1
|
Huang HK, Kuo J, Zhang Y, Aborahama Y, Cui M, Sastry K, Park S, Villa U, Wang LV, Anastasio MA. Fast aberration correction in 3D transcranial photoacoustic computed tomography via a learning-based image reconstruction method. PHOTOACOUSTICS 2025; 43:100698. [PMID: 40115737 PMCID: PMC11923815 DOI: 10.1016/j.pacs.2025.100698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 03/23/2025]
Abstract
Transcranial photoacoustic computed tomography (PACT) holds significant potential as a neuroimaging modality. However, compensating for skull-induced aberrations in reconstructed images remains a challenge. Although optimization-based image reconstruction methods (OBRMs) can account for the relevant wave physics, they are computationally demanding and generally require accurate estimates of the skull's viscoelastic parameters. To circumvent these issues, a learning-based image reconstruction method was investigated for three-dimensional (3D) transcranial PACT. The method was systematically assessed in virtual imaging studies that involved stochastic 3D numerical head phantoms and applied to experimental data acquired by use of a physical head phantom that involved a human skull. The results demonstrated that the learning-based method yielded accurate images and exhibited robustness to errors in the assumed skull properties, while substantially reducing computational times compared to an OBRM. To the best of our knowledge, this is the first demonstration of a learned image reconstruction method for 3D transcranial PACT.
Collapse
Affiliation(s)
- Hsuan-Kai Huang
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, 61801, IL, United States
| | - Joseph Kuo
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, 61801, IL, United States
| | - Yang Zhang
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, 91125, CA, United States
| | - Yousuf Aborahama
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, 91125, CA, United States
| | - Manxiu Cui
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, 91125, CA, United States
| | - Karteekeya Sastry
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, 91125, CA, United States
| | - Seonyeong Park
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, 61801, IL, United States
| | - Umberto Villa
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, 78712, TX, United States
| | - Lihong V Wang
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, 91125, CA, United States
| | - Mark A Anastasio
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, 61801, IL, United States
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, 61801, IL, United States
| |
Collapse
|
2
|
Zhang H, Wang X, Chen G, Zhang Y, Jian X, He F, Xu M, Ming D. Noninvasive Intracranial Source Signal Localization and Decoding with High Spatiotemporal Resolution. CYBORG AND BIONIC SYSTEMS 2025; 6:0206. [PMID: 40206150 PMCID: PMC11981584 DOI: 10.34133/cbsystems.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/09/2024] [Accepted: 11/07/2024] [Indexed: 04/11/2025] Open
Abstract
High spatiotemporal resolution of noninvasive electroencephalography (EEG) signals is an important prerequisite for fine brain-computer manipulation. However, conventional scalp EEG has a low spatial resolution due to the volume conductor effect, making it difficult to accurately identify the intent of brain-computer manipulation. In recent years, transcranial focused ultrasound modulated EEG technology has increasingly become a research hotspot, which is expected to acquire noninvasive acoustoelectric coupling signals with a high spatial and temporal resolution. In view of this, this study established a transcranial focused ultrasound numerical simulation model and experimental platform based on a real brain model and a 128-array phased array, further constructed a 3-dimensional transcranial multisource dipole localization and decoding numerical simulation model and experimental platform based on the acoustic field platform, and developed a high-precision localization and decoding algorithm. The results show that the simulation-guided phased-array acoustic field experimental platform can achieve accurate focusing in both pure water and transcranial conditions within a safe threshold, with a modulation range of 10 mm, and the focal acoustic pressure can be enhanced by more than 200% compared with that of transducer self-focusing. In terms of dipole localization decoding results, the proposed algorithm in this study has a localization signal-to-noise ratio of 24.18 dB, which is 50.59% higher than that of the traditional algorithm, and the source signal decoding accuracy is greater than 0.85. This study provides a reliable experimental basis and technical support for high-spatiotemporal-resolution noninvasive EEG signal acquisition and precise brain-computer manipulation.
Collapse
Affiliation(s)
- Hao Zhang
- Academy of Medical Engineering and Translational Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural Engineering,
Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Xue Wang
- Academy of Medical Engineering and Translational Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural Engineering,
Tianjin University, Tianjin, China
| | - Guowei Chen
- Academy of Medical Engineering and Translational Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural Engineering,
Tianjin University, Tianjin, China
| | - Yanqiu Zhang
- School of Biomedical Engineering and Technology,
Tianjin Medical University, Tianjin, China
| | - Xiqi Jian
- School of Biomedical Engineering and Technology,
Tianjin Medical University, Tianjin, China
| | - Feng He
- Academy of Medical Engineering and Translational Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural Engineering,
Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Minpeng Xu
- Academy of Medical Engineering and Translational Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural Engineering,
Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural Engineering,
Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| |
Collapse
|
3
|
Vincely VD, Bayer CL. Photoacoustic imaging of rat kidney tissue oxygenation using second near-infrared wavelengths. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:026002. [PMID: 39968505 PMCID: PMC11833698 DOI: 10.1117/1.jbo.30.2.026002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/20/2025]
Abstract
Significance Conventionally, spectral photoacoustic imaging (sPAI) to assess tissue oxygenation (sO 2 ) uses optical wavelengths in the first near-infrared (NIR-I) window. This limits the maximum photoacoustic imaging depth due to the high spectral coloring of biological tissues and has been a major barrier to the clinical translation of the technique. Aim We demonstrate the second near-infrared (NIR-II) tissue optical window (950 to 1400 nm) for the assessment of blood and tissuesO 2 . Approach The NIR-II PA spectra of oxygenated and deoxygenated hemoglobin were first characterized using a phantom. Optimal wavelengths to minimize spectral coloring were identified. The resulting NIR-II PA imaging methods were then validated in vivo by measuring kidneysO 2 in adult female rats. Results sPAI of whole blood, in a phantom, and of blood in kidneys in vivo produced PA spectra proportional to wavelength-dependent optical absorption. Using the NIR-II wavelengths for spectral unmixing resulted in a ∼ 50 % decrease in the error of the estimated bloodsO 2 , compared with conventional NIR-I wavelengths. In vivo measurements of kidneysO 2 validated these findings, with a similar 50% reduction in error when using NIR-II wavelengths versus NIR-I wavelengths at larger illumination depths. Conclusions sPAI using NIR-II wavelengths improved the accuracy of tissuesO 2 measurements. This is likely due to reduced scattering, which reduces the attenuation and, therefore, the impact of spectral coloring in this wavelength range. Combined with the increased safe skin exposure fluence limits in this wavelength range, these results demonstrate the potential to use NIR-II wavelengths for quantitative sPAI ofsO 2 from deep heterogeneous tissues.
Collapse
Affiliation(s)
- Vinoin Devpaul Vincely
- Tulane University, Department of Biomedical Engineering, New Orleans, Louisiana, United States
| | - Carolyn L. Bayer
- Tulane University, Department of Biomedical Engineering, New Orleans, Louisiana, United States
| |
Collapse
|
4
|
Li B, Lu M, Zhou T, Bu M, Gu W, Wang J, Zhu Q, Liu X, Ta D. Removing Artifacts in Transcranial Photoacoustic Imaging With Polarized Self-Attention Dense-UNet. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1530-1543. [PMID: 39013725 DOI: 10.1016/j.ultrasmedbio.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/28/2024] [Accepted: 06/16/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVE Photoacoustic imaging (PAI) is a promising transcranial imaging technique. However, the distortion of photoacoustic signals induced by the skull significantly influences its imaging quality. We aimed to use deep learning for removing artifacts in PAI. METHODS In this study, we propose a polarized self-attention dense U-Net, termed PSAD-UNet, to correct the distortion and accurately recover imaged objects beneath bone plates. To evaluate the performance of the proposed method, a series of experiments was performed using a custom-built PAI system. RESULTS The experimental results showed that the proposed PSAD-UNet method could effectively implement transcranial PAI through a one- or two-layer bone plate. Compared with the conventional delay-and-sum and classical U-Net methods, PSAD-UNet can diminish the influence of bone plates and provide high-quality PAI results in terms of structural similarity and peak signal-to-noise ratio. The 3-D experimental results further confirm the feasibility of PSAD-UNet in 3-D transcranial imaging. CONCLUSION PSAD-UNet paves the way for implementing transcranial PAI with high imaging accuracy, which reveals broad application prospects in preclinical and clinical fields.
Collapse
Affiliation(s)
- Boyi Li
- Academy for Engineering and Technology, Fudan University, Shanghai 200438, China
| | - Mengyang Lu
- Academy for Engineering and Technology, Fudan University, Shanghai 200438, China
| | - Tianhua Zhou
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Mengxu Bu
- Academy for Engineering and Technology, Fudan University, Shanghai 200438, China
| | - Wenting Gu
- Academy for Engineering and Technology, Fudan University, Shanghai 200438, China
| | - Junyi Wang
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Qiuchen Zhu
- Academy for Engineering and Technology, Fudan University, Shanghai 200438, China
| | - Xin Liu
- Academy for Engineering and Technology, Fudan University, Shanghai 200438, China.
| | - Dean Ta
- Academy for Engineering and Technology, Fudan University, Shanghai 200438, China; Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| |
Collapse
|
5
|
Wang S, Huang B, Chan SC, Tsang VT, Wong TT. Tri-modality in vivo imaging for tumor detection with combined ultrasound, photoacoustic, and photoacoustic elastography. PHOTOACOUSTICS 2024; 38:100630. [PMID: 39040971 PMCID: PMC11261081 DOI: 10.1016/j.pacs.2024.100630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024]
Abstract
A comprehensive understanding of a tumor is required for accurate diagnosis and effective treatment. However, currently, there is no single imaging modality that can provide sufficient information. Photoacoustic (PA) imaging is a hybrid imaging technique with high spatial resolution and detection sensitivity, which can be combined with ultrasound (US) imaging to provide both optical and acoustic contrast. Elastography can noninvasively map the elasticity distribution of biological tissue, which reflects pathological conditions. In this study, we incorporated PA elastography into a commercial US/PA imaging system to develop a tri-modality imaging system, which has been tested for tumor detection using four mice with different physiological conditions. The results show that this tri-modality imaging system can provide complementary information on acoustic, optical, and mechanical properties. The enabled visualization and dimension estimation of tumors can lead to a more comprehensive tissue characterization for diagnosis and treatment.
Collapse
Affiliation(s)
- Shuaihu Wang
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Mechanical Engineering and Material Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Bingxin Huang
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Simon C.K. Chan
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Victor T.C. Tsang
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Terence T.W. Wong
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
- Research Center for Medical Imaging and Analysis, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
6
|
Zhang S, Miao J, Li LS. Challenges and advances in two-dimensional photoacoustic computed tomography: a review. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:070901. [PMID: 39006312 PMCID: PMC11245175 DOI: 10.1117/1.jbo.29.7.070901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Significance Photoacoustic computed tomography (PACT), a hybrid imaging modality combining optical excitation with acoustic detection, has rapidly emerged as a prominent biomedical imaging technique. Aim We review the challenges and advances of PACT, including (1) limited view, (2) anisotropy resolution, (3) spatial aliasing, (4) acoustic heterogeneity (speed of sound mismatch), and (5) fluence correction of spectral unmixing. Approach We performed a comprehensive literature review to summarize the key challenges in PACT toward practical applications and discuss various solutions. Results There is a wide range of contributions from both industry and academic spaces. Various approaches, including emerging deep learning methods, are proposed to improve the performance of PACT further. Conclusions We outline contemporary technologies aimed at tackling the challenges in PACT applications.
Collapse
Affiliation(s)
- Shunyao Zhang
- Rice University, Department of Electrical and Computer Engineering, Houston, Texas, United States
| | - Jingyi Miao
- Rice University, Department of Electrical and Computer Engineering, Houston, Texas, United States
| | - Lei S. Li
- Rice University, Department of Electrical and Computer Engineering, Houston, Texas, United States
| |
Collapse
|
7
|
D’Agostino VW, Deutsch RJ, Kwan M, Sunassee ED, Madonna MC, Palmer GM, Crouch BT, Ramanujam N. In vivo spectroscopy to concurrently characterize five metabolic and vascular endpoints relevant to aggressive breast cancer. BIOPHOTONICS DISCOVERY 2024; 1:025002. [PMID: 40191146 PMCID: PMC11970916 DOI: 10.1117/1.bios.1.2.025002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Significance Emerging evidence that aggressive breast tumors rely on various substrates including lipids and glucose to proliferate and recur necessitates the development of tools to track multiple metabolic and vascular endpoints concurrently in vivo. Aim Our quantitative spectroscopy technique provides time-matched measurements of the three major axes of breast cancer metabolism as well as tissue vascular properties in vivo. Approach We leverage exogenous fluorophores to quantify oxidative phosphorylation, glucose uptake, and fatty acid oxidation and endogenous contrast for measurements of hemoglobin and oxygen saturation. An inverse Monte Carlo algorithm corrects for aberrations resulting from tissue optical properties, allowing the unmixing of spectrally overlapping fluorophores. Results Implementation of our inverse Monte Carlo resulted in a linear relationship of fluorophore intensity with concentration (R2>0.95) in phantom validation studies. We next sequenced fluorophore delivery to faithfully recapitulate independent measurement of each fluorophore. The ratio of Bodipy FL C16/2-NBDG administered to a single animal is not different from that in paired animals receiving individual fluorophores (p=n.s.). Clustering of five variables was effective in distinguishing tumor from mammary tissue (sensitivity=0.92, specificity=0.67, accuracy=0.79). Conclusions Our system is capable of measuring major axes of metabolism and associated vascular endpoints, allowing for future study of tumor metabolic flexibility.
Collapse
Affiliation(s)
- Victoria W. D’Agostino
- Duke University, Department of Biomedical Engineering, 101 Science Dr., Durham, USA, 27708
| | - Riley J. Deutsch
- Duke University, Department of Biomedical Engineering, 101 Science Dr., Durham, USA, 27708
| | - Michelle Kwan
- Duke University, Department of Biology, 138 Science Dr., Durham, USA, 27708
| | - Enakshi D. Sunassee
- Duke University, Department of Biomedical Engineering, 101 Science Dr., Durham, USA, 27708
| | - Megan C. Madonna
- Duke University, Department of Biomedical Engineering, 101 Science Dr., Durham, USA, 27708
| | - Gregory M. Palmer
- Duke University, Department of Radiation Oncology, 20 Duke Medicine Cir., Durham, USA, 27708
| | - Brian T. Crouch
- Duke University, Department of Biomedical Engineering, 101 Science Dr., Durham, USA, 27708
| | - Nimmi Ramanujam
- Duke University, Department of Biomedical Engineering, 101 Science Dr., Durham, USA, 27708
- Duke University, Department of Pharmacology and Cancer Biology, 308 Research Drive, Durham, USA, 27710
| |
Collapse
|
8
|
Chang KW, Wang X, Wong KY, Xu G. Label-free photoacoustic computed tomography of visually evoked responses in the primary visual cortex and four subcortical retinorecipient nuclei of anesthetized mice. NEUROPHOTONICS 2024; 11:035005. [PMID: 39081284 PMCID: PMC11286379 DOI: 10.1117/1.nph.11.3.035005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Significance Many techniques exist for screening retinal phenotypes in mouse models in vision research, but significant challenges remain for efficiently probing higher visual centers of the brain. Photoacoustic computed tomography (PACT), with optical sensitivity to hemodynamic response (HR) in brain and ultrasound resolution, provides unique advantages in comprehensively assessing higher visual function in the mouse brain. Aim We aim to examine the reliability of PACT in the functional phenotyping of mouse models for vision research. Approach A PACT-ultrasound (US) parallel imaging system was established with a one-dimensional (1D) US transducer array and a tunable laser. Imaging was performed at three coronal planes of the brain, covering the primary visual cortex and the four subcortical nuclei, including the superior colliculus, the dorsal lateral geniculate nucleus, the suprachiasmatic nucleus, and the olivary pretectal nucleus. The visual-evoked HR was isolated from background signals using an impulse-based data processing protocol. rd1 mice with rod/cone degeneration, melanopsin-knockout (mel-KO) mice with photoreceptive ganglion cells that lack intrinsic photosensitivity, and wild-type mice as controls were imaged. The quantitative characteristics of the visual-evoked HR were compared. Results Quantitative analysis of the HRs shows significant differences among the three mouse strains: (1) rd1 mice showed both smaller and slower responses compared with wild type ( n = 10,10 , p < 0.01 ) and (2) mel-KO mice had lower amplitude but not significantly delayed photoresponses than wild-type mice ( n = 10,10 , p < 0.01 ). These results agree with the known visual deficits of the mouse strains. Conclusions PACT demonstrated sufficient sensitivity to detecting post-retinal functional deficits.
Collapse
Affiliation(s)
- Kai-Wei Chang
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, Michigan, United States
| | - Xueding Wang
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, Michigan, United States
- University of Michigan, Department of Radiology, Ann Arbor, Michigan, United States
| | - Kwoon Y. Wong
- University of Michigan, Department of Ophthalmology and Visual Sciences, Ann Arbor, Michigan, United States
- University of Michigan, Department of Molecular, Cellular and Developmental Biology, Ann Arbor, Michigan, United States
| | - Guan Xu
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, Michigan, United States
- University of Michigan, Department of Ophthalmology and Visual Sciences, Ann Arbor, Michigan, United States
| |
Collapse
|
9
|
Kong S, Zuo H, Wu C, Liu MY, Ma C. Oxygenation heterogeneity facilitates spatiotemporal flow pattern visualization inside human blood vessels using photoacoustic computed tomography. BIOMEDICAL OPTICS EXPRESS 2024; 15:2741-2752. [PMID: 38855671 PMCID: PMC11161372 DOI: 10.1364/boe.518895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 06/11/2024]
Abstract
Hemodynamics can be explored through various biomedical imaging techniques. However, observing transient spatiotemporal variations in the saturation of oxygen (sO2) within human blood vessels proves challenging with conventional methods. In this study, we employed photoacoustic computed tomography (PACT) to reconstruct the evolving spatiotemporal patterns in a human vein. Through analysis of the multi-wavelength photoacoustic (PA) spectrum, we illustrated the dynamic distribution within blood vessels. Additionally, we computationally rendered the dynamic process of venous blood flowing into the major vein and entering a branching vessel. Notably, we successfully recovered, in real time, the parabolic wavefront profile of laminar flow inside a deep vein in vivo-a first-time achievement. While the study is preliminary, the demonstrated capability of dynamic sO2 imaging holds promise for new applications in biology and medicine.
Collapse
Affiliation(s)
- Siying Kong
- Tsinghua University, Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Beijing 100084, China
| | - Hongzhi Zuo
- Tsinghua University, Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Beijing 100084, China
| | - Chuhua Wu
- Tsinghua University, Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Beijing 100084, China
| | - Ming-Yuan Liu
- Department of Vascular Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Cheng Ma
- Tsinghua University, Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Beijing 100084, China
- Institute for Precision Healthcare, Tsinghua University, Beijing 100084, China
- Institute for Intelligent Healthcare, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Zhu X, Huang Q, Jiang L, Nguyen VT, Vu T, Devlin G, Shaima J, Wang X, Chen Y, Ma L, Xiang K, Wang E, Rong Q, Zhou Q, Kang Y, Asokan A, Feng L, Hsu SWD, Shen X, Yao J. Longitudinal intravital imaging of mouse placenta. SCIENCE ADVANCES 2024; 10:eadk1278. [PMID: 38507481 PMCID: PMC10954206 DOI: 10.1126/sciadv.adk1278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
Studying placental functions is crucial for understanding pregnancy complications. However, imaging placenta is challenging due to its depth, volume, and motion distortions. In this study, we have developed an implantable placenta window in mice that enables high-resolution photoacoustic and fluorescence imaging of placental development throughout the pregnancy. The placenta window exhibits excellent transparency for light and sound. By combining the placenta window with ultrafast functional photoacoustic microscopy, we were able to investigate the placental development during the entire mouse pregnancy, providing unprecedented spatiotemporal details. Consequently, we examined the acute responses of the placenta to alcohol consumption and cardiac arrest, as well as chronic abnormalities in an inflammation model. We have also observed viral gene delivery at the single-cell level and chemical diffusion through the placenta by using fluorescence imaging. Our results demonstrate that intravital imaging through the placenta window can be a powerful tool for studying placenta functions and understanding the placental origins of adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Xiaoyi Zhu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Qiang Huang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Pediatric Surgery, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Laiming Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Van-Tu Nguyen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Tri Vu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Garth Devlin
- Department of Surgery, Duke University School of Medicine, Durham, NC 27708, USA
| | - Jabbar Shaima
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, NC 27708, USA
| | - Xiaobei Wang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, NC 27708, USA
| | - Yong Chen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lijun Ma
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Kun Xiang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Ergang Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Qiangzhou Rong
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, NC 27708, USA
| | - Aravind Asokan
- Department of Surgery, Duke University School of Medicine, Durham, NC 27708, USA
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Shiao-Wen D. Hsu
- Department of Medicine, Duke University School of Medicine, Durham, NC 27708, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
11
|
Mi J, Liu C, Chen H, Qian Y, Zhu J, Zhang Y, Liang Y, Wang L, Ta D. Light on Alzheimer's disease: from basic insights to preclinical studies. Front Aging Neurosci 2024; 16:1363458. [PMID: 38566826 PMCID: PMC10986738 DOI: 10.3389/fnagi.2024.1363458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Alzheimer's disease (AD), referring to a gradual deterioration in cognitive function, including memory loss and impaired thinking skills, has emerged as a substantial worldwide challenge with profound social and economic implications. As the prevalence of AD continues to rise and the population ages, there is an imperative demand for innovative imaging techniques to help improve our understanding of these complex conditions. Photoacoustic (PA) imaging forms a hybrid imaging modality by integrating the high-contrast of optical imaging and deep-penetration of ultrasound imaging. PA imaging enables the visualization and characterization of tissue structures and multifunctional information at high resolution and, has demonstrated promising preliminary results in the study and diagnosis of AD. This review endeavors to offer a thorough overview of the current applications and potential of PA imaging on AD diagnosis and treatment. Firstly, the structural, functional, molecular parameter changes associated with AD-related brain imaging captured by PA imaging will be summarized, shaping the diagnostic standpoint of this review. Then, the therapeutic methods aimed at AD is discussed further. Lastly, the potential solutions and clinical applications to expand the extent of PA imaging into deeper AD scenarios is proposed. While certain aspects might not be fully covered, this mini-review provides valuable insights into AD diagnosis and treatment through the utilization of innovative tissue photothermal effects. We hope that it will spark further exploration in this field, fostering improved and earlier theranostics for AD.
Collapse
Affiliation(s)
- Jie Mi
- Yiwu Research Institute, Fudan University, Yiwu, China
| | - Chao Liu
- Yiwu Research Institute, Fudan University, Yiwu, China
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, China
| | - Honglei Chen
- Yiwu Research Institute, Fudan University, Yiwu, China
| | - Yan Qian
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, China
| | - Jingyi Zhu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yachao Zhang
- Medical Ultrasound Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yizhi Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Dean Ta
- Yiwu Research Institute, Fudan University, Yiwu, China
- Department of Electronic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Tsytsarev V, Sopova JV, Leonova EI, Inyushin M, Markina AA, Chirinskaite AV, Volnova AB. Neurophotonic methods in approach to in vivo animal epileptic models: Advantages and limitations. Epilepsia 2024; 65:600-614. [PMID: 38115808 PMCID: PMC10948300 DOI: 10.1111/epi.17870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Neurophotonic technology is a rapidly growing group of techniques that are based on the interactions of light with natural or genetically modified cells of the neural system. New optical technologies make it possible to considerably extend the tools of neurophysiological research, from the visualization of functional activity changes to control of brain tissue excitability. This opens new perspectives for studying the mechanisms underlying the development of human neurological diseases. Epilepsy is one of the most common brain disorders; it is characterized by recurrent seizures and affects >1% of the world's population. However, how seizures occur, spread, and terminate in a healthy brain is still unclear. Therefore, it is extremely important to develop appropriate models to accurately explore the causal relationship of epileptic activity. The use of neurophotonic technologies in epilepsy research falls into two broad categories: the visualization of neural epileptic activity, and the direct optical influence on neurons to induce or suppress epileptic activity. An optogenetic variant of the classical kindling model of epileptic seizures, in which activatable cells are genetically defined, is called optokindling. Research is also underway concerning the application of neurophotonic techniques for suppressing epileptic activity, aiming to bring these methods into clinical practice. This review aims to systematize and describe new approaches that use combinations of different neurophotonic methods to work with in vivo models of epilepsy. These approaches overcome many of the shortcomings associated with classical animal models of epilepsy and thus increase the effectiveness of developing new diagnostic methods and antiepileptic therapy.
Collapse
Affiliation(s)
- Vassiliy Tsytsarev
- University of Maryland School of Medicine, Department of Neurobiology 20 Penn St, HSF-2, 21201 MD, Baltimore, United States
| | - Julia V. Sopova
- Center of Transgenesis and Genome Editing, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Elena I. Leonova
- Center of Transgenesis and Genome Editing, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Mikhail Inyushin
- School of Medicine, Universidad Central del Caribe, Bayamon, PR 00956, USA
| | - Alisa A. Markina
- Institute of Translational Biomedicine, Saint Petersburg State University, St. Petersburg 199034, Russia
| | - Angelina V. Chirinskaite
- Center of Transgenesis and Genome Editing, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna B. Volnova
- Institute of Translational Biomedicine, Saint Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
13
|
Zafar M, McGuire LS, Ranjbaran SM, Matchynski JI, Manwar R, Conti AC, Perrine SA, Avanaki K. Spiral laser scanning photoacoustic microscopy for functional brain imaging in rats. NEUROPHOTONICS 2024; 11:015007. [PMID: 38344025 PMCID: PMC10855442 DOI: 10.1117/1.nph.11.1.015007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 11/22/2024]
Abstract
Significance There are many neuroscience questions that can be answered by a high-resolution functional brain imaging system. Such a system would require the capability to visualize vasculature and measure neural activity by imaging the entire brain continually and in rapid succession in order to capture hemodynamic changes. Utilizing optical excitation and acoustic detection, photoacoustic technology enables label-free quantification of changes in endogenous chromophores, such as oxyhemoglobin, deoxyhemoglobin, and total hemoglobin. Aim Our aim was to develop a sufficiently high-resolution, fast frame-rate, and wide field-of-view (FOV) photoacoustic microscopy (PAM) system for the purpose of imaging vasculature and hemodynamics in a rat brain. Approach Although the most PA microscopy systems use raster scanning (or less commonly Lissajous scanning), we have developed a simple-to-implement laser scanning optical resolution PAM system with spiral scanning (which we have named "spiral laser scanning photoacoustic microscopy" or sLS-PAM) to acquire an 18 mm diameter image at fast frame rate (more than 1 fps). Such a system is designed to permit continuous rat brain imaging without the introduction of photobleaching artifacts. Conclusion We demonstrated the functional imaging capability of the sLS-PAM system by imaging cerebral hemodynamics in response to whisker and electrical stimulation and used it for vascular imaging of a modeled brain injury. We believe that we have demonstrated the development of a simple-to-implement PAM system, which could become an affordable functional neuroimaging tool for researchers.
Collapse
Affiliation(s)
- Mohsin Zafar
- University of Illinois at Chicago, Department of Biomedical Engineering, The Richard and Loan Hill, Chicago, Illinois, United States
| | - Laura Stone McGuire
- University of Illinois at Chicago, Department of Neurosurgery, Chicago, Illinois, United States
| | - Seyed Mohsen Ranjbaran
- University of Illinois at Chicago, Department of Biomedical Engineering, The Richard and Loan Hill, Chicago, Illinois, United States
| | - James I Matchynski
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan, United States
- Wayne State University School of Medicine, Department of Neurosurgery, Detroit, Michigan, United States
| | - Rayyan Manwar
- University of Illinois at Chicago, Department of Biomedical Engineering, The Richard and Loan Hill, Chicago, Illinois, United States
| | - Alana C Conti
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan, United States
- Wayne State University School of Medicine, Department of Neurosurgery, Detroit, Michigan, United States
- Wayne State University School of Medicine, Department of Psychiatry and Behavioral Neurosciences, Detroit, Michigan, United States
| | - Shane A Perrine
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan, United States
- Wayne State University School of Medicine, Department of Neurosurgery, Detroit, Michigan, United States
- Wayne State University School of Medicine, Department of Psychiatry and Behavioral Neurosciences, Detroit, Michigan, United States
| | - Kamran Avanaki
- University of Illinois at Chicago, Department of Biomedical Engineering, The Richard and Loan Hill, Chicago, Illinois, United States
- University of Illinois at Chicago, Department of Dermatology, Chicago, Illinois, United States
| |
Collapse
|
14
|
Vincely VD, Bayer CL. Functional Photoacoustic Imaging for Placental Monitoring: A Mini Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1642-1650. [PMID: 37030823 PMCID: PMC10539485 DOI: 10.1109/tuffc.2023.3263361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The placenta, a highly vascularized interface between the mother and fetus, undergoes dramatic anatomical and functional changes during pregnancy. These changes occur both during healthy development and adverse pathologies of pregnancy, such as preeclampsia (PE). Abnormal placental development can lead to life-long health impacts on both the mother and child. Photoacoustic (PA) imaging, extensively developed for preclinical imaging applications in oncology and cardiovascular disease, uses optical energy to generate acoustic waves through thermoelastic expansion of light-absorbing chromophores within tissue. Recently, PA imaging has been used to study preclinical placental anatomy and function. If clinical translation of PA imaging of the placenta is achieved, the impact on maternal-fetal health could be expansive. This perspective highlights the recent progress in PA imaging for placental monitoring and discusses the progress needed for human clinical translation.
Collapse
|
15
|
Qiu J, Yue F, Zhu P, Chen J, Xu F, Zhang L, Kim KH, Snyder MM, Luo N, Xu HW, Huang F, Tao WA, Kuang S. FAM210A is essential for cold-induced mitochondrial remodeling in brown adipocytes. Nat Commun 2023; 14:6344. [PMID: 37816711 PMCID: PMC10564795 DOI: 10.1038/s41467-023-41988-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
Cold stimulation dynamically remodels mitochondria in brown adipose tissue (BAT) to facilitate non-shivering thermogenesis in mammals, but what regulates mitochondrial plasticity is poorly understood. Comparing mitochondrial proteomes in response to cold revealed FAM210A as a cold-inducible mitochondrial inner membrane protein. An adipocyte-specific constitutive knockout of Fam210a (Fam210aAKO) disrupts mitochondrial cristae structure and diminishes the thermogenic activity of BAT, rendering the Fam210aAKO mice vulnerable to lethal hypothermia under acute cold exposure. Induced knockout of Fam210a in adult adipocytes (Fam210aiAKO) does not affect steady-state mitochondrial structure under thermoneutrality, but impairs cold-induced mitochondrial remodeling, leading to progressive loss of cristae and reduction of mitochondrial density. Proteomics reveals an association between FAM210A and OPA1, whose cleavage governs cristae dynamics and mitochondrial remodeling. Mechanistically, FAM210A interacts with mitochondrial protease YME1L and modulates its activity toward OMA1 and OPA1 cleavage. These data establish FAM210A as a key regulator of mitochondrial cristae remodeling in BAT and shed light on the mechanism underlying mitochondrial plasticity in response to cold.
Collapse
Affiliation(s)
- Jiamin Qiu
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA.
| | - Peipei Zhu
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Fan Xu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Lijia Zhang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Kun Ho Kim
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Madigan M Snyder
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Nanjian Luo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Hao-Wei Xu
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Fang Huang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA.
| |
Collapse
|
16
|
Liu T, Ren Z, Xiong C, Peng W, Wu J, Huang S, Liang G, Sun B. Optoacoustic classification of diabetes mellitus with the synthetic impacts via optimized neural networks. Heliyon 2023; 9:e20796. [PMID: 37842612 PMCID: PMC10569993 DOI: 10.1016/j.heliyon.2023.e20796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 09/11/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023] Open
Abstract
A highly accurate classification of diabetes mellitus (DM) with the synthetic impacts of several variables is first studied via optoacoustic technology in this work. For this purpose, an optoacoustic measurement apparatus of blood glucose is built, and the optoacoustic signals and peak-peak values for 625 cases of in vitro rabbit blood are obtained. The results show that although the single impact of five variables are obtained, the precise classification of DM is limited because of the synthetic impacts. Based on clinical standards, different levels of blood glucose corresponding to hypoglycaemia, normal, slight diabetes, moderate diabetes and severe diabetes are employed. Then, a wavelet neural network (WNN) is utilized to establish a classification model of DM severity. The classification accuracy is 94.4 % for the testing blood samples. To enhance the classification accuracy, particle swarm optimization (PSO) and quantum-behaved particle swarm optimization (QPSO) are successively utilized to optimize WNN, and accuracy is enhanced to 98.4 % and 100 %, respectively. It is demonstrated from comparison between several algorithms that optoacoustic technology united with the QPSO-optimized WNN algorithm can achieve precise classification of DM with synthetic impacts.
Collapse
Affiliation(s)
- Tao Liu
- Key Laboratory of Optic-electronic and Communication, Jiangxi Science and Technology Normal University, 330038 Nanchang, Jiangxi, China
| | - Zhong Ren
- Key Laboratory of Optic-electronic and Communication, Jiangxi Science and Technology Normal University, 330038 Nanchang, Jiangxi, China
- Key Laboratory of Optic-electronic Detection and Information Processing of Nanchang City, Jiangxi Science and Technology Normal University, 330038 Nanchang, Jiangxi, China
| | - Chengxin Xiong
- Key Laboratory of Optic-electronic and Communication, Jiangxi Science and Technology Normal University, 330038 Nanchang, Jiangxi, China
| | - Wenping Peng
- Key Laboratory of Optic-electronic and Communication, Jiangxi Science and Technology Normal University, 330038 Nanchang, Jiangxi, China
| | - Junli Wu
- Key Laboratory of Optic-electronic and Communication, Jiangxi Science and Technology Normal University, 330038 Nanchang, Jiangxi, China
| | - Shuanggen Huang
- Agricultural Equipment Key Laboratory of Jiangxi Provincial, Jiangxi Agriculture University, 330045 Nanchang, Jiangxi, China
| | - Gaoqiang Liang
- Key Laboratory of Optic-electronic and Communication, Jiangxi Science and Technology Normal University, 330038 Nanchang, Jiangxi, China
| | - Bingheng Sun
- Key Laboratory of Optic-electronic and Communication, Jiangxi Science and Technology Normal University, 330038 Nanchang, Jiangxi, China
| |
Collapse
|
17
|
Manwar R, Kratkiewicz K, Mahmoodkalayeh S, Hariri A, Papadelis C, Hansen A, Pillers DAM, Gelovani J, Avanaki K. Development and characterization of transfontanelle photoacoustic imaging system for detection of intracranial hemorrhages and measurement of brain oxygenation: Ex-vivo. PHOTOACOUSTICS 2023; 32:100538. [PMID: 37575972 PMCID: PMC10413353 DOI: 10.1016/j.pacs.2023.100538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/28/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
We have developed and optimized an imaging system to study and improve the detection of brain hemorrhage and to quantify oxygenation. Since this system is intended to be used for brain imaging in neonates through the skull opening, i.e., fontanelle, we called it, Transfontanelle Photoacoustic Imaging (TFPAI) system. The system is optimized in terms of optical and acoustic designs, thermal safety, and mechanical stability. The lower limit of quantification of TFPAI to detect the location of hemorrhage and its size is evaluated using in-vitro and ex-vivo experiments. The capability of TFPAI in measuring the tissue oxygenation and detection of vasogenic edema due to brain blood barrier disruption are demonstrated. The results obtained from our experimental evaluations strongly suggest the potential utility of TFPAI, as a portable imaging modality in the neonatal intensive care unit. Confirmation of these findings in-vivo could facilitate the translation of this promising technology to the clinic.
Collapse
Affiliation(s)
- Rayyan Manwar
- University of Illinois at Chicago, Department of Biomedical Engineering, Chicago, IL, United States
| | - Karl Kratkiewicz
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, United States
| | | | - Ali Hariri
- Department of Nanoengineering, University of California, San Diego, CA, United States
| | - Christos Papadelis
- Jane and John Justin Neurosciences Center, Cook Children’s Health Care System, Fort Worth, TX, United States
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Anne Hansen
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - De-Ann M. Pillers
- Department of Pediatrics, UI Health Children’s Hospital of the University of Illinois at Chicago, Chicago, IL, United States
| | - Juri Gelovani
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI 48201, United States
- Dept. Radiology, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kamran Avanaki
- University of Illinois at Chicago, Department of Biomedical Engineering, Chicago, IL, United States
- Department of Pediatrics, UI Health Children’s Hospital of the University of Illinois at Chicago, Chicago, IL, United States
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
18
|
Morita M. Modern Microscopic Approaches to Astrocytes. Int J Mol Sci 2023; 24:ijms24065883. [PMID: 36982958 PMCID: PMC10051528 DOI: 10.3390/ijms24065883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Microscopy started as the histological analysis based on intrinsic optical properties of tissues such as the refractive index and light absorption, and is expanding to include the visualization of organelles by chemical staining, localization of molecules by immunostaining, physiological measurements such as Ca2+ imaging, functional manipulation by optogenetics, and comprehensive analysis of chemical composition by Raman spectra. The microscope is one of the most important tools in neuroscience, which aims to reveal the complex intercellular communications underlying brain function and pathology. Many aspects of astrocytes, including the structures of their fine processes and physiological activities in concert with neurons and blood vessels, were revealed in the course of innovations in modern microscopy. The evolution of modern microscopy is a consequence of breakthroughs in spatiotemporal resolutions and expansions in molecular and physiological targets due to the progress in optics and information technology, as well as the inventions of probes using organic chemistry and molecular biology. This review overviews the modern microscopic approach to astrocytes.
Collapse
Affiliation(s)
- Mitsuhiro Morita
- Department of Biology, Graduate School of Sciences, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
19
|
Gu Y, Sun Y, Wang X, Li H, Qiu J, Lu W. Application of photoacoustic computed tomography in biomedical imaging: A literature review. Bioeng Transl Med 2023; 8:e10419. [PMID: 36925681 PMCID: PMC10013779 DOI: 10.1002/btm2.10419] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 11/06/2022] Open
Abstract
Photoacoustic computed tomography (PACT) is a hybrid imaging modality that combines optical excitation and acoustic detection techniques. It obtains high-resolution deep-tissue images based on the deep penetration of light, the anisotropy of light absorption in objects, and the photoacoustic effect. Hence, PACT shows great potential in biomedical sample imaging. Recently, due to its advantages of high sensitivity to optical absorption and wide scalability of spatial resolution with the desired imaging depth, PACT has received increasing attention in preclinical and clinical practice. To date, there has been a proliferation of PACT systems designed for specific biomedical imaging applications, from small animals to human organs, from ex vivo to in vivo real-time imaging, and from simple structural imaging to functional and molecular imaging with external contrast agents. Therefore, it is of great importance to summarize the previous applications of PACT systems in biomedical imaging and clinical practice. In this review, we searched for studies related to PACT imaging of biomedical tissues and samples over the past two decades; divided the studies into two categories, PACT imaging of preclinical animals and PACT imaging of human organs and body parts; and discussed the significance of the studies. Finally, we pointed out the future directions of PACT in biomedical applications. With the development of exogenous contrast agents and advances of imaging technique, in the future, PACT will enable biomedical imaging from organs to whole bodies, from superficial vasculature to internal organs, from anatomy to functions, and will play an increasingly important role in biomedical research and clinical practice.
Collapse
Affiliation(s)
- Yanru Gu
- Department of RadiologyThe Second Affiliated Hospital of Shandong First Medical UniversityTaianChina
- Department of RadiologyShandong First Medical University and Shandong Academy of Medical SciencesTaianChina
| | - Yuanyuan Sun
- Department of RadiologyShandong First Medical University and Shandong Academy of Medical SciencesTaianChina
| | - Xiao Wang
- College of Ocean Science and EngineeringShandong University of Science and TechnologyQingdaoChina
| | - Hongyu Li
- College of Ocean Science and EngineeringShandong University of Science and TechnologyQingdaoChina
| | - Jianfeng Qiu
- Department of RadiologyShandong First Medical University and Shandong Academy of Medical SciencesTaianChina
| | - Weizhao Lu
- Department of RadiologyThe Second Affiliated Hospital of Shandong First Medical UniversityTaianChina
- Department of RadiologyShandong First Medical University and Shandong Academy of Medical SciencesTaianChina
| |
Collapse
|
20
|
Mirg S, Turner KL, Chen H, Drew PJ, Kothapalli SR. Photoacoustic imaging for microcirculation. Microcirculation 2022; 29:e12776. [PMID: 35793421 PMCID: PMC9870710 DOI: 10.1111/micc.12776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 01/26/2023]
Abstract
Microcirculation facilitates the blood-tissue exchange of nutrients and regulates blood perfusion. It is, therefore, essential in maintaining tissue health. Aberrations in microcirculation are potentially indicative of underlying cardiovascular and metabolic pathologies. Thus, quantitative information about it is of great clinical relevance. Photoacoustic imaging (PAI) is a capable technique that relies on the generation of imaging contrast via the absorption of light and can image at micron-scale resolution. PAI is especially desirable to map microvasculature as hemoglobin strongly absorbs light and can generate a photoacoustic signal. This paper reviews the current state of the art for imaging microvascular networks using photoacoustic imaging. We further describe how quantitative information about blood dynamics such as the total hemoglobin concentration, oxygen saturation, and blood flow rate is obtained using PAI. We also discuss its importance in understanding key pathophysiological processes in neurovascular, cardiovascular, ophthalmic, and cancer research fields. We then discuss the current challenges and limitations of PAI and the approaches that can help overcome these limitations. Finally, we provide the reader with an overview of future trends in the field of PAI for imaging microcirculation.
Collapse
Affiliation(s)
- Shubham Mirg
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin L. Turner
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Haoyang Chen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick J. Drew
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA 17033, USA
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
21
|
Manwar R, McGuire LS, Islam MT, Shoo A, Charbel FT, Pillers DAM, Avanaki K. Transfontanelle photoacoustic imaging for in-vivo cerebral oxygenation measurement. Sci Rep 2022; 12:15394. [PMID: 36100615 PMCID: PMC9470703 DOI: 10.1038/s41598-022-19350-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
The capability of photoacoustic (PA) imaging to measure oxygen saturation through a fontanelle has been demonstrated in large animals in-vivo. We called this method, transfontanelle photoacoustic imaging (TFPAI). A surgically induced 2.5 cm diameter cranial window was created in an adult sheep skull to model the human anterior fontanelle. The performance of the TFPAI has been evaluated by comparing the PA-based predicted results against the gold standard of blood gas analyzer measurements.
Collapse
Affiliation(s)
- Rayyan Manwar
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Laura S McGuire
- Department of Neurological Surgery, University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
| | - Md Tarikul Islam
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Anthony Shoo
- Section of Neonatology, Department of Pediatrics, UIHealth Children's Hospital of the University of Illinois at Chicago, Chicago, IL, USA
| | - Fady T Charbel
- Department of Neurological Surgery, University of Illinois at Chicago - College of Medicine, Chicago, IL, USA
| | - De-Ann M Pillers
- Section of Neonatology, Department of Pediatrics, UIHealth Children's Hospital of the University of Illinois at Chicago, Chicago, IL, USA
| | - Kamran Avanaki
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
- Section of Neonatology, Department of Pediatrics, UIHealth Children's Hospital of the University of Illinois at Chicago, Chicago, IL, USA.
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
22
|
Ioanas HI, Schlegel F, Skachokova Z, Schroeter A, Husak T, Rudin M. Hybrid fiber optic-fMRI for multimodal cell-specific recording and manipulation of neural activity in rodents. NEUROPHOTONICS 2022; 9:032206. [PMID: 35355657 PMCID: PMC8936941 DOI: 10.1117/1.nph.9.3.032206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/19/2022] [Indexed: 05/08/2023]
Abstract
Significance: Multiscale imaging holds particular relevance to neuroscience, where it helps integrate the cellular and molecular biological scale, which is most accessible to interventions, with holistic organ-level evaluations, most relevant with respect to function. Being inextricably interdisciplinary, multiscale imaging benefits substantially from incremental technology adoption, and a detailed overview of the state-of-the-art is vital to an informed application of imaging methods. Aim: In this article, we lay out the background and methodological aspects of multimodal approaches combining functional magnetic resonance imaging (fMRI) with simultaneous optical measurement or stimulation. Approach: We focus on optical techniques as these allow, in conjunction with genetically encoded proteins (e.g. calcium indicators or optical signal transducers), unprecedented read-out and control specificity for individual cell-types during fMRI experiments, while leveraging non-interfering modalities. Results: A variety of different solutions for optical/fMRI methods has been reported ranging from bulk fluorescence recordings via fiber photometry to high resolution microscopy. In particular, the plethora of optogenetic tools has enabled the transformation of stimulus-evoked fMRI into a cell biological interrogation method. We discuss the capabilities and limitations of these genetically encoded molecular tools in the study of brain phenomena of great methodological and neuropsychiatric interest-such as neurovascular coupling (NVC) and neuronal network mapping. We provide a methodological description of this interdisciplinary field of study, and focus in particular on the limitations of the widely used blood oxygen level dependent (BOLD) signal and how multimodal readouts can shed light on the contributions arising from neurons, astrocytes, or the vasculature. Conclusion: We conclude that information from multiple signaling pathways must be incorporated in future forward models of the BOLD response to prevent erroneous conclusions when using fMRI as a surrogate measure for neural activity. Further, we highlight the potential of direct neuronal stimulation via genetically defined brain networks towards advancing neurophysiological understanding and better estimating effective connectivity.
Collapse
Affiliation(s)
- Horea-Ioan Ioanas
- University of Zurich Institute for Biomedical Engineering, ETH, Zürich, Switzerland
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, Massachusetts, United States
- Dartmouth College, Center for Open Neuroscience, Hanover, New Hampshire, United States
- Address all correspondence to Markus Rudin, ; Horea-Ioan Ioanas,
| | - Felix Schlegel
- University of Zurich Institute for Biomedical Engineering, ETH, Zürich, Switzerland
| | - Zhiva Skachokova
- University of Zurich Institute for Biomedical Engineering, ETH, Zürich, Switzerland
| | - Aileen Schroeter
- University of Zurich Institute for Biomedical Engineering, ETH, Zürich, Switzerland
- University of Zurich, USZ Innovation Hub, Zurich, Switzerland
| | - Tetiana Husak
- Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Cambridge, Massachusetts, United States
| | - Markus Rudin
- University of Zurich Institute for Biomedical Engineering, ETH, Zürich, Switzerland
- The LOOP Zurich, Zurich, Switzerland
- Address all correspondence to Markus Rudin, ; Horea-Ioan Ioanas,
| |
Collapse
|
23
|
Zhang H, Bo W, Wang D, DiSpirito A, Huang C, Nyayapathi N, Zheng E, Vu T, Gong Y, Yao J, Xu W, Xia J. Deep-E: A Fully-Dense Neural Network for Improving the Elevation Resolution in Linear-Array-Based Photoacoustic Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1279-1288. [PMID: 34928793 PMCID: PMC9161237 DOI: 10.1109/tmi.2021.3137060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Linear-array-based photoacoustic tomography has shown broad applications in biomedical research and preclinical imaging. However, the elevational resolution of a linear array is fundamentally limited due to the weak cylindrical focus of the transducer element. While several methods have been proposed to address this issue, they have all handled the problem in a less time-efficient way. In this work, we propose to improve the elevational resolution of a linear array through Deep-E, a fully dense neural network based on U-net. Deep-E exhibits high computational efficiency by converting the three-dimensional problem into a two-dimension problem: it focused on training a model to enhance the resolution along elevational direction by only using the 2D slices in the axial and elevational plane and thereby reducing the computational burden in simulation and training. We demonstrated the efficacy of Deep-E using various datasets, including simulation, phantom, and human subject results. We found that Deep-E could improve elevational resolution by at least four times and recover the object's true size. We envision that Deep-E will have a significant impact in linear-array-based photoacoustic imaging studies by providing high-speed and high-resolution image enhancement.
Collapse
|
24
|
Photoacoustic Imaging in Biomedicine and Life Sciences. Life (Basel) 2022; 12:life12040588. [PMID: 35455079 PMCID: PMC9028050 DOI: 10.3390/life12040588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/19/2022] [Indexed: 12/25/2022] Open
Abstract
Photo-acoustic imaging, also known as opto-acoustic imaging, has become a widely popular modality for biomedical applications. This hybrid technique possesses the advantages of high optical contrast and high ultrasonic resolution. Due to the distinct optical absorption properties of tissue compartments and main chromophores, photo-acoustics is able to non-invasively observe structural and functional variations within biological tissues including oxygenation and deoxygenation, blood vessels and spatial melanin distribution. The detection of acoustic waves produced by a pulsed laser source yields a high scaling range, from organ level photo-acoustic tomography to sub-cellular or even molecular imaging. This review discusses significant novel technical solutions utilising photo-acoustics and their applications in the fields of biomedicine and life sciences.
Collapse
|
25
|
Robin J, Ozbek A, Reiss M, Dean-Ben XL, Razansky D. Dual-Mode Volumetric Optoacoustic and Contrast Enhanced Ultrasound Imaging With Spherical Matrix Arrays. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:846-856. [PMID: 34735340 DOI: 10.1109/tmi.2021.3125398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spherical matrix arrays represent an advantageous tomographic detection geometry for non-invasive deep tissue mapping of vascular networks and oxygenation with volumetric optoacoustic tomography (VOT). Hybridization of VOT with ultrasound (US) imaging remains difficult with this configuration due to the relatively large inter-element pitch of spherical arrays. We suggest a new approach for combining VOT and US contrast-enhanced 3D imaging employing injection of clinically-approved microbubbles. Power Doppler (PD) and US localization imaging were enabled with a sparse US acquisition sequence and model-based inversion based on infimal convolution of total variation (ICTV) regularization. In vitro experiments in tissue-mimicking phantoms and in living mouse brain demonstrate the powerful capabilities of the new dual-mode imaging approach attaining 80 μm spatial resolution and a more than 10 dB signal to noise improvement with respect to a classical delay and sum beamformer. Microbubble localization and tracking allowed for flow velocity mapping up to 40 mm/s.
Collapse
|
26
|
Hänninen N, Pulkkinen A, Arridge S, Tarvainen T. Adaptive stochastic Gauss-Newton method with optical Monte Carlo for quantitative photoacoustic tomography. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:083013. [PMID: 35396833 PMCID: PMC8993421 DOI: 10.1117/1.jbo.27.8.083013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
SIGNIFICANCE The image reconstruction problem in quantitative photoacoustic tomography (QPAT) is an ill-posed inverse problem. Monte Carlo method for light transport can be utilized in solving this image reconstruction problem. AIM The aim was to develop an adaptive image reconstruction method where the number of photon packets in Monte Carlo simulation is varied to achieve a sufficient accuracy with reduced computational burden. APPROACH The image reconstruction problem was formulated as a minimization problem. An adaptive stochastic Gauss-Newton (A-SGN) method combined with Monte Carlo method for light transport was developed. In the algorithm, the number of photon packets used on Gauss-Newton (GN) iteration was varied utilizing a so-called norm test. RESULTS The approach was evaluated with numerical simulations. With the proposed approach, the number of photon packets needed for solving the inverse problem was significantly smaller than in a conventional approach where the number of photon packets was fixed for each GN iteration. CONCLUSIONS The A-SGN method with a norm test can be utilized in QPAT to provide accurate and computationally efficient solutions.
Collapse
Affiliation(s)
- Niko Hänninen
- University of Eastern Finland, Department of Applied Physics, Kuopio, Finland
| | - Aki Pulkkinen
- University of Eastern Finland, Department of Applied Physics, Kuopio, Finland
| | - Simon Arridge
- University College London, Department of Computer Science, London, United Kingdom
| | - Tanja Tarvainen
- University of Eastern Finland, Department of Applied Physics, Kuopio, Finland
- University College London, Department of Computer Science, London, United Kingdom
| |
Collapse
|
27
|
Abstract
Photoacoustic imaging is an emerging biomedical imaging technique that combines optical contrast and ultrasound resolution to create unprecedented light absorption contrast in deep tissue. Thanks to its fusional imaging advantages, photoacoustic imaging can provide multiple structural and functional insights into biological tissues such as blood vasculatures and tumors and monitor the kinetic movements of hemoglobin and lipids. To better visualize and analyze the regions of interest, segmentation and quantitative analyses were used to extract several biological factors, such as the intensity level changes, diameter, and tortuosity of the tissues. Over the past 10 years, classical segmentation methods and advances in deep learning approaches have been utilized in research investigations. In this review, we provide a comprehensive review of segmentation and quantitative methods that have been developed to process photoacoustic imaging in preclinical and clinical experiments. We focus on the parametric reliability of quantitative analysis for semantic and instance-level segmentation. We also introduce the similarities and alternatives of deep learning models in qualitative measurements using classical segmentation methods for photoacoustic imaging.
Collapse
|
28
|
Chang KW, Zhu Y, Wang X, Wong KY, Xu G. Label-free photoacoustic computed tomography of mouse cortical responses to retinal photostimulation using a pair-wise correlation map. BIOMEDICAL OPTICS EXPRESS 2022; 13:1017-1025. [PMID: 35284169 PMCID: PMC8884203 DOI: 10.1364/boe.446990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The lack of a non-invasive or minimally invasive imaging technique has long been a challenge to investigating brain activities in mice. Functional magnetic resonance imaging and the more recently developed diffuse optical imaging both suffer from limited spatial resolution. Photoacoustic (PA) imaging combines the sensitivity of optical excitation to hemodynamic changes and ultrasound detection's relatively high spatial resolution. In this study, we evaluated the feasibility of using a label-free, real-time PA computed tomography (PACT) system to measure visually evoked hemodynamic responses within the primary visual cortex (V1) in mice. Photostimulation of the retinas evoked significantly faster and stronger V1 responses in wild-type mice than in age-matched rod/cone-degenerate mice, consistent with known differences between rod/cone- vs. melanopsin-mediated photoreception. In conclusion, the PACT system in this study has sufficient sensitivity and spatial resolution to resolve visual cortical hemodynamics during retinal photostimulation, and PACT is a potential tool for investigating visually evoked brain activities in mouse models of retinal diseases.
Collapse
Affiliation(s)
- Kai-Wei Chang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Yunhao Zhu
- Department of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Kwoon Y. Wong
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Guan Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105, USA
| |
Collapse
|
29
|
Zhou Y, Ni J, Wen C, Lai P. Light on osteoarthritic joint: from bench to bed. Theranostics 2022; 12:542-557. [PMID: 34976200 PMCID: PMC8692899 DOI: 10.7150/thno.64340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA) is one of the rapidly growing disability-associated conditions with population aging worldwide. There is a pressing need for precise diagnosis and timely intervention for OA in the early stage. Current clinical imaging modalities, including pain radiography, magnetic resonance imaging, ultrasound, and optical coherent tomography, are limited to provide structural changes when the damage has been established or advanced. It prompts further endeavors in search of novel functional and molecular imaging, which potentially enables early diagnosis and intervention of OA. A hybrid imaging modality based on photothermal effects, photoacoustic imaging, has drawn wide attention in recent years and has seen a variety of biomedical applications, due to its great performance in yielding high-contrast and high-resolution images from structure to function, from tissue down to molecular levels, from animals to human subjects. Photoacoustic imaging has witnessed gratifying potentials and preliminary effects in OA diagnosis. Regarding the treatment of OA, photothermal-triggered therapy has exhibited its attractions for enhanced therapeutic outcomes. In this narrative review, we will discuss photoacoustic imaging for the diagnosis and monitoring of OA at different stages. Structural, functional, and molecular parameter changes associated with OA joints captured by photoacoustics will be summarized, forming the diagnosis perspective of the review. Photothermal therapy applications related to OA will also be discussed herein. Lastly, relevant clinical applications and its potential solutions to extend photoacoustic imaging to deeper OA situations have been proposed. Although some aspects may not be covered, this mini review provides a better understanding of the diagnosis and treatment of OA with exciting innovations based on tissue photothermal effects. It may also inspire more explorations in the field towards earlier and better theranostics of OA.
Collapse
Affiliation(s)
- Yingying Zhou
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Junguo Ni
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, HKSAR
| | - Puxiang Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
- Photonics Research Institute, The Hong Kong Polytechnic University, HKSAR
| |
Collapse
|
30
|
Matchynski JI, Manwar R, Kratkiewicz KJ, Madangopal R, Lennon VA, Makki KM, Reppen AL, Woznicki AR, Hope BT, Perrine SA, Conti AC, Avanaki K. Direct measurement of neuronal ensemble activity using photoacoustic imaging in the stimulated Fos-LacZ transgenic rat brain: A proof-of-principle study. PHOTOACOUSTICS 2021; 24:100297. [PMID: 34522608 PMCID: PMC8426561 DOI: 10.1016/j.pacs.2021.100297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/28/2021] [Accepted: 08/28/2021] [Indexed: 05/16/2023]
Abstract
Measuring neuroactivity underlying complex behaviors facilitates understanding the microcircuitry that supports these behaviors. We have developed a functional and molecular photoacoustic tomography (F/M-PAT) system which allows direct imaging of Fos-expressing neuronal ensembles in Fos-LacZ transgenic rats with a large field-of-view and high spatial resolution. F/M-PAT measures the beta-galactosidase catalyzed enzymatic product of exogenous chromophore X-gal within ensemble neurons. We used an ex vivo imaging method in the Wistar Fos-LacZ transgenic rat, to detect neuronal ensembles in medial prefrontal cortex (mPFC) following cocaine administration or a shock-tone paired stimulus. Robust and selective F/M-PAT signal was detected in mPFC neurons after both conditions (compare to naive controls) demonstrating successful and direct detection of Fos-expressing neuronal ensembles using this approach. The results of this study indicate that F/M-PAT can be used in conjunction with Fos-LacZ rats to monitor neuronal ensembles that underlie a range of behavioral processes, such as fear learning or addiction.
Collapse
Key Words
- ANSI, American national standards institute
- AP, anterior-posterior
- Brain
- CNR, contrast-to-noise ratio
- Cocaine
- DMSO, dimethyl sulfoxide
- DV, dorsal-ventral
- F/M-PAT, functional molecular photoacoustic tomography
- FOV, field-of-view
- Fear conditioning
- Fos
- GRIN, gradient-index
- IL, infralimbic cortex
- ML, medial-lateral
- Neuronal ensemble
- OCT, optical coherence tomography
- OPO, optical parametric oscillator
- PA, photoacoustic
- PBS, phosphate buffer saline
- PL, prelimbic cortex
- Photoacoustic imaging
- SNR, signal-to-noise ratio
- US, ultrasound
- X-gal
- X-gal, beta-D-galactosidase
- fMRI, functional magnetic resonance imaging
- mPFC, medial prefrontal cortex
Collapse
Affiliation(s)
- James I. Matchynski
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Rayyan Manwar
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, USA
| | - Karl J. Kratkiewicz
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Rajtarun Madangopal
- The National Institute on Drug Abuse (NIDA) Intramural Research Program, Baltimore, MD, USA
| | - Veronica A. Lennon
- The National Institute on Drug Abuse (NIDA) Intramural Research Program, Baltimore, MD, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kassem M. Makki
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| | - Abbey L. Reppen
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| | | | - Bruce T. Hope
- The National Institute on Drug Abuse (NIDA) Intramural Research Program, Baltimore, MD, USA
| | - Shane A. Perrine
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Alana C. Conti
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kamran Avanaki
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, USA
- Department of Dermatology, University of Illinois at Chicago, Chicago, USA
| |
Collapse
|
31
|
Abbasi H, Mostafavi SM, Kavehvash Z. Fast wavelet-based photoacoustic microscopy. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2021; 38:1673-1680. [PMID: 34807029 DOI: 10.1364/josaa.437862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
A novel photoacoustic microscopy (PAM) structure, based on Haar wavelet patterns, is proposed in this paper. Its main goal is to mitigate the PAM imaging resolution and thus the time of its sampling process without compromising the image quality. Owing to the intrinsic nature of wavelet transform, this structure collects spatial and spectral components simultaneously, and this feature speeds up the sampling process by 33%. The selection of these patterns helps in better control of required conditions, such as multi-resolution imaging, to guarantee adequate image quality in comparison to previous microscopic structures. Simulation results prove the superior quality of the proposed approach (about 47% better peak signal-to-noise ratio) compared to the latest structures in this field, achieving a high-resolution and high-quality image.
Collapse
|
32
|
Markicevic M, Savvateev I, Grimm C, Zerbi V. Emerging imaging methods to study whole-brain function in rodent models. Transl Psychiatry 2021; 11:457. [PMID: 34482367 PMCID: PMC8418612 DOI: 10.1038/s41398-021-01575-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
In the past decade, the idea that single populations of neurons support cognition and behavior has gradually given way to the realization that connectivity matters and that complex behavior results from interactions between remote yet anatomically connected areas that form specialized networks. In parallel, innovation in brain imaging techniques has led to the availability of a broad set of imaging tools to characterize the functional organization of complex networks. However, each of these tools poses significant technical challenges and faces limitations, which require careful consideration of their underlying anatomical, physiological, and physical specificity. In this review, we focus on emerging methods for measuring spontaneous or evoked activity in the brain. We discuss methods that can measure large-scale brain activity (directly or indirectly) with a relatively high temporal resolution, from milliseconds to seconds. We further focus on methods designed for studying the mammalian brain in preclinical models, specifically in mice and rats. This field has seen a great deal of innovation in recent years, facilitated by concomitant innovation in gene-editing techniques and the possibility of more invasive recordings. This review aims to give an overview of currently available preclinical imaging methods and an outlook on future developments. This information is suitable for educational purposes and for assisting scientists in choosing the appropriate method for their own research question.
Collapse
Affiliation(s)
- Marija Markicevic
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Iurii Savvateev
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
- Decision Neuroscience Lab, HEST, ETH Zürich, Zürich, Switzerland
| | - Christina Grimm
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Valerio Zerbi
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
33
|
Yang X, Chen YH, Xia F, Sawan M. Photoacoustic imaging for monitoring of stroke diseases: A review. PHOTOACOUSTICS 2021; 23:100287. [PMID: 34401324 PMCID: PMC8353507 DOI: 10.1016/j.pacs.2021.100287] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 05/14/2023]
Abstract
Stroke is the leading cause of death and disability after ischemic heart disease. However, there is lacking a non-invasive long-time monitoring technique for stroke diagnosis and therapy. The photoacoustic imaging approach reconstructs images of an object based on the energy excitation by optical absorption and its conversion to acoustic waves, due to corresponding thermoelastic expansion, which has optical resolution and acoustic propagation. This emerging functional imaging method is a non-invasive technique. Due to its precision, this method is particularly attractive for stroke monitoring purpose. In this paper, we review the achievements of this technology and its applications on stroke, as well as the development status in both animal and human applications. Also, various photoacoustic systems and multi-modality photoacoustic imaging are introduced as for potential clinical applications. Finally, the challenges of photoacoustic imaging for monitoring stroke are discussed.
Collapse
Affiliation(s)
- Xi Yang
- Zhejiang University, Hangzhou, 310024, Zhejiang, China
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Yun-Hsuan Chen
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Fen Xia
- Zhejiang University, Hangzhou, 310024, Zhejiang, China
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Mohamad Sawan
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
- Corresponding author at: CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|
34
|
Du J, Yang S, Qiao Y, Lu H, Dong H. Recent progress in near-infrared photoacoustic imaging. Biosens Bioelectron 2021; 191:113478. [PMID: 34246125 DOI: 10.1016/j.bios.2021.113478] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/01/2023]
Abstract
The emergence of the photoacoustic imaging (PAI) expands the application of biomolecules bioimaging in cells, various tissues, and living body to monitor multiple physiological processes in complex internal environments. The PAI possesses intriguing properties such as non-invasive, highly selective excitation, and weak signal attenuation. Especially, the near-infrared (NIR) PAI displays low optical absorption and scattering, good temporal or spatial resolution and deep penetration, holds great potential in biomedical applications. We briefly compare different imaging modalities to provide a comprehensive understanding of their characteristics and related applications, highlighting the feature of the PAI. The principle of PAI is then delineated and the emerging NIR-PAI is discussed. We then focus on elaboration of the recent achievement of typical NIR-PAI contrast and their biomedical applications, especially the strategies used to improve contrast rational design and PAI performance are summarized. The PAI-related multimodal imaging approaches for improving imaging accuracy are also covered in the review. Finally, the challenges and prospective are pointed out for attracting more researchers to accelerate the development of PAI.
Collapse
Affiliation(s)
- Jinya Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Shuangshuang Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Yuchun Qiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Huiting Lu
- Department of Chemistry, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, PR China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China; Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, PR China.
| |
Collapse
|
35
|
Bodea SV, Westmeyer GG. Photoacoustic Neuroimaging - Perspectives on a Maturing Imaging Technique and its Applications in Neuroscience. Front Neurosci 2021; 15:655247. [PMID: 34220420 PMCID: PMC8253050 DOI: 10.3389/fnins.2021.655247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
A prominent goal of neuroscience is to improve our understanding of how brain structure and activity interact to produce perception, emotion, behavior, and cognition. The brain's network activity is inherently organized in distinct spatiotemporal patterns that span scales from nanometer-sized synapses to meter-long nerve fibers and millisecond intervals between electrical signals to decades of memory storage. There is currently no single imaging method that alone can provide all the relevant information, but intelligent combinations of complementary techniques can be effective. Here, we thus present the latest advances in biomedical and biological engineering on photoacoustic neuroimaging in the context of complementary imaging techniques. A particular focus is placed on recent advances in whole-brain photoacoustic imaging in rodent models and its influential role in bridging the gap between fluorescence microscopy and more non-invasive techniques such as magnetic resonance imaging (MRI). We consider current strategies to address persistent challenges, particularly in developing molecular contrast agents, and conclude with an overview of potential future directions for photoacoustic neuroimaging to provide deeper insights into healthy and pathological brain processes.
Collapse
Affiliation(s)
- Silviu-Vasile Bodea
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| | - Gil Gregor Westmeyer
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
36
|
Wang B, Ye T, Wang G, Guo L, Xiao J. Approximate back-projection method for improving lateral resolution in circular-scanning-based photoacoustic tomography. Med Phys 2021; 48:3011-3021. [PMID: 33837541 DOI: 10.1002/mp.14880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 04/03/2021] [Accepted: 04/03/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE In circular-scanning-based photoacoustic tomography (PAT), the effect of finite transducer aperture has not been effectively resolved. The goal of this paper is to propose a practical reconstruction method that accounts for the finite transducer aperture to improve the lateral resolution. METHODS We for the first time propose to calculate the spatial-temporal response (STR) of the employed finite-sized transducer in a forward model, and then compensate the time delay and the directional sensitivity of the transducer in the framework of the back-projection method. Both simulation and phantom experiments were carried out to evaluate the lateral resolution improvement with the proposed method. The performance of this new method for imaging complicated targets was also assessed by calculating the mean image gradient. RESULTS Simulation results showed that with this new method the lateral resolution for off-center targets can be as good as that for the center targets. Phantom experimental results showed that this new method can improve the lateral resolution more than two times for a point target about 5 mm far from the rotation center. Phantom experimental results also showed that many blurred fine structures of a piece of leaf veins at the off-center regions were well restored with the new method, and the mean image gradient improved about 1.3 times. CONCLUSION The proposed new method can effectively account for the effect of finite transducer aperture for circular-scanning-based PAT in homogenous acoustic media. This new method also features its robustness and computational efficiency, so that it is a worthy replacement to the conventional back-projection algorithm in circular-scanning-based PAT. This new method can be of great importance to the design of circular-scanning or spherical-scanning-based PAT systems.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, 410083, China
| | - Tong Ye
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, 410083, China
| | - Guan Wang
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, 410083, China
| | - Lili Guo
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Jiaying Xiao
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
37
|
Qiu T, Lan Y, Gao W, Zhou M, Liu S, Huang W, Zeng S, Pathak JL, Yang B, Zhang J. Photoacoustic imaging as a highly efficient and precise imaging strategy for the evaluation of brain diseases. Quant Imaging Med Surg 2021; 11:2169-2186. [PMID: 33936997 DOI: 10.21037/qims-20-845] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photoacoustic imaging (PAI) is an emerging imaging strategy with a unique combination of rich optical contrasts, high ultrasound spatial resolution, and deep penetration depth without ionizing radiation. Taking advantage of the features mentioned above, PAI has been widely applied to preclinical studies in diverse fields, such as vascular biology, cardiology, neurology, ophthalmology, dermatology, gastroenterology, and oncology. Among various biomedical applications, photoacoustic brain imaging has great importance due to the brain's complex anatomy and the variability of brain disease. In this review, we aimed to introduce a novel and effective imaging modality for diagnosing brain diseases. Firstly, a brief overview of two major types of PAI system was provided. Then, PAI's major preclinical applications in brain diseases were introduced, including early diagnosis of brain tumors, subtle changes in the chemotherapy response, epileptic activity and brain injury, foreign body, and brain plaque. Finally, a perspective of the remaining challenges of PAI was given for future advancements.
Collapse
Affiliation(s)
- Ting Qiu
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yintao Lan
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Weijian Gao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Mengyu Zhou
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shiqi Liu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Wenyan Huang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Sujuan Zeng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Bin Yang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| |
Collapse
|
38
|
Hemodynamic response to sensory stimulation in mice: Comparison between functional ultrasound and optoacoustic imaging. Neuroimage 2021; 237:118111. [PMID: 33940140 DOI: 10.1016/j.neuroimage.2021.118111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/18/2021] [Accepted: 04/19/2021] [Indexed: 11/23/2022] Open
Abstract
Intense efforts are underway to develop functional imaging modalities for capturing brain activity at the whole organ scale with high spatial and temporal resolution. Functional optoacoustic (fOA) imaging is emerging as a new tool to monitor multiple hemodynamic parameters across the mouse brain, but its sound validation against other neuroimaging modalities is often lacking. Here we investigate mouse brain responses to peripheral sensory stimulation using both fOA and functional ultrasound (fUS) imaging. The two modalities operate under similar spatio-temporal resolution regime, with a potential to provide synergistic and complementary hemodynamic readouts. Specific contralateral activation was observed with sub-millimeter spatial resolution with both methods. Sensitivity to hemodynamic activity was found to be on comparable levels, with the strongest responses obtained in the oxygenated hemoglobin channel of fOA. While the techniques attained highly correlated hemodynamic responses, the differential fOA readings of oxygenated and deoxygenated haemoglobin provided complementary information to the blood flow contrast of fUS. The multi-modal approach may thus emerge as a powerful tool providing new insights into brain function, complementing our current knowledge generated with well-established neuroimaging methods.
Collapse
|
39
|
Deng H, Qiao H, Dai Q, Ma C. Deep learning in photoacoustic imaging: a review. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200374VRR. [PMID: 33837678 PMCID: PMC8033250 DOI: 10.1117/1.jbo.26.4.040901] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/18/2021] [Indexed: 05/18/2023]
Abstract
SIGNIFICANCE Photoacoustic (PA) imaging can provide structural, functional, and molecular information for preclinical and clinical studies. For PA imaging (PAI), non-ideal signal detection deteriorates image quality, and quantitative PAI (QPAI) remains challenging due to the unknown light fluence spectra in deep tissue. In recent years, deep learning (DL) has shown outstanding performance when implemented in PAI, with applications in image reconstruction, quantification, and understanding. AIM We provide (i) a comprehensive overview of the DL techniques that have been applied in PAI, (ii) references for designing DL models for various PAI tasks, and (iii) a summary of the future challenges and opportunities. APPROACH Papers published before November 2020 in the area of applying DL in PAI were reviewed. We categorized them into three types: image understanding, reconstruction of the initial pressure distribution, and QPAI. RESULTS When applied in PAI, DL can effectively process images, improve reconstruction quality, fuse information, and assist quantitative analysis. CONCLUSION DL has become a powerful tool in PAI. With the development of DL theory and technology, it will continue to boost the performance and facilitate the clinical translation of PAI.
Collapse
Affiliation(s)
- Handi Deng
- Tsinghua University, Department of Electronic Engineering, Haidian, Beijing, China
| | - Hui Qiao
- Tsinghua University, Department of Automation, Haidian, Beijing, China
- Tsinghua University, Institute for Brain and Cognitive Science, Beijing, China
- Tsinghua University, Beijing Laboratory of Brain and Cognitive Intelligence, Beijing, China
- Tsinghua University, Beijing Key Laboratory of Multi-Dimension and Multi-Scale Computational Photography, Beijing, China
| | - Qionghai Dai
- Tsinghua University, Department of Automation, Haidian, Beijing, China
- Tsinghua University, Institute for Brain and Cognitive Science, Beijing, China
- Tsinghua University, Beijing Laboratory of Brain and Cognitive Intelligence, Beijing, China
- Tsinghua University, Beijing Key Laboratory of Multi-Dimension and Multi-Scale Computational Photography, Beijing, China
| | - Cheng Ma
- Tsinghua University, Department of Electronic Engineering, Haidian, Beijing, China
- Beijing Innovation Center for Future Chip, Beijing, China
| |
Collapse
|
40
|
Mai TT, Yoo SW, Park S, Kim JY, Choi KH, Kim C, Kwon SY, Min JJ, Lee C. In Vivo Quantitative Vasculature Segmentation and Assessment for Photodynamic Therapy Process Monitoring Using Photoacoustic Microscopy. SENSORS 2021; 21:s21051776. [PMID: 33806466 PMCID: PMC7961824 DOI: 10.3390/s21051776] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022]
Abstract
Vascular damage is one of the therapeutic mechanisms of photodynamic therapy (PDT). In particular, short-term PDT treatments can effectively destroy malignant lesions while minimizing damage to nonmalignant tissue. In this study, we investigate the feasibility of label-free quantitative photoacoustic microscopy (PAM) for monitoring the vasculature changes under the effect of PDT in mouse ear melanoma tumors. In particular, quantitative vasculature evaluation was conducted based on Hessian filter segmentation. Three-dimensional morphological PAM and depth-resolved images before and after PDT treatment were acquired. In addition, five quantitative vasculature parameters, including the PA signal, vessel diameter, vessel density, perfused vessel density, and vessel complexity, were analyzed to evaluate the influence of PDT on four different areas: Two melanoma tumors, and control and normal vessel areas. The quantitative and qualitative results successfully demonstrated the potential of the proposed PAM-based quantitative approach to evaluate the effectiveness of the PDT method.
Collapse
Affiliation(s)
- Thi Thao Mai
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61186, Korea;
| | - Su Woong Yoo
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo 58128, Korea; (S.W.Y.); (S.Y.K.); (J.-J.M.)
| | - Suhyun Park
- Interdisciplinary Program of Molecular Medicine, Chonnam National University, Gwangju 61186, Korea;
| | - Jin Young Kim
- Department of Creative IT Engineering and Electrical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk-do 37673, Korea; (J.Y.K.); (C.K.)
| | - Kang-Ho Choi
- Department of Neurology, Chonnam National University Hospital, 8 Hak-dong, Dong-gu, Gwangju 501-757, Korea;
| | - Chulhong Kim
- Department of Creative IT Engineering and Electrical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk-do 37673, Korea; (J.Y.K.); (C.K.)
| | - Seong Young Kwon
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo 58128, Korea; (S.W.Y.); (S.Y.K.); (J.-J.M.)
- Interdisciplinary Program of Molecular Medicine, Chonnam National University, Gwangju 61186, Korea;
- Department of Nuclear Medicine, Chonnam National University Medical School, Jeollanamdo 58128, Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo 58128, Korea; (S.W.Y.); (S.Y.K.); (J.-J.M.)
- Interdisciplinary Program of Molecular Medicine, Chonnam National University, Gwangju 61186, Korea;
- Department of Nuclear Medicine, Chonnam National University Medical School, Jeollanamdo 58128, Korea
| | - Changho Lee
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61186, Korea;
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo 58128, Korea; (S.W.Y.); (S.Y.K.); (J.-J.M.)
- Interdisciplinary Program of Molecular Medicine, Chonnam National University, Gwangju 61186, Korea;
- Department of Nuclear Medicine, Chonnam National University Medical School, Jeollanamdo 58128, Korea
- Correspondence: ; Tel.: +82-61-379-2885
| |
Collapse
|
41
|
Kratkiewicz K, Manwar R, Zhou Y, Mozaffarzadeh M, Avanaki K. Technical considerations in the Verasonics research ultrasound platform for developing a photoacoustic imaging system. BIOMEDICAL OPTICS EXPRESS 2021; 12:1050-1084. [PMID: 33680559 PMCID: PMC7901326 DOI: 10.1364/boe.415481] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 05/20/2023]
Abstract
Photoacoustic imaging (PAI) is an emerging functional and molecular imaging technology that has attracted much attention in the past decade. Recently, many researchers have used the vantage system from Verasonics for simultaneous ultrasound (US) and photoacoustic (PA) imaging. This was the motivation to write on the details of US/PA imaging system implementation and characterization using Verasonics platform. We have discussed the experimental considerations for linear array based PAI due to its popularity, simple setup, and high potential for clinical translatability. Specifically, we describe the strategies of US/PA imaging system setup, signal generation, amplification, data processing and study the system performance.
Collapse
Affiliation(s)
- Karl Kratkiewicz
- Wayne State University, Department of
Biomedical Engineering, Detroit, MI 48201, USA
- These authors have contributed
equally
| | - Rayyan Manwar
- Richard and Loan Hill Department of
Bioengineering, University of Illinois at Chicago, IL 60607, USA
- These authors have contributed
equally
| | - Yang Zhou
- Wayne State University, Department of
Biomedical Engineering, Detroit, MI 48201, USA
| | - Moein Mozaffarzadeh
- Laboratory of Medical Imaging, Department
of Imaging Physics, Delft University of Technology, The Netherlands
| | - Kamran Avanaki
- Richard and Loan Hill Department of
Bioengineering, University of Illinois at Chicago, IL 60607, USA
| |
Collapse
|
42
|
Lin L, Wang LV. Photoacoustic Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 3233:147-175. [PMID: 34053027 DOI: 10.1007/978-981-15-7627-0_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Photoacoustic imaging (PAI) is an emerging imaging modality that shows great potential for preclinical research and clinical practice. As a hybrid technique, PAI uniquely combines the advantages of optical excitation and of acoustic detection. Optical excitation provides a rich contrast mechanism from either endogenous or exogenous chromophores, allowing PAI to perform biochemical, functional, and molecular imaging. Acoustic detection benefits from the low scattering of ultrasound in biological tissue, enabling PAI to generate high-resolution images in both the optical ballistic and diffusive regimes. Accordingly, this hybrid imaging modality features high sensitivity to optical absorption and wide scalability of spatial resolution with the desired imaging depth. Over the past two decades, the photoacoustic technique has led to a variety of exciting discoveries and applications from laboratory research to clinical patient care. In biological research, PAI has become an irreplaceable tool, providing functional optical contrast with high spatiotemporal resolution. Translational PAI also attracted growing interest in clinical applications including tumor margin examination, internal organ imaging, breast cancer screening, and sentinel lymph node mapping, among others.
Collapse
Affiliation(s)
- Li Lin
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA. .,Caltech Optical Imaging Laboratory, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
43
|
Photoacoustic Molecular Imaging: Principles and Practice. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
44
|
Yang JM, Ghim CM. Photoacoustic Tomography Opening New Paradigms in Biomedical Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1310:239-341. [PMID: 33834440 DOI: 10.1007/978-981-33-6064-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
After the emergence of the ultrasound, X-ray CT, PET, and MRI, photoacoustic tomography (PAT) is now in the phase of its exponential growth, with its expected full maturation being another form of mainstream clinical imaging modality. By combining the high contrast benefit of optical imaging and the high-resolution deep imaging capability of ultrasound, PAT can provide unprecedented anatomical image contrasts at clinically relevant depths as well as enable the use of a variety of functional and molecular imaging information, which is not possible with conventional imaging modalities. With these strengths, PAT has achieved numerous breakthroughs in various biomedical applications and also provided new technical platforms that may be able to resolve unmet issues in clinics. In this chapter, we provide an overview of the development of PAT technology for several major biomedical applications and provide an approximate projection of the future of PAT.
Collapse
Affiliation(s)
- Joon-Mo Yang
- Center for Photoacoustic Medical Instruments, Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| | - Cheol-Min Ghim
- Department of Physics, School of Natural Science, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
45
|
Li M, Nyayapathi N, Kilian HI, Xia J, Lovell JF, Yao J. Sound Out the Deep Colors: Photoacoustic Molecular Imaging at New Depths. Mol Imaging 2020; 19:1536012120981518. [PMID: 33336621 PMCID: PMC7750763 DOI: 10.1177/1536012120981518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Photoacoustic tomography (PAT) has become increasingly popular for molecular imaging due to its unique optical absorption contrast, high spatial resolution, deep imaging depth, and high imaging speed. Yet, the strong optical attenuation of biological tissues has traditionally prevented PAT from penetrating more than a few centimeters and limited its application for studying deeply seated targets. A variety of PAT technologies have been developed to extend the imaging depth, including employing deep-penetrating microwaves and X-ray photons as excitation sources, delivering the light to the inside of the organ, reshaping the light wavefront to better focus into scattering medium, as well as improving the sensitivity of ultrasonic transducers. At the same time, novel optical fluence mapping algorithms and image reconstruction methods have been developed to improve the quantitative accuracy of PAT, which is crucial to recover weak molecular signals at larger depths. The development of highly-absorbing near-infrared PA molecular probes has also flourished to provide high sensitivity and specificity in studying cellular processes. This review aims to introduce the recent developments in deep PA molecular imaging, including novel imaging systems, image processing methods and molecular probes, as well as their representative biomedical applications. Existing challenges and future directions are also discussed.
Collapse
Affiliation(s)
- Mucong Li
- Department of Biomedical Engineering, 3065Duke University, Durham, NC, USA
| | - Nikhila Nyayapathi
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Hailey I Kilian
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Jun Xia
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Junjie Yao
- Department of Biomedical Engineering, 3065Duke University, Durham, NC, USA
| |
Collapse
|
46
|
Hessler M, Jalilian E, Xu Q, Reddy S, Horton L, Elkin K, Manwar R, Tsoukas M, Mehregan D, Avanaki K. Melanoma Biomarkers and Their Potential Application for In Vivo Diagnostic Imaging Modalities. Int J Mol Sci 2020; 21:9583. [PMID: 33339193 PMCID: PMC7765677 DOI: 10.3390/ijms21249583] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 12/16/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer and remains a diagnostic challenge in the dermatology clinic. Several non-invasive imaging techniques have been developed to identify melanoma. The signal source in each of these modalities is based on the alteration of physical characteristics of the tissue from healthy/benign to melanoma. However, as these characteristics are not always sufficiently specific, the current imaging techniques are not adequate for use in the clinical setting. A more robust way of melanoma diagnosis is to "stain" or selectively target the suspect tissue with a melanoma biomarker attached to a contrast enhancer of one imaging modality. Here, we categorize and review known melanoma diagnostic biomarkers with the goal of guiding skin imaging experts to design an appropriate diagnostic tool for differentiating between melanoma and benign lesions with a high specificity and sensitivity.
Collapse
Affiliation(s)
- Monica Hessler
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA; (M.H.); (Q.X.); (S.R.); (L.H.); (K.E.); (R.M.)
- Department of Dermatology, School of Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Qiuyun Xu
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA; (M.H.); (Q.X.); (S.R.); (L.H.); (K.E.); (R.M.)
| | - Shriya Reddy
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA; (M.H.); (Q.X.); (S.R.); (L.H.); (K.E.); (R.M.)
| | - Luke Horton
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA; (M.H.); (Q.X.); (S.R.); (L.H.); (K.E.); (R.M.)
- Department of Dermatology, School of Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Kenneth Elkin
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA; (M.H.); (Q.X.); (S.R.); (L.H.); (K.E.); (R.M.)
- Department of Dermatology, School of Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Rayyan Manwar
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA; (M.H.); (Q.X.); (S.R.); (L.H.); (K.E.); (R.M.)
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Maria Tsoukas
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Darius Mehregan
- Department of Dermatology, School of Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Kamran Avanaki
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL 60607, USA;
| |
Collapse
|
47
|
Ravina K, Lin L, Liu CY, Thomas D, Hasson D, Wang LV, Russin JJ. Prospects of Photo- and Thermoacoustic Imaging in Neurosurgery. Neurosurgery 2020; 87:11-24. [PMID: 31620798 DOI: 10.1093/neuros/nyz420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/25/2019] [Indexed: 12/25/2022] Open
Abstract
The evolution of neurosurgery has been, and continues to be, closely associated with innovations in technology. Modern neurosurgery is wed to imaging technology and the future promises even more dependence on anatomic and, perhaps more importantly, functional imaging. The photoacoustic phenomenon was described nearly 140 yr ago; however, biomedical applications for this technology have only recently received significant attention. Light-based photoacoustic and microwave-based thermoacoustic technologies represent novel biomedical imaging modalities with broad application potential within and beyond neurosurgery. These technologies offer excellent imaging resolution while generally considered safer, more portable, versatile, and convenient than current imaging technologies. In this review, we summarize the current state of knowledge regarding photoacoustic and thermoacoustic imaging and their potential impact on the field of neurosurgery.
Collapse
Affiliation(s)
- Kristine Ravina
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Li Lin
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Charles Y Liu
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California.,Tianqiao and Chrissy Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, California
| | - Debi Thomas
- Department of Surgery, University of California Davis, Davis, California
| | - Denise Hasson
- Division of Critical Care Medicine, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California
| | - Jonathan J Russin
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
48
|
Hosseinaee Z, Le M, Bell K, Reza PH. Towards non-contact photoacoustic imaging [review]. PHOTOACOUSTICS 2020; 20:100207. [PMID: 33024694 PMCID: PMC7530308 DOI: 10.1016/j.pacs.2020.100207] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/29/2020] [Accepted: 07/10/2020] [Indexed: 05/06/2023]
Abstract
Photoacoustic imaging (PAI) takes advantage of both optical and ultrasound imaging properties to visualize optical absorption with high resolution and contrast. Photoacoustic microscopy (PAM) is usually categorized with all-optical microscopy techniques such as optical coherence tomography or confocal microscopes. Despite offering high sensitivity, novel imaging contrast, and high resolution, PAM is not generally an all-optical imaging method unlike the other microscopy techniques. One of the significant limitations of photoacoustic microscopes arises from their need to be in physical contact with the sample through a coupling media. This physical contact, coupling, or immersion of the sample is undesirable or impractical for many clinical and pre-clinical applications. This also limits the flexibility of photoacoustic techniques to be integrated with other all-optical imaging microscopes for providing complementary imaging contrast. To overcome these limitations, several non-contact photoacoustic signal detection approaches have been proposed. This paper presents a brief overview of current non-contact photoacoustic detection techniques with an emphasis on all-optical detection methods and their associated physical mechanisms.
Collapse
Affiliation(s)
- Zohreh Hosseinaee
- PhotoMedicine Labs, Department of System Design Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Martin Le
- PhotoMedicine Labs, Department of System Design Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Kevan Bell
- PhotoMedicine Labs, Department of System Design Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
- IllumiSonics Inc., Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Parsin Haji Reza
- PhotoMedicine Labs, Department of System Design Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
49
|
Ibarra AMC, Biasotto-Gonzalez DA, Kohatsu EYI, de Oliveira SSI, Bussadori SK, Tanganeli JPC. Photobiomodulation on trigeminal neuralgia: systematic review. Lasers Med Sci 2020; 36:715-722. [PMID: 33219445 DOI: 10.1007/s10103-020-03198-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/13/2020] [Indexed: 01/22/2023]
Abstract
Trigeminal neuralgia is a recurrent episode of facial pain, that may be associated with other conditions such as multiple sclerosis, neoplasms, and nerve compromises or may occur due to an unknown cause. The available treatments are pharmacotherapy or surgery; however, both are susceptible to develop side effects. Photobiomodulation could be a promising alternative therapy for trigeminal neuralgia. A systematic review of literature was carried out using the PRISMA protocol, in the PubMed/MEDLINE, Embase, and Web of Science databases. Risk of bias by ROB 2.0 protocol was performed in included studies. Initially, 20 identified articles were collected varying between the years of 1983-2018, from which 6 were included. A total of 193 patients were evaluated; photobiomodulation was compared to conventional therapies, TENS, and therapy combinations with pharmacotherapy. The overall risk of bias was low, with some concerns in the randomization and double-blinding process; moreover, there are few reports in the literature. Photobiomodulation appears to be as effective as conventional therapies, being a coadjutant therapeutic opportunity for the treatment of trigeminal neuralgia.
Collapse
Affiliation(s)
- Ana Melissa Ccopa Ibarra
- Biophotonics Applied to Health Sciences, Nove de Julho University, UNINOVE, Avenida Rua Vergueiro, 235/249-Liberdade, São Paulo, SP, 01504-001, Brazil.
| | - Daniela Aparecida Biasotto-Gonzalez
- Biophotonics Applied to Health Sciences, Nove de Julho University, UNINOVE, Avenida Rua Vergueiro, 235/249-Liberdade, São Paulo, SP, 01504-001, Brazil
| | - Edna Yoshiko Ide Kohatsu
- TMD and Orofacial Pain Clinical Department, Nove de Julho University - UNINOVE, São Paulo, SP, Brazil
| | | | - Sandra Kalil Bussadori
- Biophotonics Applied to Health Sciences, Nove de Julho University, UNINOVE, Avenida Rua Vergueiro, 235/249-Liberdade, São Paulo, SP, 01504-001, Brazil
| | - João Paulo Colesanti Tanganeli
- Biophotonics Applied to Health Sciences, Nove de Julho University, UNINOVE, Avenida Rua Vergueiro, 235/249-Liberdade, São Paulo, SP, 01504-001, Brazil
| |
Collapse
|
50
|
Mohammadi L, Behnam H, Tavakkoli J, Avanaki K. Skull acoustic aberration correction in photoacoustic microscopy using a vector space similarity model: a proof-of-concept simulation study. BIOMEDICAL OPTICS EXPRESS 2020; 11:5542-5556. [PMID: 33149969 PMCID: PMC7587255 DOI: 10.1364/boe.402027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 05/18/2023]
Abstract
Skull bone represents a highly acoustical impedance mismatch and a dispersive barrier for the propagation of acoustic waves. Skull distorts the amplitude and phase information of the received waves at different frequencies in a transcranial brain imaging. We study a novel algorithm based on vector space similarity model for the compensation of the skull-induced distortions in transcranial photoacoustic microscopy. The results of the algorithm tested on a simplified numerical skull phantom, demonstrate a fully recovered vasculature with the recovery rate of 91.9%.
Collapse
Affiliation(s)
- Leila Mohammadi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Behnam
- Department of Biomedical Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Jahan Tavakkoli
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Center for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Kamran Avanaki
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|