1
|
Fekih-Romdhane F, Kerbage G, Hachem N, El Murr M, Haddad G, Loch AA, Abou Khalil R, El Hayek E, Hallit S. The moderating role of COMT gene rs4680 polymorphism between maladaptive metacognitive beliefs and negative symptoms in patients with schizophrenia. BMC Psychiatry 2024; 24:831. [PMID: 39567927 PMCID: PMC11577635 DOI: 10.1186/s12888-024-06275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Although the positive association between impairments in metacognitive capacity and negative symptoms in people with schizophrenia spectrum disorders is widely evidenced in the literature, the explaining mechanisms of this association are still less known and poorly understood. This study aims to bridge this knowledge gap by testing the hypothesis that COMT rs4680 variants will act as moderators in the relationship between certain metacognitive domains and negative symptoms' severity. METHOD A cross-sectional study was carried-out during the period between February and March 2024. A total of 115 biologically unrelated Arab (Lebanese) patients with schizophrenia were included. RESULTS After controlling for sex and duration of illness as a potential confounder, moderation analyses showed that the AG genotype of the COMT rs4680 served as a significant moderator between maladaptive metacognitive beliefs about cognitive confidence (i.e. lack of confidence in memory) and negative symptoms. In non-carriers of the COMT rs4680 AG genotype, lower cognitive confidence (i.e., more "lack of cognitive confidence") is significantly associated with greater negative symptoms. CONCLUSION Findings suggest that metacognition may be a relevant treatment target in the management of negative symptoms particularly in non-carriers of the COMT rs4680 AG genotype. Therefore, genetic testing could potentially be used to match patients with metacognitive interventions that are more likely to be effective in supporting recovery from negative symptoms.
Collapse
Affiliation(s)
- Feten Fekih-Romdhane
- The Tunisian Center of Early Intervention in Psychosis, Department of Psychiatry "Ibn Omrane", Razi Hospital, Manouba, 2010, Tunisia.
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia.
| | - Georges Kerbage
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, P.O. Box 446, Jounieh, Lebanon
| | - Nagham Hachem
- Faculty of Arts and Sciences, Holy Spirit University of Kaslik, P.O. Box 446, Jounieh, Lebanon
| | - Michelle El Murr
- Faculty of Arts and Sciences, Holy Spirit University of Kaslik, P.O. Box 446, Jounieh, Lebanon
| | - Georges Haddad
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, P.O. Box 446, Jounieh, Lebanon
- Psychiatry Department, Psychiatric Hospital of the Cross, Jal Eddib, Lebanon
| | - Alexandre Andrade Loch
- Laboratorio de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Cientifico e Tecnológico, Sao Paulo, Brazil
| | - Rony Abou Khalil
- Faculty of Arts and Sciences, Holy Spirit University of Kaslik, P.O. Box 446, Jounieh, Lebanon
| | - Elissar El Hayek
- Faculty of Arts and Sciences, Holy Spirit University of Kaslik, P.O. Box 446, Jounieh, Lebanon
| | - Souheil Hallit
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, P.O. Box 446, Jounieh, Lebanon.
- Department of Psychology, College of Humanities, Effat University, Jeddah, 21478, Saudi Arabia.
- Applied Science Research Center, Applied Science Private University, Amman, 11937, Jordan.
| |
Collapse
|
2
|
Vucurovic K, Raucher-Chéné D, Obert A, Gobin P, Henry A, Barrière S, Traykova M, Gierski F, Portefaix C, Caillies S, Kaladjian A. Activation of the left medial temporal gyrus and adjacent brain areas during affective theory of mind processing correlates with trait schizotypy in a nonclinical population. Soc Cogn Affect Neurosci 2023; 18:6701589. [PMID: 36107738 PMCID: PMC9949503 DOI: 10.1093/scan/nsac051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/31/2022] [Accepted: 09/13/2022] [Indexed: 11/12/2022] Open
Abstract
Schizophrenia, a severe psychiatric disorder, is associated with abnormal brain activation during theory of mind (ToM) processing. Researchers recently suggested that there is a continuum running from subclinical schizotypal personality traits to fully expressed schizophrenia symptoms. Nevertheless, it remains unclear whether schizotypal personality traits in a nonclinical population are associated with atypical brain activation during ToM tasks. Our aim was to investigate correlations between fMRI brain activation during affective ToM (ToMA) and cognitive ToM (ToMC) tasks and scores on the Schizotypal Personality Questionnaire (SPQ) and the Basic Empathy Scale in 39 healthy individuals. The total SPQ score positively correlated with brain activation during ToMA processing in clusters extending from the left medial temporal gyrus (MTG), lingual gyrus and fusiform gyrus to the parahippocampal gyrus (Brodmann area: 19). During ToMA processing, the right inferior occipital gyrus, right MTG, precuneus and posterior cingulate cortex negatively correlated with the emotional disconnection subscore and the total score of self-reported empathy. These posterior brain regions are known to be involved in memory and language, as well as in creative reasoning, in nonclinical individuals. Our findings highlight changes in brain processing associated with trait schizotypy in nonclinical individuals during ToMA but not ToMC processing.
Collapse
Affiliation(s)
- Ksenija Vucurovic
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France.,Centre Rémois de Psychothérapie et Neuromodulation, 51100 Reims, France
| | - Delphine Raucher-Chéné
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France.,Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France.,McGill University, Douglas Mental Health University Institute, 11290 Montreal, Canada
| | - Alexandre Obert
- Champollion National University Institute, Cognition Sciences, Technology & Ergonomics Laboratory, University of Toulouse, 81000 Albi, France
| | - Pamela Gobin
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France.,Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France
| | - Audrey Henry
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France.,Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France
| | - Sarah Barrière
- Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France
| | - Martina Traykova
- Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France
| | - Fabien Gierski
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France.,Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France.,INSERM U1247 GRAP, Research Group on Alcohol and Drugs, Université de Picardie Jules Verne, 80000 Amiens, France
| | - Christophe Portefaix
- Radiology Department, Reims University Hospital, 51100 Reims, France.,University of Reims Champagne-Ardenne, CReSTIC Laboratory, 51100 Reims, France
| | - Stéphanie Caillies
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France
| | - Arthur Kaladjian
- Université de Reims Champagne Ardenne, Laboratoire Cognition, Santé, Société, EA 6291, 51100 Reims, France.,Pôle Universitaire de Psychiatrie, EPSM et CHU de Reims, 51100 Reims, France.,University of Reims Champagne-Ardenne Faculty of Medicine, 51100 Reims, France
| |
Collapse
|
3
|
Li W, Yu S, Duan X, Yao S, Tang L, Cheng H. COMT rs737865 mediates chemobrain in breast cancer patients with various levels of Ki-67. Am J Cancer Res 2022; 12:3185-3197. [PMID: 35968333 PMCID: PMC9360226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023] Open
Abstract
Previous findings have indicated that catechol-O-methyltransferase (COMT) may be a genetic risk factor for chemobrain. However, the mediation of chemobrain by COMT polymorphisms in breast cancer patients with various levels of Ki-67 remains unknown. The current research assessed the genetic risk across COMT genotypes for chemobrain in breast cancer patients with various levels of Ki-67. Breast cancer patients (65 with Ki-67<14%, 75 with Ki-67>14%) completed cognitive tests before and after adjuvant chemotherapy, and three single-nucleotide polymorphisms (SNPs) of COMT (rs165599, rs4680, rs737865) were genotyped from peripheral blood. Lower cognitive test results in breast cancer patients were displayed in those before chemotherapy. Furthermore, the event-based prospective memory (EBPM) scores of patients in the Ki-67>14% group were worse than those in the patients in the Ki-67<14% group after chemotherapy (z=-7.51, P<0.01), but the time-based prospective memory (TBPM) scores of the two groups were not significantly different. The COMT rs737865 A/G genotype was associated with memory protection (codominant model: adjusted odds ratio (OR)=0.135, 95% CI=0.026-0.706, P=0.018), and A/G genotype carriers exhibited better performance on the EBPM test than the A/A genotype. Levels of Ki-67 were likely to be associated with EBPM decline in breast cancer patients. Taken together, COMT rs737865 polymorphisms are a potential genetic risk factor for chemobrain in breast cancer patients with various levels of Ki-67.
Collapse
Affiliation(s)
- Wen Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei 230601, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Sheng Yu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei 230601, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Xu Duan
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei 230601, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Senbang Yao
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei 230601, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Lingxue Tang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei 230601, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Huaidong Cheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei 230601, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei 230032, Anhui, China
| |
Collapse
|
4
|
Cha E, Ahn HJ, Kang W, Jung KI, Ohn SH, Bashir S, Yoo WK. Correlations between COMT polymorphism and brain structure and cognition in elderly subjects: An observational study. Medicine (Baltimore) 2022; 101:e29214. [PMID: 35550471 PMCID: PMC9276462 DOI: 10.1097/md.0000000000029214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/14/2022] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT The catechol-O-methyltransferase (COMT) gene has been noted to play an important role in individual variations in the aging process. We investigated whether COMT polymorphism could influence cognition related to white matter networks. More specifically, we examined whether methionine (Met) allele loading is associated with better individual cognitive performance. Thirty-four healthy elderly participants were recruited; each participant's COMT genotype was determined, and Korean version of Montreal Cognitive Assessment scores and a diffusion tensor image were obtained for all participants. The Met carrier group showed significantly lower mean diffusivity, axial diffusivity, and radial diffusivity values for the right hippocampus, thalamus, uncinate fasciculus, and left caudate nucleus than the valine homozygote group. The Met carrier group also scored higher for executive function and attention on the Korean version of Montreal Cognitive Assessment. Based on these results, we can assume that the COMT Met allele has a protective effect on cognitive decline contributing to individual differences in cognitive function in late life period.
Collapse
Affiliation(s)
- Eunsil Cha
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Hyun Jung Ahn
- Hallym Institute of Translational Genomics & Bioinformatics, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Wonil Kang
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Kwang-Ik Jung
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Suk Hoon Ohn
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| |
Collapse
|
5
|
Yin Y, Xie C, Zhang H, Zhang H, Zhang Z, Yuan Y. COMT Val158Met Polymorphism Influences the Cerebral Blood Flow Changes Related to Psychomotor Retardation in Major Depressive Disorder. Neuropsychiatr Dis Treat 2022; 18:2159-2169. [PMID: 36187559 PMCID: PMC9521236 DOI: 10.2147/ndt.s379146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Previous studies revealed different cerebral blood flow (CBF) changes of major depressive disorder (MDD) patients with psychomotor retardation (PMR). These different changes might result from the modulation of other factors, such as genes. This study aimed to investigate the influence of COMT Val158Met polymorphism on the CBF alterations in MDD patients with PMR. METHODS COMT Val158Met genotypes and arterial spin labeling-magnetic resonance imaging (ASL-MRI) data of 103 Chinese Han participants (63 MDD, 40 NCs) were collected in this study. MDD patients were divided into PMR group (N = 23) and NPMR group (N = 40) according to the Salpetriere Retardation Rating Scale score. PMR, NPMR and NCs groups were further divided into two subgroups, respectively, based on the COMT Val158Met genotype. CBF throughout the whole brain was calculated based on the ASL-MRI data. A two-way factorial analysis of covariance was used to investigate the main effects of PMR, COMT Met allele, as well as the interactions between COMT genotype and PMR on the CBF in a voxel-wise manner. Partial correlation analyses were also applied to evaluate the association between the CBF of significant brain regions and the PMR severity. RESULTS Main effect of PMR mainly influenced the CBF of the prefrontal cortex (PFC). Main effect of COMT Met allele mainly influenced the CBF of the thalamus. The interaction between PMR and COMT Met allele primarily influenced the CBF of left precuneus and right caudate. The CBF of PFC was positively correlated with the PMR severity. CONCLUSION Our findings indicate that the COMT Met allele could modulate the CBF changes of the left precuneus and right caudate in MDD patients with PMR, providing additional layer of information regarding earlier reports for different CBF changes of MDD patients with psychomotor retardation in the literature, which were assessed irrespective of polymorphisms among patients.
Collapse
Affiliation(s)
- Yingying Yin
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.,Institute of Psychosomatics, Medical School of Southeast University, Nanjing, 210009, People's Republic of China
| | - Chunming Xie
- Department of Neurology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Haisan Zhang
- Departments of Clinical Magnetic Resonance Imaging, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, People's Republic of China
| | - Hongxing Zhang
- Departments of Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, People's Republic of China
| | - Zhijun Zhang
- Department of Neurology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.,Institute of Psychosomatics, Medical School of Southeast University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
6
|
Harika-Germaneau G, Wassouf I, Le Tutour T, Guillevin R, Doolub D, Rostami R, Delbreil A, Langbour N, Jaafari N. Baseline Clinical and Neuroimaging Biomarkers of Treatment Response to High-Frequency rTMS Over the Left DLPFC for Resistant Depression. Front Psychiatry 2022; 13:894473. [PMID: 35669263 PMCID: PMC9163359 DOI: 10.3389/fpsyt.2022.894473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/05/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) has proven to be an efficient treatment option for patients with treatment-resistant depression (TRD). However, the success rate of this method is still low, and the treatment outcome is unpredictable. The objective of this study was to explore clinical and structural neuroimaging factors as potential biomarkers of the efficacy of high-frequency (HF) rTMS (20 Hz) over the left dorso-lateral pre-frontal cortex (DLPFC). METHODS We analyzed the records of 131 patients with mood disorders who were treated with rTMS and were assessed at baseline at the end of the stimulation and at 1 month after the end of the treatment. The response is defined as a 50% decrease in the MADRS score between the first and the last assessment. Each of these patients underwent a T1 MRI scan of the brain, which was subsequently segmented with FreeSurfer. Whole-brain analyses [Query, Design, Estimate, Contrast (QDEC)] were conducted and corrected for multiple comparisons. Additionally, the responder status was also analyzed using binomial multivariate regression models. The explored variables were clinical and anatomical features of the rTMS target obtained from T1 MRI: target-scalp distance, DLPFC gray matter thickness, and various cortical measures of interest previously studied. RESULTS The results of a binomial multivariate regression model indicated that depression type (p = 0.025), gender (p = 0.010), and the severity of depression (p = 0.027) were found to be associated with response to rTMS. Additionally, the resistance stage showed a significant trend (p = 0.055). Whole-brain analyses on volume revealed that the average volume of the left part of the superior frontal and the caudal middle frontal regions is associated with the response status. Other MRI-based measures are not significantly associated with response to rTMS in our population. CONCLUSION In this study, we investigated the clinical and neuroimaging biomarkers associated with responsiveness to high-frequency rTMS over the left DLPFC in a large sample of patients with TRD. Women, patients with bipolar depressive disorder (BDD), and patients who are less resistant to HF rTMS respond better. Responders present a lower volume of the left part of the superior frontal gyrus and the caudal middle frontal gyrus. These findings support further investigation into the use of clinical variables and structural MRI as possible biomarkers of rTMS treatment response.
Collapse
Affiliation(s)
- Ghina Harika-Germaneau
- Centre Hospitalier Henri Laborit, Unité de Recherche Clinique Pierre Deniker, Poitiers, France.,Centre de Recherches sur la Cognition et l'Apprentissage, Centre National de la Recherche Scientifique (CNRS 7295), Université de Poitiers, Poitiers, France
| | - Issa Wassouf
- Centre Hospitalier Henri Laborit, Unité de Recherche Clinique Pierre Deniker, Poitiers, France.,Centre de Recherches sur la Cognition et l'Apprentissage, Centre National de la Recherche Scientifique (CNRS 7295), Université de Poitiers, Poitiers, France.,Centre Hospitalier Nord Deux-Sèvres, Service de Psychiatrie Adulte, Thouars, France
| | - Tom Le Tutour
- Centre Hospitalier Henri Laborit, Unité de Recherche Clinique Pierre Deniker, Poitiers, France
| | - Remy Guillevin
- CHU de Poitiers, Service de Radiologie, Poitiers, France.,Laboratoire Dactim Mis, LMA, UMR CNRS 7348, Poitiers, France
| | - Damien Doolub
- Centre Hospitalier Henri Laborit, Unité de Recherche Clinique Pierre Deniker, Poitiers, France.,Centre de Recherches sur la Cognition et l'Apprentissage, Centre National de la Recherche Scientifique (CNRS 7295), Université de Poitiers, Poitiers, France
| | - Reza Rostami
- Department of Psychology, University of Tehran, Tehran, Iran.,Atieh Clinical Neuroscience Centre, Tehran, Iran
| | - Alexia Delbreil
- Centre Hospitalier Henri Laborit, Unité de Recherche Clinique Pierre Deniker, Poitiers, France.,Centre de Recherches sur la Cognition et l'Apprentissage, Centre National de la Recherche Scientifique (CNRS 7295), Université de Poitiers, Poitiers, France.,CHU Poitiers, Service de Médecine Légale, Poitiers, France
| | - Nicolas Langbour
- Centre Hospitalier Henri Laborit, Unité de Recherche Clinique Pierre Deniker, Poitiers, France.,Centre de Recherches sur la Cognition et l'Apprentissage, Centre National de la Recherche Scientifique (CNRS 7295), Université de Poitiers, Poitiers, France
| | - Nematollah Jaafari
- Centre Hospitalier Henri Laborit, Unité de Recherche Clinique Pierre Deniker, Poitiers, France.,Centre de Recherches sur la Cognition et l'Apprentissage, Centre National de la Recherche Scientifique (CNRS 7295), Université de Poitiers, Poitiers, France
| |
Collapse
|
7
|
Almeida VN, Radanovic M. Semantic priming and neurobiology in schizophrenia: A theoretical review. Neuropsychologia 2021; 163:108058. [PMID: 34655651 DOI: 10.1016/j.neuropsychologia.2021.108058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
In this theoretical review we bridge the cognitive and neurobiological sciences to shed light on the neurocognitive foundations of the semantic priming effect in schizophrenia. We review and theoretically evaluate the neurotransmitter systems (dopaminergic, GABAergic and glutamatergic) and neurobiological underpinnings of behavioural and electrophysiological (N400) semantic priming in the pathology, and the main hypotheses on their geneses: a disinhibition of the semantic spread of activation, a disorganised semantic storage or noisy lexical-semantic associations, a psychomotor artefact, an artefact of relatedness proportions, or an inability to mobilise contextual information. We further assess the literature on the endophenotype of Formal Thought Disorder from multiple standpoints, ranging from neurophysiology to cognition: considerations are weaved on neuronal (PV basket cell, SST, VIP) and receptor deficits (DRD1, NMDA), neurotransmitter imbalances (dopamine), cortical and dopaminergic lateralisation, inter alia. In conclusion, we put forth novel postulates on the underlying causes of controlled hypopriming, automatic hyperpriming, N400 reversals (larger amplitudes for close associations), indirect versus direct hyperpriming, and the endophenotype of lexical-semantic disturbances in schizophrenia.
Collapse
Affiliation(s)
- Victor N Almeida
- Faculdade de Letras, Universidade Federal de Minas Gerais (UFMG), Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| | - Marcia Radanovic
- Laboratório de Neurociências (LIM-27), Faculdade de Medicina, Departamento e Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Brazil
| |
Collapse
|
8
|
Madzarac Z, Tudor L, Sagud M, Nedic Erjavec G, Mihaljevic Peles A, Pivac N. The Associations between COMT and MAO-B Genetic Variants with Negative Symptoms in Patients with Schizophrenia. Curr Issues Mol Biol 2021; 43:618-636. [PMID: 34287249 PMCID: PMC8928957 DOI: 10.3390/cimb43020045] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022] Open
Abstract
Negative symptoms of schizophrenia, including anhedonia, represent a heavy burden on patients and their relatives. These symptoms are associated with cortical hypodopamynergia and impaired striatal dopamine release in response to reward stimuli. Catechol-O-methyltransferase (COMT) and monoamine oxidase type B (MAO-B) degrade dopamine and affect its neurotransmission. The study determined the association between COMT rs4680 and rs4818, MAO-B rs1799836 and rs6651806 polymorphisms, the severity of negative symptoms, and physical and social anhedonia in schizophrenia. Sex-dependent associations were detected in a research sample of 302 patients with schizophrenia. In female patients with schizophrenia, the presence of the G allele or GG genotype of COMT rs4680 and rs4818, as well as GG haplotype rs4818-rs4680, which were all related to higher COMT activity, was associated with an increase in several dimensions of negative symptoms and anhedonia. In male patients with schizophrenia, carriers of the MAO-B rs1799836 A allele, presumably associated with higher MAO-B activity, had a higher severity of alogia, while carriers of the A allele of the MAO-B rs6651806 had a higher severity of negative symptoms. These findings suggest that higher dopamine degradation, associated with COMT and MAO-B genetic variants, is associated with a sex-specific increase in the severity of negative symptoms in schizophrenia patients.
Collapse
Affiliation(s)
- Zoran Madzarac
- Department of Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia; (Z.M.); (M.S.); (A.M.P.)
| | - Lucija Tudor
- Ruder Boskovic Institute, 10 000 Zagreb, Croatia; (L.T.); (G.N.E.)
| | - Marina Sagud
- Department of Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia; (Z.M.); (M.S.); (A.M.P.)
- School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | | | - Alma Mihaljevic Peles
- Department of Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia; (Z.M.); (M.S.); (A.M.P.)
- School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Nela Pivac
- Ruder Boskovic Institute, 10 000 Zagreb, Croatia; (L.T.); (G.N.E.)
- Correspondence: ; Tel.: +385-915-371-810
| |
Collapse
|
9
|
Yuan Y, Cassano P, Pias M, Fang Q. Transcranial photobiomodulation with near-infrared light from childhood to elderliness: simulation of dosimetry. NEUROPHOTONICS 2020; 7:015009. [PMID: 32118086 PMCID: PMC7039173 DOI: 10.1117/1.nph.7.1.015009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/05/2020] [Indexed: 05/15/2023]
Abstract
Significance: Major depressive disorder (MDD) affects over 40 million U.S. adults in their lifetime. Transcranial photobiomodulation (t-PBM) has been shown to be effective in treating MDD, but the current treatment dosage does not account for head and brain anatomical changes due to aging. Aim: We study effective t-PBM dosage and its variations across age groups using state-of-the-art Monte Carlo simulations and age-dependent brain atlases ranging between 5 and 85 years of age. Approach: Age-dependent brain models are derived from 18 MRI brain atlases. Two extracranial source positions, F3-F4 and Fp1-Fpz-Fp2 in the EEG 10-20 system, are simulated at five selected wavelengths and energy depositions at two MDD-relevant cortical regions-dorsolateral prefrontal cortex (dlPFC) and ventromedial prefrontal cortex (vmPFC)-are quantified. Results: An overall decrease of energy deposition was found with increasing age. A strong negative correlation between the thickness of extracerebral tissues (ECT) and energy deposition was observed, suggesting that increasing ECT thickness over age is primarily responsible for reduced energy delivery. The F3-F4 position appears to be more efficient in reaching dlPFC compared to treating vmPFC via the Fp1-Fpz-Fp2 position. Conclusions: Quantitative simulations revealed age-dependent light delivery across the lifespan of human brains, suggesting the need for personalized and age-adaptive t-PBM treatment planning.
Collapse
Affiliation(s)
- Yaoshen Yuan
- Northeastern University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
| | - Paolo Cassano
- Massachusetts General Hospital, Depression Clinical and Research Program, Center for Anxiety and Traumatic Stress Disorders, Boston, Massachusetts, United States
- Harvard Medical School, Department of Psychiatry, Boston, Massachusetts, United States
| | - Matthew Pias
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Qianqian Fang
- Northeastern University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
- Address all correspondence to Qianqian Fang, E-mail:
| |
Collapse
|
10
|
Association between catechol-O-methyltransferase genetic variation and functional connectivity in patients with first-episode schizophrenia. Schizophr Res 2018; 199:214-220. [PMID: 29730044 DOI: 10.1016/j.schres.2018.04.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 02/08/2023]
Abstract
Dopamine in the prefrontal cortex (PFC) plays an important role in cognitive performance and regulates by catechol-O-methyltransferase (COMT) expression. To clarify the effect of COMT genotype on cognitive function in patients with schizophrenia, we performed DNA genotyping, cognitive evaluations, and functional magnetic resonance imaging (fMRI) in antipsychotic-naïve patients with first-episode schizophrenia (FES) and matched healthy control subjects. We found that all cognitive domains were impaired in patients with FES compared with healthy subjects. Moreover, COMT genotype influenced the verbal learning performance in healthy subjects, but not in patients with FES. Resting-state fMRI data revealed that patients with FES exhibited higher functional connectivity degree centrality in the medial PFC and lower degree centrality in the parietal-occipital junction than healthy subjects. Furthermore, patients with FES who were COMT Met allele carriers had higher degree centrality in the medial PFC than those with the Val/Val genotype. In contrast, in healthy controls, Met allele carriers exhibited higher degree centrality than healthy controls with the Val/Val genotype in the left hippocampus and left amygdala. There was a negative correlation between the degree centrality value in medial PFC and score of the Hopkins Verbal Learning Test-Revised (HVLT-R) in FES patients with the Met allele. Our findings suggest that COMT genotype differentially influences pathways related to cognitive performance in patients with FES versus healthy individuals, providing an important insight into schizophrenia pathophysiology.
Collapse
|
11
|
Batalla A, Lorenzetti V, Chye Y, Yücel M, Soriano-Mas C, Bhattacharyya S, Torrens M, Crippa JAS, Martín-Santos R. The Influence of DAT1, COMT, and BDNF Genetic Polymorphisms on Total and Subregional Hippocampal Volumes in Early Onset Heavy Cannabis Users. Cannabis Cannabinoid Res 2018; 3:1-10. [PMID: 29404409 PMCID: PMC5797324 DOI: 10.1089/can.2017.0021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: Hippocampal neuroanatomy is affected by genetic variations in dopaminergic candidate genes and environmental insults, such as early onset of chronic cannabis exposure. Here, we examine how hippocampal total and subregional volumes are affected by cannabis use and functional polymorphisms of dopamine-relevant genes, including the catechol-O-methyltransferase (COMT), dopamine transporter (DAT1), and the brain-derived neurotrophic factor (BDNF) genes. Material and Methods: We manually traced total hippocampal volumes and automatically segmented hippocampal subregions using high-resolution MRI images, and performed COMT, DAT1, and BDNF genotyping in 59 male Caucasian young adults aged 18–30 years. These included 30 chronic cannabis users with early-onset (regular use at <16 years) and 29 age-, education-, and intelligence-matched controls. Results: Cannabis use and dopaminergic gene polymorphism had both distinct and interactive effects on the hippocampus. We found emerging alterations of hippocampal total and specific subregional volumes in cannabis users relative to controls (i.e., CA1, CA2/3, and CA4), and associations between cannabis use levels and total and specific subregional volumes. Furthermore, total hippocampal volume and the fissure subregion were affected by cannabis×DAT1 polymorphism (i.e., 9/9R and in 10/10R alleles), reflecting high and low levels of dopamine availability. Conclusion: These findings suggest that cannabis exposure alters the normal relationship between DAT1 polymorphism and the anatomy of total and subregional hippocampal volumes, and that specific hippocampal subregions may be particularly affected.
Collapse
Affiliation(s)
- Albert Batalla
- Department of Psychiatry, Clinical Institute of Neuroscience, Hospital Clínic, IDIBAPS, CIBERSAM and Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain.,Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), Radboud University, Nijmegen, The Netherlands
| | - Valentina Lorenzetti
- School of Psychological Sciences, Institute of Psychology Health and Society, The University of Liverpool, Liverpool, United Kingdom.,Laboratory for Brain and Mental Health, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Yann Chye
- Laboratory for Brain and Mental Health, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Murat Yücel
- Laboratory for Brain and Mental Health, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, CIBERSAM G-17, and Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Marta Torrens
- Institute of Neuropsychiatry and Addictions, Hospital del Mar, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Psychiatric Department of Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José A S Crippa
- Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina Translational Medicine (INCT-TM), National Council for Scientific and Technological Development, São Paulo, Brazil
| | - Rocío Martín-Santos
- Department of Psychiatry, Clinical Institute of Neuroscience, Hospital Clínic, IDIBAPS, CIBERSAM and Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain.,Institute of Neuropsychiatry and Addictions, Hospital del Mar, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Psychiatric Department of Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina Translational Medicine (INCT-TM), National Council for Scientific and Technological Development, São Paulo, Brazil
| |
Collapse
|
12
|
Sexually divergent effect of COMT Val/met genotype on subcortical volumes in schizophrenia. Brain Imaging Behav 2017; 12:829-836. [DOI: 10.1007/s11682-017-9748-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Shimada K, Fujisawa TX, Takiguchi S, Naruse H, Kosaka H, Okazawa H, Tomoda A. Ethnic differences in COMT genetic effects on striatal grey matter alterations associated with childhood ADHD: A voxel-based morphometry study in a Japanese sample. World J Biol Psychiatry 2017; 18:322-328. [PMID: 26576742 DOI: 10.3109/15622975.2015.1102325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Attention deficit/hyperactivity disorder (ADHD) is associated with deficits in the dopaminergic fronto-striatal systems mediating higher-level cognitive functions. We hypothesised that a dopamine-regulating gene, catechol-O-methyltransferase (COMT), would have differential effects on the neural systems of different ethnic samples with ADHD. In Caucasian children with ADHD, the COMT Val-homozygotes have been previously shown to be associated with striatal grey matter volume (GMV) alterations. By using voxel-based morphometry, we examined whether Asian children with ADHD would exhibit a pattern opposite to that found in Caucasian samples. METHODS Structural brain images were obtained for Japanese children with ADHD (n = 17; mean age = 10.3 years) and typically developing (TD) children (n = 15; mean age = 12.8 years). COMT Val158Met genotype data were also obtained for the ADHD group. RESULTS Reduced GMV in the left striatum was observed in the ADHD group versus the TD group. This reduced GMV was modulated by COMT polymorphism; Met-carriers exhibited smaller striatal GMV than the Val/Val genotype. CONCLUSIONS Contrasting with previous findings in Caucasians, the COMT Met allele was associated with striatal GMV alterations in Japanese children with ADHD. These results suggest the existence of ethnic differences in the COMT genetic effect on ADHD-related striatal abnormalities.
Collapse
Affiliation(s)
- Koji Shimada
- a Research Center for Child Mental Development, University of Fukui , Fukui , Japan.,b Biomedical Imaging Research Center, University of Fukui , Fukui , Japan.,c Division of Developmental Higher Brain Functions, United Graduate School of Child Development , University of Fukui , Fukui , Japan
| | - Takashi X Fujisawa
- a Research Center for Child Mental Development, University of Fukui , Fukui , Japan.,c Division of Developmental Higher Brain Functions, United Graduate School of Child Development , University of Fukui , Fukui , Japan
| | | | - Hiroaki Naruse
- c Division of Developmental Higher Brain Functions, United Graduate School of Child Development , University of Fukui , Fukui , Japan
| | - Hirotaka Kosaka
- a Research Center for Child Mental Development, University of Fukui , Fukui , Japan.,c Division of Developmental Higher Brain Functions, United Graduate School of Child Development , University of Fukui , Fukui , Japan.,e Department of Neuropsychiatry, Faculty of Medical Sciences , University of Fukui , Fukui , Japan
| | - Hidehiko Okazawa
- a Research Center for Child Mental Development, University of Fukui , Fukui , Japan.,b Biomedical Imaging Research Center, University of Fukui , Fukui , Japan
| | - Akemi Tomoda
- a Research Center for Child Mental Development, University of Fukui , Fukui , Japan.,c Division of Developmental Higher Brain Functions, United Graduate School of Child Development , University of Fukui , Fukui , Japan
| |
Collapse
|
14
|
Zhu B, Chen C, Xue G, Lei X, Wang Y, Li J, Moyzis RK, Li J, Dong Q, Lin C. Associations between the CNTNAP2 gene, dorsolateral prefrontal cortex, and cognitive performance on the Stroop task. Neuroscience 2017; 343:21-29. [PMID: 27916731 DOI: 10.1016/j.neuroscience.2016.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/24/2016] [Accepted: 11/17/2016] [Indexed: 11/16/2022]
|
15
|
Knöchel C, Schmied C, Linden DEJ, Stäblein M, Prvulovic D, de A de Carvalho L, Harrison O, Barros PO, Carvalho AF, Reif A, Alves GS, Oertel-Knöchel V. White matter abnormalities in the fornix are linked to cognitive performance in SZ but not in BD disorder: An exploratory analysis with DTI deterministic tractography. J Affect Disord 2016; 201:64-78. [PMID: 27177298 DOI: 10.1016/j.jad.2016.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 02/19/2016] [Accepted: 03/07/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND In psychosis, white matter (WM) microstructural changes have been detected previously; however, direct comparisons of findings between bipolar (BD) and schizophrenia (SZ) patients are scarce. In this study, we employed deterministic tractography to reconstruct WM tracts in BD and SZ patients. METHODS Diffusion tensor imaging (DTI) data was carried out with n=32 euthymic BD type I patients, n=26 SZ patients and 30 matched healthy controls. Deterministic tractography using multiple indices of diffusion (fractional anisotropy (FA), tract volume (Vol), tract length (Le) and number of tracts (NofT)) were obtained from the fornix, the cingulum, the anterior thalamic radiation, and the corpus callosum bilaterally. RESULTS We showed widespread WM microstructural changes in SZ, and changes in the corpus callosum, the left cingulum and the fornix in BD. Fornix fiber tracking scores were associated with cognitive performance in SZ, and with age and age at disease onset in the BD patient group. LIMITATIONS Although the influence of psychopharmacological drugs as biasing variables on morphological alterations has been discussed for SZ and BD, we did not observe a clear influence of drug exposure on our findings. CONCLUSIONS These results confirm the assumption that SZ patients have more severe WM changes than BD patients. The findings also suggest a major role of WM changes in the fornix as important fronto-limbic connections in the etiology of cognitive symptoms in SZ, but not in BD.
Collapse
Affiliation(s)
- Christian Knöchel
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe Univ., Frankfurt/Main, Germany.
| | - Claudia Schmied
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe Univ., Frankfurt/Main, Germany
| | - David E J Linden
- MRC Centre for Neuropsychiatric Genetics & Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, United Kingdom
| | - Michael Stäblein
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe Univ., Frankfurt/Main, Germany
| | - David Prvulovic
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe Univ., Frankfurt/Main, Germany
| | - Luiza de A de Carvalho
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Octavia Harrison
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe Univ., Frankfurt/Main, Germany; Brain Imaging Center, Goethe Univ., Frankfurt/Main, Germany
| | - Paulo O Barros
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - André F Carvalho
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Andreas Reif
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe Univ., Frankfurt/Main, Germany
| | - Gilberto S Alves
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Viola Oertel-Knöchel
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe Univ., Frankfurt/Main, Germany
| |
Collapse
|
16
|
Sargolzaei S, Sargolzaei A, Cabrerizo M, Chen G, Goryawala M, Pinzon-Ardila A, Gonzalez-Arias SM, Adjouadi M. Estimating Intracranial Volume in Brain Research: An Evaluation of Methods. Neuroinformatics 2016; 13:427-41. [PMID: 25822811 DOI: 10.1007/s12021-015-9266-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Intracranial volume (ICV) is a standard measure often used in morphometric analyses to correct for head size in brain studies. Inaccurate ICV estimation could introduce bias in the outcome. The current study provides a decision aid in defining protocols for ICV estimation across different subject groups in terms of sampling frequencies that can be optimally used on the volumetric MRI data, and type of software most suitable for use in estimating the ICV measure. Four groups of 53 subjects are considered, including adult controls (AC, adults with Alzheimer's disease (AD), pediatric controls (PC) and group of pediatric epilepsy subjects (PE). Reference measurements were calculated for each subject by manually tracing intracranial cavity without sub-sampling. The reliability of reference measurements were assured through intra- and inter- variation analyses. Three publicly well-known software packages (FreeSurfer Ver. 5.3.0, FSL Ver. 5.0, SPM8 and SPM12) were examined in their ability to automatically estimate ICV across the groups. Results on sub-sampling studies with a 95 % confidence showed that in order to keep the accuracy of the inter-leaved slice sampling protocol above 99 %, sampling period cannot exceed 20 mm for AC, 25 mm for PC, 15 mm for AD and 17 mm for the PE groups. The study assumes a priori knowledge about the population under study into the automated ICV estimation. Tuning of the parameters in FSL and the use of proper atlas in SPM showed significant reduction in the systematic bias and the error in ICV estimation via these automated tools. SPM12 with the use of pediatric template is found to be a more suitable candidate for PE group. SPM12 and FSL subjected to tuning are the more appropriate tools for the PC group. The random error is minimized for FS in AD group and SPM8 showed less systematic bias. Across the AC group, both SPM12 and FS performed well but SPM12 reported lesser amount of systematic bias.
Collapse
Affiliation(s)
- Saman Sargolzaei
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - Arman Sargolzaei
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - Mercedes Cabrerizo
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - Gang Chen
- Scientific and Statistical Computing Core, NIMH/NIH/HHS, Bethesda, MD, USA
| | - Mohammed Goryawala
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | | | - Sergio M Gonzalez-Arias
- Baptist Health Neuroscience Center, Baptist Hospital, Miami, FL, USA.,Department of Neuroscience, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Malek Adjouadi
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA. .,Department of Biomedical Engineering, Florida International University, Miami, FL, USA. .,, 10555W. Flagler St, ECE 2220, Miami, FL, 33174, USA.
| |
Collapse
|
17
|
Knöchel C, Reuter J, Reinke B, Stäblein M, Marbach K, Feddern R, Kuhlmann K, Alves G, Prvulovic D, Wenzler S, Linden DEJ, Oertel-Knöchel V. Cortical thinning in bipolar disorder and schizophrenia. Schizophr Res 2016; 172:78-85. [PMID: 26876312 DOI: 10.1016/j.schres.2016.02.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 01/08/2023]
Abstract
Although schizophrenia (SZ) and bipolar disorder (BD) share some clinical features such as psychotic symptoms and cognitive dysfunctions, little is known about possible pathophysiological similarities between both diseases. Therefore, we investigated the potential topographical overlap and segregation of cortical thickness abnormalities in SZ and BD patients. We analyzed 3D-anatomical magnetic resonance imaging datasets with the FreeSurfer 5.1.0 software to examine cortical thickness and volumes in three groups of participants: n=34 BD patients, n=32 SZ patients and n=38 healthy controls. We observed similar bilateral cortical thickness reductions in BD and SZ patients predominantly in the pars opercularis of the inferior frontal gyrus and in the anterior and posterior cingulate. We also found disease-specific cortical reductions in the orbitofrontal cortex for BD patients and in dorsal frontal and temporal areas for SZ. Furthermore, inferior frontal gyrus cortical thinning was associated with deficits in psychomotor speed and executive functioning in SZ patients and with age at onset in both groups. Our findings support the hypothesis that thinning of the frontal cortex may represent a biological feature shared by both disease groups. The associations between cognitive deficits and the reported findings in SZ and to a lesser degree in BD patients add to the functional relevance of our results. However, further studies are needed to corroborate a model of shared pathophysiological disease features across BD and SZ.
Collapse
Affiliation(s)
- Christian Knöchel
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany.
| | - Johanna Reuter
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany
| | - Britta Reinke
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany; Brain Imaging Center (BIC), Goethe-University, Frankfurt/Main, Germany
| | - Michael Stäblein
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany; Brain Imaging Center (BIC), Goethe-University, Frankfurt/Main, Germany
| | - Katharina Marbach
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany
| | - Richard Feddern
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany; Brain Imaging Center (BIC), Goethe-University, Frankfurt/Main, Germany
| | - Kristina Kuhlmann
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany
| | - Gilberto Alves
- Center for Alzheimer's Disease and Related Disorders, Universidade Federal do Rio de Janeiro, Brazil
| | - David Prvulovic
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany
| | - Sofia Wenzler
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany
| | - David E J Linden
- MRC Centre for Neuropsychiatric Genetics & Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, United Kingdom
| | - Viola Oertel-Knöchel
- Laboratory for Neuroimaging, Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt/Main, Germany; Brain Imaging Center (BIC), Goethe-University, Frankfurt/Main, Germany
| |
Collapse
|
18
|
Walton E, Hass J, Liu J, Roffman JL, Bernardoni F, Roessner V, Kirsch M, Schackert G, Calhoun V, Ehrlich S. Correspondence of DNA Methylation Between Blood and Brain Tissue and Its Application to Schizophrenia Research. Schizophr Bull 2016; 42:406-14. [PMID: 26056378 PMCID: PMC4753587 DOI: 10.1093/schbul/sbv074] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Given the difficulty of procuring human brain tissue, a key question in molecular psychiatry concerns the extent to which epigenetic signatures measured in more accessible tissues such as blood can serve as a surrogate marker for the brain. Here, we aimed (1) to investigate the blood-brain correspondence of DNA methylation using a within-subject design and (2) to identify changes in DNA methylation of brain-related biological pathways in schizophrenia.We obtained paired blood and temporal lobe biopsy samples simultaneously from 12 epilepsy patients during neurosurgical treatment. Using the Infinium 450K methylation array we calculated similarity of blood and brain DNA methylation for each individual separately. We applied our findings by performing gene set enrichment analyses (GSEA) of peripheral blood DNA methylation data (Infinium 27K) of 111 schizophrenia patients and 122 healthy controls and included only Cytosine-phosphate-Guanine (CpG) sites that were significantly correlated across tissues.Only 7.9% of CpG sites showed a statistically significant, large correlation between blood and brain tissue, a proportion that although small was significantly greater than predicted by chance. GSEA analysis of schizophrenia data revealed altered methylation profiles in pathways related to precursor metabolites and signaling peptides.Our findings indicate that most DNA methylation markers in peripheral blood do not reliably predict brain DNA methylation status. However, a subset of peripheral data may proxy methylation status of brain tissue. Restricting the analysis to these markers can identify meaningful epigenetic differences in schizophrenia and potentially other brain disorders.
Collapse
Affiliation(s)
- Esther Walton
- Department of Child and Adolescent Psychiatry, Translational Developmental Neuroscience Section, Faculty of Medicine of the TU Dresden, Dresden, Germany;,Department of Psychology, Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, UK
| | - Johanna Hass
- Department of Child and Adolescent Psychiatry, Translational Developmental Neuroscience Section, Faculty of Medicine of the TU Dresden, Dresden, Germany;,Institute of Tropical Medicine, Eberhard Karls University, Tübingen, Germany
| | - Jingyu Liu
- The Mind Research Network, Albuquerque, NM
| | - Joshua L. Roffman
- MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA;,Department of Psychiatry, Massachusetts General Hospital, Boston, MA
| | - Fabio Bernardoni
- Department of Child and Adolescent Psychiatry, Translational Developmental Neuroscience Section, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Translational Developmental Neuroscience Section, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Matthias Kirsch
- Department of Neurosurgery, Faculty of Medicine of the TU Dresden, Dresden, Germany;,Center for Regenerative Therapies Dresden (CRTD), DFG Research Center and Cluster of Excellence at the TU Dresden, Dresden, Germany
| | - Gabriele Schackert
- Department of Neurosurgery, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Vince Calhoun
- The Mind Research Network, Albuquerque, NM;,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM
| | - Stefan Ehrlich
- Department of Child and Adolescent Psychiatry, Translational Developmental Neuroscience Section, Faculty of Medicine of the TU Dresden, Dresden, Germany; MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA;
| |
Collapse
|
19
|
Lee A, Qiu A. Modulative effects of COMT haplotype on age-related associations with brain morphology. Hum Brain Mapp 2016; 37:2068-82. [PMID: 26920810 DOI: 10.1002/hbm.23161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 02/09/2016] [Accepted: 02/16/2016] [Indexed: 12/25/2022] Open
Abstract
Catechol-O-methyltransferase (COMT), located on chromosome 22q11.2, encodes an enzyme critical for dopamine flux in the prefrontal cortex. Genetic variants of COMT have been suggested to functionally manipulate prefrontal morphology and function in healthy adults. This study aims to investigate modulative roles of individuals COMT SNPs (rs737865, val158met, rs165599) and its haplotypes in age-related brain morphology using an Asian sample with 174 adults aged from 21 to 80 years. We showed an age-related decline in cortical thickness of the dorsal visual pathway, including the left dorsolateral prefrontal cortex, bilateral angular gyrus, right superior frontal cortex, and age-related shape compression in the basal ganglia as a function of the genotypes of the individual COMT SNPs, especially COMT val158met. Using haplotype trend regression analysis, COMT haplotype probabilities were estimated and further revealed an age-related decline in cortical thickness in the default mode network (DMN), including the posterior cingulate, precuneus, supramarginal and paracentral cortex, and the ventral visual system, including the occipital cortex and left inferior temporal cortex, as a function of the COMT haplotype. Our results provided new evidence on an antagonistic pleiotropic effect in COMT, suggesting that genetically programmed neural benefits in early life may have a potential bearing towards neural susceptibility in later life. Hum Brain Mapp 37:2068-2082, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Annie Lee
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore.,Clinical Imaging Research Center, National University of Singapore, Singapore, 117456, Singapore.,Singapore Institute for Clinical Sciences, the Agency for Science, Technology and Research, Singapore, 117609, Singapore
| |
Collapse
|
20
|
Wang M, Ma Y, Yuan W, Su K, Li MD. Meta-Analysis of the COMT Val158Met Polymorphism in Major Depressive Disorder: Effect of Ethnicity. J Neuroimmune Pharmacol 2016; 11:434-45. [PMID: 26803486 DOI: 10.1007/s11481-016-9651-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/14/2016] [Indexed: 12/23/2022]
Abstract
The COMT (catechol-O-methyltransferase) Val158Met polymorphism (rs4680) is a potential susceptibility variant for major depressive disorder (MDD). Although many genetic studies have examined the association between MDD and this polymorphism, the results were inconclusive. In the present study, we conducted a series of meta-analyses of samples consisting of 2905 MDD cases and 2403 controls with the goal of determining whether this variant indeed has any effect on MDD. We revealed a significant association in the comparison of Val/Val + Val/Met vs. Met/Met (OR =1.180; 95 % CI = 1.019, 1.367; P = 0.027), Val/Met vs. Val/Val (OR =1.18; 95 % CI = 1.038, 1.361; P = 0.013), and Val/Met vs. Met/Met (OR =1.229; 95 % CI = 1.053, 1.435; P = 0.009). Further meta-analyses of samples with European ancestry demonstrated a significant association of this SNP with MDD susceptibility in Val/Val + Val/Met vs. Met/Met (OR =1.231, 95 % CI = 1.046, 1.449; P = 0.013) and Val/Met vs. Met/Met (OR =1.284, 95 % CI = 1.050, 1.484; P = 0.012). For the samples with East Asian ancestry, we found a significant association in both allelic (Val vs. Met: OR =0.835; 95 % CI = 0.714, 0.975; P = 0.023) and genotypic (Met/Met + Val/Met vs. Val/Val: OR =1.431, 95 % CI = 1.143, 1.791; P = 0.002; Val/Met vs. Val/Val: OR =1.482, 95 % CI = 1.171, 1.871; P = 0.001) analyses. No evidence of heterogeneity among studies or publication bias was observed. Together, our results indicate that the COMT Val158Met polymorphism is a vulnerability factor for MDD with distinct effects in different ethnic populations.
Collapse
Affiliation(s)
- Maiqiu Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlong Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Kunkai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China. .,Air Center for Air Pollution and Health, Zhejiang University, Hangzhou, China. .,Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
21
|
Li Y, Xie S, Liu B, Song M, Chen Y, Li P, Lu L, Lv L, Wang H, Yan H, Yan J, Zhang H, Zhang D, Jiang T. Diffusion magnetic resonance imaging study of schizophrenia in the context of abnormal neurodevelopment using multiple site data in a Chinese Han population. Transl Psychiatry 2016; 6:e715. [PMID: 26784969 PMCID: PMC5068876 DOI: 10.1038/tp.2015.202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 11/05/2015] [Indexed: 12/19/2022] Open
Abstract
Schizophrenia has increasingly been considered a neurodevelopmental disorder, and the advancement of neuroimaging techniques and associated computational methods has enabled quantitative re-examination of this important theory on the pathogenesis of the disease. Inspired by previous findings from neonatal brains, we proposed that an increase in diffusion magnetic resonance imaging (dMRI) mean diffusivity (MD) should be observed in the cerebral cortex of schizophrenia patients compared with healthy controls, corresponding to lower tissue complexity and potentially a failure to reach cortical maturation. We tested this hypothesis using dMRI data from a Chinese Han population comprising patients from four different hospital sites. Utilizing data-driven methods based on the state-of-the-art tensor-based registration algorithm, significantly increased MD measurements were consistently observed in the cortex of schizophrenia patients across all four sites, despite differences in psychopathology, exposure to antipsychotic medication and scanners used for image acquisition. Specifically, we found increased MD in the limbic system of the schizophrenic brain, mainly involving the bilateral insular and prefrontal cortices. In light of the existing literature, we speculate that this may represent a neuroanatomical signature of the disorder, reflecting microstructural deficits due to developmental abnormalities. Our findings not only provide strong support to the abnormal neurodevelopment theory of schizophrenia, but also highlight an important neuroimaging endophenotype for monitoring the developmental trajectory of high-risk subjects of the disease, thereby facilitating early detection and prevention.
Collapse
Affiliation(s)
- Y Li
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - S Xie
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - B Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - M Song
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Y Chen
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - P Li
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - L Lu
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - L Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - H Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - H Yan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - J Yan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - H Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Psychology, Xinxiang Medical University, Xinxiang, China
| | - D Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
- Center for Life Sciences/PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - T Jiang
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Won E, Ham BJ. Imaging genetics studies on monoaminergic genes in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:311-9. [PMID: 25828849 DOI: 10.1016/j.pnpbp.2015.03.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/17/2015] [Accepted: 03/20/2015] [Indexed: 12/28/2022]
Abstract
Although depression is the leading cause of disability worldwide, current understanding of the neurobiology of depression has failed to be translated into clinical practice. Major depressive disorder (MDD) pathogenesis is considered to be significantly influenced by multiple risk genes, however genetic effects are not simply expressed at a behavioral level. Therefore the concept of endophenotype has been applied in psychiatric genetics. Imaging genetics applies anatomical or functional imaging technologies as phenotypic assays to evaluate genetic variation and their impact on behavior. This paper attempts to provide a comprehensive review of available imaging genetics studies, including reports on genetic variants that have most frequently been linked to MDD, such as the monoaminergic genes (serotonin transporter gene, monoamine oxidase A gene, tryptophan hydroxylase-2 gene, serotonin receptor 1A gene and catechol-O-methyl transferase gene), with regard to key structures involved in emotion processing, such as the hippocampus, amygdala, anterior cingulate cortex and orbitofrontal cortex.
Collapse
Affiliation(s)
- Eunsoo Won
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Geisler D, Walton E, Naylor M, Roessner V, Lim KO, Schulz SC, Gollub RL, Calhoun VD, Sponheim SR, Ehrlich S. Brain structure and function correlates of cognitive subtypes in schizophrenia. Psychiatry Res 2015; 234:74-83. [PMID: 26341950 PMCID: PMC4705852 DOI: 10.1016/j.pscychresns.2015.08.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 07/27/2015] [Accepted: 08/20/2015] [Indexed: 02/08/2023]
Abstract
Stable neuropsychological deficits may provide a reliable basis for identifying etiological subtypes of schizophrenia. The aim of this study was to identify clusters of individuals with schizophrenia based on dimensions of neuropsychological performance, and to characterize their neural correlates. We acquired neuropsychological data as well as structural and functional magnetic resonance imaging from 129 patients with schizophrenia and 165 healthy controls. We derived eight cognitive dimensions and subsequently applied a cluster analysis to identify possible schizophrenia subtypes. Analyses suggested the following four cognitive clusters of schizophrenia: (1) Diminished Verbal Fluency, (2) Diminished Verbal Memory and Poor Motor Control, (3) Diminished Face Memory and Slowed Processing, and (4) Diminished Intellectual Function. The clusters were characterized by a specific pattern of structural brain changes in areas such as Wernicke's area, lingual gyrus and occipital face area, and hippocampus as well as differences in working memory-elicited neural activity in several fronto-parietal brain regions. Separable measures of cognitive function appear to provide a method for deriving cognitive subtypes meaningfully related to brain structure and function. Because the present study identified brain-based neural correlates of the cognitive clusters, the proposed groups of individuals with schizophrenia have some external validity.
Collapse
Affiliation(s)
- Daniel Geisler
- Technische Universität Dresden, Translational Developmental Neuroscience Section, Department of Child and Adolescent Psychiatry, Dresden, Germany
| | - Esther Walton
- Technische Universität Dresden, Translational Developmental Neuroscience Section, Department of Child and Adolescent Psychiatry, Dresden, Germany
| | - Melissa Naylor
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Veit Roessner
- Technische Universität Dresden, Translational Developmental Neuroscience Section, Department of Child and Adolescent Psychiatry, Dresden, Germany
| | - Kelvin O Lim
- Minneapolis VA Health Care System & Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - S Charles Schulz
- Minneapolis VA Health Care System & Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Randy L Gollub
- MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America,Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Vince D Calhoun
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico, United States of America,The MIND Research Network, Albuquerque, New Mexico, United States of America
| | - Scott R Sponheim
- Minneapolis VA Health Care System & Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America; Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States of America.
| |
Collapse
|
24
|
Xu J, Qin W, Liu B, Jiang T, Yu C. Interactions of genetic variants reveal inverse modulation patterns of dopamine system on brain gray matter volume and resting-state functional connectivity in healthy young adults. Brain Struct Funct 2015; 221:3891-3901. [PMID: 26498330 PMCID: PMC5065899 DOI: 10.1007/s00429-015-1134-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/13/2015] [Indexed: 12/23/2022]
Abstract
Different genotypic combinations of COMT and DRD2 can generate multiple subgroups with different levels of dopamine signaling. Its modulations on brain properties can be investigated by analyzing the combined gene effects of COMT and DRD2. However, the inherent association between modulation patterns of the dopamine system on structural and functional properties of the brain remains unknown. In 294 healthy young adults, we investigated both additive and non-additive interactions of COMT and DRD2 on gray matter volume (GMV) and resting-state functional connectivity (rsFC) using a voxel-based analysis. We found a significant non-additive COMT × DRD2 interaction in the right dorsal anterior cingulate cortex (dACC), exhibiting an inverted U-shape modulation by dopamine signaling. We also found a significant non-additive COMT × DRD2 interaction in the rsFC between the right dACC and precuneus, displaying a U-shape modulation by dopamine signaling. Moreover, this rsFC was negatively correlated with the GMV of the right dACC. Although the additive interaction did not pass corrections for multiple comparisons, we also found a trend towards an inverse modulation pattern and a negative correlation between the GMV and rsFC of the right inferior frontal gyrus. No genotypic differences were detected in any assessments of the cognition, mood and personality. These findings suggest that healthy young adults without optimal dopamine signaling may maintain their normal behavioral performance via a functional compensatory mechanism in response to structural deficit due to genetic variation.
Collapse
Affiliation(s)
- Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Bing Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
25
|
Relationship between the catechol-O-methyl transferase Val108/158Met genotype and brain volume in treatment-naive major depressive disorder: Voxel-based morphometry analysis. Psychiatry Res 2015; 233:481-7. [PMID: 26253436 DOI: 10.1016/j.pscychresns.2015.07.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 05/24/2015] [Accepted: 07/30/2015] [Indexed: 02/04/2023]
Abstract
Catechol-O-methyltransferase (COMT) is a methylation enzyme engaged in the degradation of dopamine and noradrenaline by catalyzing the transfer of a methyl group from S-adenosylmethionine. An association was found between the Valine (Val) 108/158Methionine (Met) COMT polymorphism (rs4680) and major depressive disorder (MDD). The authors prospectively investigated the relationship between the Val108/158Met COMT genotype and voxel-based morphometry (VBM) findings for patients with first-episode and treatment-naïve MDD and healthy subjects (HS). Participants comprised 30 MDD patients and 48 age- and sex-matched HS who were divided according to the COMT genotype. Effects of diagnosis, COMT genotype, and the genotype-diagnosis interaction in relation to brain morphology in the Val/Met and Val/Val individuals were evaluated using a VBM analysis of high-resolution magnetic resonance imaging findings. Among the Val/Met individuals, the volume of the bilateral caudate was significantly smaller for MDD patients than for HS. In the Val/Val individuals, the caudate volume was comparable between MDD patients and HS. Significant genotype-diagnosis interaction effects on brain morphology were noted in the right caudate.
Collapse
|
26
|
Hass J, Walton E, Wright C, Beyer A, Scholz M, Turner J, Liu J, Smolka MN, Roessner V, Sponheim SR, Gollub RL, Calhoun VD, Ehrlich S. Associations between DNA methylation and schizophrenia-related intermediate phenotypes - a gene set enrichment analysis. Prog Neuropsychopharmacol Biol Psychiatry 2015; 59:31-39. [PMID: 25598502 PMCID: PMC4346504 DOI: 10.1016/j.pnpbp.2015.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/06/2015] [Accepted: 01/13/2015] [Indexed: 12/18/2022]
Abstract
Multiple genetic approaches have identified microRNAs as key effectors in psychiatric disorders as they post-transcriptionally regulate expression of thousands of target genes. However, their role in specific psychiatric diseases remains poorly understood. In addition, epigenetic mechanisms such as DNA methylation, which affect the expression of both microRNAs and coding genes, are critical for our understanding of molecular mechanisms in schizophrenia. Using clinical, imaging, genetic, and epigenetic data of 103 patients with schizophrenia and 111 healthy controls of the Mind Clinical Imaging Consortium (MCIC) study of schizophrenia, we conducted gene set enrichment analysis to identify markers for schizophrenia-associated intermediate phenotypes. Genes were ranked based on the correlation between DNA methylation patterns and each phenotype, and then searched for enrichment in 221 predicted microRNA target gene sets. We found the predicted hsa-miR-219a-5p target gene set to be significantly enriched for genes (EPHA4, PKNOX1, ESR1, among others) whose methylation status is correlated with hippocampal volume independent of disease status. Our results were strengthened by significant associations between hsa-miR-219a-5p target gene methylation patterns and hippocampus-related neuropsychological variables. IPA pathway analysis of the respective predicted hsa-miR-219a-5p target genes revealed associated network functions in behavior and developmental disorders. Altered methylation patterns of predicted hsa-miR-219a-5p target genes are associated with a structural aberration of the brain that has been proposed as a possible biomarker for schizophrenia. The (dys)regulation of microRNA target genes by epigenetic mechanisms may confer additional risk for developing psychiatric symptoms. Further study is needed to understand possible interactions between microRNAs and epigenetic changes and their impact on risk for brain-based disorders such as schizophrenia.
Collapse
Affiliation(s)
- Johanna Hass
- Translational Developmental Neuroscience Section, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Esther Walton
- Translational Developmental Neuroscience Section, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Carrie Wright
- Department of Neurosciences, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA,The Mind Research Network, Albuquerque, NM USA
| | - Andreas Beyer
- Cellular Networks and Systems Biology, Biotechnology Center, TU Dresden, Dresden, Germany,University of Cologne, CECAD, Cologne, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany,LIFE (Leipzig Interdisciplinary Research Cluster of Genetic Factors, Phenotypes and Environment), University of Leipzig, Leipzig, Germany
| | - Jessica Turner
- The Mind Research Network, Albuquerque, NM USA,Psychology Department, University of New Mexico, Albuquerque, NM, USA
| | - Jingyu Liu
- The Mind Research Network, Albuquerque, NM USA,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM USA
| | - Michael N. Smolka
- Department of Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Veit Roessner
- Translational Developmental Neuroscience Section, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Scott R. Sponheim
- Department of Psychiatry and the Center for magnetic Resonance Research, University of Minnesota, Minneapolis, MN USA
| | - Randy L. Gollub
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA,MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA USA
| | - Vince D. Calhoun
- The Mind Research Network, Albuquerque, NM USA,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM USA
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany; Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA; MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA USA.
| |
Collapse
|
27
|
Vijayakumari AA, John JP, Halahalli HN, Paul P, Thirunavukkarasu P, Purushottam M, Jain S. Effect of polymorphisms of three genes mediating monoamine signalling on brain morphometry in schizophrenia and healthy subjects. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2015; 13:68-82. [PMID: 25912540 PMCID: PMC4423152 DOI: 10.9758/cpn.2015.13.1.68] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/18/2014] [Accepted: 10/19/2014] [Indexed: 01/11/2023]
Abstract
OBJECTIVE We examined the effect of risk alleles of polymorphisms of three schizophrenia risk genes that mediate monoamine signalling in the brain on regional brain volumes of schizophrenia and healthy control subjects. The risk alleles and the gene polymorphisms studied were: Val allele of catechol o-methyltransferase (COMT) rs4680 polymorphism; short allele of 5-hydroxy tryptamine transporter linked polymorphic region (5HTTLPR) polymorphism; and T allele of 5-hydroxy tryptamine 2A (5HT2A) rs6314 polymorphism. METHODS The study was carried out on patients with recent onset schizophrenia (n=41) recruited from the outpatient department of National Institute of Mental Health and Neurosciences, Bangalore, India and healthy control subjects (n=39), belonging to South Indian Dravidian ethnicity. Individual and additive effects of risk alleles of the above gene polymorphisms on brain morphometry were explored using voxel-based morphometry. RESULTS Irrespective of phenotypes, individuals with the risk allele T of the rs6314 polymorphism of 5HT2A gene showed greater (at cluster-extent equivalent to family wise error-correction [FWEc] p<0.05) regional brain volumes in the left inferior temporal and left inferior occipital gyri. Those with the risk alleles of the other two polymorphisms showed a trend (at p<0.001, uncorrected) towards lower regional brain volumes. A trend (at p<0.001, uncorrected) towards additive effects of the above 3 risk alleles (subjects with 2 or 3 risk alleles vs. those with 1 or no risk alleles) on brain morphology was also noted. CONCLUSIONS The findings of the present study have implications in understanding the role of individual and additive effects of genetic variants in mediating regional brain morphometry in health and disease.
Collapse
Affiliation(s)
- Anupa A Vijayakumari
- Multimodal Brain Image Analysis Laboratory (MBIAL), India.,Departments of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - John P John
- Multimodal Brain Image Analysis Laboratory (MBIAL), India.,Departments of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Departments of Clinical Neuroscience, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Harsha N Halahalli
- Departments of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Pradip Paul
- Departments of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Priyadarshini Thirunavukkarasu
- Multimodal Brain Image Analysis Laboratory (MBIAL), India.,Departments of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Meera Purushottam
- Departments of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sanjeev Jain
- Departments of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
28
|
Sargolzaei S, Sargolzaei A, Cabrerizo M, Chen G, Goryawala M, Noei S, Zhou Q, Duara R, Barker W, Adjouadi M. A practical guideline for intracranial volume estimation in patients with Alzheimer's disease. BMC Bioinformatics 2015; 16 Suppl 7:S8. [PMID: 25953026 PMCID: PMC4423585 DOI: 10.1186/1471-2105-16-s7-s8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background Intracranial volume (ICV) is an important normalization measure used in morphometric analyses to correct for head size in studies of Alzheimer Disease (AD). Inaccurate ICV estimation could introduce bias in the outcome. The current study provides a decision aid in defining protocols for ICV estimation in patients with Alzheimer disease in terms of sampling frequencies that can be optimally used on the volumetric MRI data, and the type of software most suitable for use in estimating the ICV measure. Methods Two groups of 22 subjects are considered, including adult controls (AC) and patients with Alzheimer Disease (AD). Reference measurements were calculated for each subject by manually tracing intracranial cavity by the means of visual inspection. The reliability of reference measurements were assured through intra- and inter- variation analyses. Three publicly well-known software packages (Freesurfer, FSL, and SPM) were examined in their ability to automatically estimate ICV across the groups. Results Analysis of the results supported the significant effect of estimation method, gender, cognitive condition of the subject and the interaction among method and cognitive condition factors in the measured ICV. Results on sub-sampling studies with a 95% confidence showed that in order to keep the accuracy of the interleaved slice sampling protocol above 99%, the sampling period cannot exceed 20 millimeters for AC and 15 millimeters for AD. Freesurfer showed promising estimates for both adult groups. However SPM showed more consistency in its ICV estimation over the different phases of the study. Conclusions This study emphasized the importance in selecting the appropriate protocol, the choice of the sampling period in the manual estimation of ICV and selection of suitable software for the automated estimation of ICV. The current study serves as an initial framework for establishing an appropriate protocol in both manual and automatic ICV estimations with different subject populations.
Collapse
|
29
|
Villemonteix T, De Brito SA, Slama H, Kavec M, Balériaux D, Metens T, Baijot S, Mary A, Ramoz N, Septier M, Gorwood P, Peigneux P, Massat I. Structural correlates of COMT Val158Met polymorphism in childhood ADHD: a voxel-based morphometry study. World J Biol Psychiatry 2015; 16:190-9. [PMID: 25495556 DOI: 10.3109/15622975.2014.984629] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The Val158-allele of the catechol-O-methyltransferase (COMT) Val158Met (rs4680) functional polymorphism has been identified as a risk factor for antisocial behaviour in attention-deficit/hyperactivity disorder (ADHD). Here, we used voxel-based morphometry to investigate the effects of Val158Met polymorphism on grey matter (GM) volumes in a sample of 7-13-year-old children. METHODS MRI and genotype data were obtained for 38 children with combined-type ADHD and 24 typically developing (TD) children. Four regions of interest were identified: striatum, cerebellum, temporal lobe and inferior frontal gyrus (IFG). RESULTS When compared to TD children, those with ADHD had a significant decrease of GM volume in the IFG. Volume in this region was negatively correlated with ratings of hyperactivity/impulsivity symptoms. Furthermore, the smaller GM volume in the IFG was attributed to the presence of the Met158-allele, as only children with ADHD carrying a Met158-allele exhibited such decrease in the IFG. Children with ADHD homozygotes for the Val158-allele presented increased GM volume in the caudate nucleus when compared with TD children. CONCLUSIONS This study provides the first evidence of a modulation of ADHD-related GM volume alterations by Val158Met in two key regions, possibly mediating the relationship between Val158Met polymorphism and antisocial behaviour in children with ADHD.
Collapse
|
30
|
Hass J, Walton E, Kirsten H, Turner J, Wolthusen R, Roessner V, Sponheim SR, Holt D, Gollub R, Calhoun VD, Ehrlich S. Complexin2 modulates working memory-related neural activity in patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2015; 265:137-45. [PMID: 25297695 PMCID: PMC4342303 DOI: 10.1007/s00406-014-0550-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022]
Abstract
The specific contribution of risk or candidate gene variants to the complex phenotype of schizophrenia is largely unknown. Studying the effects of such variants on brain function can provide insight into disease-associated mechanisms on a neural systems level. Previous studies found common variants in the complexin2 (CPLX2) gene to be highly associated with cognitive dysfunction in schizophrenia patients. Similarly, cognitive functioning was found to be impaired in Cplx2 gene-deficient mice if they were subjected to maternal deprivation or mild brain trauma during puberty. Here, we aimed to study seven common CPLX2 single-nucleotide polymorphisms (SNPs) and their neurogenetic risk mechanisms by investigating their relationship to a schizophrenia-related functional neuroimaging intermediate phenotype. We examined functional MRI and genotype data collected from 104 patients with DSM-IV-diagnosed schizophrenia and 122 healthy controls who participated in the Mind Clinical Imaging Consortium study of schizophrenia. Seven SNPs distributed over the whole CPLX2 gene were tested for association with working memory-elicited neural activity in a frontoparietal neural network. Three CPLX2 SNPs were significantly associated with increased neural activity in the dorsolateral prefrontal cortex and intraparietal sulcus in the schizophrenia sample, but showed no association in healthy controls. Since increased working memory-related neural activity in individuals with or at risk for schizophrenia has been interpreted as 'neural inefficiency,' these findings suggest that certain variants of CPLX2 may contribute to impaired brain function in schizophrenia, possibly combined with other deleterious genetic variants, adverse environmental events, or developmental insults.
Collapse
Affiliation(s)
- Johanna Hass
- Department of Child and Adolescent Psychiatry, School of Medicine, TU Dresden, Dresden, Germany
| | - Esther Walton
- Department of Child and Adolescent Psychiatry, School of Medicine, TU Dresden, Dresden, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany,LIFE (Leipzig Interdisciplinary Research Cluster of Genetic Factors, Phenotypes and Environment), University of Leipzig, Leipzig, Germany
| | | | - Rick Wolthusen
- Department of Child and Adolescent Psychiatry, School of Medicine, TU Dresden, Dresden, Germany,MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, School of Medicine, TU Dresden, Dresden, Germany
| | - Scott R Sponheim
- Department of Psychiatry and the Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN USA
| | - Daphne Holt
- MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Randy Gollub
- MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Vince D Calhoun
- The MIND Research Network, Albuquerque, NM USA,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM USA
| | - Stefan Ehrlich
- Department of Child and Adolescent Psychiatry, School of Medicine, TU Dresden, Dresden, Germany,MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| |
Collapse
|
31
|
Shepherd AM, Quidé Y, Laurens KR, O’Reilly N, Rowland JE, Mitchell PB, Carr VJ, Green MJ. Shared intermediate phenotypes for schizophrenia and bipolar disorder: neuroanatomical features of subtypes distinguished by executive dysfunction. J Psychiatry Neurosci 2015; 40:58-68. [PMID: 25268788 PMCID: PMC4275333 DOI: 10.1503/jpn.130283] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/15/2014] [Accepted: 05/26/2014] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Shared genetic vulnerability for schizophrenia and bipolar disorder may be associated with common neuroanatomical features. In view of the evidence for working memory dysfunction as a candidate intermediate phenotype for both disorders, we explored neuroanatomical distinctions between subtypes defined according to working memory (n-back task) performance. METHODS We analyzed T1-weighted MRI scans for patients with schizophrenia-spectrum disorder, bipolar-I disorder (BD-I) and healthy controls. The VBM8 toolbox was used to assess differences in grey and white matter volume across traditional diagnostic groups (schizophrenia v. BD-I). Subsequently, groups were defined as "executively spared" (ES) based on the achievement of greater than 50% accuracy in the 2-back task performance (comparable to performance in the control group) or "executively deficit" (ED) based on the achievement of less than 50% accuracy. RESULTS Our study included 40 patients with schizophrenia-spectrum disorders, 30 patients with BD-I and 34 controls. Both the schizophrenia and BD-I groups showed grey matter volume reductions relative to the control group, but not relative to each other. The ED subtype (n = 32 [10 BD-I, 22 schizophrenia]) showed grey matter volume reductions in the bilateral superior and medial frontal gyri, right inferior opercular gyri and hippocampus relative to controls. The ES subtype (n = 38 [20 BD-I, 18 schizophrenia]) showed grey matter volume reductions in the right precuneus and left superior and medial orbital frontal gyri relative to controls. The ED subtype showed grey matter volume reduction in the right inferior frontal and precentral gyri relative to the ES subtype. There were no significant differences in white matter volume in any group comparisons. LIMITATIONS This analysis was limited by small sample sizes. Further, insufficient numbers were available to assess a control-deficit comparison group. We were unable to assess the effects of mood stabilizer dose on brain structure. CONCLUSION Neuroanatomical commonalities are evident among patients with schizophrenia-spectrum disorders and BD-I with working memory deficits. Reduced inferior frontal lobe volume may mediate cognitive deficits shared across the psychosis-mood spectrum.
Collapse
Affiliation(s)
- Alana M. Shepherd
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Yann Quidé
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Kristin R. Laurens
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Nicole O’Reilly
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Jesseca E. Rowland
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Philip B. Mitchell
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Vaughan J. Carr
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Melissa J. Green
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| |
Collapse
|
32
|
Walton E, Geisler D, Lee PH, Hass J, Turner JA, Liu J, Sponheim SR, White T, Wassink TH, Roessner V, Gollub RL, Calhoun VD, Ehrlich S. Prefrontal inefficiency is associated with polygenic risk for schizophrenia. Schizophr Bull 2014; 40:1263-71. [PMID: 24327754 PMCID: PMC4193692 DOI: 10.1093/schbul/sbt174] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Considering the diverse clinical presentation and likely polygenic etiology of schizophrenia, this investigation examined the effect of polygenic risk on a well-established intermediate phenotype for schizophrenia. We hypothesized that a measure of cumulative genetic risk based on additive effects of many genetic susceptibility loci for schizophrenia would predict prefrontal cortical inefficiency during working memory, a brain-based biomarker for the disorder. The present study combined imaging, genetic and behavioral data obtained by the Mind Clinical Imaging Consortium study of schizophrenia (n = 255). For each participant, we derived a polygenic risk score (PGRS), which was based on over 600 nominally significant single nucleotide polymorphisms, associated with schizophrenia in a separate discovery sample comprising 3322 schizophrenia patients and 3587 control participants. Increased polygenic risk for schizophrenia was associated with neural inefficiency in the left dorsolateral prefrontal cortex after covarying for the effects of acquisition site, diagnosis, and population stratification. We also provide additional supporting evidence for our original findings using scores based on results from the Psychiatric Genomics Consortium study. Gene ontology analysis of the PGRS highlighted genetic loci involved in brain development and several other processes possibly contributing to disease etiology. Our study permits new insights into the additive effect of hundreds of genetic susceptibility loci on a brain-based intermediate phenotype for schizophrenia. The combined impact of many common genetic variants of small effect are likely to better reveal etiologic mechanisms of the disorder than the study of single common genetic variants.
Collapse
Affiliation(s)
- Esther Walton
- Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Daniel Geisler
- Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | | | - Johanna Hass
- Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | | | - Jingyu Liu
- The Mind Research Network, Albuquerque, NM
| | - Scott R Sponheim
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN; Department of Psychiatry, University of Minnesota, Minneapolis, MN
| | - Tonya White
- Department of Child and Adolescent Psychiatry, Erasmus University, Rotterdam, Netherlands
| | | | - Veit Roessner
- Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Randy L Gollub
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA; MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM
| | - Stefan Ehrlich
- Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany; Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA; MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA;
| |
Collapse
|
33
|
Batalla A, Soriano-Mas C, López-Solà M, Torrens M, Crippa JA, Bhattacharyya S, Blanco-Hinojo L, Fagundo AB, Harrison BJ, Nogué S, de la Torre R, Farré M, Pujol J, Martín-Santos R. Modulation of brain structure by catechol-O-methyltransferase Val(158) Met polymorphism in chronic cannabis users. Addict Biol 2014; 19:722-32. [PMID: 23311613 DOI: 10.1111/adb.12027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neuroimaging studies have shown that chronic consumption of cannabis may result in alterations in brain morphology. Recent work focusing on the relationship between brain structure and the catechol-O-methyltransferase (COMT) gene polymorphism suggests that functional COMT variants may affect brain volume in healthy individuals and in schizophrenia patients. We measured the influence of COMT genotype on the volume of four key regions: the prefrontal cortex, neostriatum (caudate-putamen), anterior cingulate cortex and hippocampus-amygdala complex, in chronic early-onset cannabis users and healthy control subjects. We selected 29 chronic cannabis users who began using cannabis before 16 years of age and matched them to 28 healthy volunteers in terms of age, educational level and IQ. Participants were male, Caucasians aged between 18 and 30 years. All were assessed by a structured psychiatric interview (PRISM) to exclude any lifetime Axis-I disorder according to Diagnostic and Statistical Manual for Mental Disorders-Fourth Edition. COMT genotyping was performed and structural magnetic resonance imaging data was analyzed by voxel-based morphometry. The results showed that the COMT polymorphism influenced the volume of the bilateral ventral caudate nucleus in both groups, but in an opposite direction: more copies of val allele led to lesser volume in chronic cannabis users and more volume in controls. The opposite pattern was found in left amygdala. There were no effects of COMT genotype on volumes of the whole brain or the other selected regions. Our findings support recent reports of neuroanatomical changes associated with cannabis use and, for the first time, reveal that these changes may be influenced by the COMT genotype.
Collapse
Affiliation(s)
- Albert Batalla
- Department of Psychiatry; Clinical Institute of Neuroscience; Hospital Clínic, IDIBAPS, CIBERSAM; Spain
- Department of Psychiatry and Clinical Psychobiology; University of Barcelona; Spain
| | - Carles Soriano-Mas
- CRC Mar; Hospital del Mar; Spain
- Department of Psychiatry; Bellvitge University Hospital-IDIBELL, CIBERSAM; Spain
| | | | - Marta Torrens
- Neuroscience Program; IMIM (Hospital del Mar Medical Research Institute)-INAD-Parc de Salut Mar, Autonomous University of Barcelona and Pompeu Fabra University; Spain
- Red de Trastornos Adictivos (RETIC); IMIM-INAD-Parc de Salut Mar; Spain
| | - José A. Crippa
- Neuroscience and Cognitive Behavior Department; University of Sao Paulo; Brazil
- INCT Translational Medicine (INCT-TM, CNPq); Brazil
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies; King's College London, Institute of Psychiatry; UK
| | | | - Ana B. Fagundo
- Neuroscience Program; IMIM (Hospital del Mar Medical Research Institute)-INAD-Parc de Salut Mar, Autonomous University of Barcelona and Pompeu Fabra University; Spain
| | - Ben J. Harrison
- CRC Mar; Hospital del Mar; Spain
- Melbourne Neuropsychiatry Centre; Department of Psychiatry; The University of Melbourne & Melbourne Health; Australia
| | - Santiago Nogué
- Clinical Toxicology Unit; Emergency Department; Hospital Clínic, IDIBAPS, University of Barcelona; Spain
| | - Rafael de la Torre
- Neuroscience Program; IMIM (Hospital del Mar Medical Research Institute)-INAD-Parc de Salut Mar, Autonomous University of Barcelona and Pompeu Fabra University; Spain
- CIBEROBN; Spain
| | - Magí Farré
- Neuroscience Program; IMIM (Hospital del Mar Medical Research Institute)-INAD-Parc de Salut Mar, Autonomous University of Barcelona and Pompeu Fabra University; Spain
- Red de Trastornos Adictivos (RETIC); IMIM-INAD-Parc de Salut Mar; Spain
| | | | - Rocío Martín-Santos
- Department of Psychiatry; Clinical Institute of Neuroscience; Hospital Clínic, IDIBAPS, CIBERSAM; Spain
- Department of Psychiatry and Clinical Psychobiology; University of Barcelona; Spain
- Neuroscience Program; IMIM (Hospital del Mar Medical Research Institute)-INAD-Parc de Salut Mar, Autonomous University of Barcelona and Pompeu Fabra University; Spain
- Neuroscience and Cognitive Behavior Department; University of Sao Paulo; Brazil
| |
Collapse
|
34
|
Walton E, Liu J, Hass J, White T, Scholz M, Roessner V, Gollub R, Calhoun VD, Ehrlich S. MB-COMT promoter DNA methylation is associated with working-memory processing in schizophrenia patients and healthy controls. Epigenetics 2014; 9:1101-7. [PMID: 24837210 DOI: 10.4161/epi.29223] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Many genetic studies report mixed results both for the associations between COMT polymorphisms and schizophrenia and for the effects of COMT variants on common intermediate phenotypes of the disorder. Reasons for this may include small genetic effect sizes and the modulation of environmental influences. To improve our understanding of the role of COMT in the disease etiology, we investigated the effect of DNA methylation in the MB-COMT promoter on neural activity in the dorsolateral prefrontal cortex during working memory processing as measured by fMRI - an intermediate phenotype for schizophrenia. Imaging and epigenetic data were measured in 102 healthy controls and 82 schizophrenia patients of the Mind Clinical Imaging Consortium (MCIC) study of schizophrenia. Neural activity during the Sternberg Item Recognition Paradigm was acquired with either a 3T Siemens Trio or 1.5T Siemens Sonata and analyzed using the FMRIB Software Library (FSL). DNA methylation measurements were derived from cryo-conserved blood samples. We found a positive association between MB-COMT promoter methylation and neural activity in the left dorsolateral prefrontal cortex in a model using a region-of-interest approach and could confirm this finding in a whole-brain model. This effect was independent of disease status. Analyzing the effect of MB-COMT promoter DNA methylation on a neuroimaging phenotype can provide further evidence for the importance of COMT and epigenetic risk mechanisms in schizophrenia. The latter may represent trans-regulatory or environmental risk factors that can be measured using brain-based intermediate phenotypes.
Collapse
Affiliation(s)
- Esther Walton
- Department of Child and Adolescent Psychiatry; Translational Developmental Neuroscience Section; TU Dresden; Dresden, Germany
| | - Jingyu Liu
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute; Albuquerque, NM USA
| | - Johanna Hass
- Department of Child and Adolescent Psychiatry; Translational Developmental Neuroscience Section; TU Dresden; Dresden, Germany
| | - Tonya White
- Department of Child and Adolescent Psychiatry; Erasmus University; Rotterdam, The Netherlands
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology; University of Leipzig; Leipzig, Germany; LIFE Research Center for Civilization Diseases; University of Leipzig; Leipzig, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry; Translational Developmental Neuroscience Section; TU Dresden; Dresden, Germany
| | - Randy Gollub
- Department of Psychiatry; Massachusetts General Hospital/Harvard Medical School; Boston, MA USA; MGH/MIT/HMS Martinos Center for Biomedical Imaging; Massachusetts General Hospital; Charlestown, MA USA
| | - Vince D Calhoun
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute; Albuquerque, NM USA; Department of Electrical and Computer Engineering; University of New Mexico; Albuquerque, NM USA
| | - Stefan Ehrlich
- Department of Child and Adolescent Psychiatry; Translational Developmental Neuroscience Section; TU Dresden; Dresden, Germany; Department of Psychiatry; Massachusetts General Hospital/Harvard Medical School; Boston, MA USA; MGH/MIT/HMS Martinos Center for Biomedical Imaging; Massachusetts General Hospital; Charlestown, MA USA
| |
Collapse
|
35
|
Ehrlich S, Geisler D, Yendiki A, Panneck P, Roessner V, Calhoun VD, Magnotta VA, Gollub RL, White T. Associations of white matter integrity and cortical thickness in patients with schizophrenia and healthy controls. Schizophr Bull 2014; 40:665-74. [PMID: 23661633 PMCID: PMC3984509 DOI: 10.1093/schbul/sbt056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Typical brain development includes coordinated changes in both white matter (WM) integrity and cortical thickness (CT). These processes have been shown to be disrupted in schizophrenia, which is characterized by abnormalities in WM microstructure and by reduced CT. The aim of this study was to identify patterns of association between WM markers and cortex-wide CT in healthy controls (HCs) and patients with schizophrenia (SCZ). Using diffusion tensor imaging and structural magnetic resonance imaging data of the Mind Clinical Imaging Consortium study (130 HC and 111 SCZ), we tested for associations between (a) fractional anisotropy in selected manually labeled WM pathways (corpus callosum, anterior thalamic radiation, and superior longitudinal fasciculus) and CT, and (b) the number of lesion-like WM regions ("potholes") and CT. In HC, but not SCZ, we found highly significant negative associations between WM integrity and CT in several pathways, including frontal, temporal, and occipital brain regions. Conversely, in SCZ the number of WM potholes correlated with reduced CT in the left lateral temporal gyrus, left fusiform, and left lateral occipital brain area. Taken together, we found differential patterns of association between WM integrity and CT in HC and SCZ. Although the pattern in HC can be explained from a developmental perspective, the reduced gray matter CT in SCZ patients might be the result of focal but spatially heterogeneous disruptions of WM integrity.
Collapse
Affiliation(s)
- Stefan Ehrlich
- *To whom correspondence should be addressed; Department of Child and Adolescent Psychiatry, Translational Developmental Neuroscience Section, Dresden University of Technology, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany; tel: +49 (0)351-458-2244, fax: +49 (0)351-458-5754, e-mail:
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Harrisberger F, Spalek K, Smieskova R, Schmidt A, Coynel D, Milnik A, Fastenrath M, Freytag V, Gschwind L, Walter A, Vogel T, Bendfeldt K, de Quervain DJF, Papassotiropoulos A, Borgwardt S. The association of the BDNF Val66Met polymorphism and the hippocampal volumes in healthy humans: a joint meta-analysis of published and new data. Neurosci Biobehav Rev 2014; 42:267-78. [PMID: 24674929 DOI: 10.1016/j.neubiorev.2014.03.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/17/2014] [Accepted: 03/16/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism (refSNP Cluster Report: rs6265) is a common and functionally relevant single nucleotide polymorphism (SNP). The gene itself, as well as the SNP rs6265, have been implicated in hippocampal learning and memory. However, imaging genetic studies have produced controversial results about the impact of this SNP on hippocampal volumes in healthy subjects. METHODS We examined the association between the rs6265 polymorphism and hippocampal volume in 643 healthy young subjects using automatic segmentation and subsequently included these data in a meta-analysis based on published studies with 5298 healthy subjects in total. RESULTS We found no significant association between SNP rs6265 and hippocampal volumes in our sample (g=0.05, p=0.58). The meta-analysis revealed a small, albeit significant difference in hippocampal volumes between genotype groups, such that Met-carriers had slightly smaller hippocampal volumes than Val/Val homozygotes (g=0.09, p=0.04), an association that was only evident when manual (g=0.22, p=0.01) but not automatic tracing approaches (g=0.04, p=0.38) were used. Studies using manual tracing showed evidence for publication bias and a significant decrease in effect size over the years with increasing sample sizes. CONCLUSIONS This study does not support the association between SNP rs6265 and hippocampal volume in healthy individuals. The weakly significant effect observed in the meta-analysis is mainly driven by studies with small sample sizes. In contrast, our original data and the meta-analysis of automatically segmented hippocampal volumes, which was based on studies with large samples sizes, revealed no significant genotype effect. Thus, meta-analyses of the association between rs6265 and hippocampal volumes should consider possible biases related to measuring technique and sample size.
Collapse
Affiliation(s)
- F Harrisberger
- University of Basel, Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, 4056 Basel, Switzerland; University Hospital Basel, Medical Image Analysis Center, Schanzenstrasse 55, 4031 Basel, Switzerland
| | - K Spalek
- University of Basel, Department of Psychology, Division of Cognitive Neuroscience, Birmannsgasse 8, 4055 Basel, Switzerland
| | - R Smieskova
- University of Basel, Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, 4056 Basel, Switzerland; University Hospital Basel, Medical Image Analysis Center, Schanzenstrasse 55, 4031 Basel, Switzerland
| | - A Schmidt
- University of Basel, Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, 4056 Basel, Switzerland; University Hospital Basel, Medical Image Analysis Center, Schanzenstrasse 55, 4031 Basel, Switzerland
| | - D Coynel
- University of Basel, Department of Psychology, Division of Cognitive Neuroscience, Birmannsgasse 8, 4055 Basel, Switzerland; University of Basel, Department of Psychology, Division of Molecular Neuroscience, Birmannsgasse 8, 4055 Basel, Switzerland
| | - A Milnik
- University of Basel, Department of Psychology, Division of Molecular Neuroscience, Birmannsgasse 8, 4055 Basel, Switzerland
| | - M Fastenrath
- University of Basel, Department of Psychology, Division of Cognitive Neuroscience, Birmannsgasse 8, 4055 Basel, Switzerland
| | - V Freytag
- University of Basel, Department of Psychology, Division of Molecular Neuroscience, Birmannsgasse 8, 4055 Basel, Switzerland
| | - L Gschwind
- University of Basel, Department of Psychology, Division of Cognitive Neuroscience, Birmannsgasse 8, 4055 Basel, Switzerland
| | - A Walter
- University of Basel, Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, 4056 Basel, Switzerland
| | - T Vogel
- University of Basel, Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, 4056 Basel, Switzerland
| | - K Bendfeldt
- University Hospital Basel, Medical Image Analysis Center, Schanzenstrasse 55, 4031 Basel, Switzerland
| | - D J-F de Quervain
- University of Basel, Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, 4056 Basel, Switzerland; University of Basel, Department of Psychology, Division of Cognitive Neuroscience, Birmannsgasse 8, 4055 Basel, Switzerland
| | - A Papassotiropoulos
- University of Basel, Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, 4056 Basel, Switzerland; University of Basel, Department of Psychology, Division of Molecular Neuroscience, Birmannsgasse 8, 4055 Basel, Switzerland; University of Basel, Department Biozentrum, Life Science Training Facility, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - S Borgwardt
- University of Basel, Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, 4056 Basel, Switzerland; University Hospital Basel, Medical Image Analysis Center, Schanzenstrasse 55, 4031 Basel, Switzerland; King's College London, Department of Psychosis Studies, Institute of Psychiatry, De Crespigny Park 16, SE5 8AF London, UK.
| |
Collapse
|
37
|
Schneider CE, White T, Hass J, Geisler D, Wallace SR, Roessner V, Holt DJ, Calhoun VD, Gollub RL, Ehrlich S. Smoking status as a potential confounder in the study of brain structure in schizophrenia. J Psychiatr Res 2014; 50:84-91. [PMID: 24373929 PMCID: PMC4047795 DOI: 10.1016/j.jpsychires.2013.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/05/2013] [Accepted: 12/09/2013] [Indexed: 01/25/2023]
Abstract
Several but not all MRI studies have reported volume reductions in the hippocampus and dorsolateral prefrontal cortex (DLPFC) in patients with schizophrenia. Given the high prevalence of smoking among schizophrenia patients and the fact that smoking has also been associated with alterations in brain morphology, this study evaluated whether a proportion of the known gray matter reductions in key brain regions may be attributed to smoking rather than to schizophrenia alone. We examined structural MRI data of 112 schizophrenia patients (53 smokers and 59 non-smokers) and 77 healthy non-smoker controls collected by the MCIC study of schizophrenia. An automated atlas based probabilistic method was used to generate volumetric measures of the hippocampus and DLPFC. The two patient groups were matched with respect to demographic and clinical variables. Smoker schizophrenia patients showed significantly lower hippocampal and DLPFC volumes than non-smoker schizophrenia patients. Gray matter volume reductions associated with smoking status ranged between 2.2% and 2.8%. Furthermore, we found significant volume differences between smoker patients and healthy controls in the hippocampus and DLPFC, but not between non-smoker patients and healthy controls. Our data suggest that a proportion of the volume reduction seen in the hippocampus and DLPFC in schizophrenia is associated with smoking rather than with the diagnosis of schizophrenia. These results may have important implications for brain imaging studies comparing schizophrenia patients and other groups with a lower smoking prevalence.
Collapse
Affiliation(s)
- Claudia E Schneider
- Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Tonya White
- Department of Child and Adolescent Psychiatry, Erasmus Medical Centre, Rotterdam, Netherlands; Department of Psychiatry and the Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Johanna Hass
- Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Daniel Geisler
- Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Stuart R Wallace
- Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA; Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Daphne J Holt
- Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA; Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Vince D Calhoun
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA; The Mind Research Network, Image Analysis and MR Research, Albuquerque, NM, USA
| | - Randy L Gollub
- Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA; Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Stefan Ehrlich
- Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany; Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA; Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA.
| |
Collapse
|
38
|
Gollub RL, Shoemaker JM, King MD, White T, Ehrlich S, Sponheim SR, Clark VP, Turner JA, Mueller BA, Magnotta V, O'Leary D, Ho BC, Brauns S, Manoach DS, Seidman L, Bustillo JR, Lauriello J, Bockholt J, Lim KO, Rosen BR, Schulz SC, Calhoun VD, Andreasen NC. The MCIC collection: a shared repository of multi-modal, multi-site brain image data from a clinical investigation of schizophrenia. Neuroinformatics 2014; 11:367-88. [PMID: 23760817 DOI: 10.1007/s12021-013-9184-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Expertly collected, well-curated data sets consisting of comprehensive clinical characterization and raw structural, functional and diffusion-weighted DICOM images in schizophrenia patients and sex and age-matched controls are now accessible to the scientific community through an on-line data repository (coins.mrn.org). The Mental Illness and Neuroscience Discovery Institute, now the Mind Research Network (MRN, http://www.mrn.org/ ), comprised of investigators at the University of New Mexico, the University of Minnesota, Massachusetts General Hospital, and the University of Iowa, conducted a cross-sectional study to identify quantitative neuroimaging biomarkers of schizophrenia. Data acquisition across multiple sites permitted the integration and cross-validation of clinical, cognitive, morphometric, and functional neuroimaging results gathered from unique samples of schizophrenia patients and controls using a common protocol across sites. Particular effort was made to recruit patients early in the course of their illness, at the onset of their symptoms. There is a relatively even sampling of illness duration in chronic patients. This data repository will be useful to 1) scientists who can study schizophrenia by further analysis of this cohort and/or by pooling with other data; 2) computer scientists and software algorithm developers for testing and validating novel registration, segmentation, and other analysis software; and 3) educators in the fields of neuroimaging, medical image analysis and medical imaging informatics who need exemplar data sets for courses and workshops. Sharing provides the opportunity for independent replication of already published results from this data set and novel exploration. This manuscript describes the inclusion/exclusion criteria, imaging parameters and other information that will assist those wishing to use this data repository.
Collapse
Affiliation(s)
- Randy L Gollub
- Department of Psychiatry, Massachusetts General Hospital, Building 120, Suite 101D, Charlestown, MA 02129-2000, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ira E, Zanoni M, Ruggeri M, Dazzan P, Tosato S. COMT, neuropsychological function and brain structure in schizophrenia: a systematic review and neurobiological interpretation. J Psychiatry Neurosci 2013; 38:366-80. [PMID: 23527885 PMCID: PMC3819150 DOI: 10.1503/jpn.120178] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Endophenotypes in genetic psychiatry may increase our understanding of the molecular mechanisms underlying disease risk and its manifestations. We sought to investigate the link between neuropsychological impairments and brain structural abnormalities associated with the COMT Val(158)Met polymorphism in patients with schizophrenia to improve understanding of the pathophysiology of this disorder. METHODS We performed a systematic review using studies identified in PubMed and MEDLINE (from the date of the first available article to July 2012). Our review examined evidence of an association between the COMT Val(158)Met polymorphism and both neuropsychological performance and brain structure in patients with psychosis, in their relatives and in healthy individuals (step 1). The review also explored whether the neuropsychological tasks and brain structures identified in step 1 met the criteria for an endophenotype (step 2). Then we evaluated evidence that the neuropsychological endophenotypes identified in step 2 are associated with the brain structure endophenotypes identified in that step (step 3). Finally, we propose a neurobiological interpretation for this evidence. RESULTS A poorer performance on the n-back task and the Continuous Performance Test (CPT) and smaller temporal and frontal brain areas were associated with the COMT Val allele in patients with schizophrenia and their relatives and met most of the criteria for an endophenotype. It is possible that the COMT Val(158)Met polymorphism therefore contributes to the development of these neuropsychological and brain structural endophenotypes of schizophrenia, in which the prefrontal cortex may represent the neural substrate underlying both n-back and CPT performances. LIMITATIONS The association between a single genetic variant and an endophenotype does not necessarily imply a causal relationship between them. CONCLUSION This evidence and the proposed interpretation contribute to explain, at least in part, the biological substrate of 4 important endophenotypes that characterize schizophrenia.
Collapse
Affiliation(s)
- Elisa Ira
- Correspondence to: E. Ira, Department of Public Health and Community Medicine, Section of Psychiatry, University of Verona, Policlinico G.B. Rossi, P.le L.A. Scuro 10, 37134 Verona, Italy;
| | | | | | | | | |
Collapse
|
40
|
Tian T, Qin W, Liu B, Wang D, Wang J, Jiang T, Yu C. Catechol-O-methyltransferase Val158Met polymorphism modulates gray matter volume and functional connectivity of the default mode network. PLoS One 2013; 8:e78697. [PMID: 24147141 PMCID: PMC3797700 DOI: 10.1371/journal.pone.0078697] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 09/16/2013] [Indexed: 12/30/2022] Open
Abstract
The effect of catechol-O-methyltransferase (COMT) Val158Met polymorphism on brain structure and function has been previously investigated separately and regionally; this prevents us from obtaining a full picture of the effect of this gene variant. Additionally, gender difference must not be overlooked because estrogen exerts an interfering effect on COMT activity. We examined 323 young healthy Chinese Han subjects and analyzed the gray matter volume (GMV) differences between Val/Val individuals and Met carriers in a voxel-wise manner throughout the whole brain. We were interested in genotype effects and genotype × gender interactions. We then extracted these brain regions with GMV differences as seeds to compute resting-state functional connectivity (rsFC) with the rest of the brain; we also tested the genotypic differences and gender interactions in the rsFCs. Val/Val individuals showed decreased GMV in the posterior cingulate cortex (PCC) compared with Met carriers; decreased GMV in the medial superior frontal gyrus (mSFG) was found only in male Val/Val subjects. The rsFC analysis revealed that both the PCC and mSFG were functionally correlated with brain regions of the default mode network (DMN). Both of these regions showed decreased rsFCs with different parts of the frontopolar cortex of the DMN in Val/Val individuals than Met carriers. Our findings suggest that the COMT Val158Met polymorphism modulates both the structure and functional connectivity within the DMN and that gender interactions should be considered in studies of the effect of this genetic variant, especially those involving prefrontal morphology.
Collapse
Affiliation(s)
- Tian Tian
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Bing Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Dawei Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Junping Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- The Queensland Brain Institute, the University of Queensland, Brisbane, Australia
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- * E-mail:
| |
Collapse
|
41
|
Walton E, Geisler D, Hass J, Liu J, Turner J, Yendiki A, Smolka MN, Ho BC, Manoach DS, Gollub RL, Roessner V, Calhoun VD, Ehrlich S. The impact of genome-wide supported schizophrenia risk variants in the neurogranin gene on brain structure and function. PLoS One 2013; 8:e76815. [PMID: 24098564 PMCID: PMC3788740 DOI: 10.1371/journal.pone.0076815] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/27/2013] [Indexed: 12/12/2022] Open
Abstract
The neural mechanisms underlying genetic risk for schizophrenia, a highly heritable psychiatric condition, are still under investigation. New schizophrenia risk genes discovered through genome-wide association studies (GWAS), such as neurogranin (NRGN), can be used to identify these mechanisms. In this study we examined the association of two common NRGN risk single nucleotide polymorphisms (SNPs) with functional and structural brain-based intermediate phenotypes for schizophrenia. We obtained structural, functional MRI and genotype data of 92 schizophrenia patients and 114 healthy volunteers from the multisite Mind Clinical Imaging Consortium study. Two schizophrenia-associated NRGN SNPs (rs12807809 and rs12541) were tested for association with working memory-elicited dorsolateral prefrontal cortex (DLPFC) activity and surface-wide cortical thickness. NRGN rs12541 risk allele homozygotes (TT) displayed increased working memory-related activity in several brain regions, including the left DLPFC, left insula, left somatosensory cortex and the cingulate cortex, when compared to non-risk allele carriers. NRGN rs12807809 non-risk allele (C) carriers showed reduced cortical gray matter thickness compared to risk allele homozygotes (TT) in an area comprising the right pericalcarine gyrus, the right cuneus, and the right lingual gyrus. Our study highlights the effects of schizophrenia risk variants in the NRGN gene on functional and structural brain-based intermediate phenotypes for schizophrenia. These results support recent GWAS findings and further implicate NRGN in the pathophysiology of schizophrenia by suggesting that genetic NRGN risk variants contribute to subtle changes in neural functioning and anatomy that can be quantified with neuroimaging methods.
Collapse
Affiliation(s)
- Esther Walton
- Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Daniel Geisler
- Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Johanna Hass
- Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Jingyu Liu
- The MIND Research Network, Albuquerque, New Mexico, United States of America
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Jessica Turner
- The MIND Research Network, Albuquerque, New Mexico, United States of America
| | - Anastasia Yendiki
- MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Michael N. Smolka
- Department of Psychiatry and Psychotherapy, University of Technology, Dresden, Germany
- Neuroimaging Center, Department of Psychology, University of Technology, Dresden, Germany
| | - Beng-Choon Ho
- Department of Psychiatry, University of Iowa, Iowa City, Iowa, United States of America
| | - Dara S. Manoach
- MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Psychiatry, University of Iowa, Iowa City, Iowa, United States of America
| | - Randy L. Gollub
- MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Psychiatry, University of Iowa, Iowa City, Iowa, United States of America
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Vince D. Calhoun
- The MIND Research Network, Albuquerque, New Mexico, United States of America
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Stefan Ehrlich
- Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
42
|
Walton E, Turner JA, Ehrlich S. Neuroimaging as a potential biomarker to optimize psychiatric research and treatment. Int Rev Psychiatry 2013; 25:619-31. [PMID: 24151806 DOI: 10.3109/09540261.2013.816659] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Complex, polygenic phenotypes in psychiatry hamper our understanding of the underlying molecular pathways and mechanisms of many diseases. The unknown aetiology, together with symptoms which often show a large variability both across individuals and over time and also tend to respond comparatively slowly to medication, can be a problem for patient treatment and drug development. We argue that neuroimaging has the potential to improve psychiatric treatment in two ways. First, by reducing phenotypic complexity, neuroimaging intermediate phenotypes can help to identify disease-related genes and can shed light into the biological mechanisms of known risk genes. Second, quantitative neuroimaging markers - reflecting the spectrum of impairment on a brain-based level - can be used as a more sensitive, reliable and immediate treatment response biomarker. In the end, enhancing both our understanding of the pathophysiology of psychiatric disorders and the prediction of treatment success could eventually optimise current therapy plans.
Collapse
Affiliation(s)
- Esther Walton
- Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology , Dresden , Germany
| | | | | |
Collapse
|
43
|
Distribution of the Val108/158Met polymorphism of the COMT gene in healthy Mexican population. Gene 2013; 526:454-8. [DOI: 10.1016/j.gene.2013.05.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/25/2013] [Accepted: 05/27/2013] [Indexed: 11/22/2022]
|
44
|
Brauns S, Gollub RL, Walton E, Hass J, Smolka MN, White T, Wassink TH, Calhoun VD, Ehrlich S. Genetic variation in GAD1 is associated with cortical thickness in the parahippocampal gyrus. J Psychiatr Res 2013; 47:872-9. [PMID: 23566421 PMCID: PMC4115611 DOI: 10.1016/j.jpsychires.2013.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 03/10/2013] [Accepted: 03/11/2013] [Indexed: 01/09/2023]
Abstract
Patients with schizophrenia show widespread cortical thickness reductions throughout the brain. Likewise, reduced expression of the γ-Aminobutyric acid (GABA) synthesizing enzyme glutamic acid decarboxylase (GAD1) and a single nucleotide polymorphism (SNP) rs3749034 in the corresponding gene have been associated with schizophrenia. We tested whether this SNP is associated with reduced cortical thickness, an intermediate phenotype for schizophrenia. Because of the well known interactions between the GABAergic and dopaminergic systems, we examined whether associations between GAD1 rs3749034 and cortical thickness are modulated by the catechol-O-methyltransferase (COMT) Val158Met genotype. Structural MRI and genotype data was obtained from 94 healthy subjects enrolled in the Mind Clinical Imaging Consortium study to examine the relations between GAD1 genotype and cortical thickness. Our data show a robust reduction of cortical thickness in the left parahippocampal gyrus (PHG) in G allele homozygotes of GAD1 rs3749034. When we stratified our analyses according to the COMT Val158Met genotype, cortical thickness reductions of G allele homozygotes were only found in the presence of the Val allele. Genetic risk variants of schizophrenia in the GABAergic system might interact with the dopaminergic system and impact brain structure and functioning. Our findings point to the importance of the GABAergic system in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Stefan Brauns
- Department of Child and Adolescent Psychiatry, TU Dresden, Germany,MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA,Department of Psychiatry, Charité University Medicine, Berlin, Germany
| | - Randy L. Gollub
- MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA,Harvard Medical School, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Esther Walton
- Department of Child and Adolescent Psychiatry, TU Dresden, Germany,MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Johanna Hass
- Department of Child and Adolescent Psychiatry, TU Dresden, Germany
| | - Michael N. Smolka
- Department of Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Tonya White
- Department of Child Psychiatry, Erasmus MC – Sophia, Rotterdam, Netherlands
| | | | - Vince D. Calhoun
- The Mind Research Network, Albuquerque, NM, USA,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Stefan Ehrlich
- Department of Child and Adolescent Psychiatry, TU Dresden, Germany,MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA,Harvard Medical School, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA,Corresponding author. Dresden University of Technology, University Hospital Carl Gustav Carus, Department of Child and Adolescent Psychiatry, Translational Developmental Neuroscience Section, Fetscherstraβe 74, 01307 Dresden, Germany. Tel.: +49 (0)351 458 5095; fax: +49 (0)351 458 5754. (S. Ehrlich)
| |
Collapse
|
45
|
Hass J, Walton E, Kirsten H, Liu J, Priebe L, Wolf C, Karbalai N, Gollub R, White T, Roessner V, Müller KU, Paus T, Smolka MN, Schumann G, Scholz M, Cichon S, Calhoun V, Ehrlich S. A Genome-Wide Association Study Suggests Novel Loci Associated with a Schizophrenia-Related Brain-Based Phenotype. PLoS One 2013; 8:e64872. [PMID: 23805179 PMCID: PMC3689744 DOI: 10.1371/journal.pone.0064872] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 04/12/2013] [Indexed: 01/05/2023] Open
Abstract
Patients with schizophrenia and their siblings typically show subtle changes of brain structures, such as a reduction of hippocampal volume. Hippocampal volume is heritable, may explain a variety of cognitive symptoms of schizophrenia and is thus considered an intermediate phenotype for this mental illness. The aim of our analyses was to identify single-nucleotide polymorphisms (SNP) related to hippocampal volume without making prior assumptions about possible candidate genes. In this study, we combined genetics, imaging and neuropsychological data obtained from the Mind Clinical Imaging Consortium study of schizophrenia (n = 328). A total of 743,591 SNPs were tested for association with hippocampal volume in a genome-wide association study. Gene expression profiles of human hippocampal tissue were investigated for gene regions of significantly associated SNPs. None of the genetic markers reached genome-wide significance. However, six highly correlated SNPs (rs4808611, rs35686037, rs12982178, rs1042178, rs10406920, rs8170) on chromosome 19p13.11, located within or in close proximity to the genes NR2F6, USHBP1, and BABAM1, as well as four SNPs in three other genomic regions (chromosome 1, 2 and 10) had p-values between 6.75×10(-6) and 8.3×10(-7). Using existing data of a very recently published GWAS of hippocampal volume and additional data of a multicentre study in a large cohort of adolescents of European ancestry, we found supporting evidence for our results. Furthermore, allelic differences in rs4808611 and rs8170 were highly associated with differential mRNA expression in the cis-acting region. Associations with memory functioning indicate a possible functional importance of the identified risk variants. Our findings provide new insights into the genetic architecture of a brain structure closely linked to schizophrenia. In silico replication, mRNA expression and cognitive data provide additional support for the relevance of our findings. Identification of causal variants and their functional effects may unveil yet unknown players in the neurodevelopment and the pathogenesis of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Johanna Hass
- Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Walton E, Turner J, Gollub RL, Manoach DS, Yendiki A, Ho BC, Sponheim SR, Calhoun VD, Ehrlich S. Cumulative genetic risk and prefrontal activity in patients with schizophrenia. Schizophr Bull 2013; 39:703-11. [PMID: 22267534 PMCID: PMC3627773 DOI: 10.1093/schbul/sbr190] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2011] [Indexed: 12/27/2022]
Abstract
The lack of consistency of genetic associations in highly heritable mental illnesses, such as schizophrenia, remains a challenge in molecular psychiatry. Because clinical phenotypes for psychiatric disorders are often ill defined, considerable effort has been made to relate genetic polymorphisms to underlying physiological aspects of schizophrenia (so called intermediate phenotypes), that may be more reliable. Given the polygenic etiology of schizophrenia, the aim of this work was to form a measure of cumulative genetic risk and study its effect on neural activity during working memory (WM) using functional magnetic resonance imaging. Neural activity during the Sternberg Item Recognition Paradigm was measured in 79 schizophrenia patients and 99 healthy controls. Participants were genotyped, and a genetic risk score (GRS), which combined the additive effects of 41 single-nucleotide polymorphisms (SNPs) from 34 risk genes for schizophrenia, was calculated. These risk SNPs were chosen according to the continuously updated meta-analysis of genetic studies on schizophrenia available at www.schizophreniaresearchforum.org. We found a positive relationship between GRS and left dorsolateral prefrontal cortex inefficiency during WM processing. GRS was not correlated with age, performance, intelligence, or medication effects and did not differ between acquisition sites, gender, or diagnostic groups. Our study suggests that cumulative genetic risk, combining the impact of many genes with small effects, is associated with a known brain-based intermediate phenotype for schizophrenia. The GRS approach could provide an advantage over studying single genes in studies focusing on the genetic basis of polygenic conditions such as neuropsychiatric disorders.
Collapse
Affiliation(s)
- Esther Walton
- MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
- Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | | | - Randy L. Gollub
- MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA
| | - Dara S. Manoach
- MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA
| | - Anastasia Yendiki
- MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - Beng-Choon Ho
- Department of Psychiatry, University of Iowa, Iowa City, IA
| | - Scott R. Sponheim
- Department of Psychiatry and the Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Vince D. Calhoun
- The Mind Research Network, Albuquerque, NM
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM
| | - Stefan Ehrlich
- MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
- Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
47
|
Wang Y, Li J, Chen C, Chen C, Zhu B, Moysis RK, Lei X, Li H, Liu Q, Xiu D, Liu B, Chen W, Xue G, Dong Q. COMT rs4680 Met is not always the 'smart allele': Val allele is associated with better working memory and larger hippocampal volume in healthy Chinese. GENES BRAIN AND BEHAVIOR 2013; 12:323-9. [PMID: 23421762 DOI: 10.1111/gbb.12022] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/10/2012] [Accepted: 01/14/2013] [Indexed: 12/18/2022]
Abstract
Catechol-O-methyltransferase (COMT) Val158Met (rs4680) polymorphism plays a crucial role in regulating brain dopamine level. Converging evidence from Caucasian samples showed that, compared with rs4680 Val allele, the Met allele was linked to lower COMT activity, which in turn was linked to better cognitive performance such as working memory (WM) and to a larger hippocampus (a brain region important for WM). However, some behavioral studies have shown that the function of rs4680 appears to vary across different ethnic groups, with Chinese subjects showing an opposite pattern as that for Caucasians (i.e. the Val allele is linked to better cognitive functions related to WM in Chinese). Using a sample of healthy Han Chinese college students (ages from 19 to 21 years), this study investigated the association of COMT Val158Met genotype with behavioral data on a two-back WM task (n = 443, 189M/254F) and T1 MRI data (n = 320, 134M/186F). Results showed that, compared to the Met allele, the Val allele was associated with larger hippocampal volume (the right hippocampus: β = -0.118, t = -2.367, P = 0.019, and the left hippocampus: β = -0.099, t = -1.949, P = 0.052) and better WM performance (β = -0.110, t = -2.315, P = 0.021). These results add to the growing literature on differentiated effects of COMT rs4680 polymorphism on WM across populations and offer a brain structural mechanism for such population-specific genetic effects.
Collapse
Affiliation(s)
- Y Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Samartzis L, Dima D, Fusar-Poli P, Kyriakopoulos M. White Matter Alterations in Early Stages of Schizophrenia: A Systematic Review of Diffusion Tensor Imaging Studies. J Neuroimaging 2013; 24:101-10. [DOI: 10.1111/j.1552-6569.2012.00779.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/18/2012] [Accepted: 10/06/2012] [Indexed: 12/15/2022] Open
Affiliation(s)
- Lampros Samartzis
- Department of Psychosis Studies; Institute of Psychiatry; King's Health Partners, King's College London; London UK
- Athalassa Psychiatric Hospital; Cyprus Mental Health Services; Nicosia Cyprus
| | - Danai Dima
- Department of Psychosis Studies; Institute of Psychiatry; King's Health Partners, King's College London; London UK
| | - Paolo Fusar-Poli
- Department of Psychosis Studies; Institute of Psychiatry; King's Health Partners, King's College London; London UK
| | - Marinos Kyriakopoulos
- Department of Psychosis Studies; Institute of Psychiatry; King's Health Partners, King's College London; London UK
- National and Specialist Children's Inpatient Unit; South London and Maudsley NHS Foundation Trust; London UK
| |
Collapse
|
49
|
Wang Y, Yang X. Association of catechol-o-methyltransferase polymorphism (Val108/158Met) with Parkinson's disease: a meta-analysis. J Mot Behav 2012; 44:365-72. [PMID: 23035936 DOI: 10.1080/00222895.2012.721406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease, the risk factors of which are gaining more attentions. Among all these risk factors, catechol-o-methyltransferase (COMT) has been widely studied, and believed to be associated with PD. However, the relationship between COMT polymorphism and PD has not been confirmed hitherto. Therefore, a meta-analysis was performed to evaluate the effect of COMT polymorphism on PD patients. A total of 24 study subjects comprising 3,807 patients with PD and 3,942 unrelated healthy controls were recruited in this meta-analysis. Heterogeneity testing and sensitivity analysis were conducted with Review Manager 5.0 software (The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, Denmark) and Stata software (StataCorp, College Station, TX), together with publication bias by funnel plot method and modified Egger's linear regression test. No evidences of publication bias and heterogeneity were detected. In the 24 studies, the estimated odds ratios (OR) in PD patients are 0.98 for the Met allele (95% confidence interval [0.92, 1.05]) under a fixed-effects model. The authors also conducted a stratified analysis according to geographic region among Europe, Asia, and North America, the ORs for the Met allele are 0.92, 1.02, and 1.10, respectively. According to the results of the meta-analysis, a conclusion could be drawn that polymorphism of Val108/158Met are not associated with the risk of PD. However, more convincing studies are warranted to have a solid conclusion supported.
Collapse
Affiliation(s)
- Yiguan Wang
- School of Public Health, Shandong University, Jinan, China.
| | | |
Collapse
|
50
|
Effect of BDNF val66met polymorphism on declarative memory and its neural substrate: A meta-analysis. Neurosci Biobehav Rev 2012; 36:2165-77. [DOI: 10.1016/j.neubiorev.2012.07.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 03/16/2012] [Accepted: 07/07/2012] [Indexed: 12/27/2022]
|