1
|
Hamada HT, Abe Y, Takata N, Taira M, Tanaka KF, Doya K. Optogenetic activation of dorsal raphe serotonin neurons induces brain-wide activation. Nat Commun 2024; 15:4152. [PMID: 38755120 PMCID: PMC11099070 DOI: 10.1038/s41467-024-48489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Serotonin is a neuromodulator that affects multiple behavioral and cognitive functions. Nonetheless, how serotonin causes such a variety of effects via brain-wide projections and various receptors remains unclear. Here we measured brain-wide responses to optogenetic stimulation of serotonin neurons in the dorsal raphe nucleus (DRN) of the male mouse brain using functional MRI with an 11.7 T scanner and a cryoprobe. Transient activation of DRN serotonin neurons caused brain-wide activation, including the medial prefrontal cortex, the striatum, and the ventral tegmental area. The same stimulation under anesthesia with isoflurane decreased brain-wide activation, including the hippocampal complex. These brain-wide response patterns can be explained by DRN serotonergic projection topography and serotonin receptor expression profiles, with enhanced weights on 5-HT1 receptors. Together, these results provide insight into the DR serotonergic system, which is consistent with recent discoveries of its functions in adaptive behaviors.
Collapse
Affiliation(s)
- Hiro Taiyo Hamada
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
- Research & Development Department, Araya Inc, Tokyo, Japan.
| | - Yoshifumi Abe
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Norio Takata
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Masakazu Taira
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Doya
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
2
|
Kryst J, Majcher-Maślanka I, Chocyk A. Effects of chronic fluoxetine treatment on anxiety- and depressive-like behaviors in adolescent rodents - systematic review and meta-analysis. Pharmacol Rep 2022; 74:920-946. [PMID: 36151445 PMCID: PMC9584991 DOI: 10.1007/s43440-022-00420-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 12/09/2022]
Abstract
Background Drugs prescribed for psychiatric disorders in adolescence should be studied very extensively since they can affect developing and thus highly plastic brain differently than they affect the adult brain. Therefore, we aimed to summarize animal studies reporting the behavioral consequences of chronic exposure to the most widely prescribed antidepressant drug among adolescents i.e., fluoxetine. Methods Electronic databases (Medline via Pubmed, Web of Science Core Collection, ScienceDirect) were systematically searched until April 12, 2022, for published, peer-reviewed, controlled trials concerning the effects of chronic fluoxetine administration vs. vehicle on anxiety and depression measures in naïve and stress-exposed adolescent rodents. All of the relevant studies were selected and critically appraised, and a meta-analysis of eligible studies was performed. Results A total of 18 studies were included in the meta-analysis. In naïve animals, chronic adolescent fluoxetine administration showed dose-related anxiogenic-like effects, measured as a reduction in time spent in the open arms of the elevated plus maze. No significant effects of chronic adolescent fluoxetine on depression-like behavior were reported in naïve animals, while in stress-exposed rodents chronic adolescent fluoxetine significantly decreased immobility time in the forced swim test compared to vehicle. Conclusions These results suggest that although chronic fluoxetine treatment proves positive effects in animal models of depression, it may simultaneously increase anxiety in adolescent animals in a dose-related manner. Although the clinical implications of the data should be interpreted with extreme caution, adolescent patients under fluoxetine treatment should be closely monitored. Supplementary Information The online version contains supplementary material available at 10.1007/s43440-022-00420-w.
Collapse
Affiliation(s)
- Joanna Kryst
- Faculty of Physiotherapy, Institute for Basics Sciences, University of Physical Education, Jana Pawła II Av. 78, 31-571, Kraków, Poland
| | - Iwona Majcher-Maślanka
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - Agnieszka Chocyk
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland.
| |
Collapse
|
3
|
Perez-Caballero L, Soto-Montenegro ML, Desco M, Mico JA, Berrocoso E. Sustained escitalopram administration affects glucose metabolism in the rat brain. Eur Neuropsychopharmacol 2021; 51:1-6. [PMID: 34022746 DOI: 10.1016/j.euroneuro.2021.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 11/18/2022]
Abstract
Escitalopram is a selective serotonin reuptake inhibitor (SSRIs) antidepressant, drug that is currently used as first-line agents for the treatment of depression and it is also used in the treatment of other psychiatric disorders. The main goal of this study was to identify which brain areas are affected by escitalopram administration. This study was carried out on male Wistar rats that received escitalopram daily over 14 days and that were studied by 2-deoxy-2[18F]fluoro-D-glucose ([18F]FDG)-PET on the last day of treatment. Computed tomography (CT) images were acquired immediately before each PET scan and the main effects of drug administration were elucidated by Statistical Parametric Mapping. The results obtained indicated that repeated exposure to escitalopram increased metabolic activity in the retrosplenial and posterior cingulate cortices, while it decreased such activity in the ventral hippocampus, cerebellum, brainstem and midbrain regions, including the raphe nuclei and ventral tegmental area. Therefore, repeated exposure to escitalopram alters the activity of several brain areas closely related to the serotonergic system, and previously identified as key regions in the antidepressant effect induced by SSRIs. Furthermore, some of the changes found, such as the dampened metabolism in the ventral tegmental area, are similar to changes that have been described after treating with other fast-acting antidepressant approaches.
Collapse
Affiliation(s)
- L Perez-Caballero
- Neuropsychopharmacology & Psychobiology Research Group, Area of Psychobiology, Department of Psychology, University of Cádiz, Cádiz, Spain; CIBER for Mental Health (CIBERSAM), Madrid, Spain
| | - M L Soto-Montenegro
- CIBER for Mental Health (CIBERSAM), Madrid, Spain; Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - M Desco
- CIBER for Mental Health (CIBERSAM), Madrid, Spain; Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Leganés, Spain; Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - J A Mico
- CIBER for Mental Health (CIBERSAM), Madrid, Spain; Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, Pharmacology and Psychiatry, University of Cádiz, Cádiz, Spain
| | - E Berrocoso
- Neuropsychopharmacology & Psychobiology Research Group, Area of Psychobiology, Department of Psychology, University of Cádiz, Cádiz, Spain; CIBER for Mental Health (CIBERSAM), Madrid, Spain.
| |
Collapse
|
4
|
Solleveld MM, Schrantee A, Homberg JR, Lucassen PJ, Reneman L. The influence of age-of-onset of antidepressant use on the acute CBF response to a citalopram challenge; a pharmacological MRI study. Psychiatry Res Neuroimaging 2020; 303:111126. [PMID: 32592855 DOI: 10.1016/j.pscychresns.2020.111126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 11/21/2022]
Abstract
Preclinical studies have demonstrated that antidepressant treatment in juvenile rodents affect the ontogeny of the serotonin system. However, whether early antidepressant use has similar effects on the development of the serotonin system in humans remains unknown. Therefore, we investigated whether effects of selective serotonin reuptake inhibitor (SSRI) treatment on the serotonin system are modulated by age. With pharmacological Magnetic Resonance Imaging the cerebral blood flow (CBF) response to an acute citalopram challenge was measured, as a proxy for serotonin function. Fifty-one females with major depressive disorder or anxiety disorder were stratified into three groups: 1) those treated with SSRIs <23 years of age, 2) those treated with SSRIs >23 years of age, and 3) those that were never treated with SSRIs. Additionally, a group of 14 healthy controls was included. CBF decreased after a citalopram challenge in the amygdala, hippocampus and orbitofrontal cortex across the whole sample. However, in contrast to preclinical studies, we did not find any age-dependent effect of SSRI exposure on the CBF response. In view of recent concerns on potential adverse effects of SSRIs administered to children, future studies are needed to replicate our negative findings in larger samples sizes and potentially in a prospective design.
Collapse
Affiliation(s)
- Michelle M Solleveld
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Swammerdam Institute for Life Sciences, Center for Neurosciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Paul J Lucassen
- Swammerdam Institute for Life Sciences, Center for Neurosciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Abstract
The application of personalized medicine to psychiatry is challenging. Psychoradiology could provide biomarkers based on objective tests in support of the diagnostic classifications and treatment planning. We review potential psychoradiological biomarkers for psychopharmaceutical effects. Although none of the biomarkers reviewed are yet of sufficient clinical utility to inform the selection of a specific pharmacologic compound for an individual patient, there is strong consensus that advanced multimodal approaches will contribute to discovery of novel treatment predictors in psychiatric disorders. Progress has been sufficient to warrant enthusiasm, in which application of neuroimaging-based biomarkers would represent a paradigm shift and modernization of psychiatric practice.
Collapse
|
6
|
Golub MS, Hogrefe CE, Campos LJ, Fox AS. Serotonin Transporter Binding Potentials in Brain of Juvenile Monkeys 1 Year After Discontinuation of a 2-Year Treatment With Fluoxetine. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:948-955. [PMID: 31471184 DOI: 10.1016/j.bpsc.2019.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND The potential long-term effects of childhood fluoxetine therapy on brain serotonin systems were studied using a nonhuman primate model, the rhesus monkey. METHODS Juvenile male rhesus (1-4 years of age, corresponding to 4-11 years of age in children) were treated orally with fluoxetine (2 mg/kg) or vehicle daily for 2 years and removed from treatment during the third year. Each treatment group was assigned an equal number of subjects with low and high transcription polymorphisms of MAOA. One year after discontinuation of treatment, positron emission tomography scans were conducted (n = 8 treated monkeys, n = 8 control monkeys) using [11C]DASB to quantify serotonin transporter in 16 cortical and subcortical regions. RESULTS Fluoxetine-treated monkeys with MAOA low transcription polymorphism had significantly lower [11C]DASB binding potentials than control monkeys. This finding was seen throughout the brain but was strongest in prefrontal and cingulate cortices. The MAOA × fluoxetine interaction was enhanced by binding potentials that were nonsignificantly higher in monkeys with high transcription polymorphism. CONCLUSIONS Juvenile fluoxetine treatment has residual posttreatment effects on brain serotonin transporter that depend on MAOA genotype. MAOA genotype may be important to consider when treating children with fluoxetine.
Collapse
Affiliation(s)
- Mari S Golub
- California National Primate Research Center, University of California, Davis, California.
| | - Casey E Hogrefe
- California National Primate Research Center, University of California, Davis, California
| | - Lillian J Campos
- California National Primate Research Center, University of California, Davis, California
| | - Andrew S Fox
- California National Primate Research Center, University of California, Davis, California; Department of Psychology, University of California, Davis, Davis, California
| |
Collapse
|
7
|
Schrantee A, Solleveld MM, Schwantje H, Bruin WB, Mutsaerts HJMM, Adriaanse SM, Lucassen P, Booij J, Reneman L. Dose-dependent effects of the selective serotonin reuptake inhibitor citalopram: A combined SPECT and phMRI study. J Psychopharmacol 2019; 33:660-669. [PMID: 30887865 PMCID: PMC6572584 DOI: 10.1177/0269881119836229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Serotonin transporter blockers, like citalopram, dose-dependently bind to the serotonin transporter. Pharmacological magnetic resonance imaging (phMRI) can be used to non-invasively monitor effects of serotonergic medication. Although previous studies showed that phMRI can measure the effect of a single dose of serotoninergic medication, it is currently unclear whether it can also detect dose-dependent effects. AIMS To investigate the dose-dependent phMRI response to citalopram and compared this with serotonin transporter occupancy, measured with single photon emission computed tomography (SPECT). METHODS Forty-five healthy females were randomized to pre-treatment with placebo, a low (4 mg) or clinically standard (16 mg) oral citalopram dose. Prior to citalopram, and 3 h after, subjects underwent SPECT scanning. Subsequently, a phMRI scan with a citalopram challenge (7.5 mg intravenously) was conducted. Change in cerebral blood flow in response to the citalopram challenge was assessed in the thalamus and occipital cortex (control region). RESULTS Citalopram dose-dependently affected serotonin transporter occupancy, as measured with SPECT. In addition, citalopram dose-dependently affected the phMRI response to intravenous citalopram in the thalamus (but not occipital cortex), but phMRI was less sensitive in distinguishing between groups than SPECT. Serotonin transporter occupancy showed a trend-significant correlation to thalamic cerebral blood flow change. CONCLUSION These results suggest that phMRI likely suffers from higher variation than SPECT, but that these techniques probably also assess different functional aspects of the serotonergic synapse; therefore phMRI could complement positron emission tomography/SPECT for measuring effects of serotonergic medication.
Collapse
Affiliation(s)
- Anouk Schrantee
- Amsterdam University Medical Centers, Academic Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands,Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands,A Schrantee, Amsterdam University Medical Centers, Academic Medical Center, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands.
| | - Michelle M Solleveld
- Amsterdam University Medical Centers, Academic Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands,Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Hilde Schwantje
- Amsterdam University Medical Centers, Academic Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
| | - Willem B Bruin
- Amsterdam University Medical Centers, Academic Medical Center, Department of Psychiatry, Amsterdam, The Netherlands
| | - Henk-Jan MM Mutsaerts
- Amsterdam University Medical Centers, Academic Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
| | - Sofie M Adriaanse
- Amsterdam University Medical Centers, Academic Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
| | - Paul Lucassen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Booij
- Amsterdam University Medical Centers, Academic Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
| | - Liesbeth Reneman
- Amsterdam University Medical Centers, Academic Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
| |
Collapse
|
8
|
De Santis M, Huang XF, Deng C. Early antipsychotic treatment in juvenile rats elicits long-term alterations to the adult serotonin receptors. Neuropsychiatr Dis Treat 2018; 14:1569-1583. [PMID: 29950841 PMCID: PMC6011877 DOI: 10.2147/ndt.s158545] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Antipsychotic drug (APD) prescription/use in children has increased significantly worldwide, despite limited insight into potential long-term effects of treatment on adult brain functioning. While initial long-term studies have uncovered alterations to behaviors following early APD treatment, further investigations into potential changes to receptor density levels of related neurotransmitter (NT) systems are required. METHODS The current investigation utilized an animal model for early APD treatment with aripiprazole, olanzapine, and risperidone in male and female juvenile rats to investigate potential long-term changes to the adult serotonin (5-HT) NT system. Levels of 5-HT1A, 5-HT2A, and 5-HT2C receptors were measured in the prefrontal cortex (PFC), caudate putamen (CPu), nucleus accumbens (NAc), and hippocampus via Western Blot and receptor autoradiography. RESULTS In the male cohort, long-term changes to 5-HT2A and 5-HT2C receptors were found mostly across hippocampal and cortical brain regions following early aripiprazole and olanzapine treatment, while early risperidone treatment changed 5-HT1A receptor levels in the NAc and PFC. Lesser effects were uncovered in the female cohort with aripiprazole, olanzapine and risperidone to alter 5-HT1A and 5-HT2A receptors in NAc and hippocampal brain regions, respectively. CONCLUSION The results of this study suggest that early treatment of various APDs in juvenile rats may cause gender and brain regional specific changes in 5-HT2A and 5-HT2C receptors in the adult brain.
Collapse
Affiliation(s)
- Michael De Santis
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Xu-Feng Huang
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
9
|
Ayala ME, Gonzáles A, Olivarez RM, Aragón-Martínez A. Fluoxetine treatment of prepubertal male rats uniformly diminishes sex hormone levels and, in a subpopulation of animals, negatively affects sperm quality. Reprod Fertil Dev 2018; 30:1329-1341. [DOI: 10.1071/rd17384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 03/17/2018] [Indexed: 11/23/2022] Open
Abstract
Fluoxetine (Flx) is a selective serotonin reuptake inhibitor that alters the male reproductive system when administered at the adult stage or after maternal exposure. In the present study we evaluated the effects of Flx administration on reproductive parameters during juvenile–peripubertal development when treated male rats reached adulthood. Groups of rats were treated daily with Flx (5 mg kg−1, i.p.) or saline (0.9% NaCl), or were left untreated. Rats were treated between 30 and 53 days of age and were killed at 65 days of age. Serotonin concentrations were determined in the hypothalamus, hypophysis and testis. Gonadotrophins, sex steroids and sperm quality (membrane integrity, sperm with functional mitochondria, sperm density, sperm motility and morphological abnormalities) were also evaluated. Flx did not affect bodyweight, but significantly diminished LH, FSH, progesterone and testosterone serum concentrations. After graphical analysis, a subgroup of rats was identified whose sperm quality parameters were greatly affected by Flx. In the present study we show that Flx administered to juvenile rats disrupts the hypothalamic–hypophyseal–testicular axis and its effects on sperm quality are not homogeneous in adults. In contrast, Flx altered concentrations of gonadotrophins and sexual steroids in all treated rats. These results suggest caution should be exercised in the prescription of Flx to prepubertal males.
Collapse
|
10
|
McIntosh AL, Gormley S, Tozzi L, Frodl T, Harkin A. Recent Advances in Translational Magnetic Resonance Imaging in Animal Models of Stress and Depression. Front Cell Neurosci 2017; 11:150. [PMID: 28596724 PMCID: PMC5442179 DOI: 10.3389/fncel.2017.00150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/09/2017] [Indexed: 12/28/2022] Open
Abstract
Magnetic resonance imaging (MRI) is a valuable translational tool that can be used to investigate alterations in brain structure and function in both patients and animal models of disease. Regional changes in brain structure, functional connectivity, and metabolite concentrations have been reported in depressed patients, giving insight into the networks and brain regions involved, however preclinical models are less well characterized. The development of more effective treatments depends upon animal models that best translate to the human condition and animal models may be exploited to assess the molecular and cellular alterations that accompany neuroimaging changes. Recent advances in preclinical imaging have facilitated significant developments within the field, particularly relating to high resolution structural imaging and resting-state functional imaging which are emerging techniques in clinical research. This review aims to bring together the current literature on preclinical neuroimaging in animal models of stress and depression, highlighting promising avenues of research toward understanding the pathological basis of this hugely prevalent disorder.
Collapse
Affiliation(s)
| | - Shane Gormley
- Institute of Neuroscience, Trinity College DublinDublin, Ireland
| | - Leonardo Tozzi
- Institute of Neuroscience, Trinity College DublinDublin, Ireland
| | - Thomas Frodl
- Institute of Neuroscience, Trinity College DublinDublin, Ireland.,Universitätsklinikum A.ö.R, Universitätsklinik für Psychiatrie und Psychotherapie, Medizinische Fakultät, Otto von Guericke UniversitätMagdeburg, Germany
| | - Andrew Harkin
- Institute of Neuroscience, Trinity College DublinDublin, Ireland.,School of Pharmacy and Pharmaceutical sciences, Trinity College DublinDublin, Ireland
| |
Collapse
|
11
|
Schrantee A, Tremoleda JL, Wylezinska-Arridge M, Bouet V, Hesseling P, Meerhoff GF, de Bruin KM, Koeleman J, Freret T, Boulouard M, Desfosses E, Galineau L, Gozzi A, Dauphin F, Gsell W, Booij J, Lucassen PJ, Reneman L. Repeated dexamphetamine treatment alters the dopaminergic system and increases the phMRI response to methylphenidate. PLoS One 2017; 12:e0172776. [PMID: 28241065 PMCID: PMC5328278 DOI: 10.1371/journal.pone.0172776] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 02/09/2017] [Indexed: 12/12/2022] Open
Abstract
Dexamphetamine (AMPH) is a psychostimulant drug that is used both recreationally and as medication for attention deficit hyperactivity disorder. Preclinical studies have demonstrated that repeated exposure to AMPH can induce damage to nerve terminals of dopamine (DA) neurons. We here assessed the underlying neurobiological changes in the DA system following repeated AMPH exposure and pre-treated rats with AMPH or saline (4 times 5 mg/kg s.c., 2 hours apart), followed by a 1-week washout period. We then used pharmacological MRI (phMRI) with a methylphenidate (MPH) challenge, as a sensitive and non-invasive in-vivo measure of DAergic function. We subsequently validated the DA-ergic changes post-mortem, using a.o. high-performance liquid chromatography (HPLC) and autoradiography. In the AMPH pre-treated group, we observed a significantly larger BOLD response to the MPH challenge, particularly in DA-ergic brain areas and their downstream projections. Subsequent autoradiography studies showed that AMPH pre-treatment significantly reduced DA transporter (DAT) density in the caudate-putamen (CPu) and nucleus accumbens, whereas HPLC analysis revealed increases in the DA metabolite homovanillic acid in the CPu. Our results suggest that AMPH pre-treatment alters DAergic responsivity, a change that can be detected with phMRI in rats. These phMRI changes likely reflect increased DA release together with reduced DAT binding. The ability to assess subtle synaptic changes using phMRI is promising for both preclinical studies of drug discovery, and for clinical studies where phMRI can be a useful tool to non-invasively investigate DA abnormalities, e.g. in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Anouk Schrantee
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Biological Imaging Centre, Imperial College London, White City, London, United Kingdom
- * E-mail:
| | - Jordi L. Tremoleda
- Biological Imaging Centre, Imperial College London, White City, London, United Kingdom
- Centre for Trauma Sciences, The Blizard Institute, London, United Kingdom
| | - Marzena Wylezinska-Arridge
- Biological Imaging Centre, Imperial College London, White City, London, United Kingdom
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Valentine Bouet
- Normandie-Université, GMPc, EA 4259, Université de Caen Basse-Normandie, Caen, France
| | - Peter Hesseling
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Gideon F. Meerhoff
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Kora M. de Bruin
- Department of Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Koeleman
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas Freret
- Normandie-Université, GMPc, EA 4259, Université de Caen Basse-Normandie, Caen, France
| | - Michel Boulouard
- Normandie-Université, GMPc, EA 4259, Université de Caen Basse-Normandie, Caen, France
| | - Emilie Desfosses
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France
| | - Laurent Galineau
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @ UNITN, Rovereto, Italy
| | - François Dauphin
- Normandie-Université, GMPc, EA 4259, Université de Caen Basse-Normandie, Caen, France
| | - Willy Gsell
- Biological Imaging Centre, Imperial College London, White City, London, United Kingdom
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jan Booij
- Department of Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul J. Lucassen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Liesbeth Reneman
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Harris JJ, Reynell C. How do antidepressants influence the BOLD signal in the developing brain? Dev Cogn Neurosci 2016; 25:45-57. [PMID: 28089656 PMCID: PMC6987820 DOI: 10.1016/j.dcn.2016.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 11/21/2022] Open
Abstract
Depression is a highly prevalent life-threatening disorder, with its first onset commonly occurring during adolescence. Adolescent depression is increasingly being treated with antidepressants, such as fluoxetine. The use of medication during this sensitive period of physiological and cognitive brain development produces neurobiological changes, some of which may outlast the course of treatment. In this review, we look at how antidepressant treatment in adolescence is likely to alter neurovascular coupling and brain energy use and how these changes, in turn, affect our ability to identify neuronal activity changes between participant groups. BOLD (blood oxygen level dependent) fMRI (functional magnetic resonance imaging), the method most commonly used to record brain activity in humans, is an indirect measure of neuronal activity. This means that between-group comparisons – adolescent versus adult, depressed versus healthy, medicated versus non-medicated – rely upon a stable relationship existing between neuronal activity and the BOLD response across these groups. We use data from animal studies to detail the ways in which fluoxetine may alter this relationship, and explore how these alterations may influence the interpretation of BOLD signal differences between groups that have been treated with fluoxetine and those that have not.
Collapse
Affiliation(s)
- Julia J Harris
- Life Sciences Department, Imperial College London, SW7 2AZ, UK; Francis Crick Institute, Midland Road, London, NW1 1AT, UK.
| | - Clare Reynell
- Département de Neurosciences, Université de Montréal, H3C 3J7, Canada.
| |
Collapse
|
13
|
De Santis M, Lian J, Huang XF, Deng C. Early Antipsychotic Treatment in Juvenile Rats Elicits Long-Term Alterations to the Dopamine Neurotransmitter System. Int J Mol Sci 2016; 17:E1944. [PMID: 27879654 PMCID: PMC5133938 DOI: 10.3390/ijms17111944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/31/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022] Open
Abstract
Prescription of antipsychotic drugs (APDs) to children has substantially increased in recent years. Whilst current investigations into potential long-term effects have uncovered some alterations to adult behaviours, further investigations into potential changes to neurotransmitter systems are required. The current study investigated potential long-term changes to the adult dopamine (DA) system following aripiprazole, olanzapine and risperidone treatment in female and male juvenile rats. Levels of tyrosine hydroxylase (TH), phosphorylated-TH (p-TH), dopamine active transporter (DAT), and D₁ and D₂ receptors were measured via Western blot and/or receptor autoradiography. Aripiprazole decreased TH and D₁ receptor levels in the ventral tegmental area (VTA) and p-TH levels in the prefrontal cortex (PFC) of females, whilst TH levels decreased in the PFC of males. Olanzapine decreased PFC p-TH levels and increased D₂ receptor expression in the PFC and nucleus accumbens (NAc) in females only. Additionally, risperidone treatment increased D₁ receptor levels in the hippocampus of females, whilst, in males, p-TH levels increased in the PFC and hippocampus, D₁ receptor expression decreased in the NAc, and DAT levels decreased in the caudate putamen (CPu), and elevated in the VTA. These results suggest that early treatment with various APDs can cause different long-term alterations in the adult brain, across both treatment groups and genders.
Collapse
Affiliation(s)
- Michael De Santis
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Jiamei Lian
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Xu-Feng Huang
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
14
|
Hemmings SMJ, Martin LI, van der Merwe L, Benecke R, Domschke K, Seedat S. Serotonin transporter variants play a role in anxiety sensitivity in South African adolescents. World J Biol Psychiatry 2016; 17:66-75. [PMID: 26635248 DOI: 10.3109/15622975.2015.1102324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Anxiety sensitivity (AS) has predictive potential for the development of anxiety disorders. We investigated the role that gene-environment (G × E) interactions, focussing on childhood trauma (CT) and selected SLC6A4 variants, play in modulating levels of AS in a South African adolescent population. METHODS All adolescents (n = 951) completed measures for AS and CT. Six SLC6A4 polymorphisms were genotyped. G × E influences on AS levels were assessed using multiple linear regression models. Relevant confounders were included in all analyses. RESULTS Xhosa (n = 634) and Coloured (n = 317) participants were analysed independently of one another. The 5-HTTLPR-rs25531 L-G haplotype associated with reduced AS among Xhosa adolescents (P = 0.010). In addition, the rs1042173 CC-genotype protected against increased levels of AS in Xhosa participants who had experienced increased levels of CT (P = 0.038). Coloured males homozygous for the S-allele had significantly increased levels of AS compared to Coloured males with at least one L-allele (P = 0.016). CONCLUSIONS This is the first study to be conducted on AS in adolescents from two ethnically diverse populations. Results indicate that the L-G haplotype confers protection against high AS levels in a Xhosa population. Furthermore, increased CT was found to protect against high levels of AS in Xhosa rs1042173 CC-carriers.
Collapse
Affiliation(s)
- Sian M J Hemmings
- a Department of Psychiatry, Faculty of Medicine and Health Sciences , Stellenbosch University , Tygerberg , South Africa
| | - Lindi I Martin
- a Department of Psychiatry, Faculty of Medicine and Health Sciences , Stellenbosch University , Tygerberg , South Africa
| | - Lize van der Merwe
- b Department of Statistics , University of the Western Cape , Bellville , South Africa
| | - Rohan Benecke
- c Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Stellenbosch University , Tygerberg , South Africa
| | - Katharina Domschke
- d Department of Psychiatry , University of Wuerzburg , Wuerzburg , Germany
| | - Soraya Seedat
- a Department of Psychiatry, Faculty of Medicine and Health Sciences , Stellenbosch University , Tygerberg , South Africa
| |
Collapse
|
15
|
Moe AAK, Scott JG, Burne TH, Eyles DW. Neural changes induced by antipsychotic administration in adolescence: A review of studies in laboratory rodents. J Psychopharmacol 2016; 30:771-94. [PMID: 27413140 DOI: 10.1177/0269881116654776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Adolescence is characterized by major remodelling processes in the brain. Use of antipsychotic drugs (APDs) in adolescents has increased dramatically in the last 20 years; however, our understanding of the neurobiological consequences of APD treatment on the adolescent brain has not kept the same pace and significant concerns have been raised. In this review, we examined currently available preclinical studies of the effects of APDs on the adolescent brain. In animal models of neuropsychiatric disorders, adolescent APD treatment appears to be protective against selected structural, behavioural and neurochemical phenotypes. In "neurodevelopmentally normal" adolescent animals, a range of short- and long-term alterations in behaviour and neurochemistry have been reported. In particular, the adolescent brain appears to be sensitive to long-term locomotor/reward effects of chronic atypical APDs in contrast with the outcomes in adults. Long-lasting changes in dopaminergic, glutamatergic and gamma-amino butyric acid-ergic systems induced by adolescent APD administration have been observed in the nucleus accumbens. A detailed examination of other potential target regions such as striatum, prefrontal cortex and ventral tegmental area is still required. Through identification of specific neural pathways targeted by adolescent APD treatment, future studies will expand the current knowledge on long-term neural outcomes which are of translational value.
Collapse
Affiliation(s)
- Aung Aung Kywe Moe
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - James G Scott
- Queensland Centre for Mental Health Research, Wacol, QLD, Australia Discipline of Psychiatry, School of Medicine, The University of Queensland Centre for Clinical Research, Herston, QLD, Australia Metro North Mental Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Thomas Hj Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia Queensland Centre for Mental Health Research, Wacol, QLD, Australia
| | - Darryl W Eyles
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia Queensland Centre for Mental Health Research, Wacol, QLD, Australia
| |
Collapse
|
16
|
De Santis M, Lian J, Huang XF, Deng C. Early antipsychotic treatment in childhood/adolescent period has long-term effects on depressive-like, anxiety-like and locomotor behaviours in adult rats. J Psychopharmacol 2016; 30:204-14. [PMID: 26577063 DOI: 10.1177/0269881115616383] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Childhood/adolescent antipsychotic drug (APD) use is exponentially increasing worldwide, despite limited knowledge of the long-term effects of early APD treatment. Whilst investigations have found that early treatment has resulted in some alterations to dopamine and serotonin neurotransmission systems (essential to APD efficacy), there have only been limited studies into potential long-term behavioural changes. This study, using an animal model for childhood/adolescent APD treatment, investigated the long-term effects of aripiprazole, olanzapine and risperidone on adult behaviours of male and female rats. Open-field/holeboard, elevated plus maze (EPM), social interaction and forced swim (FS) tests were then conducted in adult rats. Our results indicated that in the male cohort, early risperidone and olanzapine treatment elicited long-term hyper-locomotor effects (open-field/holeboard and FS tests), whilst a decrease in depressive-like behaviour (in FS test) was observed in response to olanzapine treatment. Furthermore, anxiolytic-like behaviours were found following testing in the open-field/holeboard and EPM in response to all three drug treatments. Effects in the female cohort, however, were to a far lesser extent, with behavioural attributes indicative of an increased depressive-like behaviour and hypo-locomotor activity exhibited in the FS test following early risperidone and olanzapine treatment. These results suggest that various APDs have different long-term effects on the behaviours of adult rats.
Collapse
Affiliation(s)
- Michael De Santis
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Jiamei Lian
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Xu-Feng Huang
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
17
|
Jonckers E, Shah D, Hamaide J, Verhoye M, Van der Linden A. The power of using functional fMRI on small rodents to study brain pharmacology and disease. Front Pharmacol 2015; 6:231. [PMID: 26539115 PMCID: PMC4612660 DOI: 10.3389/fphar.2015.00231] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/28/2015] [Indexed: 12/23/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimulation and/or a pharmacological challenge. The first part of this review describes the physiological basis of BOLD fMRI and the hemodynamic response on which the MRI contrast is based. Specific emphasis goes to possible effects of anesthesia and the animal’s physiological conditions on neural activity and the hemodynamic response. The second part of this review describes applications of the aforementioned techniques in pharmacologically induced, as well as in traumatic and transgenic disease models and illustrates how multiple fMRI methods can be applied successfully to evaluate different aspects of a specific disorder. For example, fMRI techniques can be used to pinpoint the neural substrate of a disease beyond previously defined hypothesis-driven regions-of-interest. In addition, fMRI techniques allow one to dissect how specific modifications (e.g., treatment, lesion etc.) modulate the functioning of specific brain areas (st-fMRI, phMRI) and how functional connectivity (rsfMRI) between several brain regions is affected, both in acute and extended time frames. Furthermore, fMRI techniques can be used to assess/explore the efficacy of novel treatments in depth, both in fundamental research as well as in preclinical settings. In conclusion, by describing several exemplary studies, we aim to highlight the advantages of functional MRI in exploring the acute and long-term effects of pharmacological substances and/or pathology on brain functioning along with several methodological considerations.
Collapse
Affiliation(s)
- Elisabeth Jonckers
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| | - Disha Shah
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| | - Julie Hamaide
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| | - Annemie Van der Linden
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| |
Collapse
|
18
|
Molero Y, Lichtenstein P, Zetterqvist J, Gumpert CH, Fazel S. Selective Serotonin Reuptake Inhibitors and Violent Crime: A Cohort Study. PLoS Med 2015; 12:e1001875. [PMID: 26372359 PMCID: PMC4570770 DOI: 10.1371/journal.pmed.1001875] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/05/2015] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Although selective serotonin reuptake inhibitors (SSRIs) are widely prescribed, associations with violence are uncertain. METHODS AND FINDINGS From Swedish national registers we extracted information on 856,493 individuals who were prescribed SSRIs, and subsequent violent crimes during 2006 through 2009. We used stratified Cox regression analyses to compare the rate of violent crime while individuals were prescribed these medications with the rate in the same individuals while not receiving medication. Adjustments were made for other psychotropic medications. Information on all medications was extracted from the Swedish Prescribed Drug Register, with complete national data on all dispensed medications. Information on violent crime convictions was extracted from the Swedish national crime register. Using within-individual models, there was an overall association between SSRIs and violent crime convictions (hazard ratio [HR] = 1.19, 95% CI 1.08-1.32, p < 0.001, absolute risk = 1.0%). With age stratification, there was a significant association between SSRIs and violent crime convictions for individuals aged 15 to 24 y (HR = 1.43, 95% CI 1.19-1.73, p < 0.001, absolute risk = 3.0%). However, there were no significant associations in those aged 25-34 y (HR = 1.20, 95% CI 0.95-1.52, p = 0.125, absolute risk = 1.6%), in those aged 35-44 y (HR = 1.06, 95% CI 0.83-1.35, p = 0.666, absolute risk = 1.2%), or in those aged 45 y or older (HR = 1.07, 95% CI 0.84-1.35, p = 0.594, absolute risk = 0.3%). Associations in those aged 15 to 24 y were also found for violent crime arrests with preliminary investigations (HR = 1.28, 95% CI 1.16-1.41, p < 0.001), non-violent crime convictions (HR = 1.22, 95% CI 1.10-1.34, p < 0.001), non-violent crime arrests (HR = 1.13, 95% CI 1.07-1.20, p < 0.001), non-fatal injuries from accidents (HR = 1.29, 95% CI 1.22-1.36, p < 0.001), and emergency inpatient or outpatient treatment for alcohol intoxication or misuse (HR = 1.98, 95% CI 1.76-2.21, p < 0.001). With age and sex stratification, there was a significant association between SSRIs and violent crime convictions for males aged 15 to 24 y (HR = 1.40, 95% CI 1.13-1.73, p = 0.002) and females aged 15 to 24 y (HR = 1.75, 95% CI 1.08-2.84, p = 0.023). However, there were no significant associations in those aged 25 y or older. One important limitation is that we were unable to fully account for time-varying factors. CONCLUSIONS The association between SSRIs and violent crime convictions and violent crime arrests varied by age group. The increased risk we found in young people needs validation in other studies.
Collapse
Affiliation(s)
- Yasmina Molero
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Johan Zetterqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Clara Hellner Gumpert
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Seena Fazel
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Developmental alterations in anxiety and cognitive behavior in serotonin transporter mutant mice. Psychopharmacology (Berl) 2014; 231:4119-33. [PMID: 24728652 DOI: 10.1007/s00213-014-3554-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE A promoter variant of the serotonin transporter (SERT) gene is known to affect emotional and cognitive regulation. In particular, the "short" allelic variant is implicated in the etiology of multiple neuropsychiatric disorders. Heterozygous (SERT(+/-)) and homozygous (SERT(-/-)) SERT mutant mice are valuable tools for understanding the mechanisms of altered SERT levels. Although these genetic effects are well investigated in adulthood, the developmental trajectory of altered SERT levels for behavior has not been investigated. OBJECTIVES We assessed anxiety-like and cognitive behaviors in SERT mutant mice in early adolescence and adulthood to examine the developmental consequences of reduced SERT levels. Spine density of pyramidal neurons was also measured in corticolimbic brain regions. RESULTS Adult SERT(-/-) mice exhibited increased anxiety-like behavior, but these differences were not observed in early adolescent SERT(-/-) mice. Conversely, SERT(+/-) and SERT(-/-) mice did display higher spontaneous alternation during early adolescence and adulthood. SERT(+/-) and SERT(-/-) also exhibited greater neuronal spine densities in the orbitofrontal but not the medial prefrontal cortices. Adult SERT(-/-) mice also showed an increased spine density in the basolateral amygdala. CONCLUSIONS Developmental alterations of the serotonergic system caused by genetic inactivation of SERT can have different influences on anxiety-like and cognitive behaviors through early adolescence into adulthood, which may be associated with changes of spine density in the prefrontal cortex and amygdala. The altered maturation of serotonergic systems may lead to specific age-related vulnerabilities to psychopathologies that develop during adolescence.
Collapse
|
20
|
Klomp A, Hamelink R, Feenstra M, Denys D, Reneman L. Increased response to a 5-HT challenge after discontinuation of chronic serotonin uptake inhibition in the adult and adolescent rat brain. PLoS One 2014; 9:e99873. [PMID: 24937739 PMCID: PMC4061036 DOI: 10.1371/journal.pone.0099873] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/20/2014] [Indexed: 12/13/2022] Open
Abstract
Little is known about the effects of chronic fluoxetine on 5-HT transmission in the adolescent brain, even though it is acknowledged that the neuroplasticity of the brain during childhood and adolescence might influence the neurobiological mechanisms underlying treatment response. Also, possible ongoing effects on monoamine function following drug discontinuation are unidentified. We therefore examined the chronic effects of fluoxetine on extracellular 5-HT and dopamine concentrations in the medial prefrontal cortex and studied their responsiveness to an acute 5-HT challenge after a one-week washout period, both in adolescent and adult rats. Noradrenaline was measured in adult animals only. Fluoxetine increased 5-HT to 200-300% of control and DA and NA to 150% of control. Although there were no lasting effects of chronic fluoxetine on basal monoamine levels, we observed a clear potentiating effect of previous treatment on the fluoxetine-induced increase in extracellular 5-HT and, to a lesser extent, extracellular DA. No differential effect was found for noradrenaline. Age-at-treatment did not influence these results. So, after cessation of chronic fluoxetine treatment 5-HT responsiveness remains heightened. This may be indicative of the continuing presence of 5-HT receptor desensitization, at least until one week after drug discontinuation in rats. No apparent age-at-treatment effects on extracellular monoamine concentrations in the medial prefrontal cortex were detected, but age-related differences in 5-HT transmission further down-stream or in the recovery processes cannot be ruled out.
Collapse
Affiliation(s)
- Anne Klomp
- Department of Radiology, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Ralph Hamelink
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Matthijs Feenstra
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Damiaan Denys
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Liesbeth Reneman
- Department of Radiology, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
21
|
Klomp A, Václavů L, Meerhoff GF, Reneman L, Lucassen PJ. Effects of chronic fluoxetine treatment on neurogenesis and tryptophan hydroxylase expression in adolescent and adult rats. PLoS One 2014; 9:e97603. [PMID: 24827731 PMCID: PMC4020860 DOI: 10.1371/journal.pone.0097603] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 04/22/2014] [Indexed: 11/18/2022] Open
Abstract
The antidepressant drug fluoxetine (Prozac) has been increasingly prescribed to children and adolescents with depressive disorders despite a lack of thorough understanding of its therapeutic effects in the paediatric population and of its putative neurodevelopmental effects. Within the framework of PRIOMEDCHILD ERA-NET, we investigated; a) effects of chronic fluoxetine treatment on adult hippocampal neurogenesis, a structural readout relevant for antidepressant action and hippocampal development; b) effects on tryptophan hydroxylase (TPH) expression, a measure of serotonin synthesis; c) whether treatment effects during adolescence differed from treatment at an adult age, and d) whether they were subregion-specific. Stereological quantification of the number of proliferating (Ki-67+) cells and of the number of young migratory neurons (doublecortin+), revealed a significant age-by-treatment interaction effect, indicating that fluoxetine affects both proliferation and neurogenesis in adolescent-treated rats differently than it does in adult-treated rats. In terms of subregional differences, fluoxetine enhanced proliferation mainly in the dorsal parts of the hippocampus, and neurogenesis in both the suprapyramidal and infrapyramidal blades of the dentate gyrus in adolescent-treated rats, while no such differences were seen in adult-treated rats. Fluoxetine exerted similar age-by-treatment interaction effects on TPH cells mainly in the ventral portion of the dorsal raphe nucleus. We conclude that fluoxetine exerts divergent effects on structural plasticity and serotonin synthesis in adolescent versus adult-treated rats. These preliminary data indicate a differential sensitivity of the adolescent brain to this drug and thus warrant further research into their behavioural and translational aspects. Together with recent related findings, they further call for caution in prescribing these drugs to the adolescent population.
Collapse
Affiliation(s)
- Anne Klomp
- Department of Radiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Lena Václavů
- Swammerdam Institute of Life Sciences, Centre for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Gideon F. Meerhoff
- Swammerdam Institute of Life Sciences, Centre for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Liesbeth Reneman
- Department of Radiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul J. Lucassen
- Swammerdam Institute of Life Sciences, Centre for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
22
|
Petrinovic MM, Künnecke B. Neuroimaging endophenotypes in animal models of autism spectrum disorders: lost or found in translation? Psychopharmacology (Berl) 2014; 231:1167-89. [PMID: 23852013 DOI: 10.1007/s00213-013-3200-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/26/2013] [Indexed: 11/26/2022]
Abstract
RATIONALE Autism spectrum disorder(s) (ASDs) is a neurodevelopmental disorder characterized by stereotyped behaviours and impairments in communication and social interactions. This heterogeneity has been a major obstacle in uncovering the aetiology and biomarkers of ASDs. Rodent models with genetic modifications or environmental insults have been created to study particular endophenotypes and bridge the gap between genetics and behavioural phenotypes. Translational neuroimaging modalities with their ability to screen the brain noninvasively and yield structural, biochemical and functional information provide a unique platform for discovery and evaluation of such endophenotypes in preclinical and clinical research. OBJECTIVES We reviewed literature on translational neuroimaging in rodent models of ASDs. The most prominent models will be described and the respective neuroimaging endophenotypes will be discussed with reference to human data. A perspective on future directions of translational neuroimaging in animal models of ASDs will be given. RESULTS AND CONCLUSIONS To date, we experience a proliferation of rodent models which recapitulate specific liabilities identified in ASDs patients. Translational neuroimaging in these models is emerging but is skewed towards magnetic resonance imaging (MRI) modalities. Volumetric and structural assessments of the brain are dominating and a host of endophenotypes have been reported that allude to findings in ASDs patients but with only few to converge among the models. Caveats of current studies are the diverging biological conditions related to genetic background and age of the animals. It is anticipated that longitudinal and functional assessments will gain much importance and will help elucidating mechanistic relationship between behavioural and structural endophenotypes.
Collapse
Affiliation(s)
- Marija M Petrinovic
- F. Hoffmann-La Roche AG, pRED, Pharma Research and Early Development, DTA Neuroscience, Building 68, Room 327A, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | | |
Collapse
|
23
|
The effects of Psychotropic drugs On Developing brain (ePOD) study: methods and design. BMC Psychiatry 2014; 14:48. [PMID: 24552282 PMCID: PMC3930821 DOI: 10.1186/1471-244x-14-48] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 01/31/2014] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Animal studies have shown that methylphenidate (MPH) and fluoxetine (FLX) have different effects on dopaminergic and serotonergic system in the developing brain compared to the developed brain. The effects of Psychotropic drugs On the Developing brain (ePOD) study is a combination of different approaches to determine whether there are related findings in humans. METHODS/DESIGN Animal studies were carried out to investigate age-related effects of psychotropic drugs and to validate new neuroimaging techniques. In addition, we set up two double-blind placebo controlled clinical trials with MPH in 50 boys (10-12 years) and 50 young men (23-40 years) suffering from ADHD (ePOD-MPH) and with FLX in 40 girls (12-14 years) and 40 young women (23-40 years) suffering from depression and anxiety disorders (ePOD-SSRI). Trial registration numbers are: Nederlands Trial Register NTR3103 and NTR2111. A cross-sectional cohort study on age-related effects of these psychotropic medications in patients who have been treated previously with MPH or FLX (ePOD-Pharmo) is also ongoing. The effects of psychotropic drugs on the developing brain are studied using neuroimaging techniques together with neuropsychological and psychiatric assessments of cognition, behavior and emotion. All assessments take place before, during (only in case of MPH) and after chronic treatment. DISCUSSION The combined results of these approaches will provide new insight into the modulating effect of MPH and FLX on brain development.
Collapse
|
24
|
Psychiatric neural networks and neuropharmacology: Selected advances and novel implications. Saudi Pharm J 2013; 22:95-100. [PMID: 24648819 DOI: 10.1016/j.jsps.2013.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/25/2013] [Indexed: 01/13/2023] Open
Abstract
Psychiatric disorders are often considered as simple imbalances between a limited number of cerebral neurotransmitters. In fact, it is more complicated than this "simple approach" and each psychiatric disorder constitutes network dysfunction within which several agents and factors are implicated. Thus, the therapeutical perspectives and implications are as vast and as numerous as the diversity of those network dysfunctions. Furthermore, the description of factors influencing diseases prognoses and treatment efficacy indicates new elements to consider both in therapies and drug researches.
Collapse
|
25
|
Feasibility of ASL-based phMRI with a single dose of oral citalopram for repeated assessment of serotonin function. Neuroimage 2012; 63:1695-700. [DOI: 10.1016/j.neuroimage.2012.07.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/18/2012] [Accepted: 07/18/2012] [Indexed: 11/22/2022] Open
|
26
|
Tremoleda JL, Kerton A, Gsell W. Anaesthesia and physiological monitoring during in vivo imaging of laboratory rodents: considerations on experimental outcomes and animal welfare. EJNMMI Res 2012; 2:44. [PMID: 22877315 PMCID: PMC3467189 DOI: 10.1186/2191-219x-2-44] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/16/2012] [Indexed: 12/15/2022] Open
Abstract
The implementation of imaging technologies has dramatically increased the efficiency of preclinical studies, enabling a powerful, non-invasive and clinically translatable way for monitoring disease progression in real time and testing new therapies. The ability to image live animals is one of the most important advantages of these technologies. However, this also represents an important challenge as, in contrast to human studies, imaging of animals generally requires anaesthesia to restrain the animals and their gross motion. Anaesthetic agents have a profound effect on the physiology of the animal and may thereby confound the image data acquired. It is therefore necessary to select the appropriate anaesthetic regime and to implement suitable systems for monitoring anaesthetised animals during image acquisition. In addition, repeated anaesthesia required for longitudinal studies, the exposure of ionising radiations and the use of contrast agents and/or imaging biomarkers may also have consequences on the physiology of the animal and its response to anaesthesia, which need to be considered while monitoring the animals during imaging studies. We will review the anaesthesia protocols and monitoring systems commonly used during imaging of laboratory rodents. A variety of imaging modalities are used for imaging rodents, including magnetic resonance imaging, computed tomography, positron emission tomography, single photon emission computed tomography, high frequency ultrasound and optical imaging techniques such as bioluminescence and fluorescence imaging. While all these modalities are implemented for non-invasive in vivo imaging, there are certain differences in terms of animal handling and preparation, how the monitoring systems are implemented and, importantly, how the imaging procedures themselves can affect mammalian physiology. The most important and critical adverse effects of anaesthetic agents are depression of respiration, cardiovascular system disruption and thermoregulation. When anaesthetising rodents, one must carefully consider if these adverse effects occur at the therapeutic dose required for anaesthesia, if they are likely to affect the image acquisitions and, importantly, if they compromise the well-being of the animals. We will review how these challenges can be successfully addressed through an appropriate understanding of anaesthetic protocols and the implementation of adequate physiological monitoring systems.
Collapse
Affiliation(s)
- Jordi L Tremoleda
- Biological Imaging Centre (BIC), Medical Research Council (MRC) Clinical Science Centre, Imperial College London, Hammersmith Campus, Cyclotron Building, Du Cane Road, London, W12 0NN, UK.
| | | | | |
Collapse
|
27
|
Klomp A, Tremoleda JL, Schrantee A, Gsell W, Reneman L. The use of pharmacological-challenge fMRI in pre-clinical research: application to the 5-HT system. J Vis Exp 2012:3956. [PMID: 22565099 PMCID: PMC3466645 DOI: 10.3791/3956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pharmacological MRI (phMRI) is a new and promising method to study the effects of substances on brain function that can ultimately be used to unravel underlying neurobiological mechanisms behind drug action and neurotransmitter-related disorders, such as depression and ADHD. Like most of the imaging methods (PET, SPECT, CT) it represents a progress in the investigation of brain disorders and the related function of neurotransmitter pathways in a non-invasive way with respect of the overall neuronal connectivity. Moreover it also provides the ideal tool for translation to clinical investigations. MRI, while still behind in molecular imaging strategies compared to PET and SPECT, has the great advantage to have a high spatial resolution and no need for the injection of a contrast-agent or radio-labeled molecules, thereby avoiding the repetitive exposure to ionizing radiations. Functional MRI (fMRI) is extensively used in research and clinical setting, where it is generally combined with a psycho-motor task. phMRI is an adaptation of fMRI enabling the investigation of a specific neurotransmitter system, such as serotonin (5-HT), under physiological or pathological conditions following activation via administration of a specific challenging drug. The aim of the method described here is to assess brain 5-HT function in free-breathing animals. By challenging the 5-HT system while simultaneously acquiring functional MR images over time, the response of the brain to this challenge can be visualized. Several studies in animals have already demonstrated that drug-induced increases in extracellular levels of e.g. 5-HT (releasing agents, selective re-uptake blockers, etc) evoke region-specific changes in blood oxygenation level dependent (BOLD) MRI signals (signal due to a change of the oxygenated/deoxygenated hemoglobin levels occurring during brain activation through an increase of the blood supply to supply the oxygen and glucose to the demanding neurons) providing an index of neurotransmitter function. It has also been shown that these effects can be reversed by treatments that decrease 5-HT availability16,13,18,7. In adult rats, BOLD signal changes following acute SSRI administration have been described in several 5-HT related brain regions, i.e. cortical areas, hippocampus, hypothalamus and thalamus9,16,15. Stimulation of the 5-HT system and its response to this challenge can be thus used as a measure of its function in both animals and humans2,11.
Collapse
Affiliation(s)
- Anne Klomp
- Department of Radiology, Brain Imaging Center, Academic Medical Center Amsterdam
| | | | | | | | | |
Collapse
|
28
|
Pharmacologic magnetic resonance imaging (phMRI): imaging drug action in the brain. Neuroimage 2012; 62:1072-85. [PMID: 22495143 DOI: 10.1016/j.neuroimage.2012.03.075] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 02/01/2023] Open
Abstract
The technique of functional magnetic resonance (fMRI), using various cognitive, motor and sensory stimuli has led to a revolution in the ability to map brain function. Drugs can also be used as stimuli to elicit an hemodynamic change. Stimulation with a pharmaceutical has a number of very different consequences compared to user controllable stimuli, most importantly in the time course of stimulus and response that is not, in general, controllable by the experimenter. Therefore, this type of experiment has been termed pharmacologic MRI (phMRI). The use of a drug stimulus leads to a number of interesting possibilities compared to conventional fMRI. Using receptor specific ligands one can characterize brain circuitry specific to neurotransmitter systems. The possibility exists to measure parameters reflecting neurotransmitter release and binding associated with the pharmacokinetics and/or the pharmacodynamics of drugs. There is also the ability to measure up- and down-regulation of receptors in specific disease states. phMRI can be characterized as a molecular imaging technique using the natural hemodynamic transduction related to neuro-receptor stimulus. This provides a coupling mechanism with very high sensitivity that can rival positron emission tomography (PET) in some circumstances. The large numbers of molecules available, that do not require a radio-label, means that phMRI becomes a very useful tool for performing drug discovery. Data and arguments will be presented to show that phMRI can provide information on neuro-receptor signaling and function that complements the static picture generated by PET studies of receptor numbers and occupancies.
Collapse
|