1
|
Perez V, Hidalgo V, Salvador A. Linking cognitive reserve to neuropsychological outcomes and resting-state frequency bands in healthy aging. Front Aging Neurosci 2025; 17:1540168. [PMID: 40166616 PMCID: PMC11955703 DOI: 10.3389/fnagi.2025.1540168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction As the proportion of older people has surged in the past 100 years, healthy aging has emerged as a crucial topic in neuroscience research. This study aimed to investigate the spectral power of EEG frequency bands during resting-state in older people with high and low cognitive reserve (CR). Methods To do so, 74 healthy older people (55-74 years old) were recruited and divided into two groups based on their level of CR: high CR (n = 41; 21 men and 20 women) and low CR (n = 33; 15 men and 18 women). Both groups participated in a cognitive assessment and 3 min of EEG recording under resting-state conditions with eyes open (EO) and eyes closed (EC). EEG power was analyzed across four frequency bands: delta (0.1- < 4 Hz), theta (4- < 8 Hz), alpha1 (8-10 Hz), alpha2 (10-12), and beta (14-30 Hz), focusing on five cortical regions of interest. Results Neuropsychological tests did not reveal significant differences between the two groups on most of the cognitive measures. However, the EEG analysis showed that individuals with high CR exhibited lower spectral power in the theta and delta frequency bands across different brain regions, compared to those with low CR. Discussion These findings suggest that individuals with high CR tend to function more efficiently, relying on fewer neural resources to sustain cognitive performance. In contrast, those with low CR may engage compensatory neural mechanisms, as indicated by increased spectral power while resting, conceivably reflecting the brain's effort to preserve cognitive function.
Collapse
Affiliation(s)
- Vanesa Perez
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology, IDOCAL, University of Valencia, Valencia, Spain
- Research Group of Psychology and Quality of Life (PsiCal), Valencian International University, Valencia, Spain
| | - Vanesa Hidalgo
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology, IDOCAL, University of Valencia, Valencia, Spain
- Department of Psychology and Sociology, Area of Psychobiology, University of Zaragoza, Teruel, Spain
| | - Alicia Salvador
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology, IDOCAL, University of Valencia, Valencia, Spain
- Spanish National Network for Research in Mental Health CIBERSAM, Madrid, Spain
| |
Collapse
|
2
|
Parviainen T, Alexandrou AM, Lapinkero H, Sipilä S, Kujala J. The link between executive skills and neural dynamics during encoding, inhibition, and retrieval of visual information in the elderly. Hum Brain Mapp 2024; 45:e26755. [PMID: 39185717 PMCID: PMC11345698 DOI: 10.1002/hbm.26755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 05/07/2024] [Accepted: 05/27/2024] [Indexed: 08/27/2024] Open
Abstract
During aging the inter-individual variability in both the neural and behavioral functions is likely to be emphasized. Decreased competence particularly in working memory and general executive control compromises many aspects of the quality of life also within the nonclinical population. We aimed, first, to clarify the brain basis of visual working memory and inhibition during multi-stage natural-like task performance, and second, to identify associations between variation in task-related neural activity and relevant cognitive skills, namely inhibition and general working memory capacity. We recorded, using magnetoencephalography (MEG), the neural modulations associated with encoding, maintenance, and retrieval, as well as interference suppression during a visual working memory task in older adults. We quantified the neural correlates of these cognitive processes through two complementary approaches: evoked responses and oscillatory activity. Neural activity during memory retrieval and interference suppression were correlated with behavioral measures of task switching and general executive functions. Our results show that general inhibitory control induced frontocentral neural modulation across a broad range of frequencies whereas domain-specific inhibition was limited to right posterior areas. Our findings also suggest that modulations particularly in phase-locked evoked neural activity can be reliably associated with explicit measures of cognitive skills, with better inhibitory control linked with an early neural effect of distractor inhibition during retrieval. In general, we show that exploiting the inherent inter-individual variability in neural measures and behavioral markers of cognition in aging populations can help establish reliable links between specific brain functions and their behavioral manifestations.
Collapse
Affiliation(s)
- Tiina Parviainen
- Department of PsychologyUniversity of JyväskyläJyväskyläFinland
- Jyväskylä Centre for Interdisciplinary Brain Research (CIBR), Faculty of Education and PsychologyUniversity of JyväskyläJyväskyläFinland
| | - Anna Maria Alexandrou
- Department of PsychologyUniversity of JyväskyläJyväskyläFinland
- Jyväskylä Centre for Interdisciplinary Brain Research (CIBR), Faculty of Education and PsychologyUniversity of JyväskyläJyväskyläFinland
| | - Hanna‐Maija Lapinkero
- Department of PsychologyUniversity of JyväskyläJyväskyläFinland
- Jyväskylä Centre for Interdisciplinary Brain Research (CIBR), Faculty of Education and PsychologyUniversity of JyväskyläJyväskyläFinland
| | - Sarianna Sipilä
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Jan Kujala
- Department of PsychologyUniversity of JyväskyläJyväskyläFinland
- Jyväskylä Centre for Interdisciplinary Brain Research (CIBR), Faculty of Education and PsychologyUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
3
|
Pappalettera C, Carrarini C, Miraglia F, Vecchio F, Rossini PM. Cognitive resilience/reserve: Myth or reality? A review of definitions and measurement methods. Alzheimers Dement 2024; 20:3567-3586. [PMID: 38477378 PMCID: PMC11095447 DOI: 10.1002/alz.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 03/14/2024]
Abstract
INTRODUCTION This review examines the concept of cognitive reserve (CR) in relation to brain aging, particularly in the context of dementia and its early stages. CR refers to an individual's ability to maintain or regain cognitive function despite brain aging, damage, or disease. Various factors, including education, occupation complexity, leisure activities, and genetics are believed to influence CR. METHODS We revised the literature in the context of CR. A total of 842 articles were identified, then we rigorously assessed the relevance of articles based on titles and abstracts, employing a systematic approach to eliminate studies that did not align with our research objectives. RESULTS We evaluate-also in a critical way-the methods commonly used to define and measure CR, including sociobehavioral proxies, neuroimaging, and electrophysiological and genetic measures. The challenges and limitations of these measures are discussed, emphasizing the need for more targeted research to improve the understanding, definition, and measurement of CR. CONCLUSIONS The review underscores the significance of comprehending CR in the context of both normal and pathological brain aging and emphasizes the importance of further research to identify and enhance this protective factor for cognitive preservation in both healthy and neurologically impaired older individuals. HIGHLIGHTS This review examines the concept of cognitive reserve in brain aging, in the context of dementia and its early stages. We have evaluated the methods commonly used to define and measure cognitive reserve. Sociobehavioral proxies, neuroimaging, and electrophysiological and genetic measures are discussed. The review emphasizes the importance of further research to identify and enhance this protective factor for cognitive preservation.
Collapse
Affiliation(s)
- Chiara Pappalettera
- Brain Connectivity LaboratoryDepartment of Neuroscience and NeurorehabilitationIRCCS San Raffaele RomaRomeItaly
- Department of Theoretical and Applied ScienceseCampus UniversityNovedrateItaly
| | - Claudia Carrarini
- Brain Connectivity LaboratoryDepartment of Neuroscience and NeurorehabilitationIRCCS San Raffaele RomaRomeItaly
- Department of NeuroscienceCatholic University of Sacred HeartRomeItaly
| | - Francesca Miraglia
- Brain Connectivity LaboratoryDepartment of Neuroscience and NeurorehabilitationIRCCS San Raffaele RomaRomeItaly
- Department of Theoretical and Applied ScienceseCampus UniversityNovedrateItaly
| | - Fabrizio Vecchio
- Brain Connectivity LaboratoryDepartment of Neuroscience and NeurorehabilitationIRCCS San Raffaele RomaRomeItaly
- Department of Theoretical and Applied ScienceseCampus UniversityNovedrateItaly
| | - Paolo M. Rossini
- Brain Connectivity LaboratoryDepartment of Neuroscience and NeurorehabilitationIRCCS San Raffaele RomaRomeItaly
| |
Collapse
|
4
|
Fernández‐Rodríguez B, Rodríguez‐Rojas R, Guida P, Angulo‐Díaz‐Parreño S, Trompeta C, Mata‐Marín D, Obeso I, Vela L, Plaza de las Heras I, Obeso JA, Gasca‐Salas C. Cognitive Reserve in Parkinson's Disease without Dementia: β-Amyloid and Metabolic Assessment. Mov Disord Clin Pract 2024; 11:282-288. [PMID: 38169114 PMCID: PMC10928358 DOI: 10.1002/mdc3.13967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 11/14/2023] [Accepted: 12/09/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Cognitive reserve (CR) is the mismatch between preserved cognition and neuropathological damage. Amyloidopathy in Parkinson's disease (PD) could be associated with faster progression to dementia, but the putative protective effect of CR is unknown. OBJECTIVES To evaluate the effect of CR on β-amyloid burden and brain metabolism in non-demented PD subjects. METHODS Participants with PD (n = 53) underwent a clinical evaluation, [18 F]-fluorodeoxyglucose and [18 F]-flutemetamol positron emission tomography magnetic resonances, and were classified according to CR. The metabolic pattern of 16 controls was compared to PD subjects. RESULTS The PD subjects showed hypometabolism mainly in the bilateral posterior cortex. Superior-CR subjects (n = 22) exhibited better cognitive performance, increased amyloid burden, and higher metabolism in several right hemisphere areas compared to low-medium-CR subjects (n = 31). CONCLUSIONS Higher CR in non-demented PD is associated with better cognitive performance, which might reduce vulnerability to the effect of β-amyloid. Whether superior CR leads to protection against metabolic deterioration, and predominantly right hemisphere involvement, deserves further exploration.
Collapse
Affiliation(s)
- Beatriz Fernández‐Rodríguez
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM HospitalesMadridSpain
- PhD Program in Neuroscience, Autonoma de Madrid University‐Cajal InstituteMadridSpain
| | - Rafael Rodríguez‐Rojas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM HospitalesMadridSpain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos IIIMadridSpain
| | - Pasqualina Guida
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM HospitalesMadridSpain
- PhD Program in Neuroscience, Autonoma de Madrid University‐Cajal InstituteMadridSpain
| | - Santiago Angulo‐Díaz‐Parreño
- CEMBIO, Centro de Excelencia en Metabolómica y Bioanálisis, Facultad de Farmacia, Universidad San Pablo CEUMadridSpain
- Departamento de Matemática Aplicada y EstadísticaUniversidad San Pablo CEUMadridSpain
| | - Clara Trompeta
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM HospitalesMadridSpain
- PhD Program in Health SciencesUniversity of Alcala de HenaresAlcalá de HenaresSpain
| | - David Mata‐Marín
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM HospitalesMadridSpain
- PhD Program in Neuroscience, Autonoma de Madrid University‐Cajal InstituteMadridSpain
| | - Ignacio Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM HospitalesMadridSpain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos IIIMadridSpain
| | - Lydia Vela
- Hospital Universitario Fundación AlcorcónAlcorcónSpain
| | | | - José A. Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM HospitalesMadridSpain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos IIIMadridSpain
| | - Carmen Gasca‐Salas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM HospitalesMadridSpain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos IIIMadridSpain
- University CEU‐San PabloMadridSpain
| |
Collapse
|
5
|
Di Tella S, Isernia S, Cabinio M, Rossetto F, Borgnis F, Pagliari C, Cazzoli M, Navarro J, Silveri MC, Baglio F. Cognitive Reserve proxies can modulate motor and non-motor basal ganglia circuits in early Parkinson's Disease. Brain Imaging Behav 2024; 18:220-230. [PMID: 37993754 PMCID: PMC10844415 DOI: 10.1007/s11682-023-00829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Parkinson's Disease (PD) is hallmarked by dysfunctional circuitry between the basal ganglia and dorsolateral-prefrontal cortex. Recently progress has been made in understanding factors contributing to differential susceptibility to pathology mitigating disease-related cognitive decline. Cognitive reserve, the brain processing resources accumulated throughout life while engaged in mentally stimulating activities, can play an important protective role in cognitive performance. We tested the hypothesis that Cognitive Reserve proxies may exert an impact on the basal ganglia and dorsolateral-prefrontal atrophy in early PD. Forty-five early patients with PD and 20 age-gender-matched healthy controls (HC) completed the Cognitive Reserve Index questionnaire to quantify Cognitive Reserve proxies by three indexes (CRI-Education, CRI-Working Activity, CRI-Leisure Time) and a structural MRI examination (3T). Morphometrical indexes for basal ganglia (bilateral putamen, caudate, pallidum volume) and dorsolateral-prefrontal cortex (cortical thickness) were computed. Significant differences between HC and PD were tested by direct comparisons in demographics, cognitive level, and cognitive reserve proxies indexes. Then two multiple regression analyses were performed to identify predictors of the basal ganglia and dorsolateral-prefrontal cortex structural integrity. Regression analysis revealed that basal ganglia volume was significantly predicted by CRI-Education (pFDR = 0.029), sex (pFDR = 0.029), and Total Intracranial Volume (pFDR < 0.001). Instead, the dorsolateral-prefrontal thickness was predicted by CRI-Leisure Time (pFDR = 0.030) and age (pFDR = 0.010). Cognitive Reserve proxies, especially education and leisure-time activities, can play a protective role on the structural integrity of the basal ganglia and dorsolateral-prefrontal cortex, respectively, critical regions hallmarking brain status of early phases of PD.
Collapse
Affiliation(s)
- Sonia Di Tella
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Sara Isernia
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy.
| | - Monia Cabinio
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | | | | | | | - Marta Cazzoli
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Jorge Navarro
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | | | | |
Collapse
|
6
|
Chumin EJ, Cutts SA, Risacher SL, Apostolova LG, Farlow MR, McDonald BC, Wu YC, Betzel R, Saykin AJ, Sporns O. Edge time series components of functional connectivity and cognitive function in Alzheimer's disease. Brain Imaging Behav 2024; 18:243-255. [PMID: 38008852 PMCID: PMC10844434 DOI: 10.1007/s11682-023-00822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2023] [Indexed: 11/28/2023]
Abstract
Understanding the interrelationships of brain function as measured by resting-state magnetic resonance imaging and neuropsychological/behavioral measures in Alzheimer's disease is key for advancement of neuroimaging analysis methods in clinical research. The edge time-series framework recently developed in the field of network neuroscience, in combination with other network science methods, allows for investigations of brain-behavior relationships that are not possible with conventional functional connectivity methods. Data from the Indiana Alzheimer's Disease Research Center sample (53 cognitively normal control, 47 subjective cognitive decline, 32 mild cognitive impairment, and 20 Alzheimer's disease participants) were used to investigate relationships between functional connectivity components, each derived from a subset of time points based on co-fluctuation of regional signals, and measures of domain-specific neuropsychological functions. Multiple relationships were identified with the component approach that were not found with conventional functional connectivity. These involved attentional, limbic, frontoparietal, and default mode systems and their interactions, which were shown to couple with cognitive, executive, language, and attention neuropsychological domains. Additionally, overlapping results were obtained with two different statistical strategies (network contingency correlation analysis and network-based statistics correlation). Results demonstrate that connectivity components derived from edge time-series based on co-fluctuation reveal disease-relevant relationships not observed with conventional static functional connectivity.
Collapse
Affiliation(s)
- Evgeny J Chumin
- Department of Psychological and Brain Sciences, Indiana University (IU), Psychology Building 308, 1101 E 10th St, Bloomington, IN, 47405, USA.
- Indiana University Network Sciences Institute, IU, Bloomington, IN, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, IUSM, Indianapolis, IN, USA.
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, USA.
| | - Sarah A Cutts
- Department of Psychological and Brain Sciences, Indiana University (IU), Psychology Building 308, 1101 E 10th St, Bloomington, IN, 47405, USA
- Program in Neuroscience, IU, Bloomington, IN, USA
| | - Shannon L Risacher
- Indiana University Network Sciences Institute, IU, Bloomington, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, IUSM, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, USA
| | - Liana G Apostolova
- Indiana University Network Sciences Institute, IU, Bloomington, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, IUSM, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, USA
- Department of Neurology, IUSM, Indianapolis, IN, USA
| | - Martin R Farlow
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, IUSM, Indianapolis, IN, USA
- Department of Neurology, IUSM, Indianapolis, IN, USA
| | - Brenna C McDonald
- Indiana University Network Sciences Institute, IU, Bloomington, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, IUSM, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, USA
- Department of Neurology, IUSM, Indianapolis, IN, USA
| | - Yu-Chien Wu
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, IUSM, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, USA
| | - Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University (IU), Psychology Building 308, 1101 E 10th St, Bloomington, IN, 47405, USA
- Indiana University Network Sciences Institute, IU, Bloomington, IN, USA
- Program in Neuroscience, IU, Bloomington, IN, USA
| | - Andrew J Saykin
- Indiana University Network Sciences Institute, IU, Bloomington, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, IUSM, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, USA
- Department of Neurology, IUSM, Indianapolis, IN, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University (IU), Psychology Building 308, 1101 E 10th St, Bloomington, IN, 47405, USA
- Indiana University Network Sciences Institute, IU, Bloomington, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, IUSM, Indianapolis, IN, USA
- Program in Neuroscience, IU, Bloomington, IN, USA
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, USA
| |
Collapse
|
7
|
Chumin EJ, Cutts SA, Risacher SL, Apostolova LG, Farlow MR, McDonald BC, Wu YC, Betzel R, Saykin AJ, Sporns O. Edge Time Series Components of Functional Connectivity and Cognitive Function in Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.13.23289936. [PMID: 38014005 PMCID: PMC10680898 DOI: 10.1101/2023.05.13.23289936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Understanding the interrelationships of brain function as measured by resting-state magnetic resonance imaging and neuropsychological/behavioral measures in Alzheimer's disease is key for advancement of neuroimaging analysis methods in clinical research. The edge time-series framework recently developed in the field of network neuroscience, in combination with other network science methods, allows for investigations of brain-behavior relationships that are not possible with conventional functional connectivity methods. Data from the Indiana Alzheimer's Disease Research Center sample (53 cognitively normal control, 47 subjective cognitive decline, 32 mild cognitive impairment, and 20 Alzheimer's disease participants) were used to investigate relationships between functional connectivity components, each derived from a subset of time points based on co-fluctuation of regional signals, and measures of domain-specific neuropsychological functions. Multiple relationships were identified with the component approach that were not found with conventional functional connectivity. These involved attentional, limbic, frontoparietal, and default mode systems and their interactions, which were shown to couple with cognitive, executive, language, and attention neuropsychological domains. Additionally, overlapping results were obtained with two different statistical strategies (network contingency correlation analysis and network-based statistics correlation). Results demonstrate that connectivity components derived from edge time-series based on co-fluctuation reveal disease-relevant relationships not observed with conventional static functional connectivity.
Collapse
Affiliation(s)
- Evgeny J. Chumin
- Department of Psychological and Brain Sciences, Indiana University (IU), Bloomington, IN, United States
- Indiana University Network Sciences Institute, IU, Bloomington, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
- Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, United States
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, United States
| | - Sarah A. Cutts
- Department of Psychological and Brain Sciences, Indiana University (IU), Bloomington, IN, United States
- Program in Neuroscience, IU, Bloomington, IN, United States
| | - Shannon L. Risacher
- Indiana University Network Sciences Institute, IU, Bloomington, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
- Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, United States
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, United States
| | - Liana G. Apostolova
- Indiana University Network Sciences Institute, IU, Bloomington, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
- Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, United States
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, United States
- Department of Neurology, IUSM, Indianapolis, IN, United States
| | - Martin R. Farlow
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
- Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, United States
- Department of Neurology, IUSM, Indianapolis, IN, United States
| | - Brenna C. McDonald
- Indiana University Network Sciences Institute, IU, Bloomington, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
- Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, United States
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, United States
- Department of Neurology, IUSM, Indianapolis, IN, United States
| | - Yu-Chien Wu
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
- Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, United States
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, United States
| | - Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University (IU), Bloomington, IN, United States
- Indiana University Network Sciences Institute, IU, Bloomington, IN, United States
- Program in Neuroscience, IU, Bloomington, IN, United States
| | - Andrew J. Saykin
- Indiana University Network Sciences Institute, IU, Bloomington, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
- Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, United States
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, United States
- Department of Neurology, IUSM, Indianapolis, IN, United States
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University (IU), Bloomington, IN, United States
- Indiana University Network Sciences Institute, IU, Bloomington, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
- Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, United States
- Program in Neuroscience, IU, Bloomington, IN, United States
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, United States
| |
Collapse
|
8
|
Montemurro S, Filippini N, Ferrazzi G, Mantini D, Arcara G, Marino M. Education differentiates cognitive performance and resting state fMRI connectivity in healthy aging. Front Aging Neurosci 2023; 15:1168576. [PMID: 37293663 PMCID: PMC10244540 DOI: 10.3389/fnagi.2023.1168576] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/05/2023] [Indexed: 06/10/2023] Open
Abstract
Objectives In healthy aging, the way people cope differently with cognitive and neural decline is influenced by exposure to cognitively enriching life-experiences. Education is one of them, so that in general, the higher the education, the better the expected cognitive performance in aging. At the neural level, it is not clear yet how education can differentiate resting state functional connectivity profiles and their cognitive underpinnings. Thus, with this study, we aimed to investigate whether the variable education allowed for a finer description of age-related differences in cognition and resting state FC. Methods We analyzed in 197 healthy individuals (137 young adults aged 20-35 and 60 older adults aged 55-80 from the publicly available LEMON database), a pool of cognitive and neural variables, derived from magnetic resonance imaging, in relation to education. Firstly, we assessed age-related differences, by comparing young and older adults. Then, we investigated the possible role of education in outlining such differences, by splitting the group of older adults based on their education. Results In terms of cognitive performance, older adults with higher education and young adults were comparable in language and executive functions. Interestingly, they had a wider vocabulary compared to young adults and older adults with lower education. Concerning functional connectivity, the results showed significant age- and education-related differences within three networks: the Visual-Medial, the Dorsal Attentional, and the Default Mode network (DMN). For the DMN, we also found a relationship with memory performance, which strengthen the evidence that this network has a specific role in linking cognitive maintenance and FC at rest in healthy aging. Discussion Our study revealed that education contributes to differentiating cognitive and neural profiles in healthy older adults. Also, the DMN could be a key network in this context, as it may reflect some compensatory mechanisms relative to memory capacities in older adults with higher education.
Collapse
Affiliation(s)
| | | | | | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Leuven, Belgium
| | | | - Marco Marino
- Movement Control and Neuroplasticity Research Group, Leuven, Belgium
- Department of General Psychology, University of Padua, Padua, Italy
| |
Collapse
|
9
|
Ersoezlue E, Perneczky R, Tato M, Utecht J, Kurz C, Häckert J, Guersel S, Burow L, Koller G, Stoecklein S, Keeser D, Papazov B, Totzke M, Ballarini T, Brosseron F, Buerger K, Dechent P, Dobisch L, Ewers M, Fliessbach K, Glanz W, Haynes JD, Heneka MT, Janowitz D, Kilimann I, Kleineidam L, Laske C, Maier F, Munk MH, Peters O, Priller J, Ramirez A, Roeske S, Roy N, Scheffler K, Schneider A, Schott BH, Spottke A, Spruth EJ, Teipel S, Unterfeld C, Wagner M, Wang X, Wiltfang J, Wolfsgruber S, Yakupov R, Duezel E, Jessen F, Rauchmann BS. A Residual Marker of Cognitive Reserve Is Associated with Resting-State Intrinsic Functional Connectivity Along the Alzheimer's Disease Continuum. J Alzheimers Dis 2023; 92:925-940. [PMID: 36806502 DOI: 10.3233/jad-220464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
BACKGROUND Cognitive reserve (CR) explains inter-individual differences in the impact of the neurodegenerative burden on cognitive functioning. A residual model was proposed to estimate CR more accurately than previous measures. However, associations between residual CR markers (CRM) and functional connectivity (FC) remain unexplored. OBJECTIVE To explore the associations between the CRM and intrinsic network connectivity (INC) in resting-state networks along the neuropathological-continuum of Alzheimer's disease (ADN). METHODS Three hundred eighteen participants from the DELCODE cohort were stratified using cerebrospinal fluid biomarkers according to the A(myloid-β)/T(au)/N(eurodegeneration) classification. CRM was calculated utilizing residuals obtained from a multilinear regression model predicting cognition from markers of disease burden. Using an independent component analysis in resting-state fMRI data, we measured INC of resting-state networks, i.e., default mode network (DMN), frontoparietal network (FPN), salience network (SAL), and dorsal attention network. The associations of INC with a composite memory score and CRM and the associations of CRM with the seed-to-voxel functional connectivity of memory-related were tested in general linear models. RESULTS CRM was positively associated with INC in the DMN in the entire cohort. The A+T+N+ group revealed an anti-correlation between the SAL and the DMN. Furthermore, CRM was positively associated with anti-correlation between memory-related regions in FPN and DMN in ADN and A+T/N+. CONCLUSION Our results provide evidence that INC is associated with CRM in ADN defined as participants with amyloid pathology with or without cognitive symptoms, suggesting that the neural correlates of CR are mirrored in network FC in resting-state.
Collapse
Affiliation(s)
- Ersin Ersoezlue
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany.,Department of Gerontopsychiatry and Developmental Disorders, kbo-Isar-Amper-Klinikum Haar, University Teaching Hospital of LMU Munich, Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE) Munich, Germany.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College, London, UK.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Sheffield Institute for Translational Neurology (SITraN), University of Sheffield, Sheffield, UK
| | - Maia Tato
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Julia Utecht
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Carolin Kurz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Jan Häckert
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Selim Guersel
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Lena Burow
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Gabriele Koller
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Sophia Stoecklein
- Sheffield Institute for Translational Neurology (SITraN), University of Sheffield, Sheffield, UK
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany.,Sheffield Institute for Translational Neurology (SITraN), University of Sheffield, Sheffield, UK
| | - Boris Papazov
- Sheffield Institute for Translational Neurology (SITraN), University of Sheffield, Sheffield, UK
| | - Marie Totzke
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | | | | | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE Munich), Munich, Germany.,Institute for Stroke and Dementia Research (ISD), University Hospital LMU Munich, Germany
| | - Peter Dechent
- MR-Research in Neurosciences Department of Cognitive Neurology, Georg-August-University Goettingen, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Germany
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE Munich), Munich, Germany.,Institute for Stroke and Dementia Research (ISD), University Hospital LMU Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.,Medical Center of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Germany
| | - John Dylan Haynes
- Bernstein Center for Computational Neuroscience Charité - Universitätsmedizin Berlin, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.,Medical Center of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital LMU Munich, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE) Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Germany
| | - Franziska Maier
- Department of Psychiatry, Medical Faculty of University of Cologne, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Germany
| | - Oliver Peters
- Department of Psychiatry, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) Berlin, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, Charité Berlin, Germany.,Department of Psychiatry and Psychotherapy, School of Medicine Technical University of Munich, Germany.,University of Edinburgh and UK DRI Edinburgh, UK
| | - Alfredo Ramirez
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.,Medical Center of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Germany.,Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, Germany.,Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
| | - Sandra Roeske
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.,Medical Center of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Germany
| | - Björn H Schott
- German Center for Neurodegenerative Diseases (DZNE) Goettingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.,Department of Neurology, University of Bonn, Germany
| | - Eike J Spruth
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Germany.,Department of Psychiatry and Psychotherapy, Charité Berlin, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE) Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Chantal Unterfeld
- Department of Psychiatry, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.,Medical Center of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Germany
| | - Xiao Wang
- Department of Psychiatry, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE) Goettingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Germany.,Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Portugal
| | - Steffen Wolfsgruber
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.,Medical Center of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Germany
| | - Emrah Duezel
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.,Department of Psychiatry, Medical Faculty of University of Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) University of Cologne, Germany
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE) Munich, Germany.,Sheffield Institute for Translational Neurology (SITraN), University of Sheffield, Sheffield, UK.,Department of Neuroradiology, University Hospital, LMU Munich, Germany
| | | |
Collapse
|
10
|
Nawaz R, Wood G, Nisar H, Yap VV. Exploring the Effects of EEG-Based Alpha Neurofeedback on Working Memory Capacity in Healthy Participants. Bioengineering (Basel) 2023; 10:bioengineering10020200. [PMID: 36829694 PMCID: PMC9952280 DOI: 10.3390/bioengineering10020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Neurofeedback, an operant conditioning neuromodulation technique, uses information from brain activities in real-time via brain-computer interface (BCI) technology. This technique has been utilized to enhance the cognitive abilities, including working memory performance, of human beings. The aims of this study are to investigate how alpha neurofeedback can improve working memory performance in healthy participants and to explore the underlying neural mechanisms in a working memory task before and after neurofeedback. Thirty-six participants divided into the NFT group and the control group participated in this study. This study was not blinded, and both the participants and the researcher were aware of their group assignments. Increasing power in the alpha EEG band was used as a neurofeedback in the eyes-open condition only in the NFT group. The data were collected before and after neurofeedback while they were performing the N-back memory task (N = 1 and N = 2). Both groups showed improvement in their working memory performance. There was an enhancement in the power of their frontal alpha and beta activities with increased working memory load (i.e., 2-back). The experimental group showed improvements in their functional connections between different brain regions at the theta level. This effect was absent in the control group. Furthermore, brain hemispheric lateralization was found during the N-back task, and there were more intra-hemisphere connections than inter-hemisphere connections of the brain. These results suggest that healthy participants can benefit from neurofeedback and from having their brain networks changed after the training.
Collapse
Affiliation(s)
- Rab Nawaz
- Department of Electronic Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
- Biomedical Engineering Research Division, University of Glasgow, Glasgow G12 8QQ, UK
| | - Guilherme Wood
- Department of Psychology, University of Graz, Universitaetsplatz 2/III, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Humaira Nisar
- Department of Electronic Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
- Centre for Healthcare Science and Technology, Universiti Tunku Abdul Rahman, Sungai Long 31900, Malaysia
- Correspondence:
| | - Vooi Voon Yap
- Department of Electronic Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
- Department of Computer Science, Aberystwyth University, Penglais SY23 3FL, UK
| |
Collapse
|
11
|
Ersoezlue E, Rauchmann BS, Schneider-Axmann T, Wagner M, Ballarini T, Tato M, Utecht J, Kurz C, Papazov B, Guersel S, Burow L, Koller G, Stöcklein S, Keeser D, Bartels C, Brosseron F, Buerger K, Cetindag AC, Dechent P, Dobisch L, Ewers M, Fliessbach K, Frommann I, Haynes JD, Heneka MT, Janowitz D, Kilimann I, Kleinedam L, Laske C, Maier F, Metzger CD, Munk MH, Peters O, Preis L, Priller J, Ramirez A, Roeske S, Roy N, Scheffler K, Schneider A, Spottke A, Spruth EJ, Teipel S, Wiltfang J, Wolfsgruber S, Yakupov R, Duezel E, Jessen F, Perneczky R. Lifelong experiences as a proxy of cognitive reserve moderate the association between connectivity and cognition in Alzheimer's disease. Neurobiol Aging 2023; 122:33-44. [PMID: 36476760 DOI: 10.1016/j.neurobiolaging.2022.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 11/05/2022]
Abstract
Alzheimer's disease (AD) is associated with alterations in functional connectivity (FC) of the brain. The FC underpinnings of CR, that is, lifelong experiences, are largely unknown. Resting-state FC and structural MRI were performed in 76 CSF amyloid-β (Aβ) negative healthy controls and 152 Aβ positive individuals as an AD spectrum cohort (ADS; 55 with subjective cognitive decline, SCD; 52 with mild cognitive impairment; 45 with AD dementia). Following a region-of-interest (ROI) FC analysis, intrinsic network connectivity within the default-mode network (INC-DMN) and anti-correlation in INC between the DMN and dorsal attention network (DMN:DAN) were obtained as composite scores. CR was estimated by education and Lifetime Experiences Questionnaire (LEQ). The association between INC-DMN and MEM was attenuated by higher LEQ scores in the entire ADS group, particularly in SCD. In ROI analyses, higher LEQ scores were associated with higher FC within the DMN in ADS group. INC-DMN remains relatively intact despite memory decline in individuals with higher lifetime activity estimates, supporting a role for functional networks in maintaining cognitive function in AD.
Collapse
Affiliation(s)
- Ersin Ersoezlue
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Sheffield Institute for Translational Neurology (SITraN), University of Sheffield, Sheffield, UK
| | - Thomas Schneider-Axmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Germany
| | - Tommaso Ballarini
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Germany
| | - Maia Tato
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Julia Utecht
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Carolin Kurz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Boris Papazov
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Selim Guersel
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Lena Burow
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Gabriele Koller
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Sophia Stöcklein
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
| | - Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Arda C Cetindag
- Charité - Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Berlin, Germany
| | - Peter Dechent
- MR-Research in Neurology and Psychiatry, Georg-August-University Göttingen, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Germany
| | - Ingo Frommann
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Germany
| | - John D Haynes
- Bernstein Center for Computational Neuroscience, Charité - Universitätsmedizin, Berlin, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Germany
| | - Daniel Janowitz
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Luca Kleinedam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Franziska Maier
- Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, Germany
| | - Coraline D Metzger
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany; Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Oliver Peters
- Charité - Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Lukas Preis
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany; Department of Psychiatry and Psychotherapy, Technical University Munich, Munich, Germany
| | - Alfredo Ramirez
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Germany; Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, Germany
| | - Sandra Roeske
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurology, University of Bonn, Bonn, Germany
| | - Eike J Spruth
- Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany; Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany; Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Steffen Wolfsgruber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Emrah Duezel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany; Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK; Sheffield Institute for Translational Neurology (SITraN), University of Sheffield, Sheffield, UK.
| |
Collapse
|
12
|
Deery HA, Di Paolo R, Moran C, Egan GF, Jamadar SD. The older adult brain is less modular, more integrated, and less efficient at rest: A systematic review of large-scale resting-state functional brain networks in aging. Psychophysiology 2023; 60:e14159. [PMID: 36106762 PMCID: PMC10909558 DOI: 10.1111/psyp.14159] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/23/2022]
Abstract
The literature on large-scale resting-state functional brain networks across the adult lifespan was systematically reviewed. Studies published between 1986 and July 2021 were retrieved from PubMed. After reviewing 2938 records, 144 studies were included. Results on 11 network measures were summarized and assessed for certainty of the evidence using a modified GRADE method. The evidence provides high certainty that older adults display reduced within-network and increased between-network functional connectivity. Older adults also show lower segregation, modularity, efficiency and hub function, and decreased lateralization and a posterior to anterior shift at rest. Higher-order functional networks reliably showed age differences, whereas primary sensory and motor networks showed more variable results. The inflection point for network changes is often the third or fourth decade of life. Age effects were found with moderate certainty for within- and between-network altered patterns and speed of dynamic connectivity. Research on within-subject bold variability and connectivity using glucose uptake provides low certainty of age differences but warrants further study. Taken together, these age-related changes may contribute to the cognitive decline often seen in older adults.
Collapse
Affiliation(s)
- Hamish A. Deery
- Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
- Monash Biomedical ImagingMonash UniversityMelbourneVictoriaAustralia
| | - Robert Di Paolo
- Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
- Monash Biomedical ImagingMonash UniversityMelbourneVictoriaAustralia
| | - Chris Moran
- Peninsula Clinical School, Central Clinical SchoolMonash UniversityFrankstonVictoriaAustralia
- Department of Geriatric MedicinePeninsula HealthFrankstonVictoriaAustralia
| | - Gary F. Egan
- Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
- Monash Biomedical ImagingMonash UniversityMelbourneVictoriaAustralia
- Australian Research Council Centre of Excellence for Integrative Brain FunctionMelbourneVictoriaAustralia
| | - Sharna D. Jamadar
- Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
- Monash Biomedical ImagingMonash UniversityMelbourneVictoriaAustralia
- Australian Research Council Centre of Excellence for Integrative Brain FunctionMelbourneVictoriaAustralia
| |
Collapse
|
13
|
Eudave L, Martínez M, Luis EO, Pastor MA. Egocentric distance perception in older adults: Results from a functional magnetic resonance imaging and driving simulator study. Front Aging Neurosci 2022; 14:936661. [PMID: 36275008 PMCID: PMC9584650 DOI: 10.3389/fnagi.2022.936661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
The ability to appropriately perceive distances in activities of daily living, such as driving, is necessary when performing complex maneuvers. With aging, certain driving behaviors and cognitive functions change; however, it remains unknown if egocentric distance perception (EDP) performance is altered and whether its neural activity also changes as we grow older. To that end, 19 young and 17 older healthy adults drove in a driving simulator and performed an functional magnetic resonance imaging (fMRI) experiment where we presented adults with an EDP task. We discovered that (a) EDP task performance was similar between groups, with higher response times in older adults; (b) older adults showed higher prefrontal and parietal activation; and (c) higher functional connectivity within frontal and parietal-occipital-cerebellar networks; and (d) an association between EDP performance and hard braking behaviors in the driving simulator was found. In conclusion, EDP functioning remains largely intact with aging, possibly due to an extended and effective rearrangement in functional brain resources, and may play a role in braking behaviors while driving.
Collapse
Affiliation(s)
- Luis Eudave
- Neuroimaging Laboratory, Division of Neurosciences, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
- School of Education and Psychology, University of Navarra, Pamplona, Spain
- *Correspondence: Luis Eudave,
| | - Martín Martínez
- Neuroimaging Laboratory, Division of Neurosciences, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
- School of Education and Psychology, University of Navarra, Pamplona, Spain
| | - Elkin O. Luis
- Neuroimaging Laboratory, Division of Neurosciences, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
- School of Education and Psychology, University of Navarra, Pamplona, Spain
| | - María A. Pastor
- Neuroimaging Laboratory, Division of Neurosciences, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
- María A. Pastor,
| |
Collapse
|
14
|
Buján A, Sampaio A, Pinal D. Resting-state electroencephalographic correlates of cognitive reserve: Moderating the age-related worsening in cognitive function. Front Aging Neurosci 2022; 14:854928. [PMID: 36185469 PMCID: PMC9521492 DOI: 10.3389/fnagi.2022.854928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
This exploratory study aimed to investigate the resting-state electroencephalographic (rsEEG) correlates of the cognitive reserve from a life span perspective. Current source density (CSD) and lagged-linear connectivity (LLC) measures were assessed to this aim. We firstly explored the relationship between rsEEG measures for the different frequency bands and a socio-behavioral proxy of cognitive reserve, the Cognitive Reserve Index (CRI). Secondly, we applied moderation analyses to assess whether any of the correlated rsEEG measures showed a moderating role in the relationship between age and cognitive function. Moderate negative correlations were found between the CRI and occipital CSD of delta and beta 2. Moreover, inter- and intrahemispheric LLC measures were correlated with the CRI, showing a negative association with delta and positive associations with alpha 1, beta 1, and beta 2. Among those correlated measures, just two rsEEG variables were significant moderators of the relationship between age and cognition: occipital delta CSD and right hemispheric beta 2 LLC between occipital and limbic regions. The effect of age on cognitive performance was stronger for higher values of both measures. Therefore, lower values of occipital delta CSD and lower beta 2 LLC between right occipital and limbic regions might protect or compensate for the effects of age on cognition. Results of this exploratory study might be helpful to allocate more preventive efforts to curb the progression of cognitive decline in adults with less CR, possibly characterized by these rsEEG parameters at a neural level. However, given the exploratory nature of this study, more conclusive work on these rsEEG measures is needed to firmly establish their role in the cognition-age relationship, for example, verifying if these measures moderate the relationship between brain structure and cognition.
Collapse
Affiliation(s)
- Ana Buján
- Psychological Neuroscience Laboratory (PNL), Research Center in Psychology (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | | | | |
Collapse
|
15
|
Varela-López B, Cruz-Gómez ÁJ, Lojo-Seoane C, Díaz F, Pereiro A, Zurrón M, Lindín M, Galdo-Álvarez S. Cognitive reserve, neurocognitive performance, and high-order resting-state networks in cognitively unimpaired aging. Neurobiol Aging 2022; 117:151-164. [DOI: 10.1016/j.neurobiolaging.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022]
|
16
|
Pittaras E, Hamelin H, Granon S. Inter-Individual Differences in Cognitive Tasks: Focusing on the Shaping of Decision-Making Strategies. Front Behav Neurosci 2022; 16:818746. [PMID: 35431831 PMCID: PMC9007591 DOI: 10.3389/fnbeh.2022.818746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
In this paper, we review recent (published and novel) data showing inter-individual variation in decision-making strategies established by mice in a gambling task (MGT for Mouse Gambling Task). It may look intriguing, at first, that congenic animals develop divergent behaviors. However, using large groups of mice, we show that individualities emerge in the MGT, with about 30% of healthy mice displaying risk-averse choices while about 20-25% of mice make risk-prone choices. These strategies are accompanied by different brain network mobilization and individual levels of regional -prefrontal and striatal- monoamines. We further illustrate three ecological ways that influence drastically cognitive strategies in healthy adult mice: sleep deprivation, sucrose or artificial sweetener exposure, and regular exposure to stimulating environments. Questioning how to unmask individual strategies, what are their neural/neurochemical bases and whether we can shape or reshape them with different environmental manipulations is of great value, first to understand how the brain may build flexible decisions, and second to study behavioral plasticity, in healthy adult, as well as in developing brains. The latter may open new avenues for the identification of vulnerability traits to adverse events, before the emergence of mental pathologies.
Collapse
Affiliation(s)
- Elsa Pittaras
- Heller Laboratory, Department of Biology, Stanford University, Stanford, CA, United States
| | - Héloïse Hamelin
- Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Saclay, France
| | - Sylvie Granon
- Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Saclay, France
- *Correspondence: Sylvie Granon,
| |
Collapse
|
17
|
Sisakhti M, Shafaghi L, Batouli SAH. The Volumetric Changes of the Pineal Gland with Age: An Atlas-based Structural Analysis. Exp Aging Res 2022; 48:474-504. [DOI: 10.1080/0361073x.2022.2033593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Minoo Sisakhti
- Department of Cognitive Psychology, Institute for Cognitive Sciences Studies, Tehran, Iran
| | - Lida Shafaghi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Computational Cognition, Humanlab Technologies, Vancouver, Canada
| | - Seyed Amir Hossein Batouli
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Zhu W, Li X, Li X, Wang H, Li M, Gao Z, Wu X, Tian Y, Zhou S, Wang K, Yu Y. The protective impact of education on brain structure and function in Alzheimer's disease. BMC Neurol 2021; 21:423. [PMID: 34717581 PMCID: PMC8557004 DOI: 10.1186/s12883-021-02445-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Cognitive Reserve (CR) theory posits that brains with higher reserve can cope with more cerebral damage to minimize clinical manifestations. The aim of this study was to examine the effect of education (CR proxy) on brain structure and function in Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) patients and in cognitively healthy elderly (HC) individuals. METHODS Fifty-seven AD patients, 57 aMCI patients and 48 HCs were included to investigate the relationships between education years and gray matter volume (GMV), regional homogeneity (ReHo) and functional connectivity (FC) in brain regions to show associations with both structure and function. Taking the severity of the disease into account, we further assessed the relationships in AD stratified analyses. RESULTS In AD group, the GMV of the dorsal anterior cingulate cortex (dACC) and ReHo in the left inferior temporal cortex (ITC) were inversely associated with education years, after adjustment for age, sex, Mini-Mental State Examination (MMSE), and total intracranial volume or head motion parameters. Seed-based FC analyses revealed that education years were negatively correlated with the FC between the left anterior ITC and left mid frontal cortex as well as right superior frontal cortex and right angular gyrus. Stratified analyses results indicated that this negative relation between education and GMV, ReHo, FC was mainly present in mild AD, which was attenuated in moderate AD and aMCI groups. CONCLUSIONS Our results support the CR theory, and suggest that CR may be protective against AD related brain pathology at the early stage of clinical dementia. These findings could provide the locus of CR-related functional brain mechanisms and a specific time-window for therapeutic interventions to help AD patients to cope better with the brain pathological damage by increasing CR.
Collapse
Affiliation(s)
- Wanqiu Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Xiaoshu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Xiaohu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Haibao Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Meiqin Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Ziwen Gao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
| | - Xingqi Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shanshan Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China.
| |
Collapse
|
19
|
Baciu M, Banjac S, Roger E, Haldin C, Perrone-Bertolotti M, Lœvenbruck H, Démonet JF. Strategies and cognitive reserve to preserve lexical production in aging. GeroScience 2021; 43:1725-1765. [PMID: 33970414 PMCID: PMC8492841 DOI: 10.1007/s11357-021-00367-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/09/2021] [Indexed: 10/28/2022] Open
Abstract
In the absence of any neuropsychiatric condition, older adults may show declining performance in several cognitive processes and among them, in retrieving and producing words, reflected in slower responses and even reduced accuracy compared to younger adults. To overcome this difficulty, healthy older adults implement compensatory strategies, which are the focus of this paper. We provide a review of mainstream findings on deficient mechanisms and possible neurocognitive strategies used by older adults to overcome the deleterious effects of age on lexical production. Moreover, we present findings on genetic and lifestyle factors that might either be protective or risk factors of cognitive impairment in advanced age. We propose that "aging-modulating factors" (AMF) can be modified, offering prevention opportunities against aging effects. Based on our review and this proposition, we introduce an integrative neurocognitive model of mechanisms and compensatory strategies for lexical production in older adults (entitled Lexical Access and Retrieval in Aging, LARA). The main hypothesis defended in LARA is that cognitive aging evolves heterogeneously and involves complementary domain-general and domain-specific mechanisms, with substantial inter-individual variability, reflected at behavioral, cognitive, and brain levels. Furthermore, we argue that the ability to compensate for the effect of cognitive aging depends on the amount of reserve specific to each individual which is, in turn, modulated by the AMF. Our conclusion is that a variety of mechanisms and compensatory strategies coexist in the same individual to oppose the effect of age. The role of reserve is pivotal for a successful coping with age-related changes and future research should continue to explore the modulating role of AMF.
Collapse
Affiliation(s)
- Monica Baciu
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, 38000, Grenoble, France.
| | - Sonja Banjac
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, 38000, Grenoble, France
| | - Elise Roger
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, 38000, Grenoble, France
| | - Célise Haldin
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, 38000, Grenoble, France
| | | | | | | |
Collapse
|
20
|
Narbutas J, Chylinski D, Van Egroo M, Bahri MA, Koshmanova E, Besson G, Muto V, Schmidt C, Luxen A, Balteau E, Phillips C, Maquet P, Salmon E, Vandewalle G, Bastin C, Collette F. Positive Effect of Cognitive Reserve on Episodic Memory, Executive and Attentional Functions Taking Into Account Amyloid-Beta, Tau, and Apolipoprotein E Status. Front Aging Neurosci 2021; 13:666181. [PMID: 34122044 PMCID: PMC8194490 DOI: 10.3389/fnagi.2021.666181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023] Open
Abstract
Studies exploring the simultaneous influence of several physiological and environmental factors on domain-specific cognition in late middle-age remain scarce. Therefore, our objective was to determine the respective contribution of modifiable risk/protective factors (cognitive reserve and allostatic load) on specific cognitive domains (episodic memory, executive functions, and attention), taking into account non-modifiable factors [sex, age, and genetic risk for Alzheimer's disease (AD)] and AD-related biomarker amount (amyloid-beta and tau/neuroinflammation) in a healthy late-middle-aged population. One hundred and one healthy participants (59.4 ± 5 years; 68 women) were evaluated for episodic memory, executive and attentional functioning via neuropsychological test battery. Cognitive reserve was determined by the National Adult Reading Test. The allostatic load consisted of measures of lipid metabolism and sympathetic nervous system functioning. The amyloid-beta level was assessed using positron emission tomography in all participants, whereas tau/neuroinflammation positron emission tomography scans and apolipoprotein E genotype were available for 58 participants. Higher cognitive reserve was the main correlate of better cognitive performance across all domains. Moreover, age was negatively associated with attentional functioning, whereas sex was a significant predictor for episodic memory, with women having better performance than men. Finally, our results did not show clear significant associations between performance over any cognitive domain and apolipoprotein E genotype and AD biomarkers. This suggests that domain-specific cognition in late healthy midlife is mainly determined by a combination of modifiable (cognitive reserve) and non-modifiable factors (sex and age) rather than by AD biomarkers and genetic risk for AD.
Collapse
Affiliation(s)
- Justinas Narbutas
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
| | - Daphne Chylinski
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Maxime Van Egroo
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Mohamed Ali Bahri
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Ekaterina Koshmanova
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Gabriel Besson
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Vincenzo Muto
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Christina Schmidt
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
| | - André Luxen
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Evelyne Balteau
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Christophe Phillips
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Pierre Maquet
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
- Department of Neurology, CHU de Liège, Liège, Belgium
| | - Eric Salmon
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
- Department of Neurology, CHU de Liège, Liège, Belgium
| | - Gilles Vandewalle
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Christine Bastin
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
| | - Fabienne Collette
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
| |
Collapse
|
21
|
Bernas A, Breuer LEM, Aldenkamp AP, Zinger S. Emulative, coherent, and causal dynamics between large-scale brain networks are neurobiomarkers of Accelerated Cognitive Ageing in epilepsy. PLoS One 2021; 16:e0250222. [PMID: 33861794 PMCID: PMC8051821 DOI: 10.1371/journal.pone.0250222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/03/2021] [Indexed: 11/25/2022] Open
Abstract
Accelerated cognitive ageing (ACA) is an ageing co-morbidity in epilepsy that is diagnosed through the observation of an evident IQ decline of more than 1 standard deviation (15 points) around the age of 50 years old. To understand the mechanism of action of this pathology, we assessed brain dynamics with the use of resting-state fMRI data. In this paper, we present novel and promising methods to extract brain dynamics between large-scale resting-state networks: the emulative power, wavelet coherence, and granger causality between the networks were extracted in two resting-state sessions of 24 participants (10 ACA, 14 controls). We also calculated the widely used static functional connectivity to compare the methods. To find the best biomarkers of ACA, and have a better understanding of this epilepsy co-morbidity we compared the aforementioned between-network neurodynamics using classifiers and known machine learning algorithms; and assessed their performance. Results show that features based on the evolutionary game theory on networks approach, the emulative powers, are the best descriptors of the co-morbidity, using dynamics associated with the default mode and dorsal attention networks. With these dynamic markers, linear discriminant analysis could identify ACA patients at 82.9% accuracy. Using wavelet coherence features with decision-tree algorithm, and static functional connectivity features with support vector machine, ACA could be identified at 77.1% and 77.9% accuracy respectively. Granger causality fell short of being a relevant biomarker with best classifiers having an average accuracy of 67.9%. Combining the features based on the game theory, wavelet coherence, Granger-causality, and static functional connectivity- approaches increased the classification performance up to 90.0% average accuracy using support vector machine with a peak accuracy of 95.8%. The dynamics of the networks that lead to the best classifier performances are known to be challenged in elderly. Since our groups were age-matched, the results are in line with the idea of ACA patients having an accelerated cognitive decline. This classification pipeline is promising and could help to diagnose other neuropsychiatric disorders, and contribute to the field of psychoradiology.
Collapse
Affiliation(s)
- Antoine Bernas
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Cognitive Neuropsychiatry and Clinical Neurosciences, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Lisanne E. M. Breuer
- Department of Research and Development, Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands
| | - Albert P. Aldenkamp
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Cognitive Neuropsychiatry and Clinical Neurosciences, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Research and Development, Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands
| | - Svitlana Zinger
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
22
|
Ferré P, Jarret J, Brambati S, Bellec P, Joanette Y. Functional Connectivity of Successful Picture-Naming: Age-Specific Organization and the Effect of Engaging in Stimulating Activities. Front Aging Neurosci 2020; 12:535770. [PMID: 33250759 PMCID: PMC7674930 DOI: 10.3389/fnagi.2020.535770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
Aging is a lifelong process that starts at birth. Throughout the course of their life, individuals are exposed to various levels of stimulating activities. A higher level of engagement in such activities is suspected to protect against the normal course of cognitive aging or the cognitive manifestations of age-related brain diseases. However, the exact mechanism underlying such protective action remains unclear. The concept of the neurocognitive reserve was introduced to refer to the hypothesis that engagement in stimulating activities shapes brain structure and function, thus indirectly allowing for better preserved cognitive abilities. Although it is known that word production is among the best-preserved cognitive abilities in aging, the underlying neurofunctional mechanisms that allow this relative preservation are still unknown, and it is still unclear how engagement in stimulating activities affects these processes. The objective of this study is to describe the brain functional connectivity patterns associated with picture-naming abilities in younger and older adults with varying levels of engagement in stimulating activities, as a proxy for neurocognitive reserve. A mediation analysis was applied to determine whether the association between reserve proxies and naming accuracy is dependent on task FC. Results show that naming accuracy depends on the posterior cingulate cortex (PCC) functional decoupling in both younger and older adults but through different pathways. While high-performing older adults rely on the asynchronization of this area from motor speech regions’ activity, the best-performing younger adults rely on the functional decoupling with language-related regions. Mediation analysis reveals that the PCC decoupling mediates the relationship between the level of engagement in stimulating activities and naming accuracy in younger adults, but not in older adults. These findings suggest that reserve-related mechanisms may be more critical for naming in early adult life, while older adults’ neurofunctional organization may benefit more from a lifetime of acquired knowledge.
Collapse
Affiliation(s)
- Perrine Ferré
- Centre de Recherche de l’institut de Gériatrie de l’Université de Montréal (CRIUGM), Montréal, QC, Canada
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Perrine Ferré
| | - Julien Jarret
- Centre de Recherche de l’institut de Gériatrie de l’Université de Montréal (CRIUGM), Montréal, QC, Canada
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
| | - Simona Brambati
- Centre de Recherche de l’institut de Gériatrie de l’Université de Montréal (CRIUGM), Montréal, QC, Canada
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
| | - Pierre Bellec
- Centre de Recherche de l’institut de Gériatrie de l’Université de Montréal (CRIUGM), Montréal, QC, Canada
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
| | - Yves Joanette
- Centre de Recherche de l’institut de Gériatrie de l’Université de Montréal (CRIUGM), Montréal, QC, Canada
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
23
|
Cognitive Reserve Proxies Do Not Differentially Account for Cognitive Performance in Patients with Focal Frontal and Non-Frontal Lesions. J Int Neuropsychol Soc 2020; 26:739-748. [PMID: 32312348 DOI: 10.1017/s1355617720000326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Cognitive reserve (CR) suggests that premorbid efficacy, aptitude, and flexibility of cognitive processing can aid the brain's ability to cope with change or damage. Our previous work has shown that age and literacy attainment predict the cognitive performance of frontal patients on frontal-executive tests. However, it remains unknown whether CR also predicts the cognitive performance of non-frontal patients. METHOD We investigated the independent effect of a CR proxy, National Adult Reading Test (NART) IQ, as well as age and lesion group (frontal vs. non-frontal) on measures of executive function, intelligence, processing speed, and naming in 166 patients with focal, unilateral frontal lesions; 91 patients with focal, unilateral non-frontal lesions; and 136 healthy controls. RESULTS Fitting multiple linear regression models for each cognitive measure revealed that NART IQ predicted executive, intelligence, and naming performance. Age also significantly predicted performance on the executive and processing speed tests. Finally, belonging to the frontal group predicted executive and naming performance, while membership of the non-frontal group predicted intelligence. CONCLUSIONS These findings suggest that age, lesion group, and literacy attainment play independent roles in predicting cognitive performance following stroke or brain tumour. However, the relationship between CR and focal brain damage does not differ in the context of frontal and non-frontal lesions.
Collapse
|
24
|
Lendor S, Olkowicz M, Boyaci E, Yu M, Diwan M, Hamani C, Palmer M, Reyes-Garcés N, Gómez-Ríos GA, Pawliszyn J. Investigation of Early Death-Induced Changes in Rat Brain by Solid Phase Microextraction via Untargeted High Resolution Mass Spectrometry: In Vivo versus Postmortem Comparative Study. ACS Chem Neurosci 2020; 11:1827-1840. [PMID: 32407623 DOI: 10.1021/acschemneuro.0c00270] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Analysis of brain samples obtained postmortem remains a standard approach in neuroscience, despite often being suboptimal for inferring roles of small molecules in the pathophysiology of brain diseases. Sample collection and preservation further hinders conclusive interpretation of biomarker analysis in autopsy samples. We investigate purely death-induced changes affecting rat hippocampus in the first hour of postmortem interval (PMI) by means of untargeted liquid chromatography-mass spectrometry-based metabolomics. The unique possibility of sampling the same brain area of each animal both in vivo and postmortem was enabled by employing solid phase microextraction (SPME) probes. Four millimeter probes coated with mixed mode extraction phase were used to sample awake, freely roaming animals, with 2 more sampling events performed after death. Significant changes in brain neurochemistry were found to occur as soon as 30 min after death, further progressing with increasing PMI, evidenced by relative changes in levels of metabolites and lipids. These included species from several distinct groups, which can be classified as engaged in energy metabolism-related processes, signal transduction, neurotransmission, or inflammatory response. Additionally, we perform thorough analysis of interindividual variability in response to death, which provides insights into how this aspect can obscure conclusions drawn from an untargeted study at single metabolite and pathway level. The results suggest high demand for systematic studies examining the PMI time course with in vivo sampling as a starting point to eliminate artifacts in the form of neurochemical changes assumed to occur in vivo.
Collapse
Affiliation(s)
- Sofia Lendor
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Mariola Olkowicz
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Ezel Boyaci
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Miao Yu
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Mustansir Diwan
- Neuroimaging Research Section, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Clement Hamani
- Neuroimaging Research Section, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Michael Palmer
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Nathaly Reyes-Garcés
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - German Augusto Gómez-Ríos
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
25
|
Bernas A, Breuer L, Lamerichs R, de Louw A, Aldenkamp A, Zinger S. Accelerated Cognitive Ageing in epilepsy: exploring the effective connectivity between resting-state networks and its relation to cognitive decline. Heliyon 2020; 6:e03951. [PMID: 32529058 PMCID: PMC7283153 DOI: 10.1016/j.heliyon.2020.e03951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/24/2019] [Accepted: 05/05/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE This study aims at understanding the dynamic functional brain organization in Accelerated Cognitive Ageing (ACA) in epilepsy. We also assess to which extend the (abnormal) effective connectivity between brain networks correlates with the (estimated) decline in IQ scores observed in the ACA patients. MATERIAL AND METHODS Two multi-echo resting-state fMRI scans of 10 ACA patients and 14 age- and education-matched healthy controls were acquired. A task-based fMRI was acquired in-between those two scans, for possible cognitive fatigue effects on reserve capacity. Granger causality (GC), a measure of effective connectivity between brain regions, was applied on 7 major cognitive networks, and group-wise compared, using permutation testing statistics. This was performed on each of the resting-state sessions independently. We assessed the correlation between the cognitive deterioration scores (representing cognitive decline), and the paired-networks granger causality values. RESULTS The cingulate cortex appeared to be more engaged in ACA patients. Its dynamics towards the right fronto-parietal cortex, salience network, and the dorsal attention networks (DAN) was stronger than in controls, only in the first resting-state scan session. The Granger causality from the DAN to the default mode network (DMN) and from the ventral attention network (VAN) to the left fronto-parietal network (FPL) was also stronger in ACA patients and again only in the first scans. In the second resting-state scans, only the DMN was more strongly connected with the cingulate cortex in ACA patients. A weaker GC from DMN to FPL, and stronger GC from the salience network to cingulate cortex were associated with more decline in the Full-scale IQ and more GC from DMN to VAN would lead to more decline in the Perceptual Reasoning Index in ACA. CONCLUSION The results are in line with the hypothesis of over-recruitment at low cognitive load, and exhaustion at higher cognitive load, as shown by the compensation-related utilization of neural circuits hypothesis (CRUNCH) model for ageing. Moreover, the DMN to VAN directed connectivity strongly correlates with the (estimated) decline in the Perceptual Reasoning Index, which is also in line with a recent study on ageing with mild cognitive impairment in elderly, and the posterior-anterior shift in aging (PASA) model. This study therefore supports the idea that the cognitive decline in our patients resembles the decline observed in healthy ageing, but in an accelerated mode. This study also sheds light on the directions of the impaired connectivity between the main networks involved in the deterioration process, which can be helpful for future development of treatment solutions.
Collapse
Affiliation(s)
- A. Bernas
- Department of Electrical Engineering, University of Technology, Eindhoven, the Netherlands
- Department of Research and Development, Epilepsy Centre Kempenhaeghe, Heeze, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - L.E.M. Breuer
- Department of Research and Development, Epilepsy Centre Kempenhaeghe, Heeze, the Netherlands
| | - R. Lamerichs
- Department of Electrical Engineering, University of Technology, Eindhoven, the Netherlands
- Department of Research and Development, Epilepsy Centre Kempenhaeghe, Heeze, the Netherlands
- Philips Research, Eindhoven, the Netherlands
| | - A.J.A. de Louw
- Department of Electrical Engineering, University of Technology, Eindhoven, the Netherlands
- Department of Research and Development, Epilepsy Centre Kempenhaeghe, Heeze, the Netherlands
| | - A.P. Aldenkamp
- Department of Electrical Engineering, University of Technology, Eindhoven, the Netherlands
- Department of Research and Development, Epilepsy Centre Kempenhaeghe, Heeze, the Netherlands
- Department of Neurology and Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - S. Zinger
- Department of Electrical Engineering, University of Technology, Eindhoven, the Netherlands
- Department of Research and Development, Epilepsy Centre Kempenhaeghe, Heeze, the Netherlands
| |
Collapse
|
26
|
Cui Z, Stiso J, Baum GL, Kim JZ, Roalf DR, Betzel RF, Gu S, Lu Z, Xia CH, He X, Ciric R, Oathes DJ, Moore TM, Shinohara RT, Ruparel K, Davatzikos C, Pasqualetti F, Gur RE, Gur RC, Bassett DS, Satterthwaite TD. Optimization of energy state transition trajectory supports the development of executive function during youth. eLife 2020; 9:e53060. [PMID: 32216874 PMCID: PMC7162657 DOI: 10.7554/elife.53060] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/26/2020] [Indexed: 01/26/2023] Open
Abstract
Executive function develops during adolescence, yet it remains unknown how structural brain networks mature to facilitate activation of the fronto-parietal system, which is critical for executive function. In a sample of 946 human youths (ages 8-23y) who completed diffusion imaging, we capitalized upon recent advances in linear dynamical network control theory to calculate the energetic cost necessary to activate the fronto-parietal system through the control of multiple brain regions given existing structural network topology. We found that the energy required to activate the fronto-parietal system declined with development, and the pattern of regional energetic cost predicts unseen individuals' brain maturity. Finally, energetic requirements of the cingulate cortex were negatively correlated with executive performance, and partially mediated the development of executive performance with age. Our results reveal a mechanism by which structural networks develop during adolescence to reduce the theoretical energetic costs of transitions to activation states necessary for executive function.
Collapse
Affiliation(s)
- Zaixu Cui
- Departments of Psychiatry, University of PennsylvaniaPhiladelphiaUnited States
| | - Jennifer Stiso
- Departments of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Graham L Baum
- Departments of Psychiatry, University of PennsylvaniaPhiladelphiaUnited States
| | - Jason Z Kim
- Departments of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - David R Roalf
- Departments of Psychiatry, University of PennsylvaniaPhiladelphiaUnited States
| | - Richard F Betzel
- Department of Psychological and Brain Sciences, Indiana UniversityBloomingtonUnited States
| | - Shi Gu
- Department of Computer Science, University of Electronic Science and TechnologyChengduChina
| | - Zhixin Lu
- Departments of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Cedric H Xia
- Departments of Psychiatry, University of PennsylvaniaPhiladelphiaUnited States
| | - Xiaosong He
- Departments of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Rastko Ciric
- Departments of Psychiatry, University of PennsylvaniaPhiladelphiaUnited States
| | - Desmond J Oathes
- Departments of Psychiatry, University of PennsylvaniaPhiladelphiaUnited States
| | - Tyler M Moore
- Departments of Psychiatry, University of PennsylvaniaPhiladelphiaUnited States
| | - Russell T Shinohara
- Departments of Biostatistics, Epidemiology and Informatics, University of PennsylvaniaPhiladelphiaUnited States
| | - Kosha Ruparel
- Departments of Psychiatry, University of PennsylvaniaPhiladelphiaUnited States
| | - Christos Davatzikos
- Departments of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
- Departments of Electrical and Systems Engineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Fabio Pasqualetti
- Department of Mechanical Engineering, University of CaliforniaRiversideUnited States
| | - Raquel E Gur
- Departments of Psychiatry, University of PennsylvaniaPhiladelphiaUnited States
| | - Ruben C Gur
- Departments of Psychiatry, University of PennsylvaniaPhiladelphiaUnited States
| | - Danielle S Bassett
- Departments of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
- Departments of Electrical and Systems Engineering, University of PennsylvaniaPhiladelphiaUnited States
- Departments of Physics and Astronomy and Neurology, University of PennsylvaniaPhiladelphiaUnited States
- Departments of Neurology, University of PennsylvaniaPhiladelphiaUnited States
- Santa Fe InstituteSanta FeUnited States
| | | |
Collapse
|
27
|
Fan DQ, Zhao HC, Sheng J, Liu YR, Yu J. Electroacupuncture Modulates Resting-State Functional Connectivity in the Default Mode Network for Healthy Older Adults. J Geriatr Psychiatry Neurol 2020; 33:85-92. [PMID: 31409183 DOI: 10.1177/0891988719868304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging involves cognitive decline and prominent alterations in brain activity. Electroacupuncture (EA), a traditional Chinese medicine approach, is demonstrated to be effective in improving cognitive function of older adults. However, the specific neural mechanism underlying this modulation effect remains unclear. In this study, we used functional magnetic resonance imaging (fMRI) to investigate whether EA could improve cognitive performance of community-dwelling older adults and whether these potential improvements are associated with the EA-induced brain functional connectivity alterations. Thirty healthy older adults were recruited and randomly assigned to the EA group and the control group. Behaviorally, we observed an EA-induced improvement in cognitive performance of older adults in the Montreal Cognitive Assessment. On a neural perspective, the EA intervention significantly increased the functional connectivity within the default mode network. Moreover, we found a positive association between the improvement in delayed memory performance and the alterations in the ventral medial prefrontal cortex-hippocampal formation connectivity in the EA group. This study extends previous findings by showing that healthy older adults exhibit neural plasticity manifested as increased functional connectivity after EA sessions, which could induce therapeutic effects in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Dong-Qiong Fan
- Faculty of Psychology, Southwest University, Chongqing, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Hai-Chao Zhao
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jing Sheng
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Yun-Rui Liu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Jing Yu
- Faculty of Psychology, Southwest University, Chongqing, China.,CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| |
Collapse
|
28
|
Herbet G, Duffau H. Revisiting the Functional Anatomy of the Human Brain: Toward a Meta-Networking Theory of Cerebral Functions. Physiol Rev 2020; 100:1181-1228. [PMID: 32078778 DOI: 10.1152/physrev.00033.2019] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
For more than one century, brain processing was mainly thought in a localizationist framework, in which one given function was underpinned by a discrete, isolated cortical area, and with a similar cerebral organization across individuals. However, advances in brain mapping techniques in humans have provided new insights into the organizational principles of anatomo-functional architecture. Here, we review recent findings gained from neuroimaging, electrophysiological, as well as lesion studies. Based on these recent data on brain connectome, we challenge the traditional, outdated localizationist view and propose an alternative meta-networking theory. This model holds that complex cognitions and behaviors arise from the spatiotemporal integration of distributed but relatively specialized networks underlying conation and cognition (e.g., language, spatial cognition). Dynamic interactions between such circuits result in a perpetual succession of new equilibrium states, opening the door to considerable interindividual behavioral variability and to neuroplastic phenomena. Indeed, a meta-networking organization underlies the uniquely human propensity to learn complex abilities, and also explains how postlesional reshaping can lead to some degrees of functional compensation in brain-damaged patients. We discuss the major implications of this approach in fundamental neurosciences as well as for clinical developments, especially in neurology, psychiatry, neurorehabilitation, and restorative neurosurgery.
Collapse
Affiliation(s)
- Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France; Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," INSERM U1191, Institute of Functional Genomics, Montpellier, France; and University of Montpellier, Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France; Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," INSERM U1191, Institute of Functional Genomics, Montpellier, France; and University of Montpellier, Montpellier, France
| |
Collapse
|
29
|
Wu C, Zhen Z, Huang L, Huang T, Liu J. COMT-Polymorphisms Modulated Functional Profile of the Fusiform Face Area Contributes to Face-Specific Recognition Ability. Sci Rep 2020; 10:2134. [PMID: 32034175 PMCID: PMC7005682 DOI: 10.1038/s41598-020-58747-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/15/2020] [Indexed: 12/03/2022] Open
Abstract
Previous studies have shown that face-specific recognition ability (FRA) is heritable; however, the neural basis of this heritability is unclear. Candidate gene studies have suggested that the catechol-O-methyltransferase (COMT) rs4680 polymorphism is related to face perception. Here, using a partial least squares (PLS) method, we examined the multivariate association between 12 genotypes of 4 COMT polymorphisms (rs6269-rs4633-rs4818-rs4680) and multimodal MRI phenotypes in the human fusiform face area (FFA), which selectively responds to face stimuli, in 338 Han Chinese adults (mean age 20.45 years; 135 males). The MRI phenotypes included gray matter volume (GMV), resting-state fractional amplitude of low-frequency fluctuations (fALFF), and face-selective blood-oxygen-level-dependent (BOLD) responses (FS). We found that the first COMT-variant component (PLS1) was positively associated with the FS but negatively associated with the fALFF in the FFA. Moreover, participants with the COMT heterozygous-HEA-haplotype showed higher PLS1 FFA-MRI scores, which were positively associated with the FRA in an old/new face recognition task, than those with the COMT homozygous HEA haplotype and HEA non-carriers, suggesting that individuals with an appropriate (intermediate) level of dopamine activity in the FFA might have better FRA. In summary, our study provides empirical evidence for the genetic and neural basis for the heritability of face recognition and informs the formation of neural module functional specificity.
Collapse
Affiliation(s)
- Chao Wu
- School of Nursing, Peking University Health Science Centre, Beijing, 100191, China
| | - Zonglei Zhen
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.
| | - Lijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Taicheng Huang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Jia Liu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
30
|
Fleck JI, Arnold M, Dykstra B, Casario K, Douglas E, Morris O. Distinct Functional Connectivity Patterns Are Associated With Social and Cognitive Lifestyle Factors: Pathways to Cognitive Reserve. Front Aging Neurosci 2019; 11:310. [PMID: 31798441 PMCID: PMC6863775 DOI: 10.3389/fnagi.2019.00310] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
The importance of diverse lifestyle factors in sustaining cognition during aging and delaying the onset of decline in Alzheimer's disease and related dementias cannot be overstated. We explored the influence of cognitive, social, and physical lifestyle factors on resting-state lagged linear connectivity (LLC) in high-density electroencephalography (EEG) in adults, ages 35-75 years. Diverse lifestyle factors build cognitive reserve (CR), protecting cognition in the presence of physical brain decline. Differences in LLC were examined between high- and low-CR groups formed using cognitive, social, and exercise lifestyle factors. LLC is a measure of lagged coherence that excludes zero phase contributions and limits the effects of volume conduction on connectivity estimates. Significant differences in LLC were identified for cognitive and social factors, but not exercise. Participants high in social CR possessed greater local and long-range connectivity in theta and low alpha for eyes-open and eyes-closed recording conditions. In contrast, participants high in cognitive CR exhibited greater eyes-closed long-range connectivity between the occipital lobe and other cortical regions in low alpha. Greater eyes-closed local LLC in delta was also present in men high in cognitive CR. Cognitive factor scores correlated with sustained attention, whereas social factors scores correlated with spatial working memory. Gender was a significant covariate in our analyses, with women displaying higher local and long-range LLC in low beta. Our findings support distinct relationships between CR and LLC, as well as CR and cognitive function for cognitive and social subcomponents. These patterns reflect the importance of diverse lifestyle factors in building CR.
Collapse
Affiliation(s)
- Jessica I. Fleck
- School of Social and Behavioral Sciences, Stockton University, Galloway, NJ, United States
| | | | | | | | | | | |
Collapse
|
31
|
Chételat G. Multimodal Neuroimaging in Alzheimer's Disease: Early Diagnosis, Physiopathological Mechanisms, and Impact of Lifestyle. J Alzheimers Dis 2019; 64:S199-S211. [PMID: 29504542 PMCID: PMC6004909 DOI: 10.3233/jad-179920] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the last ten years, we have conducted research in Alzheimer's disease (AD) using multimodal neuroimaging techniques to improve diagnosis, further our understanding of the pathological mechanisms underlying the disease, and support the development of innovative non-pharmacological preventive strategies. Our works emphasized the interest of hippocampal subfield volumetry in early diagnosis and the need for further development in this field including optimization, standardization, and automatization of the techniques. Also, we conducted several studies in cognitively intact at-risk elderly (e.g., subjective cognitive decline patients and APOE4 carriers) to better identify biomarkers associated with increased risk of developing AD. Regarding the physiopathological mechanisms, specific multimodal neuroimaging techniques allowed us to highlight the relevance of diaschisis, the mismatch between neurodegeneration and local Aβ deposition and the regional variation in the mechanisms underlying structural or functional alterations. Further works integrating other biomarkers known to play a role in the physiopathology of AD (tau, TDP-43, inflammation, etc.) in a longitudinal design would be useful to get a comprehensive understanding of their relative role, sequence, and causal relationships. Our works also highlighted the relevance of functional connectivity in further understanding the specificity of cognitive deficits in AD and how connectivity differentially influences the propagation of the different AD biomarkers. Finally, we conducted several studies on the links between lifestyle factors and neuroimaging biomarkers to unravel mechanisms of reserve. Further efforts are needed to better understand which lifestyle factor, or combination of factors, impact on AD pathology, and when, to help translating our knowledge to training programs that might prevent or delay brain and cognitive changes leading to AD dementia.
Collapse
Affiliation(s)
- Gaël Chételat
- Inserm, Inserm UMR-S U1237, Université de Caen-Normandie, GIP Cyceron, Caen, France
| |
Collapse
|
32
|
Pietzuch M, King AE, Ward DD, Vickers JC. The Influence of Genetic Factors and Cognitive Reserve on Structural and Functional Resting-State Brain Networks in Aging and Alzheimer's Disease. Front Aging Neurosci 2019; 11:30. [PMID: 30894813 PMCID: PMC6414800 DOI: 10.3389/fnagi.2019.00030] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/01/2019] [Indexed: 01/22/2023] Open
Abstract
Magnetic resonance imaging (MRI) offers significant insight into the complex organization of neural networks within the human brain. Using resting-state functional MRI data, topological maps can be created to visualize changes in brain activity, as well as to represent and assess the structural and functional connections between different brain regions. Crucially, Alzheimer's disease (AD) is associated with progressive loss in this connectivity, which is particularly evident within the default mode network. In this paper, we review the recent literature on how factors that are associated with risk of dementia may influence the organization of the brain network structures. In particular, we focus on cognitive reserve and the common genetic polymorphisms of APOE and BDNF Val66Met.
Collapse
Affiliation(s)
- Manuela Pietzuch
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - David D. Ward
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - James C. Vickers
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
33
|
Anthony M, Lin F. A Systematic Review for Functional Neuroimaging Studies of Cognitive Reserve Across the Cognitive Aging Spectrum. Arch Clin Neuropsychol 2019; 33:937-948. [PMID: 29244054 DOI: 10.1093/arclin/acx125] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/27/2017] [Indexed: 12/29/2022] Open
Abstract
Objective Cognitive reserve has been proposed to explain the discrepancy between clinical symptoms and the effects of aging or Alzheimer's pathology. Functional magnetic resonance imaging (fMRI) may help elucidate how neural reserve and compensation delay cognitive decline and identify brain regions associated with cognitive reserve. This systematic review evaluated neural correlates of cognitive reserve via fMRI (resting-state and task-related) studies across the cognitive aging spectrum (i.e., normal cognition, mild cognitive impairment, and Alzheimer's disease). Method This review examined published articles up to March 2017. There were 13 cross-sectional observational studies that met the inclusion criteria, including relevance to cognitive reserve, subjects 60 years or older with normal cognition, mild cognitive impairment, and/or Alzheimer's disease, at least one quantitative measure of cognitive reserve, and fMRI as the imaging modality. Quality assessment of included studies was conducted using the Newcastle-Ottawa Scale adapted for cross-sectional studies. Results Across the cognitive aging spectrum, medial temporal regions and an anterior or posterior cingulate cortex-seeded default mode network were associated with neural reserve. Frontal regions and the dorsal attentional network were related to neural compensation. Compared to neural reserve, neural compensation was more common in mild cognitive impairment and Alzheimer's disease. Conclusions Neural reserve and compensation both support cognitive reserve, with compensation more common in later stages of the cognitive aging spectrum. Longitudinal and intervention studies are needed to investigate changes between neural reserve and compensation during the transition between clinical stages, and to explore the causal relationship between cognitive reserve and potential neural substrates.
Collapse
Affiliation(s)
- Mia Anthony
- School of Nursing, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Feng Lin
- School of Nursing, University of Rochester Medical Center, Rochester, NY 14642, USA.,Department of Psychiatry, University of Rochester Medical Center, Rochester, NY 14642, USA.,Department of Brain and Cognitive Science, University of Rochester, Rochester, NY 14642, USA.,Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA.,Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
34
|
Topiwala A, Suri S, Allan C, Valkanova V, Filippini N, Sexton CE, Heise V, Zsoldos E, Mahmood A, Singh-Manoux A, Mackay CE, Kivimäki M, Ebmeier KP. Predicting cognitive resilience from midlife lifestyle and multi-modal MRI: A 30-year prospective cohort study. PLoS One 2019; 14:e0211273. [PMID: 30779761 PMCID: PMC6380585 DOI: 10.1371/journal.pone.0211273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/10/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND There is significant heterogeneity in the clinical expression of structural brain abnormalities, including Alzheimer's disease biomarkers. Some individuals preserve their memory despite the presence of risk factors or pathological brain changes, indicating resilience. We aimed to test whether resilient individuals could be distinguished from those who develop cognitive impairment, using sociodemographic variables and neuroimaging. METHODS We included 550 older adults participating in the Whitehall II study with longitudinal data, cognitive test results, and multi-modal MRI. Hippocampal atrophy was defined as Scheltens Scores >0. Resilient individuals (n = 184) were defined by high cognitive performance despite hippocampal atrophy (HA). Non-resilient participants (n = 133) were defined by low cognitive performance (≥1.5 standard deviations (S.D.) below the group mean) in the presence of HA. Dynamic and static exposures were evaluated for their ability to predict later resilience status using multivariable logistic regression. In a brain-wide analysis we tested for group differences in the integrity of white matter (structural connectivity) and resting-state networks (functional connectivity). FINDINGS Younger age (OR: 0.87, 95% CI: 0.83 to 0.92, p<0.001), higher premorbid FSIQ (OR: 1.06, 95% CI: 1.03 to 1.10, p<0.0001) and social class (OR 1 vs. 3: 4.99, 95% CI: 1.30 to 19.16, p = 0.02, OR 2 vs. 3: 8.43, 95% CI: 1.80 to 39.45, p = 0.007) were independently associated with resilience. Resilient individuals could be differentiated from non-resilient participants by higher fractional anisotropy (FA), and less association between anterior and posterior resting state networks. Higher FA had a significantly more positive effect on cognitive performance in participants with HA, compared to those without. CONCLUSIONS Resilient individuals could be distinguished from those who developed impairments on the basis of sociodemographic characteristics, brain structural and functional connectivity, but not midlife lifestyles. There was a synergistic deleterious effect of hippocampal atrophy and poor white matter integrity on cognitive performance. Exploiting and supporting neural correlates of resilience could offer a fresh approach to postpone or avoid the appearance of clinical symptoms.
Collapse
Affiliation(s)
- Anya Topiwala
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Sana Suri
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, Oxford, United Kingdom
| | - Charlotte Allan
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Vyara Valkanova
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Nicola Filippini
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Claire E. Sexton
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Verena Heise
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Enikő Zsoldos
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Abda Mahmood
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Archana Singh-Manoux
- Centre for Research in Epidemiology and Population Health, INSERM, Villejuif, France
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Clare E. Mackay
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Mika Kivimäki
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Klaus P. Ebmeier
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Garcia-Gorro C, Garau-Rolandi M, Escrichs A, Rodriguez-Dechicha N, Vaquer I, Subira S, Calopa M, Martinez-Horta S, Perez-Perez J, Kulisevsky J, Muñoz E, Santacruz P, Ruiz-Idiago J, Mareca C, de Diego-Balaguer R, Camara E. An active cognitive lifestyle as a potential neuroprotective factor in Huntington's disease. Neuropsychologia 2018; 122:116-124. [PMID: 30563619 DOI: 10.1016/j.neuropsychologia.2018.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 01/21/2023]
Abstract
A cognitive stimulating lifestyle has been observed to confer cognitive benefits in multiple neurodegenerative diseases. However, the underlying neurobiological basis of this phenomenon remains unclear. Huntington's disease can provide a suitable model to study the effects and neural mechanisms of cognitive engagement in neurodegeneration. In this study, we investigate the effect of lifestyle factors such as education, occupation and engagement in cognitive activities in Huntington's disease gene carriers on cognitive performance and age of onset as well as the underlying neural changes sustaining these effects, measured by magnetic resonance imaging. Specifically, we analyzed both gray matter volume and the strength of connectivity of the executive control resting-state network. High levels of cognitive engagement were significantly associated with more preserved executive functions, a delay in the appearance of symptoms, reduced volume loss of the left precuneus and the bilateral caudate and a modulation of connectivity strength of anterior cingulate cortex and left angular gyrus with the executive control network. These findings suggest that a cognitively stimulating lifestyle may promote brain maintenance by modulating the executive control resting-state network and conferring protection against neurodegeneration, which results in a delayed onset of symptoms and improved performance in executive functions.
Collapse
Affiliation(s)
- Clara Garcia-Gorro
- Cognition and Brain Plasticity Unit, Neuroscience Program, IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
| | - Maria Garau-Rolandi
- Hestia Duran i Reynals. Hospital Duran i Reynals, Hospitalet de Llobregat, Barcelona, Spain
| | - Anira Escrichs
- Cognition and Brain Plasticity Unit, Neuroscience Program, IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Irene Vaquer
- Hestia Duran i Reynals. Hospital Duran i Reynals, Hospitalet de Llobregat, Barcelona, Spain
| | - Susana Subira
- Hestia Duran i Reynals. Hospital Duran i Reynals, Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical and Health Psychology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Matilde Calopa
- Movement Disorders Unit, Neurology Service, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Saul Martinez-Horta
- Movement Disorders Unit, Department of Neurology, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Carlos III Institute, Madrid, Spain
| | - Jesus Perez-Perez
- Movement Disorders Unit, Department of Neurology, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Carlos III Institute, Madrid, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Department of Neurology, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Carlos III Institute, Madrid, Spain; Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Esteban Muñoz
- Movement Disorders Unit, Neurology Service, Hospital Clínic, Barcelona, Spain; IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain; Facultat de Medicina, University of Barcelona, Barcelona, Spain
| | - Pilar Santacruz
- Movement Disorders Unit, Neurology Service, Hospital Clínic, Barcelona, Spain
| | | | - Celia Mareca
- Hospital Mare de Deu de la Mercè, Barcelona, Spain
| | - Ruth de Diego-Balaguer
- Cognition and Brain Plasticity Unit, Neuroscience Program, IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain; The Institute of Neurosciences, University of Barcelona, Barcelona, Spain; ICREA (Catalan Institute for Research and Advanced Studies), Barcelona, Spain
| | - Estela Camara
- Cognition and Brain Plasticity Unit, Neuroscience Program, IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
36
|
Gonçalves APB, Mello C, Pereira AH, Ferré P, Fonseca RP, Joanette Y. Executive functions assessment in patients with language impairment A systematic review. Dement Neuropsychol 2018; 12:272-283. [PMID: 30425791 PMCID: PMC6200159 DOI: 10.1590/1980-57642018dn12-030008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acquired language impairments may accompany different conditions. Most recent studies have shown that there is an important relationship between language and cognitive functions, such as executive functions (EF). Therefore, we aimed to investigate which main EF components appear to have the greatest impact in the most prevalent acquired communication disorders in adults, and which neuropsychological tests are being used to evaluate them. In addition, we sought to characterize the relationship between the executive functions and language in these conditions. Working memory (WM) was the most frequently chosen cognitive measure, being evaluated by different span tasks. A relationship between WM and narrative and conversational discourse, writing abilities and grammatical comprehension was found. Other currently used cognitive tests included the Trail Making, Wisconsin, Stroop and Verbal Fluency tests. Language and EF have a complex relationship; hence, a complete assessment should reflect the dynamic processing of cognitive brain functions.
Collapse
Affiliation(s)
| | - Clarissa Mello
- Psychology Graduate Student, Pontifícia Universidade Católica do Rio Grande do Sul, RS, Brazil
| | | | - Perrine Ferré
- PhD, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal
| | | | - Yves Joanette
- PhD, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal
| |
Collapse
|
37
|
Mechanisms and modulators of cognitive training gain transfer in cognitively healthy aging: study protocol of the AgeGain study. Trials 2018; 19:337. [PMID: 29945638 PMCID: PMC6020358 DOI: 10.1186/s13063-018-2688-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/15/2018] [Indexed: 11/19/2022] Open
Abstract
Background Cognitively healthy older people can increase their performance in cognitive tasks through training. However, training effects are mostly limited to the trained task; thus, training effects only poorly transfer to untrained tasks or other contexts, which contributes to reduced adaptation abilities in aging. Stabilizing transfer capabilities in aging would increase the chance of persistent high performance in activities of daily living including longer independency, and prolonged active participation in social life. The trial AgeGain aims at elaborating the physiological brain mechanisms of transfer in aging and supposed major modulators of transfer capability, especially physical activity, cerebral vascular lesions, and amyloid burden. Methods This 4-year interventional, multicenter, phase 2a cognitive and physical training study will enroll 237 cognitively healthy older subjects in four recruiting centers. The primary endpoint of this trial is the prediction of transfer of cognitive training gains. Secondary endpoints are the structural connectivity of the corpus callosum, Default Mode Network activity, brain-derived neurotrophic factors, motor fitness, and maximal oxygen uptake. Discussion Cognitive transfer allows making use of cognitive training gains in everyday life. Thus, maintenance of transfer capability with aging increases the chance of persistent self-guidance and prolonged active participation in social life, which may support a good quality of life. The AgeGain study aims at identifying older people who will most benefit from cognitive training. It will increase the understanding of the neurobiological mechanisms of transfer in aging and will help in determining the impact of physical activity and sport as well as pathologic factors (such as cerebrovascular disease and amyloid load) on transfer capability. Trial registration German Clinical Trials Register (DRKS), ID: DRKS00013077. Registered on 19 November 2017. Electronic supplementary material The online version of this article (10.1186/s13063-018-2688-2) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
The Influence of Education and Apolipoprotein ε4 on Mortality in Community-Dwelling Elderly Men and Women. J Aging Res 2018; 2018:6037058. [PMID: 29770230 PMCID: PMC5889858 DOI: 10.1155/2018/6037058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 02/07/2018] [Indexed: 12/15/2022] Open
Abstract
We investigated the risk of death in relation to the apolipoprotein ε4 allele and evaluated how it interacts with education in 504 elderly adults (mean age 73 years, 65.3% women) who were enrolled in 1993 into the New Mexico Aging Process Study. During 9 years of follow-up, apolipoprotein ε2 appeared to be associated with a lower risk for all-cause mortality (hazard ratio (HR) = 0.73, 95% confidence interval (CI): 0.30-1.71) compared to apolipoprotein ε3 carriers in models adjusted for age, sociodemographic variables, medical conditions, adiposity, and lifestyle factors. The apolipoprotein ε4 allele conferred almost a threefold elevated risk of mortality (HR = 2.76, CI: 1.42-5.37). An interaction between education and apolipoprotein e4 (p=0.027) was observed with the HR of mortality among e4 carriers compared to noncarriers being 1.59 (0.64-3.96) for those with ≥college education; 6.66 (1.90-23.4) for those with some college or trade; and 14.1 (3.03-65.6) for participants with ≤high school education. No significant interaction was identified between apolipoprotein E genotype and cognitive function for mortality risk. These findings suggest that genetic (apolipoprotein ε4) and environmental (education) factors act interactively to influences survival in the elderly with higher education attenuating the adverse effect of apolipoprotein ε4 on mortality.
Collapse
|
39
|
Franzmeier N, Caballero MÁA, Taylor ANW, Simon-Vermot L, Buerger K, Ertl-Wagner B, Mueller C, Catak C, Janowitz D, Baykara E, Gesierich B, Duering M, Ewers M. Resting-state global functional connectivity as a biomarker of cognitive reserve in mild cognitive impairment. Brain Imaging Behav 2018; 11:368-382. [PMID: 27709513 DOI: 10.1007/s11682-016-9599-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cognitive reserve (CR) shows protective effects in Alzheimer's disease (AD) and reduces the risk of dementia. Despite the clinical significance of CR, a clinically useful diagnostic biomarker of brain changes underlying CR in AD is not available yet. Our aim was to develop a fully-automated approach applied to fMRI to produce a biomarker associated with CR in subjects at increased risk of AD. We computed resting-state global functional connectivity (GFC), i.e. the average connectivity strength, for each voxel within the cognitive control network, which may sustain CR due to its central role in higher cognitive function. In a training sample including 43 mild cognitive impairment (MCI) subjects and 24 healthy controls (HC), we found that MCI subjects with high CR (> median of years of education, CR+) showed increased frequency of high GFC values compared to MCI-CR- and HC. A summary index capturing such a surplus frequency of high GFC was computed (called GFC reserve (GFC-R) index). GFC-R discriminated MCI-CR+ vs. MCI-CR-, with the area under the ROC = 0.84. Cross-validation in an independently recruited test sample of 23 MCI subjects showed that higher levels of the GFC-R index predicted higher years of education and an alternative questionnaire-based proxy of CR, controlled for memory performance, gray matter of the cognitive control network, white matter hyperintensities, age, and gender. In conclusion, the GFC-R index that captures GFC changes within the cognitive control network provides a biomarker candidate of functional brain changes of CR in patients at increased risk of AD.
Collapse
Affiliation(s)
- N Franzmeier
- Institut für Schlaganfall-und Demenzforschung (ISD), Ludwig-Maximilians-Universität LMU, Klinikum der Universität München, Feodor-Lynen Straße 17, 81377, Munich, Germany.
| | - M Á Araque Caballero
- Institut für Schlaganfall-und Demenzforschung (ISD), Ludwig-Maximilians-Universität LMU, Klinikum der Universität München, Feodor-Lynen Straße 17, 81377, Munich, Germany
| | - A N W Taylor
- Institut für Schlaganfall-und Demenzforschung (ISD), Ludwig-Maximilians-Universität LMU, Klinikum der Universität München, Feodor-Lynen Straße 17, 81377, Munich, Germany
| | - L Simon-Vermot
- Institut für Schlaganfall-und Demenzforschung (ISD), Ludwig-Maximilians-Universität LMU, Klinikum der Universität München, Feodor-Lynen Straße 17, 81377, Munich, Germany
| | - K Buerger
- Institut für Schlaganfall-und Demenzforschung (ISD), Ludwig-Maximilians-Universität LMU, Klinikum der Universität München, Feodor-Lynen Straße 17, 81377, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE, Munich), Feodor-Lynen Straße 17, 81377, Munich, Germany
| | - B Ertl-Wagner
- Institute for Clinical Radiology, Klinikum der Universität München, Ludwig-Maximilian University, Marchioninistraße 15, 81377, Munich, Germany
| | - C Mueller
- Institut für Schlaganfall-und Demenzforschung (ISD), Ludwig-Maximilians-Universität LMU, Klinikum der Universität München, Feodor-Lynen Straße 17, 81377, Munich, Germany
| | - C Catak
- Institut für Schlaganfall-und Demenzforschung (ISD), Ludwig-Maximilians-Universität LMU, Klinikum der Universität München, Feodor-Lynen Straße 17, 81377, Munich, Germany
| | - D Janowitz
- Institut für Schlaganfall-und Demenzforschung (ISD), Ludwig-Maximilians-Universität LMU, Klinikum der Universität München, Feodor-Lynen Straße 17, 81377, Munich, Germany
| | - E Baykara
- Institut für Schlaganfall-und Demenzforschung (ISD), Ludwig-Maximilians-Universität LMU, Klinikum der Universität München, Feodor-Lynen Straße 17, 81377, Munich, Germany
| | - B Gesierich
- Institut für Schlaganfall-und Demenzforschung (ISD), Ludwig-Maximilians-Universität LMU, Klinikum der Universität München, Feodor-Lynen Straße 17, 81377, Munich, Germany
| | - M Duering
- Institut für Schlaganfall-und Demenzforschung (ISD), Ludwig-Maximilians-Universität LMU, Klinikum der Universität München, Feodor-Lynen Straße 17, 81377, Munich, Germany
| | - M Ewers
- Institut für Schlaganfall-und Demenzforschung (ISD), Ludwig-Maximilians-Universität LMU, Klinikum der Universität München, Feodor-Lynen Straße 17, 81377, Munich, Germany
| | | |
Collapse
|
40
|
Fleck JI, Kuti J, Mercurio J, Mullen S, Austin K, Pereira O. The Impact of Age and Cognitive Reserve on Resting-State Brain Connectivity. Front Aging Neurosci 2017; 9:392. [PMID: 29249962 PMCID: PMC5716980 DOI: 10.3389/fnagi.2017.00392] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022] Open
Abstract
Cognitive reserve (CR) is a protective mechanism that supports sustained cognitive function following damage to the physical brain associated with age, injury, or disease. The goal of the research was to identify relationships between age, CR, and brain connectivity. A sample of 90 cognitively normal adults, ages 45–64 years, had their resting-state brain activity recorded with electroencephalography (EEG) and completed a series of memory and executive function assessments. CR was estimated using years of education and verbal IQ scores. Participants were divided into younger and older age groups and low- and high-CR groups. We observed greater left- than right-hemisphere coherence in younger participants, and greater right- than left-hemisphere coherence in older participants. In addition, greater coherence was observed under eyes-closed than eyes-open recording conditions for both low-CR and high-CR participants, with a more substantial difference between recording conditions in individuals high in CR regardless of age. Finally, younger participants low in CR exhibited greater mean coherence than younger participants high in CR, whereas the opposite pattern was observed in older participants, with greater coherence in older participants high in CR. Together, these findings suggest the possibility of a shift in the relationship between CR and brain connectivity during aging.
Collapse
Affiliation(s)
- Jessica I Fleck
- School of Social and Behavioral Sciences, Stockton University, Galloway Township, NJ, United States
| | - Julia Kuti
- School of Social and Behavioral Sciences, Stockton University, Galloway Township, NJ, United States
| | - Jeffrey Mercurio
- Department of Cell Biology and Molecular Biology, National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Spencer Mullen
- School of Social and Behavioral Sciences, Stockton University, Galloway Township, NJ, United States
| | - Katherine Austin
- School of Graduate Studies, Stockton University, Galloway Township, NJ, United States
| | - Olivia Pereira
- Department of Biomedical Research, Nemours Hospital for Children, Wilmington, DE, United States
| |
Collapse
|
41
|
Park H, Chey J, Lee J. Vocabulary Knowledge is Not a Predictor of General Cognitive Functioning in Elderly People with Very Low Educational Attainment. Dement Neurocogn Disord 2017; 16:20-25. [PMID: 30906366 PMCID: PMC6427989 DOI: 10.12779/dnd.2017.16.1.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Vocabulary knowledge is used as a representative index of general intelligence, and is regarded as a marker for cognitive reserve in elderly people. However, vocabulary knowledge mainly depends on formal education, hence, it may not fully represent cognitive functioning in elderly people with poor educational backgrounds. Herein, we investigated whether vocabulary knowledge is a measure of general cognitive ability among normal elderly people with few years of formal education. METHODS The association between vocabulary knowledge and general cognitive functioning was compared between 35 elderly females with very low educational attainment and 68 elderly females with higher education. RESULTS The vocabulary knowledge was a significant predictor of general cognitive functioning in elderly individuals with more than primary education, even after controlling the effects of age and years of education. However, it was not a significant predictor of general cognitive functioning in elderly individuals with very low educational attainment. CONCLUSIONS Vocabulary assessment was effective in estimating general cognitive functioning in elderly individuals who received ≥6 years of education. Our findings suggested that vocabulary knowledge may not be an effective proxy of premorbid intelligence or cognitive reserve in people who have not completed elementary schooling.
Collapse
Affiliation(s)
- Heyeon Park
- Department of Psychology, Seoul National University, Seoul, Korea
- Office of Humanitarian & Public Healthcare Support, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jeanyung Chey
- Department of Psychology, Seoul National University, Seoul, Korea
| | - Jiyoun Lee
- Department of Psychology, Seoul National University, Seoul, Korea
| |
Collapse
|
42
|
Franzmeier N, Duering M, Weiner M, Dichgans M, Ewers M. Left frontal cortex connectivity underlies cognitive reserve in prodromal Alzheimer disease. Neurology 2017; 88:1054-1061. [PMID: 28188306 DOI: 10.1212/wnl.0000000000003711] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 12/20/2016] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To test whether higher global functional connectivity of the left frontal cortex (LFC) in Alzheimer disease (AD) is associated with more years of education (a proxy of cognitive reserve [CR]) and mitigates the association between AD-related fluorodeoxyglucose (FDG)-PET hypometabolism and episodic memory. METHODS Forty-four amyloid-PET-positive patients with amnestic mild cognitive impairment (MCI-Aβ+) and 24 amyloid-PET-negative healthy controls (HC) were included. Voxel-based linear regression analyses were used to test the association between years of education and FDG-PET in MCI-Aβ+, controlled for episodic memory performance. Global LFC (gLFC) connectivity was computed through seed-based resting-state fMRI correlations between the LFC (seed) and each voxel in the gray matter. In linear regression analyses, education as a predictor of gLFC connectivity and the interaction of gLFC connectivity × FDG-PET hypometabolism on episodic memory were tested. RESULTS FDG-PET metabolism in the precuneus was reduced in MCI-Aβ+ compared to HC (p = 0.028), with stronger reductions observed in MCI-Aβ+ with more years of education (p = 0.006). In MCI-Aβ+, higher gLFC connectivity was associated with more years of education (p = 0.021). At higher levels of gLFC connectivity, the association between precuneus FDG-PET hypometabolism and lower memory performance was attenuated (p = 0.027). CONCLUSIONS Higher gLFC connectivity is a functional substrate of CR that helps to maintain episodic memory relatively well in the face of emerging FDG-PET hypometabolism in early-stage AD.
Collapse
Affiliation(s)
- Nicolai Franzmeier
- From the Institute for Stroke and Dementia Research (N.F., M. Duering, M. Dichgans, M.E.), Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany; University of California at San Francisco (M.W.); Munich Cluster for Systems Neurology (SyNergy) (M. Dichgans); and German Center for Neurodegenerative Diseases (M. Dichgans), Munich, Germany
| | - Marco Duering
- From the Institute for Stroke and Dementia Research (N.F., M. Duering, M. Dichgans, M.E.), Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany; University of California at San Francisco (M.W.); Munich Cluster for Systems Neurology (SyNergy) (M. Dichgans); and German Center for Neurodegenerative Diseases (M. Dichgans), Munich, Germany
| | - Michael Weiner
- From the Institute for Stroke and Dementia Research (N.F., M. Duering, M. Dichgans, M.E.), Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany; University of California at San Francisco (M.W.); Munich Cluster for Systems Neurology (SyNergy) (M. Dichgans); and German Center for Neurodegenerative Diseases (M. Dichgans), Munich, Germany
| | - Martin Dichgans
- From the Institute for Stroke and Dementia Research (N.F., M. Duering, M. Dichgans, M.E.), Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany; University of California at San Francisco (M.W.); Munich Cluster for Systems Neurology (SyNergy) (M. Dichgans); and German Center for Neurodegenerative Diseases (M. Dichgans), Munich, Germany
| | - Michael Ewers
- From the Institute for Stroke and Dementia Research (N.F., M. Duering, M. Dichgans, M.E.), Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany; University of California at San Francisco (M.W.); Munich Cluster for Systems Neurology (SyNergy) (M. Dichgans); and German Center for Neurodegenerative Diseases (M. Dichgans), Munich, Germany.
| | | |
Collapse
|
43
|
Influence of age and cognitive performance on resting-state brain networks of older adults in a population-based cohort. Cortex 2017; 89:28-44. [PMID: 28192723 DOI: 10.1016/j.cortex.2017.01.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/11/2016] [Accepted: 01/13/2017] [Indexed: 11/23/2022]
Abstract
Aging leads to global changes in brain structure and cognitive performance, with reorganization of functional brain networks. Importantly, these age-related changes show higher inter-individual variability in older subjects. To particularly address this variability is a challenge for studies on lifetime trajectories from early to late adulthood. The present study therefore had a dedicated focus on late adulthood to characterize the functional connectivity in resting-state networks (RSFC) in relation to age and cognitive performance in 711 older adults (55-85 years) from the 1000BRAINS project. The executive, left and right frontoparietal resting-state (RS) networks showed age-related increases in RSFC. However, older adults did not show changes in RSFC in the default mode network (DMN). Furthermore, lower performance in working memory (WM) was associated with higher RSFC in the left frontoparietal RS network. The results suggest age-related compensatory increases in RSFC which might help to maintain cognitive performance. Nevertheless, the negative correlation between RSFC and WM performance hints at limited cognitive reserve capacity in lower performing older adults. Consequently, the current results provide evidence for a functional reorganization of the brain until late adulthood that might additionally explain parts of the variability of cognitive abilities in older adults.
Collapse
|
44
|
Deslauriers J, Ansado J, Marrelec G, Provost JS, Joanette Y. Increase of posterior connectivity in aging within the Ventral Attention Network: A functional connectivity analysis using independent component analysis. Brain Res 2016; 1657:288-296. [PMID: 28012826 DOI: 10.1016/j.brainres.2016.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 11/23/2016] [Accepted: 12/20/2016] [Indexed: 10/20/2022]
Abstract
Multiple studies have found neurofunctional changes in normal aging in a context of selective attention. Furthermore, many articles report intrahemispheric alteration in functional networks. However, little is known about age-related changes within the Ventral Attention Network (VAN), which underlies selective attention. The aim of this study is to examine age-related changes within the VAN, focusing on connectivity between its regions. Here we report our findings on the analysis of 27 participants' (13 younger and 14 older healthy adults) BOLD signals as well as their performance on a letter-matching task. We identified the VAN independently for both groups using spatial independent component analysis. Three main findings emerged: First, younger adults were faster and more accurate on the task. Second, older adults had greater connectivity among posterior regions (right temporoparietal junction, right superior parietal lobule, right middle temporal gyrus and left cerebellum crus I) than younger adults but lower connectivity among anterior regions (right anterior insula, right medial superior frontal gyrus and right middle frontal gyrus). Older adults also had more connectivity between anterior and posterior regions than younger adults. Finally, correlations between connectivity and response time on the task showed a trend toward connectivity in posterior regions for the older group and in anterior regions for the younger group. Thus, this study shows that intrahemispheric neurofunctional changes in aging also affect the VAN. The results suggest that, in contexts of selective attention, posterior regions increased in importance for older adults, while anterior regions had reduced centrality.
Collapse
Affiliation(s)
- Johnathan Deslauriers
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Canada; Université de Montréal, Montreal, Quebec, Canada; Université du Québec en Outaouais, Gatineau, Quebec, Canada
| | | | - Guillaume Marrelec
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d'imagerie biomédicale (LIB), F-75013 Paris, France
| | | | - Yves Joanette
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Canada; Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
45
|
Fleck JI, Kuti J, Brown J, Mahon JR, Gayda-Chelder C. Frontal-posterior coherence and cognitive function in older adults. Int J Psychophysiol 2016; 110:217-230. [DOI: 10.1016/j.ijpsycho.2016.07.501] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 11/26/2022]
|
46
|
Franzmeier N, Buerger K, Teipel S, Stern Y, Dichgans M, Ewers M. Cognitive reserve moderates the association between functional network anti-correlations and memory in MCI. Neurobiol Aging 2016; 50:152-162. [PMID: 28017480 DOI: 10.1016/j.neurobiolaging.2016.11.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/14/2016] [Accepted: 11/19/2016] [Indexed: 11/17/2022]
Abstract
Cognitive reserve (CR) shows protective effects on cognitive function in older adults. Here, we focused on the effects of CR at the functional network level. We assessed in patients with amnestic mild cognitive impairment (aMCI) whether higher CR moderates the association between low internetwork cross-talk on memory performance. In 2 independent aMCI samples (n = 76 and 93) and healthy controls (HC, n = 36), CR was assessed via years of education and intelligence (IQ). We focused on the anti-correlation between the dorsal attention network (DAN) and an anterior and posterior default mode network (DMN), assessed via sliding time window analysis of resting-state functional magnetic resonance imaging (fMRI). The DMN-DAN anti-correlation was numerically but not significantly lower in aMCI compared to HC. However, in aMCI, lower anterior DMN-DAN anti-correlation was associated with lower memory performance. This association was moderated by CR proxies, where the association between the internetwork anti-correlation and memory performance was alleviated at higher levels of education or IQ. In conclusion, lower DAN-DMN cross-talk is associated with lower memory in aMCI, where such effects are buffered by higher CR.
Collapse
Affiliation(s)
- Nicolai Franzmeier
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University LMU, Munich, Germany
| | - Katharina Buerger
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University LMU, Munich, Germany
| | - Stefan Teipel
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany; German Center for Neurodegenerative Diseases (DZNE, Rostock), Rostock, Germany
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University LMU, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University LMU, Munich, Germany.
| | | |
Collapse
|
47
|
Harper DG, Joe EB, Jensen JE, Ravichandran C, Forester BP. Brain levels of high-energy phosphate metabolites and executive function in geriatric depression. Int J Geriatr Psychiatry 2016; 31:1241-1249. [PMID: 26891040 DOI: 10.1002/gps.4439] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 12/29/2015] [Accepted: 01/05/2016] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Depression in late life has been associated with difficulties in cognitive processing, particularly in the domains of executive function, processing speed and memory, and increases the risk of developing dementia suggesting a neurodegenerative phenotype. Mitochondrial dysfunction is frequently an early event in neurodegenerative illnesses and may be operative in patients with late life depression. Phosphorus magnetic resonance spectroscopy (31P MRS) allows for the quantification of bioenergetic molecules produced by mitochondria. METHODS Ten patients with late life depression and eight normal elderly controls were studied with Stroop color and interference tests, which are widely used measures of processing speed and executive function, respectively, followed by (31P) MRS 3-dimensional chemical-shift imaging measuring levels of adenosine triphosphate, phosphocreatine, inorganic phosphate, and pH over the whole brain. RESULTS In all subjects, gray matter phosphocreatine was positively associated with Stroop interference. Levels of white matter adenosine triphosphate were associated with Stroop interference in subjects with late life depression but not normal elderly. There was also a complementary association between white matter inorganic phosphate and Stroop interference in late life depression patients. CONCLUSIONS These findings suggest two independent sources of executive function dependence on bioenergetic state in the aging brain. The dependence of executive function performance in subjects with late life depression on ATP in white matter may be associated with mitochondrial impairment and is consistent with predictions of the vascular depression hypothesis. Further research with wider neuropsychological testing targeting bioenergetic markers could help clarify the scope of these effects. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- David G Harper
- Geriatric Psychiatry Program, McLean Hospital, Belmont, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| | | | - J Eric Jensen
- Neuroimaging Center, McLean Hospital, Belmont, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Caitlin Ravichandran
- Laboratory for Psychiatric Biostatistics, McLean Hospital, Belmont, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Brent P Forester
- Geriatric Psychiatry Program, McLean Hospital, Belmont, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
Trotta N, Archambaud F, Goldman S, Baete K, Van Laere K, Wens V, Van Bogaert P, Chiron C, De Tiège X. Functional integration changes in regional brain glucose metabolism from childhood to adulthood. Hum Brain Mapp 2016; 37:3017-30. [PMID: 27133021 DOI: 10.1002/hbm.23223] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/31/2016] [Accepted: 04/10/2016] [Indexed: 02/03/2023] Open
Abstract
The aim of this study was to investigate the age-related changes in resting-state neurometabolic connectivity from childhood to adulthood (6-50 years old). Fifty-four healthy adult subjects and twenty-three pseudo-healthy children underwent [(18) F]-fluorodeoxyglucose positron emission tomography at rest. Using statistical parametric mapping (SPM8), age and age squared were first used as covariate of interest to identify linear and non-linear age effects on the regional distribution of glucose metabolism throughout the brain. Then, by selecting voxels of interest (VOI) within the regions showing significant age-related metabolic changes, a psychophysiological interaction (PPI) analysis was used to search for age-induced changes in the contribution of VOIs to the metabolic activity in other brain areas. Significant linear or non-linear age-related changes in regional glucose metabolism were found in prefrontal cortices (DMPFC/ACC), cerebellar lobules, and thalamo-hippocampal areas bilaterally. Decreases were found in the contribution of thalamic, hippocampal, and cerebellar regions to DMPFC/ACC metabolic activity as well as in the contribution of hippocampi to preSMA and right IFG metabolic activities. Increases were found in the contribution of the right hippocampus to insular cortex and of the cerebellar lobule IX to superior parietal cortex metabolic activities. This study evidences significant linear or non-linear age-related changes in regional glucose metabolism of mesial prefrontal, thalamic, mesiotemporal, and cerebellar areas, associated with significant modifications in neurometabolic connectivity involving fronto-thalamic, fronto-hippocampal, and fronto-cerebellar networks. These changes in functional brain integration likely represent a metabolic correlate of age-dependent effects on sensory, motor, and high-level cognitive functional networks. Hum Brain Mapp 37:3017-3030, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicola Trotta
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC) - ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium.,Department of Nuclear Medicine, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Serge Goldman
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC) - ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium.,Department of Nuclear Medicine, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Kristof Baete
- Department of Nuclear Medicine, UZ Leuven, Leuven, Belgium
| | - Koen Van Laere
- Department of Nuclear Medicine, UZ Leuven, Leuven, Belgium
| | - Vincent Wens
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC) - ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Patrick Van Bogaert
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC) - ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Xavier De Tiège
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC) - ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
49
|
Duffau H. A two-level model of interindividual anatomo-functional variability of the brain and its implications for neurosurgery. Cortex 2016; 86:303-313. [PMID: 26920729 DOI: 10.1016/j.cortex.2015.12.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/06/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
The classical dogma of localizationism implicitly resulted in the principle of a similar brain functional anatomy between individuals, as for example the pars opercularis of the left "dominant" hemisphere corresponding to the speech area. This fixed "single brain" model led neurosurgeons to define a set of "eloquent" areas, for which injury would induce severe and persistent neurological worsening, making their surgical resections impossible. Therefore, numerous patients with a cerebral lesion justifying surgery were a priori not selected for resection and lost a chance to be treated. In fact, advances in brain mapping showed a considerable inter-individual variability explained by a networking organization of the brain, in which one function is not underpinned by one specific region, but by interactions between dynamic large-scale delocalized sub-circuits. Indeed, using non-invasive neuroimaging, a variability of both structural and functional anatomy was demonstrated in healthy volunteers. Moreover, intraoperative electrical stimulation mapping of cortex and white matter tracts in awake patients who underwent surgery for tumor or epilepsy also showed an important anatomo-functional variability. However, a remarkable observation is that this variability is huge at the cortical level, while it is very low at the subcortical level. Based upon these intrasurgical findings, the goal of this review is to propose a two-level model of inter-individual variability (high cortical variation, low subcortical variation), breaking with the traditional rigid workframe, and making neurosurgery in traditionally presumed "eloquent" areas feasible without permanent deficits, on condition nonetheless to preserve the "invariant common core" of the brain.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France; National Institute for Health and Medical Research (INSERM), U1051 Laboratory, Team "Brain Plasticity, Stem Cells and Glial Tumors", Institute for Neurosciences of Montpellier, Montpellier University Medical Center, Montpellier, France.
| |
Collapse
|
50
|
Kakimoto A, Ito S, Okada H, Nishizawa S, Minoshima S, Ouchi Y. Age-Related Sex-Specific Changes in Brain Metabolism and Morphology. J Nucl Med 2015; 57:221-5. [PMID: 26609179 DOI: 10.2967/jnumed.115.166439] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/26/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED With a large database, we aimed to evaluate sex-specific distinctive changes in brain glucose metabolism and morphology during normal aging using MRI and (18)F-FDG PET. METHODS A total of 963 cognitively healthy adults were included in this study. All subjects completed a medical questionnaire, took the mini-mental state examination, and underwent brain MRI and whole-body (18)F-FDG PET. The MR and PET images were statistically analyzed using 3-dimensional stereotactic surface projection. All images were corrected for whole-brain pixel value to identify the brain regions with significant changes, and regions of interest were set up with reference to Brodmann areas. We evaluated morphologic and glucose metabolic changes by cross-sectional analysis. The baseline database consisted of subjects from 30 to 40 y old, and the age-step for comparison was 5-y ranges. We also compared sex-specific differences in MR and PET images in each age group. RESULTS Regarding age-related changes, in both sexes brain atrophy was observed in the lateral frontal and parietal regions and glucose hypometabolism in the medial frontal regions. There were significant differences in these parameters between the sexes; parallel changes in volume and metabolism were manifested in the medial frontal cortex in men and in the lateral and medial temporal cortex in women. By contrast, metabolism-dominant reductions were manifested in the lateral and medial parietal cortex in men and in the ventrolateral prefrontal cortex, including the Broca area, in women. These differences became insignificant in individuals 66 y or older. CONCLUSION Our brain mapping study with a large number of reference human brain data demonstrated age-related parallel changes between morphology and metabolism in the medial frontal regions and sex-specific hypometabolism in the parietal (male) and ventrolateral prefrontal (female) cortices. These findings may suggest an aging vulnerability in sex-specific brain regions: the parietal cortex for visuospatial ability in men and the Broca area for speech processing in women.
Collapse
Affiliation(s)
- Akihiro Kakimoto
- Diagnostic Imaging Application Group, PET Business Promotion Department, Development Bureau, Hamamatsu Photonics K.K., Hamamatsu, Japan Department of Biofunctional Imaging, Medical Photonics Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shigeru Ito
- Diagnostic Imaging Application Group, PET Business Promotion Department, Development Bureau, Hamamatsu Photonics K.K., Hamamatsu, Japan Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan; and
| | - Hiroyuki Okada
- Diagnostic Imaging Application Group, PET Business Promotion Department, Development Bureau, Hamamatsu Photonics K.K., Hamamatsu, Japan Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan; and
| | - Sadahiko Nishizawa
- Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan; and
| | - Satoshi Minoshima
- Department of Radiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Yasuomi Ouchi
- Department of Biofunctional Imaging, Medical Photonics Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|