1
|
Peterson BS, Kaur T, Sawardekar S, Colibazzi T, Hao X, Wexler BE, Bansal R. Aberrant hippocampus and amygdala morphology associated with cognitive deficits in schizophrenia. Front Cell Neurosci 2023; 17:1126577. [PMID: 36909281 PMCID: PMC9996667 DOI: 10.3389/fncel.2023.1126577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Background Working memory deficits are thought to be a primary disturbance in schizophrenia. We aimed to identify differences in morphology of the hippocampus and amygdala in patients with schizophrenia compared with healthy controls (HCs), and in patients who were either neuropsychologically near normal (NPNN) or neuropsychologically impaired (NPI). Morphological disturbances in the same subfields of the hippocampus and amygdala, but of greater magnitude in those with NPI, would strengthen evidence for the centrality of these limbic regions and working memory deficits in the pathogenesis of schizophrenia. Methods We acquired anatomical MRIs in 69 patients with schizophrenia (18 NPNN, 46 NPI) and 63 age-matched HC participants. We compared groups in hippocampus and amygdala surface morphologies and correlated morphological measures with clinical symptoms and working memory scores. Results Schizophrenia was associated with inward deformations of the head and tail of the hippocampus, protrusion of the hippocampal body, and widespread inward deformations of the amygdala. In the same regions where we detected the effects of schizophrenia, morphological measures correlated positively with the severity of symptoms and inversely with working memory performance. Patients with NPI displayed a similar pattern of anatomical abnormality compared to patients with NPNN. Conclusion Our findings indicate that anatomical abnormalities of the hippocampus relate to working memory performance and clinical symptoms in persons with schizophrenia. Moreover, NPNN and NPI patients may lie on a continuum of severity, both in terms of working memory abilities and altered brain structure, with NPI patients being more severe than NPNN patients in both domains.
Collapse
Affiliation(s)
- Bradley S. Peterson
- Children’s Hospital Los Angeles, Department of Psychiatry at the Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Bradley S. Peterson,
| | - Tejal Kaur
- Department of Psychiatry, Columbia College of Physicians and Surgeons, New York, NY, United States
| | - Siddhant Sawardekar
- Children’s Hospital Los Angeles, Department of Psychiatry at the Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tiziano Colibazzi
- Department of Psychiatry, Columbia College of Physicians and Surgeons, New York, NY, United States
| | - Xuejun Hao
- Department of Psychiatry, Columbia College of Physicians and Surgeons, New York, NY, United States
| | - Bruce E. Wexler
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Ravi Bansal
- Children’s Hospital Los Angeles, Department of Psychiatry at the Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
2
|
Roeske MJ, Lyu I, McHugo M, Blackford JU, Woodward ND, Heckers S. Incomplete Hippocampal Inversion: A Neurodevelopmental Mechanism for Hippocampal Shape Deformation in Schizophrenia. Biol Psychiatry 2022; 92:314-322. [PMID: 35487783 PMCID: PMC9339515 DOI: 10.1016/j.biopsych.2022.02.954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Shape analyses of patients with schizophrenia have revealed bilateral deformations of the anterolateral hippocampus, primarily localized to the CA1 subfield. Incomplete hippocampal inversion (IHI), an anatomical variant of the human hippocampus resulting from an arrest during neurodevelopment, is more prevalent and severe in patients with schizophrenia. We hypothesized that IHI would affect the shape of the hippocampus and contribute to hippocampal shape differences in schizophrenia. METHODS We studied 199 patients with schizophrenia and 161 healthy control participants with structural magnetic resonance imaging to measure the prevalence and severity of IHI. High-fidelity hippocampal surface reconstructions were generated with the SPHARM-PDM toolkit. We used general linear models in SurfStat to test for group shape differences, the impact of IHI on hippocampal shape variation, and whether IHI contributes to hippocampal shape abnormalities in schizophrenia. RESULTS Not including IHI as a main effect in our between-group comparison replicated well-established hippocampal shape differences in patients with schizophrenia localized to the CA1 subfield in the anterolateral hippocampus. Shape differences were also observed near the uncus and hippocampal tail. IHI was associated with outward displacements of the dorsal and ventral surfaces of the hippocampus and inward displacements of the medial and lateral surfaces. Including IHI as a main effect in our between-group comparison eliminated the bilateral shape differences in the CA1 subfield. Shape differences in the uncus persisted after including IHI. CONCLUSIONS IHI impacts hippocampal shape. Our results suggest IHI as a neurodevelopmental mechanism for the well-known shape differences, particularly in the CA1 subfield, in schizophrenia.
Collapse
Affiliation(s)
- Maxwell J Roeske
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Ilwoo Lyu
- Department of Computer Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Maureen McHugo
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
3
|
Choi S, Kim M, Park H, Kim T, Moon SY, Lho SK, Lee J, Kwon JS. Volume deficits in hippocampal subfields in unaffected relatives of schizophrenia patients with high genetic loading but without any psychiatric symptoms. Schizophr Res 2022; 240:125-131. [PMID: 34999371 DOI: 10.1016/j.schres.2021.12.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hippocampal volume changes have been reported in schizophrenia patients and their relatives and are proposed to contribute to the pathophysiology of schizophrenia. However, volume changes in the total hippocampus have not been consistently reported in relatives. The hippocampus consists of multiple subregions, and based on previous inconsistent results, subtle changes in specific subregions may occur in relatives. Here, we examined the subregion volumes in unaffected, high-functioning relatives (URs) without any psychiatric symptoms with high genetic loading with at least one first-degree relative diagnosed with schizophrenia and at least one or more other affected first- to third-degree relatives. METHODS We acquired structural magnetic resonance imaging data from 50 URs, 101 first-episode psychosis (FEP) patients, and 101 healthy controls (HCs). The cornu ammonis (CA), dentate gyrus, and subiculum subfields were automatically segmented using FreeSurfer 7.1.0. Each subregion volume was compared across the groups. RESULTS Compared with the HCs, the URs had a significant volume reduction in the left anterior CA (p = 0.039, Cohen's d = 0.480). In addition, the URs had a significantly larger right posterior subiculum (p = 0.001, Cohen's d = 0.541) than the FEP. CONCLUSIONS The smaller left anterior CA in the URs may reflect their genetic vulnerability to schizophrenia and supports previous findings suggesting specific vulnerability in this region. The volume differences between the URs and FEP patients in the right posterior subiculum may suggest that a smaller volume in this region may reflect a risk for schizophrenia other than genetic vulnerability.
Collapse
Affiliation(s)
- Sunah Choi
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyungyou Park
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Taekwan Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea; Department of Bio and Brain Engineering, Information & Electronics Research Institute, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sun-Young Moon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Silvia Kyungjin Lho
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Junhee Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Ge X, Zheng Y, Qiao Y, Pan N, Simon JP, Lee M, Jiang W, Kim H, Shi Y, Liu M. Hippocampal Asymmetry of Regional Development and Structural Covariance in Preterm Neonates. Cereb Cortex 2021; 32:4271-4283. [PMID: 34969086 DOI: 10.1093/cercor/bhab481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Premature birth is associated with a high prevalence of neurodevelopmental impairments in surviving infants. The hippocampus is known to be critical for learning and memory, yet the putative effects of hippocampal dysfunction remain poorly understood in preterm neonates. In particular, while asymmetry of the hippocampus has been well noted both structurally and functionally, how preterm birth impairs hippocampal development and to what extent the hippocampus is asymmetrically impaired by preterm birth have not been well delineated. In this study, we compared volumetric growth and shape development in the hippocampal hemispheres and structural covariance (SC) between hippocampal vertices and cortical thickness in cerebral cortex regions between two groups. We found that premature infants had smaller volumes of the right hippocampi only. Lower thickness was observed in the hippocampal head in both hemispheres for preterm neonates compared with full-term peers, though preterm neonates exhibited an accelerated age-related change of hippocampal thickness in the left hippocampi. The SC between the left hippocampi and the limbic lobe of the premature infants was severely impaired compared with the term-born neonates. These findings suggested that the development of the hippocampus during the third trimester may be altered following early extrauterine exposure with a high degree of asymmetry.
Collapse
Affiliation(s)
- Xinting Ge
- School of Information Science and Engineering, Shandong Normal University, 250014 Jinan, China.,Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.,School of Medical Imaging, Xuzhou Medical University, 221004 Xuzhou, China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, 250014 Jinan, China
| | - Yuchuan Qiao
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ningning Pan
- School of Information Science and Engineering, Shandong Normal University, 250014 Jinan, China
| | - Julia Pia Simon
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mitchell Lee
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Wenjuan Jiang
- College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Hosung Kim
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yonggang Shi
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mengting Liu
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
5
|
Roeske MJ, McHugo M, Vandekar S, Blackford JU, Woodward ND, Heckers S. Incomplete hippocampal inversion in schizophrenia: prevalence, severity, and impact on hippocampal structure. Mol Psychiatry 2021; 26:5407-5416. [PMID: 33437006 PMCID: PMC8589684 DOI: 10.1038/s41380-020-01010-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/09/2022]
Abstract
Incomplete hippocampal inversion (IHI) is an anatomical variant of the human brain resulting from an arrest in brain development, especially prevalent in the left hemisphere. We hypothesized that IHI is more common in schizophrenia and contributes to the well-known hippocampal structural differences. We studied 199 schizophrenia patients and 161 healthy control participants with 3 T MRI to establish IHI prevalence and the relationship of IHI with hippocampal volume and asymmetry. IHI was more prevalent (left hemisphere: 15% of healthy control participants, 27% of schizophrenia patients; right hemisphere: 4% of healthy control participants, 10% of schizophrenia patients) and more severe in schizophrenia patients compared to healthy control participants. Severe IHI cases were associated with a higher rate of automated segmentation failure. IHI contributed to smaller hippocampal volume and increased R > L volume asymmetry in schizophrenia. The increased prevalence and severity of IHI supports the neurodevelopmental model of schizophrenia. The impact of this developmental variant deserves further exploration in studies of the hippocampus in schizophrenia.
Collapse
Affiliation(s)
- Maxwell J Roeske
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Maureen McHugo
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Simon Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Research Health Scientist, Research and Development, Veterans Affairs Medical Center, Nashville, TN, USA
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
6
|
Plassard AJ, Bao S, McHugo M, Beason-Held L, Blackford JU, Heckers S, Landman BA. Automated, open-source segmentation of the Hippocampus and amygdala with the open Vanderbilt archive of the temporal lobe. Magn Reson Imaging 2021; 81:17-23. [PMID: 33901584 PMCID: PMC8715642 DOI: 10.1016/j.mri.2021.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022]
Abstract
Examining volumetric differences of the amygdala and anterior-posterior regions of the hippocampus is important for understanding cognition and clinical disorders. However, the gold standard manual segmentation of these structures is time and labor-intensive. Automated, accurate, and reproducible techniques to segment the hippocampus and amygdala are desirable. Here, we present a hierarchical approach to multi-atlas segmentation of the hippocampus head, body and tail and the amygdala based on atlases from 195 individuals. The Open Vanderbilt Archive of the temporal Lobe (OVAL) segmentation technique outperforms the commonly used FreeSurfer, FSL FIRST, and whole-brain multi-atlas segmentation approaches for the full hippocampus and amygdala and nears or exceeds inter-rater reproducibility for segmentation of the hippocampus head, body and tail. OVAL has been released in open-source and is freely available.
Collapse
Affiliation(s)
- Andrew J Plassard
- Vanderbilt University, Computer Science, 2301 Vanderbilt Place, Nashville, TN 37235, USA.
| | - Shunxing Bao
- Vanderbilt University, Computer Science, 2301 Vanderbilt Place, Nashville, TN 37235, USA.
| | - Maureen McHugo
- Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN 37212, USA.
| | - Lori Beason-Held
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, 31 Center Dr, #5C27 MSC 2292, Building 31, Room 5C27, Bethesda, Maryland, 20892-0001, USA.
| | - Jennifer U Blackford
- Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN 37212, USA.
| | - Stephan Heckers
- Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN 37212, USA.
| | - Bennett A Landman
- Vanderbilt University, Computer Science, 2301 Vanderbilt Place, Nashville, TN 37235, USA; Vanderbilt University, Electrical Engineering, 2301 Vanderbilt Place, Nashville, TN 37235, USA.
| |
Collapse
|
7
|
Mazumder AH, Barnett J, Lindberg N, Torniainen-Holm M, Lähteenvuo M, Lahdensuo K, Kerkelä M, Hietala J, Isometsä ET, Kampman O, Kieseppä T, Jukuri T, Häkkinen K, Cederlöf E, Haaki W, Kajanne R, Wegelius A, Männynsalo T, Niemi-Pynttäri J, Suokas K, Lönnqvist J, Niemelä S, Tiihonen J, Paunio T, Palotie A, Suvisaari J, Veijola J. Reaction Time and Visual Memory in Connection with Alcohol Use in Schizophrenia and Schizoaffective Disorder. Brain Sci 2021; 11:brainsci11060688. [PMID: 34071123 PMCID: PMC8224767 DOI: 10.3390/brainsci11060688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to explore the association between cognition and hazardous drinking and alcohol use disorder in schizophrenia and schizoaffective disorder. Cognition is more or less compromised in schizophrenia, and schizoaffective disorder and alcohol use might aggravate this phenomenon. The study population included 3362 individuals from Finland with diagnoses of schizophrenia or schizoaffective disorder. Hazardous drinking was screened with the AUDIT-C (Alcohol Use Disorders Identification Test for Consumption) screening tool. Alcohol use disorder (AUD) diagnoses were obtained from national registrar data. Participants performed two computerized tasks from the Cambridge Automated Neuropsychological Test Battery (CANTAB) on a tablet computer: The Five-Choice Serial Reaction Time Task (5-CSRTT) or the reaction time (RT) test and the Paired Associative Learning (PAL) test. The association between alcohol use and the RT and PAL tests was analyzed with log-linear regression and logistic regression, respectively. After adjustment for age, education, housing status, and the age at which the respondents had their first psychotic episodes, hazardous drinking was associated with a lower median RT in females and less variable RT in males, while AUD was associated with a poorer PAL test performance in terms of the total errors adjusted scores (TEASs) in females. Our findings of positive associations between alcohol and cognition in schizophrenia and schizoaffective disorder are unique.
Collapse
Affiliation(s)
- Atiqul Haq Mazumder
- Department of Psychiatry, University of Oulu, 90014 Oulu, Finland; (M.K.); (T.J.); (J.V.)
- Correspondence: or
| | - Jennifer Barnett
- Cambridge Cognition, University of Cambridge, Cambridge CB25 9TU, UK;
| | - Nina Lindberg
- Department of Psychiatry, Helsinki University Hospital, University of Helsinki, 00029 Helsinki, Finland; (N.L.); (E.I.); (T.K.); (A.W.); (T.P.)
| | - Minna Torniainen-Holm
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (M.T.-H.); (E.C.); (J.L.); (J.S.)
| | - Markku Lähteenvuo
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, 70240 Kuopio, Finland; (M.L.); (K.H.); (J.T.)
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
| | - Kaisla Lahdensuo
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
- Mehiläinen, Pohjoinen Hesperiankatu 17 C, 00260 Helsinki, Finland
| | - Martta Kerkelä
- Department of Psychiatry, University of Oulu, 90014 Oulu, Finland; (M.K.); (T.J.); (J.V.)
| | - Jarmo Hietala
- Department of Psychiatry, University of Turku, 20014 Turku, Finland; (J.H.); (S.N.)
- Department of Psychiatry, Turku University Hospital, 20521 Turku, Finland
| | - Erkki Tapio Isometsä
- Department of Psychiatry, Helsinki University Hospital, University of Helsinki, 00029 Helsinki, Finland; (N.L.); (E.I.); (T.K.); (A.W.); (T.P.)
| | - Olli Kampman
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland;
- Department of Psychiatry, Pirkanmaa Hospital District, 33521 Tampere, Finland
| | - Tuula Kieseppä
- Department of Psychiatry, Helsinki University Hospital, University of Helsinki, 00029 Helsinki, Finland; (N.L.); (E.I.); (T.K.); (A.W.); (T.P.)
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
- Mehiläinen, Pohjoinen Hesperiankatu 17 C, 00260 Helsinki, Finland
| | - Tuomas Jukuri
- Department of Psychiatry, University of Oulu, 90014 Oulu, Finland; (M.K.); (T.J.); (J.V.)
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
| | - Katja Häkkinen
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, 70240 Kuopio, Finland; (M.L.); (K.H.); (J.T.)
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
| | - Erik Cederlöf
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (M.T.-H.); (E.C.); (J.L.); (J.S.)
| | - Willehard Haaki
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
- Department of Psychiatry, University of Turku, 20014 Turku, Finland; (J.H.); (S.N.)
| | - Risto Kajanne
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
| | - Asko Wegelius
- Department of Psychiatry, Helsinki University Hospital, University of Helsinki, 00029 Helsinki, Finland; (N.L.); (E.I.); (T.K.); (A.W.); (T.P.)
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (M.T.-H.); (E.C.); (J.L.); (J.S.)
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
| | - Teemu Männynsalo
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
- Social Services and Health Care Sector, City of Helsinki, 00099 Helsinki, Finland
| | - Jussi Niemi-Pynttäri
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
- Social Services and Health Care Sector, City of Helsinki, 00099 Helsinki, Finland
| | - Kimmo Suokas
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland;
| | - Jouko Lönnqvist
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (M.T.-H.); (E.C.); (J.L.); (J.S.)
- Department of Psychiatry, University of Helsinki, 00014 Helsinki, Finland
| | - Solja Niemelä
- Department of Psychiatry, University of Turku, 20014 Turku, Finland; (J.H.); (S.N.)
- Department of Psychiatry, Turku University Hospital, 20521 Turku, Finland
| | - Jari Tiihonen
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, 70240 Kuopio, Finland; (M.L.); (K.H.); (J.T.)
- Department of Clinical Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
- Center for Psychiatry Research, Stockholm City Council, 11364 Stockholm, Sweden
| | - Tiina Paunio
- Department of Psychiatry, Helsinki University Hospital, University of Helsinki, 00029 Helsinki, Finland; (N.L.); (E.I.); (T.K.); (A.W.); (T.P.)
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (M.T.-H.); (E.C.); (J.L.); (J.S.)
- Department of Psychiatry, University of Helsinki, 00014 Helsinki, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (K.L.); (W.H.); (R.K.); (T.M.); (J.N.-P.); (K.S.); (A.P.)
- Mehiläinen, Pohjoinen Hesperiankatu 17 C, 00260 Helsinki, Finland
- Stanley Center for Psychiatric Research, The Broad Institute of MIT (Massachusetts Institute of Technology) and Harvard, Cambridge, MA 02142, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jaana Suvisaari
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (M.T.-H.); (E.C.); (J.L.); (J.S.)
| | - Juha Veijola
- Department of Psychiatry, University of Oulu, 90014 Oulu, Finland; (M.K.); (T.J.); (J.V.)
- Department of Psychiatry, Oulu University Hospital, 90220 Oulu, Finland
| |
Collapse
|
8
|
Costas-Carrera A, Garcia-Rizo C, Bitanihirwe B, Penadés R. Obstetric Complications and Brain Imaging in Schizophrenia: A Systematic Review. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:1077-1084. [PMID: 33012683 DOI: 10.1016/j.bpsc.2020.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/28/2022]
Abstract
Schizophrenia is a complex disorder in which clinical symptomatology typically reflects underlying brain abnormalities that coalign with multiple physical health comorbidities. The pathogenesis of schizophrenia involves the interplay between genetic and environmental factors, with obstetric complications widely described as key players in elevating the risk of psychosis. In this regard, understanding the anatomical and functional alterations associated with obstetric complications may help to elucidate potential mechanisms through which birth complications could contribute to schizophrenia pathogenesis. We conducted a systematic review of the extant literature describing brain abnormalities and obstetric complications in patients with schizophrenia and related disorders in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. A total of 471 studies were retrieved and screened, and 33 studies met inclusion criteria for our review. Studies varied considerably in their methods, with 11 studies employing computed tomography, 1 using magnetic resonance spectroscopy, and 21 using magnetic resonance imaging. The scientific quality of the included studies was assessed and documented. Obstetric complications increase the risk of provoking brain abnormalities. These abnormalities range from decreased gray matter volume and abnormal brain-ventricle ratios to a reduction of volume in limbic regions-which relate to what is commonly observed in schizophrenia. However, current evidence from neuroimaging studies remains scant in relation to establishing obstetric complications as an independent risk factor for schizophrenia.
Collapse
Affiliation(s)
- Ana Costas-Carrera
- Barcelona Clinic Schizophrenia Unit, Neuroscience Institute, Hospital Clinic, Barcelona, Spain.
| | - Clemente Garcia-Rizo
- Barcelona Clinic Schizophrenia Unit, Neuroscience Institute, Hospital Clinic, Barcelona, Spain; Agusti Pi i Sunyer Biomedical Research Institute, Barcelona, Spain; Psychiatry Unit, Department of Medicine, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| | - Byron Bitanihirwe
- Centre for Global Health, Trinity College, Dublin, Ireland; Department of Psychology, Trinity College, Dublin, Ireland; School of Medicine, Trinity College, Dublin, Ireland
| | - Rafael Penadés
- Barcelona Clinic Schizophrenia Unit, Neuroscience Institute, Hospital Clinic, Barcelona, Spain; Agusti Pi i Sunyer Biomedical Research Institute, Barcelona, Spain; Psychiatry Unit, Department of Medicine, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| |
Collapse
|
9
|
Mancini V, Sandini C, Padula MC, Zöller D, Schneider M, Schaer M, Eliez S. Positive psychotic symptoms are associated with divergent developmental trajectories of hippocampal volume during late adolescence in patients with 22q11DS. Mol Psychiatry 2020; 25:2844-2859. [PMID: 31164700 DOI: 10.1038/s41380-019-0443-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 12/17/2022]
Abstract
Low hippocampal volume is a consistent finding in schizophrenia and across the psychosis spectrum. However, there is a lack of studies investigating longitudinal hippocampal development and its relationship with psychotic symptoms. The 22q11.2 deletion syndrome (22q11DS) has proven to be a remarkable model for the prospective study of individuals at high risk of schizophrenia to unravel the pathophysiological processes predating the onset of psychosis. Repeated cerebral MRIs were acquired from 140 patients with 22q11DS (53 experiencing moderate-to-severe psychotic symptoms) and 135 healthy controls aged from 6 to 35 years and with up to 5 time points per participant. Hippocampal subfield analysis was conducted using FreeSurfer-v.6 and FIRST-FSL. Then, whole hippocampal and subfield volumes were compared across the groups. Relative to controls, patients with 22q11DS showed a remarkably lower volume of all subfields except for CA2/3. No divergent trajectories in hippocampal development were found. When comparing patients with 22q11DS exhibiting psychotic symptoms to those without psychosis, we detected a volume decrease during late adolescence, starting in CA1 and spreading to other subfields. Our findings suggested that hippocampal volume is consistently smaller in patients with 22q11DS. Moreover, we have demonstrated that patients with 22q11DS and psychotic symptoms undergo a further decrease in volume during adolescence, a vulnerable period for the emergence of psychosis. Interestingly, CA2/3, despite being affected in patients with psychotic symptoms, was the only area not reduced in patients with 22q11DS relative to controls, thus suggesting that its atrophy exclusively correlates with the presence of positive psychotic symptoms.
Collapse
Affiliation(s)
- Valentina Mancini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.
| | - Corrado Sandini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Maria C Padula
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.,Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Daniela Zöller
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.,Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maude Schneider
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.,Department of Neuroscience, Center for Contextual Psychiatry, Research Group Psychiatry, KU Leuven, Leuven, Belgium
| | - Marie Schaer
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.,Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
10
|
Volumetric and morphological characteristics of the hippocampus are associated with progression to schizophrenia in patients with first-episode psychosis. Eur Psychiatry 2020; 45:1-5. [DOI: 10.1016/j.eurpsy.2017.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 01/06/2023] Open
Abstract
AbstractBackground:Abnormalities in the hippocampus have been implicated in the pathophysiology of psychosis. However, it is still unclear whether certain abnormalities are a pre-existing vulnerability factor, a sign of disease progression or a consequence of environmental factors. We hypothesized that first-episode psychosis patients who progress to schizophrenia after one year of follow up will display greater volumetric and morphological changes from the very beginning of the disorder.Methods:We studied the hippocampus of 41 patients with a first-episode psychosis and 41 matched healthy controls. MRI was performed at the time of the inclusion in the study. After one year, the whole sample was reevaluated and divided in two groups depending on the diagnoses (schizophrenia vs. non-schizophrenia).Results:Patients who progressed to schizophrenia showed a significantly smaller left hippocampus volume than control group and no-schizophrenia group (F = 3.54; df = 2, 77; P = 0.03). We also found significant differences in the morphology of the anterior hippocampus (CA1) of patients with first-episode psychosis who developed schizophrenia compared with patients who did not.Conclusions:These results are consistent with the assumption of hyperfunctioning dopaminergic cortico-subcortical circuits in schizophrenia, which might be related with an alteration of subcortical structures, such as the hippocampus, along the course of the disease. According with these results, hippocampus abnormalities may serve as a prognostic marker of clinical outcome in patients with a first-episode psychosis.
Collapse
|
11
|
Kuo SS, Pogue-Geile MF. Variation in fourteen brain structure volumes in schizophrenia: A comprehensive meta-analysis of 246 studies. Neurosci Biobehav Rev 2019; 98:85-94. [PMID: 30615934 PMCID: PMC6401304 DOI: 10.1016/j.neubiorev.2018.12.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/21/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022]
Abstract
Despite hundreds of structural MRI studies documenting smaller brain volumes on average in schizophrenia compared to controls, little attention has been paid to group differences in the variability of brain volumes. Examination of variability may help interpret mean group differences in brain volumes and aid in better understanding the heterogeneity of schizophrenia. Variability in 246 MRI studies was meta-analyzed for 13 structures that have shown medium to large mean effect sizes (Cohen's d≥0.4): intracranial volume, total brain volume, lateral ventricles, third ventricle, total gray matter, frontal gray matter, prefrontal gray matter, temporal gray matter, superior temporal gyrus gray matter, planum temporale, hippocampus, fusiform gyrus, insula; and a control structure, caudate nucleus. No significant differences in variability in cortical/subcortical volumes were detected in schizophrenia relative to controls. In contrast, increased variability was found in schizophrenia compared to controls for intracranial and especially lateral and third ventricle volumes. These findings highlight the need for more attention to ventricles and detailed analyses of brain volume distributions to better elucidate the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Susan S Kuo
- Department of Psychology, University of Pittsburgh, 4209 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA.
| | - Michael F Pogue-Geile
- Department of Psychology, University of Pittsburgh, 4209 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA; Department of Psychology and Department of Psychiatry, University of Pittsburgh, 4207 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA.
| |
Collapse
|
12
|
Woodward ML, Gicas KM, Warburton DE, White RF, Rauscher A, Leonova O, Su W, Smith GN, Thornton AE, Vertinsky AT, Phillips AA, Goghari VM, Honer WG, Lang DJ. Hippocampal volume and vasculature before and after exercise in treatment-resistant schizophrenia. Schizophr Res 2018; 202:158-165. [PMID: 30539767 DOI: 10.1016/j.schres.2018.06.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/11/2018] [Accepted: 06/20/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Schizophrenia is associated with poor cognitive function and elevated cardiometabolic disease risk. These health concerns may exacerbate neurocognitive dysfunction associated with hippocampal abnormalities, particularly hippocampal volume reductions. Regular exercise is thought to improve symptom severity, reduce depression, and improve cognition in schizophrenia, and may trigger exercise-mediated hippocampal growth. The potential for the benefits of exercise for treatment-resistant schizophrenia patients has not been clearly assessed. This study aims to assess the effect of exercise on hippocampal plasticity and clinical outcomes in chronic schizophrenia. METHODS Seventeen DSM-IV criteria schizophrenia or schizoaffective disorder patients completed a customized moderate intensity 12-week aerobic or weight-bearing exercise program. Adherence rates were 83% ± 9.4%) with 70% of participants completing the entire exercise program. Concomitant neuroimaging, clinical and cognitive assessments were obtained at baseline and 12-weeks. RESULTS At follow-up, symptom severity scores (t(16) = -16.8, p. ≤ 0.0001) and social functioning (t(16) = 4.4, p. = 0.0004) improved. A trend for improved depression scores (t(16) = -2.0, p. = 0.06) with no change in anxiety, or extrapyramidal symptoms were seen. Hippocampal volume increased (t(16) = -2.54, p. = 0.02), specifically in the left CA-1 field (F(16) = -2.33, p. = 0.03). Hippocampal vascular volume was unchanged. Change in hippocampal volume and vascular volume was not significantly correlated with change in symptom severity or affect scores. CONCLUSIONS Adjunct exercise may accelerate symptom improvement in treatment-resistant psychosis patients. While the underlying mechanism remains unclear, these results indicate that chronic schizophrenia patients experience hippocampal plasticity in response to exercise. STUDY REGISTRATION Clinical Trials.govNCT01392885.
Collapse
Affiliation(s)
- M L Woodward
- Department of Radiology, University of British Columbia, Canada
| | - K M Gicas
- Department of Psychology, Simon Fraser University, Canada
| | - D E Warburton
- School of Kinesiology, University of British Columbia, Canada; Experimental Medicine Program, University of British Columbia, Canada
| | - R F White
- Department of Psychiatry, University of British Columbia, Canada
| | - A Rauscher
- Department of Pediatrics, University of British Columbia, Canada
| | - O Leonova
- Department of Psychiatry, University of British Columbia, Canada
| | - W Su
- Department of Psychiatry, University of British Columbia, Canada
| | - G N Smith
- Department of Psychiatry, University of British Columbia, Canada
| | - A E Thornton
- Department of Pediatrics, University of British Columbia, Canada
| | - A T Vertinsky
- Department of Radiology, University of British Columbia, Canada
| | - A A Phillips
- School of Kinesiology, University of British Columbia, Canada
| | - V M Goghari
- Department of Psychology & Graduate Department of Psychological Clinical Science, University of Toronto, Canada
| | - W G Honer
- Department of Psychiatry, University of British Columbia, Canada
| | - D J Lang
- Department of Radiology, University of British Columbia, Canada.
| |
Collapse
|
13
|
Ho BC, Barry AB, Koeppel JA. Impulsivity in unaffected adolescent biological relatives of schizophrenia patients. J Psychiatr Res 2018; 97:47-53. [PMID: 29175297 PMCID: PMC5742548 DOI: 10.1016/j.jpsychires.2017.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/03/2017] [Accepted: 11/17/2017] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Although schizophrenia is not a prototypic impulse-control disorder, patients report more impulsive behaviors, have higher rates of substance use, and show dysfunction in brain circuits that underlie impulsivity. We investigate impulsivity in unaffected biological relatives of schizophrenia patients to further understand the relationships between schizophrenia risk and impulse control during adolescence. METHOD Group differences in impulsivity (UPPS-P Impulsive Behavior Scale and delay discounting) were tested in 210 adolescents contrasting 39 first- and 53 second-degree biological relatives of schizophrenia patients, and 118 subjects with no schizophrenia family history (NSFH). RESULTS Compared to NSFH adolescents and to second-degree relatives, first-degree relatives of schizophrenia patients had increased impulsivity-related behaviors (higher UPPS-P Perseverance, Positive Urgency and Premeditation subscale scores) and greater preference for immediate rewards (smaller AUC and larger discounting constant). Second-degree relatives did not differ significantly from NSFH adolescents on self-report impulsive behaviors or on measures of impulsive decision-making. These group differences remained even after careful consideration of potential confounding factors. CONCLUSION Impulsivity is associated with schizophrenia risk, and its severity increases with greater familial relatedness to the schizophrenia proband. Additional studies are needed to understand the role impulsivity may play in mediating schizophrenia susceptibility during adolescence.
Collapse
Affiliation(s)
- Beng-Choon Ho
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| | - Amy B Barry
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Julie A Koeppel
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
14
|
Mitra P, Rastogi A, Rajpoot M, Kumar A, Srivastava V. A QSAR model of Olanzapine derivatives as potential inhibitors for 5-HT2A Receptor. Bioinformation 2017; 13:339-342. [PMID: 29162966 PMCID: PMC5680715 DOI: 10.6026/97320630013339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 07/23/2017] [Indexed: 11/23/2022] Open
Abstract
Schizophrenia is a complex, chronic mental disorder, affecting about 21 million people worldwide. It is characterized by symptoms, including distortions in thinking, perception, emotions, disorganized speech, sense of self and behavior. Recently, a numbers of marketed drugs for Schizophrenia are available against dopamine D2 and serotonin 5-HT2A receptors. Here, we docked Olanzapine derivatives (collected from literature) with 5-HT2A Receptor using the program AutoDock 4.2. The docked protein inhibitor complex structure was optimized using molecular dynamics simulation for 5ps with the CHARMM-22 force field using NAMD (NAnoscale Molecular Dynamics program) incorporated in visual molecular dynamics (VMD 1.9.2) and then evaluating the stability of complex structure by calculating RMSD values. NAMD is a parallel, object-oriented molecular dynamics code designed for high-performance simulation of large biomolecular systems. A quantitative structure activity relationship (QSAR) model was built using energy-based descriptors as independent variable and pKi value as dependent variable of eleven known Olanzapine derivatives with 5-HT2A Receptor, yielding correlation coefficient r2 of 0.63861. The predictive performance of QSAR model was assessed using different crossvalidation procedures. Our results suggest that a ligand-receptor binding interaction for 5-HT2A receptor using a QSAR model is promising approach to design more potent 5-HT2A receptor inhibitors prior to their synthesis.
Collapse
Affiliation(s)
- Pooja Mitra
- Department of Biotechnology, Rama University Uttar Pradesh, Kanpur, India
| | - Aishwarya Rastogi
- Department of Biotechnology, Rama University Uttar Pradesh, Kanpur, India
| | - Mayank Rajpoot
- Department of Biotechnology, Rama University Uttar Pradesh, Kanpur, India
| | - Ajay Kumar
- Department of Biotechnology, Rama University Uttar Pradesh, Kanpur, India
| | - Vivek Srivastava
- Department of Biotechnology, Rama University Uttar Pradesh, Kanpur, India
| |
Collapse
|
15
|
Hill K, Bolo N, Sarvode Mothi S, Lizano P, Guimond S, Tandon N, Molokotos E, Keshavan M. Subcortical surface shape in youth at familial high risk for schizophrenia. Psychiatry Res Neuroimaging 2017; 267:36-44. [PMID: 28734178 DOI: 10.1016/j.pscychresns.2017.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/29/2017] [Accepted: 07/14/2017] [Indexed: 01/11/2023]
Abstract
Abnormalities in the subcortical brain regions that support cognitive functions have been reported in schizophrenia. Relatives of those with schizophrenia often present with psychosis-like traits (schizotypy) and similar cognition as those with schizophrenia. To evaluate the relationships between subcortical structure, schizotypy, and cognitive function, we assessed shape and volume of the hippocampus, amygdala and thalamus in untreated youth at familial high risk for schizophrenia (HRSZ). The sample consisted of 66 HRSZ and 69 age-matched healthy controls (HC). Subjects' cognitive functions and schizotypy were assessed, and T1-weighted brain MRI were analyzed using the FSL software FIRST. The right hippocampus and right amygdala showed significantly increased concavity (inward displacement) in HRSZ compared to HC. While regional subcortical shape displacements were significantly correlated with sustained attention and executive function scores in HC, fewer correlations were seen in HRSZ. This suggests a possible alteration of the local structure-function relationship in subcortical brain regions of HRSZ for these cognitive domains, which could be related to anomalous plasticity.
Collapse
Affiliation(s)
- Kathryn Hill
- Department of Psychiatry, Beth Israel Deaconess Medical Center, 75 Fenwood Rd, Boston, MA 02115, USA
| | - Nicolas Bolo
- Department of Psychiatry, Beth Israel Deaconess Medical Center, 75 Fenwood Rd, Boston, MA 02115, USA; Department of Psychiatry, Harvard Medical School, 75 Fenwood Rd, Boston, MA 02115, USA.
| | - Suraj Sarvode Mothi
- Department of Psychiatry, Beth Israel Deaconess Medical Center, 75 Fenwood Rd, Boston, MA 02115, USA; Department of Psychiatry, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, 75 Fenwood Rd, Boston, MA 02115, USA; Department of Psychiatry, Harvard Medical School, 75 Fenwood Rd, Boston, MA 02115, USA
| | - Synthia Guimond
- Department of Psychiatry, Beth Israel Deaconess Medical Center, 75 Fenwood Rd, Boston, MA 02115, USA; Department of Psychiatry, Harvard Medical School, 75 Fenwood Rd, Boston, MA 02115, USA
| | - Neeraj Tandon
- Department of Psychiatry, Beth Israel Deaconess Medical Center, 75 Fenwood Rd, Boston, MA 02115, USA; Baylor College of Medicine, Houston, TX, USA
| | - Elena Molokotos
- Department of Psychiatry, Beth Israel Deaconess Medical Center, 75 Fenwood Rd, Boston, MA 02115, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, 75 Fenwood Rd, Boston, MA 02115, USA; Department of Psychiatry, Harvard Medical School, 75 Fenwood Rd, Boston, MA 02115, USA
| |
Collapse
|
16
|
Onwuameze OE, Titone D, Ho BC. Transitive inference deficits in unaffected biological relatives of schizophrenia patients. Schizophr Res 2016; 175:64-71. [PMID: 27050477 PMCID: PMC4958543 DOI: 10.1016/j.schres.2016.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/03/2016] [Accepted: 02/07/2016] [Indexed: 10/22/2022]
Abstract
Currently available treatments have limited efficacy in remediating cognitive impairment in schizophrenia. Efforts to facilitate cognition-enhancing drug discovery recommend the use of varied experimental cognitive paradigms (including relational memory) as assessment tools in clinical drug trials. Although relational memory deficits are increasingly being recognized as a reliable cognitive marker of schizophrenia, relational memory performance among unaffected biological relatives remains unknown. Therefore, we evaluated 73 adolescents or young adults (22 first- and 26 second-degree relatives of schizophrenia patients and 25 healthy controls (HC)) using a well-validated transitive inference (TI) experimental paradigm previously used to demonstrate relational memory impairment in schizophrenia. We found that TI deficits were associated with schizophrenia risk with first-degree relatives showing greater impairment than second-degree relatives. First-degree relatives had poorer TI performance with significantly lower accuracy and longer response times than HC when responding to TI probe pairs. Second-degree relatives had significantly quicker response times than first-degree relatives and were more similar to HC in TI performance. We further explored the relationships between TI performance and neurocognitive domains implicated in schizophrenia. Among HC, response times were inversely correlated with FSIQ, verbal learning, processing speed, linguistic abilities and working memory. In contrast, relatives (first-degree in particular) had a differing pattern of TI-neurocognition relationships, which suggest that different brain circuits may be used when relatives encode and retrieve relational memory. Our finding that unaffected biological relatives of schizophrenia patients have TI deficits lends further support for the use of relational memory construct in future pro-cognition drug studies.
Collapse
Affiliation(s)
- Obiora E. Onwuameze
- Department of Psychiatry, Southern Illinois University Medical
School, Springfield, IL, USA
| | - Debra Titone
- Department of Psychology, McGill University, Montreal, QC,
Canada
| | - Beng-Choon Ho
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
17
|
Dean DJ, Orr JM, Bernard JA, Gupta T, Pelletier-Baldelli A, Carol EE, Mittal VA. Hippocampal Shape Abnormalities Predict Symptom Progression in Neuroleptic-Free Youth at Ultrahigh Risk for Psychosis. Schizophr Bull 2016; 42:161-9. [PMID: 26113620 PMCID: PMC4681548 DOI: 10.1093/schbul/sbv086] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Hippocampal abnormalities have been widely studied in schizophrenia spectrum populations including those at ultrahigh risk (UHR) for psychosis. There have been inconsistent findings concerning hippocampal morphology prior to and during the transition to psychosis, and little is known about how specific subregions are related to the symptom progression. METHODS A total of 80 participants (38 UHR and 42 healthy controls) underwent a 3T MRI scan, as well as structured clinical interviews. Shape analysis of hippocampi was conducted with FSL/FIRST vertex analysis to yield a localized measure of shape differences between groups. A subgroup of the sample (24 UHR and 24 controls) also returned for a 12-month clinical follow-up assessment. RESULTS The UHR group exhibited smaller hippocampal volumes bilaterally, and shape analysis revealed significant inversion in the left ventral posterior hippocampus in the UHR group. Greater inversion in this subregion was related to elevated symptomatology at baseline and increased positive symptoms, negative symptoms, and impaired tolerance to normal stress 12 months later. These results did not hold when left hippocampal volume was used as a predictor instead. DISCUSSION This represents the first study to use vertex analysis in a UHR sample and results suggest that abnormalities in hippocampal shape appear to reflect underlying pathogenic processes driving the progression of illness. These findings suggest that examining shape and volume may provide an important new perspective for our conception of brain alterations in the UHR period.
Collapse
Affiliation(s)
- Derek J Dean
- Department of Psychology and Neuroscience, Center for Neuroscience, and
| | - Joseph M Orr
- Institute for Cognitive Science, University of Colorado Boulder, Boulder, CO
| | | | - Tina Gupta
- Department of Psychology and Neuroscience
| | | | | | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL
| |
Collapse
|
18
|
Cole JH, Filippetti ML, Allin MPG, Walshe M, Nam KW, Gutman BA, Murray RM, Rifkin L, Thompson PM, Nosarti C. Subregional Hippocampal Morphology and Psychiatric Outcome in Adolescents Who Were Born Very Preterm and at Term. PLoS One 2015; 10:e0130094. [PMID: 26091104 PMCID: PMC4474892 DOI: 10.1371/journal.pone.0130094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 05/15/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The hippocampus has been reported to be structurally and functionally altered as a sequel of very preterm birth (<33 weeks gestation), possibly due its vulnerability to hypoxic-ischemic damage in the neonatal period. We examined hippocampal volumes and subregional morphology in very preterm born individuals in mid- and late adolescence and their association with psychiatric outcome. METHODS Structural brain magnetic resonance images were acquired at two time points (baseline and follow-up) from 65 ex-preterm adolescents (mean age = 15.5 and 19.6 years) and 36 term-born controls (mean age=15.0 and 19.0 years). Hippocampal volumes and subregional morphometric differences were measured from manual tracings and with three-dimensional shape analysis. Psychiatric outcome was assessed with the Rutter Parents' Scale at baseline, the General Health Questionnaire at follow-up and the Peters Delusional Inventory at both time points. RESULTS In contrast to previous studies we did not find significant difference in the cross-sectional or longitudinal hippocampal volumes between individuals born preterm and controls, despite preterm individual having significantly smaller whole brain volumes. Shape analysis at baseline revealed subregional deformations in 28% of total bilateral hippocampal surface, reflecting atrophy, in ex-preterm individuals compared to controls, and in 22% at follow-up. In ex-preterm individuals, longitudinal changes in hippocampal shape accounted for 11% of the total surface, while in controls they reached 20%. In the whole sample (both groups) larger right hippocampal volume and bilateral anterior surface deformations at baseline were associated with delusional ideation scores at follow-up. CONCLUSIONS This study suggests a dynamic association between cross-sectional hippocampal volumes, longitudinal changes and surface deformations and psychosis proneness.
Collapse
Affiliation(s)
- James H. Cole
- The Computational, Cognitive & Clinical Neuroimaging Laboratory, Department of Medicine, Imperial College London, Burlington Danes Building, Du Cane Road, London, United Kingdom
| | - Maria Laura Filippetti
- Department of Psychosis Studies, Institute of Psychiatry, King’s Health Partners, King’s College London, De Crespigny Park, London, United Kingdom
| | - Matthew P. G. Allin
- Department of Psychosis Studies, Institute of Psychiatry, King’s Health Partners, King’s College London, De Crespigny Park, London, United Kingdom
| | - Muriel Walshe
- Department of Psychosis Studies, Institute of Psychiatry, King’s Health Partners, King’s College London, De Crespigny Park, London, United Kingdom
| | - Kie Woo Nam
- Department of Psychosis Studies, Institute of Psychiatry, King’s Health Partners, King’s College London, De Crespigny Park, London, United Kingdom
| | - Boris A. Gutman
- Imaging Genetics Center, University of Southern California, 4676 Admiralty Way, Marina del Rey, California, United States of America
| | - Robin M. Murray
- Department of Psychosis Studies, Institute of Psychiatry, King’s Health Partners, King’s College London, De Crespigny Park, London, United Kingdom
| | - Larry Rifkin
- Department of Psychosis Studies, Institute of Psychiatry, King’s Health Partners, King’s College London, De Crespigny Park, London, United Kingdom
| | - Paul M. Thompson
- Imaging Genetics Center, University of Southern California, 4676 Admiralty Way, Marina del Rey, California, United States of America
| | - Chiara Nosarti
- Department of Psychosis Studies, Institute of Psychiatry, King’s Health Partners, King’s College London, De Crespigny Park, London, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Roalf DR, Vandekar SN, Almasy L, Ruparel K, Satterthwaite TD, Elliott MA, Podell J, Gallagher S, Jackson CT, Prasad K, Wood J, Pogue-Geile MF, Nimgaonkar VL, Gur RC, Gur RE. Heritability of subcortical and limbic brain volume and shape in multiplex-multigenerational families with schizophrenia. Biol Psychiatry 2015; 77:137-46. [PMID: 24976379 PMCID: PMC4247350 DOI: 10.1016/j.biopsych.2014.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 04/25/2014] [Accepted: 05/21/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Brain abnormalities of subcortical and limbic nuclei are common in patients with schizophrenia, and variation in these structures is considered a putative endophenotype for the disorder. Multiplex-multigenerational families with schizophrenia provide an opportunity to investigate the impact of shared genetic ancestry, but these families have not been previously examined to study structural brain abnormalities. We estimate the heritability of subcortical and hippocampal brain volumes in multiplex-multigenerational families and the heritability of subregions using advanced shape analysis. METHODS The study comprised 439 participants from two sites who underwent 3T structural magnetic resonance imaging. The participants included 190 European-Americans from 32 multiplex-multigenerational families with schizophrenia and 249 healthy comparison subjects. Subcortical and hippocampal volume and shape were measured in 14 brain structures. Heritability was estimated for volume and shape. RESULTS Volume and shape were heritable in families. Estimates of heritability in subcortical and limbic volumes ranged from .45 in the right hippocampus to .84 in the left putamen. The shape of these structures was heritable (range, .40-.49), and specific subregional shape estimates of heritability tended to exceed heritability estimates of volume alone. CONCLUSIONS These results demonstrate that volume and shape of subcortical and limbic brain structures are potential endophenotypic markers in schizophrenia. The specificity obtained using shape analysis may improve selection of imaging phenotypes that better reflect the underlying neurobiology. Our findings can aid in the identification of specific genetic targets that affect brain structure and function in schizophrenia.
Collapse
|
20
|
Hippocampal and amygdalar local structural differences in elderly patients with schizophrenia. Am J Geriatr Psychiatry 2015; 23:47-58. [PMID: 24534522 PMCID: PMC4382088 DOI: 10.1016/j.jagp.2014.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 01/06/2014] [Accepted: 01/17/2014] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Morphological abnormalities have been reported for the hippocampi and amygdalae in young schizophrenia patients, but very little is known about the pattern of abnormalities in elderly schizophrenia patients. Here we investigated local structural differences in the hippocampi and amygdalae of elderly schizophrenia patients compared with healthy elderly subjects. We also related these differences to clinical symptom severity. DESIGN 20 schizophrenia patients (mean age: 67.4 ± 6.2 years; Mini-Mental State Exam: 22.8 ± 4.4) and 20 healthy elderly subjects (70.3 ± 7.5 years; 29.0 ± 1.1) underwent high resolution magnetic resonance imaging of the brain. The Radial Atrophy Mapping technique was used to reconstruct the 3D shape of the amygdala and the hippocampus. Local differences in tissue reductions were computed between groups and permutation tests were run to correct for multiple comparisons, in statistical maps thresholded at p = 0.05. RESULTS Significant tissue reduction was observed bilaterally in the amygdala and hippocampus of schizophrenia patients. The basolateral-ventral-medial amygdalar nucleus showed the greatest involvement, with over 30% local tissue reduction. The centro-medial, cortical, and lateral nuclei were also atrophic in patients. The hippocampus showed significant tissue loss in the medio-caudal and antero-lateral aspects of CA1, and in medial section of its left head (pre- and para-subiculum). In the left amygdala and hippocampus, local tissue volumes were significantly correlated with negative symptoms. CONCLUSIONS Tissue loss and altered morphology were found in elderly schizophrenia patients. Tissue loss mapped to amygdalo-hippocampal subregions known to have bidirectional and specific connections with frontal cortical and limbic structures and was related to clinical severity.
Collapse
|
21
|
Seidman LJ, Rosso IM, Thermenos HW, Makris N, Juelich R, Gabrieli JDE, Faraone SV, Tsuang MT, Whitfield-Gabrieli S. Medial temporal lobe default mode functioning and hippocampal structure as vulnerability indicators for schizophrenia: a MRI study of non-psychotic adolescent first-degree relatives. Schizophr Res 2014; 159:426-34. [PMID: 25308834 DOI: 10.1016/j.schres.2014.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 08/29/2014] [Accepted: 09/04/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND Clues to the etiology and pathophysiology of schizophrenia can be examined in their first-degree relatives because they are genetically related to an ill family member, and have few confounds like medications. Brain abnormalities observed in young relatives are neurobiological indicators of vulnerability to illness. We examined the hypothesis that the hippocampus and parahippocampus are structurally abnormal and are related to default mode network (DMN) function and cognitive abnormalities in relatives of probands. METHODS Subjects were 27 non-psychotic, first-degree relatives of individuals diagnosed with schizophrenia, and 48 normal controls, ages 13 to 28, undergoing high-resolution magnetic resonance imaging (MRI) at 1.5 T. After structural scan acquisition a subset of subjects performed 2-back working memory (WM) and 0-back tasks during functional MRI (fMRI) alternating with rest. fMRI data were analyzed using SPM-8. Volumes of total cerebrum, hippocampus, and parahippocampal gyrus were measured using semi-automated morphometry. RESULTS Compared to controls, relatives had significantly smaller left hippocampi, without volumetric reduction in the parahippocampus. Relatives showed significantly less suppression of DMN activity in the left parahippocampal gyrus. Left hippocampal and posterior parahippocampal volumes were inversely and significantly associated with DMN processing (smaller volumes, less suppression) in relatives. Task suppression in parahippocampal gyrus significantly correlated with WM performance within the relatives. CONCLUSION Results support the hypothesis that the vulnerability to schizophrenia includes smaller hippocampi and DMN suppression deficits, and these are associated with poorer WM. Findings suggest a primary structural, neurodevelopmental, medial temporal lobe abnormality associated with altered DMN function independent of psychosis.
Collapse
Affiliation(s)
- Larry J Seidman
- Harvard Medical School, Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA 02115, United States; Harvard Medical School, Department of Psychiatry at Massachusetts General Hospital, Boston, MA 02114, United States; Martinos Center for Biomedical Imaging, Massachusetts Institute of Technology, Harvard Medical School and Massachusetts General Hospital, Charlestown, MA 02129, United States; Harvard Institute of Psychiatric Epidemiology and Genetics, Boston, MA 02115, United States.
| | - Isabelle M Rosso
- Harvard Medical School Department of Psychiatry at McLean Hospital, Belmont, MA 02478, United States
| | - Heidi W Thermenos
- Harvard Medical School, Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA 02115, United States; Harvard Medical School, Department of Psychiatry at Massachusetts General Hospital, Boston, MA 02114, United States; Martinos Center for Biomedical Imaging, Massachusetts Institute of Technology, Harvard Medical School and Massachusetts General Hospital, Charlestown, MA 02129, United States; Harvard Institute of Psychiatric Epidemiology and Genetics, Boston, MA 02115, United States
| | - Nikos Makris
- Harvard Medical School, Department of Psychiatry at Massachusetts General Hospital, Boston, MA 02114, United States; Martinos Center for Biomedical Imaging, Massachusetts Institute of Technology, Harvard Medical School and Massachusetts General Hospital, Charlestown, MA 02129, United States; Harvard Medical School Departments of Neurology and Radiology Services, Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA 02129, United States
| | - Richard Juelich
- Harvard Medical School, Department of Psychiatry at Massachusetts General Hospital, Boston, MA 02114, United States
| | - John D E Gabrieli
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, Harvard-MIT Division of Health Sciences and Technology, Poitras Center for Affective Disorders Research, Cambridge, MA 02139, United States
| | - Stephen V Faraone
- Harvard Institute of Psychiatric Epidemiology and Genetics, Boston, MA 02115, United States; SUNY Genetics Research Program, Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Ming T Tsuang
- Harvard Institute of Psychiatric Epidemiology and Genetics, Boston, MA 02115, United States; University of California, San Diego, Department of Psychiatry, Institute of Behavior Genomics, La Jolla, CA 92093, United States
| | - Susan Whitfield-Gabrieli
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, Harvard-MIT Division of Health Sciences and Technology, Poitras Center for Affective Disorders Research, Cambridge, MA 02139, United States
| |
Collapse
|
22
|
Ganzola R, Maziade M, Duchesne S. Hippocampus and amygdala volumes in children and young adults at high-risk of schizophrenia: research synthesis. Schizophr Res 2014; 156:76-86. [PMID: 24794883 DOI: 10.1016/j.schres.2014.03.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Studies have reported hippocampal and amygdala volume abnormalities in schizophrenic patients. It is necessary to explore the potential for these structures as early disease markers in subjects at high risk (HR) of schizophrenia. METHODS We performed a review of 29 magnetic resonance imaging (MRI) studies measuring hippocampal and amygdala volumes in subjects at HR for schizophrenia. We reclassified subjects in 3 new HR categories: presence of only risk symptoms (psychotic moderate symptoms), presence of only risk factors (genetic, developmental or environmental), and presence of combined risk symptoms/factors. RESULTS Hippocampal volume reductions were detected in subjects with first episode (FE) of psychosis, in all young adults and in adolescents at HR of schizophrenia. The loss of tissue was mainly located in the posterior part of hippocampus and the right side seems more vulnerable in young adults with only risk symptoms. Instead, the anterior sector seems more involved in HR subjects with genetic risks. Abnormal amygdala volumes were found in FE subjects, in children with combined risk symptoms/factors and in older subjects using different inclusion criteria, but not in young adults. CONCLUSION Hippocampal and amygdala abnormalities may be present before schizophrenia onset. Further studies should be conducted to clarify whether these abnormalities are causally or effectually related to neurodevelopment. Shape analysis could clarify the impact of environmental, genetic, and developmental factors on the medial temporal structures during the evolution of this disease.
Collapse
Affiliation(s)
- Rossana Ganzola
- Institut universitaire en santé mentale de Québec, Québec, Canada.
| | - Michel Maziade
- Institut universitaire en santé mentale de Québec, Québec, Canada; Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, Canada
| | - Simon Duchesne
- Institut universitaire en santé mentale de Québec, Québec, Canada; Départment de Radiologie, Faculté de Médecine, Université Laval, Québec, Canada
| |
Collapse
|
23
|
Thermenos HW, Keshavan MS, Juelich RJ, Molokotos E, Whitfield-Gabrieli S, Brent BK, Makris N, Seidman LJ. A review of neuroimaging studies of young relatives of individuals with schizophrenia: a developmental perspective from schizotaxia to schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:604-35. [PMID: 24132894 DOI: 10.1002/ajmg.b.32170] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/24/2013] [Indexed: 11/08/2022]
Abstract
In an effort to identify the developing abnormalities preceding psychosis, Dr. Ming T. Tsuang and colleagues at Harvard expanded Meehl's concept of "schizotaxia," and examined brain structure and function in families affected by schizophrenia (SZ). Here, we systematically review genetic (familial) high-risk (HR) studies of SZ using magnetic resonance imaging (MRI), examine how findings inform models of SZ etiology, and suggest directions for future research. Neuroimaging studies of youth at HR for SZ through the age of 30 were identified through a MEDLINE (PubMed) search. There is substantial evidence of gray matter volume abnormalities in youth at HR compared to controls, with an accelerated volume reduction over time in association with symptoms and cognitive deficits. In structural neuroimaging studies, prefrontal cortex (PFC) alterations were the most consistently reported finding in HR. There was also consistent evidence of smaller hippocampal volume. In functional studies, hyperactivity of the right PFC during performance of diverse tasks with common executive demands was consistently reported. The only longitudinal fMRI study to date revealed increasing left middle temporal activity in association with the emergence of psychotic symptoms. There was preliminary evidence of cerebellar and default mode network alterations in association with symptoms. Brain abnormalities in structure, function and neurochemistry are observed in the premorbid period in youth at HR for SZ. Future research should focus on the genetic and environmental contributions to these alterations, determine how early they emerge, and determine whether they can be partially or fully remediated by innovative treatments.
Collapse
Affiliation(s)
- H W Thermenos
- Harvard Medical School, Boston, Massachusetts; Massachusetts Mental Health Center, Division of Public Psychiatry, Boston, Massachusetts; Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Brent BK, Thermenos HW, Keshavan MS, Seidman LJ. Gray Matter Alterations in Schizophrenia High-Risk Youth and Early-Onset Schizophrenia: A Review of Structural MRI Findings. Child Adolesc Psychiatr Clin N Am 2013; 22:689-714. [PMID: 24012081 PMCID: PMC3767930 DOI: 10.1016/j.chc.2013.06.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article reviews the literature on structural magnetic resonance imaging findings in pediatric and young adult populations at clinical or genetic high-risk for schizophrenia and early-onset schizophrenia. The implications of this research are discussed for understanding the pathophysiology of schizophrenia and for early intervention strategies. The evidence linking brain structural changes in prepsychosis development and early-onset schizophrenia with disruptions of normal neurodevelopmental processes during childhood or adolescence is described. Future directions are outlined for research to address knowledge gaps regarding the neurobiological basis of brain structural abnormalities in schizophrenia and to improve the usefulness of these abnormalities for preventative interventions.
Collapse
Affiliation(s)
- Benjamin K Brent
- Harvard Medical School, Boston, MA 02115, USA; Division of Public Psychiatry, Massachusetts Mental Health Center, 75 Fenwood Road, Boston, MA 02115, USA; Department of Psychiatry, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
25
|
Qiu A, Gan SC, Wang Y, Sim K. Amygdala-hippocampal shape and cortical thickness abnormalities in first-episode schizophrenia and mania. Psychol Med 2013; 43:1353-1363. [PMID: 23186886 DOI: 10.1017/s0033291712002218] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Abnormalities in cortical thickness and subcortical structures have been studied in schizophrenia but little is known about corresponding changes in mania and brain structural differences between these two psychiatric conditions, especially early in the stage of the illness. In this study we aimed to compare cortical thickness and shape of the amygdala-hippocampal complex in first-episode schizophrenia (FES) and mania (FEM). Method Structural magnetic resonance imaging (MRI) was performed on 28 FES patients, 28 FEM patients and 28 healthy control subjects who were matched for age, gender and handedness. RESULTS Overall, the shape of the amygdala was deformed in both patient groups, relative to controls. Compared to FEM patients, FES patients had significant inward shape deformation in the left hippocampal tail, right hippocampal body and a small region in the right amygdala. Cortical thinning was more widespread in FES patients, with significant differences found in the temporal brain regions when compared with FEM and controls. CONCLUSIONS Significant differences were observed between the two groups of patients with FES and FEM in terms of the hippocampal shape and cortical thickness in the temporal region, highlighting that distinguishable brain structural changes are present early in the course of schizophrenia and mania.
Collapse
Affiliation(s)
- A Qiu
- Department of Bioengineering, National University of Singapore, Singapore.
| | | | | | | |
Collapse
|
26
|
Hippocampal shape abnormalities of patients with childhood-onset schizophrenia and their unaffected siblings. J Am Acad Child Adolesc Psychiatry 2013; 52:527-536.e2. [PMID: 23622854 PMCID: PMC3812431 DOI: 10.1016/j.jaac.2013.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 01/18/2013] [Accepted: 02/19/2013] [Indexed: 01/24/2023]
Abstract
OBJECTIVE The hippocampus has been implicated in the pathogenesis of schizophrenia, and hippocampal volume deficits have been a consistently reported abnormality, but the subregional specificity of the deficits remains unknown. The authors explored the nature and developmental trajectory of subregional shape abnormalities of the hippocampus in patients with childhood-onset schizophrenia (COS), their healthy siblings, and healthy volunteers. METHOD Two hundred twenty-five anatomic brain magnetic resonance images were obtained from 103 patients with COS, 169 from their 79 healthy siblings, and 255 from 101 age- and sex-matched healthy volunteers (age range = 9-29 years). The hippocampus was segmented using FreeSurfer automated image analysis software, and hippocampal shape was evaluated by comparing subjects at more than 6,000 vertices on the left and right hippocampal surfaces. Longitudinal data were examined using mixed model regression analysis. RESULTS Patients with COS showed significant bilateral inward deformation in the anterior hippocampus. Healthy siblings also showed a trend for anterior inward deformation. However, the trajectory of shape change did not differ significantly between the groups. Inward deformations in the anterior hippocampus were positively related to positive symptom severity, whereas outward surface displacement was positively related to overall functioning. CONCLUSION This is the first and largest longitudinal three-way analysis of subregional hippocampal shape abnormalities in patients with COS and their healthy siblings compared with healthy controls. The anterior hippocampal abnormalities in COS suggest the pathophysiologic importance of this subregion in schizophrenia. The trend level and overlapping shape abnormalities in the healthy siblings suggest a more subtle, subregionally specific neuroanatomic endophenotype.
Collapse
|
27
|
Thompson DK, Adamson C, Roberts G, Faggian N, Wood SJ, Warfield SK, Doyle LW, Anderson PJ, Egan GF, Inder TE. Hippocampal shape variations at term equivalent age in very preterm infants compared with term controls: perinatal predictors and functional significance at age 7. Neuroimage 2013; 70:278-87. [PMID: 23296179 PMCID: PMC3584256 DOI: 10.1016/j.neuroimage.2012.12.053] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/14/2012] [Accepted: 12/16/2012] [Indexed: 11/30/2022] Open
Abstract
The hippocampus undergoes rapid growth and development in the perinatal months. Infants born very preterm (VPT) are vulnerable to hippocampal alterations, and can provide a model of disturbed early hippocampal development. Hippocampal shape alterations have previously been associated with memory impairment, but have never been investigated in infants. The aims of this study were to determine hippocampal shape differences between 184 VPT infants (<30 weeks' gestation or <1250 g at birth) and 32 full-term infants, effects of perinatal factors, and associations between infant hippocampal shape and volume, and 7 year verbal and visual memory (California Verbal Learning Test - Children's Version and Dot Locations). Infants underwent 1.5 T magnetic resonance imaging at term equivalent age. Hippocampi were segmented, and spherical harmonics-point distribution model shape analysis was undertaken. VPT infants' hippocampi were less infolded than full-term infants, being less curved toward the midline and less arched superior-inferiorly. Straighter hippocampi were associated with white matter injury and postnatal corticosteroid exposure. There were no significant associations between infant hippocampal shape and 7 year memory measures. However, larger infant hippocampal volumes were associated with better verbal memory scores. Altered hippocampal shape in VPT infants at term equivalent age may reflect delayed or disrupted development. This study provides further insight into early hippocampal development and the nature of hippocampal abnormalities in prematurity.
Collapse
Affiliation(s)
- Deanne K Thompson
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Krug A, Krach S, Jansen A, Nieratschker V, Witt SH, Shah NJ, Nöthen MM, Rietschel M, Kircher T. The effect of neurogranin on neural correlates of episodic memory encoding and retrieval. Schizophr Bull 2013; 39:141-50. [PMID: 21799211 PMCID: PMC3523918 DOI: 10.1093/schbul/sbr076] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neurogranin (NRGN) is the main postsynaptic protein regulating the availability of calmodulin-Ca(2+) in neurons. NRGN is expressed exclusively in the brain, particularly in dendritic spines and has been implicated in spatial learning and hippocampal plasticity. Genetic variation in rs12807809 in the NRGN gene has recently been confirmed to be associated with schizophrenia in a meta-analysis of genome-wide association studies: the T-allele was found to be genome-wide significantly associated with schizophrenia. Cognitive tests and personality questionnaires were administered in a large sample of healthy subjects. Brain activation was measured with functional magnetic resonance imaging (fMRI) during an episodic memory encoding and retrieval task in a subsample. All subjects were genotyped for NRGN rs12807809. There was no effect of genotype on personality or cognitive measures in the large sample. Homozygote carriers of the T-allele showed better performance in the retrieval task during fMRI. After controlling for memory performance, differential brain activation was evident in the anterior cingulate cortex for the encoding and posterior cingulate regions during retrieval. We could demonstrate that rs12807809 of NRGN is associated with differential neural functioning in the anterior and posterior cingulate. These areas are involved in episodic memory processes and have been implicated in the pathophysiology of schizophrenia in structural and functional imaging as well as postmortem studies.
Collapse
Affiliation(s)
- Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany.
| | - Sören Krach
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany,Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Vanessa Nieratschker
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Biophysics 3—Medicine, Research Center Jülich, Jülich, Germany
| | - Markus M. Nöthen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| |
Collapse
|
29
|
Trost S, Platz B, Usher J, Scherk H, Wobrock T, Ekawardhani S, Meyer J, Reith W, Falkai P, Gruber O. The DTNBP1 (dysbindin-1) gene variant rs2619522 is associated with variation of hippocampal and prefrontal grey matter volumes in humans. Eur Arch Psychiatry Clin Neurosci 2013; 263:53-63. [PMID: 22580710 PMCID: PMC3560950 DOI: 10.1007/s00406-012-0320-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 04/22/2012] [Indexed: 12/19/2022]
Abstract
DTNBP1 is one of the most established susceptibility genes for schizophrenia, and hippocampal volume reduction is one of the major neuropathological findings in this severe disorder. Consistent with these findings, the encoded protein dysbindin-1 has been shown to be diminished in glutamatergic hippocampal neurons in schizophrenic patients. The aim of this study was to investigate the effects of two single nucleotide polymorphisms of DTNBP1 on grey matter volumes in human subjects using voxel-based morphometry. Seventy-two subjects were included and genotyped with respect to two single nucleotide polymorphisms of DTNBP1 (rs2619522 and rs1018381). All participants underwent structural magnetic resonance imaging (MRI). MRI data were preprocessed and statistically analysed using standard procedures as implemented in SPM5 (Statistical Parametric Mapping), in particular the voxel-based morphometry (VBM) toolbox. We found significant effects of the DTNBP1 SNP rs2619522 bilaterally in the hippocampus as well as in the anterior middle frontal gyrus and the intraparietal cortex. Carriers of the G allele showed significantly higher grey matter volumes in these brain regions than T/T homozygotes. Compatible with previous findings on a role of dysbindin in hippocampal functions as well as in major psychoses, the present study provides first direct in vivo evidence that the DTNBP1 SNP rs2619522 is associated with variation of grey matter volumes bilaterally in the hippocampus.
Collapse
Affiliation(s)
- S. Trost
- Department of Psychiatry and Psychotherapy, Centre for Translational Research in Systems Neuroscience and Clinical Psychiatry, Georg August University, Goettingen, Germany
| | - B. Platz
- Department of Psychiatry and Psychotherapy, Centre for Translational Research in Systems Neuroscience and Clinical Psychiatry, Georg August University, Goettingen, Germany
| | - J. Usher
- Department of Psychiatry and Psychotherapy, Centre for Translational Research in Systems Neuroscience and Clinical Psychiatry, Georg August University, Goettingen, Germany
| | - H. Scherk
- Department of Psychiatry and Psychotherapy, Ameos Clinic Osnabrueck, Osnabrueck, Germany
| | - T. Wobrock
- Centre for Mental Health, County Hospitals Darmstadt-Dieburg, Groß-Umstadt, Germany
| | - S. Ekawardhani
- Department of Neurobehavioral Genetics, University of Trier, Trier, Germany
| | - J. Meyer
- Department of Neurobehavioral Genetics, University of Trier, Trier, Germany
| | - W. Reith
- Department of Neuroradiology, Saarland University, Homburg, Germany
| | - P. Falkai
- Department of Psychiatry and Psychotherapy, Centre for Translational Research in Systems Neuroscience and Clinical Psychiatry, Georg August University, Goettingen, Germany
| | - O. Gruber
- Department of Psychiatry and Psychotherapy, Centre for Translational Research in Systems Neuroscience and Clinical Psychiatry, Georg August University, Goettingen, Germany
| |
Collapse
|
30
|
Differences in subcortical structures in young adolescents at familial risk for schizophrenia: a preliminary study. Psychiatry Res 2012; 204:68-74. [PMID: 23146250 PMCID: PMC3518556 DOI: 10.1016/j.pscychresns.2012.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 02/23/2012] [Accepted: 04/24/2012] [Indexed: 11/23/2022]
Abstract
Schizophrenia has been associated with reduced volumes of subcortical structures on magnetic resonance imaging (MRI), but the relation of these reductions to familial risk for the disorder is unclear. We investigated the effect of familial risk for schizophrenia on regional subcortical volumes during adolescence, a period marked by steep maturational changes in brain structure and the emergence of psychotic symptoms. A group of 26 non-help-seeking, first-degree relatives of patients with schizophrenia and 43 matched healthy comparisons, between 9 and 18 years of age, underwent MRI scanning and were rated for the presence of prodromal symptoms. Five subcortical regions-of-interest were tested for group differences and group by age interactions, as well as correlations with low-level prodromal symptoms in the familial risk group. Relative to comparisons, familial risk subjects demonstrated greater positive volume-age relationships in hippocampus, putamen, and globus pallidus. These results suggest that relatives of individuals with schizophrenia exhibit structural abnormalities in the subcortex as early as pre-adolescence, which may reflect altered neurodevelopment of these regions.
Collapse
|
31
|
Aiello G, Horowitz M, Hepgul N, Pariante CM, Mondelli V. Stress abnormalities in individuals at risk for psychosis: a review of studies in subjects with familial risk or with "at risk" mental state. Psychoneuroendocrinology 2012; 37:1600-13. [PMID: 22663896 DOI: 10.1016/j.psyneuen.2012.05.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/08/2012] [Accepted: 05/11/2012] [Indexed: 01/17/2023]
Abstract
Increased sensitivity to stress is known to play an important role in the transition to first episode psychosis (FEP). Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, and, in general, an increased sensitivity to stress, have been hypothesised to be components of the vulnerability to psychosis, but whether these abnormalities are already present before the onset of psychosis has not yet been systematically reviewed. Here we have reviewed all studies examining psychological and biological markers of the stress response in the relatives of psychotic patients and in individuals at Ultra High Risk (UHR) for psychosis. In relatives, there is evidence of increased sensitivity to stress, as shown by increased emotional reactivity to daily life stress, increased adrenocorticotropic hormone (ACTH) in response to stress, increased pituitary volume and reduced hippocampal volume. However, evidence of increased cortisol levels is less consistent. On the other hand, subjects who experience attenuated psychotic symptoms show increased cortisol levels as well as increased pituitary and reduced hippocampal volumes. Moreover, this HPA axis hyperactivity seems to be even greater among those individuals who subsequently develop frank psychosis. In summary, an enhanced HPA axis response to stress appears to be part of the biological vulnerability to psychosis which is present prior to the onset of psychosis. A further increase in cortisol levels during the transition to FEP suggests the presence of an additive factor, possibly environmental, at this stage of the illness. Possible causes and consequences of HPA axis impairment in risk for psychosis are discussed.
Collapse
Affiliation(s)
- Giuliano Aiello
- King's College London, Institute of Psychiatry, Department of Psychological Medicine, London, UK
| | | | | | | | | |
Collapse
|
32
|
Brown PL, Shepard PD, Elmer GI, Stockman S, McFarland R, Mayo CL, Cadet JL, Krasnova IN, Greenwald M, Schoonover C, Vogel MW. Altered spatial learning, cortical plasticity and hippocampal anatomy in a neurodevelopmental model of schizophrenia-related endophenotypes. Eur J Neurosci 2012; 36:2773-81. [PMID: 22762562 DOI: 10.1111/j.1460-9568.2012.08204.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adult rats exposed to the DNA-methylating agent methylazoxymethanol on embryonic day 17 show a pattern of neurobiological deficits that model some of the neuropathological and behavioral changes observed in schizophrenia. Although it is generally assumed that these changes reflect targeted disruption of embryonic neurogenesis, it is unknown whether these effects generalise to other antimitotic agents administered at different stages of development. In the present study, neurochemical, behavioral and electrophysiological techniques were used to determine whether exposure to the antimitotic agent Ara-C later in development recapitulates some of the changes observed in methylazoxymethanol (MAM)-treated animals and in patients with schizophrenia. Male rats exposed to Ara-C (30 mg/kg/day) at embryonic days 19.5 and 20.5 show reduced cell numbers and heterotopias in hippocampal CA1 and CA2/3 regions, respectively, as well as cell loss in the superficial layers of the pre- and infralimbic cortex. Birth date labeling with bromodeoxyuridine reveals that the cytoarchitectural changes in CA2/3 are a consequence rather that a direct result of disrupted cortical neurogenesis. Ara-C-treated rats possess elevated levels of cortical dopamine and DOPAC (3,4-didyhydroxypheylacetic acid) but no change in norepinephrine or serotonin. Ara-C-treated rats are impaired in their ability to learn the Morris water maze task and showed diminished synaptic plasticity in the hippocampocortical pathway. These data indicate that disruption of neurogenesis at embryonic days 19.5 and 20.5 constitutes a useful model for the comparative study of deficits observed in other gestational models and their relationship to cognitive changes observed in schizophrenia.
Collapse
Affiliation(s)
- P Leon Brown
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Karnik-Henry MS, Wang L, Barch DM, Harms MP, Campanella C, Csernansky JG. Medial temporal lobe structure and cognition in individuals with schizophrenia and in their non-psychotic siblings. Schizophr Res 2012; 138:128-35. [PMID: 22542243 PMCID: PMC3372633 DOI: 10.1016/j.schres.2012.03.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 12/15/2022]
Abstract
Medial temporal lobe (MTL) structures play a central role in episodic memory. Prior studies suggest that individuals with schizophrenia have deficits in episodic memory as well as structural abnormalities of the medial temporal lobe (MTL). While correlations have been reported between MTL volume loss and episodic memory deficits in such individuals, it is not clear whether such correlations reflect the influence of the disease state or of underlying genetic influences that might contribute to risk. We used high resolution magnetic resonance imaging and probabilistic algorithms for image analysis to determine whether MTL structure, episodic memory performance and the relationship between the two differed among groups of 47 healthy control subjects, 50 control siblings, 39 schizophrenia subjects, and 33 siblings of schizophrenia subjects. High-dimensional large deformation brain mapping was used to obtain volume measures of the hippocampus. Cortical distance mapping was used to obtain volume and thickness measures of the parahippocampal gyrus (PHG) and its substructures: the entorhinal cortex (ERC), the perirhinal cortex (PRC), and the parahippocampal cortex (PHC). Neuropsychological data was used to establish an episodic memory domain score for each subject. Both schizophrenia subjects and their siblings displayed abnormalities in episodic memory performance. Siblings of individuals with schizophrenia, and to a lesser extent, individuals with schizophrenia themselves, displayed abnormalities in measures of MTL structure (volume loss or cortical thinning) as compared to control groups. Further, we observed correlations between structural measures and memory performance in both schizophrenia subjects and their siblings, but not in their respective control groups. These findings suggest that disease-specific genetic factors present in both patients and their relatives may be responsible for correlated abnormalities of MTL structure and memory impairment. The observed attenuated effect of such factors on MTL structure in individuals with schizophrenia may be due to non-genetic influences related to the development and progression of the disease on global brain structure and cognitive processing.
Collapse
Affiliation(s)
- Meghana S. Karnik-Henry
- Department of Psychology, Green Mountain College,Corresponding Author: Meghana S. Karnik-Henry, 1 Brennan Circle, Poultney, VT 05764,
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL
| | - Deanna M. Barch
- Department of Psychology, Washington University, St. Louis, MO,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Michael P. Harms
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | | | - John G. Csernansky
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
34
|
Otte WM, Bielefeld P, Dijkhuizen RM, Braun KP. Focal neocortical epilepsy affects hippocampal volume, shape, and structural integrity: A longitudinal MRI and immunohistochemistry study in a rat model. Epilepsia 2012; 53:1264-73. [DOI: 10.1111/j.1528-1167.2012.03531.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Janssen J, Alemán-Gómez Y, Reig S, Schnack HG, Parellada M, Graell M, Moreno C, Moreno D, Mateos-Pérez JM, Udias JM, Arango C, Desco M. Regional specificity of thalamic volume deficits in male adolescents with early-onset psychosis. Br J Psychiatry 2012; 200:30-6. [PMID: 22116979 DOI: 10.1192/bjp.bp.111.093732] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Thalamic volume deficits are associated with psychosis but it is unclear whether the volume reduction is uniformly distributed or whether it is more severe in particular thalamic regions. AIMS To quantify whole and regional thalamic volume in males with early-onset psychosis and healthy male controls. METHOD Brain scans were obtained for 80 adolescents: 46 individuals with early-onset psychosis with a duration of positive symptoms less than 6 months and 34 healthy controls. All participants were younger than 19 years. Total thalamic volumes were assessed using FreeSurfer and FSL-FIRST, group comparisons of regional thalamic volumes were studied with a surface-based approach. RESULTS Total thalamic volume was smaller in participants with early-onset psychosis relative to controls. Regional thalamic volume reduction was most significant in the right anterior mediodorsal area and pulvinar. CONCLUSIONS In males with minimally treated early-onset psychosis, thalamic volume deficits may be most pronounced in the anterior mediodorsal and posterior pulvinar regions, adding strength to findings from post-mortem studies in adults with psychosis.
Collapse
Affiliation(s)
- Joost Janssen
- Unidad de Medicina y Cirugía Experimental, Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón and Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gindes L, Weissmann-Brenner A, Weisz B, Zajicek M, Geffen KT, Achiron R. Identification of the fetal hippocampus and fornix and role of 3-dimensional sonography. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2011; 30:1613-1618. [PMID: 22123994 DOI: 10.7863/jum.2011.30.12.1613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
OBJECTIVES The purposes of this study were to identify the fetal hippocampus and fornix using 3-dimensional sonography, to measure their curved length during pregnancy, and to describe a systematic method for volume data set analysis of the fetal hippocampus and fornix. METHODS Three-dimensional volumes of the fetal brain were acquired prospectively in 34 patients between 14 and 37 weeks' gestation. Volumes were acquired with trans-abdominal and transvaginal transducers. All volumes were analyzed offline by 2 examiners separately. The feasibility of identifying the fetal hippocampus and fornix was analyzed. The curved length of the hippocampus-fornix structure was measured on the right and left hemispheres. RESULTS The fetal hippocampus and fornix were identified bilaterally in 32 of 34 fetuses (94%) at gestational ages of 14 weeks 5 days to 37 weeks 1 day (mean, 23 weeks 3 days). In 1 fetus (3%), only one side was shown, and in another fetus (3%), both sides were obscured by acoustic shadows. A systematic approach for identification of the fetal hippocampus is described. Linear growth of the fetal hippocampus and fornix was shown during pregnancy and was correlated with both the gestational week and the head circumference (R = 0.71 and 0.74, respectively; P = .01). The length of the hippocampus and fornix did not differ between the left and the right hemispheres (P = .598). CONCLUSIONS The fetal hippocampus and fornix can be identified by a systematic analysis of 3-dimensional data set volumes. The normal hippocampus and fornix show linear growth throughout pregnancy.
Collapse
Affiliation(s)
- Liat Gindes
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, 52621 Ramat Gan, Israel.
| | | | | | | | | | | |
Collapse
|
37
|
Capizzano AA, Toscano JLN, Ho BC. Magnetic resonance spectroscopy of limbic structures displays metabolite differences in young unaffected relatives of schizophrenia probands. Schizophr Res 2011; 131:4-10. [PMID: 21705196 PMCID: PMC3485075 DOI: 10.1016/j.schres.2011.05.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/19/2011] [Accepted: 05/23/2011] [Indexed: 01/25/2023]
Abstract
Imaging studies of schizophrenia patients showed fronto-temporal brain volume deficits, while magnetic resonance spectroscopy (MRS) studies of patients and unaffected biological relatives have found a decrement of the neuronal marker N-acetyl-aspartate (NAA) in the hippocampus and frontal lobes, and increased choline-containing phospholipids. Using a 3T MR scanner, we determined the metabolite profile within limbic regions (anterior cingulate cortex (ACC) and left hippocampus) of 36 unaffected, adolescent/young adult relatives of schizophrenia probands (first-degree=16, second-degree=20) and 25 healthy controls with no family history of schizophrenia. Significant main effects of group were found on NAA/Cho ratios for both the left hippocampus (F = 6.11, p ≤ 0.02) and ACC (F = 4.89, p ≤ 0.03) as well as for the left hippocampus Cho/Cr ratio (F = 5.55, p ≤ 0.02). Compared to age and sex matched healthy controls without a family history of schizophrenia, first-degree relatives of probands had greater MRS metabolite deviations than second-degree relatives. Greater familial proximity to the schizophrenia proband (or higher schizophrenia susceptibility) among biological relatives was associated with stepwise lowering of NAA/Cho and elevations in Cho/Cr ratios. The observed limbic metabolite changes among young, nonpsychotic biological relatives are likely related to shared genetic vulnerability factors, and may assist in the early identification of schizophrenia for primary and secondary prevention.
Collapse
Affiliation(s)
- Aristides A. Capizzano
- Department of Radiology, Division of Neuroradiology, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
,Corresponding author. Tel.: +1 319 384 8795; fax: +1 319 353 6275. (A.A. Capizzano), (J.L. Nicoll Toscano), (B.-C. Ho)
| | - Juana L. Nicoll Toscano
- Department of Family Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Beng-Choon Ho
- Department of Psychiatry, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
| |
Collapse
|
38
|
Waters-Metenier S, Toulopoulou T. Putative structural neuroimaging endophenotypes in schizophrenia: a comprehensive review of the current evidence. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The genetic contribution to schizophrenia etiopathogenesis is underscored by the fact that the best predictor of developing schizophrenia is having an affected first-degree relative, which increases lifetime risk by tenfold, as well as the observation that when both parents are affected, the risk of schizophrenia increases to approximately 50%, compared with 1% in the general population. The search to elucidate the complex genetic architecture of schizophrenia has employed various approaches, including twin and family studies to examine co-aggregation of brain abnormalities, studies on genetic linkage and studies using genome-wide association to identify genetic variations associated with schizophrenia. ‘Endophenotypes’, or ‘intermediate phenotypes’, are potentially narrower constructs of genetic risk. Hypothetically, they are intermediate in the pathway between genetic variation and clinical phenotypes and can supposedly be implemented to assist in the identification of genetic diathesis for schizophrenia and, possibly, in redefining clinical phenomenology.
Collapse
Affiliation(s)
- Sheena Waters-Metenier
- Department of Psychosis Studies, King’s College London, King’s Health Partners, Institute of Psychiatry, London, UK
| | | |
Collapse
|
39
|
Abstract
New findings are rapidly revealing an increasingly detailed image of neural- and molecular-level dysfunction in schizophrenia, distributed throughout interconnected cortico-striato-pallido-thalamic circuitry. Some disturbances appear to reflect failures of early brain maturation, that become codified into dysfunctional circuit properties, resulting in a substantial loss of, or failure to develop, both cells and/or appropriate connectivity across widely dispersed brain regions. These circuit disturbances are variable across individuals with schizophrenia, perhaps reflecting the interaction of multiple different risk genes and epigenetic events. Given these complex and variable hard-wired circuit disturbances, it is worth considering how new and emerging findings can be integrated into actionable treatment models. This paper suggests that future efforts towards developing more effective therapeutic approaches for the schizophrenias should diverge from prevailing models in genetics and molecular neuroscience, and focus instead on a more practical three-part treatment strategy: 1) systematic rehabilitative psychotherapies designed to engage healthy neural systems to compensate for and replace dysfunctional higher circuit elements, used in concert with 2) medications that specifically target cognitive mechanisms engaged by these rehabilitative psychotherapies, and 3) antipsychotic medications that target nodal or convergent circuit points within the limbic-motor interface, to constrain the scope and severity of psychotic exacerbations and thereby facilitate engagement in cognitive rehabilitation. The use of targeted cognitive rehabilitative psychotherapy plus synergistic medication has both common sense and time-tested efficacy with numerous other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Neal R Swerdlow
- School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0804, United States.
| |
Collapse
|
40
|
Mattai A, Hosanagar A, Weisinger B, Greenstein D, Stidd R, Clasen L, Lalonde F, Rapoport J, Gogtay N. Hippocampal volume development in healthy siblings of childhood-onset schizophrenia patients. Am J Psychiatry 2011; 168:427-35. [PMID: 21245087 PMCID: PMC3289129 DOI: 10.1176/appi.ajp.2010.10050681] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Previous anatomic studies have established a reduction in hippocampal volume in schizophrenia, but few have investigated the progressive course of these changes and whether they are trait markers. In the present study, the authors examined hippocampal volumes in relation to age for patients with childhood-onset schizophrenia, their nonpsychotic healthy siblings, and healthy comparison subjects. METHOD Anatomic brain magnetic resonance scans were obtained in childhood-onset schizophrenia probands (N=89, 198 scans), their nonpsychotic full siblings (N=78, 172 scans), and matched healthy comparison subjects (N=79, 198 scans) between the ages of 10 and 29 years. Total, left, and right hippocampal volumes were measured using FreeSurfer software and analyzed using a linear mixed-model regression covarying for sex and intracranial volume. RESULTS Childhood-onset schizophrenia probands had a fixed reduction in hippocampal volumes (total, left, and right) relative to both nonpsychotic siblings and healthy comparison subjects, whereas there were no significant volumetric or trajectory differences between nonpsychotic siblings and healthy comparison subjects. CONCLUSIONS Fixed hippocampal volume loss seen in childhood-onset schizophrenia, which is not shared by healthy siblings, appears to be related to the illness. Decreased hippocampal volume is not strongly genetically related but represents an important intermediate disease phenotype.
Collapse
Affiliation(s)
- Anand Mattai
- Child Psychiatry Branch, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bossa M, Zacur E, Olmos S, Alzheimer's Disease Neuroimaging Initiative. Statistical analysis of relative pose information of subcortical nuclei: application on ADNI data. Neuroimage 2011; 55:999-1008. [PMID: 21216295 PMCID: PMC3554790 DOI: 10.1016/j.neuroimage.2010.12.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 12/28/2010] [Accepted: 12/30/2010] [Indexed: 11/24/2022] Open
Abstract
Many brain morphometry studies have been performed in order to characterize the brain atrophy pattern of Alzheimer's disease (AD). The earliest studies focused on the volume of particular brain structures, such as hippocampus and entorhinal cortex. Even though volumetry is a powerful, robust and intuitive technique that has yielded a wealth of findings, more complex shape descriptors have been used to perform statistical shape analysis of particular brain structures. However, in shape analysis studies of brain structures the information of the relative pose between neighbor structures is typically disregarded. This work presents a framework to analyse pose information including the following approaches: similarity transformations with either pseudo-Riemannian or left-invariant Riemannian metric, and centered transformations with a bi-invariant Riemannian metric. As an illustration, an analysis of covariance (ANCOVA) and a discrimination analysis were performed on Alzheimer's Disease Neuroimaging Initiative (ADNI) data.
Collapse
Affiliation(s)
- Matias Bossa
- Aragon Institute of Engineering Research, Universidad de Zaragoza, Spain.
| | | | | | | |
Collapse
Collaborators
Michael Weiner,
Collapse
|
42
|
Goldman MB, Wang L, Wachi C, Daudi S, Csernansky J, Marlow-O'Connor M, Keedy S, Torres I. Structural pathology underlying neuroendocrine dysfunction in schizophrenia. Behav Brain Res 2011; 218:106-13. [PMID: 21093493 PMCID: PMC4465073 DOI: 10.1016/j.bbr.2010.11.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 11/02/2010] [Accepted: 11/09/2010] [Indexed: 11/18/2022]
Abstract
Polydipsic hyponatremic schizophrenic (PHS) patients exhibit altered neuroendocrine activity that has been linked to their life-threatening water imbalance, as well as to impaired function and reduced volume of the anterior hippocampus. Polydipsic patients without hyponatremia (polydipsic normonatremic schizophrenics: PNS) exhibit similar, albeit less marked, changes in neuroendocrine activity and anterior hippocampal function, but not reduced anterior hippocampal volume. Indeed, reduced anterior hippocampal volume is seen in patients with normal water balance (nonpolydipsic normonatremic schizophrenics: NNS) whose neuroendocrine activity and anterior hippocampal function differ markedly from those with polydipsia. In an effort to reconcile these findings we measured hippocampal, amygdala and 3rd ventricle shapes in 26 schizophrenic patients (10 PNS, 7 PHS, 9 NNS) and 12 healthy controls matched for age and gender. Bilateral inward deformations were localized to the anterior lateral hippocampal surface (part of a neurocircuit which modulates neuroendocrine responses to psychological stimuli) in PHS and to a lesser extent in PNS, while deformations in NNS were restricted to the medial surface. Proportional deformations of the right medial amygdala, a key segment of this neurocircuit, were seen in both polydipsic groups, and correlated with the volume of the 3rd ventricle, which lies adjacent to the neuroendocrine nuclei. Finally, these structural findings were most marked in those with impaired hippocampal-mediated stress responses. These results reconcile previously conflicting data, and support the view that anterior lateral hippocampal pathology disrupts neuroendocrine function in polydipsic patients with and without hyponatremia. The relationship of these findings to the underlying mental illness remains to be established.
Collapse
Affiliation(s)
- Morris B Goldman
- Northwestern University, Department of Psychiatry, 446 East Ontario, Suite 7-100, Chicago, IL 60611, United States.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Swerdlow NR. Integrative circuit models and their implications for the pathophysiologies and treatments of the schizophrenias. Curr Top Behav Neurosci 2011; 4:555-83. [PMID: 21312413 DOI: 10.1007/7854_2010_48] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A preponderance of evidence indicates that the heterogeneous group of schizophrenias is accompanied by disturbances in neural elements distributed throughout multiple levels of interconnected cortico-striato-pallido-thalamic circuitry. These disturbances include a substantial loss of, or failure to develop, both cells and/or appropriate cellular connections in regions that include at least portions of the hippocampus, parahippocampal gyrus, entorhinal cortex, amygdala, prefrontal and anterior cingulate cortex, superior and transverse temporal gyri, and mediodorsal, anterior, and pulvinar nuclei of the thalamus; they appear to reflect failures of early brain maturation, that become codified into dysfunctional circuit properties, that in the opinion of this author cannot be "undone" or even predictably remediated in any physiological manner by existing pharmacotherapies. These circuit disturbances are variable across individuals with schizophrenia, perhaps reflecting the interaction of multiple different risk genes and multiple different epigenetic events. Evidence for these complex circuit disturbances has significant implications for many areas of schizophrenia research, and for future efforts toward developing more effective therapeutic approaches for this group of disorders. The conclusion of this chapter is that such future efforts should focus on further developing and refining medications that target nodal or convergent circuit points within the limbic-motor interface, with the goal of constraining the scope and severity of psychotic exacerbations, to be used in concert with systematic rehabilitative psychotherapies designed to engage healthy neural systems to compensate for and replace dysfunctional higher circuit elements. This strategy should be applied in both preventative and treatment settings, and disseminated for community delivery via an evidence-based manualized format. In contrast to alternative treatment strategies that range from complex polypharmacy to gene therapies to psychosurgical interventions, the use of combined medication plus targeted cognitive and behavioral psychotherapy has both common sense and time-tested documented efficacy with numerous other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Neal R Swerdlow
- School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0804, USA.
| |
Collapse
|
44
|
QSAR-CoMSIA applied to antipsychotic drugs with their dopamine D2 and serotonine 5HT2A membrane receptors. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2011. [DOI: 10.2298/jsc100806022a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Antipsychotic drugs are psychiatric medication primarily used to manage
psychosis (e.g., delusions or hallucinations), particularly in schizophrenia
and bipolar disorder. First and second generations of antipshychotics tend to
block receptors in the brain's dopamine pathways, but antipsychotic drugs
encompass a wide range of receptor targets. The inhibition constant, Ki, at
the level of membrane receptors is a major determinant of their
pharmacokinetic behavior and, consequently, it can affect their antipsychotic
activity. Here, predicted inhibition constants, Ki for 71 antipsychotics,
already approved for clinical treatment, as well as representative new
chemical structures which exhibit antipsychotic activity, were evaluated
using 3D-QSAR-CoMSIA models. Significant values of the cross-validated
correlation q2 (higher than 0.70) and the fitted correlation r2 (higher than
0.80) revealed that these models have reasonable power to predict the
biological affinity of the 15 new risperidone and 12 new olanzapine
derivatives in interactions with dopamine D2 and serotonin 5HT2A receptors;
these compounds are suggested for further studies.
Collapse
|
45
|
Pierson R, Johnson H, Harris G, Keefe H, Paulsen JS, Andreasen NC, Magnotta VA. Fully automated analysis using BRAINS: AutoWorkup. Neuroimage 2010; 54:328-36. [PMID: 20600977 DOI: 10.1016/j.neuroimage.2010.06.047] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 06/04/2010] [Accepted: 06/18/2010] [Indexed: 01/12/2023] Open
Abstract
The BRAINS (Brain Research: Analysis of Images, Networks, and Systems) image analysis software has been in use, and in constant development, for over 20 years. The original neuroimage analysis pipeline using BRAINS was designed as a semiautomated procedure to measure volumes of the cerebral lobes and subcortical structures, requiring manual intervention at several stages in the process. Through use of advanced image processing algorithms the need for manual intervention at stages of image realignment, tissue sampling, and mask editing have been eliminated. In addition, inhomogeneity correction, intensity normalization, and mask cleaning routines have been added to improve the accuracy and consistency of the results. The fully automated method, AutoWorkup, is shown in this study to be more reliable (ICC ≥ 0.96, Jaccard index ≥ 0.80, and Dice index ≥ 0.89 for all tissues in all regions) than the average of 18 manual raters. On a set of 1130 good quality scans, the failure rate for correct realignment was 1.1%, and manual editing of the brain mask was required on 4% of the scans. In other tests, AutoWorkup is shown to produce measures that are reliable for data acquired across scanners, scanner vendors, and across sequences. Application of AutoWorkup for the analysis of data from the 32-site, multivendor PREDICT-HD study yield estimates of reliability to be greater than or equal to 0.90 for all tissues and regions.
Collapse
Affiliation(s)
- Ronald Pierson
- The University of Iowa Roy and Lucille Carver College of Medicine, Department of Psychiatry, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Staging perspectives in neurodevelopmental aspects of neuropsychiatry: agents, phases and ages at expression. Neurotox Res 2010; 18:287-305. [PMID: 20237881 DOI: 10.1007/s12640-010-9162-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/08/2010] [Accepted: 02/08/2010] [Indexed: 12/24/2022]
Abstract
Neurodevelopmental risk factors have assumed a critical role in prevailing notions concerning the etiopathogenesis of neuropsychiatric disorders. Staging, diagnostic elements at which phase of disease is determined, provides a means of conceptualizing the degree and extent of factors affecting brain development trajectories, but is concurrently specified through the particular interactions of genes and environment unique to each individual case. For present purposes, staging perspectives in neurodevelopmental aspects of the disease processes are considered from conditions giving rise to neurodevelopmental staging in affective states, adolescence, dopamine disease states, and autism spectrum disorders. Three major aspects influencing the eventual course of individual developmental trajectories appear to possess an essential determinant influence upon outcome: (i) the type of agent that interferes with brain development, whether chemical, immune system activating or absent (anoxia/hypoxia), (ii) the phase of brain development at which the agent exerts disruption, whether prenatal, postnatal, or adolescent, and (iii) the age of expression of structural and functional abnormalities. Clinical staging may be assumed at any or each developmental phase. The present perspective offers both a challenge to bring further order to diagnosis, intervention, and prognosis and a statement regarding the extreme complexities and interwoven intricacies of epigenetic factors, biomarkers, and neurobehavioral entities that aggravate currents notions of the neuropsychiatric disorders.
Collapse
|