1
|
Zhang Z, Riley E, Chen S, Zhao L, Anderson AK, DeRosa E, Dai W. Age and gender-related patterns of arterial transit time and cerebral blood flow in healthy adults. Neuroimage 2025; 309:121098. [PMID: 39988291 DOI: 10.1016/j.neuroimage.2025.121098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025] Open
Abstract
Normal aging has been associated with increased arterial transit time (ATT) and reduced cerebral blood flow (CBF). However, age-related patterns of ATT and CBF and their relationship remain unclear. This is partly due to the lengthy scan times required for ATT measurements, which caused previous age-related CBF studies to not fully account for transit time. In this work, we aimed to elucidate age-related ATT and ATT-corrected CBF patterns. We examined 131 healthy subjects aged 19 to 82 years old using two pseudo-continuous arterial spin labeling (PCASL) MRI scans: one to measure fast low-resolution ATT maps with five post-labeling delays and the other to measure high-resolution perfusion-weighted maps with a single post-labeling delay. Both ATT and perfusion-weighed maps were applied with vessel suppression. We found that ATT increases with age in the frontal, temporoparietal, and occipital regions, with a more pronounced elongation in males compared to females in the middle temporal gyrus. ATT-corrected CBF decreases with age in several brain regions, including the anterior cingulate, insula, posterior cingulate, angular, precuneus, supramarginal, frontal, parietal, superior and middle temporal, occipital, and cerebellar regions, while remaining stable in the inferior temporal and subcortical regions. In contrast, without ATT correction, we detected artifactual decreases in the inferior temporal and precentral regions. These findings suggest that ATT provides valuable and independent insights into microvascular deficits and should be incorporated into CBF measurements for studies involving aging populations.
Collapse
Affiliation(s)
- Zongpai Zhang
- School of Computing, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Elizabeth Riley
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Shichun Chen
- School of Computing, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Li Zhao
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Adam K Anderson
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Eve DeRosa
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Weiying Dai
- School of Computing, State University of New York at Binghamton, Binghamton, NY 13902, USA.
| |
Collapse
|
2
|
Hu J, Craig MS, Knight SP, De Looze C, Meaney JF, Kenny RA, Chen X, Chappell MA. Regional changes in cerebral perfusion with age when accounting for changes in gray-matter volume. Magn Reson Med 2025; 93:1807-1820. [PMID: 39568213 PMCID: PMC11782718 DOI: 10.1002/mrm.30376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
PURPOSE One possible contributing factor for cerebral blood flow (CBF) decline in normal aging is the increase in partial volume effects due to brain atrophy, as cortical thinning can exacerbate the contamination of gray-matter (GM) voxels by other tissue types. This work investigates CBF changes in normal aging of a large elderly cohort aged 54 to 84 and how correction for partial volume effects that would accommodate potential changes in GM might affect this. METHODS The study cohort consisted of 474 participants aged 54 to 84 years using pseudo-continuous arterial spin labeling MRI. A volumetric pipeline and a surface-based pipeline were applied to measure global and regional perfusion. Volumetric regions of interest (ROIs) included GM, cerebral white matter, vascular territories, and the brain atlas from the UK Biobank. The cortical parcellation was using Desikan-Killiany atlas. Non-partial volume effect correction (PVEc) and PVEc GM-CBF changes with aging were modeled using linear regressions. RESULTS Global GM CBF decreased by 0.17 mL/100 g/min per year with aging before PVEc (p < 0.05) and was 0.18 mL/100 g/min after PVEc (p < 0.05). All cortical parcels exhibited CBF decreases with age before PVEc. After PVEc, seven parcels retained decreasing trends. However, GM CBF demonstrated increase with age after PVEc in three parcels. CONCLUSION Although decreases in global perfusion are observed with aging before PVEc, perfusion variations appear to be more regionally selective after PVEc. This supports the understanding that variation in cerebral perfusion with age observed with imaging is influenced by regional changes in anatomy that can be accommodated with PVEc, but perfusion variation is still observable even after PVE is accounted for.
Collapse
Affiliation(s)
- Jian Hu
- Mental Health & Clinical Neurosciences, School of Medicine University of NottinghamNottinghamUK
- Sir Peter Mansfield Imaging Center, School of Medicine University of NottinghamNottinghamUK
| | - Martin S. Craig
- Mental Health & Clinical Neurosciences, School of Medicine University of NottinghamNottinghamUK
- Sir Peter Mansfield Imaging Center, School of Medicine University of NottinghamNottinghamUK
| | - Silvin P. Knight
- The Irish Longitudinal Study on Ageing, School of Medicine Trinity College DublinDublinIreland
- School of MedicineTrinity College DublinDublinIreland
| | - Celine De Looze
- The Irish Longitudinal Study on Ageing, School of Medicine Trinity College DublinDublinIreland
- School of MedicineTrinity College DublinDublinIreland
| | - James F. Meaney
- School of MedicineTrinity College DublinDublinIreland
- The National Center for Advanced Medical ImagingSt. James's HospitalDublinIreland
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing, School of Medicine Trinity College DublinDublinIreland
- School of MedicineTrinity College DublinDublinIreland
- The Global Brain Health InstituteTrinity College DublinDublinIreland
- Mercer's Institute for Successful AgeingSt. James's HospitalDublinIreland
| | - Xin Chen
- Intelligent Modelling & Analysis GroupSchool of Computer Science, University of NottinghamNottinghamUK
| | - Michael A. Chappell
- Mental Health & Clinical Neurosciences, School of Medicine University of NottinghamNottinghamUK
- Sir Peter Mansfield Imaging Center, School of Medicine University of NottinghamNottinghamUK
| |
Collapse
|
3
|
Chung KJ, Abdelhafez YG, Spencer BA, Jones T, Tran Q, Nardo L, Chen MS, Sarkar S, Medici V, Lyo V, Badawi RD, Cherry SR, Wang G. Quantitative PET imaging and modeling of molecular blood-brain barrier permeability. Nat Commun 2025; 16:3076. [PMID: 40159510 PMCID: PMC11955546 DOI: 10.1038/s41467-025-58356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
Neuroimaging of blood-brain barrier permeability has been instrumental in identifying its broad involvement in neurological and systemic diseases. However, current methods evaluate the blood-brain barrier mainly as a structural barrier. Here we developed a non-invasive positron emission tomography method in humans to measure the blood-brain barrier permeability of molecular radiotracers that cross the blood-brain barrier through its molecule-specific transport mechanism. Our method uses high-temporal resolution dynamic imaging and kinetic modeling for multiparametric imaging and quantification of the blood-brain barrier permeability-surface area product of molecular radiotracers. We show, in humans, our method can resolve blood-brain barrier permeability across three radiotracers and demonstrate its utility in studying brain aging and brain-body interactions in metabolic dysfunction-associated steatotic liver inflammation. Our method opens new directions to effectively study the molecular permeability of the human blood-brain barrier in vivo using the large catalogue of available molecular positron emission tomography tracers.
Collapse
Affiliation(s)
- Kevin J Chung
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
| | - Yasser G Abdelhafez
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
| | - Benjamin A Spencer
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
| | - Terry Jones
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
| | - Quyen Tran
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
| | - Moon S Chen
- Department of Internal Medicine, University of California Davis Health, Sacramento, CA, USA
| | - Souvik Sarkar
- Department of Internal Medicine, University of California Davis Health, Sacramento, CA, USA
- Division of Gastroenterology and Hepatology, University of California Davis Health, Sacramento, CA, USA
| | - Valentina Medici
- Department of Internal Medicine, University of California Davis Health, Sacramento, CA, USA
- Division of Gastroenterology and Hepatology, University of California Davis Health, Sacramento, CA, USA
| | - Victoria Lyo
- Department of Surgery, University of California Davis Health, Sacramento, CA, USA
- Center for Alimentary and Metabolic Sciences, University of California Davis Health, Sacramento, CA, USA
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
- Department of Biomedical Engineering, University of California at Davis, Davis, CA, USA
| | - Simon R Cherry
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA
- Department of Biomedical Engineering, University of California at Davis, Davis, CA, USA
| | - Guobao Wang
- Department of Radiology, University of California Davis Health, Sacramento, CA, USA.
| |
Collapse
|
4
|
Turpin AL, Felisatti F, Chauveau L, Haudry S, Mézenge F, Landeau B, Vivien D, De La Sayette V, Chételat G, Gonneaud J. Association Between Lifestyle at Different Life Periods and Brain Integrity in Older Adults. Neurology 2025; 104:e213347. [PMID: 39919257 PMCID: PMC11810134 DOI: 10.1212/wnl.0000000000213347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/04/2024] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Lifestyle behaviors, including engagement in complex mental activities, have been associated with dementia risk and neuroimaging markers of aging and Alzheimer disease. However, the life period(s) at which lifestyle factors have the greatest influence on brain health remains unclear. Our objective was to determine the relative influence of lifestyle (i.e., engagement in complex mental activities) at different life periods on older adults' brain health. METHODS This observational study included community-dwelling cognitively unimpaired seniors (older than 65 years) from the Age-Well randomized controlled trial (Caen, France). All participants completed at baseline the Lifetime of Experiences Questionnaire, assessing engagement in complex mental activities during young adulthood (13-30 years: LEQ-young), midlife (30-65 years: LEQ-midlife), and late-life (older than 65 years: LEQ-late). LEQ scores were divided into specific and non-specific activities. Multiple regressions were conducted including LEQ scores at the 3 life periods (same model) to predict gray matter volume (GMv; structural-MRI), glucose metabolism (fluorodeoxyglucose-PET), perfusion (early-Florbetapir-PET), or amyloid burden (late-Florbetapir-PET), both in AD-signature regions and voxel-wise (significance for voxel-wise analyses: p < 0.005uncorrected, k > 100). Correlations between LEQ and neuroimaging outcomes were then compared between (1) life periods and (2) specific and non-specific activities. Analyses were controlled for age and sex. RESULTS In 135 older adults (mean age = 69.3 years; women = 61.5%), no associations were found within AD-signature regions (all p > 0.25). Voxel-wise analyses revealed no association between LEQ-young and neuroimaging. LEQ-midlife showed stronger voxel-wise associations than the other periods with GMv, notably in the anterior cingulate cortex, and with amyloid burden in the precuneus. These correlations were stronger for the LEQ-midlife specific (i.e., occupation) than the non-specific subscore (GMv: z = 3.25, p < 0.001, 95% CI [0.1292-0.5135]; amyloid: z = -1.88, p < 0.05, 95% CI [-0.3810 to -0.0113]). LEQ-late showed stronger voxel-wise associations than the other periods with perfusion and glucose metabolism in medial frontal regions. The correlation of perfusion with LEQ-late was stronger for non-specific than specific subscore (z = 2.88, p < 0.01, 95% CI [0.0894-0.4606]). DISCUSSION Lifestyle at different life periods may have complementary benefits on brain health in regions related to reserve/resilience in aging. While past (midlife) engagement could promote resistance against structural/pathologic alterations, current (late-life) engagement could enhance cognitive reserve. Future larger longitudinal studies should explore mechanisms by which lifestyle promotes reserve.
Collapse
Affiliation(s)
- Anne-Laure Turpin
- Normandy University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France
| | - Francesca Felisatti
- Normandy University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France
| | - Léa Chauveau
- Normandy University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France
| | - Sacha Haudry
- Normandy University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France
| | - Florence Mézenge
- Normandy University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France
| | - Brigitte Landeau
- Normandy University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France
| | - Denis Vivien
- Normandy University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood & Brain @ Caen, GIP Cyceron, France
- Département de Recherche Clinique, CHU Caen-Normandie, France
| | - Vincent De La Sayette
- Normandie University, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH, Pôle des Formations et de Recherche en Santé, Caen, France; and
- Service de Neurologie, CHU de Caen, France
| | - Gaël Chételat
- Normandy University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France
| | - Julie Gonneaud
- Normandy University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, Caen, France
| |
Collapse
|
5
|
Nanayakkara ND, Meusel LA, Anderson ND, Chen JJ. Estimation of cerebrovascular reactivity amplitude and lag using breath-holding fMRI and the global BOLD signal: Application in diabetes and hypertension. J Cereb Blood Flow Metab 2025; 45:459-475. [PMID: 39224949 PMCID: PMC11572012 DOI: 10.1177/0271678x241270420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
In this work, we demonstrate a data-driven approach for estimating cerebrovascular reactivity (CVR) amplitude and lag from breathhold (BH) fMRI data alone. Our approach employs a frequency-domain approach that is independent of external recordings. CVR amplitude is estimated from the BOLD frequency spectrum and CVR lag is estimated from the Fourier phase using the global-mean BOLD signal as reference. Unlike referencing to external recordings, these lags are specific to the brain. We demonstrated our method in detecting regional CVR amplitude and lag differences across healthy (CTL), hypertensive (HT) and hypertension-plus-type-2-diabetes (HT + DM) groups of similar ages and sex ratios, with a total N of 49. We found CVR amplitude to be significantly higher in CTL compared to HT + DM, with minimal difference between CTL and HT. Also, voxelwise CVR lag estimated in the Fourier domain is a more sensitive marker of vascular dysfunction than CVR amplitude. CVR lag in HT is significantly shorter than in CTL, with minimal difference between CTL and HT + DM. Our results support the importance of joint CVR amplitude and lag assessments in clinical applications.
Collapse
Affiliation(s)
- Nuwan D Nanayakkara
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Canada
| | - Liesel-Ann Meusel
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Canada
| | - Nicole D Anderson
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, Canada
| | - J Jean Chen
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
6
|
Chami AA, Gravel C, Weng YC, Kriz J, Julien JP. Virus-mediated delivery of single-chain antibody targeting TDP-43 protects against neuropathology, cognitive impairment and motor deficit caused by chronic cerebral hypoperfusion. Exp Neurol 2025; 385:115138. [PMID: 39778789 DOI: 10.1016/j.expneurol.2025.115138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Chronic cerebral hypoperfusion induced by permanent unilateral common carotid artery occlusion in mice was recently found to induce an age-dependent formation of insoluble cytoplasmic TDP-43 aggregates reminiscent of pathological changes found in human vascular dementia. In this model, the gradual deregulation of TDP-43 homeostasis in cortical neurons was associated with marked cognitive and motor deficits. To target the TDP-43-mediated toxicity in this model, we generated an adeno-associated virus vector encoding a single-chain antibody against TDP-43, called scFv-E6, designed for pan-neuronal transduction following intravenous administration. Injected prior to brain hypoperfusion, this tonic virus-mediated delivery of the scFv-E6 antibody reduced formation of cytoplasmic TDP-43 aggregates in cortical neurons, boosted levels of autophagy markers and attenuated microgliosis. Moreover, the novel object recognition and grip strength tests revealed that neuronal expression of scFv-E6 prevented the cognitive impairment and loss of motor performance caused by two-months of cerebral hypoperfusion. The robust protective effects of scFv-E6 antibody in this model suggest a key role of TDP-43 in neuronal damage and symptom phenotypes caused by chronic cerebral hypoperfusion. Accordingly, TDP-43 should be considered as a new therapeutic target in drug development, including antibody approaches, for treatment of vascular dementia.
Collapse
Affiliation(s)
| | - Claude Gravel
- CERVO Brain Research Centre, Québec, Québec G1J 2G3, Canada; Department of Psychiatry and Neuroscience, Université Laval, Québec City G1V 0A6, Canada
| | | | - Jasna Kriz
- CERVO Brain Research Centre, Québec, Québec G1J 2G3, Canada; Department of Psychiatry and Neuroscience, Université Laval, Québec City G1V 0A6, Canada
| | - Jean-Pierre Julien
- CERVO Brain Research Centre, Québec, Québec G1J 2G3, Canada; Department of Psychiatry and Neuroscience, Université Laval, Québec City G1V 0A6, Canada.
| |
Collapse
|
7
|
Raimondo L, Heij J, Knapen T, Siero JCW, van der Zwaag W, Dumoulin SO. Does the Cortical-Depth Dependence of the Hemodynamic Response Function Differ Between Age Groups? Brain Topogr 2025; 38:34. [PMID: 40019567 PMCID: PMC11870980 DOI: 10.1007/s10548-025-01107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 02/03/2025] [Indexed: 03/01/2025]
Abstract
Functional magnetic resonance imaging (fMRI) is a widely used tool to investigate the functional brain responses in living humans. Valid comparisons of fMRI results depend on consistency of the blood-oxygen-level-dependent (BOLD) hemodynamic response function (HRF). Although common statistical approaches assume a single HRF across the entire brain, the HRF differs across individuals, regions of the brain, and cortical depth. Here, we measure HRF properties in primary visual cortex (V1) using 7 T fMRI with ultra-high spatiotemporal resolution line-scanning (250 μm in laminar direction, sampled every 105 ms). Line-scanning allowed us to investigate age-related HRF changes as a function of cortical depth. Eleven young and eleven middle-aged healthy participants participated in the experiments. We estimated the HRFs using a smooth basis function deconvolution approach. We also compared the results with conventional resolutions. From these HRFs, we extracted properties related to response magnitude and temporal dynamics. The cortical depth dependent HRFs were similar to the HRFs extracted using conventional resolutions validating the cortical depth dependent approach. We found that the properties of the HRF in the two age groups are similar across cortical depth. In other words, the variance between participants is larger than the variance between age groups. This suggests that middle-aged individuals can participate in cortical depth dependent studies free of bias in HRF properties.
Collapse
Affiliation(s)
- Luisa Raimondo
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK, Amsterdam, The Netherlands.
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
- Experimental and Applied Psychology, VU University, Amsterdam, The Netherlands.
| | - Jurjen Heij
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK, Amsterdam, The Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Experimental and Applied Psychology, VU University, Amsterdam, The Netherlands
| | - Tomas Knapen
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK, Amsterdam, The Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Experimental and Applied Psychology, VU University, Amsterdam, The Netherlands
| | - Jeroen C W Siero
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK, Amsterdam, The Netherlands
- Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Wietske van der Zwaag
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK, Amsterdam, The Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Serge O Dumoulin
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK, Amsterdam, The Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Experimental and Applied Psychology, VU University, Amsterdam, The Netherlands
- Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
Hu Z, Jiang D, Shepard J, Uchida Y, Oishi K, Shi W, Liu P, Lin D, Yedavalli V, Tekes A, Golden WC, Lu H. High-Fidelity MRI Assessment of Cerebral Perfusion in Healthy Neonates Less Than 1 Week of Age. J Magn Reson Imaging 2025. [PMID: 39945520 DOI: 10.1002/jmri.29740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Perfusion imaging of the brain has important clinical applications in detecting neurological abnormalities in neonates. However, such tools have not been available to date. Although arterial-spin-labeling (ASL) MRI is a powerful noninvasive tool to measure perfusion, its application in neonates has encountered obstacles related to low signal-to-noise ratio (SNR), large-vessel contaminations, and lack of technical development studies. PURPOSE To systematically develop and optimize ASL perfusion MRI in healthy neonates under 1 week of age. STUDY TYPE Prospective. SUBJECTS Thirty-two healthy term neonates (19 female; postnatal age 1.9 ± 0.7 days). FIELD STRENGTH/SEQUENCE 3.0 T; T2-weighted half-Fourier single-shot turbo-spin-echo (HASTE) imaging, single-delay and multi-delay 3D gradient-and-spin-echo (GRASE) large-vessel-suppression pseudo-continuous ASL (LVS-pCASL). ASSESSMENT Three studies were conducted. First, an LVS-pCASL MRI sequence was developed to suppress large-vessel spurious signals in neonatal pCASL. Second, multiple post-labeling delays (PLDs) LVS-pCASL were employed to simultaneously estimate normative cerebral blood flow (CBF) and arterial transit time (ATT) in neonates. Third, an enhanced background-suppression (BS) scheme was developed to increase the SNR of neonatal pCASL. STATISTICAL TESTS Repeated measure analysis-of-variance, paired t-test, spatial intraclass-correlation-coefficient (ICC), and voxel-wise coefficient-of-variation (CoV). P-value <0.05 was considered significant. RESULTS LVS-pCASL reduced spurious ASL signals, making the CBF images more homogenous and significantly reducing the temporal variation of CBF measurements by 58.0% when compared to the standard pCASL. Multi-PLD ASL yielded ATT and CBF maps showing a longer ATT and lower CBF in the white matter relative to the gray matter. The highest CBF was observed in basal ganglia and thalamus (10.4 ± 1.9 mL/100 g/min). Enhanced BS resulted in significantly higher test-retest reproducibility (ICC = 0.90 ± 0.04, CoV = 8.4 ± 1.2%) when compared to regular BS (ICC = 0.59 ± 0.12, CoV = 23.6 ± 3.8%). DATA CONCLUSION We devised an ASL method that can generate whole-brain CBF images in 4 minutes with a test-retest image ICC of 0.9. This technique holds potential for studying neonatal brain diseases involving perfusion abnormalities. PLAIN LANGUAGE SUMMARY MR imaging of cerebral blood flow in neonates remains a challenge due to low blood flow rates and confounding factors from large blood vessels. This study systematically developed an advanced MRI technique to enhance the reliability of perfusion measurements in neonates. The proposed method reduced signal artifacts from large blood vessels and improved the signal-to-noise ratio of brain perfusion images. With this approach, whole-brain neonatal perfusion can be measured in 4 minutes with excellent reproducibility. This technique may provide a useful tool for studying neonatal brain maturation and detecting perfusion abnormalities in diseases. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Zhiyi Hu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer Shepard
- Eudowood Neonatal Pulmonary Division, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yuto Uchida
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wen Shi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peiying Liu
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Doris Lin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vivek Yedavalli
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aylin Tekes
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - William Christopher Golden
- Eudowood Neonatal Pulmonary Division, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Soleimanzad H, Morisset C, Montaner M, Pain F, Magnan C, Tanter M, Gurden H. Western diet since adolescence impairs brain functional hyperemia at adulthood in mice: rescue by a balanced ω-3:ω-6 polyunsaturated fatty acids ratio. Int J Obes (Lond) 2025:10.1038/s41366-025-01711-x. [PMID: 39910250 DOI: 10.1038/s41366-025-01711-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/18/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND/OBJECTIVE Obesity is a devastating worldwide metabolic disease, with the highest prevalence in children and adolescents. Obesity impacts neuronal function but the fate of functional hyperemia, a vital mechanism making possible cerebral blood supply to active brain areas, is unknown in organisms fed a high-caloric Western Diet (WD) since adolescence. SUBJECTS/METHODS We mapped changes in cerebral blood volume (CBV) in the somatosensory cortex in response to whisker stimulation in adolescent, adult, and middle-aged mice fed a WD since adolescence. To this aim, we used non-invasive and high-resolution functional ultrasound imaging (fUS). RESULTS We efficiently mimicked the metabolic syndrome of adolescents in young mice with early weight gain, dysfunctional glucose homeostasis, and insulinemia. Functional hyperemia is compromised as early as 3 weeks of WD and remains impaired after that in adolescent mice. These findings highlight the cerebrovascular vulnerability to WD during adolescence. In WD, ω-6:ω-3 polyunsaturated fatty acids (PUFAs) ratio is unbalanced towards proinflammatory ω-6. A balanced ω-6:ω-3 PUFAs ratio in WD achieved by docosahexaenoic acid supplementation efficiently restores glucose homeostasis and functional hyperemia in adults. CONCLUSIONS WD triggers a rapid impairment in cerebrovascular activity in adolescence, which is maintained at older ages, and can be rescued by a PUFA-based nutraceutical approach.
Collapse
Affiliation(s)
- Haleh Soleimanzad
- Physics for Medicine Paris, ESPCI Paris, INSERM, CNRS, PSL Research University, 75015, Paris, France
| | - Clémentine Morisset
- Physics for Medicine Paris, ESPCI Paris, INSERM, CNRS, PSL Research University, 75015, Paris, France
| | - Mireia Montaner
- Université Paris Cité, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, 75013, Paris, France
- Institute of Metabolic Science & MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Frédéric Pain
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127, Palaiseau, France
| | - Christophe Magnan
- Université Paris Cité, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, 75013, Paris, France
| | - Mickaël Tanter
- Physics for Medicine Paris, ESPCI Paris, INSERM, CNRS, PSL Research University, 75015, Paris, France.
| | - Hirac Gurden
- Université Paris Cité, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, 75013, Paris, France.
| |
Collapse
|
10
|
Santisteban MM, Iadecola C. The pathobiology of neurovascular aging. Neuron 2025; 113:49-70. [PMID: 39788087 DOI: 10.1016/j.neuron.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
As global life expectancy increases, age-related brain diseases such as stroke and dementia have become leading causes of death and disability. The aging of the neurovasculature is a critical determinant of brain aging and disease risk. Neurovascular cells are particularly vulnerable to aging, which induces significant structural and functional changes in arterial, venous, and lymphatic vessels. Consequently, neurovascular aging impairs oxygen and glucose delivery to active brain regions, disrupts endothelial transport mechanisms essential for blood-brain exchange, compromises proteostasis by reducing the clearance of potentially toxic proteins, weakens immune surveillance and privilege, and deprives the brain of key growth factors required for repair and renewal. In this review, we examine the effects of neurovascular aging on brain function and its role in stroke, vascular cognitive impairment, and Alzheimer's disease. Finally, we discuss key unanswered questions that must be addressed to develop neurovascular strategies aimed at promoting healthy brain aging.
Collapse
Affiliation(s)
- Monica M Santisteban
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Yan X, Liu W, Li D, Huang Q, Wu J, Zhang Q. Decreased Memory-Related Regional Cerebral Perfusion in Severe Obstructive Sleep Apnea with a Mild Cognitive Impairment During Wakefulness. Nat Sci Sleep 2024; 16:1869-1880. [PMID: 39649801 PMCID: PMC11624665 DOI: 10.2147/nss.s481602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/22/2024] [Indexed: 12/11/2024] Open
Abstract
Purpose Previous studies have found that obstructive sleep apnea (OSA) can induce cognitive impairment (CI). However, the exact mechanisms of CI development in patients with OSA remains unclear. We investigated the neuropathological basis of CI development by examining changes in cerebral blood perfusion. Patients and Methods Thirty-five patients with untreated OSA (15 with CI and 20 without CI [NCI]) and 15 good sleepers (GS) diagnosed using polysomnography were recruited. All participants underwent resting state brain scans in a Siemens 3.0 Tesla magnetic resonance imaging scanner with a pulsed arterial spin labeling sequence and completed a battery of neuropsychological tests. Results Compared to the regional cerebral blood flow (rCBF) values in the GS group, both the CI and NCI groups exhibited lower rCBF values in the bilateral inferior temporal, left lingual, and right medial and paracingulate gyri, as well as higher rCBF values in the bilateral middle frontal gyrus (p < 0.05 in all cases). Compared to the rCBF values in the NCI group, the CI group had lower rCBF values in the bilateral inferior temporal and left lingual gyri, and higher rCBF values in the right rectus and right middle orbital frontal gyri (p < 0.05 in all cases). In the CI group, rCBF values in the bilateral inferior temporal (right, p = 0.025; left, p = 0.005) and left lingual gyri (p = 0.018) were positively associated with the delayed memory scores, and rCBF values in the left inferior temporal gyrus positively correlated with the attention scores (p = 0.011). Conclusion Regions with abnormal perfusion in the NCI and CI groups were mostly memory-related. Blood perfusion in the bilateral inferior temporal and left lingual gyri decreased in the following order: GS > OSA-NCI > OSA-CI. These findings provide blood perfusion-level insights into the neuropathological basis of OSA-CI development.
Collapse
Affiliation(s)
- Xiangbo Yan
- Imaging Department, Affiliated Zhongshan Hospital Dalian University, Dalian, People’s Republic of China
- Faculty of Medicine, Dalian University of Technology, Dalian, People’s Republic of China
| | - Wanqing Liu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Danyang Li
- Imaging Department, Affiliated Zhongshan Hospital Dalian University, Dalian, People’s Republic of China
| | - Qiang Huang
- Imaging Department, Affiliated Zhongshan Hospital Dalian University, Dalian, People’s Republic of China
| | - Jianlin Wu
- Imaging Department, Affiliated Zhongshan Hospital Dalian University, Dalian, People’s Republic of China
| | - Qing Zhang
- Imaging Department, Affiliated Zhongshan Hospital Dalian University, Dalian, People’s Republic of China
| |
Collapse
|
12
|
Rane Levendovszky S, Flores J, Peskind ER, Václavů L, van Osch MJP, Iliff J. Preliminary investigations into human neurofluid transport using multiple novel non-contrast MRI methods. J Cereb Blood Flow Metab 2024; 44:1580-1592. [PMID: 39053490 PMCID: PMC11572104 DOI: 10.1177/0271678x241264407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/15/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024]
Abstract
We discuss two potential non-invasive MRI methods to study phenomena related to subarachnoid cerebrospinal fluid (CSF) motion and perivascular fluid transport, and their association with sleep and aging. We apply diffusion-based intravoxel incoherent motion (IVIM) imaging to evaluate pseudodiffusion coefficient, D*, or CSF movement across large spaces like the subarachnoid space (SAS). We also performed perfusion-based multi-echo, Hadamard encoded arterial spin labeling (ASL) to evaluate whole brain cortical cerebral blood flow (CBF) and trans-endothelial exchange (Tex) of water from the vasculature into the perivascular space and parenchyma. Both methods were used in young adults (N = 9, 6 F, 23 ± 3 years old) in the setting of sleep and sleep deprivation. To study aging, 10 older adults (6 F, 67 ± 3 years old) were imaged after a night of normal sleep and compared with the young adults. D* in SAS was significantly (p < 0.05) reduced with sleep deprivation (0.016 ± 0.001 mm2/s) compared to normal sleep (0.018 ± 0.001 mm2/s) and marginally reduced with aging (0.017 ± 0.001 mm2/s, p = 0.029). Cortical CBF and Tex were unchanged with sleep deprivation but significantly lower in older adults (37 ± 3 ml/100 g/min, 578 ± 61 ms) than in young adults (42 ± 2 ml/100 g/min, 696 ± 62 ms). IVIM was sensitive to sleep physiology and aging, and multi-echo, multi-delay ASL was sensitive to aging.
Collapse
Affiliation(s)
| | - Jaqueline Flores
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Elaine R Peskind
- VISN 20 Mental Illness Research, Education, and Clinical Center, Veterans Affairs Puget Sound Healthcare System, Seattle, WA, USA
| | - Lena Václavů
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias JP van Osch
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeffrey Iliff
- VISN 20 Mental Illness Research, Education, and Clinical Center, Veterans Affairs Puget Sound Healthcare System, Seattle, WA, USA
- Department of Psychiatry and Behavioral Science, University of Washington School of Medicine, Seattle, WA, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
13
|
Uryga A, Czosnyka M, Robba C, Nasr N, Kasprowicz M. The time constant of the cerebral arterial bed: exploring age-related implications. J Clin Monit Comput 2024; 38:1227-1236. [PMID: 38573368 DOI: 10.1007/s10877-024-01142-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/17/2024] [Indexed: 04/05/2024]
Abstract
The time constant of the cerebral arterial bed (τ) represents an estimation of the transit time of flow from the point of insonation at the level of the middle cerebral artery to the arteriolar-capillary boundary, during a cardiac cycle. This study assessed differences in τ among healthy volunteers across different age groups. Simultaneous recordings of transcranial Doppler cerebral blood flow velocity (CBFV) and arterial blood pressure (ABP) were performed on two groups: young volunteers (below 30 years of age), and older volunteers (above 40 years of age). τ was estimated using mathematical transformation of ABP and CBFV pulse waveforms. 77 healthy volunteers [52 in the young group, and 25 in the old group] were included. Pulse amplitude of ABP was higher [16.7 (14.6-19.4) mmHg] in older volunteers as compared to younger ones [12.5 (10.9-14.4) mm Hg; p < 0.001]. CBFV was lower in older volunteers [59 (50-66) cm/s] as compared to younger ones [72 (63-78) cm/s p < 0.001]. τ was longer in the younger volunteers [217 (168-237) ms] as compared to the older volunteers [183 (149-211) ms; p = 0.004]. τ significantly decreased with age (rS = - 0.27; p = 0.018). τ is potentially an integrative marker of the changes occurring in cerebral vasculature, as it encompasses the interplay between changes in compliance and resistance that occur with age.
Collapse
Affiliation(s)
- Agnieszka Uryga
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Chiara Robba
- IRCCS Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV 16, Genoa, Italy
| | - Nathalie Nasr
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- IRCCS Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV 16, Genoa, Italy
- Department of Neurology, Poitiers University Hospital, Poitiers, Laboratoire de Neurosciences Expérimentales et Cliniques, University of Poitiers, U1084, Poitiers, France
| | - Magdalena Kasprowicz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
14
|
Morgan CA, Thomas DL, Shao X, Mahroo A, Manson TJ, Suresh V, Jansson D, Ohene Y, Günther M, Wang DJJ, Tippett LJ, Dragunow M. Measurement of blood-brain barrier water exchange rate using diffusion-prepared and multi-echo arterial spin labelling: Comparison of quantitative values and age dependence. NMR IN BIOMEDICINE 2024; 37:e5256. [PMID: 39252500 DOI: 10.1002/nbm.5256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
Water exchange rate (Kw) across the blood-brain barrier (BBB) is an important physiological parameter that may provide new insight into ageing and neurodegenerative disease. Recently, two non-invasive arterial spin labelling (ASL) MRI methods have been developed to measure Kw, but results from the different methods have not been directly compared. Furthermore, the association of Kw with age for each method has not been investigated in a single cohort. Thirty participants (70% female, 63.8 ± 10.4 years) were scanned at 3 T with Diffusion-Prepared ASL (DP-ASL) and Multi-Echo ASL (ME-ASL) using previously implemented acquisition and analysis protocols. Grey matter Kw, cerebral blood flow (CBF) and arterial transit time (ATT) were extracted. CBF values were consistent; approximately 50 ml/min/100 g for both methods, and a strong positive correlation in CBF from both methods across participants (r = 0.82, p < 0.001). ATT was significantly different between methods (on average 147.7 ms lower when measured with DP-ASL compared to ME-ASL) but was positively correlated across participants (r = 0.39, p < 0.05). Significantly different Kw values of 106.6 ± 19.7 min-1 and 306.8 ± 71.7 min-1 were measured using DP-ASL and ME-ASL, respectively, and DP-ASL Kw and ME-ASL Kw were negatively correlated across participants (r = -0.46, p < 0.01). Kw measured using ME-ASL had a significant linear relationship with age (p < 0.05). In conclusion, DP-ASL and ME-ASL provided estimates of Kw with significantly different quantitative values and inconsistent dependence with age. We propose future standardisation of modelling and fitting methods for DP-ASL and ME-ASL, to evaluate the effect on Kw quantification. Also, sensitivity and bias analyses should be performed for both approaches, to assess the effect of varying acquisition and fitting parameters. Lastly, comparison with independent measures of BBB water transport, and with physiological and clinical biomarkers known to be associated with changes in BBB permeability, are essential to validate the ASL methods, and to demonstrate their clinical utility.
Collapse
Affiliation(s)
- Catherine A Morgan
- School of Psychology and Centre for Brain Research, University of Auckland, New Zealand
- Centre for Advanced MRI, Auckland Uniservices Limited, University of Auckland, New Zealand
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, California, Los Angeles, USA
| | - Amnah Mahroo
- Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Tabitha J Manson
- School of Psychology and Centre for Brain Research, University of Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Vinod Suresh
- Auckland Bioengineering Institute, University of Auckland, New Zealand
- Department of Engineering Science and Biomedical Engineering, University of Auckland, New Zealand
| | - Deidre Jansson
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, USA
- School of Biological Sciences, Faculty of Science, University of Auckland, New Zealand
| | - Yolanda Ohene
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester Academic Health Science Centre, UK
| | - Matthias Günther
- Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, California, Los Angeles, USA
| | - Lynette J Tippett
- School of Psychology and Centre for Brain Research, University of Auckland, New Zealand
- Dementia Prevention Research Clinic, University of Auckland, New Zealand
| | - Michael Dragunow
- Department of Pharmacology and Centre for Brain Research, University of Auckland, New Zealand
| |
Collapse
|
15
|
Lin YK, Lin LF, Kao CH, Chen IJ, Cheng CY, Tsai CL, Lee JT, Sung YF, Chou CH, Yen SY, Chiu CH, Yang FC. Characterizing Cerebral Perfusion Changes in Subjective Cognitive Decline Using Single Photon Emission Computed Tomography: A Case-Control Study. J Clin Med 2024; 13:6855. [PMID: 39597997 PMCID: PMC11595019 DOI: 10.3390/jcm13226855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Subjective cognitive decline (SCD) may serve as an early indicator of Alzheimer's disease (AD). This study investigates regional cerebral blood flow (rCBF) alterations in individuals with SCD using single photon emission computed tomography (SPECT). To characterize rCBF patterns in SCD patients compared to healthy controls and examine the relationship between rCBF and cognitive function. Methods: We compared rCBF in 20 SCD patients and 20 age- and sex-matched healthy controls using 99mTc-ECD SPECT imaging. Cognitive function was assessed using the Mini-Mental State Examination (MMSE), Clinical Dementia Rating (CDR), Geriatric Depression Scale (GDS), and Cognitive Abilities Screening Instrument (CASI). Results: SCD patients demonstrated significantly reduced rCBF in the right superior temporal gyrus (rSTG) (mean uptake ratio [UR] = 0.864 ± 0.090 vs. 1.030 ± 0.074, p < 0.001) and right caudate (mean UR = 0.783 ± 0.068 vs. 0.947 ± 0.062, p < 0.001) compared to controls. Additionally, negative correlations were observed between rCBF in these regions and CDR scores, particularly in the memory domain (rSTG: r = -0.37, p = 0.016; right caudate: r = -0.39, p = 0.011). Conclusions: Reduced rCBF in the rSTG and right caudate may represent early biomarkers for SCD, which could aid in the early detection of AD. These findings suggest that SPECT imaging might be a valuable tool for identifying individuals at risk of cognitive decline, potentially allowing for earlier intervention and targeted preventive strategies in the management of AD.
Collapse
Affiliation(s)
- Yu-Kai Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-K.L.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Li-Fan Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chun-Hao Kao
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Ing-Jou Chen
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Cheng-Yi Cheng
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chia-Lin Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-K.L.)
| | - Jiunn-Tay Lee
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-K.L.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yueh-Feng Sung
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-K.L.)
| | - Chung-Hsing Chou
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-K.L.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Shang-Yi Yen
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-K.L.)
| | - Chuang-Hsin Chiu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-K.L.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
16
|
Xu L, Gao Y, Li M, Lawless R, Zhao Y, Schilling KG, Rogers BP, Anderson AW, Ding Z, Landman BA, Gore JC. Functional correlation tensors in brain white matter and the effects of normal aging. Brain Imaging Behav 2024; 18:1197-1214. [PMID: 39235695 PMCID: PMC11582213 DOI: 10.1007/s11682-024-00914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
Resting state correlations between blood oxygenation level dependent (BOLD) MRI signals from voxels in white matter (WM) are demonstrably anisotropic, so that functional correlation tensors (FCT) may be used to quantify the underlying microstructure of BOLD effects in WM tracts. However, the overall spatial distribution of FCTs and their metrics in specific populations has not yet been established, and the factors that affect their precise arrangements remain unclear. Changes in WM occur with normal aging, and these may be expected to affect FCTs. We hypothesized that FCTs exhibit a characteristic spatial pattern and may show systematic changes with aging or other factors. Here we report our analyses of the FCT characteristics of fMRI images of a large cohort of 461 cognitively normal subjects (190 females, 271 males) sourced from the Open Access Series of Imaging Studies (OASIS), with age distributions of 42 y/o - 95 y/o. Group averages and statistics of FCT indices, including axial functional correlations, radial functional correlations, mean functional correlations and fractional anisotropy, were quantified in WM bundles defined by the JHU ICBM-DTI-81 WM atlas. In addition, their variations with normal aging were examined. The results revealed a dimorphic distribution of changes in FCT metrics with age, with decreases of the functional correlations in some regions and increases in others. Supplementary analysis revealed that females exhibited significant age effects on a greater number of WM areas, but the interaction between age and sex was not significant. The findings demonstrate the reproducibility of the spatial distribution of FCT metrics and reveal subtle regional changes with age.
Collapse
Affiliation(s)
- Lyuan Xu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yurui Gao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Richard Lawless
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
| | - Yu Zhao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
17
|
Zedde M, Pascarella R. The Cerebrovascular Side of Plasticity: Microvascular Architecture across Health and Neurodegenerative and Vascular Diseases. Brain Sci 2024; 14:983. [PMID: 39451997 PMCID: PMC11506257 DOI: 10.3390/brainsci14100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The delivery of nutrients to the brain is provided by a 600 km network of capillaries and microvessels. Indeed, the brain is highly energy demanding and, among a total amount of 100 billion neurons, each neuron is located just 10-20 μm from a capillary. This vascular network also forms part of the blood-brain barrier (BBB), which maintains the brain's stable environment by regulating chemical balance, immune cell transport, and blocking toxins. Typically, brain microvascular endothelial cells (BMECs) have low turnover, indicating a stable cerebrovascular structure. However, this structure can adapt significantly due to development, aging, injury, or disease. Temporary neural activity changes are managed by the expansion or contraction of arterioles and capillaries. Hypoxia leads to significant remodeling of the cerebrovascular architecture and pathological changes have been documented in aging and in vascular and neurodegenerative conditions. These changes often involve BMEC proliferation and the remodeling of capillary segments, often linked with local neuronal changes and cognitive function. Cerebrovascular plasticity, especially in arterioles, capillaries, and venules, varies over different time scales in development, health, aging, and diseases. Rapid changes in cerebral blood flow (CBF) occur within seconds due to increased neural activity. Prolonged changes in vascular structure, influenced by consistent environmental factors, take weeks. Development and aging bring changes over months to years, with aging-associated plasticity often improved by exercise. Injuries cause rapid damage but can be repaired over weeks to months, while neurodegenerative diseases cause slow, varied changes over months to years. In addition, if animal models may provide useful and dynamic in vivo information about vascular plasticity, humans are more complex to investigate and the hypothesis of glymphatic system together with Magnetic Resonance Imaging (MRI) techniques could provide useful clues in the future.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| |
Collapse
|
18
|
Suzuki Y, Nakamura Y, Igarashi H. Interstitial fluid flow decreases with age, especially after 50 years. Neurobiol Aging 2024; 141:14-20. [PMID: 38796942 DOI: 10.1016/j.neurobiolaging.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Physiological age-related alterations in the interstitial flow in the brain, which plays an important role in waste product removal, remain unclear. Using [15O]H2O positron emission tomography (PET), water dynamics were evaluated in 63 healthy adult participants aged between 20 and 80 years. Interstitial flow was assessed by influx ratio (IR) and drain rate (DR), using time-activity concentration data. Participants were divided into four age groups with 15-year ranges, to evaluate age-related functional alterations. At least one of the indices declined significantly with age across all groups. A significant linear negative correlation between age and both indicators was found in the scatter plots (IR: R2 = 0.54, DR: R2 = 0.44); both indicators were predominantly lower after age 50 years. These results suggest interstitial flow decreases with age, especially after 50 years. These important findings can contribute to devising therapeutic interventions for neurological diseases characterized by abnormal accumulation of waste products, and suggest the need for taking measures to maintain interstitial flow starting around the age of 50 years.
Collapse
Affiliation(s)
- Yuji Suzuki
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan.
| | - Yukimi Nakamura
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hironaka Igarashi
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
19
|
Mihailescu S, Hlava Q, Cook PA, Mandelli ML, Lee SE, Boeve BF, Dickerson BC, Gorno-Tempini ML, Rogalski E, Grossman M, Gee J, McMillan CT, Olm CA. Boundary-based registration improves sensitivity for detecting hypoperfusion in sporadic frontotemporal lobar degeneration. Front Neurol 2024; 15:1452944. [PMID: 39233675 PMCID: PMC11371585 DOI: 10.3389/fneur.2024.1452944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Frontotemporal lobar degeneration (FTLD) is associated with FTLD due to tau (FTLD-tau) or TDP (FTLD-TDP) inclusions found at autopsy. Arterial Spin Labeling (ASL) MRI is often acquired in the same session as a structural T1-weighted image (T1w), enabling detection of regional changes in cerebral blood flow (CBF). We hypothesize that ASL-T1w registration with more degrees of freedom using boundary-based registration (BBR) will better align ASL and T1w images and show increased sensitivity to regional hypoperfusion differences compared to manual registration in patient participants. We hypothesize that hypoperfusion will be associated with a clinical measure of disease severity, the FTLD-modified clinical dementia rating scale sum-of-boxes (FTLD-CDR). Materials and methods Patients with sporadic likely FTLD-tau (sFTLD-tau; N = 21), with sporadic likely FTLD-TDP (sFTLD-TDP; N = 14), and controls (N = 50) were recruited from the Connectomic Imaging in Familial and Sporadic Frontotemporal Degeneration project (FTDHCP). Pearson's Correlation Coefficients (CC) were calculated on cortical vertex-wise CBF between each participant for each of 3 registration methods: (1) manual registration, (2) BBR initialized with manual registration (manual+BBR), (3) and BBR initialized using FLIRT (FLIRT+BBR). Mean CBF was calculated in the same regions of interest (ROIs) for each registration method after image alignment. Paired t-tests of CC values for each registration method were performed to compare alignment. Mean CBF in each ROI was compared between groups using t-tests. Differences were considered significant at p < 0.05 (Bonferroni-corrected). We performed linear regression to relate FTLD-CDR to mean CBF in patients with sFTLD-tau and sFTLD-TDP, separately (p < 0.05, uncorrected). Results All registration methods demonstrated significant hypoperfusion in frontal and temporal regions in each patient group relative to controls. All registration methods detected hypoperfusion in the left insular cortex, middle temporal gyrus, and temporal pole in sFTLD-TDP relative to sFTLD-tau. FTLD-CDR had an inverse association with CBF in right temporal and orbitofrontal ROIs in sFTLD-TDP. Manual+BBR performed similarly to FLIRT+BBR. Discussion ASL is sensitive to distinct regions of hypoperfusion in patient participants relative to controls, and in patients with sFTLD-TDP relative to sFTLD-tau, and decreasing perfusion is associated with increasing disease severity, at least in sFTLD-TDP. BBR can register ASL-T1w images adequately for controls and patients.
Collapse
Affiliation(s)
- Sylvia Mihailescu
- School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Quinn Hlava
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Philip A Cook
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Maria Luisa Mandelli
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Emily Rogalski
- Healthy Aging & Alzheimer's Care Center, University of Chicago, Chicago, IL, United States
- Department of Neurology, University of Chicago, Chicago, IL, United States
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - James Gee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Corey T McMillan
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher A Olm
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
20
|
Cai CX, Yu SS, Xiong XM, Liu BQ, Lin ZQ, Wang Q, Cui JL, Liu ZH, Li T, Lu L, Lin Y. Age-related alterations in vortex veins on indocyanine green angiography. GeroScience 2024:10.1007/s11357-024-01298-7. [PMID: 39143442 DOI: 10.1007/s11357-024-01298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
To determine age-related alterations in vortex veins in healthy subjects. A total of 228 healthy subjects (aged 4 to 86 years) were recruited and divided into four groups (G1, <21 years; G2, 21-40 years; G3, 41-60 years; and G4, 61-86 years). The clinical characteristics of the participants were recorded, and parameters including the number of vortex vein roots (NVVR), the central vortex vein diameter (CVVD), the mean root area of the vortex vein (MRAVV), and the weighted mean of the thickest branch diameter (WMTBD) were obtained by marking the vortex veins on indocyanine green angiography (ICGA). The NVVR in the age group over 60 years old was significantly lower than that in other age groups (P < 0.05). The CVVD, MRAVV, and WMTBD of all age groups increased with increasing age (P < 0.05). The NVVR was unevenly distributed among the quadrants (P < 0.001). The proportions of type four vortex veins (complete systems including ampulla) and anastomotic branches of the vortex veins were significantly increased in elderly participants over 50 years of age (P < 0.05). Subfoveal choroidal thickness was significantly correlated with age, NVVR, CVVD and MRAVV (P < 0.05). This is the first study to reveal age-related alterations in vortex veins on ICGA in a healthy population. Aging may lead to partial vortex occlusion and residual vortex dilation. As age increases, anastomotic branches increasingly appear between the originally independent vortex veins. Translational relevance: Aging may lead to partial vortex occlusion and residual vortex dilation.
Collapse
Affiliation(s)
- Chen-Xi Cai
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Clinic Department, Zhongshan Ophthalmic Center, Sun Yat-sen University, Tianhe District, No. 7, Jinsui Road, Guangzhou, 510060, China
- Capital Medical University Electric Teaching Hospital, State Grid Corporation of China Beijing Electric Power Hospital, Beijing, 100073, China
| | - Shan-Shan Yu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Clinic Department, Zhongshan Ophthalmic Center, Sun Yat-sen University, Tianhe District, No. 7, Jinsui Road, Guangzhou, 510060, China
| | - Xiao-Mei Xiong
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Clinic Department, Zhongshan Ophthalmic Center, Sun Yat-sen University, Tianhe District, No. 7, Jinsui Road, Guangzhou, 510060, China
| | - Bing-Qian Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Clinic Department, Zhongshan Ophthalmic Center, Sun Yat-sen University, Tianhe District, No. 7, Jinsui Road, Guangzhou, 510060, China
| | - Zhen-Qiang Lin
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Clinic Department, Zhongshan Ophthalmic Center, Sun Yat-sen University, Tianhe District, No. 7, Jinsui Road, Guangzhou, 510060, China
| | - Qiang Wang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Clinic Department, Zhongshan Ophthalmic Center, Sun Yat-sen University, Tianhe District, No. 7, Jinsui Road, Guangzhou, 510060, China
| | - Jin-Li Cui
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Clinic Department, Zhongshan Ophthalmic Center, Sun Yat-sen University, Tianhe District, No. 7, Jinsui Road, Guangzhou, 510060, China
| | - Ze-Hao Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Clinic Department, Zhongshan Ophthalmic Center, Sun Yat-sen University, Tianhe District, No. 7, Jinsui Road, Guangzhou, 510060, China
| | - Tao Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Clinic Department, Zhongshan Ophthalmic Center, Sun Yat-sen University, Tianhe District, No. 7, Jinsui Road, Guangzhou, 510060, China
| | - Lin Lu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Clinic Department, Zhongshan Ophthalmic Center, Sun Yat-sen University, Tianhe District, No. 7, Jinsui Road, Guangzhou, 510060, China.
| | - Ying Lin
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Clinic Department, Zhongshan Ophthalmic Center, Sun Yat-sen University, Tianhe District, No. 7, Jinsui Road, Guangzhou, 510060, China.
| |
Collapse
|
21
|
Tartaglione D, Prozzo D, Bianchi R, Ciccarelli G, Cappelli Bigazzi M, Natale F, Golino P, Cimmino G. Treating Aortic Valve Stenosis for Vitality Improvement: The TAVI Study. Diseases 2024; 12:175. [PMID: 39195174 DOI: 10.3390/diseases12080175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Degenerative aortic valve stenosis (AS) is the most common valvular heart disease among the elderly. Once cardiac symptoms occur, current guidelines recommend aortic valve replacement. Progressive degeneration/calcification reduces leaflet mobility with gradual cardiac output (CO) impairment. Low CO might induce abnormal brain-aging with cognitive impairment and increased risk of dementia, such as Alzheimer's disease or vascular dementia. On the contrary, cognitive improvement has been reported in patients in whom CO was restored. Transcatheter aortic valve implantation (TAVI) has proven to be a safe alternative to conventional surgery, with a similar mid-term survival and stroke risk even in low-risk patients. TAVI is associated with an immediate CO improvement, also effecting the cerebrovascular system, leading to an increased cerebral blood flow. The correlation between TAVI and cognitive improvement is still debated. The present study aims at evaluating this relationship in a cohort of AS patients where cognitive assessment before and after TAVI was available. METHODS a total of 47 patients were retrospectively selected. A transcranial Doppler ultrasound (TCD) before and after TAVI, a quality of life (QoL) score, as well as a mini-mental state examination (MMSE) at baseline and up to 36 months, were available. RESULTS TAVI was associated with immediate increase in mean cerebral flow at TCD. MMSE slowly increase at 36-months follow-up with improved QoL mainly for symptoms, emotions and social interactions. CONCLUSIONS this proof-of-concept study indicates that TAVI might induce cognitive improvement in the long-term as a result of multiple factors, such as cerebral flow restoration and a better QoL.
Collapse
Affiliation(s)
- Donato Tartaglione
- Vanvitelli Cardiology and Intensive Care Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Dario Prozzo
- Cardiology Unit, Cardarelli Hospital, 80131 Naples, Italy
| | - Renatomaria Bianchi
- Vanvitelli Cardiology and Intensive Care Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Giovanni Ciccarelli
- Vanvitelli Cardiology and Intensive Care Unit, Monaldi Hospital, 80131 Naples, Italy
| | | | - Francesco Natale
- Vanvitelli Cardiology and Intensive Care Unit, Monaldi Hospital, 80131 Naples, Italy
| | - Paolo Golino
- Vanvitelli Cardiology and Intensive Care Unit, Monaldi Hospital, 80131 Naples, Italy
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Giovanni Cimmino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
- Cardiology Unit, AOU Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
22
|
Chung KJ, Abdelhafez YG, Spencer BA, Jones T, Tran Q, Nardo L, Chen MS, Sarkar S, Medici V, Lyo V, Badawi RD, Cherry SR, Wang G. Quantitative PET imaging and modeling of molecular blood-brain barrier permeability. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.26.24311027. [PMID: 39108503 PMCID: PMC11302722 DOI: 10.1101/2024.07.26.24311027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Blood-brain barrier (BBB) disruption is involved in the pathogenesis and progression of many neurological and systemic diseases. Non-invasive assessment of BBB permeability in humans has mainly been performed with dynamic contrast-enhanced magnetic resonance imaging, evaluating the BBB as a structural barrier. Here, we developed a novel non-invasive positron emission tomography (PET) method in humans to measure the BBB permeability of molecular radiotracers that cross the BBB through different transport mechanisms. Our method uses high-temporal resolution dynamic imaging and kinetic modeling to jointly estimate cerebral blood flow and tracer-specific BBB transport rate from a single dynamic PET scan and measure the molecular permeability-surface area (PS) product of the radiotracer. We show our method can resolve BBB PS across three PET radiotracers with greatly differing permeabilities, measure reductions in BBB PS of 18F-fluorodeoxyglucose (FDG) in healthy aging, and demonstrate a possible brain-body association between decreased FDG BBB PS in patients with metabolic dysfunction-associated steatotic liver inflammation. Our method opens new directions to efficiently study the molecular permeability of the human BBB in vivo using the large catalogue of available molecular PET tracers.
Collapse
Affiliation(s)
- Kevin J Chung
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Yasser G Abdelhafez
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Benjamin A Spencer
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Terry Jones
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Quyen Tran
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Moon S Chen
- Department of Internal Medicine, University of California Davis Health, Sacramento, CA
| | - Souvik Sarkar
- Department of Internal Medicine, University of California Davis Health, Sacramento, CA
| | - Valentina Medici
- Department of Internal Medicine, University of California Davis Health, Sacramento, CA
- Division of Gastroenterology and Hepatology, University of California Davis Health, Sacramento, CA
| | - Victoria Lyo
- Department of Surgery, University of California Davis Health, Sacramento, CA
- Center for Alimentary and Metabolic Sciences, University of California Davis Health, Sacramento, CA
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis Health, Sacramento, CA
- Department of Biomedical Engineering, University of California at Davis, Davis, CA
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California at Davis, Davis, CA
- Department of Radiology, University of California Davis Health, Sacramento, CA
| | - Guobao Wang
- Department of Radiology, University of California Davis Health, Sacramento, CA
| |
Collapse
|
23
|
Chou YC, Payne S. Static and dynamic analysis of cerebral blood flow in fifty-six large arterial vessel networks. Physiol Meas 2024; 45:075004. [PMID: 38917841 DOI: 10.1088/1361-6579/ad5bbb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
Objective.The cerebral vasculature is formed of an intricate network of blood vessels over many different length scales. Changes in their structure and connection are implicated in multiple cerebrovascular and neurological disorders. In this study, we present a novel approach to the quantitative analysis of the cerebral macrovasculature using computational and mathematical tools in a large dataset.Approach.We analysed a publicly available vessel dataset from a cohort of 56 (32/24F/M) healthy subjects. This dataset includes digital reconstructions of human brain macrovasculatures. We then propose a new mathematical model to compute blood flow dynamics and pressure distributions within these 56-representative cerebral macrovasculatures and quantify the results across this cohort.Main results.Statistical analysis showed that the steady state level of cerebrovascular resistance (CVR) gradually increases with age in both men and women. These age-related changes in CVR are in good agreement with previously reported values. All subjects were found to have only small phase angles (<6°) between blood pressure and blood flow at the cardiac frequency.Significance.These results showed that the dynamic component of blood flow adds very little phase shift at the cardiac frequency, which implies that the cerebral macrocirculation can be regarded as close to steady state in its behaviour, at least in healthy populations, irrespective of age or sex. This implies that the phase shift observed in measurements of blood flow in cerebral vessels is caused by behaviour further down the vascular bed. This behaviour is important for future statistical models of the dynamic maintenance of oxygen and nutrient supply to the brain.
Collapse
Affiliation(s)
- Yuan-Chung Chou
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | - Stephen Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
24
|
Hu Y, Zhang K, Liu R. The effect of post-labeling delay on cerebral blood flow is influenced by age and sex: a study based on arterial spin-labeling magnetic resonance imaging. Quant Imaging Med Surg 2024; 14:4388-4402. [PMID: 39022245 PMCID: PMC11250344 DOI: 10.21037/qims-23-1622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/22/2024] [Indexed: 07/20/2024]
Abstract
Background Whether the effect of post-labeling delay (PLD) on cerebral blood flow (CBF) is influenced by age and sex in adults is unknown. In this study, we mainly aimed to explore the potential influence of age and sex on the effect of PLD on CBF. Methods This prospective study enrolled 90 healthy adult volunteers (49.47±15.63 years of age; age range, 20-77 years; 47 female; 43 male). All participants underwent 3-dimensional (3D) pseudo-continuous arterial spin labeling (ASL) imaging with 3 different PLDs (1,525, 2,025, and 2,525 ms). The CBF values for each PLD, the arterial transit time (ATT), and the spatial coefficient of variation (spatial CoV) were computed for 21 regions of interest (ROIs) in every participant. Multivariate regression analysis was conducted to assess the potential influence of age and sex on the effect of PLD on CBF and the relationships among CBF, ATT, PLD, age, sex, and spatial CoV. Results The CBF increased for 7.32 to 9.87 mL/100 g/min as the PLD increased per 1 second in the global gray matter, bilateral frontal, temporal lobes, the vascular territories of bilateral anterior and middle carotid artery. When the age increased per 1 year, the speed of the changes for CBF decreased for 0.26 to 0.3 mL/100 g/min/s in these regions. However, the CBF decreased for 12 to 17 mL/100 g/min as the PLD increased per 1 second in the bilateral limbic lobes, insula, and deep gray matter. In these regions, the speed of the changes for CBF increased for 0.2 to 0.28 mL/100 g/min/s as the age increased per 1 year. Furthermore, compared to the female, the speed of the changes for CBF decreased for 3.58 to 4.6 mL/100 g/min/s for the male in global gray matter, bilateral frontal, limbic lobes, and the vascular territories of bilateral anterior carotid artery, and the speed increased 4.49 to 5.09 mL/100 g/min/s for the male in the limbic lobes. In addition, the CBF decreased with aging and the CBF tended to be higher in females compared to males. At the same time, we found that the ATT of all ROIs increased with age and manifested higher in males than females. Moreover, we found that CBF decreased with the increase of ATT, and the effect of ATT on CBF was less influenced by PLD. Finally, we found that the spatial CoV of ASL in certain regions increased with the increase of ATT and age, and was greater in males. Conclusions The effect of PLD on CBF can be influenced by age and sex. The relationships among CBF, ATT, PLD, age, sex, and spatial CoV found in this study may have certain significance for the study of ASL imaging in the future.
Collapse
Affiliation(s)
- Ying Hu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Zhang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Rongbo Liu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Deery HA, Liang E, Di Paolo R, Voigt K, Murray G, Siddiqui MN, Egan GF, Moran C, Jamadar SD. The association of regional cerebral blood flow and glucose metabolism in normative ageing and insulin resistance. Sci Rep 2024; 14:14574. [PMID: 38914735 PMCID: PMC11196590 DOI: 10.1038/s41598-024-65396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
Rising rates of insulin resistance and an ageing population are set to exact an increasing toll on individuals and society. Here we examine the contribution of age and insulin resistance to the association of cerebral blood flow and glucose metabolism; both critical process in the supply of energy for the brain. Thirty-four younger (20-42 years) and 41 older (66-86 years) healthy adults underwent a simultaneous resting state MR/PET scan, including arterial spin labelling. Rates of cerebral blood flow and glucose metabolism were derived using a functional atlas of 100 brain regions. Older adults had lower cerebral blood flow than younger adults in 95 regions, reducing to 36 regions after controlling for cortical atrophy and blood pressure. Lower cerebral blood flow was also associated with worse working memory and slower reaction time in tasks requiring cognitive flexibility and response inhibition. Younger and older insulin sensitive adults showed small, negative correlations between relatively high rates of regional cerebral blood flow and glucose metabolism. This pattern was inverted in insulin resistant older adults, who showed hypoperfusion and hypometabolism across the cortex, and a positive correlation. In insulin resistant younger adults, the association showed inversion to positive correlations, although not to the extent seen in older adults. Our findings suggest that the normal course of ageing and insulin resistance alter the rates of and associations between cerebral blood flow and glucose metabolism. They underscore the criticality of insulin sensitivity to brain health across the adult lifespan.
Collapse
Affiliation(s)
- Hamish A Deery
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia.
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia.
| | - Emma Liang
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Robert Di Paolo
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Katharina Voigt
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Gerard Murray
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - M Navyaan Siddiqui
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Chris Moran
- School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Rd, Melbourne, VIC, 3004, Australia
| | - Sharna D Jamadar
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia.
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia.
| |
Collapse
|
26
|
Peterson BS, Li J, Trujillo M, Sawardekar S, Balyozian D, Bansal S, Sun BF, Marcelino C, Nanda A, Xu T, Amen D, Bansal R. A multi-site 99mTc-HMPAO SPECT study of cerebral blood flow in a community sample of patients with major depression. Transl Psychiatry 2024; 14:234. [PMID: 38830866 PMCID: PMC11148018 DOI: 10.1038/s41398-024-02961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
Prior regional Cerebral Blood Flow (rCBF) studies in Major Depressive Disorder (MDD) have been limited by small, highly selective, non-representative samples that have yielded variable and poorly replicated findings. The aim of this study was to compare rCBF measures in a large, more representative community sample of adults with MDD and healthy control participants. This is a cross-sectional, retrospective multi-site cohort study in which clinical data from 338 patients 18-65 years of age with a primary diagnosis of MDD were retrieved from a central database for 8 privately owned, private-pay outpatient psychiatric centers across the United States. Two 99mTc-HMPAO SPECT brain scans, one at rest and one during performance of a continuous performance task, were acquired as a routine component of their initial clinical evaluation. In total, 103 healthy controls, 18-65 years old and recruited from the community were also assessed and scanned. Depressed patients had significantly higher rCBF in frontal, anterior cingulate, and association cortices, and in basal ganglia, thalamus, and cerebellum, after accounting for significantly higher overall CBF. Depression severity associated positively with rCBF in the basal ganglia, hippocampus, cerebellum, and posterior white matter. Elevated rCBF was especially prominent in women and older patients. Elevated rCBF likely represents pathogenic hypermetabolism in MDD, with its magnitude in direct proportion to depression severity. It is brain-wide, with disproportionate increases in cortical and subcortical attentional networks. Hypermetabolism may be a reasonable target for novel therapeutics in MDD.
Collapse
Affiliation(s)
- Bradley S Peterson
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA.
| | - Jennifer Li
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Manuel Trujillo
- Department of Psychiatry at NYU Grossman School of Medicine, New York, NY, USA
- Amen Clinics Inc., Costa Mesa, CA, USA
| | - Siddhant Sawardekar
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - David Balyozian
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Siddharth Bansal
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Bernice F Sun
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Courtney Marcelino
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Anoop Nanda
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Tracy Xu
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | | - Ravi Bansal
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
27
|
Li C, Buch S, Sun Z, Muccio M, Jiang L, Chen Y, Haacke EM, Zhang J, Wisniewski TM, Ge Y. In vivo mapping of hippocampal venous vasculature and oxygenation using susceptibility imaging at 7T. Neuroimage 2024; 291:120597. [PMID: 38554779 PMCID: PMC11115460 DOI: 10.1016/j.neuroimage.2024.120597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Mapping the small venous vasculature of the hippocampus in vivo is crucial for understanding how functional changes of hippocampus evolve with age. Oxygen utilization in the hippocampus could serve as a sensitive biomarker for early degenerative changes, surpassing hippocampal tissue atrophy as the main source of information regarding tissue degeneration. Using an ultrahigh field (7T) susceptibility-weighted imaging (SWI) sequence, it is possible to capture oxygen-level dependent contrast of submillimeter-sized vessels. Moreover, the quantitative susceptibility mapping (QSM) results derived from SWI data allow for the simultaneous estimation of venous oxygenation levels, thereby enhancing the understanding of hippocampal function. In this study, we proposed two potential imaging markers in a cohort of 19 healthy volunteers aged between 20 and 74 years. These markers were: 1) hippocampal venous density on SWI images and 2) venous susceptibility (Δχvein) in the hippocampus-associated draining veins (the inferior ventricular veins (IVV) and the basal veins of Rosenthal (BVR) using QSM images). They were chosen specifically to help characterize the oxygen utilization of the human hippocampus and medial temporal lobe (MTL). As part of the analysis, we demonstrated the feasibility of measuring hippocampal venous density and Δχvein in the IVV and BVR at 7T with high spatial resolution (0.25 × 0.25 × 1 mm3). Our results demonstrated the in vivo reconstruction of the hippocampal venous system, providing initial evidence regarding the presence of the venous arch structure within the hippocampus. Furthermore, we evaluated the age effect of the two quantitative estimates and observed a significant increase in Δχvein for the IVV with age (p=0.006, r2 = 0.369). This may suggest the potential application of Δχvein in IVV as a marker for assessing changes in atrophy-related hippocampal oxygen utilization in normal aging and neurodegenerative diseases such as AD and dementia.
Collapse
Affiliation(s)
- Chenyang Li
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA; Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Sagar Buch
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhe Sun
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA; Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Marco Muccio
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
| | - Li Jiang
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
| | - Yongsheng Chen
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - E Mark Haacke
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jiangyang Zhang
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Yulin Ge
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
28
|
Toyonaga T, Khattar N, Wu Y, Lu Y, Naganawa M, Gallezot JD, Matuskey D, Mecca AP, Pittman B, Dias M, Nabulsi NB, Finnema SJ, Chen MK, Arnsten A, Radhakrishnan R, Skosnik PD, D'Souza DC, Esterlis I, Huang Y, van Dyck CH, Carson RE. The regional pattern of age-related synaptic loss in the human brain differs from gray matter volume loss: in vivo PET measurement with [ 11C]UCB-J. Eur J Nucl Med Mol Imaging 2024; 51:1012-1022. [PMID: 37955791 DOI: 10.1007/s00259-023-06487-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/21/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE Aging is a major societal concern due to age-related functional losses. Synapses are crucial components of neural circuits, and synaptic density could be a sensitive biomarker to evaluate brain function. [11C]UCB-J is a positron emission tomography (PET) ligand targeting synaptic vesicle glycoprotein 2A (SV2A), which can be used to evaluate brain synaptic density in vivo. METHODS We evaluated age-related changes in gray matter synaptic density, volume, and blood flow using [11C]UCB-J PET and magnetic resonance imaging (MRI) in a wide age range of 80 cognitive normal subjects (21-83 years old). Partial volume correction was applied to the PET data. RESULTS Significant age-related decreases were found in 13, two, and nine brain regions for volume, synaptic density, and blood flow, respectively. The prefrontal cortex showed the largest volume decline (4.9% reduction per decade: RPD), while the synaptic density loss was largest in the caudate (3.6% RPD) and medial occipital cortex (3.4% RPD). The reductions in caudate are consistent with previous SV2A PET studies and likely reflect that caudate is the site of nerve terminals for multiple major tracts that undergo substantial age-related neurodegeneration. There was a non-significant negative relationship between volume and synaptic density reductions in 16 gray matter regions. CONCLUSION MRI and [11]C-UCB-J PET showed age-related decreases of gray matter volume, synaptic density, and blood flow; however, the regional patterns of the reductions in volume and SV2A binding were different. Those patterns suggest that MR-based measures of GM volume may not be directly representative of synaptic density.
Collapse
Affiliation(s)
- Takuya Toyonaga
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Nikkita Khattar
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yanjun Wu
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yihuan Lu
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Mika Naganawa
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jean-Dominique Gallezot
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - David Matuskey
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Adam P Mecca
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA
| | - Brian Pittman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Mark Dias
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Nabeel B Nabulsi
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Sjoerd J Finnema
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ming-Kai Chen
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Amy Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University School of Medicine, New Haven, CT, USA
| | - Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Patrick D Skosnik
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Bouvé College of Health Sciences, Northeastern University Schools of Nursing & Pharmacy/Pharmaceutical Sciences, Boston, MA, USA
| | - Deepak Cyril D'Souza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Irina Esterlis
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Christopher H van Dyck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Richard E Carson
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
29
|
Custers E, Vreeken D, Kleemann R, Kessels RPC, Duering M, Brouwer J, Aufenacker TJ, Witteman BPL, Snabel J, Gart E, Mutsaerts HJMM, Wiesmann M, Hazebroek EJ, Kiliaan AJ. Long-Term Brain Structure and Cognition Following Bariatric Surgery. JAMA Netw Open 2024; 7:e2355380. [PMID: 38334996 PMCID: PMC10858407 DOI: 10.1001/jamanetworkopen.2023.55380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/18/2023] [Indexed: 02/10/2024] Open
Abstract
Importance Weight loss induced by bariatric surgery (BS) is associated with improved cognition and changed brain structure; however, previous studies on the association have used small cohorts and short follow-up periods, making it difficult to determine long-term neurological outcomes associated with BS. Objective To investigate long-term associations of weight loss after BS with cognition and brain structure and perfusion. Design, Setting, and Participants This cohort study included participants from the Bariatric Surgery Rijnstate and Radboudumc Neuroimaging and Cognition in Obesity study. Data from participants with severe obesity (body mass index [BMI; calculated as weight in kilograms divided by height in meters squared] >40, or BMI >35 with comorbidities) eligible for Roux-en-Y gastric bypass and aged 35 to 55 years were enrolled from a hospital specialized in BS (Rijnstate Hospital, Arnhem, the Netherlands). Participants were recruited between September 2018 and December 2020 with follow-up till March 2023. Data were collected before BS and at 6 and 24 months after BS. Data were analyzed from March to November 2023. Exposure Roux-en-Y gastric bypass. Main Outcomes and Measures Primary outcomes included body weight, BMI, waist circumference, blood pressure, medication use, cognitive performance (20% change index of compound z-score), brain volumes, cortical thickness, cerebral blood flow (CBF), and spatial coefficient of variation (sCOV). Secondary outcomes include cytokines, adipokines, depressive symptoms (assessed using the Beck Depression Inventory), and physical activity (assessed using the Baecke Questionnaire). Results A total of 133 participants (mean [SD] age, 46.8 [5.7] years; 112 [84.2%] female) were included. Global cognition was at least 20% higher in 52 participants (42.9%) at 24 months after BS. Compared with baseline, at 24 months, inflammatory markers were lower (mean [SD] high-sensitivity C-reactive protein: 4.77 [5.80] μg/mL vs 0.80 [1.09] μg/mL; P < .001), fewer patients used antihypertensives (48 patients [36.1%] vs 22 patients [16.7%]), and patients had lower depressive symptoms (median [IQR] BDI score: 9.0 [5.0-13.0] vs 3.0 [1.0-6.0]; P < .001) and greater physical activity (mean [SD] Baecke score: 7.64 [1.29] vs 8.19 [1.35]; P < .001). After BS, brain structure and perfusion were lower in most brain regions, while hippocampal and white matter volume remained stable. CBF and sCOV did not change in nucleus accumbens and parietal cortex. The temporal cortex showed a greater thickness (mean [SD] thickness: 2.724 [0.101] mm vs 2.761 [0.007] mm; P = .007) and lower sCOV (median [IQR] sCOV: 4.41% [3.83%-5.18%] vs 3.97% [3.71%-4.59%]; P = .02) after BS. Conclusions and Relevance These findings suggest that BS was associated with health benefits 2 years after surgery. BS was associated with improved cognition and general health and changed blood vessel efficiency and cortical thickness of the temporal cortex. These results may improve treatment options for patients with obesity and dementia.
Collapse
Affiliation(s)
- Emma Custers
- Department of Medical Imaging, Anatomy, and Radboud Alzheimer Center, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
- Department of Bariatric Surgery, Vitalys, part of Rijnstate hospital, Arnhem, the Netherlands
| | - Debby Vreeken
- Department of Medical Imaging, Anatomy, and Radboud Alzheimer Center, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
- Department of Bariatric Surgery, Vitalys, part of Rijnstate hospital, Arnhem, the Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research, Leiden, the Netherlands
| | - Roy P. C. Kessels
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Department of Medical Psychology and Radboudumc Alzheimer Center, Radboud university medical center, Nijmegen, the Netherlands
- Vincent van Gogh Institute for Psychiatry, Venray, the Netherlands
| | - Marco Duering
- Medical Image Analysis Center and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Institute for Stroke and Dementia Research, Ludwig Maximilian University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jonna Brouwer
- Department of Medical Imaging, Anatomy, and Radboud Alzheimer Center, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
| | - Theo J. Aufenacker
- Department of Bariatric Surgery, Vitalys, part of Rijnstate hospital, Arnhem, the Netherlands
| | - Bart P. L. Witteman
- Department of Bariatric Surgery, Vitalys, part of Rijnstate hospital, Arnhem, the Netherlands
| | - Jessica Snabel
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research, Leiden, the Netherlands
| | - Eveline Gart
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research, Leiden, the Netherlands
| | - Henk J. M. M. Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Maximilian Wiesmann
- Department of Medical Imaging, Anatomy, and Radboud Alzheimer Center, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
| | - Eric J. Hazebroek
- Department of Bariatric Surgery, Vitalys, part of Rijnstate hospital, Arnhem, the Netherlands
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Amanda J. Kiliaan
- Department of Medical Imaging, Anatomy, and Radboud Alzheimer Center, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
| |
Collapse
|
30
|
Sarabi MS, Ma SJ, Jann K, Ringman JM, Wang DJJ, Shi Y. Vessel density mapping of small cerebral vessels on 3D high resolution black blood MRI. Neuroimage 2024; 286:120504. [PMID: 38216104 PMCID: PMC10834860 DOI: 10.1016/j.neuroimage.2023.120504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/19/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024] Open
Abstract
Small cerebral blood vessels are largely inaccessible to existing clinical in vivo imaging technologies. This study aims to present a novel analysis pipeline for vessel density mapping of small cerebral blood vessels from high-resolution 3D black-blood MRI at 3T. Twenty-eight subjects (10 under 35 years old, 18 over 60 years old) were imaged with the T1-weighted turbo spin-echo with variable flip angles (T1w TSE-VFA) sequence optimized for black-blood small vessel imaging with iso-0.5 mm spatial resolution (interpolated from 0.51×0.51×0.64 mm3) at 3T. Hessian-based vessel segmentation methods (Jerman, Frangi and Sato filter) were evaluated by vessel landmarks and manual annotation of lenticulostriate arteries (LSAs). Using optimized vessel segmentation, large vessel pruning and non-linear registration, a semiautomatic pipeline was proposed for quantification of small vessel density across brain regions and further for localized detection of small vessel changes across populations. Voxel-level statistics was performed to compare vessel density between two age groups. Additionally, local vessel density of aged subjects was correlated with their corresponding gross cognitive and executive function (EF) scores using Montreal Cognitive Assessment (MoCA) and EF composite scores compiled with Item Response Theory (IRT). Jerman filter showed better performance for vessel segmentation than Frangi and Sato filter which was employed in our pipeline. Small cerebral blood vessels including small artery, arterioles, small veins, and venules on the order of a few hundred microns can be delineated using the proposed analysis pipeline on 3D black-blood MRI at 3T. The mean vessel density across brain regions was significantly higher in young subjects compared to aged subjects. In the aged subjects, localized vessel density was positively correlated with MoCA and IRT EF scores. The proposed pipeline is able to segment, quantify, and detect localized differences in vessel density of small cerebral blood vessels based on 3D high-resolution black-blood MRI. This framework may serve as a tool for localized detection of small vessel density changes in normal aging and cerebral small vessel disease.
Collapse
Affiliation(s)
- Mona Sharifi Sarabi
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Samantha J Ma
- Siemens Medical Solutions USA, Inc., Los Angeles, CA, USA
| | - Kay Jann
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA 90033, USA
| | - John M Ringman
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Danny J J Wang
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Yonggang Shi
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA 90033, USA.
| |
Collapse
|
31
|
Song J, Khanduja S, Rando H, Shi W, Hazel K, Pottanat GP, Jones E, Xu C, Hu Z, Lin D, Yasar S, Lu H, Cho SM, Jiang D. Brain Frontal-Lobe Misery Perfusion in COVID-19 ICU Survivors: An MRI Pilot Study. Brain Sci 2024; 14:94. [PMID: 38248309 PMCID: PMC10813864 DOI: 10.3390/brainsci14010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Post-acute COVID-19 syndrome (PCS) is highly prevalent. Critically ill patients requiring intensive care unit (ICU) admission are at a higher risk of developing PCS. The mechanisms underlying PCS are still under investigation and may involve microvascular damage in the brain. Cerebral misery perfusion, characterized by reduced cerebral blood flow (CBF) and elevated oxygen extraction fraction (OEF) in affected brain areas, has been demonstrated in cerebrovascular diseases such as carotid occlusion and stroke. This pilot study aimed to examine whether COVID-19 ICU survivors exhibited regional misery perfusion, indicating cerebral microvascular damage. In total, 7 COVID-19 ICU survivors (4 female, 20-77 years old) and 19 age- and sex-matched healthy controls (12 female, 22-77 years old) were studied. The average interval between ICU admission and the MRI scan was 118.6 ± 30.3 days. The regional OEF was measured using a recently developed technique, accelerated T2-relaxation-under-phase-contrast MRI, while the regional CBF was assessed using pseudo-continuous arterial spin labeling. COVID-19 ICU survivors exhibited elevated OEF (β = 5.21 ± 2.48%, p = 0.047) and reduced relative CBF (β = -0.083 ± 0.025, p = 0.003) in the frontal lobe compared to healthy controls. In conclusion, misery perfusion was observed in the frontal lobe of COVID-19 ICU survivors, suggesting microvascular damage in this critical brain area for high-level cognitive functions that are known to manifest deficits in PCS. Physiological biomarkers such as OEF and CBF may provide new tools to improve the understanding and treatment of PCS.
Collapse
Affiliation(s)
- Jie Song
- Department of Biomedical Engineering, Johns Hopkins University School of Engineering, Baltimore, MD 21218, USA
| | - Shivalika Khanduja
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hannah Rando
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Wen Shi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Park 324, Baltimore, MD 21287, USA
| | - Kaisha Hazel
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Park 324, Baltimore, MD 21287, USA
| | - George Paul Pottanat
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Park 324, Baltimore, MD 21287, USA
| | - Ebony Jones
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Park 324, Baltimore, MD 21287, USA
| | - Cuimei Xu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Park 324, Baltimore, MD 21287, USA
| | - Zhiyi Hu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Park 324, Baltimore, MD 21287, USA
| | - Doris Lin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Park 324, Baltimore, MD 21287, USA
| | - Sevil Yasar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hanzhang Lu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Park 324, Baltimore, MD 21287, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD 21205, USA
| | - Sung-Min Cho
- Department of Neurology, Neurosurgery, Surgery, Anesthesiology, and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Park 324, Baltimore, MD 21287, USA
| |
Collapse
|
32
|
Ek Olofsson H, Österling Delshammar T, Englund E. Cortical microvascular raspberries and ageing: an independent but not exclusive relationship. Acta Neuropathol Commun 2023; 11:195. [PMID: 38087325 PMCID: PMC10714499 DOI: 10.1186/s40478-023-01700-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
INTRODUCTION Raspberries are cerebral microvascular formations of unknown origin, defined as three or more transversally sectioned vascular lumina surrounded by a common perivascular space. We have previously demonstrated an increased raspberry density in the cortex of patients with vascular dementia and cerebral atherosclerosis, while studies by other authors on overlapping and synonymously defined vascular entities mainly associate them with advancing age. The aim of the present study was to examine the relationship between raspberries and age in a large study sample while including multiple potential confounding factors in the analysis. MATERIALS AND METHODS Our study sample consisted of 263 individuals aged 20-97 years who had undergone a clinical autopsy including a neuropathological examination. The cortical raspberry density had either been quantified as part of a previous study or was examined de novo in a uniform manner on haematoxylin- and eosin-stained tissue sections from the frontal lobe. The medical records and autopsy reports were assessed regarding neurodegeneration, cerebral infarcts, cerebral atherosclerosis and small vessel disease, cardiac hypertrophy, nephrosclerosis, hypertension, and diabetes mellitus. With the patients grouped according to 10-year age interval, non-parametric tests (the Kruskal-Wallis test, followed by pairwise testing with Bonferroni-corrected P values) and multiple linear regression models (not corrected for multiple tests) were performed. RESULTS The average raspberry density increased with advancing age. The non-parametric tests demonstrated statistically significant differences in raspberry density when comparing the groups aged 60-99 years and 70-99 years to those aged 20-29 years (P < 0.012) and 30-59 years (P < 0.011), respectively. The multiple linear regression models demonstrated positive associations with age interval (P < 0.001), cerebral atherosclerosis (P = 0.024), cardiac hypertrophy (P = 0.021), hypertension subgrouped for organ damage (P = 0.006), and female sex (P = 0.004), and a tendency towards a negative association with Alzheimer's disease neuropathologic change (P = 0.048). CONCLUSION The raspberry density of the frontal cortex increases with advancing age, but our results also indicate associations with acquired pathologies. Awareness of the biological and pathological context where raspberries occur can guide further research on their origin.
Collapse
Affiliation(s)
- Henric Ek Olofsson
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, Sölvegatan 25 B, 22185, Lund, Sweden.
| | - Thea Österling Delshammar
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, Sölvegatan 25 B, 22185, Lund, Sweden
| | - Elisabet Englund
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, Sölvegatan 25 B, 22185, Lund, Sweden
| |
Collapse
|
33
|
Pobbati H, Ghosh SK, Gautam D. Clinical Utility of Arterial Spin Labeling Magnetic Resonance Imaging in the Evaluation of the Brain. J Med Phys 2023; 48:378-383. [PMID: 38223788 PMCID: PMC10783186 DOI: 10.4103/jmp.jmp_64_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/19/2023] [Accepted: 10/04/2023] [Indexed: 01/16/2024] Open
Abstract
Introduction Cerebral blood flow (CBF) is essential for studying the brain in both normal and diseased states. Arterial spin labeling (ASL) is a functional magnetic resonance imaging (MRI) technique that uses arterial water as an endogenous tracer to measure CBF, thus does not require an injection of exogenous tracers and is noninvasive and can therefore be used to track changes in CBF. Materials and Methods This prospective, observational and descriptive study was done at the department of imaging, Maxcure Hospital, Hyderabad, for the duration of 18 months. All studies were performed on a 1.5T Philips Prodiva CX using a phased array coil. Results A prospective observational and descriptive study was done among 100 patients to study the clinical utility of ASL. Out of 100 patients, 20 (20%) patients showed normal MRI findings. Rest 80 (80%) patients had abnormal MRI findings. Conclusion ASL provides additional and complementary information to that available from structural MRI in all categories of abnormalities.
Collapse
Affiliation(s)
| | - Sumit Kumar Ghosh
- Department of Radio-Diagnosis, KIMS Hospital, Hyderabad, Telangana, India
| | - Deeksha Gautam
- Department of Radio-Diagnosis, KIMS Hospital, Hyderabad, Telangana, India
| |
Collapse
|
34
|
Levendovszky SR, Flores J, Peskind ER, Václavů L, van Osch MJP, Iliff J. Preliminary cross-sectional investigations into the human glymphatic system using multiple novel non-contrast MRI methods. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555150. [PMID: 37693445 PMCID: PMC10491115 DOI: 10.1101/2023.08.28.555150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
We discuss two potential non-invasive MRI methods to cross-sectionally study two distinct facets of the glymphatic system and its association with sleep and aging. We apply diffusion-based intravoxel incoherent motion (IVIM) imaging to evaluate pseudodiffusion coefficient, D * , or cerebrospinal fluid (CSF) movement across large spaces like the subarachnoid space (SAS). We also performed perfusion-based multi-echo, Hadamard encoded multi-delay arterial spin labeling (ASL) to evaluate whole brain cortical cerebral blood flow (CBF) and transendothelial exchange (Tex) of water from the vasculature into the perivascular space and parenchyma. Both methods were used in young adults (N=9, 6F, 23±3 years old) in the setting of sleep and sleep deprivation. To study aging, 10 older adults, (6F, 67±3 years old) were imaged after a night of normal sleep only and compared with the young adults. D * in SAS was significantly (p<0.05) lesser after sleep deprivation (0.014±0.001 mm2/s) than after normal sleep (0.016±0.001 mm2/s), but was unchanged with aging. Cortical CBF and Tex on the other hand, were unchanged after sleep deprivation but were significantly lower in older adults (37±3 ml/100g/min, 476±66 ms) than young adults (42±2 ml/100g/min, 624±66 ms). IVIM was thus, sensitive to sleep physiology and multi-echo, multi-delay ASL was sensitive to aging.
Collapse
Affiliation(s)
- Swati Rane Levendovszky
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA 98195
| | - Jaqueline Flores
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA 98195
| | - Elaine R Peskind
- Mental Illness Research, Education, and Clinical Center, Veterans Affairs Puget Sound Systems, 1660 S Columbian Way, Seattle, WA 98108
| | - Lena Václavů
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias J P van Osch
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeffrey Iliff
- Mental Illness Research, Education, and Clinical Center, Veterans Affairs Puget Sound Systems, 1660 S Columbian Way, Seattle, WA 98108
| |
Collapse
|
35
|
Damestani NL, Jacoby J, Yadav SM, Lovely AE, Michael A, Terpstra M, Eshghi M, Rashid B, Cruchaga C, Salat DH, Juttukonda MR. Associations between age, sex, APOE genotype, and regional vascular physiology in typically aging adults. Neuroimage 2023; 275:120167. [PMID: 37187365 PMCID: PMC10339339 DOI: 10.1016/j.neuroimage.2023.120167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023] Open
Abstract
Altered blood flow in the human brain is characteristic of typical aging. However, numerous factors contribute to inter-individual variation in patterns of blood flow throughout the lifespan. To better understand the mechanisms behind such variation, we studied how sex and APOE genotype, a primary genetic risk factor for Alzheimer's disease (AD), influence associations between age and brain perfusion measures. We conducted a cross-sectional study of 562 participants from the Human Connectome Project - Aging (36 to >90 years of age). We found widespread associations between age and vascular parameters, where increasing age was associated with regional decreases in cerebral blood flow (CBF) and increases in arterial transit time (ATT). When grouped by sex and APOE genotype, interactions between group and age demonstrated that females had relatively greater CBF and lower ATT compared to males. Females carrying the APOEε4 allele showed the strongest association between CBF decline and ATT incline with age. This demonstrates that sex and genetic risk for AD modulate age-associated patterns of cerebral perfusion measures.
Collapse
Affiliation(s)
- Nikou L Damestani
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA.
| | - John Jacoby
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Shrikanth M Yadav
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Allison E Lovely
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Aurea Michael
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Melissa Terpstra
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | | | - Barnaly Rashid
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurologic Diseases, Washington University in St. Louis, St. Louis, MO, USA
| | - David H Salat
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston MA, USA
| | - Meher R Juttukonda
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Domingos C, Fouto AR, Nunes RG, Ruiz-Tagle A, Esteves I, Silva NA, Vilela P, Gil-Gouveia R, Figueiredo P. Impact of susceptibility-induced distortion correction on perfusion imaging by pCASL with a segmented 3D GRASE readout. Magn Reson Imaging 2023:S0730-725X(23)00104-2. [PMID: 37343905 DOI: 10.1016/j.mri.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/18/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
PURPOSE The consensus for the clinical implementation of arterial spin labeling (ASL) perfusion imaging recommends a segmented 3D Gradient and Spin-Echo (GRASE) readout for optimal signal-to-noise-ratio(SNR). The correction of the associated susceptibility-induced geometric distortions has been shown to improve diagnostic precision, but its impact on ASL data has not been systematically assessed and it is not consistently part of pre-processing pipelines. Here, we investigate the effects of susceptibility-induced distortion correction on perfusion imaging by pseudo-continuous ASL (pCASL) with a segmented 3D GRASE readout. METHODS Data acquired from 28 women using pCASL with 3D GRASE at 3T was analyzed using three pre-processing options: without distortion correction, with distortion correction, and with spatial smoothing (without distortion correction) matched to control for blurring effects induced by distortion correction. Maps of temporal SNR (tSNR) and relative perfusion were analyzed in eight regions-of-interest (ROIs) across the brain. RESULTS Distortion correction significantly affected tSNR and relative perfusion across the brain. Increases in tSNR were like those produced by matched spatial smoothing in most ROIs, indicating that they were likely due to blurring effects. However, that was not the case in the frontal and temporal lobes, where we also found increased relative perfusion with distortion correction even compared with matched spatial smoothing. These effects were found in both controls and patients, with no interactions with the participant group. CONCLUSION Correction of Susceptibility-induced distortions significantly impacts ASL perfusion imaging using a segmented 3D GRASE readout, and this step should therefore be considered in ASL pre-processing pipelines. This is of special importance in clinical studies, reporting perfusion across ROIs defined on relatively undistorted images and when conducting group analyses requiring the alignment of images across different subjects.
Collapse
Affiliation(s)
- Catarina Domingos
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Agência Regional para o Desenvolvimento da Investigação, Tecnologia e Inovação, Funchal, Portugal.
| | - Ana R Fouto
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Rita G Nunes
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Amparo Ruiz-Tagle
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Inês Esteves
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | | | - Pedro Vilela
- Neurology Department, Hospital da Luz, Lisbon, Portugal
| | - Raquel Gil-Gouveia
- Neurology Department, Hospital da Luz, Lisbon, Portugal.; Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Patrícia Figueiredo
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
37
|
Williams RJ, Specht JL, Mazerolle EL, Lebel RM, MacDonald ME, Pike GB. Correspondence between BOLD fMRI task response and cerebrovascular reactivity across the cerebral cortex. Front Physiol 2023; 14:1167148. [PMID: 37228813 PMCID: PMC10203231 DOI: 10.3389/fphys.2023.1167148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
BOLD sensitivity to baseline perfusion and blood volume is a well-acknowledged fMRI confound. Vascular correction techniques based on cerebrovascular reactivity (CVR) might reduce variance due to baseline cerebral blood volume, however this is predicated on an invariant linear relationship between CVR and BOLD signal magnitude. Cognitive paradigms have relatively low signal, high variance and involve spatially heterogenous cortical regions; it is therefore unclear whether the BOLD response magnitude to complex paradigms can be predicted by CVR. The feasibility of predicting BOLD signal magnitude from CVR was explored in the present work across two experiments using different CVR approaches. The first utilized a large database containing breath-hold BOLD responses and 3 different cognitive tasks. The second experiment, in an independent sample, calculated CVR using the delivery of a fixed concentration of carbon dioxide and a different cognitive task. An atlas-based regression approach was implemented for both experiments to evaluate the shared variance between task-invoked BOLD responses and CVR across the cerebral cortex. Both experiments found significant relationships between CVR and task-based BOLD magnitude, with activation in the right cuneus (R 2 = 0.64) and paracentral gyrus (R 2 = 0.71), and the left pars opercularis (R 2 = 0.67), superior frontal gyrus (R 2 = 0.62) and inferior parietal cortex (R 2 = 0.63) strongly predicted by CVR. The parietal regions bilaterally were highly consistent, with linear regressions significant in these regions for all four tasks. Group analyses showed that CVR correction increased BOLD sensitivity. Overall, this work suggests that BOLD signal response magnitudes to cognitive tasks are predicted by CVR across different regions of the cerebral cortex, providing support for the use of correction based on baseline vascular physiology.
Collapse
Affiliation(s)
- Rebecca J. Williams
- Faculty of Health, School of Human Services, Charles Darwin University, Darwin, NT, Australia
| | - Jacinta L. Specht
- Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Erin L. Mazerolle
- Departments of Psychology and Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
| | - R. Marc Lebel
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- GE HealthCare, Calgary, AB, Canada
| | - M. Ethan MacDonald
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
- Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - G. Bruce Pike
- Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
38
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, et alBao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Show More Authors] [Citation(s) in RCA: 160] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
39
|
Mensah-Kane P, Sumien N. The potential of hyperbaric oxygen as a therapy for neurodegenerative diseases. GeroScience 2023; 45:747-756. [PMID: 36525211 PMCID: PMC9886764 DOI: 10.1007/s11357-022-00707-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
The World Health Organization estimates that by the year 2040, neurodegenerative diseases will be the second leading cause of death in developed countries, overtaking cancer-related deaths and exceeded only by cardiovascular disease-related death. The search for interventions has therefore become paramount to alleviate some of this burden. Based on pathways affected in neurodegenerative diseases, hyperbaric oxygen treatment (HBOT) could be a good candidate. This therapy has been used for the past 50 years for conditions such as decompression sickness and wound healing and has been shown to have promising effects in conditions associated with neurodegeneration and functional impairments. The goal of this review was to explore the history of hyperbaric oxygen therapy, its uses, and benefits, and to evaluate its effectiveness as an intervention in treating neurodegenerative diseases. Additionally, we examined common mechanisms underlying the effects of HBOT in different neurodegenerative diseases, with a special emphasis on epigenetics.
Collapse
Affiliation(s)
- Paapa Mensah-Kane
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
40
|
Sanders AM, Richard G, Kolskår K, Ulrichsen KM, Alnaes D, Beck D, Dørum ES, Engvig A, Lund MJ, Nordhøy W, Pedersen ML, Rokicki J, Nordvik JE, Westlye LT. Associations between everyday activities and arterial spin labeling-derived cerebral blood flow: A longitudinal study in community-dwelling elderly volunteers. Hum Brain Mapp 2023; 44:3377-3393. [PMID: 36947581 PMCID: PMC10171542 DOI: 10.1002/hbm.26287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/20/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
Cerebral blood flow (CBF) is critical for brain metabolism and function. Age-related changes in CBF are associated with increased risk of neurocognitive disorders and vascular events such as stroke. Identifying correlates and positive modifiers of age-related changes in CBF before the emergence of incipient clinical decline may inform public health advice and clinical practice. Former research has been inconclusive regarding the association between regular physical activity and CBF, and there is a lack of studies on the association between level of everyday activities and CBF, in older adults. To investigate these relationships, 118 healthy community-dwelling adults (65-89 years) underwent pseudo-continuous arterial spin labeling (ASL) MRI, neurocognitive, physical, and activity assessments at baseline. Eighty-six participants completed a follow-up ASL MRI, on average 506 (SD = 113) days after the baseline scan. Cross-sectional analysis revealed credible evidence for positive associations between time spent on low intensity physical activity and CBF in multiple cortical and subcortical regions, time spent on moderate to vigorous intensity physical activity and accumbens CBF, participation in social activity and CBF in multiple cortical regions, and between reading and thalamic CBF, indicating higher regional CBF in more active adults. Longitudinal analysis revealed anecdotal evidence for an interaction between time and baseline level of gardening on occipital and parietal CBF, and baseline reading on pallidum CBF, indicating more change in CBF in adults with lower level of activity. The findings support that malleable lifestyle factors contribute to healthy brain aging, with relevance for public health guidelines.
Collapse
Affiliation(s)
- Anne-Marthe Sanders
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Geneviève Richard
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Knut Kolskår
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Kristine M Ulrichsen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Dag Alnaes
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Oslo New University College, Oslo, Norway
| | - Dani Beck
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Erlend S Dørum
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Andreas Engvig
- Section for Preventive Cardiology, Department of Endocrinology, Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Martina Jonette Lund
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Wibeke Nordhøy
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Physics and Computational Radiology, Div. of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Mads L Pedersen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Jaroslav Rokicki
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Jan Egil Nordvik
- Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
- Norwegian Directorate of Health, Oslo, Norway
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| |
Collapse
|
41
|
Jiang D, Liu P, Lin Z, Hazel K, Pottanat G, Lucke E, Moghekar A, Pillai JJ, Lu H. MRI assessment of cerebral oxygen extraction fraction in the medial temporal lobe. Neuroimage 2023; 266:119829. [PMID: 36565971 PMCID: PMC9878351 DOI: 10.1016/j.neuroimage.2022.119829] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The medial temporal lobe (MTL) is a key area implicated in many brain diseases, such as Alzheimer's disease. As a functional biomarker, the oxygen extraction fraction (OEF) of MTL may be more sensitive than structural atrophy of MTL, especially at the early stages of diseases. However, there is a lack of non-invasive techniques to measure MTL-OEF in humans. The goal of this work is to develop an MRI technique to assess MTL-OEF in a clinically practical time without using contrast agents. The proposed method measures venous oxygenation (Yv) in the basal veins of Rosenthal (BVs), which are the major draining veins of the MTL. MTL-OEF can then be estimated as the arterio-venous difference in oxygenation. We developed an MRI sequence, dubbed arterial-suppressed accelerated T2-relaxation-under-phase-contrast (AS-aTRUPC), to quantify the blood T2 of the BVs, which was then converted to Yv through a well-established calibration model. MTL-OEF was calculated as (Ya-Yv)/Ya × 100%, where Ya was the arterial oxygenation. The feasibility of AS-aTRUPC to quantify MTL-OEF was evaluated in 16 healthy adults. The sensitivity of AS-aTRUPC in detecting OEF changes was assessed by a caffeine ingestion (200 mg) challenge. For comparison, T2-relaxation-under-spin-tagging (TRUST) MRI, which is a widely used global OEF technique, was also acquired. The dependence of MTL-OEF on age was examined by including another seven healthy elderly subjects. The results showed that in healthy adults, MTL-OEF of the left and right hemispheres were correlated (P=0.005). MTL-OEF was measured to be 23.9±3.6% (mean±standard deviation) and was significantly lower (P<0.0001) than the OEF of 33.3±2.9% measured in superior sagittal sinus (SSS). After caffeine ingestion, there was an absolute percentage increase of 9.1±4.0% in MTL-OEF. Additionally, OEF in SSS measured with AS-aTRUPC showed a strong correlation with TRUST OEF (intra-class correlation coefficient=0.94 with 95% confidence interval [0.91, 0.96]), with no significant bias (P=0.12). MTL-OEF was found to increase with age (MTL-OEF=20.997+0.100 × age; P=0.02). In conclusion, AS-aTRUPC MRI provides non-invasive assessments of MTL-OEF and may facilitate future clinical applications of MTL-OEF as a disease biomarker.
Collapse
Affiliation(s)
- Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zixuan Lin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kaisha Hazel
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - George Pottanat
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Emma Lucke
- Department of Biology, Johns Hopkins University School of Arts & Sciences, Baltimore, MD, United States
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jay J Pillai
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States
| |
Collapse
|
42
|
Zhou G, Xiang T, Xu Y, He B, Wu L, Zhu G, Xie J, Yao L, Xiao Z. Fruquintinib/HMPL-013 ameliorates cognitive impairments and pathology in a mouse model of cerebral amyloid angiopathy (CAA). Eur J Pharmacol 2023; 939:175446. [PMID: 36470443 DOI: 10.1016/j.ejphar.2022.175446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by the cerebrovascular amyloid-β (Aβ) accumulation, and always accompanied by Alzheimer's disease (AD). The mechanisms revealing CAA pathogenesis are still unclear, and it is challenging to develop an efficient therapeutic strategy for its treatment. Vascular endothelial growth factor (VEGF) and its receptors including VEGFR-1,-2,-3 activation are involved in Aβ processing, and modulate numerous cellular events associated with central nervous system (CNS) diseases. In the present study, we attempted to explore the regulatory function of fruquintinib (also named as HMPL-013), a highly selective inhibitor of VEGFR-1,-2,-3 tyrosine kinases, on CAA progression in Tg-SwDI mice. Here, we found that HMPL-013-rich diet consumption for 12 months significantly improved the behavioral performances and cerebral blood flow (CBF) of Tg-SwDI mice compared with the vehicle group. Importantly, HMPL-013 administration considerably reduced Aβ1-40 and Aβ1-42 burden in cortex and hippocampus of Tg-SwDI mice through regulating Aβ metabolism process. Congo red staining confirmed Aβ deposition in vessel walls, reflecting CAA formation, which was, however, strongly ameliorated after HMPL-013 treatment. Neuron death, aberrant glial activation and pro-inflammatory response in brain tissues of Tg-SwDI mice were dramatically alleviated after HMPL-013 consumption. More studies showed that the protective effects of HMPL-013 against CAA might be partially attributed to its regulation on the expression of genes associated with blood vasculature. Intriguingly, VEGF and phosphorylated VEGFR-1,-2 protein expression levels were remarkably decreased by HMPL-013 in cortex and hippocampus of Tg-SwDI mice, which were validated in HMPL-013-treated brain vascular endothelial cells (BVECs) under hypoxia. Finally, we found that VEGF-induced human umbilical vein endothelial cells (HUVEC) proliferation and tube formation were strongly abolished upon HMPL-013 exposure. Collectively, all these findings demonstrated that oral administration of HMPL-013 had therapeutic potential against CAA by reducing Aβ deposition, inflammation and neuron death via suppressing VEGF/VEGFR-1,-2 signaling.
Collapse
Affiliation(s)
- Guijuan Zhou
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China; Department of Rehabilitation Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China
| | - Tao Xiang
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China
| | - Yan Xu
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China
| | - Bing He
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China
| | - Lin Wu
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China
| | - Guanghua Zhu
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China
| | - Juan Xie
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China
| | - Lan Yao
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China
| | - Zijian Xiao
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China.
| |
Collapse
|
43
|
Wu S, Tyler LK, Henson RNA, Rowe JB, Cam-Can, Tsvetanov KA. Cerebral blood flow predicts multiple demand network activity and fluid intelligence across the adult lifespan. Neurobiol Aging 2023; 121:1-14. [PMID: 36306687 PMCID: PMC7613814 DOI: 10.1016/j.neurobiolaging.2022.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 10/14/2022]
Abstract
The preservation of cognitive function in old age is a public health priority. Cerebral hypoperfusion is a hallmark of dementia but its impact on maintaining cognitive ability across the lifespan is less clear. We investigated the relationship between baseline cerebral blood flow (CBF) and blood oxygenation level-dependent (BOLD) response during a fluid reasoning task in a population-based adult lifespan cohort. As age differences in CBF could lead to non-neuronal contributions to the BOLD signal, we introduced commonality analysis to neuroimaging to dissociate performance-related CBF effects from the physiological confounding effects of CBF on the BOLD response. Accounting for CBF, we confirmed that performance- and age-related differences in BOLD responses in the multiple-demand network were implicated in fluid reasoning. Age differences in CBF explained not only performance-related BOLD responses but also performance-independent BOLD responses. Our results suggest that CBF is important for maintaining cognitive function, while its non-neuronal contributions to BOLD signals reflect an age-related confound. Maintaining perfusion into old age may serve to support brain function and preserve cognitive performance.
Collapse
Affiliation(s)
- Shuyi Wu
- Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK; Department of Management, School of Business, Hong Kong Baptist University, Hong Kong, China
| | - Lorraine K Tyler
- Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Richard N A Henson
- Medical Research Council Cognition and Brain Sciences Unit, Department of Psychiatry, Cambridge, UK
| | - James B Rowe
- Medical Research Council Cognition and Brain Sciences Unit, Department of Psychiatry, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Cam-Can
- Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK; Medical Research Council Cognition and Brain Sciences Unit, Department of Psychiatry, Cambridge, UK
| | - Kamen A Tsvetanov
- Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
44
|
Effects of Physical Exercise Training on Cerebral Blood Flow Measurements: A Systematic Review of Human Intervention Studies. Int J Sport Nutr Exerc Metab 2023; 33:47-59. [PMID: 36170974 DOI: 10.1123/ijsnem.2022-0085] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/14/2022] [Accepted: 08/12/2022] [Indexed: 12/27/2022]
Abstract
The aim of this systematic review was to examine the effects of physical exercise training on cerebral blood flow (CBF), which is a physiological marker of cerebrovascular function. Relationships between training-induced effects on CBF with changes in cognitive performance were also discussed. A systematic search was performed up to July 2022. Forty-five intervention studies with experimental, quasi-experimental, or pre-post designs were included. Sixteen studies (median duration: 14 weeks) investigated effects of physical exercise training on CBF markers using magnetic resonance imaging, 20 studies (median duration: 14 weeks) used transcranial Doppler ultrasound, and eight studies (median duration: 8 weeks) used near-infrared spectroscopy. Studies using magnetic resonance imaging observed consistent increases in CBF in the anterior cingulate cortex and hippocampus, but not in whole-brain CBF. Effects on resting CBF-measured with transcranial Doppler ultrasound and near-infrared spectroscopy-were variable, while middle cerebral artery blood flow velocity increased in some studies following exercise or hypercapnic stimuli. Interestingly, concomitant changes in physical fitness and regional CBF were observed, while a relation between training-induced effects on CBF and cognitive performance was evident. In conclusion, exercise training improved cerebrovascular function because regional CBF was changed. Studies are however still needed to establish whether exercise-induced improvements in CBF are sustained over longer periods of time and underlie the observed beneficial effects on cognitive performance.
Collapse
|
45
|
Wang Z. Arterial Spin Labeling Perfusion MRI Signal Processing Through Traditional Methods and Machine Learning. INVESTIGATIVE MAGNETIC RESONANCE IMAGING 2022; 26:220-228. [PMID: 36687768 PMCID: PMC9851083 DOI: 10.13104/imri.2022.26.4.220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 01/13/2023]
Abstract
Arterial spin labeling (ASL) perfusion MRI is a non-invasive technique for quantifying and mapping cerebral blood flow (CBF). Depending on the tissue signal change after magnetically labeled arterial blood enters the brain tissue, ASL MRI signal can be affected by several factors, including the volume of arrived arterial blood, signal decay of labeled blood, physiological fluctuations of the brain and CBF, and head motion, etc. Some of them can be controlled using sophisticated state-of-art ASL MRI sequences, but the others can only be resolved with post-processing strategies. Over the decades, various post-processing methods have been proposed in the literature, and many post processing software packages have been released. This self-contained review provides a brief introduction to ASL MRI, recommendations for typical ASL MRI data acquisition protocols, an overview of the ASL data processing pipeline, and an introduction to typical methods used at each step in the pipeline. Although the main focus is on traditional heuristic model-based methods, a brief introduction to recent machine learning-based approaches is provided too.
Collapse
Affiliation(s)
- Ze Wang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W Baltimore St, HSF III, Room 1163, Baltimore, MD 20201, USA
| |
Collapse
|
46
|
Han H, Lin Z, Soldan A, Pettigrew C, Betz JF, Oishi K, Li Y, Liu P, Albert M, Lu H. Longitudinal Changes in Global Cerebral Blood Flow in Cognitively Normal Older Adults: A Phase-Contrast MRI Study. J Magn Reson Imaging 2022; 56:1538-1545. [PMID: 35218111 PMCID: PMC9411265 DOI: 10.1002/jmri.28133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Characterization of blood supply changes in older individuals is important in understanding brain aging and diseases. However, prior studies largely focused on cross-sectional design, thus change in cerebral blood flow (CBF) could not be assessed on an individual level. PURPOSE To evaluate longitudinal short-term changes in global CBF in cognitively normal older adults. STUDY TYPE Prospective, longitudinal, and cohort. POPULATION One-hundred twenty-seven cognitive-normal participants (mean age 69 ± 7 years, 47 males) underwent serial MRI with an average follow-up time of 2.1 years. FIELD STRENGTH/SEQUENCE 3 T phase-contrast (PC), three-dimensional magnetization-prepared-rapid-acquisition-of-gradient-echo (MPRAGE) and fluid-attenuated inversion recovery (FLAIR) MRI. ASSESSMENT Total CBF was measured with PC MRI allowing assessment of quantitative flow in four major feeding arteries by a trained radiologist with >3 years' experience (O.K.). Brain volume was obtained from MPRAGE MRI and measured by T1-MultiAtlas MRICloud tool. The ratio between total CBF and brain volume yielded global CBF in mL/100 g/min. White matter hyperintensity (WMH) was measured automatically using a Bayesian probability approach on FLAIR. STATISTICAL TESTS Linear mixed effect model was used to simultaneously assess cross-sectional age-differences and longitudinal age-changes in CBF. Spearman rank correlation was used to evaluate the relationship between CBF change and WMH progression. A P-value of <0.05 (two-tailed) was considered significant. RESULTS Global CBF decreased with age at a longitudinal rate of -0.56 mL/100 g/min/year (95% confidence interval [CI]: -1.09, -0.03), compared to a cross-sectional rate of -0.26 mL/100 g/min/year (95% CI: -0.41, -0.11). Changes in CBF were significantly associated with progression of WMH (Spearman rank correlation r = -0.25), as those participants who had a more rapid CBF reduction had greater increases in WMH volumes and the relationship remained significant when adjusting for baseline vascular risk scores. Additionally, age-related changes in whole-brain volume were found to be -0.151%/year (95% CI: -0.186, -0.116). DATA CONCLUSION These findings suggest that brain aging in older adults is accompanied by a rapid longitudinal reduction in CBF, the rate of which is associated with white matter damage. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Hualu Han
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zixuan Lin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Anja Soldan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Corinne Pettigrew
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joshua F. Betz
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Kumiko Oishi
- Center for Imaging Science, Johns Hopkins University, Whiting School of Engineering, Baltimore, MD, United States
| | - Yang Li
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
47
|
Hernandez‐Garcia L, Aramendía‐Vidaurreta V, Bolar DS, Dai W, Fernández‐Seara MA, Guo J, Madhuranthakam AJ, Mutsaerts H, Petr J, Qin Q, Schollenberger J, Suzuki Y, Taso M, Thomas DL, van Osch MJP, Woods J, Zhao MY, Yan L, Wang Z, Zhao L, Okell TW. Recent Technical Developments in ASL: A Review of the State of the Art. Magn Reson Med 2022; 88:2021-2042. [PMID: 35983963 PMCID: PMC9420802 DOI: 10.1002/mrm.29381] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/31/2022] [Accepted: 06/18/2022] [Indexed: 12/11/2022]
Abstract
This review article provides an overview of a range of recent technical developments in advanced arterial spin labeling (ASL) methods that have been developed or adopted by the community since the publication of a previous ASL consensus paper by Alsop et al. It is part of a series of review/recommendation papers from the International Society for Magnetic Resonance in Medicine Perfusion Study Group. Here, we focus on advancements in readouts and trajectories, image reconstruction, noise reduction, partial volume correction, quantification of nonperfusion parameters, fMRI, fingerprinting, vessel selective ASL, angiography, deep learning, and ultrahigh field ASL. We aim to provide a high level of understanding of these new approaches and some guidance for their implementation, with the goal of facilitating the adoption of such advances by research groups and by MRI vendors. Topics outside the scope of this article that are reviewed at length in separate articles include velocity selective ASL, multiple-timepoint ASL, body ASL, and clinical ASL recommendations.
Collapse
Affiliation(s)
| | | | - Divya S. Bolar
- Center for Functional Magnetic Resonance Imaging, Department of RadiologyUniversity of California at San DiegoSan DiegoCaliforniaUSA
| | - Weiying Dai
- Department of Computer ScienceState University of New York at BinghamtonBinghamtonNYUSA
| | | | - Jia Guo
- Department of BioengineeringUniversity of California RiversideRiversideCaliforniaUSA
| | | | - Henk Mutsaerts
- Department of Radiology & Nuclear MedicineAmsterdam University Medical Center, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Jan Petr
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer ResearchDresdenGermany
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Yuriko Suzuki
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Manuel Taso
- Division of MRI research, RadiologyBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - David L. Thomas
- Department of Brain Repair and RehabilitationUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Matthias J. P. van Osch
- C.J. Gorter Center for high field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Joseph Woods
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
- Department of RadiologyUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Moss Y. Zhao
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Lirong Yan
- Department of Radiology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Ze Wang
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Li Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument ScienceZhejiang UniversityZhejiangPeople's Republic of China
| | - Thomas W. Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
48
|
Wei Z, Li Y, Hou X, Han Z, Xu J, McMahon MT, Duan W, Liu G, Lu H. Quantitative cerebrovascular reactivity MRI in mice using acetazolamide challenge. Magn Reson Med 2022; 88:2233-2241. [PMID: 35713368 PMCID: PMC9574885 DOI: 10.1002/mrm.29353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/24/2022] [Accepted: 05/23/2022] [Indexed: 01/29/2023]
Abstract
PURPOSE To develop a quantitative MRI method to estimate cerebrovascular reactivity (CVR) in mice. METHODS We described an MRI procedure to measure cerebral vasodilatory response to acetazolamide (ACZ), a vasoactive agent previously used in human clinical imaging. Vascular response was determined by cerebral blood flow (CBF) measured with phase-contrast or pseudo-continuous arterial spin labeling MRI. Vasodilatory input intensity was determined by plasma ACZ level using high-performance liquid chromatography. We verified the source of the CVR MRI signal by comparing ACZ injection to phosphate-buffered saline injection and noninjection experiments. Dose dependence and feasibility of regional CVR measurement were also investigated. RESULTS Cerebral blood flow revealed an exponential increase following intravenous ACZ injection, with a time constant of 1.62 min. In contrast, phosphate-buffered saline or noninjection exhibited a slow linear CBF increase, consistent with a gradual accumulation of anesthetic agent, isoflurane, used in this study. When comparing different ACZ doses, injections of 30, 60, 120, and 180 mg/kg yielded a linear increase in plasma ACZ concentration (p < 0.0001). On the other hand, CBF changes under these doses were not different from each other (p = 0.50). The pseudo-continuous arterial spin labeling MRI with multiple postlabeling delays revealed similar vascular responses at different postlabeling delay values. There was a regional difference in CVR (p = 0.005), with isocortex (0.81 ± 0.17%/[μg/ml]) showing higher CVR than deep-brain regions. Mice receiving multiple ACZ injections lived for a minimum of 6 months after the study without noticeable aberrant behavior or appearance. CONCLUSIONS We demonstrated the proof-of-principle of a new quantitative CVR mapping technique in mice.
Collapse
Affiliation(s)
- Zhiliang Wei
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Yuguo Li
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Xirui Hou
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zheng Han
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Michael T. McMahon
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Wenzhen Duan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of medicine, Baltimore, Maryland, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of medicine, Baltimore, Maryland, USA
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Hanzhang Lu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
49
|
Karalija N, Johansson J, Papenberg G, Wåhlin A, Salami A, Köhncke Y, Brandmaier AM, Andersson M, Axelsson J, Riklund K, Lövdén M, Lindenberger U, Bäckman L, Nyberg L. Longitudinal Dopamine D2 Receptor Changes and Cerebrovascular Health in Aging. Neurology 2022; 99:e1278-e1289. [PMID: 35790424 PMCID: PMC9576296 DOI: 10.1212/wnl.0000000000200891] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/11/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Cross-sectional studies suggest marked dopamine (DA) decline in aging, but longitudinal evidence is lacking. The aim of this study was to estimate within-person decline rates for DA D2-like receptors (DRD2) in aging and examine factors that may contribute to individual differences in DRD2 decline rates. METHODS We investigated 5-year within-person changes in DRD2 availability in a sample of older adults. At both occasions, PET with 11C-raclopride and MRI were used to measure DRD2 availability in conjunction with structural and vascular brain integrity. RESULTS Longitudinal analyses of the sample (baseline: n = 181, ages: 64-68 years, 100 men and 81 women; 5-year follow-up: n = 129, 69 men and 60 women) revealed aging-related striatal and extrastriatal DRD2 decline, along with marked individual differences in rates of change. Notably, the magnitude of striatal DRD2 decline was ∼50% of past cross-sectional estimates, suggesting that the DRD2 decline rate has been overestimated in past cross-sectional studies. Significant DRD2 reductions were also observed in select extrastriatal regions, including hippocampus, orbitofrontal cortex (OFC), and anterior cingulate cortex (ACC). Distinct profiles of correlated DRD2 changes were found across several associative regions (ACC, dorsal striatum, and hippocampus) and in the reward circuit (nucleus accumbens and OFC). DRD2 losses in associative regions were associated with white matter lesion progression, whereas DRD2 losses in limbic regions were related to reduced cortical perfusion. DISCUSSION These findings provide the first longitudinal evidence for individual and region-specific differences of DRD2 decline in older age and support the hypothesis that cerebrovascular factors are linked to age-related dopaminergic decline.
Collapse
Affiliation(s)
- Nina Karalija
- From the Departments of Radiation Sciences, Diagnostic Radiology (N.K., J.J., K.R., L.N.) and Radiation Physics (A.W., J.A.), Department of Applied Physics and Electronics (A.W.), and Umeå Center for Functional Brain Imaging (UFBI) (N.K., J.J., A.W., A.S., M.A., J.A., K.R., L.N.), Umeå University; Aging Research Center (G.P., A.S., L.B.), Karolinska Institutet & Stockholm University; Department of Integrative Medical Biology (A.S., M.A., L.N.), and Wallenberg Center for Molecular Medicine (A.S., L.N.), Umeå University, Sweden; Center for Lifespan Psychology (Y.K., A.M.B., U.L.), Max Planck Institute for Human Development; Max Planck UCL Centre for Computational Psychiatry and Ageing Research (A.M.B., U.L.), Berlin, Germany and London, UK; and Department of Psychology (M.L.), University of Gothenburg, Sweden.
| | - Jarkko Johansson
- From the Departments of Radiation Sciences, Diagnostic Radiology (N.K., J.J., K.R., L.N.) and Radiation Physics (A.W., J.A.), Department of Applied Physics and Electronics (A.W.), and Umeå Center for Functional Brain Imaging (UFBI) (N.K., J.J., A.W., A.S., M.A., J.A., K.R., L.N.), Umeå University; Aging Research Center (G.P., A.S., L.B.), Karolinska Institutet & Stockholm University; Department of Integrative Medical Biology (A.S., M.A., L.N.), and Wallenberg Center for Molecular Medicine (A.S., L.N.), Umeå University, Sweden; Center for Lifespan Psychology (Y.K., A.M.B., U.L.), Max Planck Institute for Human Development; Max Planck UCL Centre for Computational Psychiatry and Ageing Research (A.M.B., U.L.), Berlin, Germany and London, UK; and Department of Psychology (M.L.), University of Gothenburg, Sweden
| | - Goran Papenberg
- From the Departments of Radiation Sciences, Diagnostic Radiology (N.K., J.J., K.R., L.N.) and Radiation Physics (A.W., J.A.), Department of Applied Physics and Electronics (A.W.), and Umeå Center for Functional Brain Imaging (UFBI) (N.K., J.J., A.W., A.S., M.A., J.A., K.R., L.N.), Umeå University; Aging Research Center (G.P., A.S., L.B.), Karolinska Institutet & Stockholm University; Department of Integrative Medical Biology (A.S., M.A., L.N.), and Wallenberg Center for Molecular Medicine (A.S., L.N.), Umeå University, Sweden; Center for Lifespan Psychology (Y.K., A.M.B., U.L.), Max Planck Institute for Human Development; Max Planck UCL Centre for Computational Psychiatry and Ageing Research (A.M.B., U.L.), Berlin, Germany and London, UK; and Department of Psychology (M.L.), University of Gothenburg, Sweden
| | - Anders Wåhlin
- From the Departments of Radiation Sciences, Diagnostic Radiology (N.K., J.J., K.R., L.N.) and Radiation Physics (A.W., J.A.), Department of Applied Physics and Electronics (A.W.), and Umeå Center for Functional Brain Imaging (UFBI) (N.K., J.J., A.W., A.S., M.A., J.A., K.R., L.N.), Umeå University; Aging Research Center (G.P., A.S., L.B.), Karolinska Institutet & Stockholm University; Department of Integrative Medical Biology (A.S., M.A., L.N.), and Wallenberg Center for Molecular Medicine (A.S., L.N.), Umeå University, Sweden; Center for Lifespan Psychology (Y.K., A.M.B., U.L.), Max Planck Institute for Human Development; Max Planck UCL Centre for Computational Psychiatry and Ageing Research (A.M.B., U.L.), Berlin, Germany and London, UK; and Department of Psychology (M.L.), University of Gothenburg, Sweden
| | - Alireza Salami
- From the Departments of Radiation Sciences, Diagnostic Radiology (N.K., J.J., K.R., L.N.) and Radiation Physics (A.W., J.A.), Department of Applied Physics and Electronics (A.W.), and Umeå Center for Functional Brain Imaging (UFBI) (N.K., J.J., A.W., A.S., M.A., J.A., K.R., L.N.), Umeå University; Aging Research Center (G.P., A.S., L.B.), Karolinska Institutet & Stockholm University; Department of Integrative Medical Biology (A.S., M.A., L.N.), and Wallenberg Center for Molecular Medicine (A.S., L.N.), Umeå University, Sweden; Center for Lifespan Psychology (Y.K., A.M.B., U.L.), Max Planck Institute for Human Development; Max Planck UCL Centre for Computational Psychiatry and Ageing Research (A.M.B., U.L.), Berlin, Germany and London, UK; and Department of Psychology (M.L.), University of Gothenburg, Sweden
| | - Ylva Köhncke
- From the Departments of Radiation Sciences, Diagnostic Radiology (N.K., J.J., K.R., L.N.) and Radiation Physics (A.W., J.A.), Department of Applied Physics and Electronics (A.W.), and Umeå Center for Functional Brain Imaging (UFBI) (N.K., J.J., A.W., A.S., M.A., J.A., K.R., L.N.), Umeå University; Aging Research Center (G.P., A.S., L.B.), Karolinska Institutet & Stockholm University; Department of Integrative Medical Biology (A.S., M.A., L.N.), and Wallenberg Center for Molecular Medicine (A.S., L.N.), Umeå University, Sweden; Center for Lifespan Psychology (Y.K., A.M.B., U.L.), Max Planck Institute for Human Development; Max Planck UCL Centre for Computational Psychiatry and Ageing Research (A.M.B., U.L.), Berlin, Germany and London, UK; and Department of Psychology (M.L.), University of Gothenburg, Sweden
| | - Andreas M Brandmaier
- From the Departments of Radiation Sciences, Diagnostic Radiology (N.K., J.J., K.R., L.N.) and Radiation Physics (A.W., J.A.), Department of Applied Physics and Electronics (A.W.), and Umeå Center for Functional Brain Imaging (UFBI) (N.K., J.J., A.W., A.S., M.A., J.A., K.R., L.N.), Umeå University; Aging Research Center (G.P., A.S., L.B.), Karolinska Institutet & Stockholm University; Department of Integrative Medical Biology (A.S., M.A., L.N.), and Wallenberg Center for Molecular Medicine (A.S., L.N.), Umeå University, Sweden; Center for Lifespan Psychology (Y.K., A.M.B., U.L.), Max Planck Institute for Human Development; Max Planck UCL Centre for Computational Psychiatry and Ageing Research (A.M.B., U.L.), Berlin, Germany and London, UK; and Department of Psychology (M.L.), University of Gothenburg, Sweden
| | - Micael Andersson
- From the Departments of Radiation Sciences, Diagnostic Radiology (N.K., J.J., K.R., L.N.) and Radiation Physics (A.W., J.A.), Department of Applied Physics and Electronics (A.W.), and Umeå Center for Functional Brain Imaging (UFBI) (N.K., J.J., A.W., A.S., M.A., J.A., K.R., L.N.), Umeå University; Aging Research Center (G.P., A.S., L.B.), Karolinska Institutet & Stockholm University; Department of Integrative Medical Biology (A.S., M.A., L.N.), and Wallenberg Center for Molecular Medicine (A.S., L.N.), Umeå University, Sweden; Center for Lifespan Psychology (Y.K., A.M.B., U.L.), Max Planck Institute for Human Development; Max Planck UCL Centre for Computational Psychiatry and Ageing Research (A.M.B., U.L.), Berlin, Germany and London, UK; and Department of Psychology (M.L.), University of Gothenburg, Sweden
| | - Jan Axelsson
- From the Departments of Radiation Sciences, Diagnostic Radiology (N.K., J.J., K.R., L.N.) and Radiation Physics (A.W., J.A.), Department of Applied Physics and Electronics (A.W.), and Umeå Center for Functional Brain Imaging (UFBI) (N.K., J.J., A.W., A.S., M.A., J.A., K.R., L.N.), Umeå University; Aging Research Center (G.P., A.S., L.B.), Karolinska Institutet & Stockholm University; Department of Integrative Medical Biology (A.S., M.A., L.N.), and Wallenberg Center for Molecular Medicine (A.S., L.N.), Umeå University, Sweden; Center for Lifespan Psychology (Y.K., A.M.B., U.L.), Max Planck Institute for Human Development; Max Planck UCL Centre for Computational Psychiatry and Ageing Research (A.M.B., U.L.), Berlin, Germany and London, UK; and Department of Psychology (M.L.), University of Gothenburg, Sweden
| | - Katrine Riklund
- From the Departments of Radiation Sciences, Diagnostic Radiology (N.K., J.J., K.R., L.N.) and Radiation Physics (A.W., J.A.), Department of Applied Physics and Electronics (A.W.), and Umeå Center for Functional Brain Imaging (UFBI) (N.K., J.J., A.W., A.S., M.A., J.A., K.R., L.N.), Umeå University; Aging Research Center (G.P., A.S., L.B.), Karolinska Institutet & Stockholm University; Department of Integrative Medical Biology (A.S., M.A., L.N.), and Wallenberg Center for Molecular Medicine (A.S., L.N.), Umeå University, Sweden; Center for Lifespan Psychology (Y.K., A.M.B., U.L.), Max Planck Institute for Human Development; Max Planck UCL Centre for Computational Psychiatry and Ageing Research (A.M.B., U.L.), Berlin, Germany and London, UK; and Department of Psychology (M.L.), University of Gothenburg, Sweden
| | - Martin Lövdén
- From the Departments of Radiation Sciences, Diagnostic Radiology (N.K., J.J., K.R., L.N.) and Radiation Physics (A.W., J.A.), Department of Applied Physics and Electronics (A.W.), and Umeå Center for Functional Brain Imaging (UFBI) (N.K., J.J., A.W., A.S., M.A., J.A., K.R., L.N.), Umeå University; Aging Research Center (G.P., A.S., L.B.), Karolinska Institutet & Stockholm University; Department of Integrative Medical Biology (A.S., M.A., L.N.), and Wallenberg Center for Molecular Medicine (A.S., L.N.), Umeå University, Sweden; Center for Lifespan Psychology (Y.K., A.M.B., U.L.), Max Planck Institute for Human Development; Max Planck UCL Centre for Computational Psychiatry and Ageing Research (A.M.B., U.L.), Berlin, Germany and London, UK; and Department of Psychology (M.L.), University of Gothenburg, Sweden
| | - Ulman Lindenberger
- From the Departments of Radiation Sciences, Diagnostic Radiology (N.K., J.J., K.R., L.N.) and Radiation Physics (A.W., J.A.), Department of Applied Physics and Electronics (A.W.), and Umeå Center for Functional Brain Imaging (UFBI) (N.K., J.J., A.W., A.S., M.A., J.A., K.R., L.N.), Umeå University; Aging Research Center (G.P., A.S., L.B.), Karolinska Institutet & Stockholm University; Department of Integrative Medical Biology (A.S., M.A., L.N.), and Wallenberg Center for Molecular Medicine (A.S., L.N.), Umeå University, Sweden; Center for Lifespan Psychology (Y.K., A.M.B., U.L.), Max Planck Institute for Human Development; Max Planck UCL Centre for Computational Psychiatry and Ageing Research (A.M.B., U.L.), Berlin, Germany and London, UK; and Department of Psychology (M.L.), University of Gothenburg, Sweden
| | - Lars Bäckman
- From the Departments of Radiation Sciences, Diagnostic Radiology (N.K., J.J., K.R., L.N.) and Radiation Physics (A.W., J.A.), Department of Applied Physics and Electronics (A.W.), and Umeå Center for Functional Brain Imaging (UFBI) (N.K., J.J., A.W., A.S., M.A., J.A., K.R., L.N.), Umeå University; Aging Research Center (G.P., A.S., L.B.), Karolinska Institutet & Stockholm University; Department of Integrative Medical Biology (A.S., M.A., L.N.), and Wallenberg Center for Molecular Medicine (A.S., L.N.), Umeå University, Sweden; Center for Lifespan Psychology (Y.K., A.M.B., U.L.), Max Planck Institute for Human Development; Max Planck UCL Centre for Computational Psychiatry and Ageing Research (A.M.B., U.L.), Berlin, Germany and London, UK; and Department of Psychology (M.L.), University of Gothenburg, Sweden
| | - Lars Nyberg
- From the Departments of Radiation Sciences, Diagnostic Radiology (N.K., J.J., K.R., L.N.) and Radiation Physics (A.W., J.A.), Department of Applied Physics and Electronics (A.W.), and Umeå Center for Functional Brain Imaging (UFBI) (N.K., J.J., A.W., A.S., M.A., J.A., K.R., L.N.), Umeå University; Aging Research Center (G.P., A.S., L.B.), Karolinska Institutet & Stockholm University; Department of Integrative Medical Biology (A.S., M.A., L.N.), and Wallenberg Center for Molecular Medicine (A.S., L.N.), Umeå University, Sweden; Center for Lifespan Psychology (Y.K., A.M.B., U.L.), Max Planck Institute for Human Development; Max Planck UCL Centre for Computational Psychiatry and Ageing Research (A.M.B., U.L.), Berlin, Germany and London, UK; and Department of Psychology (M.L.), University of Gothenburg, Sweden
| |
Collapse
|
50
|
Kang K, Jeong SY, Park K, Hahm MH, Kim J, Lee H, Kim C, Yun E, Han J, Yoon U, Lee S. Distinct cerebral cortical perfusion patterns in idiopathic normal-pressure hydrocephalus. Hum Brain Mapp 2022; 44:269-279. [PMID: 36102811 PMCID: PMC9783416 DOI: 10.1002/hbm.25974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 02/05/2023] Open
Abstract
The aims of the study are to evaluate idiopathic normal-pressure hydrocephalus (INPH)-related cerebral blood flow (CBF) abnormalities and to investigate their relation to cortical thickness in INPH patients. We investigated cortical CBF utilizing surface-based early-phase 18 F-florbetaben (E-FBB) PET analysis in two groups: INPH patients and healthy controls. All 39 INPH patients and 20 healthy controls were imaged with MRI, including three-dimensional volumetric images, for automated surface-based cortical thickness analysis across the entire brain. A subgroup with 37 participants (22 INPH patients and 15 healthy controls) that also underwent 18 F-fluorodeoxyglucose (FDG) PET imaging was further analyzed. Compared with age- and gender-matched healthy controls, INPH patients showed statistically significant hyperperfusion in the high convexity of the frontal and parietal cortical regions. Importantly, within the INPH group, increased perfusion correlated with cortical thickening in these regions. Additionally, significant hypoperfusion mainly in the ventrolateral frontal cortex, supramarginal gyrus, and temporal cortical regions was observed in the INPH group relative to the control group. However, this hypoperfusion was not associated with cortical thinning. A subgroup analysis of participants that also underwent FDG PET imaging showed that increased (or decreased) cerebral perfusion was associated with increased (or decreased) glucose metabolism in INPH. A distinctive regional relationship between cerebral cortical perfusion and cortical thickness was shown in INPH patients. Our findings suggest distinct pathophysiologic mechanisms of hyperperfusion and hypoperfusion in INPH patients.
Collapse
Affiliation(s)
- Kyunghun Kang
- Department of Neurology, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Ki‐Su Park
- Department of Neurosurgery, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Myong Hun Hahm
- Department of Radiology, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Jaeil Kim
- School of Computer Science and EngineeringKyungpook National UniversityDaeguSouth Korea
| | - Ho‐Won Lee
- Department of Neurology, School of MedicineKyungpook National UniversityDaeguSouth Korea,Brain Science and Engineering InstituteKyungpook National UniversityDaeguSouth Korea
| | - Chi‐Hun Kim
- Department of NeurologyHallym University Sacred Heart HospitalAnyangSouth Korea
| | - Eunkyeong Yun
- Department of Biomedical EngineeringDaegu Catholic UniversityGyeongsan‐siSouth Korea
| | - Jaehwan Han
- Department of Biomedical EngineeringDaegu Catholic UniversityGyeongsan‐siSouth Korea
| | - Uicheul Yoon
- Department of Biomedical EngineeringDaegu Catholic UniversityGyeongsan‐siSouth Korea
| | - Sang‐Woo Lee
- Department of Nuclear Medicine, School of MedicineKyungpook National UniversityDaeguSouth Korea
| |
Collapse
|