1
|
Im J, Xiang B, Levasseur VA, Sukstanskii AL, Quirk JD, Kothapalli SVVN, Cross AH, Yablonskiy DA. Unraveling the major role of vascular (R2') contributions to R2* signal relaxation at ultra-high-field MRI: A comprehensive analysis with quantitative gradient recalled echo in mouse brain. Magn Reson Med 2025. [PMID: 40294081 DOI: 10.1002/mrm.30529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/08/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025]
Abstract
PURPOSE Ultra-high-field (UHF) R2* relaxometry is often used for in vivo analysis of biological tissue microstructure without accounting for vascular contributions to R2* signal, that is, the BOLD signal component, and magnetic field inhomogeneities. These effects are especially important at UHF as their contribution to R2* scales linearly with magnetic field. Our study aims to report on the results of separate contributions of R2t* (tissue-specific sub-component) and R2' (vascular BOLD sub-component), corrected for the adverse effects of magnetic field inhomogeneities, to the total R2* signal at in vivo UHF MRI of mouse brain. METHODS Four healthy, 8-week-old C57BL/6J mice were imaged in vivo with multi-gradient echo MRI at 9.4 T and analyzed using the quantitative gradient recalled echo (qGRE) approach. A segmentation protocol was established using the Dorr Mouse Brain Atlas and ANTs Syn registration to warp template brain region labels to subject qGRE maps. RESULTS By separating R2' contribution from R2* signal, we have established normative R2t* data in mouse brain. Our findings revealed significant contributions of R2' to R2*, with approximately 42% of the R2* signal arising from vascular contributions, thus suggesting the R2t* as a more accurate metric for quantifying tissue microstructural information and its changes in neurodegenerative diseases. CONCLUSION qGRE approach allows efficient separation of tissue microstructure-specific (R2t*), vascular BOLD (R2'), and background gradients contributions to the total R2* relaxation at UHF MRI. Due to low concentration of non-heme iron in mouse brain, major contribution to R2t* results from tissue cellular components.
Collapse
Affiliation(s)
- Joanna Im
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Biao Xiang
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Victoria A Levasseur
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Alexander L Sukstanskii
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - James D Quirk
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Satya V V N Kothapalli
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Anne H Cross
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Dmitriy A Yablonskiy
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Falk I, Maric D, Leibovitch E, Sati P, Lefeuvre J, Luciano NJ, Guy J, Ha SK, Owen DR, Aigbirhio F, Matthews PM, Reich DS, Jacobson S. Characteristics of TSPO expression in marmoset EAE. J Neuroinflammation 2025; 22:19. [PMID: 39871344 PMCID: PMC11773908 DOI: 10.1186/s12974-025-03343-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/10/2025] [Indexed: 01/29/2025] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) and is a leading non-traumatic cause of disability in young adults. The 18 kDa Translocator Protein (TSPO) is a mitochondrial protein and positron emission tomography (PET)-imaging target that is highly expressed in MS brain lesions. It is used as an inflammatory biomarker and has been proposed as a therapeutic target. However, its specific pathological significance in humans is not well understood. Experimental autoimmune encephalomyelitis (EAE) in the common marmoset is a well-established primate model of MS. Studying TSPO expression in this model will enhance our understanding of its expression in MS. This study therefore characterizes patterns of TSPO expression in fixed CNS tissues from one non-EAE control marmoset and 8 EAE marmosets using multiplex immunofluorescence. In control CNS tissue, we find that TSPO is expressed in the leptomeninges, ependyma, and over two-thirds of Iba1 + microglia, but not astrocytes or neurons. In Iba1 + cells in both control and acute EAE tissue, we find that TSPO is co-expressed with markers of antigen presentation (CD74), early activation (MRP14), phagocytosis (CD163) and anti-inflammatory phenotype (Arg1); a high level of TSPO expression is not restricted to a particular microglial phenotype. While TSPO is expressed in over 88% of activated Iba1 + cells in acute lesions in marmoset EAE, it also is sometimes observed in subsets of astrocytes and neurons. Additionally, we find the percentage of Iba1 + cells expressing TSPO declines significantly in lesions > 5 months old and may be as low as 13% in chronic lesions. However, we also find increased astrocytic TSPO expression in chronic-appearing lesions with astrogliosis. Finally, we find expression of TSPO in a subset of neurons, most frequently GLS2 + glutamatergic neurons. The shift in TSPO expression from Iba + microglia/macrophages to astrocytes over time is similar to patterns suggested by earlier neuropathology studies in MS. Thus, marmoset EAE appears to be a clinically relevant model for the study of TSPO in immune dysregulation in human disease.
Collapse
Affiliation(s)
- Irene Falk
- Viral Immunology Section, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Building 10, Room 5C103, 10 Center Drive, Bethesda, MD, 20892-1400, USA
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Emily Leibovitch
- Viral Immunology Section, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Building 10, Room 5C103, 10 Center Drive, Bethesda, MD, 20892-1400, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Lefeuvre
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas J Luciano
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Joseph Guy
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Seung-Kwon Ha
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - David R Owen
- Department of Brain Sciences, Imperial College London, London, UK
| | - Franklin Aigbirhio
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Building 10, Room 5C103, 10 Center Drive, Bethesda, MD, 20892-1400, USA.
| |
Collapse
|
3
|
Yablonskiy DA, Sukstanskii AL. Quantum dipole interactions and transient hydrogen bond orientation order in cells, cellular membranes and myelin sheath: Implications for MRI signal relaxation, anisotropy, and T 1 magnetic field dependence. Magn Reson Med 2024; 91:2597-2611. [PMID: 38241135 PMCID: PMC10997466 DOI: 10.1002/mrm.29996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/21/2024]
Abstract
PURPOSE Despite significant impact on the study of human brain, MRI lacks a theory of signal formation that integrates quantum interactions involving proton dipoles (a primary MRI signal source) with brain intricate cellular environment. The purpose of the present study is developing such a theory. METHODS We introduce the Transient Hydrogen Bond (THB) model, where THB-mediated quantum dipole interactions between water and protons of hydrophilic heads of amphipathic biomolecules forming cells, cellular membranes and myelin sheath serve as a major source of MR signal relaxation. RESULTS The THB theory predicts the existence of a hydrogen-bond-driven structural order of dipole-dipole connections within THBs as a primary factor for the anisotropy observed in MRI signal relaxation. We have also demonstrated that the conventional Lorentzian spectral density function decreases too fast at high frequencies to adequately capture the field dependence of brain MRI signal relaxation. To bridge this gap, we introduced a stretched spectral density function that surpasses the limitations of Lorentzian dispersion. In human brain, our findings reveal that at any time point only about 4% to 7% of water protons are engaged in quantum encounters within THBs. These ultra-short (2 to 3 ns), but frequent quantum spin exchanges lead to gradual recovery of magnetization toward thermodynamic equilibrium, that is, relaxation of MRI signal. CONCLUSION By incorporating quantum proton interactions involved in brain imaging, the THB approach introduces new insights on the complex relationship between brain tissue cellular structure and MRI measurements, thus offering a promising new tool for better understanding of brain microstructure in health and disease.
Collapse
Affiliation(s)
- Dmitriy A. Yablonskiy
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, 4525 Scott Ave. Room 3216, St. Louis MO, 63110
- Hope Center for Neurological Disorder, 660 S. Euclid Ave., St. Louis, Missouri 63110
- Knight Alzheimer Disease Research Center, 4488 Forest Park Ave., St. Louis, MO 63108
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130
| | - Alexander L. Sukstanskii
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, 4525 Scott Ave. Room 3216, St. Louis MO, 63110
| |
Collapse
|
4
|
Arzanforoosh F, Berman AJL, Smits M, Warnert EAH. Streamlined quantitative BOLD for detecting visual stimulus-induced changes in oxygen extraction fraction in healthy participants: toward clinical application in human glioma. MAGMA (NEW YORK, N.Y.) 2023; 36:975-984. [PMID: 37556086 PMCID: PMC10667381 DOI: 10.1007/s10334-023-01110-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023]
Abstract
OBJECTIVE Monitoring brain oxygenation is critical in brain tumors, as low oxygenation influences tumor growth, pathological angiogenesis, and treatment resistance. This study examined the ability of the streamlined quantitative (sq)BOLD MRI technique to detect oxygenation changes in healthy individuals, as well as its potential application in a clinical setting. METHODS We used the asymmetric spin echo (ASE) technique with FLAIR preparation, along with model-based Bayesian inference to quantify the reversible transverse relaxation rate (R2') and oxygen extraction fraction (OEF) across the brain at baseline and during visual stimulation in eight healthy participants at 3T; and two patients with glioma at rest only. RESULTS Comparing sqBOLD-derived parameters between baseline and visual stimulation revealed a decrease in OEF from 0.56 ± 0.09 at baseline to 0.54 ± 0.07 at the activated state (p = 0.04, paired t test) within a functional localizer-defined volume of interest, and a decline in R2' from 6.5 ± 1.3s-1 at baseline to 6.2 ± 1.4s-1 at the activated state (p = 0.006, paired t test) in the visual cortex. CONCLUSION The sqBOLD technique is sensitive enough to detect and quantify changes in oxygenation in the healthy brain and shows potential for integration into clinical settings to provide valuable information on oxygenation in glioma.
Collapse
Affiliation(s)
- Fatemeh Arzanforoosh
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Avery J L Berman
- Department of Physics, Carleton University, Ottawa, ON, Canada
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Medical Delta, Delft, The Netherlands
| | - Esther A H Warnert
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Kleban E, Jones DK, Tax CM. The impact of head orientation with respect to B 0 on diffusion tensor MRI measures. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2023; 1:1-17. [PMID: 38405373 PMCID: PMC10884544 DOI: 10.1162/imag_a_00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/27/2023] [Indexed: 02/27/2024]
Abstract
Diffusion tensor MRI (DT-MRI) remains the most commonly used approach to characterise white matter (WM) anisotropy. However, DT estimates may be affected by tissue orientation w.r.t. B → 0 due to local gradients and intrinsic T 2 orientation dependence induced by the microstructure. This work aimed to investigate whether and how diffusion tensor MRI-derived measures depend on the orientation of the head with respect to the static magnetic field, B → 0 . By simulating WM as two compartments, we demonstrated that compartmental T 2 anisotropy can induce the dependence of diffusion tensor measures on the angle between WM fibres and the magnetic field. In in vivo experiments, reduced radial diffusivity and increased axial diffusivity were observed in white matter fibres perpendicular to B → 0 compared to those parallel to B → 0 . Fractional anisotropy varied by up to 20 % as a function of the angle between WM fibres and the orientation of the main magnetic field. To conclude, fibre orientation w.r.t. B → 0 is responsible for up to 7 % variance in diffusion tensor measures across the whole brain white matter from all subjects and head orientations. Fibre orientation w.r.t. B → 0 may introduce additional variance in clinical research studies using diffusion tensor imaging, particularly when it is difficult to control for (e.g., fetal or neonatal imaging, or when the trajectories of fibres change due to, e.g., space occupying lesions).
Collapse
Affiliation(s)
- Elena Kleban
- CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom
- Inselspital, University of Bern, Bern, Switzerland
| | - Derek K. Jones
- CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom
- MMIHR, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Chantal M.W. Tax
- CUBRIC, School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
- UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
6
|
Kauppinen RA, Thothard J, Leskinen HPP, Pisharady PK, Manninen E, Kettunen M, Lenglet C, Gröhn OHJ, Garwood M, Nissi MJ. Axon fiber orientation as the source of T 1 relaxation anisotropy in white matter: A study on corpus callosum in vivo and ex vivo. Magn Reson Med 2023; 90:708-721. [PMID: 37145027 DOI: 10.1002/mrm.29667] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/22/2023] [Accepted: 03/24/2023] [Indexed: 05/06/2023]
Abstract
PURPOSE Recent studies indicate that T1 in white matter (WM) is influenced by fiber orientation in B0 . The purpose of the study was to investigate the interrelationships between axon fiber orientation in corpus callosum (CC) and T1 relaxation time in humans in vivo as well as in rat brain ex vivo. METHODS Volunteers were scanned for relaxometric and diffusion MRI at 3 T and 7 T. Angular T1 plots from WM were computed using fractional anisotropy and fiber-to-field-angle maps. T1 and fiber-to-field angle were measured in five sections of CC to estimate the effects of inherently varying fiber orientations on T1 within the same tracts in vivo. Ex vivo rat-brain preparation encompassing posterior CC was rotated in B0 and T1 , and diffusion MRI images acquired at 9.4 T. T1 angular plots were determined at several rotation angles in B0 . RESULTS Angular T1 plots from global WM provided reference for estimated fiber orientation-linked T1 changes within CC. In anterior midbody of CC in vivo, where small axons are dominantly present, a shift in axon orientation is accompanied by a change in T1 , matching that estimated from WM T1 data. In CC, where large and giant axons are numerous, the measured T1 change is about 2-fold greater than the estimated one. Ex vivo rotation of the same midsagittal CC region of interest produced angular T1 plots at 9.4 T, matching those observed at 7 T in vivo. CONCLUSION These data causally link axon fiber orientation in B0 to the T1 relaxation anisotropy in WM.
Collapse
Affiliation(s)
- Risto A Kauppinen
- Department of Electric and Electronic Engineering, University of Bristol, Bristol, UK
| | - Jeromy Thothard
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Henri P P Leskinen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Pramod K Pisharady
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eppu Manninen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Mikko Kettunen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Olli H J Gröhn
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Michael Garwood
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mikko J Nissi
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
7
|
Qu S, Shi S, Quan Z, Gao Y, Wang M, Wang Y, Pan G, Lai HY, Roe AW, Zhang X. Design and application of a multimodality-compatible 1Tx/6Rx RF coil for monkey brain MRI at 7T. Neuroimage 2023; 276:120185. [PMID: 37244320 DOI: 10.1016/j.neuroimage.2023.120185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023] Open
Abstract
OBJECTIVE Blood-oxygen-level-dependent functional MRI allows to investigte neural activities and connectivity. While the non-human primate plays an essential role in neuroscience research, multimodal methods combining functional MRI with other neuroimaging and neuromodulation enable us to understand the brain network at multiple scales. APPROACH In this study, a tight-fitting helmet-shape receive array with a single transmit loop for anesthetized macaque brain MRI at 7T was fabricated with four openings constructed in the coil housing to accommodate multimodal devices, and the coil performance was quantitatively evaluated and compared to a commercial knee coil. In addition, experiments over three macaques with infrared neural stimulation (INS), focused ultrasound stimulation (FUS), and transcranial direct current stimulation (tDCS) were conducted. MAIN RESULTS The RF coil showed higher transmit efficiency, comparable homogeneity, improved SNR and enlarged signal coverage over the macaque brain. Infrared neural stimulation was applied to the amygdala in deep brain region, and activations in stimulation sites and connected sites were detected, with the connectivity consistent with anatomical information. Focused ultrasound stimulation was applied to the left visual cortex, and activations were acquired along the ultrasound traveling path, with all time course curves consistent with pre-designed paradigms. The existence of transcranial direct current stimulation electrodes brought no interference to the RF system, as evidenced through high-resolution MPRAGE structure images. SIGNIFICANCE This pilot study reveals the feasibility for brain investigation at multiple spatiotemporal scales, which may advance our understanding in dynamic brain networks.
Collapse
Affiliation(s)
- Shuxian Qu
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Sunhang Shi
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Zhiyan Quan
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Yang Gao
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; College of Electrical Engineering, Zhejiang University, Hangzhou, China
| | - Minmin Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Yueming Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China; State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Gang Pan
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China.
| | - Hsin-Yi Lai
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Anna Wang Roe
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaotong Zhang
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; College of Electrical Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Zhao Z, Galiana G, Zillo C, Camarro T, Qiu M, Papademetris X, Hampson M. HALO: A software tool for real-time head alignment in the MR scanner. Magn Reson Med 2023; 89:1506-1513. [PMID: 36426774 PMCID: PMC10753491 DOI: 10.1002/mrm.29535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE MRI studies in human subjects often require multiple scanning sessions/visits. Changes in a subject's head position across sessions result in different alignment between brain tissues and the magnetic field which leads to changes in magnetic susceptibility. These changes can have considerable impacts on acquired signals. Head ALignment Optimization (HALO), a software tool was developed by the authors for active head alignment between sessions. METHODS HALO provides real-time visual feedback of a subject's current head position relative to the position in a previous session. The tool was evaluated in a pilot sample of seven healthy human subjects. RESULTS HALO was shown to enable subjects to actively align their head positions to the desired position of their initial sessions. The subjects were able to improve their head alignment significantly using HALO and achieved good alignment with their first session meeting stringent criteria similar to that used for within-run head motion (less than 2 mm translation or 2 degrees rotation in any direction from the desired position). Moreover, we found a negative correlation between the post-alignment rotation and similarity in inter-session BOLD patterns around the air-tissue interface near sinus which further highlighted the impact of tissue-field alignment on BOLD data quality. CONCLUSION Utilization of HALO in longitudinal studies may help to improve data quality by ensuring the consistency of susceptibility gradients in brain tissues across sessions. HALO has been made publicly available.
Collapse
Affiliation(s)
- Zhiying Zhao
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine
- Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China
| | - Gigi Galiana
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine
| | | | - Terry Camarro
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine
| | - Maolin Qiu
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine
| | | | - Michelle Hampson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine
| |
Collapse
|
9
|
Pizzolato M, Canales-Rodríguez EJ, Andersson M, Dyrby TB. Axial and radial axonal diffusivities and radii from single encoding strongly diffusion-weighted MRI. Med Image Anal 2023; 86:102767. [PMID: 36867913 DOI: 10.1016/j.media.2023.102767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/13/2022] [Accepted: 02/08/2023] [Indexed: 02/18/2023]
Abstract
We enable the estimation of the per-axon axial diffusivity from single encoding, strongly diffusion-weighted, pulsed gradient spin echo data. Additionally, we improve the estimation of the per-axon radial diffusivity compared to estimates based on spherical averaging. The use of strong diffusion weightings in magnetic resonance imaging (MRI) allows to approximate the signal in white matter as the sum of the contributions from only axons. At the same time, spherical averaging leads to a major simplification of the modeling by removing the need to explicitly account for the unknown distribution of axonal orientations. However, the spherically averaged signal acquired at strong diffusion weightings is not sensitive to the axial diffusivity, which cannot therefore be estimated although needed for modeling axons - especially in the context of multi-compartmental modeling. We introduce a new general method for the estimation of both the axial and radial axonal diffusivities at strong diffusion weightings based on kernel zonal modeling. The method could lead to estimates that are free from partial volume bias with gray matter or other isotropic compartments. The method is tested on publicly available data from the MGH Adult Diffusion Human Connectome project. We report reference values of axonal diffusivities based on 34 subjects, and derive estimates of axonal radii from only two shells. The estimation problem is also addressed from the angle of the required data preprocessing, the presence of biases related to modeling assumptions, current limitations, and future possibilities.
Collapse
Affiliation(s)
- Marco Pizzolato
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.
| | | | - Mariam Andersson
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Tim B Dyrby
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| |
Collapse
|
10
|
Kauppinen RA, Thotland J, Pisharady PK, Lenglet C, Garwood M. White matter microstructure and longitudinal relaxation time anisotropy in human brain at 3 and 7 T. NMR IN BIOMEDICINE 2023; 36:e4815. [PMID: 35994269 PMCID: PMC9742158 DOI: 10.1002/nbm.4815] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/29/2022] [Accepted: 08/19/2022] [Indexed: 05/22/2023]
Abstract
A high degree of structural order by white matter (WM) fibre tracts creates a physicochemical environment where water relaxations are rendered anisotropic. Recently, angularly dependent longitudinal relaxation has been reported in human WM. We have characterised interrelationships between T1 relaxation and diffusion MRI microstructural indices at 3 and 7 T. Eleven volunteers consented to participate in the study. Multishell diffusion MR images were acquired with b-values of 0/1500/3000 and 0/1000/2000 s/mm2 at 1.5 and 1.05 mm3 isotropic resolutions at 3 and 7 T, respectively. DTIFIT was used to compute DTI indices; the fibre-to-field angle (θFB ) maps were obtained using the principal eigenvector images. The orientations and volume fractions of multiple fibre populations were estimated using BedpostX in FSL, and the orientation dispersion index (ODI) was estimated using the NODDI protocol. MP2RAGE was used to acquire images for T1 maps at 1.0 and 0.9 mm3 isotropic resolutions at 3 and 7 T, respectively. At 3 T, T1 as a function of θFB in WM with high fractional anisotropy and one-fibre orientation volume fraction or low ODI shows a broad peak centred at 50o , but a flat baseline at 0o and 90o . The broad peak amounted up to 7% of the mean T1. At 7 T, the broad peak appeared at 40o and T1 in fibres running parallel to B0 was longer by up to 75 ms (8.3% of the mean T1) than in those perpendicular to the field. The peak at 40o was approximately 5% of mean T1 (i.e., proportionally smaller than that at 54o at 3 T). The data demonstrate T1 anisotropy in WM with high microstructural order at both fields. The angular patterns are indicative of the B0-dependency of T1 anisotropy. Thus myelinated WM fibres influence T1 contrast both by acting as a T1 contrast agent and rendering T1 dependent on fibre orientation with B0.
Collapse
Affiliation(s)
- Risto A. Kauppinen
- Department of Electric and Electronic EngineeringUniversity of BristolBristolUK
| | - Jeromy Thotland
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Pramod K. Pisharady
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Christophe Lenglet
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Michael Garwood
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
11
|
Lin JP, Kelly HM, Song Y, Kawaguchi R, Geschwind DH, Jacobson S, Reich DS. Transcriptomic architecture of nuclei in the marmoset CNS. Nat Commun 2022; 13:5531. [PMID: 36130924 PMCID: PMC9492672 DOI: 10.1038/s41467-022-33140-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/02/2022] [Indexed: 11/11/2022] Open
Abstract
To understand the cellular composition and region-specific specialization of white matter - a disease-relevant, glia-rich tissue highly expanded in primates relative to rodents - we profiled transcriptomes of ~500,000 nuclei from 19 tissue types of the central nervous system of healthy common marmoset and mapped 87 subclusters spatially onto a 3D MRI atlas. We performed cross-species comparison, explored regulatory pathways, modeled regional intercellular communication, and surveyed cellular determinants of neurological disorders. Here, we analyze this resource and find strong spatial segregation of microglia, oligodendrocyte progenitor cells, and astrocytes. White matter glia are diverse, enriched with genes involved in stimulus-response and biomolecule modification, and predicted to interact with other resident cells more extensively than their gray matter counterparts. Conversely, gray matter glia preserve the expression of neural tube patterning genes into adulthood and share six transcription factors that restrict transcriptome complexity. A companion Callithrix jacchus Primate Cell Atlas (CjPCA) is available through https://cjpca.ninds.nih.gov .
Collapse
Affiliation(s)
- Jing-Ping Lin
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Hannah M Kelly
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Yeajin Song
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Riki Kawaguchi
- Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel H Geschwind
- Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Departments of Neurology and Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Pizzolato M, Andersson M, Canales-Rodríguez EJ, Thiran JP, Dyrby TB. Axonal T 2 estimation using the spherical variance of the strongly diffusion-weighted MRI signal. Magn Reson Imaging 2021; 86:118-134. [PMID: 34856330 DOI: 10.1016/j.mri.2021.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022]
Abstract
In magnetic resonance imaging, the application of a strong diffusion weighting suppresses the signal contributions from the less diffusion-restricted constituents of the brain's white matter, thus enabling the estimation of the transverse relaxation time T2 that arises from the more diffusion-restricted constituents such as the axons. However, the presence of cell nuclei and vacuoles can confound the estimation of the axonal T2, as diffusion within those structures is also restricted, causing the corresponding signal to survive the strong diffusion weighting. We devise an estimator of the axonal T2 based on the directional spherical variance of the strongly diffusion-weighted signal. The spherical variance T2 estimates are insensitive to the presence of isotropic contributions to the signal like those provided by cell nuclei and vacuoles. We show that with a strong diffusion weighting these estimates differ from those obtained using the directional spherical mean of the signal which contains both axonal and isotropically-restricted contributions. Our findings hint at the presence of an MRI-visible isotropically-restricted contribution to the signal in the white matter ex vivo fixed tissue (monkey) at 7T, and do not allow us to discard such a possibility also for in vivo human data collected with a clinical 3T system.
Collapse
Affiliation(s)
- Marco Pizzolato
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark.
| | - Mariam Andersson
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark.
| | | | - Jean-Philippe Thiran
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Radiology, University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| | - Tim B Dyrby
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark.
| |
Collapse
|
13
|
Tax CMW, Kleban E, Chamberland M, Baraković M, Rudrapatna U, Jones DK. Measuring compartmental T 2-orientational dependence in human brain white matter using a tiltable RF coil and diffusion-T 2 correlation MRI. Neuroimage 2021; 236:117967. [PMID: 33845062 PMCID: PMC8270891 DOI: 10.1016/j.neuroimage.2021.117967] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/15/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
The anisotropy of brain white matter microstructure manifests itself in orientational-dependence of various MRI contrasts, and can result in significant quantification biases if ignored. Understanding the origins of this orientation-dependence could enhance the interpretation of MRI signal changes in development, ageing and disease and ultimately improve clinical diagnosis. Using a novel experimental setup, this work studies the contributions of the intra- and extra-axonal water to the orientation-dependence of one of the most clinically-studied parameters, apparent transverse relaxation T2. Specifically, a tiltable receive coil is interfaced with an ultra-strong gradient MRI scanner to acquire multidimensional MRI data with an unprecedented range of acquisition parameters. Using this setup, compartmental T2 can be disentangled based on differences in diffusional-anisotropy, and its orientation-dependence further elucidated by re-orienting the head with respect to the main magnetic field B→0. A dependence of (compartmental) T2 on the fibre orientation w.r.t. B→0 was observed, and further quantified using characteristic representations for susceptibility- and magic angle effects. Across white matter, anisotropy effects were dominated by the extra-axonal water signal, while the intra-axonal water signal decay varied less with fibre-orientation. Moreover, the results suggest that the stronger extra-axonal T2 orientation-dependence is dominated by magnetic susceptibility effects (presumably from the myelin sheath) while the weaker intra-axonal T2 orientation-dependence may be driven by a combination of microstructural effects. Even though the current design of the tiltable coil only offers a modest range of angles, the results demonstrate an overall effect of tilt and serve as a proof-of-concept motivating further hardware development to facilitate experiments that explore orientational anisotropy. These observations have the potential to lead to white matter microstructural models with increased compartmental sensitivity to disease, and can have direct consequences for longitudinal and group-wise T2- and diffusion-MRI data analysis, where the effect of head-orientation in the scanner is commonly ignored.
Collapse
Affiliation(s)
- Chantal M W Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, UK; University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Elena Kleban
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Maxime Chamberland
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Muhamed Baraković
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK; Signal Processing Laboratory 5, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland; Translational Imaging in Neurology Basel, Department of Biomedical Engineering, University Hospital Basel, Basel, Switzerland
| | - Umesh Rudrapatna
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK; Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
14
|
Marques JP, Meineke J, Milovic C, Bilgic B, Chan K, Hedouin R, van der Zwaag W, Langkammer C, Schweser F. QSM reconstruction challenge 2.0: A realistic in silico head phantom for MRI data simulation and evaluation of susceptibility mapping procedures. Magn Reson Med 2021; 86:526-542. [PMID: 33638241 PMCID: PMC8048665 DOI: 10.1002/mrm.28716] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE To create a realistic in silico head phantom for the second QSM reconstruction challenge and for future evaluations of processing algorithms for QSM. METHODS We created a digital whole-head tissue property phantom by segmenting and postprocessing high-resolution (0.64 mm isotropic), multiparametric MRI data acquired at 7 T from a healthy volunteer. We simulated the steady-state magnetization at 7 T using a Bloch simulator and mimicked a Cartesian sampling scheme through Fourier-based processing. Computer code for generating the phantom and performing the MR simulation was designed to facilitate flexible modifications of the phantom in the future, such as the inclusion of pathologies as well as the simulation of a wide range of acquisition protocols. Specifically, the following parameters and effects were implemented: TR and TE, voxel size, background fields, and RF phase biases. Diffusion-weighted imaging phantom data are provided, allowing future investigations of tissue-microstructure effects in phase and QSM algorithms. RESULTS The brain part of the phantom featured realistic morphology with spatial variations in relaxation and susceptibility values similar to the in vivo setting. We demonstrated some of the phantom's properties, including the possibility of generating phase data with nonlinear evolution over TE due to partial-volume effects or complex distributions of frequency shifts within the voxel. CONCLUSION The presented phantom and computer programs are publicly available and may serve as a ground truth in future assessments of the faithfulness of quantitative susceptibility reconstruction algorithms.
Collapse
Affiliation(s)
- José P. Marques
- Donders Institute for Brain, Cognition and BehaviorRadboud UniversityNijmegenthe Netherlands
| | | | - Carlos Milovic
- Department of Electrical EngineeringPontificia Universidad Catolica de ChileSantiagoChile
- Biomedical Imaging CenterPontificia Universidad Catolica de ChileSantiagoChile
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUnited Kingdom
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical ImagingCharlestownMassachusettsUSA
- Department of RadiologyHarvard Medical SchoolBostonMassachusettsUSA
- Harvard‐MIT Health Sciences and TechnologyMITCambridgeMassachusettsUSA
| | - Kwok‐Shing Chan
- Donders Institute for Brain, Cognition and BehaviorRadboud UniversityNijmegenthe Netherlands
| | - Renaud Hedouin
- Donders Institute for Brain, Cognition and BehaviorRadboud UniversityNijmegenthe Netherlands
- Centre Inria Rennes ‐ Bretagne AtlantiqueRennesFrance
| | | | | | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis CenterDepartment of NeurologyJacobs School of Medicine and Biomedical SciencesUniversity at BuffaloThe State University of New YorkBuffaloNew YorkUSA
- Center for Biomedical Imaging, Clinical and Translational Science InstituteUniversity at BuffaloThe State University of New YorkBuffaloNew YorkUSA
| |
Collapse
|
15
|
Lenz C, Berger C, Bauer M, Scheurer E, Birkl C. Sensitivity of fiber orientation dependent R 2 ∗ to temperature and post mortem interval. Magn Reson Med 2021; 86:2703-2715. [PMID: 34086354 DOI: 10.1002/mrm.28874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/23/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE R 2 ∗ imaging of brain white matter is well known for being sensitive to the orientation of nerve fibers with respect to the B0 field of the MRI scanner. The goal of this study was to evaluate whether and to which extent fiber orientation dependent R 2 ∗ differs between in vivo and post mortem in situ examinations, and to investigate the influence of varying temperatures and post mortem intervals (PMI). METHODS Post mortem in situ and in vivo MRI scans were conducted at 3T. R 2 ∗ was acquired with a multi-echo gradient-echo sequence, and the orientation of white matter fibers was computed using diffusion tensor imaging (DTI). Fitting of the measured fiber orientation dependent R 2 ∗ was performed using three different formulations of a previously proposed model. RESULTS R 2 ∗ increased with increasing fiber angle for in vivo and post mortem in situ examinations, whereby the orientation dependency was lower post mortem. The different formulations of the fiber orientation model resulted in an identical fit, but showed large variations of the estimated parameters. The higher order orientation dependent R 2 ∗ components significantly decreased with decreasing temperature, while the orientation independent R 2 ∗ components showed no significant correlation with either temperature or PMI. CONCLUSION Although the mean diffusivity is strongly reduced post mortem, we could successfully estimate the fiber angle using DTI. Due to the strong correlation of the higher order orientation dependent R 2 ∗ components with temperature, the decreased R 2 ∗ fiber orientation dependency post mortem in situ might primarily be attributed to the lower brain temperature.
Collapse
Affiliation(s)
- Claudia Lenz
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Institute of Forensic Medicine, Health Department Basel-Stadt, Basel, Switzerland
| | - Celine Berger
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Institute of Forensic Medicine, Health Department Basel-Stadt, Basel, Switzerland
| | - Melanie Bauer
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Institute of Forensic Medicine, Health Department Basel-Stadt, Basel, Switzerland
| | - Eva Scheurer
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Institute of Forensic Medicine, Health Department Basel-Stadt, Basel, Switzerland
| | - Christoph Birkl
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Cooper G, Hirsch S, Scheel M, Brandt AU, Paul F, Finke C, Boehm-Sturm P, Hetzer S. Quantitative Multi-Parameter Mapping Optimized for the Clinical Routine. Front Neurosci 2020; 14:611194. [PMID: 33364921 PMCID: PMC7750476 DOI: 10.3389/fnins.2020.611194] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
Using quantitative multi-parameter mapping (MPM), studies can investigate clinically relevant microstructural changes with high reliability over time and across subjects and sites. However, long acquisition times (20 min for the standard 1-mm isotropic protocol) limit its translational potential. This study aimed to evaluate the sensitivity gain of a fast 1.6-mm isotropic MPM protocol including post-processing optimized for longitudinal clinical studies. 6 healthy volunteers (35±7 years old; 3 female) were scanned at 3T to acquire the following whole-brain MPM maps with 1.6 mm isotropic resolution: proton density (PD), magnetization transfer saturation (MT), longitudinal relaxation rate (R1), and transverse relaxation rate (R2*). MPM maps were generated using two RF transmit field (B1+) correction methods: (1) using an acquired B1+ map and (2) using a data-driven approach. Maps were generated with and without Gibb's ringing correction. The intra-/inter-subject coefficient of variation (CoV) of all maps in the gray and white matter, as well as in all anatomical regions of a fine-grained brain atlas, were compared between the different post-processing methods using Student's t-test. The intra-subject stability of the 1.6-mm MPM protocol is 2–3 times higher than for the standard 1-mm sequence and can be achieved in less than half the scan duration. Intra-subject variability for all four maps in white matter ranged from 1.2–5.3% and in gray matter from 1.8 to 9.2%. Bias-field correction using an acquired B1+ map significantly improved intra-subject variability of PD and R1 in the gray (42%) and white matter (54%) and correcting the raw images for the effect of Gibb's ringing further improved intra-subject variability in all maps in the gray (11%) and white matter (10%). Combining Gibb's ringing correction and bias field correction using acquired B1+ maps provides excellent stability of the 7-min MPM sequence with 1.6 mm resolution suitable for the clinical routine.
Collapse
Affiliation(s)
- Graham Cooper
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology and Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sebastian Hirsch
- Berlin Center for Advanced Neuroimaging, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany.,Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Scheel
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany.,Department of Neuroradiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany
| | - Alexander U Brandt
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany.,Department of Neurology, University of California, Irvine, Irvine, CA, United States
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany
| | - Carsten Finke
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp Boehm-Sturm
- Department of Experimental Neurology and Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany.,Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
17
|
Lee NJ, Ha SK, Sati P, Absinta M, Nair G, Luciano NJ, Leibovitch EC, Yen CC, Rouault TA, Silva AC, Jacobson S, Reich DS. Potential role of iron in repair of inflammatory demyelinating lesions. J Clin Invest 2020; 129:4365-4376. [PMID: 31498148 DOI: 10.1172/jci126809] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 07/16/2019] [Indexed: 12/20/2022] Open
Abstract
Inflammatory destruction of iron-rich myelin is characteristic of multiple sclerosis (MS). Although iron is needed for oligodendrocytes to produce myelin during development, its deposition has also been linked to neurodegeneration and inflammation, including in MS. We report perivascular iron deposition in multiple sclerosis lesions that was mirrored in 72 lesions from 13 marmosets with experimental autoimmune encephalomyelitis. Iron accumulated mainly inside microglia/macrophages from 6 weeks after demyelination. Consistently, expression of transferrin receptor, the brain's main iron-influx protein, increased as lesions aged. Iron was uncorrelated with inflammation and postdated initial demyelination, suggesting that iron is not directly pathogenic. Iron homeostasis was at least partially restored in remyelinated, but not persistently demyelinated, lesions. Taken together, our results suggest that iron accumulation in the weeks after inflammatory demyelination may contribute to lesion repair rather than inflammatory demyelination per se.
Collapse
Affiliation(s)
- Nathanael J Lee
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.,Department of Neuroscience, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia, USA
| | - Seung-Kwon Ha
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Martina Absinta
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Govind Nair
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicholas J Luciano
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Emily C Leibovitch
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Cecil C Yen
- Cerebral Microcirculation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Tracey A Rouault
- Section on Human Iron Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Afonso C Silva
- Cerebral Microcirculation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Kaczmarz S, Göttler J, Zimmer C, Hyder F, Preibisch C. Characterizing white matter fiber orientation effects on multi-parametric quantitative BOLD assessment of oxygen extraction fraction. J Cereb Blood Flow Metab 2020; 40:760-774. [PMID: 30952200 PMCID: PMC7168796 DOI: 10.1177/0271678x19839502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 01/23/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022]
Abstract
Relative oxygen extraction fraction (rOEF) is a fundamental indicator of cerebral metabolic function. An easily applicable method for magnetic resonance imaging (MRI) based rOEF mapping is the multi-parametric quantitative blood oxygenation level dependent (mq-BOLD) approach with separate acquisitions of transverse relaxation times T 2 * and T2 and dynamic susceptibility contrast (DSC) based relative cerebral blood volume (rCBV). Given that transverse relaxation and rCBV in white matter (WM) strongly depend on nerve fiber orientation, mq-BOLD derived rOEF is expected to be affected as well. To investigate fiber orientation related rOEF artefacts, we present a methodological study characterizing anisotropy effects of WM as measured by diffusion tensor imaging (DTI) on mq-BOLD in 30 healthy volunteers. Using a 3T clinical MRI-scanner, we performed a comprehensive correlation of all parameters ( T 2 * , T2, R 2 ' , rCBV, rOEF, where R 2 ' =1/ T 2 * -1/T2) with DTI-derived fiber orientation towards the main magnetic field (B0). Our results confirm strong dependencies of transverse relaxation and rCBV on the nerve fiber orientation towards B0, with anisotropy-driven variations up to 37%. Comparably weak orientation-dependent variations of mq-BOLD derived rOEF (3.8%) demonstrate partially counteracting influences of R 2 ' and rCBV effects, possibly suggesting applicability of rOEF as an oxygenation sensitive biomarker. However, unresolved issues warrant caution when applying mq-BOLD to WM.
Collapse
Affiliation(s)
- Stephan Kaczmarz
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Departments of Radiology & Biomedical Imaging and of Biomedical Engineering, Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Jens Göttler
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Departments of Radiology & Biomedical Imaging and of Biomedical Engineering, Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Fahmeed Hyder
- Departments of Radiology & Biomedical Imaging and of Biomedical Engineering, Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Christine Preibisch
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Clinic for Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
19
|
Weber AM, Zhang Y, Kames C, Rauscher A. Myelin water imaging and R 2* mapping in neonates: Investigating R 2* dependence on myelin and fibre orientation in whole brain white matter. NMR IN BIOMEDICINE 2020; 33:e4222. [PMID: 31846134 DOI: 10.1002/nbm.4222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/27/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
R2* relaxation provides a semiquantitative method of detecting myelin, iron and white matter fibre orientation angles. Compared with standard histogram-based analyses, angle-resolved analysis of R2* has previously been shown to substantially improve the detection of subtle differences in the brain between healthy siblings of subjects with multiple sclerosis and unrelated healthy controls. Neonates, who are born with very little myelin and iron, and an underdeveloped connectome, provide researchers with an opportunity to investigate whether R2* is intimately linked with fibre-angle or myelin content as it is in adults, which may in future studies be explored as a potential white matter developmental biomarker. Five healthy adult volunteers (mean age [±SD] = 31.2 [±8.3] years; three males) were recruited from Vancouver, Canada. Eight term neonates (mean age = 38.6 ± 1.2 weeks; five males) were recruited from the Children's Hospital of Chongqing Medical University neonatal ward. All subjects were scanned on identical 3 T Philips Achieva scanners equipped with an eight-channel SENSE head coil and underwent a multiecho gradient echo scan, a 32-direction DTI scan and a myelin water imaging scan. For both neonates and adults, bin-averaged R2* variation across the brain's white matter was found to be best explained by fibre orientation. For adults, this represented a difference in R2* values of 3.5 Hz from parallel to perpendicular fibres with respect to the main magnetic field. In neonates, the fibre orientation dependency displayed a cosine wave shape, with a small R2* range of 0.4 Hz. This minor relationship in neonates provides further evidence for the key role myelin probably plays in creating this fibre orientation dependence later in life, but suggests limited clinical application in newborn populations. Future studies should investigate fibre-orientation dependency in infants in the first 5 years, when substantial myelin development occurs.
Collapse
Affiliation(s)
- Alexander Mark Weber
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Yuting Zhang
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical University, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Medical University, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Christian Kames
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Rauscher
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Lee NJ, Ha SK, Sati P, Absinta M, Luciano NJ, Lefeuvre JA, Schindler MK, Leibovitch EC, Ryu JK, Petersen MA, Silva AC, Jacobson S, Akassoglou K, Reich DS. Spatiotemporal distribution of fibrinogen in marmoset and human inflammatory demyelination. Brain 2019; 141:1637-1649. [PMID: 29688408 DOI: 10.1093/brain/awy082] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/04/2018] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system. Although it has been extensively studied, the proximate trigger of the immune response remains uncertain. Experimental autoimmune encephalomyelitis in the common marmoset recapitulates many radiological and pathological features of focal multiple sclerosis lesions in the cerebral white matter, unlike traditional experimental autoimmune encephalomyelitis in rodents. This provides an opportunity to investigate how lesions form as well as the relative timing of factors involved in lesion pathogenesis, especially during early stages of the disease. We used MRI to track experimental autoimmune encephalomyelitis lesions in vivo to determine their age, stage of development, and location, and we assessed the corresponding histopathology post-mortem. We focused on the plasma protein fibrinogen-a marker for blood-brain barrier leakage that has also been linked to a pathogenic role in inflammatory demyelinating lesion development. We show that fibrinogen has a specific spatiotemporal deposition pattern, apparently deriving from the central vein in early experimental autoimmune encephalomyelitis lesions <6 weeks old, and preceding both demyelination and visible gadolinium enhancement on MRI. Thus, fibrinogen leakage is one of the earliest detectable events in lesion pathogenesis. In slightly older lesions, fibrinogen is found inside microglia/macrophages, suggesting rapid phagocytosis. Quantification demonstrates positive correlation of fibrinogen deposition with accumulation of inflammatory cells, including microglia/macrophages and T cells. The peak of fibrinogen deposition coincides with the onset of demyelination and axonal loss. In samples from chronic multiple sclerosis cases, fibrinogen was found at the edge of chronic active lesions, which have ongoing demyelination and inflammation, but not in inactive lesions, suggesting that fibrinogen may play a role in sustained inflammation even in the chronic setting. In summary, our data support the notion that fibrinogen is a key player in the early pathogenesis, as well as sustained inflammation, of inflammatory demyelinating lesions.
Collapse
Affiliation(s)
- Nathanael J Lee
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Neuroscience, Georgetown University Medical Center, Georgetown University, Washington, DC 20007, USA
| | - Seung-Kwon Ha
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martina Absinta
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas J Luciano
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer A Lefeuvre
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew K Schindler
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emily C Leibovitch
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jae Kyu Ryu
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Mark A Petersen
- Gladstone Institutes, San Francisco, CA 94158, USA.,Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Afonso C Silva
- Cerebral Microcirculation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katerina Akassoglou
- Gladstone Institutes, San Francisco, CA 94158, USA.,Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Abnormal axon guidance signals and reduced interhemispheric connection via anterior commissure in neonates of marmoset ASD model. Neuroimage 2019; 195:243-251. [DOI: 10.1016/j.neuroimage.2019.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 12/18/2022] Open
|
22
|
Poster Viewing Sessions PA00-A01 to PA00-A49. J Cereb Blood Flow Metab 2019; 39:124-166. [PMID: 31265792 PMCID: PMC6610576 DOI: 10.1177/0271678x19851017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Schyboll F, Jaekel U, Petruccione F, Neeb H. Fibre-orientation dependent R 1(=1/T 1) relaxation in the brain: The role of susceptibility induced spin-lattice relaxation in the myelin water compartment. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 300:135-141. [PMID: 30743171 DOI: 10.1016/j.jmr.2019.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/03/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
We have recently observed a dependence of the longitudinal relaxation rate, R1, on the orientation of nerve fibres with respect to the main magnetic field. A similar dependence of R2∗ is long established and can be well explained by spin-dephasing in an inhomogeneous magnetic field induced by the susceptibility shift between myelin and water protons. The current study investigates if the same effect can also explain the R1 dependence, neglecting a possible directional dependence of magnetisation transfer between solid myelin and myelin water. A molecular model of the myelin lipid bilayer was employed to simulate the susceptibility induced fields on a microscopic scale for the different nerve fibre orientations. The resulting simulated magnetic fields were used to calculate an orientation dependent relaxation offset, ΔR1, based on both first-order perturbation theory and a simulation of the spin transition probabilities. Even though both methods yielded consistent orientation dependent relaxation offsets with a distribution that resembles the experimental data, the determined ΔR1 values are too low to explain the reported R1 angular dependency. Therefore, unlike R2∗, susceptibility induced spin flips can be excluded as a dominant source for the observed R1 angular dependence.
Collapse
Affiliation(s)
- Felix Schyboll
- University of Applied Sciences Koblenz, RheinAhrCampus Remagen, Germany
| | - Uwe Jaekel
- University of Applied Sciences Koblenz, RheinAhrCampus Remagen, Germany
| | | | - Heiko Neeb
- University of Applied Sciences Koblenz, RheinAhrCampus Remagen, Germany; Institute for Medical Engineering and Information Processing - MTI Mittelrhein, University of Koblenz, Germany.
| |
Collapse
|
24
|
McKinnon ET, Jensen JH. Measuring intra-axonal T 2 in white matter with direction-averaged diffusion MRI. Magn Reson Med 2018; 81:2985-2994. [PMID: 30506959 DOI: 10.1002/mrm.27617] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/21/2018] [Accepted: 11/05/2018] [Indexed: 01/14/2023]
Abstract
PURPOSE To demonstrate how the T2 relaxation time of intra-axonal water (T2a ) in white matter can be measured with direction-averaged diffusion MRI. METHODS For b-values larger than about 4000 s/mm2 , the direction-averaged diffusion MRI signal from white matter is dominated by the contribution from water within axons, which enables T2a to be estimated by acquiring data for multiple TE values and fitting a mono-exponential decay curve. If given a value of the intra-axonal diffusivity, an extension of the method allows the extra-axonal relaxation time (T2e ) to be calculated also. This approach was applied to estimate T2a in white matter for 3 healthy subjects at 3 T, as well as T2e for a selected set of assumed intra-axonal diffusivities. RESULTS The estimated T2a values ranged from about 50 ms to 110 ms, with considerable variation among white matter regions. For white matter tracts with primarily collinear fibers, T2a was found to depend on the angle of the tract relative to the main magnetic field, which is consistent with T2a being affected by magnetic field inhomogeneities arising from spatial differences in magnetic susceptibility. The T2e values were significantly smaller than the T2a values across white matter regions for several plausible choices of the intra-axonal diffusivity. CONCLUSION The relaxation time for intra-axonal water in white matter can be determined in a straightforward manner by measuring the direction-averaged diffusion MRI signal with a large b-value for multiple TEs. In healthy brain, T2a is greater than T2e and varies considerably with anatomical region.
Collapse
Affiliation(s)
- Emilie T McKinnon
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina.,Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina.,Department of Neurology, Medical University of South Carolina, Charleston, South Carolina
| | - Jens H Jensen
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina.,Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina.,Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
25
|
Leibovitch EC, Caruso B, Ha SK, Schindler MK, Lee NJ, Luciano NJ, Billioux BJ, Guy JR, Yen C, Sati P, Silva AC, Reich DS, Jacobson S. Herpesvirus trigger accelerates neuroinflammation in a nonhuman primate model of multiple sclerosis. Proc Natl Acad Sci U S A 2018; 115:11292-11297. [PMID: 30322946 PMCID: PMC6217390 DOI: 10.1073/pnas.1811974115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pathogens, particularly human herpesviruses (HHVs), are implicated as triggers of disease onset/progression in multiple sclerosis (MS) and other neuroinflammatory disorders. However, the time between viral acquisition in childhood and disease onset in adulthood complicates the study of this association. Using nonhuman primates, we demonstrate that intranasal inoculations with HHV-6A and HHV-6B accelerate an MS-like neuroinflammatory disease, experimental autoimmune encephalomyelitis (EAE). Although animals inoculated intranasally with HHV-6 (virus/EAE marmosets) were asymptomatic, they exhibited significantly accelerated clinical EAE compared with control animals. Expansion of a proinflammatory CD8 subset correlated with post-EAE survival in virus/EAE marmosets, suggesting that a peripheral (viral?) antigen-driven expansion may have occurred post-EAE induction. HHV-6 viral antigen in virus/EAE marmosets was markedly elevated and concentrated in brain lesions, similar to previously reported localizations of HHV-6 in MS brain lesions. Collectively, we demonstrate that asymptomatic intranasal viral acquisition accelerates subsequent neuroinflammation in a nonhuman primate model of MS.
Collapse
Affiliation(s)
- Emily C Leibovitch
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Breanna Caruso
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Seung Kwon Ha
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Matthew K Schindler
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Nathanael J Lee
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Nicholas J Luciano
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Bridgette J Billioux
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Joseph R Guy
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Cecil Yen
- Cerebral Microcirculation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Afonso C Silva
- Cerebral Microcirculation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
26
|
Untangling the R2* contrast in multiple sclerosis: A combined MRI-histology study at 7.0 Tesla. PLoS One 2018; 13:e0193839. [PMID: 29561895 PMCID: PMC5862438 DOI: 10.1371/journal.pone.0193839] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/19/2018] [Indexed: 11/19/2022] Open
Abstract
T2*-weighted multi-echo gradient-echo magnetic resonance imaging and its reciprocal R2* are used in brain imaging due to their sensitivity to iron content. In patients with multiple sclerosis who display pathological alterations in iron and myelin contents, the use of R2* may offer a unique way to untangle mechanisms of disease. Coronal slices from 8 brains of deceased multiple sclerosis patients were imaged using a whole-body 7.0 Tesla MRI scanner. The scanning protocol included three-dimensional (3D) T2*-w multi-echo gradient-echo and 2D T2-w turbo spin echo (TSE) sequences. Histopathological analyses of myelin and iron content were done using Luxol fast blue and proteolipid myelin staining and 3,3′-diaminobenzidine tetrahydrochloride enhanced Turnbull blue staining. Quantification of R2*, myelin and iron intensity were obtained. Variations in R2* were found to be affected differently by myelin and iron content in different regions of multiple sclerosis brains. The data shall inform clinical investigators in addressing the role of T2*/R2* variations as a biomarker of tissue integrity in brains of MS patients, in vivo.
Collapse
|
27
|
Schyboll F, Jaekel U, Weber B, Neeb H. The impact of fibre orientation on T1-relaxation and apparent tissue water content in white matter. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 31:501-510. [DOI: 10.1007/s10334-018-0678-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 11/29/2022]
|
28
|
Abstract
Viruses have long been implicated as triggers of disease onset and progression in multiple sclerosis (MS) and similar neuroinflammatory disorders. Decades of epidemiological, molecular, and pathologic studies have most strongly linked the human herpesviruses Epstein-Barr virus (EBV) and human herpesvirus 6 (HHV-6) with MS. However, these viruses are ubiquitous in the general population and typically acquired decades before disease presentation, complicating the study of how they might contribute to disease. As experimental animal models may help elucidate mechanisms that have linked viruses with MS, we have been studying HHV-6 infections in a small nonhuman primate. We recently demonstrated that the subsequent induction of an MS-like experimental neuroinflammatory disease results in significantly accelerated disease in HHV-6 inoculated marmosets compared to controls. Ultimately, disease intervention in the form of clinical trials with an antiviral agent is the best way to concretely demonstrate a role for HHV-6 or any other virus in MS.
Collapse
Affiliation(s)
| | - Steven Jacobson
- Viral Immunology Section, Neuroimmunology Branch, NINDS/NIH, Bethesda, MD
| |
Collapse
|
29
|
Duyn JH, Schenck J. Contributions to magnetic susceptibility of brain tissue. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3546. [PMID: 27240118 PMCID: PMC5131875 DOI: 10.1002/nbm.3546 10.1002/nbm.3546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/19/2016] [Accepted: 03/31/2016] [Indexed: 11/17/2023]
Abstract
This review discusses the major contributors to the subtle magnetic properties of brain tissue and how they affect MRI contrast. With the increased availability of high-field scanners, the use of magnetic susceptibility contrast for the study of human brain anatomy and function has increased dramatically. This has not only led to novel applications, but has also improved our understanding of the complex relationship between MRI contrast and magnetic susceptibility. Chief contributors to the magnetic susceptibility of brain tissue have been found to include myelin as well as iron. In the brain, iron exists in various forms with diverse biological roles, many of which are now only starting to be uncovered. An interesting aspect of magnetic susceptibility contrast is its sensitivity to the microscopic distribution of iron and myelin, which provides opportunities to extract information at spatial scales well below MRI resolution. For example, in white matter, the myelin sheath that surrounds the axons can provide tissue contrast that is dependent on the axonal orientation and reflects the relative size of intra- and extra-axonal water compartments. The extraction of such ultrastructural information, together with quantitative information about iron and myelin concentrations, is an active area of research geared towards the characterization of brain structure and function, and their alteration in disease. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jeff H. Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular
Imaging, National Institutes of Neurological Disorders and Stroke, National
Institutes of Health, Bethesda, Maryland 20892, USA
| | - John Schenck
- MRI Technologies and Systems, General Electric
Global Research Center, 1 Research Circle, Schenectady, New York 12309, USA
| |
Collapse
|
30
|
Duyn JH, Schenck J. Contributions to magnetic susceptibility of brain tissue. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3546. [PMID: 27240118 PMCID: PMC5131875 DOI: 10.1002/nbm.3546] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/19/2016] [Accepted: 03/31/2016] [Indexed: 05/08/2023]
Abstract
This review discusses the major contributors to the subtle magnetic properties of brain tissue and how they affect MRI contrast. With the increased availability of high-field scanners, the use of magnetic susceptibility contrast for the study of human brain anatomy and function has increased dramatically. This has not only led to novel applications, but has also improved our understanding of the complex relationship between MRI contrast and magnetic susceptibility. Chief contributors to the magnetic susceptibility of brain tissue have been found to include myelin as well as iron. In the brain, iron exists in various forms with diverse biological roles, many of which are now only starting to be uncovered. An interesting aspect of magnetic susceptibility contrast is its sensitivity to the microscopic distribution of iron and myelin, which provides opportunities to extract information at spatial scales well below MRI resolution. For example, in white matter, the myelin sheath that surrounds the axons can provide tissue contrast that is dependent on the axonal orientation and reflects the relative size of intra- and extra-axonal water compartments. The extraction of such ultrastructural information, together with quantitative information about iron and myelin concentrations, is an active area of research geared towards the characterization of brain structure and function, and their alteration in disease. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jeff H. Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular
Imaging, National Institutes of Neurological Disorders and Stroke, National
Institutes of Health, Bethesda, Maryland 20892, USA
| | - John Schenck
- MRI Technologies and Systems, General Electric
Global Research Center, 1 Research Circle, Schenectady, New York 12309, USA
| |
Collapse
|
31
|
Puwal S, Roth BJ, Basser PJ. Heterogeneous anisotropic magnetic susceptibility of the myelin-water layers causes local magnetic field perturbations in axons. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3628. [PMID: 27731911 PMCID: PMC6130896 DOI: 10.1002/nbm.3628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 06/23/2016] [Accepted: 08/17/2016] [Indexed: 05/23/2023]
Abstract
One goal of MRI is to determine the myelin water fraction in neural tissue. One approach is to measure the reduction in T2 * arising from microscopic perturbations in the magnetic field caused by heterogeneities in the magnetic susceptibility of myelin. In this paper, analytic expressions for the induced magnetic field distribution are derived within and around an axon, assuming that the myelin susceptibility is anisotropic. Previous models considered the susceptibility to be piecewise continuous, whereas this model considers a sinusoidally varying susceptibility. Many conclusions are common in both models. When the magnetic field is applied perpendicular to the axon, the magnetic field in the intraaxonal space is uniformly perturbed, the magnetic field in the myelin sheath oscillates between the lipid and water layers, and the magnetic field in the extracellular space just outside the myelin sheath is heterogeneous. These field heterogeneities cause the spins to dephase, shortening T2 *. When the magnetic field is applied along the axon, the field is homogeneous within water-filled regions, including between lipid layers. Therefore the spins do not dephase and the magnetic susceptibility has no effect on T2 *. Generally, the response of an axon is given as the superposition of these two contributions. The sinusoidal model uses a different set of approximations compared with the piecewise model, so their common predictions indicate that the models are not too sensitive to the details of the myelin-water distribution. Other predictions, such as the sensitivity to water diffusion between myelin and water layers, may highlight differences between the two approaches. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Steffan Puwal
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Bradley J Roth
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Peter J Basser
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
32
|
Nunes D, Cruz TL, Jespersen SN, Shemesh N. Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 277:117-130. [PMID: 28282586 DOI: 10.1016/j.jmr.2017.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/23/2017] [Accepted: 02/25/2017] [Indexed: 06/06/2023]
Abstract
White Matter (WM) microstructures, such as axonal density and average diameter, are crucial to the normal function of the Central Nervous System (CNS) as they are closely related with axonal conduction velocities. Conversely, disruptions of these microstructural features may result in severe neurological deficits, suggesting that their noninvasive mapping could be an important step towards diagnosing and following pathophysiology. Whereas diffusion based MRI methods have been proposed to map these features, they typically entail the application of powerful gradients, which are rarely available in the clinic, or extremely long acquisition schemes to extract information from parameter-intensive models. In this study, we suggest that simple and time-efficient multi-gradient-echo (MGE) MRI can be used to extract the axon density from susceptibility-driven non-monotonic decay in the time-dependent signal. We show, both theoretically and with simulations, that a non-monotonic signal decay will occur for multi-compartmental microstructures - such as axons and extra-axonal spaces, which were here used as a simple model for the microstructure - and that, for axons parallel to the main magnetic field, the axonal density can be extracted. We then experimentally demonstrate in ex-vivo rat spinal cords that its different tracts - characterized by different microstructures - can be clearly contrasted using the MGE-derived maps. When the quantitative results are compared against ground-truth histology, they reflect the axonal fraction (though with a bias, as evident from Bland-Altman analysis). As well, the extra-axonal fraction can be estimated. The results suggest that our model is oversimplified, yet at the same time evidencing a potential and usefulness of the approach to map underlying microstructures using a simple and time-efficient MRI sequence. We further show that a simple general-linear-model can predict the average axonal diameters from the four model parameters, and map these average axonal diameters in the spinal cords. While clearly further modelling and theoretical developments are necessary, we conclude that salient WM microstructural features can be extracted from simple, SNR-efficient multi-gradient echo MRI, and that this paves the way towards easier estimation of WM microstructure in vivo.
Collapse
Affiliation(s)
- Daniel Nunes
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Av. Brasilia 1400-038, Lisbon, Portugal
| | - Tomás L Cruz
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Av. Brasilia 1400-038, Lisbon, Portugal
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Clinical Institute, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Av. Brasilia 1400-038, Lisbon, Portugal.
| |
Collapse
|
33
|
Marques JP, Khabipova D, Gruetter R. Studying cyto and myeloarchitecture of the human cortex at ultra-high field with quantitative imaging: R1, R2* and magnetic susceptibility. Neuroimage 2017; 147:152-163. [DOI: 10.1016/j.neuroimage.2016.12.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
|
34
|
Caporale A, Palombo M, Macaluso E, Guerreri M, Bozzali M, Capuani S. The γ-parameter of anomalous diffusion quantified in human brain by MRI depends on local magnetic susceptibility differences. Neuroimage 2016; 147:619-631. [PMID: 28011255 DOI: 10.1016/j.neuroimage.2016.12.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/22/2016] [Accepted: 12/19/2016] [Indexed: 12/15/2022] Open
Abstract
Motivated by previous results obtained in vitro, we investigated the dependence of the anomalous diffusion (AD) MRI technique on local magnetic susceptibility differences (Δχ) driven by magnetic field inhomogeneity in human brains. The AD-imaging contrast investigated here is quantified by the stretched-exponential parameter γ, extracted from diffusion weighted (DW) data collected by varying diffusion gradient strengths. We performed T2* and DW experiments in eight healthy subjects at 3.0T. T2*-weighted images at different TEs=(10,20,35,55)ms and DW-EPI images with fourteen b-values from 0 to 5000s/mm2 were acquired. AD-metrics and Diffusion Tensor Imaging (DTI) parameters were compared and correlated to R2* and to Δχ values taken from literature for the gray (GM) and the white (WM) matter. Pearson's correlation test and Analysis of Variance with Bonferroni post-hoc test were used. Significant strong linear correlations were found between AD γ-metrics and R2* in both GM and WM of the human brain, but not between DTI-metrics and R2*. Depending on Δχ driven magnetic field inhomogeneity, the new contrast provided by AD-γ imaging reflects Δχ due to differences in myelin orientation and iron content within selected regions in the WM and GM, respectively. This feature of the AD-γ imaging due to the fact that γ is quantified by using MRI, may be an alternative strategy to investigate, at high magnetic fields, microstructural changes in myelin, and alterations due to iron accumulation. Possible clinical applications might be in the field of neurodegenerative diseases.
Collapse
Affiliation(s)
- A Caporale
- Morpho-functional Sciences, Department of Anatomical, Histological, Forensic and of the Locomotor System Science, Sapienza University of Rome, Italy; CNR ISC UOS Roma Sapienza, Physics Department Sapienza University of Rome, Rome, Italy.
| | - M Palombo
- CNR ISC UOS Roma Sapienza, Physics Department Sapienza University of Rome, Rome, Italy; MIRCen, CEA/DSV/I(2)BM, Fontenay-aux-Roses, France
| | - E Macaluso
- ImpAct Team, Lyon Neuroscience Research Center, Lyon, France
| | - M Guerreri
- CNR ISC UOS Roma Sapienza, Physics Department Sapienza University of Rome, Rome, Italy; Morphogenesis & Tissue Engineering, Department of Anatomical, Histological, Forensic and of the Locomotor System Science, Sapienza University of Rome, Italy
| | - M Bozzali
- Neuroimaging Laboratory Santa Lucia Foundation, Rome, Italy
| | - S Capuani
- CNR ISC UOS Roma Sapienza, Physics Department Sapienza University of Rome, Rome, Italy
| |
Collapse
|
35
|
A diffusion tensor imaging atlas of white matter in tree shrew. Brain Struct Funct 2016; 222:1733-1751. [PMID: 27624528 DOI: 10.1007/s00429-016-1304-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/04/2016] [Indexed: 10/21/2022]
Abstract
Tree shrews are small mammals now commonly classified in the order of Scandentia, but have relatively closer affinity to primates than rodents. The species has a high brain-to-body mass ratio and relatively well-differentiated neocortex, and thus has been frequently used in neuroscience research, especially for studies on vision and neurological/psychiatric diseases. The available atlases on tree shrew brain provided only limited information on white matter (WM) anatomy. In this study, diffusion tensor imaging (DTI) was used to study the WM anatomy of tree shrew, with the goal to establish an image-based WM atlas. DTI and T2-weighted anatomical images were acquired in vivo and from fixed brain samples. Deterministic tractography was used for three-dimensional reconstruction and rendering of major WM tracts. Myelin and neurofilaments staining were used to study the microstructural properties of certain WM tracts. Taking into account prior knowledge on tree shrew neuroanatomy, tractography results, and comparisons to the homologous structures in rodents and primates, an image-based WM atlas of tree shrew brain was constructed, which is available to research community upon request.
Collapse
|
36
|
Desmond KL, Al-Ebraheem A, Janik R, Oakden W, Kwiecien JM, Dabrowski W, Rola R, Geraki K, Farquharson MJ, Stanisz GJ, Bock NA. Differences in iron and manganese concentration may confound the measurement of myelin from R1 and R2 relaxation rates in studies of dysmyelination. NMR IN BIOMEDICINE 2016; 29:985-998. [PMID: 27226282 DOI: 10.1002/nbm.3549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/20/2016] [Accepted: 04/10/2016] [Indexed: 06/05/2023]
Abstract
A model of dysmyelination, the Long Evans Shaker (les) rat, was used to study the contribution of myelin to MR tissue properties in white matter. A large region of white matter was identified in the deep cerebellum and was used for measurements of the MR relaxation rate constants, R1 = 1/T1 and R2 = 1/T2 , at 7 T. In this study, R1 of the les deep cerebellar white matter was found to be 0.55 ± 0.08 s (-1) and R2 was found to be 15 ± 1 s(-1) , revealing significantly lower R1 and R2 in les white matter relative to wild-type (wt: R1 = 0.69 ± 0.05 s(-1) and R2 = 18 ± 1 s(-1) ). These deviated from the expected ΔR1 and ΔR2 values, given a complete lack of myelin in the les white matter, derived from the literature using values of myelin relaxivity, and we suspect that metals could play a significant role. The absolute concentrations of the paramagnetic transition metals iron (Fe) and manganese (Mn) were measured by a micro-synchrotron radiation X-ray fluorescence (μSRXRF) technique, with significantly greater Fe and Mn in les white matter than in wt (in units of μg [metal]/g [wet weight tissue]: les: Fe concentration,19 ± 1; Mn concentration, 0.71 ± 0.04; wt: Fe concentration,10 ± 1; Mn concentration, 0.47 ± 0.04). These changes in Fe and Mn could explain the deviations in R1 and R2 from the expected values in white matter. Although it was found that the influence of myelin still dominates R1 and R2 in wt rats, there were non-negligible changes in the contribution of the metals to relaxation. Although there are already problems with the estimation of myelin from R1 and R2 changes in disease models with pathology that also affects the relaxation rate constants, this study points to a specific pitfall in the estimation of changes in myelin in diseases or models with disrupted concentrations of paramagnetic transition metals. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kimberly L Desmond
- Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
- Imaging Research, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Alia Al-Ebraheem
- School of Interdisciplinary Science, Medical Radiation Sciences program, McMaster University, Hamilton, ON, Canada
| | - Rafal Janik
- Imaging Research, Sunnybrook Research Institute, Toronto, ON, Canada
- Medical Biophysics, University of Toronto, ON, Canada
| | - Wendy Oakden
- Imaging Research, Sunnybrook Research Institute, Toronto, ON, Canada
- Medical Biophysics, University of Toronto, ON, Canada
| | - Jacek M Kwiecien
- Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Department of Clinical Pathomorphology, Lublin Medical University, Lublin, Poland
| | - Wojciech Dabrowski
- Anaesthesiology and Intensive Therapy, Lublin Medical University, Lublin, Poland
| | - Radoslaw Rola
- Neurosurgery & Pediatric Neurosurgery, Lublin Medical University, Lublin, Poland
| | - Kalotina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| | - Michael J Farquharson
- School of Interdisciplinary Science, Medical Radiation Sciences program, McMaster University, Hamilton, ON, Canada
| | - Greg J Stanisz
- Imaging Research, Sunnybrook Research Institute, Toronto, ON, Canada
- Medical Biophysics, University of Toronto, ON, Canada
- Neurosurgery & Pediatric Neurosurgery, Lublin Medical University, Lublin, Poland
| | - Nicholas A Bock
- Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
37
|
Uddin MN, Lebel RM, Wilman AH. Value of transverse relaxometry difference methods for iron in human brain. Magn Reson Imaging 2016; 34:51-9. [DOI: 10.1016/j.mri.2015.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 05/06/2015] [Accepted: 09/11/2015] [Indexed: 01/14/2023]
|
38
|
Wisnieff C, Liu T, Wang Y, Spincemaille P. The influence of molecular order and microstructure on the R2* and the magnetic susceptibility tensor. Magn Reson Imaging 2015; 34:682-9. [PMID: 26692502 DOI: 10.1016/j.mri.2015.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 01/07/2023]
Abstract
In this work, we demonstrate that in the presence of ordered sub-voxel structure such as tubular organization, biomaterials with molecular isotropy exhibits only apparent R2* anisotropy, while biomaterials with molecular anisotropy exhibit both apparent R2* and susceptibility anisotropy by means of susceptibility tensor imaging (STI). To this end, R2* and STI from gradient echo magnitude and phase data were examined in phantoms made from carbon fiber and Gadolinium (Gd) solutions with and without intrinsic molecular order and sub-voxel structure as well as in the in vivo brain. Confidence in the tensor reconstructions was evaluated with a wild bootstrap analysis. Carbon fiber showed both apparent anisotropy in R2* and anisotropy in STI, while the Gd filled capillary tubes only showed apparent anisotropy on R2*. Similarly, white matter showed anisotropic R2* and magnetic susceptibility with higher confidence, while the cerebral veins displayed only strong apparent R2* tensor anisotropy. Ordered sub-voxel tissue microstructure leads to apparent R2* anisotropy, which can be found in both white matter tracts and cerebral veins. However, additional molecular anisotropy is required for magnetic susceptibility anisotropy, which can be found in white matter tracts but not in cerebral veins.
Collapse
Affiliation(s)
- Cynthia Wisnieff
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Tian Liu
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA; Medimagemetric, LLC, New York, NY, USA
| | - Yi Wang
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | | |
Collapse
|
39
|
Custom fit 3D-printed brain holders for comparison of histology with MRI in marmosets. J Neurosci Methods 2015; 257:55-63. [PMID: 26365332 DOI: 10.1016/j.jneumeth.2015.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND MRI has the advantage of sampling large areas of tissue and locating areas of interest in 3D space in both living and ex vivo systems, whereas histology has the ability to examine thin slices of ex vivo tissue with high detail and specificity. Although both are valuable tools, it is currently difficult to make high-precision comparisons between MRI and histology due to large differences inherent to the techniques. A method combining the advantages would be an asset to understanding the pathological correlates of MRI. NEW METHOD 3D-printed brain holders were used to maintain marmoset brains in the same orientation during acquisition of ex vivo MRI and pathologic cutting of the tissue. RESULTS The results of maintaining this same orientation show that sub-millimeter, discrete neuropathological features in marmoset brain consistently share size, shape, and location between histology and ex vivo MRI, which facilitates comparison with serial imaging acquired in vivo. COMPARISON WITH EXISTING METHODS Existing methods use computational approaches sensitive to data input in order to warp histologic images to match large-scale features on MRI, but the new method requires no warping of images, due to a preregistration accomplished in the technique, and is insensitive to data formatting and artifacts in both MRI and histology. CONCLUSIONS The simple method of using 3D-printed brain holders to match brain orientation during pathologic sectioning and MRI acquisition enables rapid and precise comparison of small features seen on MRI to their underlying histology.
Collapse
|
40
|
Hung CC, Yen CC, Ciuchta JL, Papoti D, Bock NA, Leopold DA, Silva AC. Functional MRI of visual responses in the awake, behaving marmoset. Neuroimage 2015; 120:1-11. [PMID: 26149609 DOI: 10.1016/j.neuroimage.2015.06.090] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/09/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022] Open
Abstract
The visual brain is composed of interconnected subcortical and cortical structures that receive and process image information originating in the retina. The visual system of nonhuman primates, in particular macaques, has been studied in great detail in order to elucidate principles of human sensation and perception. The common marmoset (Callithrix jacchus) is a small New World monkey of growing interest as a primate model for neuroscience. Marmosets have advantages over macaques because of their small size, lissencephalic cortex, and growing potential for viral and genetic manipulations. Previous anatomical studies and electrophysiological recordings in anesthetized marmosets have shown that this species' cortical visual hierarchy closely resembles that of other primates, including humans. Until now, however, there have been no attempts to systematically study visual responses throughout the marmoset brain using fMRI. Here we show that awake marmosets readily learn to carry out a simple visual task inside the bore of an MRI scanner during functional mapping experiments. Functional scanning at 500 μm in-plane resolution in a 30 cm horizontal bore at 7 T revealed robust positive blood oxygenation level-dependent (BOLD) fMRI responses to visual stimuli throughout visual cortex and associated subcortical areas. Nonvisual sensory areas showed negative contrasts to visual stimuli compared to the fixation dot only baseline. Structured images of objects and faces led to stronger responses than scrambled control images at stages beyond early visual cortex. Our study establishes fMRI mapping of visual responses in awake, behaving marmosets as a straightforward and valuable tool for assessing the functional organization of the primate brain at high resolution.
Collapse
Affiliation(s)
- Chia-Chun Hung
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA; Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD, 20892, USA
| | - Cecil C Yen
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jennifer L Ciuchta
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel Papoti
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nicholas A Bock
- Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - David A Leopold
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD, 20892, USA; Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, Bethesda, MD, 20892, USA
| | - Afonso C Silva
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
41
|
Mangeat G, Govindarajan ST, Mainero C, Cohen-Adad J. Multivariate combination of magnetization transfer, T2* and B0 orientation to study the myelo-architecture of the in vivo human cortex. Neuroimage 2015; 119:89-102. [PMID: 26095090 DOI: 10.1016/j.neuroimage.2015.06.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 05/04/2015] [Accepted: 06/11/2015] [Indexed: 12/21/2022] Open
Abstract
Recently, T2* imaging at 7Tesla (T) MRI was shown to reveal microstructural features of the cortical myeloarchitecture thanks to an increase in contrast-to-noise ratio. However, several confounds hamper the specificity of T2* measures (iron content, blood vessels, tissues orientation). Another metric, magnetization transfer ratio (MTR), is known to also be sensitive to myelin content and thus would be an excellent complementary measure because its underlying contrast mechanisms are different than that from T2*. The goal of this study was thus to combine MTR and T2* using multivariate statistics in order to gain insights into cortical myelin content. Seven healthy subjects were scanned at 7T and 3T to obtain T2* and MTR data, respectively. A multivariate myelin estimation model (MMEM) was developed, and consists in (i) normalizing T2* and MTR values and (ii) extracting their shared information using independent component analysis (ICA). B0 orientation dependence and cortical thickness were also computed and included in the model. Results showed high correlation between MTR and T2* in the whole cortex (r=0.76, p<10(-16)), suggesting that both metrics are partly driven by a common source of contrast, here assumed to be the myelin. Average MTR and T2* were respectively 31.0+/-0.3% and 32.1+/-1.4 ms. Results of the MMEM spatial distribution showed similar trends to that from histological work stained for myelin (r=0.77, p<0.01). Significant right-left differences were detected in the primary motor cortex (p<0.05), the posterior cingulate cortex (p<0.05) and the visual cortex (p<0.05). This study demonstrates that MTR and T2* are highly correlated in the cortex. The combination of MTR, T2*, CT and B0 orientation may be a useful means to study cortical myeloarchitecture with more specificity than using any of the individual methods. The MMEM framework is extendable to other contrasts such as T1 and diffusion MRI.
Collapse
Affiliation(s)
- G Mangeat
- Neuroimaging Research Laboratory (NeuroPoly), Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Athinoula A. Martinos Center for Biomedical Imaging, MGH, Charlestown, MA, USA
| | - S T Govindarajan
- Athinoula A. Martinos Center for Biomedical Imaging, MGH, Charlestown, MA, USA
| | - C Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, MGH, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - J Cohen-Adad
- Neuroimaging Research Laboratory (NeuroPoly), Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
42
|
Lehto LJ, Garwood M, Gröhn O, Corum CA. Phase imaging in brain using SWIFT. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 252:20-28. [PMID: 25625826 PMCID: PMC4404316 DOI: 10.1016/j.jmr.2014.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
The majority of MRI phase imaging is based on gradient recalled echo (GRE) sequences. This work studies phase contrast behavior due to small off-resonance frequency offsets in brain using SWIFT, a FID-based sequence with nearly zero acquisition delay. 1D simulations and a phantom study were conducted to describe the behavior of phase accumulation in SWIFT. Imaging experiments of known brain phase contrast properties were conducted in a perfused rat brain comparing GRE and SWIFT. Additionally, a human brain sample was imaged. It is demonstrated how SWIFT phase is orientation dependent and correlates well with GRE, linking SWIFT phase to similar off-resonance sources as GRE. The acquisition time is shown to be analogous to TE for phase accumulation time. Using experiments with and without a magnetization transfer preparation, the likely effect of myelin water pool contribution is seen as a phase increase for all acquisition times. Due to the phase accumulation during acquisition, SWIFT phase contrast can be sensitized to small frequency differences between white and gray matter using low acquisition bandwidths.
Collapse
Affiliation(s)
- Lauri Juhani Lehto
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Center for Magnetic Resonance Research, University of Minnesota, 2021 6th Street SE, Minneapolis, MN 55455, USA.
| | - Michael Garwood
- Center for Magnetic Resonance Research, University of Minnesota, 2021 6th Street SE, Minneapolis, MN 55455, USA.
| | - Olli Gröhn
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Curtis Andrew Corum
- Center for Magnetic Resonance Research, University of Minnesota, 2021 6th Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
43
|
Yao B, Ikonomidou VN, Cantor FK, Ohayon JM, Duyn J, Bagnato F. Heterogeneity of Multiple Sclerosis White Matter Lesions Detected With T2*-Weighted Imaging at 7.0 Tesla. J Neuroimaging 2015; 25:799-806. [PMID: 25657078 DOI: 10.1111/jon.12193] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/15/2014] [Accepted: 08/16/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Postmortem studies in multiple sclerosis (MS) indicate that in some white matter lesions (WM-Ls), iron is detectable with T2*-weighted (T2*-w), and its reciprocal R2* relaxation rate, magnetic resonance imaging (MRI) at 7.0 Tesla (7T). This iron appears as a hyperintense rim in R2* images surrounding a hypointense core. We describe how this observation relates to clinical/radiological characteristics of patients, in vivo. METHODS We imaged 16 MS patients using 3T and 7T scanners. WM-Ls were identified on T1-w / T2-w 3T-MRIs. Thereafter, WM-Ls with a rim of elevated R2* at 7T were counted and compared to their appearance on conventional MRIs. RESULTS We counted 36 WM-Ls presenting a rim of elevated R2* in 10 patients. Twenty-three (64%) lesions coincided with focal WM-Ls on T2-w MRIs; 13 (36%) coincided with only portions of larger lesions on T2-w images; and 20 (56%) corresponded to a hypointense chronic black hole. WM-Ls presenting a rim of elevated R2* were seen in both relapsing-remitting patients with low disability and in those with long-standing secondary progressive MS. CONCLUSIONS WM-Ls with a contour of high R2* are present at different MS stages, potentially representing differences in the contribution of iron in MS disease evolution.
Collapse
Affiliation(s)
- Bing Yao
- Advanced Magnetic Resonance Imaging Section Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD.,Neuroimaging Center, Kessler Foundation, West Orange, NJ
| | - Vasiliki N Ikonomidou
- Neuroimmunology Branch, NINDS, NIH, Bethesda, MD.,Department of Bioengineering, Volgenau School of Engineering, George Mason University, Fairfax, VA
| | | | | | - Jeff Duyn
- Advanced Magnetic Resonance Imaging Section Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Francesca Bagnato
- Neuroimmunology Branch, NINDS, NIH, Bethesda, MD.,Neurology Department, University of Maryland, Baltimore, MD
| |
Collapse
|
44
|
Haacke EM, Liu S, Buch S, Zheng W, Wu D, Ye Y. Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging 2014; 33:1-25. [PMID: 25267705 DOI: 10.1016/j.mri.2014.09.004] [Citation(s) in RCA: 378] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/14/2014] [Accepted: 09/22/2014] [Indexed: 01/13/2023]
Abstract
Quantitative susceptibility mapping (QSM) is a new technique for quantifying magnetic susceptibility. It has already found various applications in quantifying in vivo iron content, calcifications and changes in venous oxygen saturation. The accuracy of susceptibility mapping is dependent on several factors. In this review, we evaluate the entire process of QSM from data acquisition to individual data processing steps. We also show preliminary results of several new concepts introduced in this review in an attempt to improve the quality and accuracy for certain steps. The uncertainties in estimating susceptibility differences using susceptibility maps, phase images, and T2* maps are analyzed and compared. Finally, example clinical applications are presented. We conclude that QSM holds great promise in quantifying iron and becoming a standard clinical tool.
Collapse
Affiliation(s)
- E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, USA; School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China.
| | - Saifeng Liu
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Sagar Buch
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Weili Zheng
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Dongmei Wu
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Yongquan Ye
- Department of Radiology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
45
|
Sedlacik J, Boelmans K, Löbel U, Holst B, Siemonsen S, Fiehler J. Reversible, irreversible and effective transverse relaxation rates in normal aging brain at 3T. Neuroimage 2014; 84:1032-41. [DOI: 10.1016/j.neuroimage.2013.08.051] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 12/24/2022] Open
|
46
|
Sukstanskii AL, Yablonskiy DA. On the role of neuronal magnetic susceptibility and structure symmetry on gradient echo MR signal formation. Magn Reson Med 2014; 71:345-53. [PMID: 23382087 PMCID: PMC3657601 DOI: 10.1002/mrm.24629] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/20/2012] [Accepted: 12/15/2012] [Indexed: 12/13/2022]
Abstract
PURPOSE Phase images obtained by gradient-recalled echo (GRE) MRI provide new contrast in the brain that is distinct from that obtained with conventional T1-weighted and T2-weighted images. The results are especially intriguing in white matter where both signal amplitude and phase display anisotropic properties. However, the biophysical origins of these phenomena are not well understood. The goal of this article is to provide a comprehensive theory of GRE signal formation based on a realistic model of neuronal structure. METHODS We use Maxwell equations to find the distribution of magnetic field induced by myelin sheath and axon. We account for both anisotropy of neuronal tissue "magnetic micro-architecture" and anisotropy of myelin sheath magnetic susceptibility. RESULTS Model describes GRE signal comprising of three compartments-axonal, myelin, and extracellular. Both axonal and myelin water signals have frequency shifts that are affected by the magnetic susceptibility anisotropy of long molecules forming lipid bilayer membranes. These parts of frequency shifts reach extrema for axon oriented perpendicular to the magnetic field and are zeros in a parallel case. Myelin water signal is substantially non-monoexponential. CONCLUSIONS Both, anisotropy of neuronal tissue "magnetic micro-architecture" and anisotropy of myelin sheath magnetic susceptibility, are important for describing GRE signal phase and magnitude.
Collapse
|
47
|
Absinta M, Sati P, Gaitán MI, Maggi P, Cortese ICM, Filippi M, Reich DS. Seven-tesla phase imaging of acute multiple sclerosis lesions: a new window into the inflammatory process. Ann Neurol 2013; 74:669-78. [PMID: 23813441 PMCID: PMC3812397 DOI: 10.1002/ana.23959] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/15/2013] [Accepted: 05/28/2013] [Indexed: 12/27/2022]
Abstract
OBJECTIVE In multiple sclerosis (MS), accurate, in vivo characterization of dynamic inflammatory pathological changes occurring in newly forming lesions could have major implications for understanding disease pathogenesis and mechanisms of tissue destruction. Here, we investigated the potential of ultrahigh-field magnetic resonance imaging (MRI; 7T), particularly phase imaging combined with dynamic contrast enhancement, to provide new insights in acute MS lesions. METHODS Sixteen active MS patients were studied at 7T. Noncontrast, high-resolution T2* magnitude and phase scans, T1 scans before/after gadolinium contrast injection, and dynamic contrast-enhanced (DCE) T1 scans were acquired. T2*/phase features and DCE pattern were determined for acute and chronic lesions. When possible, 1-year follow-up 7T MRI was performed. RESULTS Of 49 contrast-enhancing lesions, 44 could be analyzed. Centrifugal DCE lesions appeared isointense or hypointense on phase images, whereas centripetal DCE lesions showed thin, hypointense phase rims that clearly colocalized with the initial site of contrast enhancement. This pattern generally disappeared once enhancement resolved. Conversely, in 43 chronic lesions also selected for the presence of hypointense phase rims, the findings were stable over time, and the rims were typically thicker and darker. These considerations suggest different underlying pathological processes in the 2 lesion types. INTERPRETATION Ultrahigh-field MRI and, especially, phase contrast, are highly sensitive to tissue changes in acute MS lesions, which differ from the patterns seen in chronic lesions. In acute lesions, the hypointense phase rim reflects the expanding inflammatory edge and may directly correspond to inflammatory byproducts and sequelae of blood-brain barrier opening.
Collapse
Affiliation(s)
- Martina Absinta
- Translational Neuroradiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Deistung A, Schäfer A, Schweser F, Biedermann U, Güllmar D, Trampel R, Turner R, Reichenbach JR. High-Resolution MR Imaging of the Human Brainstem In vivo at 7 Tesla. Front Hum Neurosci 2013; 7:710. [PMID: 24194710 PMCID: PMC3810670 DOI: 10.3389/fnhum.2013.00710] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 10/07/2013] [Indexed: 12/11/2022] Open
Abstract
The human brainstem, which comprises a multitude of axonal nerve fibers and nuclei, plays an important functional role in the human brain. Depicting its anatomy non-invasively with high spatial resolution may thus in turn help to better relate normal and pathological anatomical variations to medical conditions as well as neurological and peripheral functions. We explored the potential of high-resolution magnetic resonance imaging (MRI) at 7 T for depicting the intricate anatomy of the human brainstem in vivo by acquiring and generating images with multiple contrasts: T 2-weighted images, quantitative maps of longitudinal relaxation rate (R 1 maps) and effective transverse relaxation rate ([Formula: see text] maps), magnetic susceptibility maps, and direction-encoded track-density images. Images and quantitative maps were compared with histological stains and anatomical atlases to identify nerve nuclei and nerve fibers. Among the investigated contrasts, susceptibility maps displayed the largest number of brainstem structures. Contrary to R 1 maps and T 2-weighted images, which showed rather homogeneous contrast, [Formula: see text] maps, magnetic susceptibility maps, and track-density images clearly displayed a multitude of smaller and larger fiber bundles. Several brainstem nuclei were identifiable in sections covering the pons and medulla oblongata, including the spinal trigeminal nucleus and the reticulotegmental nucleus on magnetic susceptibility maps as well as the inferior olive on R 1, [Formula: see text], and susceptibility maps. The substantia nigra and red nuclei were visible in all contrasts. In conclusion, high-resolution, multi-contrast MR imaging at 7 T is a versatile tool to non-invasively assess the individual anatomy and tissue composition of the human brainstem.
Collapse
Affiliation(s)
- Andreas Deistung
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology I, Center of Radiology, Jena University Hospital - Friedrich Schiller University Jena , Jena , Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Duyn J. MR susceptibility imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 229:198-207. [PMID: 23273840 PMCID: PMC3602381 DOI: 10.1016/j.jmr.2012.11.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 05/23/2023]
Abstract
This work reviews recent developments in the use of magnetic susceptibility contrast for human MRI, with a focus on the study of brain anatomy. The increase in susceptibility contrast with modern high field scanners has led to novel applications and insights into the sources and mechanism contributing to this contrast in brain tissues. Dedicated experiments have demonstrated that in most of healthy brain, iron and myelin dominate tissue susceptibility variations, although their relative contribution varies substantially. Local variations in these compounds can affect both amplitude and frequency of the MRI signal. In white matter, the myelin sheath introduces an anisotropic susceptibility that has distinct effects on the water compartments inside the axons, between the myelin sheath, and the axonal space, and renders their signals dependent on the angle between the axon and the magnetic field. This offers opportunities to derive tissue properties specific to these cellular compartments.
Collapse
Affiliation(s)
- Jeff Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
50
|
Helms G, Garea-Rodriguez E, Schlumbohm C, König J, Dechent P, Fuchs E, Wilke M. Structural and quantitative neuroimaging of the common marmoset monkey using a clinical MRI system. J Neurosci Methods 2013; 215:121-31. [DOI: 10.1016/j.jneumeth.2013.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/19/2013] [Accepted: 02/14/2013] [Indexed: 01/02/2023]
|