1
|
Rot S, Oliver‐Taylor A, Baker R, Steeden J, Golay X, Solanky B, Gandini Wheeler‐Kingshott C. Polyacrylamide Gel Calibration Phantoms for Quantification in Sodium MRI. NMR IN BIOMEDICINE 2025; 38:e70056. [PMID: 40329665 PMCID: PMC12056480 DOI: 10.1002/nbm.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025]
Abstract
Quantitative sodium (23Na) MRI utilises a signal calibration approach to derive maps of total sodium concentration (TSC). Agarose gel vials are often used as calibration phantoms, but as a naturally occurring substance, agarose may exhibit unfavourable qualities relating to instabilities, inconsistencies and heterogeneity. To contribute towards standardisation and methods harmonisation of quantitative 23Na MRI, the objective of this study was to develop and test a novel, standardisable synthetic polymer calibration phantom for in vivo quantitative 23Na MRI. Seven crosslinked polyacrylamide gel (PAG) samples were prepared, doped with sodium chloride (NaCl) at nominal concentrations of 10-150 mM. The sodium concentrations of all samples were estimated by volumetrics using high-precision mass measurements. Relaxation time constants (T 1 , T 2 * $$ {\mathrm{T}}_1,{\mathrm{T}}_2^{\ast } $$ ) of all samples were measured at 3 T with a non-localised pulse-acquire sequence.T 2 * $$ {\mathrm{T}}_2^{\ast } $$ was measured longitudinally over 14 months to assess stability. Finally, in vivo TSC quantification with PAG phantoms was demonstrated in the human brain and calf muscle on different systems, with different imaging sequences. The measured sodium concentrations of phantoms were on average 5% lower than nominal ones, owing to the unknown volumetric contribution of the solid fraction. Hence, they were reported as apparent sodium concentrations, and the apparent TSC (aTSC) was quantified in vivo. Mean relaxation time constants of 23Na in PAG were in the following ranges:T 1 $$ {\mathrm{T}}_1 $$ = 27-39 ms,T 2 s * $$ {\mathrm{T}}_{2\mathrm{s}}^{\ast } $$ = 4.8-7.1 ms,T 2 l * $$ {\mathrm{T}}_{2\mathrm{l}}^{\ast } $$ = 16.8-18.8 ms, short fractionf $$ f $$ = 0.64-0.77. Over 14 months, relaxation time constants were stable within 10% (above sodium concentrations of 25 mM). In vivo aTSC measurements were in the expected ranges. PAG phantoms are well suited for quantification and standardisation in 23Na MRI, offering tissue-matched relaxation time constants and the intrinsic benefits of a synthetic material.
Collapse
Affiliation(s)
- Samuel Rot
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUCLLondonUK
- Department of Medical Physics and Biomedical EngineeringUCLLondonUK
| | | | - Rebecca R. Baker
- Centre for Cardiovascular Imaging, Institute of Cardiovascular ScienceUCLLondonUK
| | - Jennifer A. Steeden
- Centre for Cardiovascular Imaging, Institute of Cardiovascular ScienceUCLLondonUK
| | - Xavier Golay
- Gold Standard Phantoms LimitedSheffieldUK
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUCLLondonUK
| | - Bhavana S. Solanky
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUCLLondonUK
- Quantitative Imaging Group, Department of Medical Physics and Biomedical EngineeringUCLLondonUK
| | - Claudia A. M. Gandini Wheeler‐Kingshott
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUCLLondonUK
- Department of Brain & Behavioural SciencesUniversity of PaviaPaviaItaly
- Digital Neuroscience CentreIRCCS Mondino FoundationPaviaItaly
| |
Collapse
|
2
|
Ma C, Liu A, Liu J, Wang X, Cong F, Li Y, Liu J. A window into the brain: multimodal MRI assessment of vascular cognitive impairment. Front Neurosci 2025; 19:1526897. [PMID: 40309660 PMCID: PMC12040843 DOI: 10.3389/fnins.2025.1526897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/25/2025] [Indexed: 05/02/2025] Open
Abstract
Vascular cognitive impairment (VCI) encompasses a diverse range of syndromes, including mild cognitive impairment and vascular dementia (VaD), primarily attributed to cerebrovascular lesions and vascular risk factors. Its prevalence ranks second only to Alzheimer's disease (AD) in neuro diseases. The advancement of medical imaging technology, particularly magnetic resonance imaging (MRI), has enabled the early detection of structural, functional, metabolic, and cerebral connectivity alterations in individuals with VCI. This paper examines the utility of multimodal MRI in evaluating structural changes in the cerebral cortex, integrity of white matter fiber tracts, alterations in the blood-brain barrier (BBB) and glymphatic system (GS) activity, alteration of neurovascular coupling function, assessment of brain connectivity, and assessment of metabolic changes in patients with VCI.
Collapse
Affiliation(s)
- Changjun Ma
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, China
| | - Ailian Liu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiahui Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, China
| | - Xiulin Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, China
| | - Fengyu Cong
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China
- Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
| | - Ying Li
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, China
| |
Collapse
|
3
|
Grapperon AM, El Mendili MM, Maarouf A, Ranjeva JP, Guye M, Verschueren A, Attarian S, Zaaraoui W. In vivo mapping of sodium homeostasis disturbances in individual ALS patients: A brain 23Na MRI study. PLoS One 2025; 20:e0316916. [PMID: 39841674 PMCID: PMC11753670 DOI: 10.1371/journal.pone.0316916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by significant heterogeneity among patients. 23Na MRI maps abnormal sodium homeostasis that reflects metabolic alterations and energetic failure contributing to the neurodegenerative process. In this study, we investigated disease severity at the individual level in ALS patients using brain 23Na MRI. METHODS 1H and 23Na brain MRI were collected prospectively from 28 ALS patients. Individual map of abnormal total sodium concentration (TSC) was computed using voxel-based statistical mapping for each patient compared to a local database of 62 healthy controls. Clinical data included the revised ALS functional rating scale (ALSFRS-R), ALSFRS-R slope, ALSFRS-R at 6-month and survival time. RESULTS Individual maps quantifying voxels with TSC increase evidenced a high heterogeneity between patients consistent with clinical presentation. The main areas involved were the corticospinal tracts. Half of patients showed abnormal TSC increase within more than 1% of whole brain voxels. Patients with TSC increase had worse clinical severity: higher ALSFRS-R slope (p = 0.02), lower ALSFRS-R at 6-month (p = 0.04), and shorter survival (p = 0.04). ALS patients with limited TSC increase had slower progression of disability or predominant lower motor neuron phenotype or shorter disease duration. DISCUSSION This study mapping sodium homeostasis disturbances at the individual level in ALS patients through 23Na MRI evidenced heterogeneity of TSC increase among patients associated with clinical presentation and disease severity. These findings suggest that TSC increase detected at the individual level by 23Na MRI may be a useful marker of the clinical heterogeneity of ALS patients, a factor that is likely to greatly influence the results of therapeutic trials.
Collapse
Affiliation(s)
- Aude-Marie Grapperon
- CNRS, CRMBM, Aix Marseille Univ, Marseille, France
- APHM, Hôpital de la Timone, CEMEREM, Marseille, France
- APHM, Hȏpital de la Timone, Referral Center for Neuromuscular Diseases and ALS, ERN EURO-NMD, Marseille, France
| | - Mohamed Mounir El Mendili
- CNRS, CRMBM, Aix Marseille Univ, Marseille, France
- APHM, Hôpital de la Timone, CEMEREM, Marseille, France
| | - Adil Maarouf
- CNRS, CRMBM, Aix Marseille Univ, Marseille, France
- APHM, Hôpital de la Timone, CEMEREM, Marseille, France
- APHM, Hȏpital de la Timone, Pôle de Neurosciences Cliniques, Service de Neurologie, Marseille, France
| | - Jean-Philippe Ranjeva
- CNRS, CRMBM, Aix Marseille Univ, Marseille, France
- APHM, Hôpital de la Timone, CEMEREM, Marseille, France
| | - Maxime Guye
- CNRS, CRMBM, Aix Marseille Univ, Marseille, France
- APHM, Hôpital de la Timone, CEMEREM, Marseille, France
| | - Annie Verschueren
- CNRS, CRMBM, Aix Marseille Univ, Marseille, France
- APHM, Hôpital de la Timone, CEMEREM, Marseille, France
- APHM, Hȏpital de la Timone, Referral Center for Neuromuscular Diseases and ALS, ERN EURO-NMD, Marseille, France
| | - Shahram Attarian
- APHM, Hȏpital de la Timone, Referral Center for Neuromuscular Diseases and ALS, ERN EURO-NMD, Marseille, France
- INSERM, Marseille Medical Genetic Center, Aix Marseille Univ, Marseille, France
| | - Wafaa Zaaraoui
- CNRS, CRMBM, Aix Marseille Univ, Marseille, France
- APHM, Hôpital de la Timone, CEMEREM, Marseille, France
| |
Collapse
|
4
|
Azilinon M, Wang HE, Makhalova J, Zaaraoui W, Ranjeva JP, Bartolomei F, Guye M, Jirsa V. Brain sodium MRI-derived priors support the estimation of epileptogenic zones using personalized model-based methods in epilepsy. Netw Neurosci 2024; 8:673-696. [PMID: 39355432 PMCID: PMC11340996 DOI: 10.1162/netn_a_00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/06/2024] [Indexed: 10/03/2024] Open
Abstract
Patients presenting with drug-resistant epilepsy are eligible for surgery aiming to remove the regions involved in the production of seizure activities, the so-called epileptogenic zone network (EZN). Thus the accurate estimation of the EZN is crucial. Data-driven, personalized virtual brain models derived from patient-specific anatomical and functional data are used in Virtual Epileptic Patient (VEP) to estimate the EZN via optimization methods from Bayesian inference. The Bayesian inference approach used in previous VEP integrates priors, based on the features of stereotactic-electroencephalography (SEEG) seizures' recordings. Here, we propose new priors, based on quantitative 23Na-MRI. The 23Na-MRI data were acquired at 7T and provided several features characterizing the sodium signal decay. The hypothesis is that the sodium features are biomarkers of neuronal excitability related to the EZN and will add additional information to VEP estimation. In this paper, we first proposed the mapping from 23Na-MRI features to predict the EZN via a machine learning approach. Then, we exploited these predictions as priors in the VEP pipeline. The statistical results demonstrated that compared with the results from current VEP, the result from VEP based on 23Na-MRI prior has better balanced accuracy, and the similar weighted harmonic mean of the precision and recall.
Collapse
Affiliation(s)
- Mikhael Azilinon
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes (INS) UMR 1106, Marseille, France
- Aix Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Timone University Hospital, CEMEREM, Marseille, France
| | - Huifang E Wang
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes (INS) UMR 1106, Marseille, France
| | - Julia Makhalova
- APHM, Timone University Hospital, CEMEREM, Marseille, France
- APHM, Epileptology and Clinical Neurophysiology Department, Timone Hospital, Marseille, France
| | - Wafaa Zaaraoui
- Aix Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Timone University Hospital, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Timone University Hospital, CEMEREM, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes (INS) UMR 1106, Marseille, France
- APHM, Epileptology and Clinical Neurophysiology Department, Timone Hospital, Marseille, France
| | - Maxime Guye
- Aix Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Timone University Hospital, CEMEREM, Marseille, France
| | - Viktor Jirsa
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes (INS) UMR 1106, Marseille, France
| |
Collapse
|
5
|
Xia C, Dai W, Carreno J, Rogando A, Wu X, Simmons D, Astraea N, Dalleska NF, Fonteh AN, Vasudevan A, Arakaki X, Kloner RA. Higher sodium in older individuals or after stroke/reperfusion, but not in migraine or Alzheimer's disease - a study in different preclinical models. Sci Rep 2024; 14:21636. [PMID: 39284837 PMCID: PMC11405707 DOI: 10.1038/s41598-024-72280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Sodium serves as one of the primary cations in the central nervous system, playing a crucial role in maintaining normal brain function. In this study, we investigated alterations in sodium concentrations in the brain and/or cerebrospinal fluid across multiple models, including an aging model, a stroke model, a nitroglycerin (NTG)-induced rat migraine model, a familial hemiplegic migraine type 2 (FHM2) mouse model, and a transgenic mouse model of Alzheimer's disease (AD). Our results reveal that older rats exhibited higher sodium concentrations in cerebrospinal fluid (CSF), plasma, and various brain regions compared to their younger counterparts. Additionally, findings from the stroke model demonstrated a significant increase in sodium in the ischemic/reperfused region, accompanied by a decrease in potassium and an elevated sodium/potassium ratio. However, we did not detect significant changes in sodium in the NTG-induced rat migraine model or the FHM2 mouse model. Furthermore, AD transgenic mice showed no significant differences in sodium levels compared to wild-type mice in CSF, plasma, or the hippocampus. These results underscore the nuanced regulation of sodium homeostasis in various neurological conditions and aging, providing valuable insights into potential mechanisms underlying these alterations.
Collapse
Affiliation(s)
- Chenchen Xia
- Cognition and Brain Integration Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Wangde Dai
- Cardiovascular Department, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Juan Carreno
- Cardiovascular Department, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Andrea Rogando
- Cognition and Brain Integration Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Xiaomeng Wu
- Analytical Biochemistry Core, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Darren Simmons
- Analytical Biochemistry Core, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Natalie Astraea
- Analytical Biochemistry Core, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Nathan F Dalleska
- Water and Environment Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Alfred N Fonteh
- Biomarker and Neuro-Disease Mechanism Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Anju Vasudevan
- Angiogenesis and Brain Development Laboratory, Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Xianghong Arakaki
- Cognition and Brain Integration Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA, USA.
| | - Robert A Kloner
- Cardiovascular Department, Huntington Medical Research Institutes, Pasadena, CA, USA
| |
Collapse
|
6
|
Lui E, Venkatraman VK, Finch S, Chua M, Li TQ, Sutton BP, Steward CE, Moffat B, Cyarto EV, Ellis KA, Rowe CC, Masters CL, Lautenschlager NT, Desmond PM. 3T sodium-MRI as predictor of neurocognition in nondemented older adults: a cross sectional study. Brain Commun 2024; 6:fcae307. [PMID: 39318783 PMCID: PMC11420980 DOI: 10.1093/braincomms/fcae307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/13/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Dementia is a burgeoning global problem. Novel magnetic resonance imaging (MRI) metrics beyond volumetry may bring new insight and aid clinical trial evaluation of interventions early in the Alzheimer's disease course to complement existing imaging and clinical metrics. To determine whether: (i) normalized regional sodium-MRI values (Na-SI) are better predictors of neurocognitive status than volumetry (ii) cerebral amyloid PET status improves modelling. Nondemented older adult (>60 years) volunteers of known Alzheimer's Disease Assessment Scale (ADAS-Cog11), Mini-Mental State Examination (MMSE) and Consortium to Establish a Registry for Alzheimer's Disease (CERAD) neurocognitive test scores, ApolipoproteinE (APOE) e4 +/- cerebral amyloid PET status were prospectively recruited for 3T sodium-MRI brain scans. Left and right hippocampal, entorhinal and precuneus volumes and Na-SI (using the proportional intensity scaling normalization method with field inhomogeneity and partial volume corrections) were obtained after segmentation and co-registration of 3D-T1-weighted proton images. Descriptive statistics, correlation and best-subset regression analyses were performed. In our 76 nondemented participants (mean(standard deviation) age 75(5) years; woman 47(62%); cognitively unimpaired 54/76(71%), mildly cognitively impaired 22/76(29%)), left hippocampal Na-SI, not volume, was preferentially in the best models for predicting MMSE (Odds Ratio (OR) = 0.19(Confidence Interval (CI) = 0.07,0.53), P-value = 0.001) and ADAS-Cog11 (Beta(B) = 1.2(CI = 0.28,2.1), P-value = 0.01) scores. In the entorhinal analysis, right entorhinal Na-SI, not volume, was preferentially selected in the best model for predicting ADAS-Cog11 (B = 0.94(CI = 0.11,1.8), P-value = 0.03). While right entorhinal Na-SI and volume were both selected for MMSE modelling (Na-SI OR = 0.23(CI = 0.09,0.6), P-value = 0.003; volume OR = 2.6(CI = 1.0,6.6), P-value = 0.04), independently, Na-SI explained more of the variance (Na-SI R 2 = 10.3; volume R 2 = 7.5). No imaging variable was selected in the best CERAD models. Adding cerebral amyloid status improved model fit (Akaike Information Criterion increased 2.0 for all models, P-value < 0.001-0.045). Regional Na-SI were more predictive of MMSE and ADAS-Cog11 scores in our nondemented older adult cohort than volume, hippocampal more robust than entorhinal region of interest. Positive amyloid status slightly further improved model fit.
Collapse
Affiliation(s)
- Elaine Lui
- Department of Radiology, The University of Melbourne, Parkville, 3050 Victoria, Australia
- Department of Medical Imaging, The Royal Melbourne Hospital, Parkville, 3050 Victoria, Australia
| | - Vijay K Venkatraman
- Department of Radiology, The University of Melbourne, Parkville, 3050 Victoria, Australia
- Department of Medical Imaging, The Royal Melbourne Hospital, Parkville, 3050 Victoria, Australia
| | - Sue Finch
- Statistical Consulting Centre, University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Michelle Chua
- Department of Medical Imaging, The Royal Melbourne Hospital, Parkville, 3050 Victoria, Australia
| | - Tie-Qiang Li
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Bradley P Sutton
- Beckman Institute for Advance Science and Technology, University of Illinois at Urbana Champaign, Champaign, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Christopher E Steward
- Department of Radiology, The University of Melbourne, Parkville, 3050 Victoria, Australia
- Department of Medical Imaging, The Royal Melbourne Hospital, Parkville, 3050 Victoria, Australia
| | - Bradford Moffat
- Department of Radiology, The University of Melbourne, Parkville, 3050 Victoria, Australia
| | - Elizabeth V Cyarto
- Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Kathryn A Ellis
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, The University of Melbourne, Melbourne, 3010 Victoria, Australia
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, 3010 Victoria, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, 3084 Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, 3052 Victoria, Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, 3052 Victoria, Australia
| | - Nicola T Lautenschlager
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, The University of Melbourne, Melbourne, 3010 Victoria, Australia
- Royal Melbourne Hospital Mental Health Service, Royal Melbourne Hospital, Parkville, Melbourne, 3052 Victoria, Australia
| | - Patricia M Desmond
- Department of Radiology, The University of Melbourne, Parkville, 3050 Victoria, Australia
- Department of Medical Imaging, The Royal Melbourne Hospital, Parkville, 3050 Victoria, Australia
| |
Collapse
|
7
|
Scholefield M, Patassini S, Xu J, Cooper GJS. Widespread selenium deficiency in the brain of cases with Huntington's disease presents a new potential therapeutic target. EBioMedicine 2023; 97:104824. [PMID: 37806287 PMCID: PMC10667115 DOI: 10.1016/j.ebiom.2023.104824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Huntington or Huntington's disease (HD) is an autosomal dominant neurodegenerative disease characterised by both progressive motor and cognitive dysfunction; its pathogenic mechanisms remain poorly understood and no treatment can currently slow, stop, or reverse its progression. There is some evidence of metallomic dysfunction in limited regions of the HD brain; we hypothesised that these alterations are more widespread than the current literature suggests and may contribute to pathogenesis in HD. METHODS We measured the concentrations of eight essential metals (sodium, potassium, magnesium, calcium, iron, zinc, copper, and manganese) and the metalloid selenium across 11 brain regions in nine genetically confirmed, clinically manifest cases of HD and nine controls using inductively-coupled plasma mass spectrometry. Case-control differences were assessed by non-parametric Mann-Whitney U test (p < 0.05), risk ratios, E-values, and effect sizes. FINDINGS We observed striking decreases in selenium levels in 11 out of 11 investigated brain regions in HD, with risk ratios and effect sizes ranging 2.3-9.0 and 0.7-1.9, respectively. Increased sodium/potassium ratios were observed in every region (risk ratio = 2.5-8.0; effect size = 1.2-5.8) except the substantia nigra (risk ratio = 0.25; effect size = 0.1). Multiple regions showed increased calcium and/or zinc levels, and localised decreases in iron, copper, and manganese were present in the globus pallidus, cerebellum, and substantia nigra, respectively. INTERPRETATION The observed metallomic alterations in the HD brain may contribute to several pathogenic mechanisms, including mitochondrial dysfunction, oxidative stress, and blood-brain barrier dysfunction. Selenium supplementation may represent a potential, much-needed therapeutic pathway for the treatment of HD that would not require localised delivery in the brain due to the widespread presence of selenium deficiency in regions that show both high and low levels of neurodegeneration. FUNDING In Acknowledgments, includes the Lee Trust, the Endocore Research Trust, Cure Huntington's Disease Initiative, the Oakley Mental Health Research Foundation, the Medical Research Council (MRC), the New Zealand Neurological Foundation, and others.
Collapse
Affiliation(s)
- Melissa Scholefield
- Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M19 9NT, United Kingdom.
| | - Stefano Patassini
- School of Biological Sciences, Faculty of Science, University of Auckland, Private Bag 92 019, Auckland, 1142, New Zealand
| | - Jingshu Xu
- School of Biological Sciences, Faculty of Science, University of Auckland, Private Bag 92 019, Auckland, 1142, New Zealand
| | - Garth J S Cooper
- Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M19 9NT, United Kingdom; School of Biological Sciences, Faculty of Science, University of Auckland, Private Bag 92 019, Auckland, 1142, New Zealand
| |
Collapse
|
8
|
Szczerbowska-Boruchowska M, Piana K, Surowka AD, Czyzycki M, Wrobel P, Szymkowski M, Ziomber-Lisiak A. A combined X-ray fluorescence and infrared microspectroscopy study for new insights into elemental-biomolecular obesity-induced changes in rat brain structures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122478. [PMID: 36801735 DOI: 10.1016/j.saa.2023.122478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The objective of our research was to determine the brain changes at the molecular and elemental levels typical of early-stage obesity. Therefore a combined approach using Fourier transform infrared micro-spectroscopy (FTIR-MS) and synchrotron radiation induced X-ray fluorescence (SRXRF) was introduced to evaluate some brain macromolecular and elemental parameters in high-calorie diet (HCD)- induced obese rats (OB, n = 6) and in their lean counterparts (L, n = 6). A HCD was found to alter the lipid- and protein- related structure and elemental composition of the certain brain areas important for energy homeostasis. The increased lipid unsaturation in the frontal cortex and ventral tegmental area, the increased fatty acyl chain length in the lateral hypothalamus and substantia nigra as well as the decreased both protein α helix to protein β- sheet ratio and the percentage fraction of β-turns and β-sheets in the nucleus accumbens were revealed in the OB group reflecting obesity-related brain biomolecular aberrations. In addition, the certain brain elements including P, K and Ca were found to differentiate the lean and obese groups at the best extent. We can conclude that HCD-induced obesity triggers lipid- and protein- related structural changes as well as elemental redistribution within various brain structures important for energy homeostasis. In addition, an approach applying combined X-ray and infrared spectroscopy was shown to be a reliable tool for identifying elemental-biomolecular rat brain changes for better understanding the interplay between the chemical and structural processes involved in appetite control.
Collapse
Affiliation(s)
| | - Kaja Piana
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Artur D Surowka
- Elettra-Sincrotrone Trieste SCpA, SS 14, km 163.5, Basovizza, TS 34149 Trieste, Italy
| | - Mateusz Czyzycki
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow, Poland; Karlsruhe Institute of Technology, Institute for Photon Science and Synchrotron Radiation, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; International Atomic Energy Agency, Nuclear Science and Instrumentation Laboratory, Friedensstrasse 1, 2444 Seibersdorf, Austria
| | - Pawel Wrobel
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Maciej Szymkowski
- Bialystok University of Technology, Faculty of Computer Science, ul. Wiejska 45A, 15-351 Białystok, Poland
| | - Agata Ziomber-Lisiak
- Chair of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, ul. Czysta 18, 31-121 Krakow, Poland
| |
Collapse
|
9
|
Yin Y, Song Y, Jia Y, Xia J, Bai R, Kong X. Sodium Dynamics in the Cellular Environment. J Am Chem Soc 2023; 145:10522-10532. [PMID: 37104830 DOI: 10.1021/jacs.2c13271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Sodium ions are essential for the functions of biological cells, and they are maintained at the balance between intra- and extracellular environments. The quantitative assessment of intra- and extracellular sodium as well as its dynamics can provide crucial physiological information on a living system. 23Na nuclear magnetic resonance (NMR) is a powerful and noninvasive technique to probe the local environment and dynamics of sodium ions. However, due to the complex relaxation behavior of the quadrupolar nucleus in the intermediate-motion regime and because of the heterogeneous compartments and diverse molecular interactions in the cellular environment, the understanding of the 23Na NMR signal in biological systems is still at the early stage. In this work, we characterize the relaxation and diffusion of sodium ions in the solutions of proteins and polysaccharides, as well as in the in vitro samples of living cells. The multi-exponential behavior of 23Na transverse relaxation has been analyzed according to the relaxation theory to derive the crucial information related to the ionic dynamics and molecular binding in the solutions. The bi-compartment model of transverse relaxation and diffusion measurements can corroborate each other to quantify the fractions of intra- and extracellular sodium. We show that 23Na relaxation and diffusion can be used to monitor the viability of human cells, which offers versatile NMR metrics for in vivo studies.
Collapse
Affiliation(s)
- Yu Yin
- Department of Chemistry, Zhejiang University, 310027 Hangzhou, P. R. China
| | - Yifan Song
- Department of Chemistry, Zhejiang University, 310027 Hangzhou, P. R. China
| | - Yinhang Jia
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, 310027 Hangzhou, Zhejiang, P. R. China
| | - Juntao Xia
- Department of Chemistry, Zhejiang University, 310027 Hangzhou, P. R. China
| | - Ruiliang Bai
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, 310027 Hangzhou, Zhejiang, P. R. China
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, 310029 Hangzhou, China
- Department of Physical Medicine and Rehabilitation, Sir Run Run Shaw Hospital, Zhejiang University, 310016 Hangzhou, China
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, 310027 Hangzhou, P. R. China
- Department of Physical Medicine and Rehabilitation, Sir Run Run Shaw Hospital, Zhejiang University, 310016 Hangzhou, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, P. R. China
| |
Collapse
|
10
|
Ruck L, Mennecke A, Wilferth T, Lachner S, Müller M, Egger N, Doerfler A, Uder M, Nagel AM. Influence of image contrasts and reconstruction methods on the classification of multiple sclerosis-like lesions in simulated sodium magnetic resonance imaging. Magn Reson Med 2023; 89:1102-1116. [PMID: 36373186 DOI: 10.1002/mrm.29476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/21/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate the classifiability of small multiple sclerosis (MS)-like lesions in simulated sodium (23 Na) MRI for different 23 Na MRI contrasts and reconstruction methods. METHODS 23 Na MRI and 23 Na inversion recovery (IR) MRI of a phantom and simulated brain with and without lesions of different volumes (V = 1.3-38.2 nominal voxels) were simulated 100 times by adding Gaussian noise matching the SNR of real 3T measurements. Each simulation was reconstructed with four different reconstruction methods (Gridding without and with Hamming filter, Compressed sensing (CS) reconstruction without and with anatomical 1 H prior information). Based on the mean signals within the lesion volumes of simulations with and without lesions, receiver operating characteristics (ROC) were determined and the area under the curve (AUC) was calculated to assess the classifiability for each lesion volume. RESULTS Lesions show higher classifiability in 23 Na MRI than in 23 Na IR MRI. For typical parameters and SNR of a 3T scan, the voxel normed minimal classifiable lesion volume (AUC > 0.9) is 2.8 voxels for 23 Na MRI and 19 voxels for 23 Na IR MRI, respectively. In terms of classifiability, Gridding with Hamming filter and CS without anatomical 1 H prior outperform CS reconstruction with anatomical 1 H prior. CONCLUSION Reliability of lesion classifiability strongly depends on the lesion volume and the 23 Na MRI contrast. Additional incorporation of 1 H prior information in the CS reconstruction was not beneficial for the classification of small MS-like lesions in 23 Na MRI.
Collapse
Affiliation(s)
- Laurent Ruck
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Angelika Mennecke
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Wilferth
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sebastian Lachner
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Max Müller
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nico Egger
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
11
|
Ridley B, Morsillo F, Zaaraoui W, Nonino F. Variability by region and method in human brain sodium concentrations estimated by 23Na magnetic resonance imaging: a meta-analysis. Sci Rep 2023; 13:3222. [PMID: 36828873 PMCID: PMC9957999 DOI: 10.1038/s41598-023-30363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Sodium imaging (23Na-MRI) is of interest in neurological conditions given potential sensitivity to the physiological and metabolic status of tissues. Benchmarks have so far been restricted to parenchyma or grey/white matter (GM/WM). We investigate (1) the availability of evidence, (2) regional pooled estimates and (3) variability attributable to region/methodology. MEDLINE literature search for tissue sodium concentration (TSC) measured in specified 'healthy' brain regions returned 127 reports, plus 278 retrieved from bibliographies. 28 studies met inclusion criteria, including 400 individuals. Reporting variability led to nested data structure, so we used multilevel meta-analysis and a random effects model to pool effect sizes. The pooled mean from 141 TSC estimates was 40.51 mM (95% CI 37.59-43.44; p < 0.001, I2Total=99.4%). Tissue as a moderator was significant (F214 = 65.34, p-val < .01). Six sub-regional pooled means with requisite statistical power were derived. We were unable to consider most methodological and demographic factors sought because of non-reporting, but each factor included beyond tissue improved model fit. Significant residual heterogeneity remained. The current estimates provide an empirical point of departure for better understanding in 23Na-MRI. Improving on current estimates supports: (1) larger, more representative data collection/sharing, including (2) regional data, and (3) agreement on full reporting standards.
Collapse
Affiliation(s)
- Ben Ridley
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy.
- Ben Ridley, Epidemiologia e Statistica, IRCCS Istituto Delle Scienze Neurologiche di Bologna, Padiglione G, Via Altura, 3, 40139, Bologna, Italy.
| | - Filomena Morsillo
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Wafaa Zaaraoui
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital de La Timone, CEMEREM, Marseille, France
| | - Francesco Nonino
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
12
|
Sun P, Wu Z, Lin L, Hu G, Zhang X, Wang J. MR-Nucleomics: The study of pathological cellular processes with multinuclear magnetic resonance spectroscopy and imaging in vivo. NMR IN BIOMEDICINE 2023; 36:e4845. [PMID: 36259659 DOI: 10.1002/nbm.4845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Clinical medicine has experienced a rapid development in recent decades, during which therapies targeting specific cellular signaling pathways, or specific cell surface receptors, have been increasingly adopted. While these developments in clinical medicine call for improved precision in diagnosis and treatment monitoring, modern medical imaging methods are restricted mainly to anatomical imaging, lagging behind the requirements of precision medicine. Although positron emission tomography and single photon emission computed tomography have been used clinically for studies of metabolism, their applications have been limited by the exposure risk to ionizing radiation, the subsequent limitation in repeated and longitudinal studies, and the incapability in assessing downstream metabolism. Magnetic resonance spectroscopy (MRS) or spectroscopic imaging (MRSI) are, in theory, capable of assessing molecular activities in vivo, although they are often limited by sensitivity. Here, we review some recent developments in MRS and MRSI of multiple nuclei that have potential as molecular imaging tools in the clinic.
Collapse
Affiliation(s)
- Peng Sun
- Clinical & Technical Support, Philips Healthcare, China
| | - Zhigang Wu
- Clinical & Technical Support, Philips Healthcare, China
| | - Liangjie Lin
- Clinical & Technical Support, Philips Healthcare, China
| | - Geli Hu
- Clinical & Technical Support, Philips Healthcare, China
| | | | - Jiazheng Wang
- Clinical & Technical Support, Philips Healthcare, China
| |
Collapse
|
13
|
Haeger A, Boumezbeur F, Bottlaender M, Rabrait-Lerman C, Lagarde J, Mirzazade S, Krahe J, Hohenfeld C, Sarazin M, Schulz JB, Romanzetti S, Reetz K. 3T sodium MR imaging in Alzheimer's disease shows stage-dependent sodium increase influenced by age and local brain volume. NEUROIMAGE: CLINICAL 2022; 36:103274. [PMID: 36451374 PMCID: PMC9723320 DOI: 10.1016/j.nicl.2022.103274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 11/12/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Application of MRI in clinical routine mainly addresses structural alterations. However, pathological changes at a cellular level are expected to precede the occurrence of brain atrophy clusters and of clinical symptoms. In this context, 23Na-MRI examines sodium changes in the brain as a potential metabolic parameter. Recently, we have shown that 23Na-MRI at ultra-high-field (7 T) was able to detect increased tissue sodium concentration (TSC) in Alzheimer's disease (AD). In this work, we aimed at assessing AD-pathology with 23Na-MRI in a larger cohort and on a clinical 3T MR scanner. METHODS We used a multimodal MRI protocol on 52 prodromal to mild AD patients and 34 cognitively healthy control subjects on a clinical 3T MR scanner. We examined the TSC, brain volume, and cortical thickness in association with clinical parameters. We further compared TSC with intra-individual normalized TSC for the reduction of inter-individual TSC variability resulting from physiological as well as experimental conditions. Normalized TSC maps were created by normalizing each voxel to the mean TSC inside the brain stem. RESULTS We found increased normalized TSC in the AD cohort compared to elderly control subjects both on global as well as on a region-of-interest-based level. We further confirmed a significant association of local brain volume as well as age with TSC. TSC increase in the left temporal lobe was further associated with the cognitive state, evaluated via the Montreal cognitive assessment (MoCA) screening test. An increase of normalized TSC depending on disease stage reflected by the Clinical Dementia Rating (CDR) was found in our AD patients in temporal lobe regions. In comparison to classical brain volume and cortical thickness assessments, normalized TSC had a higher discriminative power between controls and prodromal AD patients in several regions of the temporal lobe. DISCUSSION We confirm the feasibility of 23Na-MRI at 3T and report an increase of TSC in AD in several regions of the brain, particularly in brain regions of the temporal lobe. Furthermore, to reduce inter-subject variability caused by physiological factors such as circadian rhythms and experimental conditions, we introduced normalized TSC maps. This showed a higher discriminative potential between different clinical groups in comparison to the classical TSC analysis. In conclusion, 23Na-MRI represents a potential translational imaging marker applicable e.g.for diagnostics and the assessment of intervention outcomes in AD even under clinically available field strengths such as 3T. Implication of 23Na-MRI in association with other metabolic imaging marker needs to be further elucidated.
Collapse
Affiliation(s)
- Alexa Haeger
- Department of Neurology, RWTH Aachen University, Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Fawzi Boumezbeur
- NeuroSpin, CEA, CNRS UMR9027, Paris-Saclay University, Gif-sur-Yvette, France
| | - Michel Bottlaender
- NeuroSpin, CEA, CNRS UMR9027, Paris-Saclay University, Gif-sur-Yvette, France,Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France
| | | | - Julien Lagarde
- Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France,Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France,Université Paris-Cité, F-75006 Paris, France
| | - Shahram Mirzazade
- Department of Neurology, RWTH Aachen University, Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Janna Krahe
- Department of Neurology, RWTH Aachen University, Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Christian Hohenfeld
- Department of Neurology, RWTH Aachen University, Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Marie Sarazin
- Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France,Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France,Université Paris-Cité, F-75006 Paris, France
| | - Jörg B. Schulz
- Department of Neurology, RWTH Aachen University, Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Sandro Romanzetti
- Department of Neurology, RWTH Aachen University, Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany,Corresponding author at: Department of Neurology, University Hospital, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.
| |
Collapse
|
14
|
Azilinon M, Makhalova J, Zaaraoui W, Medina Villalon S, Viout P, Roussel T, El Mendili MM, Ridley B, Ranjeva J, Bartolomei F, Jirsa V, Guye M. Combining sodium MRI, proton MR spectroscopic imaging, and intracerebral EEG in epilepsy. Hum Brain Mapp 2022; 44:825-840. [PMID: 36217746 PMCID: PMC9842896 DOI: 10.1002/hbm.26102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 01/25/2023] Open
Abstract
Whole brain ionic and metabolic imaging has potential as a powerful tool for the characterization of brain diseases. We combined sodium MRI (23 Na MRI) and 1 H-MR Spectroscopic Imaging (1 H-MRSI), assessing changes within epileptogenic networks in comparison with electrophysiologically normal networks as defined by stereotactic EEG (SEEG) recordings analysis. We applied a multi-echo density adapted 3D projection reconstruction pulse sequence at 7 T (23 Na-MRI) and a 3D echo-planar spectroscopic imaging sequence at 3 T (1 H-MRSI) in 19 patients suffering from drug-resistant focal epilepsy who underwent presurgical SEEG. We investigated 23 Na MRI parameters including total sodium concentration (TSC) and the sodium signal fraction associated with the short component of T2 * decay (f), alongside the level of metabolites N-acetyl aspartate (NAA), choline compounds (Cho), and total creatine (tCr). All measures were extracted from spherical regions of interest (ROIs) centered between two adjacent SEEG electrode contacts and z-scored against the same ROI in controls. Group comparison showed a significant increase in f only in the epileptogenic zone (EZ) compared to controls and compared to patients' propagation zone (PZ) and non-involved zone (NIZ). TSC was significantly increased in all patients' regions compared to controls. Conversely, NAA levels were significantly lower in patients compared to controls, and lower in the EZ compared to PZ and NIZ. Multiple regression analyzing the relationship between sodium and metabolites levels revealed significant relations in PZ and in NIZ but not in EZ. Our results are in agreement with the energetic failure hypothesis in epileptic regions associated with widespread tissue reorganization.
Collapse
Affiliation(s)
- Mikhael Azilinon
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Julia Makhalova
- APHM, Timone Hospital, CEMEREMMarseilleFrance,Epileptology DepartmentAPHM, Timone HospitalMarseilleFrance
| | - Wafaa Zaaraoui
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Samuel Medina Villalon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance,Epileptology DepartmentAPHM, Timone HospitalMarseilleFrance
| | - Patrick Viout
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Tangi Roussel
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Mohamed M. El Mendili
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Ben Ridley
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Jean‐Philippe Ranjeva
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance,Epileptology DepartmentAPHM, Timone HospitalMarseilleFrance
| | - Viktor Jirsa
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance,APHM, Timone Hospital, CEMEREMMarseilleFrance
| |
Collapse
|
15
|
Li KR, Wu AG, Tang Y, He XP, Yu CL, Wu JM, Hu GQ, Yu L. The Key Role of Magnetic Resonance Imaging in the Detection of Neurodegenerative Diseases-Associated Biomarkers: A Review. Mol Neurobiol 2022; 59:5935-5954. [PMID: 35829831 DOI: 10.1007/s12035-022-02944-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
Abstract
Neurodegenerative diseases (NDs), including chronic disease such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis, and acute diseases like traumatic brain injury and ischemic stroke are characterized by progressive degeneration, brain tissue damage and loss of neurons, accompanied by behavioral and cognitive dysfunctions. So far, there are no complete cures for NDs; thus, early and timely diagnoses are essential and beneficial to patients' treatment. Magnetic resonance imaging (MRI) has become one of the advanced medical imaging techniques widely used in the clinical examination of NDs due to its non-invasive diagnostic value. In this review, research published in English in current decade from PubMed electronic database on the use of MRI to detect specific biomarkers of NDs was collected, summarized, and discussed, which provides valuable suggestions for the early diagnosis, prevention, and treatment of NDs in the clinic.
Collapse
Affiliation(s)
- Ke-Ru Li
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
- Department of Radiology, Chongqing University Fuling Hospital, Chongqing, 408000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
| | - Xiao-Peng He
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chong-Lin Yu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Guang-Qiang Hu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Department of Chemistry, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
16
|
Müller HP, Nagel AM, Keidel F, Wunderlich A, Hübers A, Gast LV, Ludolph AC, Beer M, Kassubek J. Relaxation-weighted 23Na magnetic resonance imaging maps regional patterns of abnormal sodium concentrations in amyotrophic lateral sclerosis. Ther Adv Chronic Dis 2022; 13:20406223221109480. [PMID: 35837670 PMCID: PMC9274400 DOI: 10.1177/20406223221109480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives: Multiparametric magnetic resonance imaging (MRI) is established as a
technical instrument for the characterisation of patients with amyotrophic
lateral sclerosis (ALS). The contribution of relaxation-weighted sodium
(23NaR) MRI remains to be defined. The aim of this study is
to apply 23NaR MRI to investigate brain sodium homeostasis and
map potential alterations in patients with ALS as compared with healthy
controls. Materials and Methods: Seventeen patients with ALS (mean age 61.1 ± 11.4 years, m/f = 9/8) and 10
healthy control subjects (mean age 60.3 ± 15.3 years, m/f = 6/4) were
examined by 23NaR MRI at 3 T. Regional sodium maps were obtained
by the calculation of the weighted difference from two image data sets with
different echo times (TE1 = 0.3 ms, TE2 = 25 ms).
Voxel-based analysis of the relaxation-weighted maps, together with
23Na concentration maps for comparison, was performed. Results: ROI-based analyses of relaxation-weighted brain sodium concentration maps
demonstrated increased sodium concentrations in the upper corticospinal
tracts and in the frontal lobes in patients with ALS; no differences between
ALS patients and controls were found in reference ROIs, where no involvement
in ALS-associated neurodegeneration could be anticipated. Conclusion: 23NaR MRI mapped regional alterations within disease-relevant
areas in ALS which correspond to the stages of the central nervous system
(CNS) pathology, providing evidence that the technique is a potential
biological marker of the cerebral neurodegenerative process in ALS.
Collapse
Affiliation(s)
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Franziska Keidel
- Department of Diagnostic and Interventional Radiology, University of Ulm, Ulm, Germany
| | - Arthur Wunderlich
- Department of Diagnostic and Interventional Radiology, University of Ulm, Ulm, Germany
| | | | - Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Albert C Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, University of Ulm, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, Ulm 89081, Germany
| |
Collapse
|
17
|
Krahe J, Dogan I, Didszun C, Mirzazade S, Haeger A, Joni Shah N, Giordano IA, Klockgether T, Madelin G, Schulz JB, Romanzetti S, Reetz K. Increased brain tissue sodium concentration in Friedreich ataxia: A multimodal MR imaging study. NEUROIMAGE: CLINICAL 2022; 34:103025. [PMID: 35500368 PMCID: PMC9065922 DOI: 10.1016/j.nicl.2022.103025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/01/2022] [Accepted: 04/24/2022] [Indexed: 11/28/2022] Open
Abstract
In patients with Friedreich ataxia, structural MRI is typically used to detect abnormalities primarily in the brainstem, cerebellum, and spinal cord. The aim of the present study was to additionally investigate possible metabolic changes in Friedreich ataxia using in vivo sodium MRI that may precede macroanatomical alterations, and to explore potential associations with clinical parameters of disease progression. Tissue sodium concentration across the whole brain was estimated from sodium MRI maps acquired at 3 T and compared between 24 patients with Friedreich ataxia (21-57 years old, 13 females) and 23 controls (21-60 years old, 12 females). Tensor-based morphometry was used to assess volumetric changes. Total sodium concentrations and volumetric data in brainstem and cerebellum were correlated with clinical parameters, such as severity of ataxia, activity of daily living and disability stage, age, age at onset, and disease duration. Compared to controls, patients showed reduced brain volume in the right cerebellar lobules I-V (difference in means: -0.039% of total intracranial volume [TICV]; Cohen's d = 0.83), cerebellar white matter (WM) (-0.105%TICV; d = 1.16), and brainstem (-0.167%TICV; d = 1.22), including pons (-0.102%TICV; d = 1.00), medulla (-0.036%TICV; d = 1.72), and midbrain (-0.028%TICV; d = 1.05). Increased sodium concentration was additionally detected in the total cerebellum (difference in means: 2.865 mmol; d = 0.68), and in several subregions with highest effect sizes in left (5.284 mmol; d = 1.01) and right cerebellar lobules I-V (5.456 mmol; d = 1.00), followed by increases in the vermis (4.261 mmol; d = 0.72), and in left (2.988 mmol; d = 0.67) and right lobules VI-VII (2.816 mmol; d = 0.68). In addition, sodium increases were also detected in all brainstem areas (3.807 mmol; d = 0.71 to 5.42 mmol; d = 1.19). After controlling for age, elevated total sodium concentrations in right cerebellar lobules IV were associated with younger age at onset (r = -0.43) and accordingly with longer disease duration in patients (r = 0.43). Our findings support the potential of in vivo sodium MRI to detect metabolic changes of increased total sodium concentration in the cerebellum and brainstem, the key regions in Friedreich ataxia. In addition to structural changes, sodium changes were present in cerebellar hemispheres and vermis without concomitant significant atrophy. Given the association with age at disease onset or disease duration, metabolic changes should be further investigated longitudinally and in larger cohorts of early disease stages to determine the usefulness of sodium MRI as a biomarker for early neuropathological changes in Friedreich ataxia and efficacy measure for future clinical trials.
Collapse
Affiliation(s)
- Janna Krahe
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Claire Didszun
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Shahram Mirzazade
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Alexa Haeger
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Nadim Joni Shah
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany,Institute of Neuroscience and Medicine 4 (INM-4), Research Centre Juelich GmbH, 52428 Juelich, Germany,Monash Institute of Medical Engineering, Department of Electrical and Computer Systems Engineering, and Monash Biomedical Imaging, School of Psychological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Ilaria A. Giordano
- Department of Neurology, University Hospital of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany,German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Thomas Klockgether
- Department of Neurology, University Hospital of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany,German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Guillaume Madelin
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York NY10016, USA
| | - Jörg B. Schulz
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Sandro Romanzetti
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Centre Juelich GmbH and RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
18
|
Handa P, Samkaria A, Sharma S, Arora Y, Mandal PK. Comprehensive Account of Sodium Imaging and Spectroscopy for Brain Research. ACS Chem Neurosci 2022; 13:859-875. [PMID: 35324144 DOI: 10.1021/acschemneuro.2c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Sodium (23Na) is a vital component of neuronal cells and plays a key role in various signal transmission processes. Hence, information on sodium distribution in the brain using magnetic resonance imaging (MRI) provides useful information on neuronal health. 23Na MRI and MR spectroscopy (MRS) improve the diagnosis, prognosis, and clinical monitoring of neurological diseases but confront some inherent limitations that lead to low signal-to-noise ratio, longer scan time, and diminished partial volume effects. Recent advancements in multinuclear MR technology have helped in further exploration in this domain. We aim to provide a comprehensive description of 23Na MRI and MRS for brain research including the following aspects: (a) theoretical background for understanding 23Na MRI and MRS fundamentals; (b) technological advancements of 23Na MRI with respect to pulse sequences, RF coils, and sodium compartmentalization; (c) applications of 23Na MRI in the early diagnosis and prognosis of various neurological disorders; (d) structural-chronological evolution of sodium spectroscopy in terms of its numerous applications in human studies; (e) the data-processing tools utilized in the quantitation of sodium in the respective anatomical regions.
Collapse
Affiliation(s)
- Palak Handa
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
| | - Avantika Samkaria
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
| | - Shallu Sharma
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
| | - Yashika Arora
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
| | - Pravat K. Mandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
- Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne 3010, Australia
| |
Collapse
|
19
|
Huang L, Bai J, Zong R, Zhou J, Zuo Z, Chai X, Wang Z, An J, Zhuo Y, Boada F, Yu X, Ling Z, Qu B, Pan L, Zhang Z. Sodium MRI at 7T for Early Response Evaluation of Intracranial Tumors following Stereotactic Radiotherapy Using the CyberKnife. AJNR Am J Neuroradiol 2022; 43:181-187. [PMID: 35121584 PMCID: PMC8985677 DOI: 10.3174/ajnr.a7404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 11/05/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE Conventionally, early treatment response to stereotactic radiotherapy in intracranial tumors is often determined by structural MR imaging. Tissue sodium concentration is altered by cellular integrity and energy status in cells. In this study, we aimed to investigate the feasibility of sodium MR imaging at 7T for the preliminary evaluation of radiotherapeutic efficacy for intracranial tumors. MATERIALS AND METHODS Data were collected from 16 patients (12 men and 4 women, 24-75 years of age) with 22 intracranial tumors who were treated with stereotactic radiation therapy using CyberKnife at our institution between December 1, 2016, and August 15, 2019. Sodium MR imaging was performed at 7T before and 48 hours, 1 week, and 1 month after CyberKnife radiation therapy. Tissue sodium concentration (TSC) was calculated and analyzed based on manually labeled regions of tumors. RESULTS Ultra-high-field sodium MR imaging clearly showed the intratumoral signal, which is significantly higher than that of normal tissue (t = 5.250, P <.001)., but the edema zone has some influence. The average TSC ratios of tumor to CSF in the 22 tumors, contralateral normal tissues, edema zones, frontal cortex, and frontal white matter were 0.66 (range, 0.23-1.5), 0.30 (range, 0.15-0.43), 0.58 (range, 0.25-1.21), 0.25 (range, 0.17-0.42), and 0.30 (range, 0.19-0.49), respectively. A total of 12 tumors in 8 patients were scanned at 48 hours, 1 week, and 1 month after treatment. The average TSC at 48 hours after treatment was 0.06 higher than that before treatment and began to decrease at 1 week. The TSC ratios of 10 continued to decline and 2 tumors increased at 1 month, respectively. Tumor volume decreased by 2.4%-99% after 3 months. CONCLUSIONS Changes in the TSC can be quantified by sodium MR imaging at 7T and used to detect radiobiologic alterations in intracranial tumors at early time points after CyberKnife radiation therapy.
Collapse
Affiliation(s)
- L. Huang
- From the Departments of Neurosurgery (L.H., R.Z., J.Z., X.Y., Z.L., L.P.),Department of Neurosurgery (L.H.), The Hospital of 81st Group Army PLA, Zhangjiakou, China
| | - J. Bai
- Radiation Oncology (J.B., B.Q.), The First Medical Center of PLA General Hospital, Beijing, China
| | - R. Zong
- From the Departments of Neurosurgery (L.H., R.Z., J.Z., X.Y., Z.L., L.P.)
| | - J. Zhou
- From the Departments of Neurosurgery (L.H., R.Z., J.Z., X.Y., Z.L., L.P.)
| | - Z. Zuo
- State Key Laboratory of Brain and Cognitive Science (Z. Zou., X.C., Z.W., Y. Z., Z. Zhang.), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences (Z. Zou., X.C., Z.W., Y. Z., Z. Zhang.), Beijing, China,CAS Center for Excellence in Brain Science and Intelligence Technology (Z. Zou., X.C., Z.W., Y. Z., Z. Zhang.), Chinese Academy of Sciences, Beijing, China
| | - X. Chai
- State Key Laboratory of Brain and Cognitive Science (Z. Zou., X.C., Z.W., Y. Z., Z. Zhang.), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences (Z. Zou., X.C., Z.W., Y. Z., Z. Zhang.), Beijing, China,CAS Center for Excellence in Brain Science and Intelligence Technology (Z. Zou., X.C., Z.W., Y. Z., Z. Zhang.), Chinese Academy of Sciences, Beijing, China
| | - Z. Wang
- State Key Laboratory of Brain and Cognitive Science (Z. Zou., X.C., Z.W., Y. Z., Z. Zhang.), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences (Z. Zou., X.C., Z.W., Y. Z., Z. Zhang.), Beijing, China,CAS Center for Excellence in Brain Science and Intelligence Technology (Z. Zou., X.C., Z.W., Y. Z., Z. Zhang.), Chinese Academy of Sciences, Beijing, China
| | - J. An
- Siemens Shenzhen Magnetic Resonance Ltd (J.A.), Shenzhen, China
| | - Y. Zhuo
- State Key Laboratory of Brain and Cognitive Science (Z. Zou., X.C., Z.W., Y. Z., Z. Zhang.), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences (Z. Zou., X.C., Z.W., Y. Z., Z. Zhang.), Beijing, China,CAS Center for Excellence in Brain Science and Intelligence Technology (Z. Zou., X.C., Z.W., Y. Z., Z. Zhang.), Chinese Academy of Sciences, Beijing, China
| | - F. Boada
- Department of Radiology (F.B.), Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, New York
| | - X. Yu
- From the Departments of Neurosurgery (L.H., R.Z., J.Z., X.Y., Z.L., L.P.)
| | - Z. Ling
- From the Departments of Neurosurgery (L.H., R.Z., J.Z., X.Y., Z.L., L.P.)
| | - B. Qu
- Radiation Oncology (J.B., B.Q.), The First Medical Center of PLA General Hospital, Beijing, China
| | - L. Pan
- From the Departments of Neurosurgery (L.H., R.Z., J.Z., X.Y., Z.L., L.P.)
| | - Z. Zhang
- State Key Laboratory of Brain and Cognitive Science (Z. Zou., X.C., Z.W., Y. Z., Z. Zhang.), Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences (Z. Zou., X.C., Z.W., Y. Z., Z. Zhang.), Beijing, China,CAS Center for Excellence in Brain Science and Intelligence Technology (Z. Zou., X.C., Z.W., Y. Z., Z. Zhang.), Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Haeger A, Bottlaender M, Lagarde J, Porciuncula Baptista R, Rabrait-Lerman C, Luecken V, Schulz JB, Vignaud A, Sarazin M, Reetz K, Romanzetti S, Boumezbeur F. What can 7T sodium MRI tell us about cellular energy depletion and neurotransmission in Alzheimer's disease? Alzheimers Dement 2021; 17:1843-1854. [PMID: 34855281 DOI: 10.1002/alz.12501] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/09/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022]
Abstract
The pathophysiological processes underlying the development and progression of Alzheimer's disease (AD) on the neuronal level are still unclear. Previous research has hinted at metabolic energy deficits and altered sodium homeostasis with impaired neuronal function as a potential metabolic marker relevant for neurotransmission in AD. Using sodium (23 Na) magnetic resonance (MR) imaging on an ultra-high-field 7 Tesla MR scanner, we found increased cerebral tissue sodium concentration (TSC) in 17 biomarker-defined AD patients compared to 22 age-matched control subjects in vivo. TSC was highly discriminative between controls and early AD stages and was predictive for cognitive state, and associated with regional tau load assessed with flortaucipir-positron emission tomography as a possible mediator of TSC-associated neurodegeneration. TSC could therefore serve as a non-invasive, stage-dependent, metabolic imaging marker. Setting a focus on cellular metabolism and potentially disturbed interneuronal communication due to energy-dependent altered cell homeostasis could hamper progressive cognitive decline by targeting these processes in future interventions.
Collapse
Affiliation(s)
- Alexa Haeger
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France.,Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Michel Bottlaender
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France.,Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Julien Lagarde
- Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France.,Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Sainte-Anne Hospital, Paris, France.,Université de Paris, Paris, France
| | | | | | - Volker Luecken
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Jörg B Schulz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Alexandre Vignaud
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Marie Sarazin
- Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France.,Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Sainte-Anne Hospital, Paris, France.,Université de Paris, Paris, France
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Sandro Romanzetti
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Fawzi Boumezbeur
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| |
Collapse
|
21
|
Platt T, Ladd ME, Paech D. 7 Tesla and Beyond: Advanced Methods and Clinical Applications in Magnetic Resonance Imaging. Invest Radiol 2021; 56:705-725. [PMID: 34510098 PMCID: PMC8505159 DOI: 10.1097/rli.0000000000000820] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022]
Abstract
ABSTRACT Ultrahigh magnetic fields offer significantly higher signal-to-noise ratio, and several magnetic resonance applications additionally benefit from a higher contrast-to-noise ratio, with static magnetic field strengths of B0 ≥ 7 T currently being referred to as ultrahigh fields (UHFs). The advantages of UHF can be used to resolve structures more precisely or to visualize physiological/pathophysiological effects that would be difficult or even impossible to detect at lower field strengths. However, with these advantages also come challenges, such as inhomogeneities applying standard radiofrequency excitation techniques, higher energy deposition in the human body, and enhanced B0 field inhomogeneities. The advantages but also the challenges of UHF as well as promising advanced methodological developments and clinical applications that particularly benefit from UHF are discussed in this review article.
Collapse
Affiliation(s)
- Tanja Platt
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
| | - Mark E. Ladd
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
- Faculty of Physics and Astronomy
- Faculty of Medicine, University of Heidelberg, Heidelberg
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen
| | - Daniel Paech
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg
- Clinic for Neuroradiology, University of Bonn, Bonn, Germany
| |
Collapse
|
22
|
Grimaldi S, El Mendili MM, Zaaraoui W, Ranjeva JP, Azulay JP, Eusebio A, Guye M. Increased Sodium Concentration in Substantia Nigra in Early Parkinson's Disease: A Preliminary Study With Ultra-High Field (7T) MRI. Front Neurol 2021; 12:715618. [PMID: 34566858 PMCID: PMC8458803 DOI: 10.3389/fneur.2021.715618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Pathophysiology of idiopathic Parkinson's disease (iPD) is complex and still misunderstood. At a time when treatments with disease-modifying potential are being developed, identification of early markers of neurodegeneration is essential. Intracerebral sodium accumulation could be one of them. Indeed, it may be in relation to the mitochondrial dysfunction that early exists in iPD. For the first time, we used brain sodium (23Na) MRI to explore sodium concentration changes that have already been reported to be related to neurodegeneration in other diseases. We prospectively included 10 iPD patients (mean age 52.2 ± 5.9 years-old) with motor symptoms that started <36 months before inclusion and 12 healthy subjects (mean age 53 ± 6.4 years-old). Patients were scanned in OFF medication state by using proton (1H) and 23Na MRI at 7T. We then extracted quantitative Total Sodium Concentration (TSC) from five regions of interest known to be early impaired in iPD [substantia nigra (SN), putamen, caudate nucleus, pallidum, thalamus] and in one region supposed to be relatively spared in the first stages of the disease [cortical gray matter (neocortex)]. Potential atrophy in these structures was also investigated with 1H MRI. Relative to healthy subjects, iPD patients showed higher TSC in the SN (43.73 ± 4.64 vs. 37.72 ± 5.62, p = 0.006 after Bonferroni correction). A trend of increase in sodium concentrations was found within the pallidum (45.80 ± 4.19 vs. 41.07 ± 4.94, p = 0.017), putamen (48.65 ± 4.58 vs. 43.66 ± 5.04, p = 0.041) and the cortical gray matter (56.34 ± 3.92 vs. 50.81 ± 5.50, p = 0.021). No significant brain atrophy was found in patients compared to controls. Thus, alteration of sodium homeostasis in the SN in the absence of atrophy could be considered as a potential early marker of cellular dysfunction in iPD.
Collapse
Affiliation(s)
- Stephan Grimaldi
- APHM, Hôpital Universitaire Timone, Department of Neurology and Movement Disorders, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CRMBM, CNRS, Marseille, France
| | - Mohamed Mounir El Mendili
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CRMBM, CNRS, Marseille, France
| | - Wafaa Zaaraoui
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CRMBM, CNRS, Marseille, France
| | - Jean-Philippe Ranjeva
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CRMBM, CNRS, Marseille, France
| | - Jean-Philippe Azulay
- APHM, Hôpital Universitaire Timone, Department of Neurology and Movement Disorders, Marseille, France
| | - Alexandre Eusebio
- APHM, Hôpital Universitaire Timone, Department of Neurology and Movement Disorders, Marseille, France.,Aix Marseille Univ, CNRS, Institut de Neurosciences de la Timone, Marseille, France
| | - Maxime Guye
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CRMBM, CNRS, Marseille, France
| |
Collapse
|
23
|
Hampton DG, Goldman-Yassen AE, Sun PZ, Hu R. Metabolic Magnetic Resonance Imaging in Neuroimaging: Magnetic Resonance Spectroscopy, Sodium Magnetic Resonance Imaging and Chemical Exchange Saturation Transfer. Semin Ultrasound CT MR 2021; 42:452-462. [PMID: 34537114 DOI: 10.1053/j.sult.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Magnetic resonance (MR) is a powerful and versatile technique that offers much more beyond conventional anatomic imaging and has the potential of probing in vivo metabolism. Although MR spectroscopy (MRS) predates clinical MR imaging (MRI), its clinical application has been limited by technical and practical challenges. Other MR techniques actively being developed for in vivo metabolic imaging include sodium concentration imaging and chemical exchange saturation transfer. This article will review some of the practical aspects of MRS in neuroimaging, introduce sodium MRI and chemical exchange saturation transfer MRI, and highlight some of their emerging clinical applications.
Collapse
Affiliation(s)
- Daniel G Hampton
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA.
| | - Adam E Goldman-Yassen
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Phillip Zhe Sun
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA; Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Ranliang Hu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
24
|
Marino M, Cordero-Grande L, Mantini D, Ferrazzi G. Conductivity Tensor Imaging of the Human Brain Using Water Mapping Techniques. Front Neurosci 2021; 15:694645. [PMID: 34393709 PMCID: PMC8363203 DOI: 10.3389/fnins.2021.694645] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Conductivity tensor imaging (CTI) has been recently proposed to map the conductivity tensor in 3D using magnetic resonance imaging (MRI) at the frequency range of the brain at rest, i.e., low-frequencies. Conventional CTI mapping methods process the trans-receiver phase of the MRI signal using the MR electric properties tomography (MR-EPT) technique, which in turn involves the application of the Laplace operator. This results in CTI maps with a low signal-to-noise ratio (SNR), artifacts at tissue boundaries and a limited spatial resolution. In order to improve on these aspects, a methodology independent from the MR-EPT method is proposed. This relies on the strong assumption for which electrical conductivity is univocally pre-determined by water concentration. In particular, CTI maps are calculated by combining high-frequency conductivity derived from water maps and multi b-value diffusion tensor imaging (DTI) data. Following the implementation of a pipeline to optimize the pre-processing of diffusion data and the fitting routine of a multi-compartment diffusivity model, reconstructed conductivity images were evaluated in terms of the achieved spatial resolution in five healthy subjects scanned at rest. We found that the pre-processing of diffusion data and the optimization of the fitting procedure improve the quality of conductivity maps. We achieve reproducible measurements across healthy participants and, in particular, we report conductivity values across subjects of 0.55 ± 0.01Sm, 0.3 ± 0.01Sm and 2.15 ± 0.02Sm for gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF), respectively. By attaining an actual spatial resolution of the conductivity tensor close to 1 mm in-plane isotropic, partial volume effects are reduced leading to good discrimination of tissues with similar conductivity values, such as GM and WM. The application of the proposed framework may contribute to a better definition of the head tissue compartments in electroencephalograpy/magnetoencephalography (EEG/MEG) source imaging and be used as biomarker for assessing conductivity changes in pathological conditions, such as stroke and brain tumors.
Collapse
Affiliation(s)
- Marco Marino
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium.,IRCCS San Camillo Hospital, Venice, Italy
| | - Lucilio Cordero-Grande
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid and CIBER-BBN, Madrid, Spain
| | - Dante Mantini
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium.,IRCCS San Camillo Hospital, Venice, Italy
| | | |
Collapse
|
25
|
Schneider TM, Ma J, Wagner P, Behl N, Nagel AM, Ladd ME, Heiland S, Bendszus M, Straub S. Multiparametric MRI for Characterization of the Basal Ganglia and the Midbrain. Front Neurosci 2021; 15:661504. [PMID: 34234639 PMCID: PMC8255625 DOI: 10.3389/fnins.2021.661504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Objectives To characterize subcortical nuclei by multi-parametric quantitative magnetic resonance imaging. Materials and Methods: The following quantitative multiparametric MR data of five healthy volunteers were acquired on a 7T MRI system: 3D gradient echo (GRE) data for the calculation of quantitative susceptibility maps (QSM), GRE sequences with and without off-resonant magnetic transfer pulse for magnetization transfer ratio (MTR) calculation, a magnetization−prepared 2 rapid acquisition gradient echo sequence for T1 mapping, and (after a coil change) a density-adapted 3D radial pulse sequence for 23Na imaging. First, all data were co-registered to the GRE data, volumes of interest (VOIs) for 21 subcortical structures were drawn manually for each volunteer, and a combined voxel-wise analysis of the four MR contrasts (QSM, MTR, T1, 23Na) in each structure was conducted to assess the quantitative, MR value-based differentiability of structures. Second, a machine learning algorithm based on random forests was trained to automatically classify the groups of multi-parametric voxel values from each VOI according to their association to one of the 21 subcortical structures. Results The analysis of the integrated multimodal visualization of quantitative MR values in each structure yielded a successful classification among nuclei of the ascending reticular activation system (ARAS), the limbic system and the extrapyramidal system, while classification among (epi-)thalamic nuclei was less successful. The machine learning-based approach facilitated quantitative MR value-based structure classification especially in the group of extrapyramidal nuclei and reached an overall accuracy of 85% regarding all selected nuclei. Conclusion Multimodal quantitative MR enabled excellent differentiation of a wide spectrum of subcortical nuclei with reasonable accuracy and may thus enable sensitive detection of disease and nucleus-specific MR-based contrast alterations in the future.
Collapse
Affiliation(s)
- Till M Schneider
- Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Jackie Ma
- Department of Artificial Intelligence, Fraunhofer Heinrich Hertz Institute, Berlin, Germany
| | - Patrick Wagner
- Department of Artificial Intelligence, Fraunhofer Heinrich Hertz Institute, Berlin, Germany
| | - Nicolas Behl
- Division of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Armin M Nagel
- Division of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany.,Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mark E Ladd
- Division of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany.,Faculty of Physics and Astronomy and Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Sina Straub
- Division of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
26
|
Mohamed SA, Herrmann K, Adlung A, Paschke N, Hausner L, FrÖlich L, Schad L, Groden C, Kerl HU. Evaluation of Sodium ( 23Na) MR-imaging as a Biomarker and Predictor for Neurodegenerative Changes in Patients With Alzheimer's Disease. In Vivo 2021; 35:429-435. [PMID: 33402493 DOI: 10.21873/invivo.12275] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND/AIM Sodium (23Na) MR imaging is a noninvasive MRI technique that has been shown to be sensitive to visualize biochemical information about tissue viability, their cell integrity, and cell function in various studies. The aim of this study was to evaluate differences in regional brain 23Na signal intensity between Alzheimer's disease (AD) and healthy controls to preliminarily evaluate the capability of 23Na imaging as a biomarker for AD. PATIENTS AND METHODS A total of 14 patients diagnosed with AD were included: 12 in the state of dementia and 2 with mild cognitive impairment (MCI), and 12 healthy controls (HC); they were all scanned on a 3T clinical scanner with a double tuned 1H/23Na birdcage head coil. After normalizing the signal intensity with that of the vitreous humor, relative tissue sodium concentration (rTSC) was measured after automated segmentation in the hippocampus, amygdala, basal ganglia, white matter (WM) and grey matter (GM) in both cerebral hemispheres. RESULTS Patients with AD showed a significant increase in rTSC in comparison to healthy controls in the following brain regions: WM 13.6%; p=0.007, hippocampus 12.9%; p=0.003, amygdala 18.9%; p=0.0007. CONCLUSION 23Na-MRI has the potential to be developed as a useful biomarker for the diagnosis of AD.
Collapse
Affiliation(s)
- Sherif A Mohamed
- Department of Neuroradiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany;
| | - Katrin Herrmann
- Department of Neuroradiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anne Adlung
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nadia Paschke
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lucrezia Hausner
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lutz FrÖlich
- Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lothar Schad
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Groden
- Department of Neuroradiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hans Ulrich Kerl
- Department of Neuroradiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
27
|
Scholefield M, Church SJ, Xu J, Patassini S, Roncaroli F, Hooper NM, Unwin RD, Cooper GJS. Widespread Decreases in Cerebral Copper Are Common to Parkinson's Disease Dementia and Alzheimer's Disease Dementia. Front Aging Neurosci 2021; 13:641222. [PMID: 33746735 PMCID: PMC7966713 DOI: 10.3389/fnagi.2021.641222] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/05/2021] [Indexed: 01/24/2023] Open
Abstract
Several studies of Parkinson's disease (PD) have reported dysregulation of cerebral metals, particularly decreases in copper and increases in iron in substantia nigra (SN). However, few studies have investigated regions outside the SN, fewer have measured levels of multiple metals across different regions within the same brains, and there are no currently-available reports of metal levels in Parkinson's disease dementia (PDD). This study aimed to compare concentrations of nine essential metals across nine different brain regions in cases of PDD and controls. Investigated were: primary motor cortex (MCX); cingulate gyrus (CG); primary visual cortex (PVC); hippocampus (HP); cerebellar cortex (CB); SN; locus coeruleus (LC); medulla oblongata (MED); and middle temporal gyrus (MTG), thus covering regions with severe, moderate, or low levels of neuronal loss in PDD. Levels of eight essential metals and selenium were determined using an analytical methodology involving the use of inductively-coupled plasma mass spectrometry (ICP-MS), and compared between cases and controls, to better understand the extent and severity of metal perturbations. Findings were also compared with those from our previous study of sporadic Alzheimer's disease dementia (ADD), which employed equivalent methods, to identify differences and similarities between these conditions. Widespread copper decreases occurred in PDD in seven of nine regions (exceptions being LC and CB). Four PDD-affected regions showed similar decreases in ADD: CG, HP, MTG, and MCX. Decreases in potassium and manganese were present in HP, MTG and MCX; decreased manganese was also found in SN and MED. Decreased selenium and magnesium were present in MCX, and decreased zinc in HP. There was no evidence for increased iron in SN or any other region. These results identify alterations in levels of several metals across multiple regions of PDD brain, the commonest being widespread decreases in copper that closely resemble those in ADD, pointing to similar disease mechanisms in both dementias.
Collapse
Affiliation(s)
- Melissa Scholefield
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Centre for Advanced Discovery & Experimental Therapeutics, School of Medical Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Stephanie J. Church
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Centre for Advanced Discovery & Experimental Therapeutics, School of Medical Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jingshu Xu
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Centre for Advanced Discovery & Experimental Therapeutics, School of Medical Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Stefano Patassini
- Faculty of Science, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Federico Roncaroli
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Division of Neuroscience and Experimental Psychology, Faculty of Brain and Mental Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Nigel M. Hooper
- Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Richard D. Unwin
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Centre for Advanced Discovery & Experimental Therapeutics, School of Medical Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Stoller Biomarker Discovery Centre & Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Manchester, United Kingdom
| | - Garth J. S. Cooper
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Centre for Advanced Discovery & Experimental Therapeutics, School of Medical Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Faculty of Science, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
Kim S, Song J, Yoon J, Kim K, Chung J, Noh Y. Voxel-wise partial volume correction method for accurate estimation of tissue sodium concentration in 23 Na-MRI at 7 T. NMR IN BIOMEDICINE 2021; 34:e4448. [PMID: 33270326 PMCID: PMC7816248 DOI: 10.1002/nbm.4448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Sodium is crucial for the maintenance of cell physiology, and its regulation of the sodium-potassium pump has implications for various neurological conditions. The distribution of sodium concentrations in tissue can be quantitatively evaluated by means of sodium MRI (23 Na-MRI). Despite its usefulness in diagnosing particular disease conditions, tissue sodium concentration (TSC) estimated from 23 Na-MRI can be strongly biased by partial volume effects (PVEs) that are induced by broad point spread functions (PSFs) as well as tissue fraction effects. In this work, we aimed to propose a robust voxel-wise partial volume correction (PVC) method for 23 Na-MRI. The method is based on a linear regression (LR) approach to correct for tissue fraction effects, but it utilizes a 3D kernel combined with a modified least trimmed square (3D-mLTS) method in order to minimize regression-induced inherent smoothing effects. We acquired 23 Na-MRI data with conventional Cartesian sampling at 7 T, and spill-over effects due to the PSF were considered prior to correcting for tissue fraction effects using 3D-mLTS. In the simulation, we found that the TSCs of gray matter (GM) and white matter (WM) were underestimated by 20% and 11% respectively without correcting tissue fraction effects, but the differences between ground truth and PVE-corrected data after the PVC using the 3D-mLTS method were only approximately 0.6% and 0.4% for GM and WM, respectively. The capability of the 3D-mLTS method was further demonstrated with in vivo 23 Na-MRI data, showing significantly lower regression errors (ie root mean squared error) as compared with conventional LR methods (p < 0.001). The results of simulation and in vivo experiments revealed that 3D-mLTS is superior for determining under- or overestimated TSCs while preserving anatomical details. This suggests that the 3D-mLTS method is well suited for the accurate determination of TSC, especially in small focal lesions associated with pathological conditions.
Collapse
Affiliation(s)
- Sang‐Young Kim
- Neuroscience Research InstituteGachon UniversityIncheonRepublic of Korea
| | - Junghyun Song
- Neuroscience Research InstituteGachon UniversityIncheonRepublic of Korea
| | - Jong‐Hyun Yoon
- Neuroscience Research InstituteGachon UniversityIncheonRepublic of Korea
| | - Kyoung‐Nam Kim
- Department of Biomedical EngineeringGachon UniversityIncheonRepublic of Korea
| | - Jun‐Young Chung
- Neuroscience Research InstituteGachon UniversityIncheonRepublic of Korea
- Department of NeuroscienceGachon University College of MedicineIncheonRepublic of Korea
| | - Young Noh
- Neuroscience Research InstituteGachon UniversityIncheonRepublic of Korea
- Department of Neurology, Gil Medical CenterGachon University College of Medicin eIncheonRepublic of Korea
| |
Collapse
|
29
|
Zaric O, Juras V, Szomolanyi P, Schreiner M, Raudner M, Giraudo C, Trattnig S. Frontiers of Sodium MRI Revisited: From Cartilage to Brain Imaging. J Magn Reson Imaging 2020; 54:58-75. [PMID: 32851736 PMCID: PMC8246730 DOI: 10.1002/jmri.27326] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022] Open
Abstract
Sodium magnetic resonance imaging (23 Na-MRI) is a highly promising imaging modality that offers the possibility to noninvasively quantify sodium content in the tissue, one of the most relevant parameters for biochemical investigations. Despite its great potential, due to the intrinsically low signal-to-noise ratio (SNR) of sodium imaging generated by low in vivo sodium concentrations, low gyromagnetic ratio, and substantially shorter relaxation times than for proton (1 H) imaging, 23 Na-MRI is extremely challenging. In this article, we aim to provide a comprehensive overview of the literature that has been published in the last 10-15 years and which has demonstrated different technical designs for a range of 23 Na-MRI methods applicable for disease diagnoses and treatment efficacy evaluations. Currently, a wider use of 3.0T and 7.0T systems provide imaging with the expected increase in SNR and, consequently, an increased image resolution and a reduced scanning time. A great interest in translational research has enlarged the field of sodium MRI applications to almost all parts of the body: articular cartilage tendons, spine, heart, breast, muscle, kidney, and brain, etc., and several pathological conditions, such as tumors, neurological and degenerative diseases, and others. The quantitative parameter, tissue sodium concentration, which reflects changes in intracellular sodium concentration, extracellular sodium concentration, and intra-/extracellular volume fractions is becoming acknowledged as a reliable biomarker. Although the great potential of this technique is evident, there must be steady technical development for 23 Na-MRI to become a standard imaging tool. The future role of sodium imaging is not to be considered as an alternative to 1 H MRI, but to provide early, diagnostically valuable information about altered metabolism or tissue function associated with disease genesis and progression. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Olgica Zaric
- Institute for Clinical Molecular MRI in the Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria
| | - Vladimir Juras
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavol Szomolanyi
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Markus Schreiner
- Deartment of Orthopaedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Marcus Raudner
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Chiara Giraudo
- Radiology Institute, Department of Medicine, DIMED Padova University Via Giustiniani 2, Padova, Italy
| | - Siegfried Trattnig
- Institute for Clinical Molecular MRI in the Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria.,High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria
| |
Collapse
|
30
|
Haeger A, Mangin JF, Vignaud A, Poupon C, Grigis A, Boumezbeur F, Frouin V, Deverre JR, Sarazin M, Hertz-Pannier L, Bottlaender M. Imaging the aging brain: study design and baseline findings of the SENIOR cohort. ALZHEIMERS RESEARCH & THERAPY 2020; 12:77. [PMID: 32591008 PMCID: PMC7320588 DOI: 10.1186/s13195-020-00642-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 06/11/2020] [Indexed: 11/13/2022]
Abstract
Background Current demographic trends point towards an aging society entailing increasing occurrence and burden of neurodegenerative diseases. In this context, understanding physiological aging and its turning point into neurodegeneration is essential for the development of possible biomarkers and future therapeutics of brain disease. Methods The SENIOR study represents a longitudinal, observational study including cognitively healthy elderlies aged between 50 and 70 years old at the time of inclusion, being followed annually over 10 years. Our multimodal protocol includes structural, diffusion, functional, and sodium magnetic resonance imaging (MRI) at 3 T and 7 T, positron emission tomography (PET), blood samples, genetics, audiometry, and neuropsychological and neurological examinations as well as assessment of neuronal risk factors. Results One hundred forty-two participants (50% females) were enrolled in the SENIOR cohort with a mean age of 60 (SD 6.3) years at baseline. Baseline results with multiple regression analyses reveal that cerebral white matter lesions can be predicted by cardiovascular and cognitive risk factors and age. Cardiovascular risk factors were strongly associated with juxtacortical and periventricular lesions. Intra-subject across-test variability as a measure of neuropsychological test performance and possible cognitive marker predicts white matter volume and is significantly associated with risk profile. Division of the cohort into subjects with a higher and lower risk profile shows significant differences in intra-subject across-test variability and volumes as well as cortical thickness of brain regions of the temporal lobe. There is no difference between the lower- and higher-risk groups in amyloid load using PET data from a subset of 81 subjects. Conclusions We here describe the study protocol and baseline findings of the SENIOR observational study which aim is the establishment of integrated, multiparametric maps of normal aging and the identification of early biomarkers for neurodegeneration. We show that intra-subject across-test variability as a marker of neuropsychological test performance as well as age, gender, and combined risk factors influence neuronal decline as represented by decrease in brain volume, cortical thickness, and increase in white matter lesions. Baseline findings will be used as underlying basis for the further implications of aging and neuronal degeneration as well as examination of brain aging under different aspects of brain pathology versus physiological aging.
Collapse
Affiliation(s)
- Alexa Haeger
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, Paris-Saclay University, Gif-sur-Yvette, France.,Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Jean-François Mangin
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, Paris-Saclay University, Gif-sur-Yvette, France
| | - Alexandre Vignaud
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, Paris-Saclay University, Gif-sur-Yvette, France
| | - Cyril Poupon
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, Paris-Saclay University, Gif-sur-Yvette, France
| | - Antoine Grigis
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, Paris-Saclay University, Gif-sur-Yvette, France
| | - Fawzi Boumezbeur
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, Paris-Saclay University, Gif-sur-Yvette, France
| | - Vincent Frouin
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, Paris-Saclay University, Gif-sur-Yvette, France
| | - Jean-Robert Deverre
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, Paris-Saclay University, Gif-sur-Yvette, France
| | - Marie Sarazin
- Unit of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Paris University, Paris, France.,Paris-Saclay University, CEA, CNRS, INSERM, BioMaps, Service Hospitalier Frédéric Joliot, F-91400, Orsay, France
| | - Lucie Hertz-Pannier
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, Paris-Saclay University, Gif-sur-Yvette, France
| | - Michel Bottlaender
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, Paris-Saclay University, Gif-sur-Yvette, France. .,Paris-Saclay University, CEA, CNRS, INSERM, BioMaps, Service Hospitalier Frédéric Joliot, F-91400, Orsay, France.
| | | |
Collapse
|
31
|
Haeger A, Costa AS, Romanzetti S, Kilders A, Trautwein C, Haberl L, Beulertz M, Hildebrand F, Schulz JB, Reetz K. Effect of a multicomponent exercise intervention on brain metabolism: A randomized controlled trial on Alzheimer's pathology (Dementia-MOVE). ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12032. [PMID: 32490142 PMCID: PMC7243943 DOI: 10.1002/trc2.12032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Physical activity has shown a positive impact on aging and neurodegeneration and represents a possible treatment option in cognitive decline. However, its underlying mechanisms and influences on brain pathology remain unclear. Dementia-MOVE (Multi-Objective Validation of Exercise) is a randomized-controlled pilot trial, including 50 patients with amnestic cognitive impairment associated with Alzheimer's pathology, aiming to analyze the effect of physical activity and fitness on disease progression. METHODS Dementia-MOVE is divided into two arms, of either an intervention comprising physical activity, for at least twice a week, combined with a psychoeducational program, or a sole psychoeducational program. Physical activity intervention includes a supervised and unsupervised multimodal concept combining resistance, endurance, coordinative, and aerobic training. The primary outcome is the change of brain metabolism due to physical interventional treatment. Besides metabolic magnetic resonance imaging (MRI) including sodium and phosphorus imaging, resting state functional MRI, T1-, T2-weighted and fluid-attenuated inversion recovery (FLAIR), as well as diffusion-weighted imaging (DWI) of the brain and whole-body fat MRI are performed before and after intervention, and will be compared in their sensitivity for the detection of intervention effects. We further assess cognitive performance, neuropsychiatric symptoms, quality of life, fitness, and sleep via questionnaires/interviews and/or fitness trackers, as well as microbiome, under the aspect of Alzheimer's pathology. DISCUSSION The aim of Dementia-MOVE is to investigate the effect of a multimodal exercise program on Alzheimer's pathology under different aspects of the disease. In this context, one of the main aims is the comparison of different MRI methods regarding their responsiveness for the detection of alterations induced by physical activity. As an underlying goal, new treatment and diagnostic options, as well as the exploration of fitness effects on brain structure and metabolism within a whole-body perspective of Alzheimer's disease are envisaged.
Collapse
Affiliation(s)
- Alexa Haeger
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingForschungszentrum Jülich GmbH and RWTH Aachen UniversityAachenGermany
| | - Ana S. Costa
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingForschungszentrum Jülich GmbH and RWTH Aachen UniversityAachenGermany
| | - Sandro Romanzetti
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingForschungszentrum Jülich GmbH and RWTH Aachen UniversityAachenGermany
| | - Axel Kilders
- Department of PhysiotherapyRWTH Aachen UniversityAachenGermany
| | | | - Luisa Haberl
- Department of NeurologyRWTH Aachen UniversityAachenGermany
| | | | - Frank Hildebrand
- Department of Orthopedic Trauma SurgeryRWTH Aachen UniversityAachenGermany
| | - Jörg B. Schulz
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingForschungszentrum Jülich GmbH and RWTH Aachen UniversityAachenGermany
| | - Kathrin Reetz
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingForschungszentrum Jülich GmbH and RWTH Aachen UniversityAachenGermany
| |
Collapse
|
32
|
Riemer F, McHugh D, Zaccagna F, Lewis D, McLean MA, Graves MJ, Gilbert FJ, Parker GJ, Gallagher FA. Measuring tissue sodium concentration: Cross-vendor repeatability and reproducibility of 23 Na-MRI across two sites. J Magn Reson Imaging 2019; 50:1278-1284. [PMID: 30859655 PMCID: PMC6767101 DOI: 10.1002/jmri.26705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Sodium MRI (23 Na-MRI)-derived biomarkers such as total sodium concentration (TSC) have the potential to provide information on tumor cellularity and the changes in tumor microstructure that occur following therapy. PURPOSE To evaluate the repeatability and reproducibility of TSC measurements in the brains of healthy volunteers, providing evidence for the technical validation of 23 Na-MRI-derived biomarkers. STUDY TYPE Prospective multicenter study. SUBJECTS Eleven volunteers (32 ± 6 years; eight males, three females) were scanned twice at each of two sites. FIELD STRENGTH/SEQUENCE Comparable 3D-cones 23 Na-MRI ultrashort echo time acquisitions at 3T. ASSESSMENT TSC values, quantified from calibration phantoms placed in the field of view, were obtained from white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF), based on automated segmentation of coregistered 1 H T1 -weighted images and hand-drawn regions of interest by two readers. STATISTICAL TESTS Coefficients of variation (CoVs) from mean TSC values were used to assess intrasite repeatability and intersite reproducibility. RESULTS Mean GM TSC concentrations (52.1 ± 7.1 mM) were ∼20% higher than for WM (41.8 ± 6.7 mM). Measurements were highly repeatable at both sites with mean scan-rescan CoVs between volunteers and regions of 2% and 4%, respectively. Mean intersite reproducibility CoVs were 3%, 3%, and 6% for WM, GM, and CSF, respectively. DATA CONCLUSION These results demonstrate technical validation of sodium MRI-derived biomarkers in healthy volunteers. We also show that comparable 23 Na imaging of the brain can be implemented across different sites and scanners with excellent repeatability and reproducibility. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1278-1284.
Collapse
Affiliation(s)
- Frank Riemer
- Department of RadiologyUniversity of CambridgeCambridgeUK
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
| | - Damien McHugh
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
- Division of Neuroscience & Experimental PsychologyThe University of ManchesterManchesterUK
| | - Fulvio Zaccagna
- Department of RadiologyUniversity of CambridgeCambridgeUK
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
| | - Daniel Lewis
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
| | - Mary A. McLean
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | | | - Fiona J. Gilbert
- Department of RadiologyUniversity of CambridgeCambridgeUK
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
| | - Geoff J.M. Parker
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
- Division of Neuroscience & Experimental PsychologyThe University of ManchesterManchesterUK
- Bioxydyn Ltd.ManchesterUK
| | - Ferdia A. Gallagher
- Department of RadiologyUniversity of CambridgeCambridgeUK
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
| |
Collapse
|
33
|
Driver ID, Stobbe RW, Wise RG, Beaulieu C. Venous contribution to sodium MRI in the human brain. Magn Reson Med 2019; 83:1331-1338. [PMID: 31556169 PMCID: PMC6972645 DOI: 10.1002/mrm.27996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/05/2019] [Accepted: 08/26/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Sodium MRI shows great promise as a marker for cerebral metabolic dysfunction in stroke, brain tumor, and neurodegenerative pathologies. However, cerebral blood vessels, whose volume and function are perturbed in these pathologies, have elevated sodium concentrations relative to surrounding tissue. This study aims to assess whether this fluid compartment could bias measurements of tissue sodium using MRI. METHODS Density-weighted and B1 corrected sodium MRI of the brain was acquired in 9 healthy participants at 4.7T. Veins were identified using co-registered 1 H T 2 ∗ -weighted images and venous partial volume estimates were calculated by down-sampling the finer spatial resolution venous maps from the T 2 ∗ -weighted images to the coarser spatial resolution of the sodium data. Linear regressions of venous partial volume estimates and sodium signal were performed for regions of interest including just gray matter, just white matter, and all brain tissue. RESULTS Linear regression demonstrated a significant venous sodium contribution above the underlying tissue signal. The apparent venous sodium concentrations derived from regression were 65.8 ± 4.5 mM (all brain tissue), 71.0 ± 7.4 mM (gray matter), and 55.0 ± 4.7 mM (white matter). CONCLUSION Although the partial vein linear regression did not yield the expected sodium concentration in blood (~87 mM), likely the result of point spread function smearing, this regression highlights that blood compartments may bias brain tissue sodium signals across neurological conditions where blood volumes may differ.
Collapse
Affiliation(s)
- Ian D Driver
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Robert W Stobbe
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Richard G Wise
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
34
|
Haeger A, Costa AS, Schulz JB, Reetz K. Cerebral changes improved by physical activity during cognitive decline: A systematic review on MRI studies. Neuroimage Clin 2019; 23:101933. [PMID: 31491837 PMCID: PMC6699421 DOI: 10.1016/j.nicl.2019.101933] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/30/2019] [Accepted: 07/13/2019] [Indexed: 12/14/2022]
Abstract
Current treatment in late-life cognitive impairment and dementia is still limited, and there is no cure for brain tissue degeneration or reversal of cognitive decline. Physical activity represents a promising non-pharmacological interventional approach in many diseases causing cognitive impairment, but its effect on brain integrity is still largely unknown. Especially research of cerebral alterations in disease state that goes beyond observations of clinical improvement is crucial to understand disease processes and possible effective treatments. In this systematic review, we address the question how physical activity and fitness in mild cognitive impairment (MCI) and Alzheimer's disease (AD) influences brain architecture compared to cognitively healthy elderly. We review both interventional studies comprising aerobic, coordinative and resistance exercises and observational studies on fitness and physical activity combined with Magnetic Resonance imaging (MRI). Different MRI approaches were included such as volumetric and structural analyses, Diffusion Tensor Imaging (DTI), functional MRI and Cerebral Blood Flow (CBF). We evaluate MRI results for different exercise modalities and performed a methodological evaluation of interventional studies in cognitive decline compared to normal aging. According to our results, among 12 interventions in AD/MCI, aerobic exercise is most frequently applied (9 studies). Interventions in AD/MCI altogether reveal a higher methodological quality compared to interventions in healthy elderly (8.33 ± 2.19 vs. 6.25 ± 2.36 out of 13 points), with most frequent missing aspects related to descriptions of complications, lack of intention-to-treat and statistical power analyses. Effects of aerobic exercise and fitness seem to mainly impact brain structures sensitive to neurodegeneration, which especially comprise frontal, temporal and parietal regions, such as the hippocampal/parahippocampal region, precuneus, anterior cingulate and prefrontal cortex, which are reported by several studies. General fitness measured via an objective fitness assessment and questionnaires seems to have a more global cerebral effect, probably due to its long-term application, whereas distinct intervention effects of durations between 3 and 6 months seem to concentrate on more local brain regions as the hippocampus, which can also be influenced by region of interest analyses. There is still a lack of evidence on other or combined types of intervention modalities, such as resistance, coordinative as well as multicomponent exercise during cognitive decline, and complex interventions as dancing. Future research should examine their beneficial effect on brain integrity, since several non-MRI studies already point to their advantageous impact. As a further future prospect, combination and application of newly developed imaging methods such as metabolic imaging should be envisaged to understand physical activity and its cerebral influence under its many-sided facets.
Collapse
Affiliation(s)
- Alexa Haeger
- RWTH Aachen University, Department of Neurology, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Ana S Costa
- RWTH Aachen University, Department of Neurology, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Jörg B Schulz
- RWTH Aachen University, Department of Neurology, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Kathrin Reetz
- RWTH Aachen University, Department of Neurology, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
35
|
Grapperon AM, Ridley B, Verschueren A, Maarouf A, Confort-Gouny S, Fortanier E, Schad L, Guye M, Ranjeva JP, Attarian S, Zaaraoui W. Quantitative Brain Sodium MRI Depicts Corticospinal Impairment in Amyotrophic Lateral Sclerosis. Radiology 2019; 292:422-428. [PMID: 31184559 DOI: 10.1148/radiol.2019182276] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that mainly affects the upper and lower motor neurons. Recent sodium (23Na) MRI studies have shown that abnormal sodium concentration is related to neuronal suffering in neurodegenerative conditions. Purpose To use 23Na MRI to investigate abnormal sodium concentrations and map their distribution in the brains of study participants with ALS as compared with healthy control subjects. Materials and Methods Twenty-seven participants with ALS (mean age, 54 years ± 10 [standard deviation], eight women) and 30 healthy control subjects (mean age, 50 years ± 10; 16 women) were prospectively recruited between September 2015 and October 2017 and were examined by using conventional proton MRI and sodium MRI at 3 T. Voxel-based statistical mapping was used to compare quantitative whole-brain total sodium concentration (TSC) maps in participants with ALS with those in control subjects and to localize regions of abnormal elevated TSC. Potential overlap of abnormal elevated TSC with regions of atrophy as detected with 1H MRI also was investigated. Results Voxel-based statistical mapping analyses revealed higher sodium concentration in motor regions (bilateral precentral gyri, corticospinal tracts, and the corpus callosum) of participants with ALS (two-sample t test, P < .005; age and sex as covariates). In these regions, mean TSC was higher in participants with ALS (mean, 45.6 mmol/L wet tissue ± 3.2) than in control subjects (mean, 41.8 mmol/L wet tissue ± 2.7; P < .001; Cohen d = 1.28). Brain regions showing higher TSC represented a volume of 15.4 cm3 that did not overlap with gray matter atrophy occupying a volume of 16.9 cm3. Elevated TSC correlated moderately with corticospinal conduction failure assessed with transcranial magnetic stimulation in the right upper limb (Spearman ρ = -0.57; 95% confidence interval: -0.78, -0.16; P = .005; n = 23). Conclusion Quantitative 23Na MRI is sensitive to alterations of brain sodium homeostasis within disease-relevant regions in patients with amyotrophic lateral sclerosis (ALS). This supports further investigation of abnormal sodium concentration as a potential marker of neurodegenerative processes in patients with ALS that could be used as a secondary endpoint in clinical trials. © RSNA, 2019 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Aude-Marie Grapperon
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Ben Ridley
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Annie Verschueren
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Adil Maarouf
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Sylviane Confort-Gouny
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Etienne Fortanier
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Lothar Schad
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Maxime Guye
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Jean-Philippe Ranjeva
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Shahram Attarian
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| | - Wafaa Zaaraoui
- From the Aix Marseille University, CRMBM, UMR CNRS 7339, 27 Boulevard Jean Moulin, 13005 Marseille, France (A.M.G., B.R., A.V., A.M., S.C., E.F., M.G., J.P.R., W.Z.); APHM, Hôpital de la Timone, Referral Centre for Neuromuscular Diseases and ALS, Marseille, France (A.M.G., A.V., E.F., S.A.); APHM, Hôpital de la Timone, CEMEREM, Marseille, France (B.R., A.M., S.C., M.G., J.P.R., W.Z.); Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany (L.S.); and Aix Marseille University, INSERM, GMGF, Marseille, France (S.A.)
| |
Collapse
|
36
|
Abstract
In this article, an overview of the current developments and research applications for non-proton magnetic resonance imaging (MRI) at ultrahigh magnetic fields (UHFs) is given. Due to technical and methodical advances, efficient MRI of physiologically relevant nuclei, such as Na, Cl, Cl, K, O, or P has become feasible and is of interest to obtain spatially and temporally resolved information that can be used for biomedical and diagnostic applications. Sodium (Na) MRI is the most widespread multinuclear imaging method with applications ranging over all regions of the human body. Na MRI yields the second largest in vivo NMR signal after the clinically used proton signal (H). However, other nuclei such as O and P (energy metabolism) or Cl and K (cell viability) are used in an increasing number of MRI studies at UHF. One major advancement has been the increased availability of whole-body MR scanners with UHFs (B0 ≥7T) expanding the range of detectable nuclei. Nevertheless, efforts in terms of pulse sequence and post-processing developments as well as hardware designs must be made to obtain valuable information in clinically feasible measurement times. This review summarizes the available methods in the field of non-proton UHF MRI, especially for Na MRI, as well as introduces potential applications in clinical research.
Collapse
Affiliation(s)
- Sebastian C Niesporek
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Armin M Nagel
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tanja Platt
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
37
|
Liao Y, Lechea N, Magill AW, Worthoff WA, Gras V, Shah NJ. Correlation of quantitative conductivity mapping and total tissue sodium concentration at 3T/4T. Magn Reson Med 2019; 82:1518-1526. [DOI: 10.1002/mrm.27787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/02/2019] [Accepted: 04/07/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Yupeng Liao
- Institute of Neuroscience and Medicine (INM‐4), Forschungszentrum Jülich Jülich Germany
| | - Nazim Lechea
- Institute of Neuroscience and Medicine (INM‐4), Forschungszentrum Jülich Jülich Germany
| | - Arthur W. Magill
- Institute of Neuroscience and Medicine (INM‐4), Forschungszentrum Jülich Jülich Germany
| | - Wieland A. Worthoff
- Institute of Neuroscience and Medicine (INM‐4), Forschungszentrum Jülich Jülich Germany
| | - Vincent Gras
- Institute of Neuroscience and Medicine (INM‐4), Forschungszentrum Jülich Jülich Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine (INM‐4), Forschungszentrum Jülich Jülich Germany
- Institute of Neuroscience and Medicine (INM‐11) JARA, Forschungszentrum Jülich Jülich Germany
- JARA‐BRAIN‐Translational Medicine Aachen Germany
- Department of Neurology RWTH Aachen University Aachen Germany
- Monash Biomedical Imaging, School of Psychology Monash University Melbourne Australia
| |
Collapse
|
38
|
Chapp AD, Schum S, Behnke JE, Hahka T, Huber MJ, Jiang E, Larson RA, Shan Z, Chen QH. Measurement of cations, anions, and acetate in serum, urine, cerebrospinal fluid, and tissue by ion chromatography. Physiol Rep 2019; 6:e13666. [PMID: 29654634 PMCID: PMC5899179 DOI: 10.14814/phy2.13666] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/12/2018] [Indexed: 01/17/2023] Open
Abstract
Accurate quantification of cations and anions remains a major diagnostic tool in understanding diseased states. The current technologies used for these analyses are either unable to quantify all ions due to sample size/volume, instrument setup/method, or are only able to measure ion concentrations from one physiological sample (liquid or solid). Herein, we adapted a common analytical chemistry technique, ion chromatography and applied it to measure the concentration of cations; sodium, potassium, calcium, and magnesium (Na+, K+, Ca2+, and Mg2+) and anions; chloride, and acetate (Cl−, −OAc) from physiological samples. Specifically, cations and anions were measured in liquid samples: serum, urine, and cerebrospinal fluid, as well as tissue samples: liver, cortex, hypothalamus, and amygdala. Serum concentrations of Na+, K+, Ca2+, Mg2+, Cl−, and −OAc (mmol/L): 138.8 ± 4.56, 4.05 ± 0.21, 4.07 ± 0.26, 0.98 ± 0.05, 97.7 ± 3.42, and 0.23 ± 0.04, respectively. Cerebrospinal fluid concentrations of Na+, K+, Ca2+, Mg2+, Cl−, and −OAc (mmol/L): 145.1 ± 2.81, 2.41 ± 0.26, 2.18 ± 0.38, 1.04 ± 0.11, 120.2 ± 3.75, 0.21 ± 0.05, respectively. Tissue Na+, K+, Ca2+, Mg2+, Cl−, and −OAc were also measured. Validation of the ion chromatography method was established by comparing chloride concentration between ion chromatography with a known method using an ion selective chloride electrode. These results indicate that ion chromatography is a suitable method for the measurement of cations and anions, including acetate from various physiological samples.
Collapse
Affiliation(s)
- Andrew D Chapp
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| | - Simeon Schum
- Department of Chemistry, Michigan Technological University, Houghton, Michigan
| | - Jessica E Behnke
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| | - Taija Hahka
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| | - Michael J Huber
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| | - Enshe Jiang
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan
| | - Robert A Larson
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| | - Qing-Hui Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| |
Collapse
|
39
|
Abstract
In this study we longitudinally investigated the rate of microstructural alterations in the occipital cortex in different stages of Huntington's disease (HD) by applying an automated atlas-based approach to diffusion MRI data. Twenty-two premanifest (preHD), 10 early manifest HD (early HD) and 24 healthy control subjects completed baseline and two year follow-up scans. The preHD group was stratified based on the predicted years to disease onset into a far (preHD-A) and near (preHD-B) to disease onset group. Clinical and behavioral measures were collected per assessment time point. An automated atlas-based DTI analysis approach was used to obtain the mean, axial and radial diffusivities of the occipital cortex. We found that the longitudinal rate of diffusivity change in the superior occipital gyrus (SOG), middle occipital gyrus (MOG), and inferior occipital gyrus (IOG) was significantly higher in early HD compared to both preHD and controls (all p's ≤ 0.005), which can be interpreted as an increased rate of microstructural degeneration. Furthermore, the change rate in the diffusivity of the MOG could significantly discriminate between preHD-B compared to preHD-A and the other groups (all p's ≤ 0.04). Finally, we found an inverse correlation between the Stroop Word Reading task and diffusivities in the SOG and MOG (all p's ≤ 0.01). These findings suggest that measures obtained from the occipital cortex can serve as sensitive longitudinal biomarkers for disease progression in preHD-B and early HD. These could in turn be used to assess potential effects of proposed disease modifying therapies.
Collapse
|
40
|
Huhn K, Engelhorn T, Linker RA, Nagel AM. Potential of Sodium MRI as a Biomarker for Neurodegeneration and Neuroinflammation in Multiple Sclerosis. Front Neurol 2019; 10:84. [PMID: 30804885 PMCID: PMC6378293 DOI: 10.3389/fneur.2019.00084] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/22/2019] [Indexed: 01/18/2023] Open
Abstract
In multiple sclerosis (MS), experimental and ex vivo studies indicate that pathologic intra- and extracellular sodium accumulation may play a pivotal role in inflammatory as well as neurodegenerative processes. Yet, in vivo assessment of sodium in the microenvironment is hard to achieve. Here, sodium magnetic resonance imaging (23NaMRI) with its non-invasive properties offers a unique opportunity to further elucidate the effects of sodium disequilibrium in MS pathology in vivo in addition to regular proton based MRI. However, unfavorable physical properties and low in vivo concentrations of sodium ions resulting in low signal-to-noise-ratio (SNR) as well as low spatial resolution resulting in partial volume effects limited the application of 23NaMRI. With the recent advent of high-field MRI scanners and more sophisticated sodium MRI acquisition techniques enabling better resolution and higher SNR, 23NaMRI revived. These studies revealed pathologic total sodium concentrations in MS brains now even allowing for the (partial) differentiation of intra- and extracellular sodium accumulation. Within this review we (1) demonstrate the physical basis and imaging techniques of 23NaMRI and (2) analyze the present and future clinical application of 23NaMRI focusing on the field of MS thus highlighting its potential as biomarker for neuroinflammation and -degeneration.
Collapse
Affiliation(s)
- Konstantin Huhn
- Department of Neurology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tobias Engelhorn
- Department of Neuroradiology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ralf A Linker
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Armin M Nagel
- Department of Radiology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
41
|
Coste A, Boumezbeur F, Vignaud A, Madelin G, Reetz K, Le Bihan D, Rabrait-Lerman C, Romanzetti S. Tissue sodium concentration and sodium T 1 mapping of the human brain at 3 T using a Variable Flip Angle method. Magn Reson Imaging 2019; 58:116-124. [PMID: 30695720 DOI: 10.1016/j.mri.2019.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/28/2018] [Accepted: 01/15/2019] [Indexed: 01/18/2023]
Abstract
PURPOSE The state-of-the-art method to quantify sodium concentrations in vivo consists in a fully relaxed 3D spin-density (SD) weighted acquisition. Nevertheless, most sodium MRI clinical studies use short-TR SD acquisitions to reduce acquisition durations. We present a clinically viable implementation of the Variable Flip Angle (VFA) method for robust and clinically viable quantification of total sodium concentration (TSC) and longitudinal relaxation rates in vivo in human brain at 3 T. METHODS Two non-Cartesian steady-state spoiled ultrashort echo time (UTE) scans, performed at optimized flip angles, repetition time and pulse length determined under specific absorption rate constraints, are used to simultaneously compute T1 and total sodium concentration (TSC) maps using the VFA method. Images are reconstructed using the non-uniform Fast Fourier Transform algorithm and TSC maps are corrected for possible inhomogeneity of coil transmission and reception profiles. Fractioned acquisitions are used to correct for potential patient motion. TSC quantifications obtained using the VFA method are validated at first in comparison with a fully-relaxed SD acquisition in a calibration phantom. The robustness of similar VFA acquisitions are compared to the short-TR SD approach in vivo on seven healthy volunteers. RESULTS The VFA method resulted in consistent TSC and T1 estimates across our cohort of healthy subjects, with mean TSC of 38.1 ± 5.0 mmol/L and T1 of 39.2 ± 4.4 ms. These results are in agreement with previously reported values in literature TSC estimations and with the predictions of a 2-compartment model. However, the short-TR SD acquisition systematically underestimated the sodium concentration with a mean TSC of 31 ± 4.5 mmol/L. CONCLUSION The VFA method can be applied successfully to image sodium at 3 T in about 20 min and provides robust and intrinsically T1-corrected TSC maps.
Collapse
Affiliation(s)
- Arthur Coste
- NeuroSpin, CEA DRF-ISVFJ, Paris-Saclay University, Gif-sur-Yvette, France
| | - Fawzi Boumezbeur
- NeuroSpin, CEA DRF-ISVFJ, Paris-Saclay University, Gif-sur-Yvette, France
| | - Alexandre Vignaud
- NeuroSpin, CEA DRF-ISVFJ, Paris-Saclay University, Gif-sur-Yvette, France
| | - Guillaume Madelin
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, USA
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-BRAIN Institute of Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Denis Le Bihan
- NeuroSpin, CEA DRF-ISVFJ, Paris-Saclay University, Gif-sur-Yvette, France
| | | | | |
Collapse
|
42
|
Syeda W, Blunck Y, Kolbe S, Cleary JO, Johnston LA. A continuum of T 2 * components: Flexible fast fraction mapping in sodium MRI. Magn Reson Med 2019; 81:3854-3864. [PMID: 30652360 DOI: 10.1002/mrm.27659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/28/2018] [Accepted: 12/20/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Parameter mapping in sodium MRI data is challenging due to inherently low SNR and spatial resolution, prompting the need to employ robust models and estimation techniques. This work aims to develop a continuum model of sodium T 2 * -decay to overcome the limitations of the commonly employed bi-exponential models. Estimates of mean T 2 * -decay and fast component fraction in tissue are emergent from the inferred continuum model. METHODS A closed-form continuum model was derived assuming a gamma distribution of T 2 * components. Sodium MRI was performed on four healthy human subjects and a phantom consisting of closely packed vials filled with an aqueous solution of varying sodium and agarose concentrations. The continuum model was applied to the phantom and in vivo human multi-echo 7T data. Parameter maps by voxelwise model-fitting were obtained. RESULTS The continuum model demonstrated comparable estimation performance to the bi-exponential model. The parameter maps provided improved contrast between tissue structures. The fast component fraction, an indicator of the heterogeneity of localised sodium motion regimes in tissue, was zero in CSF and high in WM structures. CONCLUSIONS The continuum distribution model provides high quality, high contrast parameter maps, and informative voxelwise estimates of the relative weighting between fast and slow decay components.
Collapse
Affiliation(s)
- Warda Syeda
- Melbourne Brain Centre Imaging Unit, The University of Melbourne, Melbourne, Australia
| | - Yasmin Blunck
- Melbourne Brain Centre Imaging Unit, The University of Melbourne, Melbourne, Australia.,Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| | - Scott Kolbe
- Melbourne Brain Centre Imaging Unit, The University of Melbourne, Melbourne, Australia
| | - Jon O Cleary
- Melbourne Brain Centre Imaging Unit, The University of Melbourne, Melbourne, Australia
| | - Leigh A Johnston
- Melbourne Brain Centre Imaging Unit, The University of Melbourne, Melbourne, Australia.,Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
43
|
Ladd ME, Bachert P, Meyerspeer M, Moser E, Nagel AM, Norris DG, Schmitter S, Speck O, Straub S, Zaiss M. Pros and cons of ultra-high-field MRI/MRS for human application. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:1-50. [PMID: 30527132 DOI: 10.1016/j.pnmrs.2018.06.001] [Citation(s) in RCA: 321] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 05/08/2023]
Abstract
Magnetic resonance imaging and spectroscopic techniques are widely used in humans both for clinical diagnostic applications and in basic research areas such as cognitive neuroimaging. In recent years, new human MR systems have become available operating at static magnetic fields of 7 T or higher (≥300 MHz proton frequency). Imaging human-sized objects at such high frequencies presents several challenges including non-uniform radiofrequency fields, enhanced susceptibility artifacts, and higher radiofrequency energy deposition in the tissue. On the other side of the scale are gains in signal-to-noise or contrast-to-noise ratio that allow finer structures to be visualized and smaller physiological effects to be detected. This review presents an overview of some of the latest methodological developments in human ultra-high field MRI/MRS as well as associated clinical and scientific applications. Emphasis is given to techniques that particularly benefit from the changing physical characteristics at high magnetic fields, including susceptibility-weighted imaging and phase-contrast techniques, imaging with X-nuclei, MR spectroscopy, CEST imaging, as well as functional MRI. In addition, more general methodological developments such as parallel transmission and motion correction will be discussed that are required to leverage the full potential of higher magnetic fields, and an overview of relevant physiological considerations of human high magnetic field exposure is provided.
Collapse
Affiliation(s)
- Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine, University of Heidelberg, Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany; Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Peter Bachert
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany.
| | - Martin Meyerspeer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria.
| | - Ewald Moser
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria.
| | - Armin M Nagel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands; Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Sebastian Schmitter
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; German Center for Neurodegenerative Diseases, Magdeburg, Germany; Center for Behavioural Brain Sciences, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Sina Straub
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Moritz Zaiss
- High-Field Magnetic Resonance Center, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.
| |
Collapse
|
44
|
Bydder M, Zaaraoui W, Ridley B, Soubrier M, Bertinetti M, Confort-Gouny S, Schad L, Guye M, Ranjeva JP. Dynamic 23Na MRI - A non-invasive window on neuroglial-vascular mechanisms underlying brain function. Neuroimage 2018; 184:771-780. [PMID: 30292814 DOI: 10.1016/j.neuroimage.2018.09.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 11/17/2022] Open
Abstract
A novel magnetic resonance imaging (MRI) acquisition and reconstruction method for obtaining a series of dynamic sodium 23Na-MRI acquisitions was designed to non-invasively assess the signal variations of brain sodium during a hand motor task in 14 healthy human volunteers on an ultra high field (7T) MR scanner. Regions undergoing activation and deactivation were identified with reference to conventional task-related BOLD functional MRI (fMRI). Activation observed in the left central regions, the supplementary motor areas and the left cerebellum induced an increase in the sodium signal observed at ultra short echo time and a decrease in the 23Na signal observed at long echo time. Based on a simple model of two distinct sodium pools (namely, restricted and mobile sodium), the ultra short echo time measures the totality of sodium whereas the long echo time is mainly sensitive to mobile sodium. This activation pattern is consistent with previously described processes related to an influx of Na+ into the intracellular compartments and a moderate increase in the cerebral blood volume (CBV). In contrast, deactivation observed in the right central regions ipsilateral to the movement, the precuneus and the left cerebellum induced a slight decrease in sodium signal at ultra short echo time and an increase of sodium signal at longer echo times. This inhibitory pattern is compatible with a slight decrease in CBV and an efflux of intracellular Na+ to the extracellular compartments that may reflect neural dendritic spine and astrocytic shrinkage, and an increase of sodium in the extracellular fraction. In conclusion, cerebral dynamic 23Na MRI experiments can provide access to the ionic transients following a functional task occurring within the neuro-glial-vascular ensemble. This has the potential to open up a novel non-invasive window on the mechanisms underlying brain function.
Collapse
Affiliation(s)
- Mark Bydder
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, University Hospital Timone, CEMEREM, Marseille, France
| | - Wafaa Zaaraoui
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, University Hospital Timone, CEMEREM, Marseille, France
| | - Ben Ridley
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, University Hospital Timone, CEMEREM, Marseille, France
| | - Manon Soubrier
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, University Hospital Timone, CEMEREM, Marseille, France
| | - Marie Bertinetti
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, University Hospital Timone, CEMEREM, Marseille, France
| | - Sylviane Confort-Gouny
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, University Hospital Timone, CEMEREM, Marseille, France
| | - Lothar Schad
- Computer Assisted Clinical Medicine, Centre for Biomedicine and Medical Technology Mannheim, Heidelberg University, Mannheim, Germany
| | - Maxime Guye
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, University Hospital Timone, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, University Hospital Timone, CEMEREM, Marseille, France.
| |
Collapse
|
45
|
Podvin S, Reardon HT, Yin K, Mosier C, Hook V. Multiple clinical features of Huntington's disease correlate with mutant HTT gene CAG repeat lengths and neurodegeneration. J Neurol 2018; 266:551-564. [PMID: 29956026 DOI: 10.1007/s00415-018-8940-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/28/2022]
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disease caused by mutant HTT gene expansions of CAG triplet repeat numbers that are inherited in an autosomal dominant manner. HD patients display multiple clinical features that are correlated with HTT CAG repeat numbers that include age of disease onset, motor dysfunction, cognitive deficits, compromised daily living capacity, and brain neurodegeneration. It is important to understand the significant relationships of the multiple HD clinical deficits correlated with the number of mutant HTT CAG expansions that are the genetic basis for HD disabilities. Therefore, this review highlights the significant correlations of the HD clinical features of age of onset, motor and cognitive disabilities, decline in living capabilities, weight loss, risk of death, and brain neurodegeneration with respect to their associations with CAG repeat lengths of the HTT gene. Quantitative HTT gene expression patterns analyzed in normal adult human brain regions demonstrated its distribution in areas known to undergo neurodegeneration in HD, as well as in other brain regions. Future investigation of the relationships of the spectrum of clinical HD features with mutant HTT molecular mechanisms will be important to gain understanding of how mutant CAG expansions of the HTT gene result in the devastating disabilities of HD patients.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Drive, MC0719, La Jolla, San Diego, CA, 92093-0719, USA
| | - Holly T Reardon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Drive, MC0719, La Jolla, San Diego, CA, 92093-0719, USA
| | - Katrina Yin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Drive, MC0719, La Jolla, San Diego, CA, 92093-0719, USA
| | - Charles Mosier
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Drive, MC0719, La Jolla, San Diego, CA, 92093-0719, USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Drive, MC0719, La Jolla, San Diego, CA, 92093-0719, USA.
- Department of Neurosciences, University of California, 9500 Gilman Drive, MC0719, La Jolla, San Diego, CA, 92093-0719, USA.
- Department of Pharmacology, University of California, 9500 Gilman Drive, MC0719, La Jolla, San Diego, CA, 92093-0719, USA.
| |
Collapse
|
46
|
Riemer F, Solanky BS, Wheeler-Kingshott CAM, Golay X. Bi-exponential 23 Na T 2 * component analysis in the human brain. NMR IN BIOMEDICINE 2018; 31:e3899. [PMID: 29480533 DOI: 10.1002/nbm.3899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 12/20/2017] [Accepted: 01/03/2018] [Indexed: 06/08/2023]
Abstract
The purpose of this study was to measure the sodium transverse relaxation time T2 * in the healthy human brain. Five healthy subjects were scanned with 18 echo times (TEs) as short as 0.17 ms. T2 * values were fitted on a voxel-by-voxel basis using a bi-exponential model. Data were also analysed using a continuous distribution fit with a region of interest-based inverse Laplace transform. Average T2 * values were 3.4 ± 0.2 ms and 23.5 ± 1.8 ms in white matter (WM) for the short and long components, respectively, and 3.9 ± 0.5 ms and 26.3 ± 2.6 ms in grey matter (GM) for the short and long components, respectively, using the bi-exponential model. Continuous distribution fits yielded results of 3.1 ± 0.3 ms and 18.8 ± 3.2 ms in WM for the short and long components, respectively, and 2.9 ± 0.4 ms and 17.2 ± 2 ms in GM for the short and long components, respectively. 23 Na T2 * values of the brain for the short and long components for various anatomical locations using ultra-short TEs are presented for the first time.
Collapse
Affiliation(s)
- Frank Riemer
- Queen Square MS Centre, NMR Research Unit, Department of Neuroinflammation, UCL Institute of Neurology, London, UK
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| | - Bhavana S Solanky
- Queen Square MS Centre, NMR Research Unit, Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | | | - Xavier Golay
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| |
Collapse
|
47
|
Ridley B, Nagel AM, Bydder M, Maarouf A, Stellmann JP, Gherib S, Verneuil J, Viout P, Guye M, Ranjeva JP, Zaaraoui W. Distribution of brain sodium long and short relaxation times and concentrations: a multi-echo ultra-high field 23Na MRI study. Sci Rep 2018. [PMID: 29531255 PMCID: PMC5847519 DOI: 10.1038/s41598-018-22711-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Sodium (23Na) MRI proffers the possibility of novel information for neurological research but also particular challenges. Uncertainty can arise in in vivo 23Na estimates from signal losses given the rapidity of T2* decay due to biexponential relaxation with both short (T2*short) and long (T2*long) components. We build on previous work by characterising the decay curve directly via multi-echo imaging at 7 T in 13 controls with the requisite number, distribution and range to assess the distribution of both in vivo T2*short and T2*long and in variation between grey and white matter, and subregions. By modelling the relationship between signal and reference concentration and applying it to in vivo 23Na-MRI signal, 23Na concentrations and apparent transverse relaxation times of different brain regions were measured for the first time. Relaxation components and concentrations differed substantially between regions of differing tissue composition, suggesting sensitivity of multi-echo 23Na-MRI toward features of tissue composition. As such, these results raise the prospect of multi-echo 23Na-MRI as an adjunct source of information on biochemical mechanisms in both physiological and pathophysiological states.
Collapse
Affiliation(s)
- Ben Ridley
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France. .,APHM, Hôpitaux de la Timone, CEMEREM, Marseille, France.
| | - Armin M Nagel
- University Hospital Erlangen, Institute of Radiology, Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Mark Bydder
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France.,APHM, Hôpitaux de la Timone, CEMEREM, Marseille, France
| | - Adil Maarouf
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France.,APHM, Hôpitaux de la Timone, CEMEREM, Marseille, France
| | - Jan-Patrick Stellmann
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France.,APHM, Hôpitaux de la Timone, CEMEREM, Marseille, France
| | - Soraya Gherib
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France.,APHM, Hôpitaux de la Timone, CEMEREM, Marseille, France
| | - Jeremy Verneuil
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France.,APHM, Hôpitaux de la Timone, CEMEREM, Marseille, France
| | - Patrick Viout
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France.,APHM, Hôpitaux de la Timone, CEMEREM, Marseille, France
| | - Maxime Guye
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France.,APHM, Hôpitaux de la Timone, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France.,APHM, Hôpitaux de la Timone, CEMEREM, Marseille, France
| | - Wafaa Zaaraoui
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France.,APHM, Hôpitaux de la Timone, CEMEREM, Marseille, France
| |
Collapse
|
48
|
Gardner B, Dieriks BV, Cameron S, Mendis LHS, Turner C, Faull RLM, Curtis MA. Metal concentrations and distributions in the human olfactory bulb in Parkinson's disease. Sci Rep 2017; 7:10454. [PMID: 28874699 PMCID: PMC5585381 DOI: 10.1038/s41598-017-10659-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/14/2017] [Indexed: 01/10/2023] Open
Abstract
In Parkinson's disease (PD), the olfactory bulb is typically the first region in the body to accumulate alpha-synuclein aggregates. This pathology is linked to decreased olfactory ability, which becomes apparent before any motor symptoms occur, and may be due to a local metal imbalance. Metal concentrations were investigated in post-mortem olfactory bulbs and tracts from 17 human subjects. Iron (p < 0.05) and sodium (p < 0.01) concentrations were elevated in the PD olfactory bulb. Combining laser ablation inductively coupled plasma mass spectrometry and immunohistochemistry, iron and copper were evident at very low levels in regions of alpha-synuclein aggregation. Zinc was high in these regions, and free zinc was detected in Lewy bodies, mitochondria, and lipofuscin of cells in the anterior olfactory nucleus. Increased iron and sodium in the human PD olfactory bulb may relate to the loss of olfactory function. In contrast, colocalization of free zinc and alpha-synuclein in the anterior olfactory nucleus implicate zinc in PD pathogenesis.
Collapse
Affiliation(s)
- Bronwen Gardner
- Centre for Brain Research and Department of Anatomy with Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Birger V Dieriks
- Centre for Brain Research and Department of Anatomy with Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Steve Cameron
- Waikato Mass Spectrometry Facility, University of Waikato, Hamilton, New Zealand
| | - Lakshini H S Mendis
- Centre for Brain Research and Department of Anatomy with Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- Centre for Brain Research and Department of Anatomy with Medical Imaging, University of Auckland, Auckland, New Zealand
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research and Department of Anatomy with Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research and Department of Anatomy with Medical Imaging, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
49
|
Ridley B, Marchi A, Wirsich J, Soulier E, Confort-Gouny S, Schad L, Bartolomei F, Ranjeva JP, Guye M, Zaaraoui W. Brain sodium MRI in human epilepsy: Disturbances of ionic homeostasis reflect the organization of pathological regions. Neuroimage 2017; 157:173-183. [PMID: 28602596 DOI: 10.1016/j.neuroimage.2017.06.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/01/2017] [Accepted: 06/03/2017] [Indexed: 12/15/2022] Open
Abstract
In light of technical advancements supporting exploration of MR signals other than 1H, sodium (23Na) has received attention as a marker of ionic homeostasis and cell viability. Here, we evaluate for the first time the possibility that 23Na-MRI is sensitive to pathological processes occurring in human epilepsy. A normative sample of 27 controls was used to normalize regions of interest (ROIs) from 1424 unique brain locales on quantitative 23Na-MRI and high-resolution 1H-MPRAGE images. ROIs were based on intracerebral electrodes in ten patients undergoing epileptic network mapping. The stereo-EEG gold standard was used to define regions as belonging to primarily epileptogenic, secondarily irritative and to non-involved regions. Estimates of total sodium concentration (TSC) on 23Na-MRI and cerebrospinal fluid (CSF) on 1H imaging were extracted for each patient ROI, and normalized against the same region in controls. ROIs with disproportionate CSF contributions (ZCSF≥1.96) were excluded. TSC levels were found to be elevated in patients relative to controls except in one patient, who suffered non-convulsive seizures during the scan, in whom we found reduced TSC levels. In the remaining patients, an ANOVA (F1100= 12.37, p<0.0001) revealed a highly significant effect of clinically-defined zones (F1100= 11.13, p<0.0001), with higher normalized TSC in the epileptogenic zone relative to both secondarily irritative (F1100= 11, p=0.0009) and non-involved regions (F1100= 17.8, p<0.0001). We provide the first non-invasive, in vivo evidence of a chronic TSC elevation alongside ZCSF levels within the normative range, associated with the epileptogenic region even during the interictal period in human epilepsy, and the possibility of reduced TSC levels due to seizure. In line with modified homeostatic mechanisms in epilepsy - including altered mechanisms underlying ionic gating, clearance and exchange - we provide the first indication of 23Na-MRI as an assay of altered sodium concentrations occurring in epilepsy associated with the organization of clinically relevant divisions of pathological cortex.
Collapse
Affiliation(s)
- Ben Ridley
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France; APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Angela Marchi
- APHM, Hôpital de la Timone, Clinical Neurophysiology and Epileptology Department, Marseille, France; Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Jonathan Wirsich
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France; APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France; Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Elisabeth Soulier
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France; APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Sylviane Confort-Gouny
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France; APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Lothar Schad
- Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
| | - Fabrice Bartolomei
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France; APHM, Hôpitaux de la Timone, Service de Neurophysiologie Clinique, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France; APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| | - Maxime Guye
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France; APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France.
| | - Wafaa Zaaraoui
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France; APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, Marseille, France
| |
Collapse
|
50
|
Improved
$$T_{2}^{*}$$
T
2
∗
determination in 23Na, 35Cl, and 17O MRI using iterative partial volume correction based on 1H MRI segmentation. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 30:519-536. [DOI: 10.1007/s10334-017-0623-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/06/2017] [Accepted: 04/19/2017] [Indexed: 12/25/2022]
|