); (C.M.)
- Department of Rehabilitation, Université Laval, Québec, QC G1V 0A6, Canada
| | - Philippe Karan
- Department of Computer Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (P.K.); (M.D.)
| | - Elodie Traverse
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC G1M 2S8, Canada; (O.M.); (E.T.); (C.M.)
- Department of Rehabilitation, Université Laval, Québec, QC G1V 0A6, Canada
| | - Catherine Mercier
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC G1M 2S8, Canada; (O.M.); (E.T.); (C.M.)
- Department of Rehabilitation, Université Laval, Québec, QC G1V 0A6, Canada
| | - Maxime Descoteaux
- Department of Computer Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (P.K.); (M.D.)
| | - Maxime T. Robert
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC G1M 2S8, Canada; (O.M.); (E.T.); (C.M.)
- Department of Rehabilitation, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
6
|
Peng SL, Huang SM, Chu LWL, Chiu SC. Anesthetic modulation of water diffusion: Insights from a diffusion tensor imaging study. Med Eng Phys 2023; 118:104015. [PMID: 37536836 DOI: 10.1016/j.medengphy.2023.104015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/15/2023] [Accepted: 06/24/2023] [Indexed: 08/05/2023]
Abstract
Diffusion tensor imaging (DTI) in animal models are essential for translational neuroscience studies. A critical step in animal studies is the use of anesthetics. Understanding the influence of specific anesthesia regimes on DTI-derived parameters, such as fractional anisotropy (FA) and mean diffusivity (MD), is imperative when comparing results between animal studies using different anesthetics. Here, the quantification of FA and MD under different anesthetic regimes, alpha-chloralose and isoflurane, is discussed. We also used a range of b-values to determine whether the anesthetic effect was b-value dependent. The first group of rats (n = 6) was anesthetized with alpha-chloralose (80 mg/kg), whereas the second group of rats (n = 7) was anesthetized with isoflurane (1.5%). DTI was performed with b-values of 500, 1500, and 1500s/mm2, and the MD and FA were assessed individually. Anesthesia-specific differences in MD were apparent, as manifested by the higher estimated MD under isoflurane anesthesia than that under alpha-chloralose anesthesia (P < 0.001). MD values increased with decreasing b-value in all regions studied, and the degree of increase when rats were anesthetized with isoflurane was more pronounced than that associated with alpha-chloralose (P < 0.05). FA quantitation was also influenced by anesthesia regimens to varying extents, depending on the brain regions and b-values. In conclusion, both scanning parameters and the anesthesia regimens significantly impacted the quantification of DTI indices.
Collapse
Affiliation(s)
- Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan; Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan.
| | - Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Lok Wang Lauren Chu
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Shao-Chieh Chiu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
7
|
Wu CY, Huang SM, Lin YH, Hsieh HH, Chu LWL, Yang HC, Chiu SC, Peng SL. Reproducibility of diffusion tensor imaging-derived parameters: implications for the streptozotocin-induced type 1 diabetic rats. MAGMA (NEW YORK, N.Y.) 2023; 36:631-639. [PMID: 36378408 DOI: 10.1007/s10334-022-01048-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/13/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Diffusion tensor imaging (DTI) is a useful approach for studying neuronal integrity in animals. However, the test-retest reproducibility of DTI techniques in animals has not been discussed. Therefore, the first part of this work was to systematically elucidate the reliability of DTI-derived parameters in an animal study. Subsequently, we applied the DTI approach to an animal model of diabetes in a longitudinal manner. MATERIALS AND METHODS In Study 1, nine rats underwent two DTI sessions using the same scanner and protocols, with a gap of 4 weeks. The reliability of the DTI-derived parameters was evaluated in terms of sessions and raters. In Study 2, nine rats received a single intraperitoneal injection of 70 mg/kg streptozotocin (STZ) to develop diabetes. Longitudinal DTI scans were used to assess brain alterations before and 4 weeks after STZ administration. RESULTS In the test-retest evaluation, the inter-scan coefficient of variation (CoV) ranged from 3.04 to 3.73% and 2.12-2.59% for fractional anisotropy (FA) and mean diffusivity (MD), respectively, in different brain regions, suggesting excellent reproducibility. Moreover, rater-dependence had minimal effects on FA and MD quantification, with all inter-rater CoV values less than 4%. Following the onset of diabetes, FA in striatum and cortex were noted to be significantly lower relative to the period where they had not developed diabetes (both P < 0.05). However, when compared to the control group, a significant change in FA caused by diabetes was detected only in the striatum (P < 0.05), but not in the cortex. CONCLUSION These results demonstrate good inter-rater and inter-scan reliability of DTI in animal studies, and the longitudinal setting has a beneficial effect on detecting small changes in the brain due to diseases.
Collapse
Affiliation(s)
- Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei, Taiwan
| | - Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Hsin Lin
- Department of Pharmacy, Taipei Branch, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hsin-Hua Hsieh
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei Branch, Taipei, Taiwan
| | - Lok Wang Lauren Chu
- Department of Biomedical Imaging and Radiological Science, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Hui-Chieh Yang
- Department of Biomedical Imaging and Radiological Science, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Shao-Chieh Chiu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.
- Neuroscience and Brain Disease Center, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.
| |
Collapse
|
8
|
Matyi MA, Spielberg JM. Negative emotion differentiation and white matter microstructure. J Affect Disord 2023; 332:238-246. [PMID: 37059190 DOI: 10.1016/j.jad.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND Deficits in the differentiation of negative emotions - the ability to specifically identify one's negative emotions - are associated with poorer mental health outcomes. However, the processes that lead to individual differences in negative emotion differentiation are not well understood, hampering our understanding of why this process is related to poor mental health outcomes. Given that disruptions in some affective processes are associated with white matter microstructure, identifying the circuitry associated with different affective processes can inform our understanding of how disturbances in these networks may lead to psychopathology. Thus, examination of how white matter microstructure relates to individual differences in negative emotion differentiation (NED) may provide insights into (i) its component processes and (ii) its relationship to brain structure. METHOD The relationship between white matter microstructure and NED was examined. RESULTS NED was related to white matter microstructure in right anterior thalamic radiation and inferior fronto-occipital fasciculus and left peri-genual cingulum. LIMITATIONS Although participants self-reported psychiatric diagnoses and previous psychological treatment, psychopathology was not directly targeted, and thus, the extent to which microstructure related to NED could be examined in relation to maladaptive outcomes is limited. CONCLUSIONS Results indicate that NED is related to white matter microstructure and suggest that pathways subserving processes that facilitate memory, semantics, and affective experience are important for NED. Our findings provide insights into the mechanisms by which individual differences in NED arise, suggesting intervention targets that may disrupt the relationship between poor differentiation and psychopathology.
Collapse
Affiliation(s)
- Melanie A Matyi
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Jeffrey M Spielberg
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
9
|
Ouyang Z, Zhang N, Li M, Hong T, Ouyang T, Meng W. A meta-analysis of the role of diffusion tensor imaging in cervical spinal cord compression. J Neuroimaging 2023. [PMID: 36914383 DOI: 10.1111/jon.13093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND AND PURPOSE At present, the role of diffusion tensor imaging (DTI) remains controversial. This study aimed to confirm the role of DTI by comparing the differences in fractional anisotropy (FA) values between patients with cervical spinal cord compression (CSCC) and healthy individuals. METHODS A systematic and comprehensive literature search was conducted using the Web of Science, Embase, PubMed, and Cochrane Library databases to compare the mean FA values of patients with CSCC and healthy controls across all compression levels in the cervical spinal cord. Essential data from the literature, such as demographic information, imaging parameters, and DTI analysis method, were extracted. Fixed- or random-effect models based on I2 heterogeneity were applied to the pooled and subgroup analyses. RESULTS Ten studies containing 445 patients and 197 healthy volunteers were eligible. The pooled results demonstrated a decrease in mean FA values across all compression levels in the experiment group compared to those in healthy controls (standardized mean difference = -1.54; 95% confidence interval = [-1.95, -1.14]; p < .001). Meta-regression revealed that the scanner field strength and DTI analysis method had a significant effect on heterogeneity. CONCLUSIONS Our results show that FA values in the spinal cord decline in patients with CSCC, thus confirming the crucial role of DTI in CSCC.
Collapse
Affiliation(s)
- Ziqiang Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of the First Clinical Medical College, Nanchang University, Jiangxi Province, China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Yao J, Tendler BC, Zhou Z, Lei H, Zhang L, Bao A, Zhong J, Miller KL, He H. Both noise-floor and tissue compartment difference in diffusivity contribute to FA dependence on b-value in diffusion MRI. Hum Brain Mapp 2023; 44:1371-1388. [PMID: 36264194 PMCID: PMC9921221 DOI: 10.1002/hbm.26121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/27/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Noninvasive diffusion magnetic resonance imaging (dMRI) has been widely employed in both clinical and research settings to investigate brain tissue microstructure. Despite the evidence that dMRI-derived fractional anisotropy (FA) correlates with white matter properties, the metric is not specific. Recent studies have reported that FA is dependent on the b-value, and its origin has primarily been attributed to either the influence of microstructure or the noise-floor effect. A systematic investigation into the inter-relationship of these two effects is however still lacking. This study aims to quantify contributions of the reported differences in intra- and extra-neurite diffusivity to the observed changes in FA, in addition to the noise in measurements. We used in-vivo and post-mortem human brain imaging, as well as numerical simulations and histological validation, for this purpose. Our investigations reveal that the percentage difference of FA between b-values (pdFA) has significant positive associations with neurite density index (NDI), which is derived from in-vivo neurite orientation dispersion and density imaging (NODDI), or Bielschowsky's silver impregnation (BIEL) staining sections of fixed post-mortem human brain samples. Furthermore, such an association is found to be varied with Signal-to-Noise Ratio (SNR) level, indicating a nonlinear interaction effect between tissue microstructure and noise. Finally, a multicompartment model simulation revealed that these findings can be driven by differing diffusivities of intra- and extra-neurite compartments in tissue, with the noise-floor further amplifying the effect. In conclusion, both the differences in intra- and extra-neurite diffusivity and noise-floor effects significantly contribute to the FA difference associated with the b-value.
Collapse
Affiliation(s)
- Junye Yao
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Benjamin C Tendler
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Zihan Zhou
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Lei Zhang
- Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, Zhejiang University, Hangzhou, China.,National Human Brain Bank for Health and Disease, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Aimin Bao
- Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, Zhejiang University, Hangzhou, China.,National Human Brain Bank for Health and Disease, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Jianhui Zhong
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Imaging Sciences, University of Rochester, Rochester, New York, USA
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Zanon Zotin MC, Schoemaker D, Raposo N, Perosa V, Bretzner M, Sveikata L, Li Q, van Veluw SJ, Horn MJ, Etherton MR, Charidimou A, Gurol ME, Greenberg SM, Duering M, dos Santos AC, Pontes-Neto OM, Viswanathan A. Peak width of skeletonized mean diffusivity in cerebral amyloid angiopathy: Spatial signature, cognitive, and neuroimaging associations. Front Neurosci 2022; 16:1051038. [PMID: 36440281 PMCID: PMC9693722 DOI: 10.3389/fnins.2022.1051038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Peak width of skeletonized mean diffusivity (PSMD) is a promising diffusion tensor imaging (DTI) marker that shows consistent and strong cognitive associations in the context of different cerebral small vessel diseases (cSVD). Purpose Investigate whether PSMD (1) is higher in patients with Cerebral Amyloid Angiopathy (CAA) than those with arteriolosclerosis; (2) can capture the anteroposterior distribution of CAA-related abnormalities; (3) shows similar neuroimaging and cognitive associations in comparison to other classical DTI markers, such as average mean diffusivity (MD) and fractional anisotropy (FA). Materials and methods We analyzed cross-sectional neuroimaging and neuropsychological data from 90 non-demented memory-clinic subjects from a single center. Based on MRI findings, we classified them into probable-CAA (those that fulfilled the modified Boston criteria), subjects with MRI markers of cSVD not attributable to CAA (presumed arteriolosclerosis; cSVD), and subjects without evidence of cSVD on MRI (non-cSVD). We compared total and lobe-specific (frontal and occipital) DTI metrics values across the groups. We used linear regression models to investigate how PSMD, MD, and FA correlate with conventional neuroimaging markers of cSVD and cognitive scores in CAA. Results PSMD was comparable in probable-CAA (median 4.06 × 10–4 mm2/s) and cSVD (4.07 × 10–4 mm2/s) patients, but higher than in non-cSVD (3.30 × 10–4 mm2/s; p < 0.001) subjects. Occipital-frontal PSMD gradients were higher in probable-CAA patients, and we observed a significant interaction between diagnosis and region on PSMD values [F(2, 87) = 3.887, p = 0.024]. PSMD was mainly associated with white matter hyperintensity volume, whereas MD and FA were also associated with other markers, especially with the burden of perivascular spaces. PSMD correlated with worse executive function (β = −0.581, p < 0.001) and processing speed (β = −0.463, p = 0.003), explaining more variance than other MRI markers. MD and FA were not associated with performance in any cognitive domain. Conclusion PSMD is a promising biomarker of cognitive impairment in CAA that outperforms other conventional and DTI-based neuroimaging markers. Although global PSMD is similarly increased in different forms of cSVD, PSMD’s spatial variations could potentially provide insights into the predominant type of underlying microvascular pathology.
Collapse
Affiliation(s)
- Maria Clara Zanon Zotin
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Imaging Sciences and Medical Physics, Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- *Correspondence: Maria Clara Zanon Zotin, ,
| | - Dorothee Schoemaker
- Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Nicolas Raposo
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | | | - Martin Bretzner
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog (JPARC) - Lille Neurosciences & Cognition, Lille, France
| | - Lukas Sveikata
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
- Institute of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Qi Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Susanne J. van Veluw
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Mitchell J. Horn
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Mark R. Etherton
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Andreas Charidimou
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston University Medical Center, Boston, MA, United States
| | - M. Edip Gurol
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Steven M. Greenberg
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Marco Duering
- Department of Biomedical Engineering, Medical Imaging Analysis Center (MIAC), University of Basel, Basel, Switzerland
| | - Antonio Carlos dos Santos
- Center for Imaging Sciences and Medical Physics, Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Octavio M. Pontes-Neto
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Anand Viswanathan
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
van Vliet EA, Immonen R, Prager O, Friedman A, Bankstahl JP, Wright DK, O'Brien TJ, Potschka H, Gröhn O, Harris NG. A companion to the preclinical common data elements and case report forms for in vivo rodent neuroimaging: A report of the TASK3-WG3 Neuroimaging Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2022. [PMID: 35962745 DOI: 10.1002/epi4.12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/01/2022] [Indexed: 11/10/2022] Open
Abstract
The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force established the TASK3 working groups to create common data elements (CDEs) for various aspects of preclinical epilepsy research studies, which could help improve the standardization of experimental designs. In this article, we discuss CDEs for neuroimaging data that are collected in rodent models of epilepsy, with a focus on adult rats and mice. We provide detailed CDE tables and case report forms (CRFs), and with this companion manuscript, we discuss the methodologies for several imaging modalities and the parameters that can be collected.
Collapse
Affiliation(s)
- Erwin A van Vliet
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Riikka Immonen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Medical Neuroscience and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- The Royal Melbourne Hospital, The University of Melbourne, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Olli Gröhn
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Neil G Harris
- Department of Neurosurgery UCLA, UCLA Brain Injury Research Center, Los Angeles, California, USA
- Intellectual and Developmental Disabilities Research Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
13
|
High B-value diffusion tensor imaging for early detection of hippocampal microstructural alteration in a mouse model of multiple sclerosis. Sci Rep 2022; 12:12008. [PMID: 35835801 PMCID: PMC9283448 DOI: 10.1038/s41598-022-15511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
Several studies have highlighted the value of diffusion tensor imaging (DTI) with strong diffusion weighting to reveal white matter microstructural lesions, but data in gray matter (GM) remains scarce. Herein, the effects of b-values combined with different numbers of diffusion-encoding directions (NDIRs) on DTI metrics to capture the normal hippocampal microstructure and its early alterations were investigated in a mouse model of multiple sclerosis (experimental autoimmune encephalomyelitis [EAE]). Two initial DTI datasets (B2700-43Dir acquired with b = 2700 s.mm−2 and NDIR = 43; B1000-22Dir acquired with b = 1000 s.mm−2 and NDIR = 22) were collected from 18 normal and 18 EAE mice at 4.7 T. Three additional datasets (B2700-22Dir, B2700-12Dir and B1000-12Dir) were extracted from the initial datasets. In healthy mice, we found a significant influence of b-values and NDIR on all DTI metrics. Confronting unsupervised hippocampal layers classification to the true anatomical classification highlighted the remarkable discrimination of the molecular layer with B2700-43Dir compared with the other datasets. Only DTI from the B2700 datasets captured the dendritic loss occurring in the molecular layer of EAE mice. Our findings stress the needs for both high b-values and sufficient NDIR to achieve a GM DTI with more biologically meaningful correlations, though DTI-metrics should be interpreted with caution in these settings.
Collapse
|
14
|
Shams B, Wang Z, Roine T, Aydogan DB, Vajkoczy P, Lippert C, Picht T, Fekonja LS. Machine learning-based prediction of motor status in glioma patients using diffusion MRI metrics along the corticospinal tract. Brain Commun 2022; 4:fcac141. [PMID: 35694146 PMCID: PMC9175193 DOI: 10.1093/braincomms/fcac141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/01/2022] [Accepted: 05/24/2022] [Indexed: 12/03/2022] Open
Abstract
Along tract statistics enables white matter characterization using various diffusion MRI metrics. These diffusion models reveal detailed insights into white matter microstructural changes with development, pathology and function. Here, we aim at assessing the clinical utility of diffusion MRI metrics along the corticospinal tract, investigating whether motor glioma patients can be classified with respect to their motor status. We retrospectively included 116 brain tumour patients suffering from either left or right supratentorial, unilateral World Health Organization Grades II, III and IV gliomas with a mean age of 53.51 ± 16.32 years. Around 37% of patients presented with preoperative motor function deficits according to the Medical Research Council scale. At group level comparison, the highest non-overlapping diffusion MRI differences were detected in the superior portion of the tracts’ profiles. Fractional anisotropy and fibre density decrease, apparent diffusion coefficient axial diffusivity and radial diffusivity increase. To predict motor deficits, we developed a method based on a support vector machine using histogram-based features of diffusion MRI tract profiles (e.g. mean, standard deviation, kurtosis and skewness), following a recursive feature elimination method. Our model achieved high performance (74% sensitivity, 75% specificity, 74% overall accuracy and 77% area under the curve). We found that apparent diffusion coefficient, fractional anisotropy and radial diffusivity contributed more than other features to the model. Incorporating the patient demographics and clinical features such as age, tumour World Health Organization grade, tumour location, gender and resting motor threshold did not affect the model’s performance, revealing that these features were not as effective as microstructural measures. These results shed light on the potential patterns of tumour-related microstructural white matter changes in the prediction of functional deficits.
Collapse
Affiliation(s)
- Boshra Shams
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Klinik für Neurochirurgie mit Arbeitsbereich Pädiatrische Neurochirurgie, Campus Charité Mitte , Charitéplatz 1, 10117 Berlin, Germany
- Cluster of Excellence: ‘Matters of Activity. Image Space Material’, Humboldt University Berlin , Berlin, Germany
| | - Ziqian Wang
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Klinik für Neurochirurgie mit Arbeitsbereich Pädiatrische Neurochirurgie, Campus Charité Mitte , Charitéplatz 1, 10117 Berlin, Germany
| | - Timo Roine
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science , Espoo, Finland
- Turku Brain and Mind Center, University of Turku , Turku, Finland
| | - Dogu Baran Aydogan
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science , Espoo, Finland
- Department of Psychiatry, Helsinki University and Helsinki University Hospital , Helsinki, Finland
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland , Kuopio, Finland
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Klinik für Neurochirurgie mit Arbeitsbereich Pädiatrische Neurochirurgie, Campus Charité Mitte , Charitéplatz 1, 10117 Berlin, Germany
| | - Christoph Lippert
- Digital Health - Machine Learning, Hasso Plattner Institute, University of Potsdam , Potsdam, Germany
- Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai , New York, NY, USA
| | - Thomas Picht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Klinik für Neurochirurgie mit Arbeitsbereich Pädiatrische Neurochirurgie, Campus Charité Mitte , Charitéplatz 1, 10117 Berlin, Germany
- Cluster of Excellence: ‘Matters of Activity. Image Space Material’, Humboldt University Berlin , Berlin, Germany
| | - Lucius S. Fekonja
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Klinik für Neurochirurgie mit Arbeitsbereich Pädiatrische Neurochirurgie, Campus Charité Mitte , Charitéplatz 1, 10117 Berlin, Germany
- Cluster of Excellence: ‘Matters of Activity. Image Space Material’, Humboldt University Berlin , Berlin, Germany
| |
Collapse
|
15
|
Mendoza M, Shotbolt M, Faiq MA, Parra C, Chan KC. Advanced Diffusion MRI of the Visual System in Glaucoma: From Experimental Animal Models to Humans. BIOLOGY 2022; 11:454. [PMID: 35336827 PMCID: PMC8945790 DOI: 10.3390/biology11030454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
Abstract
Glaucoma is a group of ophthalmologic conditions characterized by progressive retinal ganglion cell death, optic nerve degeneration, and irreversible vision loss. While intraocular pressure is the only clinically modifiable risk factor, glaucoma may continue to progress at controlled intraocular pressure, indicating other major factors in contributing to the disease mechanisms. Recent studies demonstrated the feasibility of advanced diffusion magnetic resonance imaging (dMRI) in visualizing the microstructural integrity of the visual system, opening new possibilities for non-invasive characterization of glaucomatous brain changes for guiding earlier and targeted intervention besides intraocular pressure lowering. In this review, we discuss dMRI methods currently used in visual system investigations, focusing on the eye, optic nerve, optic tract, subcortical visual brain nuclei, optic radiations, and visual cortex. We evaluate how conventional diffusion tensor imaging, higher-order diffusion kurtosis imaging, and other extended dMRI techniques can assess the neuronal and glial integrity of the visual system in both humans and experimental animal models of glaucoma, among other optic neuropathies or neurodegenerative diseases. We also compare the pros and cons of these methods against other imaging modalities. A growing body of dMRI research indicates that this modality holds promise in characterizing early glaucomatous changes in the visual system, determining the disease severity, and identifying potential neurotherapeutic targets, offering more options to slow glaucoma progression and to reduce the prevalence of this world's leading cause of irreversible but preventable blindness.
Collapse
Affiliation(s)
- Monica Mendoza
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA; (M.M.); (M.S.)
| | - Max Shotbolt
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA; (M.M.); (M.S.)
| | - Muneeb A. Faiq
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA; (M.A.F.); (C.P.)
| | - Carlos Parra
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA; (M.A.F.); (C.P.)
| | - Kevin C. Chan
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA; (M.M.); (M.S.)
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10017, USA; (M.A.F.); (C.P.)
- Department of Radiology, Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY 10016, USA
| |
Collapse
|
16
|
Wilde EA, Hyseni I, Lindsey HM, Faber J, McHenry JM, Bigler ED, Biekman BD, Hollowell LL, McCauley SR, Hunter JV, Ewing-Cobbs L, Aitken ME, MacLeod M, Chu ZD, Noble-Haeusslein LJ, Levin HS. A Preliminary DTI Tractography Study of Developmental Neuroplasticity 5-15 Years After Early Childhood Traumatic Brain Injury. Front Neurol 2022; 12:734055. [PMID: 35002913 PMCID: PMC8732947 DOI: 10.3389/fneur.2021.734055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022] Open
Abstract
Plasticity is often implicated as a reparative mechanism when addressing structural and functional brain development in young children following traumatic brain injury (TBI); however, conventional imaging methods may not capture the complexities of post-trauma development. The present study examined the cingulum bundles and perforant pathways using diffusion tensor imaging (DTI) in 21 children and adolescents (ages 10–18 years) 5–15 years after sustaining early childhood TBI in comparison with 19 demographically-matched typically-developing children. Verbal memory and executive functioning were also evaluated and analyzed in relation to DTI metrics. Beyond the expected direction of quantitative DTI metrics in the TBI group, we also found qualitative differences in the streamline density of both pathways generated from DTI tractography in over half of those with early TBI. These children exhibited hypertrophic cingulum bundles relative to the comparison group, and the number of tract streamlines negatively correlated with age at injury, particularly in the late-developing anterior regions of the cingulum; however, streamline density did not relate to executive functioning. Although streamline density of the perforant pathway was not related to age at injury, streamline density of the left perforant pathway was significantly and positively related to verbal memory scores in those with TBI, and a moderate effect size was found in the right hemisphere. DTI tractography may provide insight into developmental plasticity in children post-injury. While traditional DTI metrics demonstrate expected relations to cognitive performance in group-based analyses, altered growth is reflected in the white matter structures themselves in some children several years post-injury. Whether this plasticity is adaptive or maladaptive, and whether the alterations are structure-specific, warrants further investigation.
Collapse
Affiliation(s)
- Elisabeth A Wilde
- Department of Neurology, Traumatic Brain Injury and Concussion Center, University of Utah, Salt Lake City, UT, United States.,H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States.,Department of Neurology, Baylor College of Medicine, Houston, TX, United States.,Department of Radiology, Baylor College of Medicine, Houston, TX, United States
| | - Ilirjana Hyseni
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Hannah M Lindsey
- Department of Neurology, Traumatic Brain Injury and Concussion Center, University of Utah, Salt Lake City, UT, United States.,Department of Psychology, Brigham Young University, Provo, UT, United States
| | - Jessica Faber
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - James M McHenry
- Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Erin D Bigler
- Department of Neurology, Traumatic Brain Injury and Concussion Center, University of Utah, Salt Lake City, UT, United States.,Department of Psychology, Brigham Young University, Provo, UT, United States
| | - Brian D Biekman
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States
| | - Laura L Hollowell
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States
| | - Stephen R McCauley
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States.,Department of Neurology, Baylor College of Medicine, Houston, TX, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Jill V Hunter
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States.,Department of Radiology, Baylor College of Medicine, Houston, TX, United States.,Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX, United States
| | - Linda Ewing-Cobbs
- Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Mary E Aitken
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Marianne MacLeod
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States
| | - Zili D Chu
- Department of Radiology, Baylor College of Medicine, Houston, TX, United States.,Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX, United States
| | - Linda J Noble-Haeusslein
- Departments of Psychology and Neurology, University of Texas at Austin, Austin, TX, United States
| | - Harvey S Levin
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States.,Department of Neurology, Baylor College of Medicine, Houston, TX, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
17
|
Zhao X, Zhang C, Zhang B, Yan J, Wang K, Zhu Z, Zhang X. The Value of Diffusion Kurtosis Imaging in Detecting Delayed Brain Development of Premature Infants. Front Neurol 2021; 12:789254. [PMID: 34966352 PMCID: PMC8710729 DOI: 10.3389/fneur.2021.789254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Preterm infants are at high risk of the adverse neurodevelopmental outcomes. Our aim is to explore the value of diffusion kurtosis imaging (DKI) in diagnosing brain developmental disorders in premature infants. Materials and Methods: A total of 52 subjects were included in this study, including 26 premature infants as the preterm group, and 26 full-term infants as the control group. Routine MRI and DKI examinations were performed. Mean kurtosis (MK), radial kurtosis (RK), fractional anisotropy (FA), and mean diffusivity (MD) values were measured in the brain regions including posterior limbs of the internal capsule (PLIC), anterior limb of internal capsule (ALIC), parietal white matter (PWM), frontal white matter (FWM), thalamus (TH), caudate nucleus (CN), and genu of the corpus callosum (GCC). The chi-squared test, t-test, Spearman's correlation analysis, and receiver operating characteristic curve were used for data analyses. Results: In the premature infant group, the MK and RK values of PLIA, ALIC, and PWM were lower than those in the control group (p < 0.05). The FA values of PWM, FWM, and TH were also lower than those of the control group (p < 0.05). The area under curves of MK in PLIC and ALIC, MD in PWM, and FA in FWM were 0.813, 0.802, 0.842, and 0.867 (p < 0.05). In the thalamus and CN, the correlations between MK, RK values, and postmenstrual age (PMA) were higher than those between FA, MD values, and PMA. Conclusion: Diffusion kurtosis imaging can be used as an effective tool in detecting brain developmental disorders in premature infants.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Imaging, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunxiang Zhang
- Department of Imaging, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bohao Zhang
- Department of Imaging, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Kaiyu Wang
- MRI Research, GE Healthcare, Beijing, China
| | | | - Xiaoan Zhang
- Department of Imaging, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Yeh FC, Irimia A, Bastos DCDA, Golby AJ. Tractography methods and findings in brain tumors and traumatic brain injury. Neuroimage 2021; 245:118651. [PMID: 34673247 PMCID: PMC8859988 DOI: 10.1016/j.neuroimage.2021.118651] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022] Open
Abstract
White matter fiber tracking using diffusion magnetic resonance imaging (dMRI) provides a noninvasive approach to map brain connections, but improving anatomical accuracy has been a significant challenge since the birth of tractography methods. Utilizing tractography in brain studies therefore requires understanding of its technical limitations to avoid shortcomings and pitfalls. This review explores tractography limitations and how different white matter pathways pose different challenges to fiber tracking methodologies. We summarize the pros and cons of commonly-used methods, aiming to inform how tractography and its related analysis may lead to questionable results. Extending these experiences, we review the clinical utilization of tractography in patients with brain tumors and traumatic brain injury, starting from tensor-based tractography to more advanced methods. We discuss current limitations and highlight novel approaches in the context of these two conditions to inform future tractography developments.
Collapse
Affiliation(s)
- Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA; Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | | | - Alexandra J Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Xia X, Dai L, Zhou H, Chen P, Liu S, Yang W, Zuo Z, Xu X. Assessment of peripheral neuropathy in type 2 diabetes by diffusion tensor imaging: A case-control study. Eur J Radiol 2021; 145:110007. [PMID: 34758418 DOI: 10.1016/j.ejrad.2021.110007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/16/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES This study aimed to evaluate diabetes peripheral neuropathy (DPN) by diffusion tensor imaging (DTI) and explore the correlation between DTI parameters and electrophysiological parameters. METHODS We examined tibial nerve (TN) and common peroneal nerve (CPN) of 32 DPN patients and 23 healthy controls using T1-weighted magnetic resonance imaging and DTI. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) of TN and CPN were measured and compared between groups. Spearman correlation coefficient was used to explore the relationship between DTI parameters and electrophysiology parameters in the DPN group. Diagnostic value was assessed by receiver operating characteristic (ROC) analysis. RESULTS In the DPN group, FA was decreased (p < 0.0001) and MD and RD were increased (p < 0.05, p < 0.001) in the TN and CPN compared with the values of healthy control group. Moreover, in the DPN group, FA was positively correlated with motor nerve conduction velocity (MCV) (p < 0.0001), and both MD and RD were negatively correlated with MCV (p < 0.05, p < 0.001). However, there was no correlation between AD and any electrophysiological parameters. Among all DTI parameters, FA displayed the best diagnostic accuracy, with an area under the ROC curve of 0.882 in TN and 0.917 in CPN. CONCLUSION FA and RD demonstrate appreciable diagnostic accuracy. Furthermore, they both have a moderate correlation with MCV.
Collapse
Affiliation(s)
- Xinyue Xia
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China; Department of Radiology, Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Lisong Dai
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Hongmei Zhou
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Panpan Chen
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Shuhua Liu
- Burn Department, Department of Burns, Tongren Hospital of Wuhan University and Wuhan Third Hospital, Wuhan 430060, China
| | - Wenzhong Yang
- Department of Radiology, Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Brain and Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiangyang Xu
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China.
| |
Collapse
|
20
|
Manno FAM, An Z, Kumar R, Wu EX, He J, Feng Y, Lau C. Structural Alterations in a Rat Model of Short-Term Conductive Hearing Loss Are Associated With Reduced Resting State Functional Connectivity. Front Syst Neurosci 2021; 15:655172. [PMID: 34456689 PMCID: PMC8397539 DOI: 10.3389/fnsys.2021.655172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Conductive hearing loss (CHL) results in attenuation of air conducted sound reaching the inner ear. How a change in air conducted sound alters the auditory system resulting in cortical alterations is not well understood. Here, we have assessed structural and functional magnetic resonance imaging (MRI) in an adult (P60) rat model of short-term conductive hearing loss (1 week). Diffusion tensor imaging (DTI) revealed fractional anisotropy (FA) and axial diffusivity alterations after hearing loss that circumscribed the auditory cortex (AC). Tractography found the lateral lemniscus tract leading to the bilateral inferior colliculus (IC) was reduced. For baseline comparison, DTI and tractography alterations were not found for the somatosensory cortex. To determine functional connectivity changes due to hearing loss, seed-based analysis (SBA) and independent component analysis (ICA) were performed. Short term conductive hearing loss altered functional connectivity in the AC and IC, but not the somatosensory cortex. The results present an exploratory neuroimaging assessment of structural alterations coupled to a change in functional connectivity after conductive hearing loss. The results and implications for humans consist of structural-functional brain alterations following short term hearing loss in adults.
Collapse
Affiliation(s)
| | - Ziqi An
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Rachit Kumar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Medical Scientist Training Program, University of Pennsylvania, Philadelphia, PA, United States
| | - Ed X. Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR China
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, SAR China
| | - Jufang He
- Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, SAR China
| | - Yanqiu Feng
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Condon Lau
- Department of Physics, City University of Hong Kong, Hong Kong, SAR China
| |
Collapse
|
21
|
Gou LB, Zhang W, Guo DJ, Zhong WJ, Wu XJ, Zhou ZM. Aberrant brain structural network and altered topological organization in minimal hepatic encephalopathy. ACTA ACUST UNITED AC 2021; 26:255-261. [PMID: 32209507 DOI: 10.5152/dir.2019.19216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE We aimed to investigate the multilevel impairments of brain structural network in patients with minimal hepatic encephalopathy (MHE). METHODS Twenty-two patients with MHE and 22 well-matched healthy controls (HC) underwent structural magnetic resonance imaging (MRI) brain scans and neuropsychological evaluations. Individual brain structural networks were constructed using diffusion tensor imaging. Comparing with HC, we investigated the possible impairments of brain structural network in MHE, by applying graph-theory approaches to analyze the topological organization at global, modular, and local levels. The correlations between altered brain structural network and neuropsychological tests scores and venous ammonia levels were also examined in MHE patients. RESULTS In the MHE group, small-worldness showed significant decrease and normalized characteristic path length showed increase at the global level. In the modular section, six modules were identified. The inter-modular connective strengths showed significant increase between modules 2 and 4 and between modules 4 and 5. The results of node analysis showed similar hub distributions in the MHE and HC groups except for the right postcentral gyrus, which was only found in the MHE group. No significant differences were found in connective strength of edges between MHE and HC groups using network-based statistics. CONCLUSION The altered brain structural networks with reduced network integration and module segregation were demonstrated in patients with MHE. The dysconnectivity of brain structural network could provide an explanation for the brain dysfunctions of MHE.
Collapse
Affiliation(s)
- Lu-Bin Gou
- Department of Radiology, First Hospital of Lan Zhou University, Gansu, China
| | - Wei Zhang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Da-Jing Guo
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei-Jia Zhong
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Jia Wu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Ming Zhou
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Lee HJ, Kwon H, Kim JI, Lee JY, Lee JY, Bang S, Lee JM. The cingulum in very preterm infants relates to language and social-emotional impairment at 2 years of term-equivalent age. NEUROIMAGE-CLINICAL 2020; 29:102528. [PMID: 33338967 PMCID: PMC7750449 DOI: 10.1016/j.nicl.2020.102528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/15/2020] [Accepted: 12/04/2020] [Indexed: 01/25/2023]
Abstract
Maturation of specific WM tracts in preterm individuals differs from those of term controls. The elastic net logistic regression model was used to identify altered white matter tracts in the preterm brain. The alteration of the cingulum in the preterm at near-term correlate with neurodevelopmental scores at 18–22 months of age.
Background Relative to full-term infants, very preterm infants exhibit disrupted white matter (WM) maturation and problems related to development, including motor, cognitive, social-emotional, and receptive and expressive language processing. Objective The present study aimed to determine whether regional abnormalities in the WM microstructure of very preterm infants, as defined relative to those of full-term infants at a near-term age, are associated with neurodevelopmental outcomes at the age of 18–22 months. Methods We prospectively enrolled 89 very preterm infants (birth weight < 1500 g) and 43 normal full-term control infants born between 2016 and 2018. All infants underwent a structural brain magnetic resonance imaging scan at near-term age. The diffusion tensor imaging (DTI) metrics of the whole-brain WM tracts were extracted based on the neonatal probabilistic WM pathway. The elastic net logistic regression model was used to identify altered WM tracts in the preterm brain. We evaluated the associations between the altered WM microstructure at near-term age and motor, cognitive, social-emotional, and receptive and expressive language developments at 18–22 months of age, as measured using the Bayley Scales of Infant Development, Third Edition. Results We found that the elastic net logistic regression model could classify preterm and full-term neonates with an accuracy of 87.9% (corrected p < 0.008) using the DTI metrics in the pathway of interest with a 10% threshold level. The fractional anisotropy (FA) values of the body and splenium of the corpus callosum, middle cerebellar peduncle, left and right uncinate fasciculi, and right portion of the pathway between the premotor and primary motor cortices (premotor-PMC), as well as the mean axial diffusivity (AD) values of the left cingulum, were identified as contributive features for classification. Increased adjusted AD values in the left cingulum pathway were significantly correlated with language scores after false discovery rate (FDR) correction (r = 0.217, p = 0.043). The expressive language and social-emotional composite scores showed a significant positive correlation with the AD values in the left cingulum pathway (r = 0.226 [p = 0.036] and r = 0.31 [p = 0.003], respectively) after FDR correction. Conclusion Our approach suggests that the cingulum pathways of very preterm infants differ from those of full-term infants and significantly contribute to the prediction of the subsequent development of the language and social-emotional domains. This finding could improve our understanding of how specific neural substrates influence neurodevelopment at later ages, and individual risk prediction, thus helping to inform early intervention strategies that address developmental delay.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, South Korea; Division of Neonatology and Developmental Medicine, Seoul Hanyang University Hospital, Seoul, South Korea
| | - Hyeokjin Kwon
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University, Seoul, South Korea; Division of Neonatology and Developmental Medicine, Seoul Hanyang University Hospital, Seoul, South Korea
| | - Joo Young Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, South Korea
| | - Ji Young Lee
- Department of Radiology, Hanyang University College of Medicine, Seoul, South Korea
| | - SungKyu Bang
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea.
| |
Collapse
|
23
|
Higher b-values improve the correlation between diffusion MRI and the cortical microarchitecture. Neuroradiology 2020; 62:1411-1419. [PMID: 32483725 DOI: 10.1007/s00234-020-02462-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE In diffusion MRI (dMRI), it remains unclear to know how much increase of b-value is conveying additional biological meaning. We tested the correlations between cortical microarchitecture and diffusion metrics computed from standard (1000 s/mm2), high (3000 s/mm2), to very high (5000 s/mm2) b-value dMRI. METHODS Healthy volunteers were scanned with a dMRI pulse sequence that was first optimized together with a T1-WI and T2-WI. Averaged cortical surface map of estimated myelin (T1-WI/T2-WI) was compared with surface maps of mean diffusivity (MD) computed from each b-value (MD1000, MD3000, and MD5000) and to surface map of mean kurtosis (MK computed from the 0-, 1000-, to 3000-s/mm2 shells) in 360 cortical parcels using Spearman correlations, multiple linear regressions, and Akaike information criteria (AIC). RESULTS Surface map from MD1000 showed variations not related to myelin but the MD3000 and MD5000 maps inversely mirrored estimated myelin map; lower MD values being observed in more myelinated cortical areas. MK mirrored myelinated cortical areas. Quantitatively, Spearman correlations between myelin and MD became more and more negative as long as b-values increased while the correlation was positive between myelin and MK. Multiple regression models confirmed negative associations between myelin and MD that were significantly better from MD1000 to MD3000 and MD5000 (R2 = 0.33, p < 0.001; R2 = 0.43, p < 0.001; and R2 = 0.50, p < 0.001) and positive association between myelin and MK (R2 = 0.53, p < 0.001). Comparisons of the 3 statistical models showed the best performances with MK and MD5000 (AICMK < AICMD5000 < AICMD3000 < AICMD1000). CONCLUSION Higher b-values are more closely related to subtle cellular variations of the cortical microarchitecture.
Collapse
|
24
|
Laib Z, Ahmed Sid F, Abed-Meraim K, Ouldali A. Estimation error bound for GRAPPA diffusion-weighted MRI. Magn Reson Imaging 2020; 74:181-194. [PMID: 33010376 DOI: 10.1016/j.mri.2020.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/26/2020] [Accepted: 09/23/2020] [Indexed: 01/08/2023]
Abstract
In recent years, diffusion weight magnetic resonance imaging (DW-MRI) has become one of the most important MRI imaging modalities. The importance of the DW-MRI grew thanks to the combination of parallel magnetic resonance imaging (pMRI) techniques with the echo-planar imaging (EPI), which minimize scan time and lead to reduced distortion, allowing the DW-MRI to become a routine clinical exam. Additionally, this has brought various new parameters that influence image quality and biomarkers used in DW-MRI. This work aims to investigate the effects of these parameters on the estimation quality, by using the Cramér-Rao bound tool, which gives analytical expressions of the lower limit on the estimation error variance of different DW-MRI variables when using the pMRI technique. In particular, these bounds will be used to study and optimize the impact of different factors of generalized autocalibrating partially parallel acquisition (GRAPPA) technique and system parameters on the estimation quality of the desired clinical metrics. Moreover, the obtained results of this study can be exploited and adapted in all human body DW-MRI clinical routines, further improving disease diagnosis, and tractography studies.
Collapse
Affiliation(s)
- Zohir Laib
- Laboratoire traitement du signal, EMP, BP 17 Bordj El Bahri, 16111 Algiers, Algeria.
| | - Farid Ahmed Sid
- ParIMéd/LRPE,FEI,USTHB, BP 32 El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Karim Abed-Meraim
- PRISME Laboratory, University of Orléans, 12 Rue de Blois, 45067 Orléans, France
| | - Aziz Ouldali
- Laboratoire signaux et systemes, University of Mostaganem, BP 002 Kharouba, 27000 Mostaganem, Algeria
| |
Collapse
|
25
|
Grant PE, Im K, Ahtam B, Laurentys CT, Chan WM, Brainard M, Chew S, Drottar M, Robson CD, Drmic I, Engle EC. Altered White Matter Organization in the TUBB3 E410K Syndrome. Cereb Cortex 2020; 29:3561-3576. [PMID: 30272120 DOI: 10.1093/cercor/bhy231] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 08/20/2018] [Indexed: 01/25/2023] Open
Abstract
Seven unrelated individuals (four pediatric, three adults) with the TUBB3 E410K syndrome, harboring identical de novo heterozygous TUBB3 c.1228 G>A mutations, underwent neuropsychological testing and neuroimaging. Despite the absence of cortical malformations, they have intellectual and social disabilities. To search for potential etiologies for these deficits, we compared their brain's structural and white matter organization to 22 controls using structural and diffusion magnetic resonance imaging. Diffusion images were processed to calculate fractional anisotropy (FA) and perform tract reconstructions. Cortical parcellation-based network analysis and gyral topology-based FA analyses were performed. Major interhemispheric, projection and intrahemispheric tracts were manually segmented. Subjects had decreased corpus callosum volume and decreased network efficiency. While only pediatric subjects had diffuse decreases in FA predominantly affecting mid- and long-range tracts, only adult subjects had white matter volume loss associated with decreased cortical surface area. All subjects showed aberrant corticospinal tract trajectory and bilateral absence of the dorsal language network long segment. Furthermore, pediatric subjects had more tracts with decreased FA compared with controls than did adult subjects. These findings define a TUBB3 E410K neuroimaging endophenotype and lead to the hypothesis that the age-related changes are due to microscopic intrahemispheric misguided axons that are pruned during maturation.
Collapse
Affiliation(s)
- P Ellen Grant
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Kiho Im
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Banu Ahtam
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Cynthia T Laurentys
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Wai-Man Chan
- Harvard Medical School, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Maya Brainard
- Harvard Medical School, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Sheena Chew
- Harvard Medical School, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Marie Drottar
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Caroline D Robson
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Irene Drmic
- Hamilton Health Sciences, Ron Joyce Children's Health Centre, Hamilton, Ontario L8L 0A4, Canada
| | - Elizabeth C Engle
- Harvard Medical School, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
26
|
Walker MR, Zhong J, Waspe AC, Looi T, Piorkowska K, Drake JM, Hodaie M. Acute ex vivo changes in brain white matter diffusion tensor metrics. PLoS One 2019; 14:e0223211. [PMID: 31557265 PMCID: PMC6762128 DOI: 10.1371/journal.pone.0223211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/15/2019] [Indexed: 11/19/2022] Open
Abstract
Purpose Diffusion magnetic resonance imaging and tractography has an important role in the visualization of brain white matter and assessment of tissue microstructure. There is a lack of correspondence between diffusion metrics of live tissue, ex vivo tissue, and histological findings. The objective of this study is to elucidate this connection by determining the specific diffusion alterations between live and ex vivo brain tissue. This may have an important role in the incorporation of diffusion imaging in ex vivo studies as a complement to histological sectioning as well as investigations of novel neurosurgical techniques. Methods This study presents a method of high angular resolution diffusion imaging and tractography of intact and non-fixed ex vivo piglet brains. Most studies involving ex vivo brain specimens have been formalin-fixed or excised from their original biological environment, processes both of which are known to affect diffusion parameters. Thus, non-fixed ex vivo tissue is used. A region-of-interest based analysis of diffusion tensor metrics are compared to in vivo subjects in a selection of major white matter bundles in order to assess the translatability of ex vivo diffusion measurements. Results Tractography was successfully achieved in both in vivo and ex vivo groups. No significant differences were found in tract connectivity, average streamline length, or apparent fiber density. Significantly decreased diffusivity (mean, axial, and radial; p<0.0005) in the non-fixed ex vivo group and unaltered fractional anisotropy (p>0.059) between groups were observed. Conclusion This study validates the extrapolation of non-fixed fractional anisotropy measurements to live tissue and the potential use of ex vivo tissue for methodological development.
Collapse
Affiliation(s)
- Matthew R. Walker
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jidan Zhong
- Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Adam C. Waspe
- Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Looi
- Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Karolina Piorkowska
- Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, Ontario, Canada
| | - James M. Drake
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mojgan Hodaie
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
27
|
Badji A, Noriega de la Colina A, Karakuzu A, Duval T, Desjardins-Crépeau L, Parizet M, Joubert S, Bherer L, Lamarre-Cliche M, Stikov N, Cohen-Adad J, Girouard H. Arterial stiffness cut-off value and white matter integrity in the elderly. NEUROIMAGE-CLINICAL 2019; 26:102007. [PMID: 31668489 PMCID: PMC7229323 DOI: 10.1016/j.nicl.2019.102007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/01/2019] [Accepted: 09/15/2019] [Indexed: 01/18/2023]
Abstract
Objective Central artery stiffness is a confirmed predictor of cardiovascular health status that has been consistently associated with cognitive dysfunction and dementia. The European Society of Hypertension has established a threshold of arterial stiffness above which a cardiovascular event is likely to occur. However, the threshold at which arterial stiffness alters brain integrity has never been established. Methods The aim of this study is to determine the arterial stiffness cut-off value at which there is an impact on the white matter microstructure. This study has been conducted with 53 cognitively elderly without dementia. The integrity of the white matter was assessed using diffusion tensor metrics. Central artery stiffness was evaluated by measuring the carotid-femoral pulse wave velocity (cfPWV). The statistical analyses included 4 regions previously denoted vulnerable to increased central arterial stiffness (the corpus callosum, the internal capsule, the corona radiata and the superior longitudinal fasciculus). Results The results of this study call into question the threshold value of 10 m/s cfPWV established by the European Society of Hypertension to classify patients in neuro-cardiovascular risk groups. Our results suggest that the cfPWV threshold value would be approximately 8.5 m/s when the microstructure of the white matter is taken as a basis for comparison. Conclusions Adjustment of the cfPWV value may be necessary for a more accurate distinction between lower and higher risk group of patients for white matter microstructural injury related to arterial stiffness. Targeting the highest risk group for prevention methods may, in turn, help preserve brain health and cognitive functions. DTI (FA, RD) analysis of white matter microstructure reveals that the cfPWV cut-off value (10 m/s) may be too high This study rather suggests a value of cfPWV cut-off of 8.5 m/s to separate lower and higher neurovascular risk groups Better executive function performance is correlated with higher FA and lower RD in participants with a cfPWV above 8.5 m/s.
Collapse
Affiliation(s)
- Atef Badji
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, H3T1J4 Montréal, QC, Canada; Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), H3W1W5 Montréal, QC, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, H3C3J7 Montréal, QC, Canada
| | - Adrián Noriega de la Colina
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), H3W1W5 Montréal, QC, Canada; Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, H3C3J7, Montréal, QC, Canada
| | - Agah Karakuzu
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, H3T1J4 Montréal, QC, Canada; Montreal Heart Institute, H1T1C8 Montréal, QC, Canada
| | - Tanguy Duval
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, H3T1J4 Montréal, QC, Canada
| | - Laurence Desjardins-Crépeau
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), H3W1W5 Montréal, QC, Canada
| | - Matthieu Parizet
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, H3T1J4 Montréal, QC, Canada; Department de Mathématiques et Applications, Faculté de sciences et d'ingénierie, Sorbonne Université, Paris, France
| | - Sven Joubert
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), H3W1W5 Montréal, QC, Canada; Department of Psychology, Faculty of Arts and Sciences, Université de Montréal, H3C3J7 Montréal, QC, Canada
| | - Louis Bherer
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), H3W1W5 Montréal, QC, Canada; Department of Medicine, Faculty of Medicine, Université de Montréal,H3C3J7 Montréal, QC, Canada; Montreal Heart Institute, H1T1C8 Montréal, QC, Canada
| | - Maxime Lamarre-Cliche
- Institut de Recherches Cliniques de Montréal, Université de Montréal, H2W1R7 Montréal, QC, Canada
| | - Nikola Stikov
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, H3T1J4 Montréal, QC, Canada; Montreal Heart Institute, H1T1C8 Montréal, QC, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, H3T1J4 Montréal, QC, Canada; Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), H3W1W5 Montréal, QC, Canada
| | - Hélène Girouard
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), H3W1W5 Montréal, QC, Canada; Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, H3C3J7 Montréal, QC, Canada.
| |
Collapse
|
28
|
Fukutomi H, Glasser MF, Murata K, Akasaka T, Fujimoto K, Yamamoto T, Autio JA, Okada T, Togashi K, Zhang H, Van Essen DC, Hayashi T. Diffusion Tensor Model links to Neurite Orientation Dispersion and Density Imaging at high b-value in Cerebral Cortical Gray Matter. Sci Rep 2019; 9:12246. [PMID: 31439874 PMCID: PMC6706419 DOI: 10.1038/s41598-019-48671-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022] Open
Abstract
Diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) are widely used models to infer microstructural features in the brain from diffusion-weighted MRI. Several studies have recently applied both models to increase sensitivity to biological changes, however, it remains uncertain how these measures are associated. Here we show that cortical distributions of DTI and NODDI are associated depending on the choice of b-value, a factor reflecting strength of diffusion weighting gradient. We analyzed a combination of high, intermediate and low b-value data of multi-shell diffusion-weighted MRI (dMRI) in healthy 456 subjects of the Human Connectome Project using NODDI, DTI and a mathematical conversion from DTI to NODDI. Cortical distributions of DTI and DTI-derived NODDI metrics were remarkably associated with those in NODDI, particularly when applied highly diffusion-weighted data (b-value = 3000 sec/mm2). This was supported by simulation analysis, which revealed that DTI-derived parameters with lower b-value datasets suffered from errors due to heterogeneity of cerebrospinal fluid fraction and partial volume. These findings suggest that high b-value DTI redundantly parallels with NODDI-based cortical neurite measures, but the conventional low b-value DTI is hard to reasonably characterize cortical microarchitecture.
Collapse
Affiliation(s)
- Hikaru Fukutomi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047 Japan ,0000 0004 0372 2033grid.258799.8Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kawaramachi 54, Shogoin, Sakyo-ku, Kyoto city, 606-8507 Japan
| | - Matthew F. Glasser
- 0000 0001 2355 7002grid.4367.6Department of Neuroscience, Washington University School of Medicine, Campus Box 8108, 660 South Euclid Avenue, St. Louis, MO 63110 USA ,0000 0001 2355 7002grid.4367.6Department of Radiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Katsutoshi Murata
- Siemens Healthcare K.K., Gate City Osaki West Tower, 1-11-1, Osaki, Shinagawa-ku, Tokyo, 141-8644 Japan
| | - Thai Akasaka
- 0000 0004 0372 2033grid.258799.8Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kawaramachi 54, Shogoin, Sakyo-ku, Kyoto city, 606-8507 Japan
| | - Koji Fujimoto
- 0000 0004 0372 2033grid.258799.8Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kawaramachi 54, Shogoin, Sakyo-ku, Kyoto city, 606-8507 Japan
| | - Takayuki Yamamoto
- 0000 0004 0372 2033grid.258799.8Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kawaramachi 54, Shogoin, Sakyo-ku, Kyoto city, 606-8507 Japan
| | - Joonas A. Autio
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047 Japan
| | - Tomohisa Okada
- 0000 0004 0372 2033grid.258799.8Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kawaramachi 54, Shogoin, Sakyo-ku, Kyoto city, 606-8507 Japan
| | - Kaori Togashi
- 0000 0004 0372 2033grid.258799.8Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kawaramachi 54, Shogoin, Sakyo-ku, Kyoto city, 606-8507 Japan
| | - Hui Zhang
- 0000000121901201grid.83440.3bCentre for Medical Image Computing and Department of Computer Science, University College London, The Front Engineering Building, Floor 3, Malet Place, London, WC1E 7JE UK
| | - David C. Van Essen
- 0000 0001 2355 7002grid.4367.6Department of Neuroscience, Washington University School of Medicine, Campus Box 8108, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan. .,RIKEN Compass to Healthy Life Research Complex Program, Integrated Innovation Building (IIB), 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, Japan.
| |
Collapse
|
29
|
Chen X, Chen Y, Xu Y, Gao Q, Shen Z, Zheng W. Microstructural and Neurochemical Changes in the Rat Brain After Diffuse Axonal Injury. J Magn Reson Imaging 2019; 49:1069-1077. [PMID: 30079492 DOI: 10.1002/jmri.26258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Diffuse axonal injury (DAI) is one of the devastating types of traumatic brain injury, but is difficult to detect on conventional imaging in its early stages. PURPOSE To test the technical feasibility and diagnostic value of diffusion kurtosis imaging (DKI) and glutamate chemical exchange saturation transfer (GluCEST) imaging in the brain after DAI. STUDY TYPE Prospective. ANIMAL MODEL Sixty Sprague-Dawley rats. The DAI model was induced by using the impact acceleration model of Marmarou et al with modified settings. FIELD STRENGTH/SEQUENCE A 7.0T animal MR scanner with a fast spin-echo sequence (T2 -weighted imaging), fast spin-echo multislice sequence (DKI), echo planar imaging in the signal of the chemical exchange saturation transfer sequence (CEST), and point-resolved spectroscopy sequence (hydrogenproton magnetic resonance spectroscopy, 1 H-MRS). ASSESSMENT Brain MRI scanned before and 2 hours after injury. DKI images were processed with MatLab and MRIcro software, GluCEST images were processed using software routines written in MatLab, and spectroscopic data were postprocessed with LCModel. STATISTICAL TESTS The parameters of these techniques were assessed using the independent sample t-test and Pearson correlation. RESULTS Mean kurtosis and mean diffusivity values were significantly higher than controls in the parietal lobe, hippocampus, and thalamus (P < 0.01). However, fractional anisotropy was lower only in the parietal lobe, with no detectable changes in the hippocampus and thalamus. GluCEST values of the parietal lobe, hippocampus, and thalamus were significantly higher than controls in DAI rats (P < 0.01). This change was further validated through 1 H-MRS. A positive correlation was observed between glutamate (Glu) and glutamate compound (Glx) concentrations and GluCEST values (Glu: R2 = 0.589, Glx: R2 = 0.878). DATA CONCLUSION DKI and GluCEST might be acceptably sensitive for tracking microstructural and neurochemical changes in the brain following DAI. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:1069-1077.
Collapse
Affiliation(s)
- Xiran Chen
- Department of Radiology, Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanzi Chen
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Yuan Xu
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Qilu Gao
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhiwei Shen
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Wenbin Zheng
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
30
|
Manno FAM, Isla AG, Manno SHC, Ahmed I, Cheng SH, Barrios FA, Lau C. Early Stage Alterations in White Matter and Decreased Functional Interhemispheric Hippocampal Connectivity in the 3xTg Mouse Model of Alzheimer's Disease. Front Aging Neurosci 2019; 11:39. [PMID: 30967770 PMCID: PMC6440287 DOI: 10.3389/fnagi.2019.00039] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/08/2019] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized in the late stages by amyloid-β (Aβ) plaques and neurofibrillary tangles. Nevertheless, recent evidence has indicated that early changes in cerebral connectivity could compromise cognitive functions even before the appearance of the classical neuropathological features. Diffusion tensor imaging (DTI), resting-state functional magnetic resonance imaging (rs-fMRI) and volumetry were performed in the triple transgenic mouse model of AD (3xTg-AD) at 2 months of age, prior to the development of intraneuronal plaque accumulation. We found the 3xTg-AD had significant fractional anisotropy (FA) increase and radial diffusivity (RD) decrease in the cortex compared with wild-type controls, while axial diffusivity (AD) and mean diffusivity (MD) were similar. Interhemispheric hippocampal connectivity was decreased in the 3xTg-AD while connectivity in the caudate putamen (CPu) was similar to controls. Most surprising, ventricular volume in the 3xTg-AD was four times larger than controls. The results obtained in this study characterize the early stage changes in interhemispheric hippocampal connectivity in the 3xTg-AD mouse that could represent a translational biomarker to human models in preclinical stages of the AD.
Collapse
Affiliation(s)
- Francis A M Manno
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong.,Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Arturo G Isla
- Neuronal Oscillations Laboratory, Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Sinai H C Manno
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong.,State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon, Hong Kong.,Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Irfan Ahmed
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong.,Electrical Engineering Department, Sukkur IBA University, Sukkur, Pakistan
| | - Shuk Han Cheng
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon, Hong Kong.,Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Fernando A Barrios
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Condon Lau
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
31
|
Microstructural Alterations in the Brains of Adults With Prelingual Sensorineural Hearing Loss: a Diffusion Kurtosis Imaging Study. Otol Neurotol 2018; 39:e936-e943. [DOI: 10.1097/mao.0000000000002000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Impact of fixation, coil, and number of excitations on diffusion tensor imaging of rat brains at 7.0 T. Eur Radiol Exp 2018; 2:25. [PMID: 30280310 PMCID: PMC6168442 DOI: 10.1186/s41747-018-0057-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/28/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND We sought to compare diffusion tensor imaging (DTI) parameters in vivo and ex vivo in the brain and to explore the effects of radiofrequency coil and number of excitations on ex vivo DTI parameters. METHODS Six Sprague-Dawley rat brains were used to obtain in vivo and ex vivo DTI maps with different coils and number of excitations. DTI parameters of white matter and grey matter including diffusivities, fractional anisotropy, and other dimensionless ratios (λ2/λ1, λ3/λ1, and λ2/λ3) were obtained from reconstruction maps. Comparisons of ex vivo signal-to-noise ratio with different coils and number of excitations were conducted. RESULTS Diffusivities decreased significantly after fixation in all the selected white matter and grey matter regions of interest (all at p < 0.001). The diffusivities in white matter integrity decreased more than in grey matter integrity after fixation (all at p < 0.001). The ratio of λ2/λ3 in the major brain structures changed after fixation (most at p < 0.05). There were differences in major ex vivo brain structures in DTI parameters and signal-to-noise ratio between surface coil and volume coil, and between one and four excitations (most at p < 0.05). CONCLUSION The impact of fixation, coil, and number of excitations on DTI parameters should be taken into consideration in clinical and experimental studies at 7.0 T.
Collapse
|
33
|
Scalar diffusion-MRI measures invariant to acquisition parameters: A first step towards imaging biomarkers. Magn Reson Imaging 2018; 54:194-213. [PMID: 30196167 DOI: 10.1016/j.mri.2018.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/18/2018] [Accepted: 03/07/2018] [Indexed: 11/23/2022]
Abstract
An imaging biomarker is a biologic feature in an image that is relevant to a patient's diagnosis or prognosis. In order to qualify as a biomarker, a measure must be robust and reproducible. However, the usual scalar measures derived from diffusion tensor imaging are known to be highly dependent on the variation of the acquisition parameters, which prevents their possible use as biomarkers. In this work, we propose a new set of quantitative measures based on diffusion magnetic resonance imaging from single-shell acquisitions that are designed to be robust to the variations of several acquisition parameters (number of gradient directions, b-value and SNR) while keeping a high discrimination power on differences in the diffusion characteristics of the tissue. These new scalar measures are analytically obtained from a generic diffusion function that does not require the calculation of a diffusion tensor. This way, on one hand, we avoid the use of a specific diffusion model and, on the other hand, we make easier the statistical characterization of the measures. Accordingly, the analysis of the measures bias is carried out and it is used to minimize their dependency with respect to the acquisition noise for different SNRs. The robustness and discrimination power of the measures are tested for different number of gradients, b-values and SNRs using a realistic phantom and three real datasets: (1) 13 control subjects and different acquisition parameters; (2) a public data set from a single subject acquired using multiple shells and (3) 32 schizophrenia patients and 32 age and sex-matched healthy controls with a varying number of gradient directions. The proposed quantitative measures exhibit low variability to the changes of the acquisition parameters, while at the same time they preserve a discrimination power that is able to detect significant changes in the anisotropy of the diffusion.
Collapse
|
34
|
Parvathaneni P, Nath V, Blaber JA, Schilling KG, Hainline AE, Mojahed E, Anderson AW, Landman BA. Empirical reproducibility, sensitivity, and optimization of acquisition protocol, for Neurite Orientation Dispersion and Density Imaging using AMICO. Magn Reson Imaging 2018; 50:96-109. [PMID: 29526642 PMCID: PMC5970991 DOI: 10.1016/j.mri.2018.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 02/24/2018] [Accepted: 03/07/2018] [Indexed: 01/28/2023]
Abstract
Neurite Orientation Dispersion and Density Imaging (NODDI) has been gaining prominence for estimating multiple diffusion compartments from MRI data acquired in a clinically feasible time. To establish a pathway for adoption of NODDI in clinical studies, it is important to understand the sensitivity and reproducibility of NODDI metrics on empirical data in the context of acquisition protocol and brain anatomy. Previous studies addressed reproducibility across the 3 T scanners and within session and between subject reproducibility at 1.5 T and 3 T. However, empirical reproducibility on the performance of NODDI metrics based on b-value and diffusion-sensitized directions has not yet been addressed. In this study, we investigate a high angular resolution dataset with 11 repeats of a study with five b-values shells (1000, 1500, 2000, 2500 and 3000 s/mm2) and 96 directions per shell on a single subject. We validated the findings with a dataset from second subject with 10 repeats and 3 b-value shells (1000, 2000, 3000 s/mm2). The NODDI model was estimated using Accelerated Microstructure Imaging via Convex Optimization (AMICO) for different b-values and gradient directions on two-shell High Angular Resolution Density Imaging (HARDI) data fixing the lower shell at b = 1000 s/mm2. NODDI model applied to all acquired imaging data was used as a baseline gold standard for comparison. Additionally, we characterize orientation dispersion index (ODI) reproducibility using single-shell data. The experimental findings confirmed the sensitivity of intracellular volume fraction (Vic) with the choice of outer shell b-value more than with the choice of gradient directions. On the other hand, ODI is more sensitive to the number of gradient directions compared to b-value selection. Single-shell results for ODI are more comparable to 2-shell data at lower b-values than higher b-values. Recommended settings by region of interest and acquisition time are reported for the researchers considering using NODDI in human studies and/or comparing results across acquisition protocols.
Collapse
Affiliation(s)
| | - Vishwesh Nath
- Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Justin A Blaber
- Electrical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | | | - Ed Mojahed
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; MR Clinical Science, Philips Healthcare, Gainsville, FL, USA
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Electrical Engineering, Vanderbilt University, Nashville, TN, USA; Computer Science, Vanderbilt University, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
35
|
Yang G, Tian Q, Leuze C, Wintermark M, McNab JA. Double diffusion encoding MRI for the clinic. Magn Reson Med 2017; 80:507-520. [PMID: 29266375 DOI: 10.1002/mrm.27043] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE The purpose of this study is to develop double diffusion encoding (DDE) MRI methods for clinical use. Microscopic diffusion anisotropy measurements from DDE promise greater specificity to changes in tissue microstructure compared with conventional diffusion tensor imaging, but implementation of DDE sequences on whole-body MRI scanners is challenging because of the limited gradient strengths and lengthy acquisition times. METHODS A custom single-refocused DDE sequence was implemented on a 3T whole-body scanner. The DDE gradient orientation scheme and sequence parameters were optimized based on a Gaussian diffusion assumption. Using an optimized 5-min DDE acquisition, microscopic fractional anisotropy (μFA) maps were acquired for the first time in multiple sclerosis patients. RESULTS Based on simulations and in vivo human measurements, six parallel and six orthogonal diffusion gradient pairs were found to be the minimum number of diffusion gradient pairs necessary to produce a rotationally invariant measurement of μFA. Simulations showed that optimal precision and accuracy of μFA measurements were obtained using b-values between 1500 and 3000 s/mm2 . The μFA maps showed improved delineation of multiple sclerosis lesions compared with conventional fractional anisotropy and distinct contrast from T2 -weighted fluid attenuated inversion recovery and T1 -weighted imaging. CONCLUSION The μFA maps can be measured using DDE in a clinical setting and may provide new opportunities for characterizing multiple sclerosis lesions and other types of tissue degeneration. Magn Reson Med 80:507-520, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Grant Yang
- Department of Electrical Engineering, Stanford University, Stanford, California, USA.,Department of Radiology, Stanford University, Stanford, California, USA
| | - Qiyuan Tian
- Department of Electrical Engineering, Stanford University, Stanford, California, USA.,Department of Radiology, Stanford University, Stanford, California, USA
| | - Christoph Leuze
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Max Wintermark
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Jennifer A McNab
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
36
|
The IVIM signal in the healthy cerebral gray matter: A play of spherical and non-spherical components. Neuroimage 2017; 152:340-347. [DOI: 10.1016/j.neuroimage.2017.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 12/12/2022] Open
|
37
|
Jolly TA, Cooper PS, Rennie JL, Levi CR, Lenroot R, Parsons MW, Michie PT, Karayanidis F. Age-related decline in task switching is linked to both global and tract-specific changes in white matter microstructure. Hum Brain Mapp 2017; 38:1588-1603. [PMID: 27879030 PMCID: PMC6866847 DOI: 10.1002/hbm.23473] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 11/11/2022] Open
Abstract
Task-switching performance relies on a broadly distributed frontoparietal network and declines in older adults. In this study, they investigated whether this age-related decline in task switching performance was mediated by variability in global or regional white matter microstructural health. Seventy cognitively intact adults (43-87 years) completed a cued-trials task switching paradigm. Microstructural white matter measures were derived using diffusion tensor imaging (DTI) analyses on the diffusion-weighted imaging (DWI) sequence. Task switching performance decreased with increasing age and radial diffusivity (RaD), a measure of white matter microstructure that is sensitive to myelin structure. RaD mediated the relationship between age and task switching performance. However, the relationship between RaD and task switching performance remained significant when controlling for age and was stronger in the presence of cardiovascular risk factors. Variability in error and RT mixing cost were associated with RaD in global white matter and in frontoparietal white matter tracts, respectively. These findings suggest that age-related increase in mixing cost may result from both global and tract-specific disruption of cerebral white matter linked to the increased incidence of cardiovascular risks in older adults. Hum Brain Mapp 38:1588-1603, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Todd A.D. Jolly
- Functional Neuroimaging Laboratory, School of PsychologyUniversity of NewcastleNewcastleAustralia
- Priority Research Centre for Stroke and Brain Injury, University of NewcastleNewcastleAustralia
- Priority Research Centre for Brain and Mental Health Research, University of NewcastleNewcastleAustralia
- Hunter Medical Research InstituteNewcastleAustralia
| | - Patrick S. Cooper
- Functional Neuroimaging Laboratory, School of PsychologyUniversity of NewcastleNewcastleAustralia
- Priority Research Centre for Stroke and Brain Injury, University of NewcastleNewcastleAustralia
- Priority Research Centre for Brain and Mental Health Research, University of NewcastleNewcastleAustralia
- Hunter Medical Research InstituteNewcastleAustralia
| | - Jaime L. Rennie
- Functional Neuroimaging Laboratory, School of PsychologyUniversity of NewcastleNewcastleAustralia
- Priority Research Centre for Stroke and Brain Injury, University of NewcastleNewcastleAustralia
- Priority Research Centre for Brain and Mental Health Research, University of NewcastleNewcastleAustralia
- Hunter Medical Research InstituteNewcastleAustralia
| | - Christopher R. Levi
- Priority Research Centre for Stroke and Brain Injury, University of NewcastleNewcastleAustralia
- Hunter Medical Research InstituteNewcastleAustralia
- School of Medicine and Public HealthUniversity of NewcastleNewcastleAustralia
| | - Rhoshel Lenroot
- Neuroscience Research Australia, University of New South WalesSydneyAustralia
| | - Mark W. Parsons
- Priority Research Centre for Stroke and Brain Injury, University of NewcastleNewcastleAustralia
- Hunter Medical Research InstituteNewcastleAustralia
- School of Medicine and Public HealthUniversity of NewcastleNewcastleAustralia
| | - Patricia T. Michie
- Functional Neuroimaging Laboratory, School of PsychologyUniversity of NewcastleNewcastleAustralia
- Priority Research Centre for Brain and Mental Health Research, University of NewcastleNewcastleAustralia
- Hunter Medical Research InstituteNewcastleAustralia
| | - Frini Karayanidis
- Functional Neuroimaging Laboratory, School of PsychologyUniversity of NewcastleNewcastleAustralia
- Priority Research Centre for Stroke and Brain Injury, University of NewcastleNewcastleAustralia
- Hunter Medical Research InstituteNewcastleAustralia
| |
Collapse
|
38
|
Tudela R, Muñoz-Moreno E, López-Gil X, Soria G. Effects of Orientation and Anisometry of Magnetic Resonance Imaging Acquisitions on Diffusion Tensor Imaging and Structural Connectomes. PLoS One 2017; 12:e0170703. [PMID: 28118397 PMCID: PMC5261617 DOI: 10.1371/journal.pone.0170703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/09/2017] [Indexed: 11/19/2022] Open
Abstract
Diffusion-weighted imaging (DWI) quantifies water molecule diffusion within tissues and is becoming an increasingly used technique. However, it is very challenging as correct quantification depends on many different factors, ranging from acquisition parameters to a long pipeline of image processing. In this work, we investigated the influence of voxel geometry on diffusion analysis, comparing different acquisition orientations as well as isometric and anisometric voxels. Diffusion-weighted images of one rat brain were acquired with four different voxel geometries (one isometric and three anisometric in different directions) and three different encoding orientations (coronal, axial and sagittal). Diffusion tensor scalar measurements, tractography and the brain structural connectome were analyzed for each of the 12 acquisitions. The acquisition direction with respect to the main magnetic field orientation affected the diffusion results. When the acquisition slice-encoding direction was not aligned with the main magnetic field, there were more artifacts and a lower signal-to-noise ratio that led to less anisotropic tensors (lower fractional anisotropic values), producing poorer quality results. The use of anisometric voxels generated statistically significant differences in the values of diffusion metrics in specific regions. It also elicited differences in tract reconstruction and in different graph metric values describing the brain networks. Our results highlight the importance of taking into account the geometric aspects of acquisitions, especially when comparing diffusion data acquired using different geometries.
Collapse
Affiliation(s)
- Raúl Tudela
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | | | | | - Guadalupe Soria
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
- Experimental MRI 7T Unit, IDIBAPS, Barcelona, Spain
| |
Collapse
|
39
|
Chen XR, Zeng JY, Shen ZW, Kong LM, Zheng WB. Diffusion Kurtosis Imaging Detects Microstructural Changes in the Brain after Acute Alcohol Intoxication in Rats. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4757025. [PMID: 28194415 PMCID: PMC5286477 DOI: 10.1155/2017/4757025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/26/2016] [Accepted: 12/12/2016] [Indexed: 02/05/2023]
Abstract
The aim of this study was to test the technical feasibility of diffusion kurtosis imaging (DKI) in the brain after acute alcohol intoxication. Diffusion tensor imaging (DTI) and DKI during 7.0 T MRI were performed in the frontal lobe and thalamus before and 30 min, 2 h, and 6 h after ethyl alcohol administration. Compared with controls, mean kurtosis values of the frontal lobe and thalamus first decreased by 44% and 38% within 30 min (p < 0.01 all) and then increased by 14% and 46% at 2 h (frontal lobe, p > 0.05; thalamus, p < 0.01) and by 29% and 68% at 6 h (frontal lobe, p < 0.05; thalamus, p < 0.01) after acute intake. Mean diffusivity decreased significantly in both the frontal lobe and the thalamus at various stages. However, fractional anisotropy decreased only in the frontal lobe, with no detectable change in the thalamus. This demonstrates that DKI possesses sufficient sensitivity for tracking pathophysiological changes at various stages associated with acute alcohol intoxication and may provide additional information that may be missed by conventional DTI parameters.
Collapse
Affiliation(s)
- Xi-ran Chen
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Jie-ying Zeng
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhi-Wei Shen
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Ling-mei Kong
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Wen-bin Zheng
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- *Wen-bin Zheng:
| |
Collapse
|
40
|
Hori M, Kamiya K, Irie R. Advanced diffusion-weighted magnetic resonance imaging in the evaluation of white matter axons in patients with idiopathic normal pressure hydrocephalus. Neural Regen Res 2017; 12:1974-1975. [PMID: 29323031 PMCID: PMC5784340 DOI: 10.4103/1673-5374.221149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
41
|
Effects of B Value on Quantification of Rapid Diffusion Kurtosis Imaging in Normal and Acute Ischemic Brain Tissues. J Comput Assist Tomogr 2017; 41:868-876. [DOI: 10.1097/rct.0000000000000621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
42
|
Özkan MB, Marterer R, Tscheuner S, Yildirim UM, Ozkan E. The role of kidney diffusion tensor magnetic resonance imaging in children. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2016. [DOI: 10.1016/j.ejrnm.2016.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
43
|
Abdoli S, Ho LC, Zhang JW, Dong CM, Lau C, Wu EX. Diffusion tensor imaging reveals changes in the adult rat brain following long-term and passive moderate acoustic exposure. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:4540. [PMID: 28040046 DOI: 10.1121/1.4972300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study investigated neuroanatomical changes following long-term acoustic exposure at moderate sound pressure level (SPL) under passive conditions, without coupled behavioral training. The authors utilized diffusion tensor imaging (DTI) to detect morphological changes in white matter. DTIs from adult rats (n = 8) exposed to continuous acoustic exposure at moderate SPL for 2 months were compared with DTIs from rats (n = 8) reared under standard acoustic conditions. Two distinct forms of DTI analysis were applied in a sequential manner. First, DTI images were analyzed using voxel-based statistics which revealed greater fractional anisotropy (FA) of the pyramidal tract and decreased FA of the tectospinal tract and trigeminothalamic tract of the exposed rats. Region of interest analysis confirmed (p < 0.05) that FA had increased in the pyramidal tract but did not show a statistically significant difference in the FA of the tectospinal or trigeminothalamic tract. The results of the authors show that long-term and passive acoustic exposure at moderate SPL increases the organization of white matter in the pyramidal tract.
Collapse
Affiliation(s)
- Sherwin Abdoli
- Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, California 90033, USA
| | - Leon C Ho
- Laboratory of Biomedical Imaging and Signal Processing, LB1037, 10/F, Laboratory Block, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Jevin W Zhang
- Laboratory of Biomedical Imaging and Signal Processing, LB1037, 10/F, Laboratory Block, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Celia M Dong
- Laboratory of Biomedical Imaging and Signal Processing, LB1037, 10/F, Laboratory Block, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Condon Lau
- Department of Physics and Materials Science, G6702, 6/F, Academic Building 1, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, LB1037, 10/F, Laboratory Block, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| |
Collapse
|
44
|
Connor M, Karunamuni R, McDonald C, White N, Pettersson N, Moiseenko V, Seibert T, Marshall D, Cervino L, Bartsch H, Kuperman J, Murzin V, Krishnan A, Farid N, Dale A, Hattangadi-Gluth J. Dose-dependent white matter damage after brain radiotherapy. Radiother Oncol 2016; 121:209-216. [PMID: 27776747 PMCID: PMC5136508 DOI: 10.1016/j.radonc.2016.10.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/16/2016] [Accepted: 10/02/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Brain radiotherapy is limited in part by damage to white matter, contributing to neurocognitive decline. We utilized diffusion tensor imaging (DTI) with multiple b-values (diffusion weightings) to model the dose-dependency and time course of radiation effects on white matter. MATERIALS AND METHODS Fifteen patients with high-grade gliomas treated with radiotherapy and chemotherapy underwent MRI with DTI prior to radiotherapy, and after months 1, 4-6, and 9-11. Diffusion tensors were calculated using three weightings (high, standard, and low b-values) and maps of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (λ∥), and radial diffusivity (λ⊥) were generated. The region of interest was all white matter. RESULTS MD, λ∥, and λ⊥ increased significantly with time and dose, with corresponding decrease in FA. Greater changes were seen at lower b-values, except for FA. Time-dose interactions were highly significant at 4-6months and beyond (p<.001), and the difference in dose response between high and low b-values reached statistical significance at 9-11months for MD, λ∥, and λ⊥ (p<.001, p<.001, p=.005 respectively) as well as at 4-6months for λ∥ (p=.04). CONCLUSIONS We detected dose-dependent changes across all doses, even <10Gy. Greater changes were observed at low b-values, suggesting prominent extracellular changes possibly due to vascular permeability and neuroinflammation.
Collapse
Affiliation(s)
- Michael Connor
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, United States
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, United States; Multimodal Imaging Laboratory, University of California San Diego, United States
| | - Carrie McDonald
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, United States; Department of Psychiatry, University of California San Diego, United States; Multimodal Imaging Laboratory, University of California San Diego, United States
| | - Nathan White
- Department of Radiology, University of California San Diego, United States; Multimodal Imaging Laboratory, University of California San Diego, United States
| | - Niclas Pettersson
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, United States
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, United States
| | - Tyler Seibert
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, United States; Multimodal Imaging Laboratory, University of California San Diego, United States
| | - Deborah Marshall
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, United States
| | - Laura Cervino
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, United States
| | - Hauke Bartsch
- Department of Radiology, University of California San Diego, United States; Multimodal Imaging Laboratory, University of California San Diego, United States
| | - Joshua Kuperman
- Department of Radiology, University of California San Diego, United States; Multimodal Imaging Laboratory, University of California San Diego, United States
| | - Vyacheslav Murzin
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, United States
| | - Anitha Krishnan
- Department of Radiology, University of California San Diego, United States; Multimodal Imaging Laboratory, University of California San Diego, United States
| | - Nikdokht Farid
- Department of Radiology, University of California San Diego, United States; Multimodal Imaging Laboratory, University of California San Diego, United States
| | - Anders Dale
- Department of Radiology, University of California San Diego, United States; Department of Psychiatry, University of California San Diego, United States; Department of Neurosciences, University of California San Diego, United States; Multimodal Imaging Laboratory, University of California San Diego, United States
| | - Jona Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, United States; Multimodal Imaging Laboratory, University of California San Diego, United States.
| |
Collapse
|
45
|
Koob M, Rousseau F, Laugel V, Meyer N, Armspach JP, Girard N, Dietemann JL. Cockayne syndrome: a diffusion tensor imaging and volumetric study. Br J Radiol 2016; 89:20151033. [PMID: 27643390 DOI: 10.1259/bjr.20151033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE Cockayne syndrome (CS) is a rare disorder characterized by severe brain atrophy, white matter (WM) hypomyelination and basal ganglia calcifications. This study aimed to quantify atrophy and WM abnormalities using diffusion tensor imaging (DTI) and volumetric analysis, to evaluate possible differences between CS subtypes and to determine whether DTI findings may correspond to a hypomyelinating disorder. METHODS 14 patients with CS and 14 controls underwent brain MRI including DTI and a volumetric three-dimensional T1 weighted sequence. DTI analysis was made through regions of interest within the whole brain to obtain fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values and in the left centrum semiovale to obtain DTI eigenvalues. The Student's t-test was used to compare patients and controls, and CS subtypes. Given the small number of patients with CS, they were pooled into two groups: moderate (CS1/CS3) and severe (CS2/cerebro-oculo-facio-skeletal syndrome). RESULTS Total brain volume in CS was reduced by 57%, predominantly in the infratentorial area (68%) (p < 0.001). Total brain volume reduction was greater in the severe group, but there was no difference in the degree of infratentorial atrophy in the two groups (p = 0.7). Mean FA values were lower, whereas ADC was higher in most of the WM in patients with CS (p < 0.05). ADC in the splenium of the corpus callosum and the posterior limb of the internal capsule and FA in the cerebral peduncles were significantly different between the two groups (p < 0.05). Mean ADC values corresponded to a hypomyelinating disorder. All DTI eigenvalues were higher in patients with CS, mainly for transverse diffusivity (+51%) (p < 0.001). CONCLUSION DTI and volumetric analysis provide quantitative information for the characterization of CS and may be particularly useful for evaluating therapeutic intervention. Advances in knowledge: DTI combined with volumetric analysis provides additional information useful for not only the characterization of CS and distinction of clinical subtypes but also monitoring of therapeutic interventions.
Collapse
Affiliation(s)
- Mériam Koob
- 1 Service de Radiopédiatrie/Imagerie 2, CHU de Strasbourg, Hôpital de Hautepierre, Strasbourg, France.,2 Laboratoire ICube, UMR 7357/FMTS/Université de Strasbourg-CNRS, Strasbourg, France
| | - François Rousseau
- 2 Laboratoire ICube, UMR 7357/FMTS/Université de Strasbourg-CNRS, Strasbourg, France.,3 Institut Mines-Telecom, Telecom Bretagne, INSERM, LATIM UMR, Brest, France
| | - Vincent Laugel
- 4 Service de Neurologie Pédiatrique, Hôpital de Hautepierre, Strasbourg, France
| | - Nicolas Meyer
- 5 Département de santé publique, d'Informatique médicale et de biostatistiques, CHU de Strasbourg, Hôpital civil, Strasbourg, France
| | - Jean-Paul Armspach
- 2 Laboratoire ICube, UMR 7357/FMTS/Université de Strasbourg-CNRS, Strasbourg, France
| | - Nadine Girard
- 6 Service de Neuroradiologie Diagnostique et Interventionnelle, APHM Timone, Aix Marseille Université, CRMBM, UMR CNRS, Marseille, France
| | - Jean-Louis Dietemann
- 2 Laboratoire ICube, UMR 7357/FMTS/Université de Strasbourg-CNRS, Strasbourg, France.,7 Service de Neuroradiologie/Imagerie 2, CHU de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| |
Collapse
|
46
|
Yeh FC, Verstynen TD. Converting Multi-Shell and Diffusion Spectrum Imaging to High Angular Resolution Diffusion Imaging. Front Neurosci 2016; 10:418. [PMID: 27683539 PMCID: PMC5021685 DOI: 10.3389/fnins.2016.00418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/29/2016] [Indexed: 12/14/2022] Open
Abstract
Multi-shell and diffusion spectrum imaging (DSI) are becoming increasingly popular methods of acquiring diffusion MRI data in a research context. However, single-shell acquisitions, such as diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), still remain the most common acquisition schemes in practice. Here we tested whether multi-shell and DSI data have conversion flexibility to be interpolated into corresponding HARDI data. We acquired multi-shell and DSI data on both a phantom and in vivo human tissue and converted them to HARDI. The correlation and difference between their diffusion signals, anisotropy values, diffusivity measurements, fiber orientations, connectivity matrices, and network measures were examined. Our analysis result showed that the diffusion signals, anisotropy, diffusivity, and connectivity matrix of the HARDI converted from multi-shell and DSI were highly correlated with those of the HARDI acquired on the MR scanner, with correlation coefficients around 0.8~0.9. The average angular error between converted and original HARDI was 20.7° at voxels with signal-to-noise ratios greater than 5. The network topology measures had less than 2% difference, whereas the average nodal measures had a percentage difference around 4~7%. In general, multi-shell and DSI acquisitions can be converted to their corresponding single-shell HARDI with high fidelity. This supports multi-shell and DSI acquisitions over HARDI acquisition as the scheme of choice for diffusion acquisitions.
Collapse
Affiliation(s)
- Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh Pittsburgh, PA, USA
| | - Timothy D Verstynen
- Department of Psychology and Center for the Neural Basis of Computation, Carnegie Mellon University Pittsburgh, PA, USA
| |
Collapse
|
47
|
Figini M, Scotti A, Marcuzzo S, Bonanno S, Padelli F, Moreno-Manzano V, García-Verdugo JM, Bernasconi P, Mantegazza R, Bruzzone MG, Zucca I. Comparison of Diffusion MRI Acquisition Protocols for the In Vivo Characterization of the Mouse Spinal Cord: Variability Analysis and Application to an Amyotrophic Lateral Sclerosis Model. PLoS One 2016; 11:e0161646. [PMID: 27560686 PMCID: PMC4999133 DOI: 10.1371/journal.pone.0161646] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 08/09/2016] [Indexed: 11/18/2022] Open
Abstract
Diffusion-weighted Magnetic Resonance Imaging (dMRI) has relevant applications in the microstructural characterization of the spinal cord, especially in neurodegenerative diseases. Animal models have a pivotal role in the study of such diseases; however, in vivo spinal dMRI of small animals entails additional challenges that require a systematical investigation of acquisition parameters. The purpose of this study is to compare three acquisition protocols and identify the scanning parameters allowing a robust estimation of the main diffusion quantities and a good sensitivity to neurodegeneration in the mouse spinal cord. For all the protocols, the signal-to-noise and contrast-to noise ratios and the mean value and variability of Diffusion Tensor metrics were evaluated in healthy controls. For the estimation of fractional anisotropy less variability was provided by protocols with more diffusion directions, for the estimation of mean, axial and radial diffusivity by protocols with fewer diffusion directions and higher diffusion weighting. Intermediate features (12 directions, b = 1200 s/mm2) provided the overall minimum inter- and intra-subject variability in most cases. In order to test the diagnostic sensitivity of the protocols, 7 G93A-SOD1 mice (model of amyotrophic lateral sclerosis) at 10 and 17 weeks of age were scanned and the derived diffusion parameters compared with those estimated in age-matched healthy animals. The protocols with an intermediate or high number of diffusion directions provided the best differentiation between the two groups at week 17, whereas only few local significant differences were highlighted at week 10. According to our results, a dMRI protocol with an intermediate number of diffusion gradient directions and a relatively high diffusion weighting is optimal for spinal cord imaging. Further work is needed to confirm these results and for a finer tuning of acquisition parameters. Nevertheless, our findings could be important for the optimization of acquisition protocols for preclinical and clinical dMRI studies on the spinal cord.
Collapse
Affiliation(s)
- Matteo Figini
- Scientific Direction, Fondazione IRCCS Istituto Neurologico “Carlo Besta” Milan, Italy
- * E-mail:
| | - Alessandro Scotti
- Scientific Direction, Fondazione IRCCS Istituto Neurologico “Carlo Besta” Milan, Italy
| | - Stefania Marcuzzo
- Neurology IV—Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Silvia Bonanno
- Neurology IV—Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Francesco Padelli
- Scientific Direction, Fondazione IRCCS Istituto Neurologico “Carlo Besta” Milan, Italy
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | - Pia Bernasconi
- Neurology IV—Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Renato Mantegazza
- Neurology IV—Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | | | - Ileana Zucca
- Scientific Direction, Fondazione IRCCS Istituto Neurologico “Carlo Besta” Milan, Italy
| |
Collapse
|
48
|
Wang D, Li YH, Fu J, Wang H. Diffusion kurtosis imaging study on temporal lobe after nasopharyngeal carcinoma radiotherapy. Brain Res 2016; 1648:387-393. [PMID: 27514570 DOI: 10.1016/j.brainres.2016.07.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/23/2016] [Accepted: 07/26/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Diffusion kurtosis imaging (DKI) is a MRI technique which can measure alterations in the diffusion of water molecules to reflect tissue changes in both white and grey matter. This study evaluated the potential of DKI for the early diagnosis of radiation-induced temporal lobe changes in the grey and white matter of the temporal lobe in patients with nasopharyngeal carcinoma (NPC). MATERIALS AND METHODS Sixty patients with NPC who had normal MRI brain scans were enrolled and underwent DKI at 1 week (n=20), 6 months (n=20) or 1 year (n=20) after radiotherapy; 20 normal control individuals were also evaluated. Nonlinear fitting routines and equations were used to calculate mean diffusion (MD) and mean kurtosis (MK) and fractional anisotropy (FA). Analysis of variance was used to compare the MK/MD/FA values of white and grey matter between groups. RESULTS Compared to the normal control group, grey and white matter MK values were significantly higher at 1 week after radiotherapy and significantly lower at 6 months and 1 year after radiotherapy in patients with NPC, whereas the grey and white matter MD values were significantly lower at 1 week after radiotherapy and returned to normal by 6 months and 1 year after radiotherapy. CONCLUSION DKI can be used to detect radiotherapy-induced changes in both the white and grey matter of temporal lobe in patients with NPC. MK and MD values may represent reliable indicators for the early diagnosis of radiation-induced temporal lobe changes in NPC.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Diagnostic and Interventional Radiology, The Sixth Affiliated People's Hospital, Shanghai Jiao Tong University, No. 600, Yi Shan Road, Shanghai 200233, China
| | - Yue-Hua Li
- Institute of Diagnostic and Interventional Radiology, The Sixth Affiliated People's Hospital, Shanghai Jiao Tong University, No. 600, Yi Shan Road, Shanghai 200233, China.
| | - Jie Fu
- Department of Radiotherapy, The Sixth Affiliated People's Hospital, Shanghai Jiao Tong University, No. 600, Yi Shan Road, Shanghai 200233, China
| | - He Wang
- Philips Research China, Philips Innovation Campus Shanghai, China
| |
Collapse
|
49
|
Brain structure alterations and cognitive impairment following repetitive mild head impact: An in vivo MRI and behavioral study in rat. Behav Brain Res 2016; 340:41-48. [PMID: 27498246 DOI: 10.1016/j.bbr.2016.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/24/2016] [Accepted: 08/04/2016] [Indexed: 02/05/2023]
Abstract
Mild traumatic brain injury (mTBI) or concussion is a common health issue. Several people repeatedly experience head impact milder than that causing concussion. The present study aimed to confirm the effects of such repeated impact on the brain structure and cognitive abilities. Rat models were established by closed skull weight-drop injury. The animals were anesthetized, subjected to single (s)-sham, s-mTBI, repetitive (r)-sham, and r-mTBI, and recovery times were recorded. MRI, including T2-weighted and diffusion tensor imaging (DTI), as well as, neurological severity scores (mNSS) were assessed for the dynamics of the brain structure and neurological function. Morris water maze (MWM) was used to evaluate the cognitive function. The histological examination of r-mTBI rats revealed the basis of structural changes in the brain. There was no significant difference in the recovery time, MRI, mNSS, and MWM between the s-sham and the s-mTBI groups. Compared with r-sham, r-mTBI induced significant differences in the following aspects. The recovery time was prolonged and beam balance test (BBT) in mNSS increased from day 5. MWM performances were worse even after the BBT was recovered. The volumes of the cortex (CT), hippocampus (HP), and lateral ventricle had changed from day 5, which reached a maximum at day 14. Abnormal DTI parameters were observed in CT, corpus callosum, and HP. Histological analyses showed that both in CT and HP, neuron counts reduced at the end of the experiment. Altogether, these findings indicate that non-symptomatic head injury may result in brain atrophy and cognitive impairment when occurred repeatedly.
Collapse
|
50
|
Brennan FH, Kurniawan ND, Vukovic J, Bartlett PF, Käsermann F, Arumugam TV, Basta M, Ruitenberg MJ. IVIg attenuates complement and improves spinal cord injury outcomes in mice. Ann Clin Transl Neurol 2016; 3:495-511. [PMID: 27386499 PMCID: PMC4931715 DOI: 10.1002/acn3.318] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/22/2022] Open
Abstract
Objective Traumatic spinal cord injury (SCI) elicits immediate neural cell death, axonal damage, and disruption of the blood–spinal cord barrier, allowing circulating immune cells and blood proteins into the spinal parenchyma. The inflammatory response to SCI involves robust complement system activation, which contributes to secondary injury and impairs neurological recovery. This study aimed to determine whether intravenous immunoglobulin (IVIg), an FDA‐approved treatment for inflammatory conditions, can scavenge complement activation products and improve recovery from contusive SCI. Methods We used functional testing, noninvasive imaging, and detailed postmortem analysis to assess whether IVIg therapy is effective in a mouse model of severe contusive SCI. Results IVIg therapy at doses of 0.5–2 g/kg improved the functional and histopathological outcomes from SCI, conferring protection against lesion enlargement, demyelination, central canal dilation, and axonal degeneration. The benefits of IVIg were detectable through noninvasive diffusion tensor imaging (DTI), with IVIg treatment counteracting the progressive SCI‐induced increase in radial diffusivity (RD) in white matter. Diffusion indices significantly correlated with the functional performance of individual mice and accurately predicted the degree of myelin preservation. Further experiments revealed that IVIg therapy reduced the presence of complement activation products and phagocytically active macrophages at the lesion site, providing insight as to its mechanisms of action. Interpretation Our findings highlight the potential of using IVIg as an immunomodulatory treatment for SCI, and the value of DTI to assess tissue damage and screen for the efficacy of candidate intervention strategies in preclinical models of SCI, both quantitatively and noninvasively.
Collapse
Affiliation(s)
- Faith H Brennan
- School of Biomedical Sciences The University of Queensland Brisbane 4072 Australia
| | - Nyoman D Kurniawan
- Centre for Advanced Imaging The University of Queensland Brisbane 4072 Australia
| | - Jana Vukovic
- School of Biomedical Sciences The University of Queensland Brisbane 4072 Australia; Queensland Brain Institute The University of Queensland Brisbane 4072 Australia
| | - Perry F Bartlett
- Queensland Brain Institute The University of Queensland Brisbane 4072 Australia
| | | | - Thiruma V Arumugam
- Department of Physiology Yong Loo Lin School of Medicine National University of Singapore 117597 Singapore
| | - Milan Basta
- BioVisions Inc. 9012 Wandering Trail Dr Potomac Maryland 20854 USA
| | - Marc J Ruitenberg
- School of Biomedical Sciences The University of Queensland Brisbane 4072 Australia; Queensland Brain Institute The University of Queensland Brisbane 4072 Australia; Trauma Critical Care and Recovery Brisbane Diamantina Health Partners The University of Queensland Brisbane 4072 Australia
| |
Collapse
|