1
|
Witte AV, Sacher J. Unraveling neural underpinnings of eating disorders in the female brain: insights from high-field magnetic resonance imaging. Am J Clin Nutr 2025; 121:943-944. [PMID: 40118694 DOI: 10.1016/j.ajcnut.2025.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/23/2025] Open
Affiliation(s)
- A Veronica Witte
- Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Julia Sacher
- Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Center for Integrative Women's Health and Gender Medicine, Medical Faculty and University of Leipzig Medical Center, Leipzig, Germany; Max Planck School of Cognition, Leipzig, Germany; Department of Endocrinology, Nephrology, Rheumatology, Division of Endocrinology, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
2
|
Hu X, Zhang L, Wang Y, Gao Y, Zhou Z, Tang M, Li H, Kuang W, Gong Q, Huang X. Common and sex-specific differences in hypothalamic subunit volumes and their links with depressive symptoms in treatment-naïve patients with major depressive disorder. Brain Struct Funct 2025; 230:43. [PMID: 40064649 DOI: 10.1007/s00429-025-02904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 02/20/2025] [Indexed: 03/17/2025]
Abstract
The hypothalamus, which consists of histologically and functionally distinct subunits, primarily modulates vegetative symptoms in major depressive disorder (MDD). Sex differences in MDD have been well-documented in terms of illness incidence rates and symptom profiles. However, few studies have explored subunit-level and sex-specific anatomic differences in the hypothalamus in MDD compared to healthy controls (HCs). High-resolution 3D T1-weighted images were obtained from 133 treatment-naïve patients with MDD and 130 age-, sex-, education years-, and handedness-matched HCs. MRI data were preprocessed and segmented into ten bilateral hypothalamic subunits with FreeSurfer software. We tested for both common and sex-specific patterns of hypothalamic anatomic differences in MDD. Regardless of sex, patients with MDD showed significantly smaller volumes in the left anterior-inferior subunit (a-iHyp) and larger volumes in the right posterior subunit (posHyp). The volumes of the left a-iHyp were negatively correlated with sleep disturbance scores in the MDD group. A significant sex-by-diagnosis interaction was observed in the right whole hypothalamus, and subsequent post-hoc analyses revealed that males with MDD showed significantly larger volumes, while females with MDD showed significantly smaller volumes relative to their sex-matched HCs. Common differences in MDD were found in the left anterior-inferior and right posterior hypothalamus that are involved in regulating circadian rhythms and reward, while sex-specific differences in MDD were observed in the right whole hypothalamus. These findings enhance our understanding of distinct hypothalamic subunit related to MDD and shed light on the neurobiology underlying sex-related variations in MDD.
Collapse
Affiliation(s)
- Xinyue Hu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lianqing Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yidan Wang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yingxue Gao
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zilin Zhou
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Mengyue Tang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hailong Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Weihong Kuang
- Department of Psychiatry and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
- Xiamen Key Lab of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| | - Xiaoqi Huang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
- Xiamen Key Lab of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| |
Collapse
|
3
|
Shin D, Han KM, Lee SU, Kim BJ, Pyun SB, Tae WS, Ham BJ. Investigating the changes in volumes of the limbic system and hypothalamic-subnuclei in patients with depression. Psychiatry Res Neuroimaging 2025; 347:111942. [PMID: 39832418 DOI: 10.1016/j.pscychresns.2024.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/04/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Depression is consistently linked to changes in the hypothalamus, HPA axis, and limbic system, though the specific substructures involved remain unclear. This study aims to explore the relationship between depression and the volumes of specific nuclei within these brain regions. Understanding these connections could provide deeper insights into the biological mechanisms underlying depression. METHODS Seventy-three healthy individuals and 39 patients with depression were assessed using the Beck Depression Inventory or Hamilton Depression Rating Scale. All participants underwent 3.0T MRI, and the volumes of subnuclei in the hypothalamus and limbic system were measured. RESULTS The results revealed increased volumes in both the inferior tubular areas of the hypothalamus and the left hypothalamus in the patient group with depression. Moreover, the left infTub volume initially increased during the first three years of depression, followed by a decrease, suggesting distinct structural changes between early and chronic stages of the illness. CONCLUSIONS Alterations in the left inferior tubular area volume suggest a connection between the hypothalamus and the chronicity of depressive symptoms. Further exploration of specific nuclei in the hypothalamus promises deeper insights into depression's biological mechanisms.
Collapse
Affiliation(s)
- Daun Shin
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea; Brain Convergence Research Center, Korea University, Seoul, South Korea; Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea
| | - Sun-Uk Lee
- Department of Neurology, Korea University Medical Center, Seoul, South Korea
| | - Byung-Jo Kim
- Department of Neurology, Korea University Medical Center, Seoul, South Korea
| | - Sung-Bom Pyun
- Brain Convergence Research Center, Korea University, Seoul, South Korea; Department of Physical Medicine and Rehabilitation, Korea University College of Medicine, Seoul, South Korea
| | - Woo Suk Tae
- Brain Convergence Research Center, Korea University, Seoul, South Korea.
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea; Brain Convergence Research Center, Korea University, Seoul, South Korea; Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea.
| |
Collapse
|
4
|
Xu P, Estrada S, Etteldorf R, Liu D, Shahid M, Zeng W, Früh D, Reuter M, Breteler MMB, Aziz NA. Hypothalamic volume is associated with age, sex and cognitive function across lifespan: a comparative analysis of two large population-based cohort studies. EBioMedicine 2025; 111:105513. [PMID: 39708426 PMCID: PMC11732039 DOI: 10.1016/j.ebiom.2024.105513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Emerging findings indicate that the hypothalamus, the body's principal homeostatic centre, plays a crucial role in modulating cognition, but comprehensive population-based studies are lacking. METHODS We used cross-sectional data from the Rhineland Study (N = 5812, 55.2 ± 13.6 years, 58% women) and the UK Biobank Imaging Study (UKB) (N = 45,076, 64.2 ± 7.7 years, 53% women), two large-scale population-based cohort studies. Volumes of hypothalamic structures were obtained from 3T structural magnetic resonance images through an automatic parcellation procedure (FastSurfer-HypVINN). The standardised cognitive domain scores were derived from extensive neuropsychological test batteries. We employed multivariable linear regression to assess associations of hypothalamic volumes with age, sex and cognitive performance. FINDINGS In older individuals, volumes of total, anterior and posterior hypothalamus, and mammillary bodies were smaller, while those of medial hypothalamus and tuberal region were larger. Larger medial hypothalamus volume was related to higher cortisol levels in older individuals, providing functional validation. Volumes of all hypothalamic structures were larger in men compared to women. In both sexes, larger volumes of total, anterior and posterior hypothalamus, and mammillary bodies were associated with better domain-specific cognitive performance, whereas larger volumes of medial hypothalamus and tuberal region were associated with worse domain-specific cognitive performance. INTERPRETATION We found strong age and sex effects on hypothalamic structures, as well as robust associations between these structures and domain-specific cognitive functions. Overall, these findings thus implicate specific hypothalamic subregions as potential therapeutic targets against age-associated cognitive decline. FUNDING Institutional funds, Federal Ministry of Education and Research of Germany, Alzheimer's Association.
Collapse
Affiliation(s)
- Peng Xu
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Santiago Estrada
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Artificial Intelligence in Medical Imaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Rika Etteldorf
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dan Liu
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Mohammad Shahid
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Weiyi Zeng
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Deborah Früh
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Martin Reuter
- Artificial Intelligence in Medical Imaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Germany
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurology, Faculty of Medicine, University of Bonn, Germany.
| |
Collapse
|
5
|
Gee W, Yang JYM, Gentles T, Bastin S, Iyengar AJ, Chen J, Han DY, Cordina R, Verrall C, Jefferies C, The Australian and New Zealand Fontan Registry. Segmental MRI pituitary and hypothalamus volumes post Fontan: An analysis of the Australian and New Zealand Fontan registry. INTERNATIONAL JOURNAL OF CARDIOLOGY CONGENITAL HEART DISEASE 2024; 18:100549. [PMID: 39713232 PMCID: PMC11658139 DOI: 10.1016/j.ijcchd.2024.100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 12/24/2024] Open
Abstract
Objective Short stature, central hypothyroidism and infertility are common in those with a Fontan circulation. Given that the Fontan circulation often results in hepatic portal venous congestion, we hypothesize that the hypothalamic-pituitary portal circulation is also affected, contributing to subsequent hypothalamic-pituitary axis dysfunction. Methods MRI data from the Australian and New Zealand Fontan Registry (86 cases) was compared to 86 age- and sex-matched normal published controls. Total pituitary volumes (both anterior and posterior glands) were measured using a manual tracing segmentation method, and hypothalamic (and subunit) volumes using an automated segmentation tool. Measured gland volume was normalized to total brain volumes. A generalized linear model was used for statistical analysis. Results Normalized total pituitary volumes (nTPV) were increased in Fontan patients compared to controls (p < 0.0001), due to an increase in anterior pituitary volumes (nAPV) (p < 0.0001), with no difference in normalized posterior pituitary volumes (p = 0.7). Furthermore, normalized anterior and tubular hypothalamic subunit groups) were increased in Fontan patients compared to the controls (p < 0.01 and p < 0.0001, respectively).The time between Fontan and MRI was positively related to nTPV, nAPV and bilateral hypothalamic volumes. nTPV increased with age, and the increase in nAPV was greater in Fontan patients. Conclusions Segmental MRI Pituitary and Hypothalamus volumes post Fontan are increased and are related to the time since Fontan procedure. These findings are consistent with venous congestion of the anterior hypothalamic-pituitary portal venous system and may explain the high frequency of endocrine dysfunction in this patient group.
Collapse
Affiliation(s)
- Waverley Gee
- Department of Paediatric Radiology, Starship Child Health, Te Toka Tumai Auckland Te Whatu Ora, Auckland, New Zealand
- Starship Children's Hospital, 2 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Joseph Yuan-Mou Yang
- Neuroscience Advanced Clinical Imaging Service (NACIS), Department of Neurosurgery, Royal Children's Hospital, Parkville, Melbourne, Australia
- Neuroscience Research, Murdoch Children's Research Institute, Parkville, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Melbourne, Australia
- Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Tom Gentles
- Paediatric and Congenital Cardiology Service, Starship Child Health, Te Toka Tumai Auckland Te Whatu Ora, Auckland, New Zealand
- Department of Paediatrics, Child and Youth Health, University of Auckland, Auckland, New Zealand
- Starship Children's Hospital, 2 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Sonja Bastin
- Department of Paediatric Radiology, Starship Child Health, Te Toka Tumai Auckland Te Whatu Ora, Auckland, New Zealand
- Starship Children's Hospital, 2 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Ajay J. Iyengar
- Paediatric and Congenital Cardiology Service, Starship Child Health, Te Toka Tumai Auckland Te Whatu Ora, Auckland, New Zealand
- Department of Surgery, University of Auckland, Auckland, New Zealand
- Starship Children's Hospital, 2 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Jian Chen
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, Melbourne, Australia
- Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Dug Yeo Han
- Starship Research and Innovation Office, Starship Child Health, Te Toka Tumai Auckland Te Whatu Ora, Auckland, New Zealand
- Starship Children's Hospital, 2 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Rachael Cordina
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Royal Prince Alfred Hospital, 50 Missenden Rd, Camperdown, NSW, 2050, Australia
| | - Charlotte Verrall
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Royal Prince Alfred Hospital, 50 Missenden Rd, Camperdown, NSW, 2050, Australia
| | - Craig Jefferies
- Paediatric Diabetes and Endocrine Service, Starship Child Health, Te Toka Tumai Auckland Te Whatu Ora, Auckland, New Zealand
- Liggins Institute and Department of Paediatrics, University of Auckland, Auckland, New Zealand
- Starship Children's Hospital, 2 Park Road, Grafton, Auckland, 1023, New Zealand
| | - The Australian and New Zealand Fontan Registry
- Department of Paediatric Radiology, Starship Child Health, Te Toka Tumai Auckland Te Whatu Ora, Auckland, New Zealand
- Neuroscience Advanced Clinical Imaging Service (NACIS), Department of Neurosurgery, Royal Children's Hospital, Parkville, Melbourne, Australia
- Neuroscience Research, Murdoch Children's Research Institute, Parkville, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Melbourne, Australia
- Paediatric and Congenital Cardiology Service, Starship Child Health, Te Toka Tumai Auckland Te Whatu Ora, Auckland, New Zealand
- Department of Paediatrics, Child and Youth Health, University of Auckland, Auckland, New Zealand
- Department of Surgery, University of Auckland, Auckland, New Zealand
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, Melbourne, Australia
- Starship Research and Innovation Office, Starship Child Health, Te Toka Tumai Auckland Te Whatu Ora, Auckland, New Zealand
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Paediatric Diabetes and Endocrine Service, Starship Child Health, Te Toka Tumai Auckland Te Whatu Ora, Auckland, New Zealand
- Liggins Institute and Department of Paediatrics, University of Auckland, Auckland, New Zealand
- Starship Children's Hospital, 2 Park Road, Grafton, Auckland, 1023, New Zealand
- Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
- Royal Prince Alfred Hospital, 50 Missenden Rd, Camperdown, NSW, 2050, Australia
| |
Collapse
|
6
|
Makris N, Toppa PH, Rushmore RJ, Haggerty K, Papadimitriou G, Tobet S, Rathi Y, Kubicki M, Yeterian E, Castañeyra-Perdomo A, Goldstein JM. Combined T1-weighted MRI and diffusion MRI tractography of paraventricular, locus coeruleus, and dorsal vagal complex connectivity in brainstem-hypothalamic nuclei. J Biol Methods 2024; 11:e99010036. [PMID: 39839090 PMCID: PMC11744066 DOI: 10.14440/jbm.2024.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/07/2024] [Accepted: 10/08/2024] [Indexed: 01/23/2025] Open
Abstract
Background Current multimodal neuroimaging plays a critical role in studying clinical conditions such as cardiovascular disease, major depression, and other disorders related to chronic stress. These conditions involve the brainstem-hypothalamic network, specifically the locus coeruleus (LC), dorsal vagal complex (DVC), and paraventricular nucleus (PVN) of the hypothalamus, collectively referred to as the "DVC-LC-PVN circuitry." This circuitry is strongly associated with the norepinephrine (NE) and epinephrine (E) neurotransmitter systems, which are implicated in the regulation of key autonomic functions, such as cardiovascular and respiratory control, stress response, and cognitive and emotional behaviors. Objectives To develop a methodology for delineating the DVC-LC-PVN circuitry in the human brain using multimodal neuroimaging. Methods We combined structural T1-weighted morphometric magnetic resonance imaging (MRI) and diffusion MRI-based tractography to map the DVC-LC-PVN circuitry in the human brain. This methodology was applied to a pilot sample of brain datasets from five healthy adult subjects obtained from the publicly available Human Connectome Project repository and to one post-mortem human dataset. Results The DVC-LC-PVN circuitry was delineated in vivo in five human subjects and one ultra-high resolution post-mortem dataset, allowing for refined anatomical observations. Conclusion NE and E neurotransmitter systems engender substantial interest in both basic and clinical neuroscience due to their roles in the regulation of key autonomic functions, such as cardiovascular and respiratory control, stress responses, and cognitive and emotional behaviors. As demonstrated in this study, multimodal neuroimaging techniques provide a valuable approach for mapping small brainstem and hypothalamic structures and complex circuitries such as the DVC-LC-PVN circuitry.
Collapse
Affiliation(s)
- Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Anatomy and Physiology Area, Department of Basic Medical Sciences, Faculty of Health Sciences, University of La Laguna, San Cristobal de La Laguna 38000, Tenerife, Spain
- Department of Cognitive, Social and Organizational Psychology, Faculty of Health Sciences, University of La Laguna, University Institute of Neuroscience, San Cristobal de La Laguna 38000, Tenerife, Spain
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02118, United States
- Center for Morphometric Analysis, Department of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129 United States
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Poliana Hartung Toppa
- Center for Morphometric Analysis, Department of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129 United States
| | - Richard J. Rushmore
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02118, United States
- Center for Morphometric Analysis, Department of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129 United States
| | - Kayley Haggerty
- Center for Morphometric Analysis, Department of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129 United States
| | - George Papadimitriou
- Center for Morphometric Analysis, Department of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129 United States
| | - Stuart Tobet
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department of Biomedical Sciences, School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Center for Morphometric Analysis, Department of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129 United States
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Center for Morphometric Analysis, Department of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129 United States
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Edward Yeterian
- Center for Morphometric Analysis, Department of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129 United States
- Department of Psychology, Colby College, Waterville, Maine 04901 United States
| | - Agustin Castañeyra-Perdomo
- Anatomy and Physiology Area, Department of Basic Medical Sciences, Faculty of Health Sciences, University of La Laguna, San Cristobal de La Laguna 38000, Tenerife, Spain
| | - Jill M. Goldstein
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
7
|
Mendez-Torrijos A, Selvakumar M, Kreitz S, Roesch J, Dörfler A, Paslakis G, Krehbiel J, Steins-Löber S, Kratz O, Horndasch S, Hess A. Impaired maturation of resting-state connectivity in anorexia nervosa from adolescence to adulthood: differential mechanisms of consummatory vs. anticipatory responses through a symptom provocation paradigm. Front Behav Neurosci 2024; 18:1451691. [PMID: 39512870 PMCID: PMC11541234 DOI: 10.3389/fnbeh.2024.1451691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/13/2024] [Indexed: 11/15/2024] Open
Abstract
This functional magnetic resonance imaging (fMRI) study examined resting-state (RS) connectivity in adolescent and adult patients with anorexia nervosa (AN) using symptom provocation paradigms. Differential food reward mechanisms were investigated through separate assessments of responses to food images and low-caloric/high-caloric food consumption. Thirteen young (≤ 21 years) and seventeen adult (> 21 years) patients with AN and age-matched controls underwent two stimulus-driven fMRI sessions involving RS scans before and after the presentation of food-related stimuli and food consumption. Graph theory and machine learning were used for analyzing the fMRI and clinical data. Healthy controls (HCs) showed widespread developmental changes, while young participants with AN exhibited cerebellum differences for high-calorie food. Young individuals with AN displayed increased connectivity during the consumption of potato chips compared to zucchini, with no differences in adults with AN. Multiparametric machine learning accurately distinguished young individuals with AN from healthy controls based on RS connectivity following food visual stimulation ("anticipatory") and consumption ("consummatory"). This study highlights the differential food reward mechanisms and minimal developmental changes in RS connectivity from youth to adulthood in individuals with AN compared to healthy controls. Young individuals with AN demonstrated heightened reactivity to high-caloric foods, while adults showed decreased responsiveness, potentially due to desensitization. These findings shed light on aberrant eating behaviors in individuals with AN and contribute to our understanding of the chronicity of the disease.
Collapse
Affiliation(s)
- Andrea Mendez-Torrijos
- Institute of Experimental and Clinical Pharmacology and Toxicology, Emil Fischer Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Mageshwar Selvakumar
- Institute of Experimental and Clinical Pharmacology and Toxicology, Emil Fischer Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Silke Kreitz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Emil Fischer Center, University of Erlangen-Nuremberg, Erlangen, Germany
- Department of Neuroradiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Julie Roesch
- Department of Neuroradiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Georgios Paslakis
- Ruhr-University Bochum, Medical Faculty, University Clinic for Psychosomatic Medicine and Psychotherapy, Luebbecke, Germany
| | - Johannes Krehbiel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sabine Steins-Löber
- Department of Clinical Psychology and Psychotherapy, Otto-Friedrich University of Bamberg, Bamberg, Germany
| | - Oliver Kratz
- Department of Child and Adolescent Mental Health, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stefanie Horndasch
- Department of Child and Adolescent Mental Health, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Emil Fischer Center, University of Erlangen-Nuremberg, Erlangen, Germany
- Department of Neuroradiology, University of Erlangen-Nuremberg, Erlangen, Germany
- FAU NeW - Research Center for New Bioactive Compounds, Erlangen, Germany
| |
Collapse
|
8
|
Sasaki R, Asami T, Takaishi M, Nakamura R, Roppongi T, Yoshimi A, Hishimoto A. Smaller hypothalamic subregion with paraventricular nucleus in patients with panic disorder. Brain Imaging Behav 2024; 18:701-709. [PMID: 38376715 DOI: 10.1007/s11682-023-00834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2023] [Indexed: 02/21/2024]
Abstract
In panic disorder (PD), functional disturbance of the hypothalamus-pituitary-adrenal (HPA) axis has been considered. However, in neuroimaging studies of PD, the hypothalamus and pituitary gland are poorly studied.We investigated the volume of PD patients' hypothalamus and pituitary gland, enrolling 38 PD patients and 38 healthy controls. Severity of PD was mild to moderate according to the Panic Disorder Severity Scale, and the illness duration was relatively short (median = 2.8 years). The hypothalamus' gray matter was automatically extracted and segmented, whereas the pituitary gland was manually traced. Regarding the hypothalamus, the paraventricular nucleus (PVH), which produces the corticotropin-releasing hormone, was of interest.The volumes of the pituitary and the bilateral anterior-superior hypothalamic subunits, where the PVH would be located, were compared by the multiple regression analyses controlling for age and intracranial content volume. To compensate for limitation in the abovementioned segmentation and analyses, the voxel-based morphometry with small volume correction (VBM-SVC) targeting the whole hypothalamus was also performed.The multiple regression analyses did not find significant effect of PD diagnosis on the volumes. However, in the VBM-SVC analysis, volume reduction of the PVH was suggested in PD even when patients who experienced PD for ≥ 3 years were excluded [peak coordinate (x, y, z = -2, 3, -8), FWE-corrected P = .022 (cluster-level) and 0.003 (peak-level), voxel size = 63]. Our results suggested structural alteration of the PVH in PD patients for the first time, indicating importance of the HPA-axis in PD pathology.
Collapse
Affiliation(s)
- Ryo Sasaki
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takeshi Asami
- Department of Psychiatry, School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan.
| | - Masao Takaishi
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ryota Nakamura
- Department of Psychiatry, School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Tomohide Roppongi
- Psychiatric Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Asuka Yoshimi
- Psychiatric Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
9
|
Caria A. A Hypothalamic Perspective of Human Socioemotional Behavior. Neuroscientist 2024; 30:399-420. [PMID: 36703298 DOI: 10.1177/10738584221149647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Historical evidence from stimulation and lesion studies in animals and humans demonstrated a close association between the hypothalamus and typical and atypical socioemotional behavior. A central hypothalamic contribution to regulation of socioemotional responses was also provided indirectly by studies on oxytocin and arginine vasopressin. However, a limited number of studies have so far directly investigated the contribution of the hypothalamus in human socioemotional behavior. To reconsider the functional role of the evolutionarily conserved hypothalamic region in regulating human social behavior, here I provide a synthesis of neuroimaging investigations showing that the hypothalamus is involved in multiple and diverse facets of human socioemotional behavior through widespread functional interactions with other cortical and subcortical regions. These neuroimaging findings are then integrated with recent optogenetics studies in animals demonstrating that the hypothalamus plays a more active role in eliciting socioemotional responses and is not simply a downstream effector of higher-level brain systems. Building on the aforementioned evidence, the hypothalamus is argued to substantially contribute to a continuum of human socioemotional behaviors promoting survival and preservation of the species that extends from exploratory and approaching responses facilitating social bonding to aggressive and avoidance responses aimed to protect and defend formed relationships.
Collapse
Affiliation(s)
- Andrea Caria
- Department of Psychology and Cognitive Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|
10
|
Michielsen A, van Veenhuijzen K, Janse van Mantgem MR, van Es MA, Veldink JH, van Eijk RPA, van den Berg LH, Westeneng HJ. Association Between Hypothalamic Volume and Metabolism, Cognition, and Behavior in Patients With Amyotrophic Lateral Sclerosis. Neurology 2024; 103:e209603. [PMID: 38875517 PMCID: PMC11244736 DOI: 10.1212/wnl.0000000000209603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Dysfunction of energy metabolism, cognition, and behavior are important nonmotor symptoms of amyotrophic lateral sclerosis (ALS), negatively affecting survival and quality of life, but poorly understood. Neuroimaging is ideally suited to studying nonmotor neurodegeneration in ALS, but few studies have focused on the hypothalamus, a key region for regulating energy homeostasis, cognition, and behavior. We evaluated, therefore, hypothalamic neurodegeneration in ALS and explored the relationship between hypothalamic volumes and dysregulation of energy metabolism, cognitive and behavioral changes, disease progression, and survival. METHODS Patients with ALS and population-based controls were included for this cross-sectional and longitudinal MRI study. The hypothalamus was segmented into 5 subregions and their volumes were calculated. Linear (mixed) models, adjusted for age, sex, and total intracranial volume, were used to compare hypothalamic volumes between groups and to analyze associations with metabolism, cognition, behavior, and disease progression. Cox proportional hazard models were used to investigate the relationship of hypothalamic volumes with survival. Permutation-based corrections for multiple hypothesis testing were applied to all analyses to control the family-wise error rate. RESULTS Data were available for 564 patients with ALS and 356 controls. The volume of the anterior superior subregion of the hypothalamus was smaller in patients with ALS than in controls (β = -0.70 [-1.15 to -0.25], p = 0.013). Weight loss, memory impairments, and behavioral disinhibition were associated with a smaller posterior hypothalamus (β = -4.79 [-8.39 to -2.49], p = 0.001, β = -10.14 [-15.88 to -4.39], p = 0.004, and β = -12.09 [-18.83 to -5.35], p = 0.003, respectively). Furthermore, the volume of this subregion decreased faster over time in patients than in controls (β = -0.25 [0.42 to -0.09], p = 0.013), and a smaller volume of this structure was correlated with shorter survival (hazard ratio = 0.36 [0.21-0.61], p = 0.029). DISCUSSION We obtained evidence for hypothalamic involvement in ALS, specifically marked by atrophy of the anterior superior subregion. Moreover, we found that atrophy of the posterior hypothalamus was associated with weight loss, memory dysfunction, behavioral disinhibition, and survival, and that this subregion deteriorated faster in patients with ALS than in controls. These findings improve our understanding of nonmotor involvement in ALS and could contribute to the identification of new treatment targets for this devastating disease.
Collapse
Affiliation(s)
- Annebelle Michielsen
- From the Department of Neurology (A.M., K.V.V., M.R.J.V.M., M.A.V.E., J.H.V., R.P.A.V.E., L.H.V.D.B., H.-J.W.), UMC Utrecht Brain Center, and Biostatistics & Research Support (R.P.A.V.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, the Netherlands
| | - Kevin van Veenhuijzen
- From the Department of Neurology (A.M., K.V.V., M.R.J.V.M., M.A.V.E., J.H.V., R.P.A.V.E., L.H.V.D.B., H.-J.W.), UMC Utrecht Brain Center, and Biostatistics & Research Support (R.P.A.V.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, the Netherlands
| | - Mark R Janse van Mantgem
- From the Department of Neurology (A.M., K.V.V., M.R.J.V.M., M.A.V.E., J.H.V., R.P.A.V.E., L.H.V.D.B., H.-J.W.), UMC Utrecht Brain Center, and Biostatistics & Research Support (R.P.A.V.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, the Netherlands
| | - Michael A van Es
- From the Department of Neurology (A.M., K.V.V., M.R.J.V.M., M.A.V.E., J.H.V., R.P.A.V.E., L.H.V.D.B., H.-J.W.), UMC Utrecht Brain Center, and Biostatistics & Research Support (R.P.A.V.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, the Netherlands
| | - Jan H Veldink
- From the Department of Neurology (A.M., K.V.V., M.R.J.V.M., M.A.V.E., J.H.V., R.P.A.V.E., L.H.V.D.B., H.-J.W.), UMC Utrecht Brain Center, and Biostatistics & Research Support (R.P.A.V.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, the Netherlands
| | - Ruben P A van Eijk
- From the Department of Neurology (A.M., K.V.V., M.R.J.V.M., M.A.V.E., J.H.V., R.P.A.V.E., L.H.V.D.B., H.-J.W.), UMC Utrecht Brain Center, and Biostatistics & Research Support (R.P.A.V.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, the Netherlands
| | - Leonard H van den Berg
- From the Department of Neurology (A.M., K.V.V., M.R.J.V.M., M.A.V.E., J.H.V., R.P.A.V.E., L.H.V.D.B., H.-J.W.), UMC Utrecht Brain Center, and Biostatistics & Research Support (R.P.A.V.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, the Netherlands
| | - Henk-Jan Westeneng
- From the Department of Neurology (A.M., K.V.V., M.R.J.V.M., M.A.V.E., J.H.V., R.P.A.V.E., L.H.V.D.B., H.-J.W.), UMC Utrecht Brain Center, and Biostatistics & Research Support (R.P.A.V.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, the Netherlands
| |
Collapse
|
11
|
Spalek K, Straathof M, Koyuncu L, Grydeland H, van der Geest A, Van't Hof SR, Crone EA, Barba-Müller E, Carmona S, Denys D, Tamnes CK, Burke S, Hoekzema E. Pregnancy renders anatomical changes in hypothalamic substructures of the human brain that relate to aspects of maternal behavior. Psychoneuroendocrinology 2024; 164:107021. [PMID: 38492349 DOI: 10.1016/j.psyneuen.2024.107021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
Animal studies have shown that pregnancy is associated with neural adaptations that promote maternal care. The hypothalamus represents a central structure of the mammalian maternal brain and hormonal priming of specific hypothalamic nuclei plays a key role in the induction and expression of maternal behavior. In humans, we have previously demonstrated that becoming a mother involves changes in grey matter anatomy, primarily in association areas of the cerebral cortex. In the current study, we investigated whether pregnancy renders anatomical changes in the hypothalamus. Using an advanced delineation technique, five hypothalamic substructures were defined in longitudinal MRI scans of 107 women extracted from two prospective pre-conception cohort studies, including 50 women who were scanned before and after pregnancy and 57 nulliparous control women scanned at a similar time interval. We showed that becoming a mother is associated with volume reductions in the anterior-superior, superior tuberal and posterior hypothalamus. In addition, these structural changes related to hormonal levels during pregnancy and specific aspects of self-reported maternal behavior in late pregnancy, including maternal-fetal attachment and nesting behavior. These findings show that pregnancy leads to changes in hypothalamic anatomy and suggest that these contribute to the development of maternal behavior in humans, supporting the conservation of key aspects of maternal brain circuitry and their role in maternal behavior across species.
Collapse
Affiliation(s)
- Klara Spalek
- Hoekzema Lab, Amsterdam University Medical Center (Amsterdam UMC), location University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam Reproduction and Development, Amsterdam, the Netherlands
| | - Milou Straathof
- Hoekzema Lab, Amsterdam University Medical Center (Amsterdam UMC), location University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam Reproduction and Development, Amsterdam, the Netherlands
| | - Lal Koyuncu
- Brain and Development Research Center, Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - Håkon Grydeland
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
| | - Anouk van der Geest
- Brain and Development Research Center, Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - Sophie R Van't Hof
- Hoekzema Lab, Amsterdam University Medical Center (Amsterdam UMC), location University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam Reproduction and Development, Amsterdam, the Netherlands
| | - Eveline A Crone
- Brain and Development Research Center, Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
| | | | - Susana Carmona
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Damiaan Denys
- Department of Psychiatry, Amsterdam University Medical Center (Amsterdam UMC), location University of Amsterdam, the Netherlands
| | - Christian K Tamnes
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Sarah Burke
- Brain and Development Research Center, Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands; Interdisciplinary Center Psychopathology and Emotion regulation, Department of Psychiatry, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Elseline Hoekzema
- Hoekzema Lab, Amsterdam University Medical Center (Amsterdam UMC), location University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam Reproduction and Development, Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Castañeyra-Perdomo A, Gonzalez-Mora JL, Carmona-Calero EM, Makris N, Carrasco-Juan JL. A Narrative Review on the Clinical Relevance of Imaging the Circumventricular Brain Organs and Performing Their Anatomical and Histopathological Examination in Acute and Postacute COVID-19. Am J Forensic Med Pathol 2024; 45:151-156. [PMID: 38739896 PMCID: PMC11479582 DOI: 10.1097/paf.0000000000000939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
ABSTRACT Autopsy followed by histopathological examination is foundational in clinical and forensic medicine for discovering and understanding pathological changes in disease, their underlying processes, and cause of death. Imaging technology has become increasingly important for advancing clinical research and practice, given its noninvasive, in vivo and ex vivo applicability. Medical and forensic autopsy can benefit greatly from advances in imaging technology that lead toward minimally invasive, whole-brain virtual autopsy. Brain autopsy followed by histopathological examination is still the hallmark for understanding disease and a fundamental modus operandi in forensic pathology and forensic medicine, despite the fact that its practice has become progressively less frequent in medical settings. This situation is especially relevant with respect to new diseases such as COVID-19 caused by the SARS-CoV-2 virus, for which our neuroanatomical knowledge is sparse. In this narrative review, we show that ad hoc clinical autopsies and histopathological analyses combined with neuroimaging of the principal circumventricular organs are critical to gaining insight into the reconstruction of the pathophysiological mechanisms and the explanation of cause of death (ie, atrium mortis) related to the cardiovascular effects of SARS-CoV-2 infection in forensic and clinical medicine.
Collapse
Affiliation(s)
- Agustin Castañeyra-Perdomo
- From the Universidad de La Laguna, Área de Anatomía y Fisiología, Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Santa Cruz de Tenerife, Spain
| | - Jose Luis Gonzalez-Mora
- From the Universidad de La Laguna, Área de Anatomía y Fisiología, Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Santa Cruz de Tenerife, Spain
| | - Emilia Maria Carmona-Calero
- From the Universidad de La Laguna, Área de Anatomía y Fisiología, Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Santa Cruz de Tenerife, Spain
| | - Nikos Makris
- Center for Morphometric Analysis, Departments of Psychiatry and Neurology, A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jose Luis Carrasco-Juan
- Universidad de La Laguna, Área de Histología, Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
13
|
Gan HW, Cerbone M, Dattani MT. Appetite- and Weight-Regulating Neuroendocrine Circuitry in Hypothalamic Obesity. Endocr Rev 2024; 45:309-342. [PMID: 38019584 PMCID: PMC11074800 DOI: 10.1210/endrev/bnad033] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Since hypothalamic obesity (HyOb) was first described over 120 years ago by Joseph Babinski and Alfred Fröhlich, advances in molecular genetic laboratory techniques have allowed us to elucidate various components of the intricate neurocircuitry governing appetite and weight regulation connecting the hypothalamus, pituitary gland, brainstem, adipose tissue, pancreas, and gastrointestinal tract. On a background of an increasing prevalence of population-level common obesity, the number of survivors of congenital (eg, septo-optic dysplasia, Prader-Willi syndrome) and acquired (eg, central nervous system tumors) hypothalamic disorders is increasing, thanks to earlier diagnosis and management as well as better oncological therapies. Although to date the discovery of several appetite-regulating peptides has led to the development of a range of targeted molecular therapies for monogenic obesity syndromes, outside of these disorders these discoveries have not translated into the development of efficacious treatments for other forms of HyOb. This review aims to summarize our current understanding of the neuroendocrine physiology of appetite and weight regulation, and explore our current understanding of the pathophysiology of HyOb.
Collapse
Affiliation(s)
- Hoong-Wei Gan
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Manuela Cerbone
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Mehul Tulsidas Dattani
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
14
|
Klöbl M, Reed MB, Handschuh P, Kaufmann U, Konadu ME, Ritter V, Spurny-Dworak B, Kranz GS, Lanzenberger R, Spies M. Gender Dysphoria and Sexual Euphoria: A Bayesian Perspective on the Influence of Gender-Affirming Hormone Therapy on Sexual Arousal. ARCHIVES OF SEXUAL BEHAVIOR 2024; 53:1859-1871. [PMID: 38216784 PMCID: PMC11106106 DOI: 10.1007/s10508-023-02778-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
Self-reported sexual orientation of transgender individuals occasionally changes over transition. Using functional magnetic resonance imaging, we tested the hypothesis that neural and behavioral patterns of sexual arousal in transgender individuals would shift from the assigned to the experienced gender (e.g., trans women's responses becoming more dissimilar to those of cis men and more similar to those of cis women). To this aim, trans women (N = 12) and trans men (N = 20) as well as cisgender women (N = 24) and cisgender men (N = 14) rated visual stimuli showing male-female, female-female or male-male intercourse for sexual arousal before and after four months of gender-affirming hormone therapy. A Bayesian framework allowed us to incorporate previous behavioral findings. The hypothesized changes could indeed be observed in the behavioral responses with the strongest results for trans men and female-female scenes. Activation of the ventral striatum supported our hypothesis only for female-female scenes in trans women. The respective application or depletion of androgens in trans men and trans women might partly explain this observation. The prominent role of female-female stimuli might be based on the differential responses they elicit in cis women and men or, in theory, the controversial concept of autogynephilia. We show that correlates of sexual arousal in transgender individuals might change in the direction of the experienced gender. Future investigations should elucidate the mechanistic role of sex hormones and the cause of the differential neural and behavioral findings.The study was registered at ClinicalTrials.gov (NCT02715232), March 22, 2016.
Collapse
Affiliation(s)
- Manfred Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Murray Bruce Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Patricia Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Ulrike Kaufmann
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Melisande Elisabeth Konadu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Vera Ritter
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Benjamin Spurny-Dworak
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Georg S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria.
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Zhou C, You J, Guan X, Guo T, Wu J, Wu H, Wu C, Chen J, Wen J, Tan S, Duanmu X, Qin J, Huang P, Zhang B, Cheng W, Feng J, Xu X, Wang L, Zhang M. Microstructural alterations of the hypothalamus in Parkinson's disease and probable REM sleep behavior disorder. Neurobiol Dis 2024; 194:106472. [PMID: 38479482 DOI: 10.1016/j.nbd.2024.106472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/24/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Whether there is hypothalamic degeneration in Parkinson's disease (PD) and its association with clinical symptoms and pathophysiological changes remains controversial. OBJECTIVES We aimed to quantify microstructural changes in hypothalamus using a novel deep learning-based tool in patients with PD and those with probable rapid-eye-movement sleep behavior disorder (pRBD). We further assessed whether these microstructural changes associated with clinical symptoms and free thyroxine (FT4) levels. METHODS This study included 186 PD, 67 pRBD, and 179 healthy controls. Multi-shell diffusion MRI were scanned and mean kurtosis (MK) in hypothalamic subunits were calculated. Participants were assessed using Unified Parkinson's Disease Rating Scale (UPDRS), RBD Questionnaire-Hong Kong (RBDQ-HK), Hamilton Depression Rating Scale (HAMD), and Activity of Daily Living (ADL) Scale. Additionally, a subgroup of PD (n = 31) underwent assessment of FT4. RESULTS PD showed significant decreases of MK in anterior-superior (a-sHyp), anterior-inferior (a-iHyp), superior tubular (supTub), and inferior tubular hypothalamus when compared with healthy controls. Similarly, pRBD exhibited decreases of MK in a-iHyp and supTub. In PD group, MK in above four subunits were significantly correlated with UPDRS-I, HAMD, and ADL. Moreover, MK in a-iHyp and a-sHyp were significantly correlated with FT4 level. In pRBD group, correlations were observed between MK in a-iHyp and UPDRS-I. CONCLUSIONS Our study reveals that microstructural changes in the hypothalamus are already significant at the early neurodegenerative stage. These changes are associated with emotional alterations, daily activity levels, and thyroid hormone levels.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Jia You
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, 200433 Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, 200433 Shanghai, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, 200433 Shanghai, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Haoting Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Chenqing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Jingwen Chen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Jiaqi Wen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Sijia Tan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Xiaojie Duanmu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Jianmei Qin
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, 200433 Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, 200433 Shanghai, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, 200433 Shanghai, China; Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, 200433 Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, 200433 Shanghai, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, 200433 Shanghai, China; Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China.
| | - Linbo Wang
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, 200433 Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, 200433 Shanghai, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, 200433 Shanghai, China.
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China.
| |
Collapse
|
16
|
Ruggeri A, Nerland S, Mørch-Johnsen L, Jørgensen KN, Barth C, Wortinger LA, Andreou D, Andreassen OA, Agartz I. Hypothalamic Subunit Volumes in Schizophrenia and Bipolar Spectrum Disorders. Schizophr Bull 2024; 50:533-544. [PMID: 38206841 PMCID: PMC11059784 DOI: 10.1093/schbul/sbad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
BACKGROUND The hypothalamus is central to many hormonal and autonomous nervous system pathways. Emerging evidence indicates that these pathways may be disrupted in schizophrenia and bipolar disorder. Yet, few studies have examined the volumes of hypothalamic subunits in these patient groups. We compared hypothalamic subunit volumes in individuals with psychotic disorders to healthy controls. STUDY DESIGN We included 344 patients with schizophrenia spectrum disorders (SCZ), 340 patients with bipolar disorders (BPD), and 684 age- and-sex-matched healthy controls (CTR). Total hypothalamus and five hypothalamic subunit volumes were extracted from T1-weighted magnetic resonance imaging (MRI) using an automated Bayesian segmentation method. Regression models, corrected for age, age2, sex, and segmentation-based intracranial volume (sbTIV), were used to examine diagnostic group differences, interactions with sex, and associations with clinical symptoms, antipsychotic medication, antidepressants and mood stabilizers. STUDY RESULTS SCZ had larger volumes in the left inferior tubular subunit and smaller right anterior-inferior, right anterior-superior, and right posterior hypothalamic subunits compared to CTR. BPD did not differ significantly from CTR for any hypothalamic subunit volume, however, there was a significant sex-by-diagnosis interaction. Analyses stratified by sex showed smaller right hypothalamus and right posterior subunit volumes in male patients, but not female patients, relative to same-sex controls. There was a significant association between BPD currently taking antipsychotic medication and the left inferior tubular subunits volumes. CONCLUSIONS Our results show regional-specific alterations in hypothalamus subunit volumes in individuals with SCZ, with relevance to HPA-axis dysregulation, circadian rhythm disruption, and cognition impairment.
Collapse
Affiliation(s)
- Aurora Ruggeri
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Stener Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lynn Mørch-Johnsen
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Østfold Hospital, Grålum, Norway
- Department of Clinical Research, Østfold Hospital, Grålum, Norway
| | - Kjetil Nordbø Jørgensen
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Laura Anne Wortinger
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dimitrios Andreou
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| |
Collapse
|
17
|
Luo Y, Yu L, Zhang P, Lin W, Xu H, Dou Z, Zhao G, Peng W, Zeng F, Yu S. Larger hypothalamic subfield volumes in patients with chronic insomnia disorder and relationships to levels of corticotropin-releasing hormone. J Affect Disord 2024; 351:870-877. [PMID: 38341156 DOI: 10.1016/j.jad.2024.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
The hypothalamus is a well-established core structure in the sleep-wake cycle. While previous studies have not consistently found whole hypothalamus volume changes in chronic insomnia disorder (CID), differences may exist at the smaller substructural level of the hypothalamic nuclei. The study aimed to investigate the differences in total and subfield hypothalamic volumes, between CID patients and healthy controls (HCs) in vivo, through an advanced deep learning-based automated segmentation tool. A total of 150 patients with CID and 155 demographically matched HCs underwent T1-weighted structural magnetic resonance scanning. We utilized FreeSurfer v7.2 for automated segmentation of the hypothalamus and its five nuclei. Additionally, correlation and causal mediation analyses were performed to investigate the association between hypothalamic volume changes, insomnia symptom severity, and hypothalamus-pituitary-adrenal (HPA) axis-related blood biomarkers. CID patients exhibited larger volumes in the right anterior inferior, left anterior superior, and left posterior subunits of the hypothalamus compared to HCs. Moreover, we observed a positive association between blood corticotropin-releasing hormone (CRH) levels and insomnia severity, with anterior inferior hypothalamus (a-iHyp) hypertrophy mediating this relationship. In conclusion, we found significant volume increases in several hypothalamic subfield regions in CID patients, highlighting the central role of the HPA axis in the pathophysiology of insomnia.
Collapse
Affiliation(s)
- Yucai Luo
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liyong Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pan Zhang
- Nervous System Disease Treatment Center, Traditional Chinese Medicine Hospital of Meishan, Meishan, China
| | - Wenting Lin
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Xu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zeyang Dou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangli Zhao
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Fang Zeng
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyi Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
18
|
Chen SD, You J, Zhang W, Wu BS, Ge YJ, Xiang ST, Du J, Kuo K, Banaschewski T, Barker GJ, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Lemaitre H, Paus T, Poustka L, Hohmann S, Millenet S, Baeuchl C, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Feng JF, Dong Q, Cheng W, Yu JT. The genetic architecture of the human hypothalamus and its involvement in neuropsychiatric behaviours and disorders. Nat Hum Behav 2024; 8:779-793. [PMID: 38182882 DOI: 10.1038/s41562-023-01792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/20/2023] [Indexed: 01/07/2024]
Abstract
Despite its crucial role in the regulation of vital metabolic and neurological functions, the genetic architecture of the hypothalamus remains unknown. Here we conducted multivariate genome-wide association studies (GWAS) using hypothalamic imaging data from 32,956 individuals to uncover the genetic underpinnings of the hypothalamus and its involvement in neuropsychiatric traits. There were 23 significant loci associated with the whole hypothalamus and its subunits, with functional enrichment for genes involved in intracellular trafficking systems and metabolic processes of steroid-related compounds. The hypothalamus exhibited substantial genetic associations with limbic system structures and neuropsychiatric traits including chronotype, risky behaviour, cognition, satiety and sympathetic-parasympathetic activity. The strongest signal in the primary GWAS, the ADAMTS8 locus, was replicated in three independent datasets (N = 1,685-4,321) and was strengthened after meta-analysis. Exome-wide association analyses added evidence to the association for ADAMTS8, and Mendelian randomization showed lower ADAMTS8 expression with larger hypothalamic volumes. The current study advances our understanding of complex structure-function relationships of the hypothalamus and provides insights into the molecular mechanisms that underlie hypothalamic formation.
Collapse
Affiliation(s)
- Shi-Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Jia You
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Wei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Bang-Sheng Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Yi-Jun Ge
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Shi-Tong Xiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jing Du
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Kevin Kuo
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Institute of Psychiatry, Psychology & Neuroscience, Social, Genetic, Developmental Psychiatry Centre, King's College London, London, UK
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 "Trajectoires développementales & psychiatrie", University Paris-Saclay, CNRS, Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 "Trajectoires développementales & psychiatrie", University Paris-Saclay, CNRS, Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France
- AP-HP, Sorbonne University, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 "Trajectoires développementales & psychiatrie", University Paris-Saclay, CNRS, Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Herve Lemaitre
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, Bordeaux, France
| | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hosptalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
- Departments of Psychiatry and Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian Baeuchl
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
- Zhangjiang Fudan International Innovation Center, Shanghai, China.
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China.
| | - Wei Cheng
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China.
- Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Transfer Center, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China.
| |
Collapse
|
19
|
Jensen DEA, Ebmeier KP, Suri S, Rushworth MFS, Klein-Flügge MC. Nuclei-specific hypothalamus networks predict a dimensional marker of stress in humans. Nat Commun 2024; 15:2426. [PMID: 38499548 PMCID: PMC10948785 DOI: 10.1038/s41467-024-46275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
The hypothalamus is part of the hypothalamic-pituitary-adrenal axis which activates stress responses through release of cortisol. It is a small but heterogeneous structure comprising multiple nuclei. In vivo human neuroimaging has rarely succeeded in recording signals from individual hypothalamus nuclei. Here we use human resting-state fMRI (n = 498) with high spatial resolution to examine relationships between the functional connectivity of specific hypothalamic nuclei and a dimensional marker of prolonged stress. First, we demonstrate that we can parcellate the human hypothalamus into seven nuclei in vivo. Using the functional connectivity between these nuclei and other subcortical structures including the amygdala, we significantly predict stress scores out-of-sample. Predictions use 0.0015% of all possible brain edges, are specific to stress, and improve when using nucleus-specific compared to whole-hypothalamus connectivity. Thus, stress relates to connectivity changes in precise and functionally meaningful subcortical networks, which may be exploited in future studies using interventions in stress disorders.
Collapse
Affiliation(s)
- Daria E A Jensen
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3TA, UK.
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB, University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, UK.
- Clinic of Cognitive Neurology, University Medical Center Leipzig and Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, 04103, Leipzig, Germany.
| | - Klaus P Ebmeier
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, UK
| | - Sana Suri
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), Oxford Centre for Human Brain Activity (OHBA), University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, UK
| | - Matthew F S Rushworth
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3TA, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB, University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Miriam C Klein-Flügge
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3TA, UK.
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB, University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, UK.
| |
Collapse
|
20
|
Hanson C, Blumenthal J, Clasen L, Guma E, Raznahan A. Influences of sex chromosome aneuploidy on height, weight, and body mass index in human childhood and adolescence. Am J Med Genet A 2024; 194:150-159. [PMID: 37768018 DOI: 10.1002/ajmg.a.63398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Sex chromosome aneuploidies (SCAs) are collectively common conditions caused by carriage of a sex chromosome dosage other than XX for females and XY for males. Increases in sex chromosome dosage (SCD) have been shown to have an inverted-U association with height, but we lack combined studies of SCA effects on height and weight, and it is not known if any such effects vary with age. Here, we study norm-derived height and weight z-scores in 177 youth spanning 8 SCA karyotypes (XXX, XXY, XYY, XXXX, XXXY, XXYY, XXXXX, and XXXXY). We replicate a previously described inverted-U association between mounting SCD and height, and further show that there is also a muted version of this effect for weight: both phenotypes are elevated until SCD reaches 4 for females and 5 for males but decrease thereafter. We next use 266 longitudinal measures available from a subset of karyotypes (XXX, XXY, XYY, and XXYY) to show that mean height in these SCAs diverges further from norms with increasing age. As weight does not diverge from norms with increasing age, BMI decreases with increasing age. These findings extend our understanding of growth as an important clinical outcome in SCA, and as a key context for known effects of SCA on diverse organ systems that scale with body size.
Collapse
Affiliation(s)
- Claire Hanson
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland, USA
| | - Jonathan Blumenthal
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland, USA
| | - Liv Clasen
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland, USA
| | - Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Rasmussen JM, Wang Y, Graham AM, Fair DA, Posner J, O'Connor TG, Simhan HN, Yen E, Madan N, Entringer S, Wadhwa PD, Buss C, program collaborators for Environmental influences on Child Health Outcomes. Segmenting hypothalamic subunits in human newborn magnetic resonance imaging data. Hum Brain Mapp 2024; 45:e26582. [PMID: 38339904 PMCID: PMC10826633 DOI: 10.1002/hbm.26582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/15/2023] [Accepted: 11/26/2023] [Indexed: 02/12/2024] Open
Abstract
Preclinical evidence suggests that inter-individual variation in the structure of the hypothalamus at birth is associated with variation in the intrauterine environment, with downstream implications for future disease susceptibility. However, scientific advancement in humans is limited by a lack of validated methods for the automatic segmentation of the newborn hypothalamus. N = 215 healthy full-term infants with paired T1-/T2-weighted MR images across four sites were considered for primary analyses (mean postmenstrual age = 44.3 ± 3.5 weeks, nmale /nfemale = 110/106). The outputs of FreeSurfer's hypothalamic subunit segmentation tools designed for adults (segFS) were compared against those of a novel registration-based pipeline developed here (segATLAS) and against manually edited segmentations (segMAN) as reference. Comparisons were made using Dice Similarity Coefficients (DSCs) and through expected associations with postmenstrual age at scan. In addition, we aimed to demonstrate the validity of the segATLAS pipeline by testing for the stability of inter-individual variation in hypothalamic volume across the first year of life (n = 41 longitudinal datasets available). SegFS and segATLAS segmentations demonstrated a wide spread in agreement (mean DSC = 0.65 ± 0.14 SD; range = {0.03-0.80}). SegATLAS volumes were more highly correlated with postmenstrual age at scan than segFS volumes (n = 215 infants; RsegATLAS 2 = 65% vs. RsegFS 2 = 40%), and segATLAS volumes demonstrated a higher degree of agreement with segMAN reference segmentations at the whole hypothalamus (segATLAS DSC = 0.89 ± 0.06 SD; segFS DSC = 0.68 ± 0.14 SD) and subunit levels (segATLAS DSC = 0.80 ± 0.16 SD; segFS DSC = 0.40 ± 0.26 SD). In addition, segATLAS (but not segFS) volumes demonstrated stability from near birth to ~1 years age (n = 41; R2 = 25%; p < 10-3 ). These findings highlight segATLAS as a valid and publicly available (https://github.com/jerodras/neonate_hypothalamus_seg) pipeline for the segmentation of hypothalamic subunits using human newborn MRI up to 3 months of age collected at resolutions on the order of 1 mm isotropic. Because the hypothalamus is traditionally understudied due to a lack of high-quality segmentation tools during the early life period, and because the hypothalamus is of high biological relevance to human growth and development, this tool may stimulate developmental and clinical research by providing new insight into the unique role of the hypothalamus and its subunits in shaping trajectories of early life health and disease.
Collapse
Affiliation(s)
- Jerod M. Rasmussen
- Development, Health and Disease Research ProgramUniversity of CaliforniaIrvineCaliforniaUSA
- Department of PediatricsUniversity of CaliforniaIrvineCaliforniaUSA
| | - Yun Wang
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Alice M. Graham
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandOregonUSA
| | - Damien A. Fair
- Masonic Institute for the Developing BrainUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Jonathan Posner
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Thomas G. O'Connor
- Departments of Psychiatry, Psychology, Neuroscience and Obstetrics and GynecologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Hyagriv N. Simhan
- Department of Obstetrics and GynecologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Elizabeth Yen
- Department of PediatricsTufts Medical CenterBostonMassachusettsUSA
| | - Neel Madan
- Department of RadiologyTufts Medical CenterBostonMassachusettsUSA
| | - Sonja Entringer
- Development, Health and Disease Research ProgramUniversity of CaliforniaIrvineCaliforniaUSA
- Department of PediatricsUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Medical PsychologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Pathik D. Wadhwa
- Development, Health and Disease Research ProgramUniversity of CaliforniaIrvineCaliforniaUSA
- Department of PediatricsUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Psychiatry and Human BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Obstetrics and GynecologyUniversity of CaliforniaIrvineCaliforniaUSA
- Department of EpidemiologyUniversity of CaliforniaIrvineCaliforniaUSA
| | - Claudia Buss
- Development, Health and Disease Research ProgramUniversity of CaliforniaIrvineCaliforniaUSA
- Department of PediatricsUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Medical PsychologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | | |
Collapse
|
22
|
Haaf R, Brandi ML, Albantakis L, Lahnakoski JM, Henco L, Schilbach L. Peripheral oxytocin levels are linked to hypothalamic gray matter volume in autistic adults: a cross-sectional secondary data analysis. Sci Rep 2024; 14:1380. [PMID: 38228703 PMCID: PMC10791615 DOI: 10.1038/s41598-023-50770-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/25/2023] [Indexed: 01/18/2024] Open
Abstract
Oxytocin (OXT) is known to modulate social behavior and cognition and has been discussed as pathophysiological and therapeutic factor for autism spectrum disorder (ASD). An accumulating body of evidence indicates the hypothalamus to be of particular importance with regard to the underlying neurobiology. Here we used a region of interest voxel-based morphometry (VBM) approach to investigate hypothalamic gray matter volume (GMV) in autistic (n = 29, age 36.03 ± 11.0) and non-autistic adults (n = 27, age 30.96 ± 11.2). Peripheral plasma OXT levels and the autism spectrum quotient (AQ) were used for correlation analyses. Results showed no differences in hypothalamic GMV in autistic compared to non-autistic adults but suggested a differential association between hypothalamic GMV and OXT levels, such that a positive association was found for the ASD group. In addition, hypothalamic GMV showed a positive association with autistic traits in the ASD group. Bearing in mind the limitations such as a relatively small sample size, a wide age range and a high rate of psychopharmacological treatment in the ASD sample, these results provide new preliminary evidence for a potentially important role of the HTH in ASD and its relationship to the OXT system, but also point towards the importance of interindividual differences.
Collapse
Affiliation(s)
- Raoul Haaf
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany.
- Graduate School, Technical University of Munich, Munich, Germany.
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany.
| | - Marie-Luise Brandi
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Laura Albantakis
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Outpatient and Day Clinic for Disorders of Social Interaction, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Juha M Lahnakoski
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Institute of Neurosciences and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lara Henco
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Graduate School of Systemic Neurosciences, Munich, Germany
| | - Leonhard Schilbach
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Outpatient and Day Clinic for Disorders of Social Interaction, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
- Graduate School of Systemic Neurosciences, Munich, Germany
- Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
23
|
Ferraro S, Nigri A, Bruzzone MG, Medina Carrion JP, Fedeli D, Demichelis G, Chiapparini L, Ciullo G, Gonzalez AA, Proietti Cecchini A, Giani L, Becker B, Leone M. Involvement of the ipsilateral-to-the-pain anterior-superior hypothalamic subunit in chronic cluster headache. J Headache Pain 2024; 25:7. [PMID: 38212704 PMCID: PMC10782620 DOI: 10.1186/s10194-023-01711-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Despite hypothalamus has long being considered to be involved in the pathophysiology of cluster headache, the inconsistencies of previous neuroimaging studies and a limited understanding of the hypothalamic areas involved, impede a comprehensive interpretation of its involvement in this condition. METHODS We used an automated algorithm to extract hypothalamic subunit volumes from 105 cluster headache patients (57 chronic and 48 episodic) and 59 healthy individuals; after correcting the measures for the respective intracranial volumes, we performed the relevant comparisons employing logist regression models. Only for subunits that emerged as abnormal, we calculated their correlation with the years of illness and the number of headache attacks per day, and the effects of lithium treatment. As a post-hoc approach, using the 7 T resting-state fMRI dataset from the Human Connectome Project, we investigated whether the observed abnormal subunit, comprising the paraventricular nucleus and preoptic area, shows robust functional connectivity with the mesocorticolimbic system, which is known to be modulated by oxytocin neurons in the paraventricular nucleus and that is is abnormal in chronic cluster headache patients. RESULTS Patients with chronic (but not episodic) cluster headache, compared to control participants, present an increased volume of the anterior-superior hypothalamic subunit ipsilateral to the pain, which, remarkably, also correlates significantly with the number of daily attacks. The post-hoc approach showed that this hypothalamic area presents robust functional connectivity with the mesocorticolimbic system under physiological conditions. No evidence of the effects of lithium treatment on this abnormal subunit was found. CONCLUSIONS We identified the ipsilateral-to-the-pain antero-superior subunit, where the paraventricular nucleus and preoptic area are located, as the key hypothalamic region of the pathophysiology of chronic cluster headache. The significant correlation between the volume of this area and the number of daily attacks crucially reinforces this interpretation. The well-known roles of the paraventricular nucleus in coordinating autonomic and neuroendocrine flow in stress adaptation and modulation of trigeminovascular mechanisms offer important insights into the understanding of the pathophysiology of cluster headache.
Collapse
Affiliation(s)
- Stefania Ferraro
- School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, Italy
| | - Anna Nigri
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, Italy.
| | - Maria Grazia Bruzzone
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, Italy
| | - Jean Paul Medina Carrion
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, Italy
| | - Davide Fedeli
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, Italy
| | - Greta Demichelis
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, Italy
| | - Luisa Chiapparini
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, Italy
- Radiology Unit, Fodazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giuseppe Ciullo
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ariosky Areces Gonzalez
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Faculty of Technical Sciences, University of Pinar del Río "Hermanos Saiz Montes de Oca", Pinar del Río, Cuba
| | | | - Luca Giani
- Department of Neurology, Fondazione Maugeri, IRCCS, Milan, Italy
| | - Benjamin Becker
- School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Massimo Leone
- Department of Neuroalgology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
24
|
Rooks TF, Baisden JL, Yoganandan N. Regional brain strain dependance on direction of head rotation. ACCIDENT; ANALYSIS AND PREVENTION 2023; 193:107301. [PMID: 37729748 DOI: 10.1016/j.aap.2023.107301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
Brain injuries in automated vehicles during crash events are likely to include mechanisms of head impact in non-standard positions and postures (i.e., occupants not facing forward in an upright position). Federal regulations currently focus on impact conditions in primary planes of motion, such as frontal or rear impacts (sagittal plane of motion) or side impact (coronal plane of motion) and do not account for out of position occupants or non-standard postures. The objective of the present study was to develop and use the anatomically accurate brain finite element model to parametrically determine the injury metrics under different vectors with head rotation. A custom developed brain finite element model with anatomical accuracy and several anatomical regions defined was used to evaluate whole-brain strain as well as regional brain strain. Cumulative Strain Damage Measure (CSDM) at a threshold of 20% strain and the 95th percentile of the maximum principal strain (MPS95) were calculated for the whole brain and each brain region under multiple rotational directions. The model was exposed to a sinusoidal angular acceleration pulse of 5000 rad per second squared (rad/s2-) over 12.5 ms. The same pulse was used in the primary axes of motion and (lateral bending, flexion, extension, axial rotation) and combined axes representing oblique flexion and oblique extension. Whole brain CSDM20 was highest for lateral bending. Whole brain MPS95 was highest for axial rotation. The rCSDM20 was more susceptible to impact direction, with several brain regions having substantial accumulation of strain for oblique flexion and lateral bending. Comparatively, rMPS95 was more consistent across all rotation directions. The present study quantified the regional brain strain response under multiple rotational vectors identifying a high amount of variability in the accumulation of strain (i.e., CSDM20) in the hypothalamus, hippocampus, and midbrain specifically. While there was a high amount of variability in the accumulation of strain for multiple regions, the maximum strain measured (i.e., MPS95) in the regions was more consistent.
Collapse
Affiliation(s)
- Tyler F Rooks
- Medical College of Wisconsin, Milwaukee, WI, United States.
| | | | | |
Collapse
|
25
|
Rooks TF, Chancey VC, Baisden JL, Yoganandan N. Regional Strain Response of an Anatomically Accurate Human Finite Element Head Model Under Frontal Versus Lateral Loading. Mil Med 2023; 188:420-427. [PMID: 37948232 DOI: 10.1093/milmed/usad178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 11/12/2023] Open
Abstract
INTRODUCTION Because brain regions are responsible for specific functions, regional damage may cause specific, predictable symptoms. However, the existing brain injury criteria focus on whole brain response. This study developed and validated a detailed human brain computational model with sufficient fidelity to include regional components and demonstrate its feasibility to obtain region-specific brain strains under selected loading. METHODS Model development used the Simulated Injury Monitor (SIMon) model as a baseline. Each SIMon solid element was split into 8, with each shell element split into 4. Anatomical regions were identified from FreeSurfer fsaverage neuroimaging template. Material properties were obtained from literature. The model was validated against experimental intracranial pressure, brain-skull displacement, and brain strain data. Model simulations used data from laboratory experiments with a rigid arm pendulum striking a helmeted head-neck system. Data from impact tests (6 m/s) at 2 helmet sites (front and left) were used. RESULTS Model validation showed good agreement with intracranial pressure response, fair to good agreement with brain-skull displacement, and good agreement for brain strain. CORrelation Analysis scores were between 0.72 and 0.93 for both maximum principal strain (MPS) and shear strain. For frontal impacts, regional MPS was between 0.14 and 0.36 (average of left and right hemispheres). For lateral impacts, MPS was between 0.20 and 0.48 (left hemisphere) and between 0.22 and 0.51 (right hemisphere). For frontal impacts, regional cumulative strain damage measure (CSDM20) was between 0.01 and 0.87. For lateral impacts, CSDM20 was between 0.36 and 0.99 (left hemisphere) and between 0.09 and 0.93 (right hemisphere). CONCLUSIONS Recognizing that neural functions are related to anatomical structures and most model-based injury metrics focus on whole brain response, this study developed an anatomically accurate human brain model to capture regional responses. Model validation was comparable with current models. The model provided sufficient anatomical detail to describe brain regional responses under different impact conditions.
Collapse
Affiliation(s)
- Tyler F Rooks
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Valeta Carol Chancey
- Injury Biomechanics and Protection Group, U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL 36362, USA
| | - Jamie L Baisden
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Narayan Yoganandan
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
26
|
Juvodden HT, Alnæs D, Lund MJ, Agartz I, Andreassen OIA, Server A, Thorsby PM, Westlye LT, Knudsen Heier S. Larger hypothalamic volume in narcolepsy type 1. Sleep 2023; 46:zsad173. [PMID: 37463428 PMCID: PMC10636249 DOI: 10.1093/sleep/zsad173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 05/18/2023] [Indexed: 07/20/2023] Open
Abstract
STUDY OBJECTIVES Narcolepsy type 1 (NT1) is a neurological sleep disorder. Postmortem studies have shown 75%-90% loss of the 50 000-70 000 hypocretin-producing neurons and 64%-94% increase in the 64 000-120 000 histaminergic neurons and conflicting indications of gliosis in the hypothalamus of NT1 patients. The aim of this study was to compare MRI-based volumes of the hypothalamus in patients with NT1 and controls in vivo. METHODS We used a segmentation tool based on deep learning included in Freesurfer and computed the volume of the whole hypothalamus, left/right part of the hypothalamus, and 10 hypothalamic subregions. We included 54 patients with post-H1N1 NT1 (39 females, mean age 21.8 ± 11.0 years) and 114 controls (77 females, mean age 23.2 ± 9.0 years). Group differences were tested with general linear models using permutation testing in Permutation Analysis of Linear Models and evaluated after 10 000 permutations, yielding two-tailed P-values. Furthermore, a stepwise Bonferroni correction was performed after dividing hypothalamus into smaller regions. RESULTS The analysis revealed larger volume for patients compared to controls for the whole hypothalamus (Cohen's d = 0.71, p = 0.0028) and for the left (d = 0.70, p = 0.0037) and right part of the hypothalamus (d = 0.65, p = 0.0075) and left (d = 0.72, p = 0.0036) and right tubular-inferior (d = 0.71, p = 0.0037) hypothalamic subregions. CONCLUSIONS In conclusion, patients with post-H1N1 NT1 showed significantly larger hypothalamic volume than controls, in particular in the tubular-inferior subregions which could reflect several processes as previous studies have indicated neuroinflammation, gliosis, and changes in the numbers of different cell types.
Collapse
Affiliation(s)
- Hilde T Juvodden
- Department of Rare Disorders, Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Oslo University Hospital, Ullevål, Oslo, Norway
| | - Dag Alnæs
- Division of Mental Health and Addiction, NORMENT Centre, University of Oslo and Oslo University Hospital, Oslo, Norway
- Departement of Psychology, Pedagogy and Law, Kristiania University College, Oslo, Norway
| | - Martina J Lund
- Division of Mental Health and Addiction, NORMENT Centre, University of Oslo and Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - OIe A Andreassen
- Division of Mental Health and Addiction, NORMENT Centre, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Andres Server
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Per M Thorsby
- Hormone Laboratory, Department of Medical Biochemistry, Biochemical Endocrinology and Metabolism Research Group, Oslo University Hospital, Aker, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Division of Mental Health and Addiction, NORMENT Centre, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Stine Knudsen Heier
- Department of Rare Disorders, Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Oslo University Hospital, Ullevål, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
Estrada S, Kügler D, Bahrami E, Xu P, Mousa D, Breteler MM, Aziz NA, Reuter M. FastSurfer-HypVINN: Automated sub-segmentation of the hypothalamus and adjacent structures on high-resolutional brain MRI. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2023; 1:1-32. [PMID: 39574480 PMCID: PMC11576934 DOI: 10.1162/imag_a_00034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/26/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2024]
Abstract
The hypothalamus plays a crucial role in the regulation of a broad range of physiological, behavioral, and cognitive functions. However, despite its importance, only a few small-scale neuroimaging studies have investigated its substructures, likely due to the lack of fully automated segmentation tools to address scalability and reproducibility issues of manual segmentation. While the only previous attempt to automatically sub-segment the hypothalamus with a neural network showed promise for 1.0 mm isotropic T1-weighted (T1w) magnetic resonance imaging (MRI), there is a need for an automated tool to sub-segment also high-resolutional (HiRes) MR scans, as they are becoming widely available, and include structural detail also from multi-modal MRI. We, therefore, introduce a novel, fast, and fully automated deep-learning method named HypVINN for sub-segmentation of the hypothalamus and adjacent structures on 0.8 mm isotropic T1w and T2w brain MR images that is robust to missing modalities. We extensively validate our model with respect to segmentation accuracy, generalizability, in-session test-retest reliability, and sensitivity to replicate hypothalamic volume effects (e.g., sex differences). The proposed method exhibits high segmentation performance both for standalone T1w images as well as for T1w/T2w image pairs. Even with the additional capability to accept flexible inputs, our model matches or exceeds the performance of state-of-the-art methods with fixed inputs. We, further, demonstrate the generalizability of our method in experiments with 1.0 mm MR scans from both the Rhineland Study and the UK Biobank-an independent dataset never encountered during training with different acquisition parameters and demographics. Finally, HypVINN can perform the segmentation in less than a minute (graphical processing unit [GPU]) and will be available in the open source FastSurfer neuroimaging software suite, offering a validated, efficient, and scalable solution for evaluating imaging-derived phenotypes of the hypothalamus.
Collapse
Affiliation(s)
- Santiago Estrada
- AI in Medical Imaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - David Kügler
- AI in Medical Imaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Emad Bahrami
- AI in Medical Imaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Computer Science Department, University of Bonn, Bonn, Germany
| | - Peng Xu
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dilshad Mousa
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Monique M.B. Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - N. Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Martin Reuter
- AI in Medical Imaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
28
|
Konadu ME, Reed MB, Kaufmann U, Handschuh PA, Spurny-Dworak B, Klöbl M, Schmidt C, Godber, Godbersen M, Briem E, Seiger R, Baldinger-Melich P, Kranz GS, Lanzenberger R, Spies M. Changes to hypothalamic volume and associated subunits during gender-affirming hormone therapy. J Psychiatry Neurosci 2023; 48:E369-E375. [PMID: 37751919 PMCID: PMC10521920 DOI: 10.1503/jpn.230017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/30/2023] [Accepted: 08/01/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Among its pleiotropic properties, gender-affirming hormone therapy (GHT) affects regional brain volumes. The hypothalamus, which regulates neuroendocrine function and associated emotional and cognitive processes, is an intuitive target for probing GHT effects. We sought to assess changes to hypothalamus and hypothalamic subunit volumes after GHT, thereby honouring the region's anatomical and functional heterogeneity. METHODS Individuals with gender dysphoria and cisgender controls underwent 2 MRI measurements, with a median interval of 145 days (interquartile range [IQR] 128.25-169.75 d, mean 164.94 d) between the first and second MRI. Transgender women (TW) and transgender men (TM) underwent the first MRI before GHT and the second MRI after approximately 4.5 months of GHT, which comprised estrogen and anti-androgen therapy in TW or testosterone therapy in TM. Hypothalamic volumes were segmented using FreeSurfer, and effects of GHT were tested using repeated-measures analysis of covariance. RESULTS The final sample included 106 participants: 38 TM, 15 TW, 32 cisgender women (CW) and 21 cisgender men (CM). Our analyses revealed group × time interaction effects for total, left and right hypothalamus volume, and for several subunits (left and right inferior tubular, left superior tubular, right anterior inferior, right anterior superior, all p corr < 0.01). In TW, volumes decreased between the first and second MRI in these regions (all p corr ≤ 0.01), and the change from the first to second MRI in TW differed significantly from that in CM and CW in several subunits (p corr < 0.05). LIMITATIONS We did not address the influence of transition-related psychological and behavioural changes. CONCLUSION Our results suggest a subunit-specific effect of GHT on hypothalamus volumes in TW. This finding is in accordance with previous reports of positive and negative effects of androgens and estrogens, respectively, on cerebral volumes.
Collapse
Affiliation(s)
- Melisande E Konadu
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - Murray B Reed
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - Ulrike Kaufmann
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - Patricia A Handschuh
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - Benjamin Spurny-Dworak
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - Manfred Klöbl
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - Clemens Schmidt
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - Godber
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - M Godbersen
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - Elisa Briem
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - René Seiger
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - Pia Baldinger-Melich
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - Georg S Kranz
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - Rupert Lanzenberger
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| | - Marie Spies
- From the Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Kranz, Lanzenberger, Spies); the Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria (Konadu, Reed, Handschuh, Spurny-Dworak, Klöbl, Schmidt, Godbersen, Briem, Seiger, Baldinger-Melich, Lanzenberger, Spies); the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria (Kaufmann); the Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Kranz)
| |
Collapse
|
29
|
Byrne H, Josev EK, Knight SJ, Scheinberg A, Rowe K, Lubitz L, Seal ML. Hypothalamus volumes in adolescent Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): impact of self-reported fatigue and illness duration. Brain Struct Funct 2023; 228:1741-1754. [PMID: 37537279 PMCID: PMC10471696 DOI: 10.1007/s00429-023-02682-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
Adolescent Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex illness of unknown aetiology. Emerging theories suggest ME/CFS may reflect a progressive, aberrant state of homeostasis caused by disturbances within the hypothalamus, yet few studies have investigated this using magnetic resonance imaging in adolescents with ME/CFS. We conducted a volumetric analysis to investigate whether whole and regional hypothalamus volumes in adolescents with ME/CFS differed compared to healthy controls, and whether these volumes were associated with fatigue severity and illness duration. 48 adolescents (25 ME/CFS, 23 controls) were recruited. Lateralised whole and regional hypothalamus volumes, including the anterior-superior, superior tubular, posterior, anterior-inferior and inferior tubular subregions, were calculated from T1-weighted images. When controlling for age, sex and intracranial volume, Bayesian linear regression models revealed no evidence for differences in hypothalamus volumes between groups. However, in the ME/CFS group, a weak linear relationship between increased right anterior-superior volumes and fatigue severity was identified, which was absent in controls. In addition, Bayesian quantile regression revealed a likely-positive association between illness duration and right superior tubular volumes in the ME/CFS group. While these findings suggest overall comparability in regional and whole hypothalamus volumes between adolescents with ME/CFS and controls, preliminary evidence was identified to suggest greater fatigue severity and longer illness duration were associated with greater right anterior-superior and superior-tubular volumes, respectively. These regions contain the anterior and superior divisions of the paraventricular nucleus, involved in the neuroendocrine response to stress, suggesting involvement in ME/CFS pathophysiology. However, replication in a larger, longitudinal cohort is required.
Collapse
Affiliation(s)
- Hollie Byrne
- Developmental Imaging, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia.
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia.
- Department of Paediatrics, The University of Melbourne, Melbourne, 3052, Australia.
| | - Elisha K Josev
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, 3052, Australia
| | - Sarah J Knight
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, 3052, Australia
| | - Adam Scheinberg
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, 3052, Australia
| | - Katherine Rowe
- Department of General Medicine, Royal Children's Hospital, Melbourne, 3052, Australia
| | - Lionel Lubitz
- Department of General Medicine, Royal Children's Hospital, Melbourne, 3052, Australia
| | - Marc L Seal
- Developmental Imaging, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, 3052, Australia
| |
Collapse
|
30
|
Brown SSG, Westwater ML, Seidlitz J, Ziauddeen H, Fletcher PC. Hypothalamic volume is associated with body mass index. Neuroimage Clin 2023; 39:103478. [PMID: 37558541 PMCID: PMC10509524 DOI: 10.1016/j.nicl.2023.103478] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/19/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023]
Abstract
The hypothalamus is an important neuroendocrine hub for the control of appetite and satiety. In animal studies it has been established that hypothalamic lesioning or stimulation causes alteration to feeding behaviour and consequently body mass, and exposure to high calorie diets induces hypothalamic inflammation. These findings suggest that alterations in hypothalamic structure and function are both a cause and a consequence of changes to food intake. However, there is limited in vivo human data relating the hypothalamus to obesity or eating disorders, in part due to technical problems relating to its small size. Here, we used a novel automated segmentation algorithm to exploratorily investigate the relationship between hypothalamic volume, normalised to intracranial volume, and body mass index (BMI). The analysis was applied across four independent datasets comprising of young adults (total n = 1,351 participants) spanning a range of BMIs (13.3 - 47.8 kg/m2). We compared underweight (including individuals with anorexia nervosa), healthy weight, overweight and obese individuals in a series of complementary analyses. We report that overall hypothalamic volume is significantly larger in overweight and obese groups of young adults. This was also observed for a number of hypothalamic sub-regions. In the largest dataset (the HCP-Young Adult dataset (n = 1111)) there was a significant relationship between hypothalamic volume and BMI. We suggest that our findings of a positive relationship between hypothalamic volume and BMI is potentially consistent with hypothalamic inflammation as seen in animal models in response to high fat diet, although more research is needed to establish a causal relationship. Overall, we present novel, in vivo findings that link elevated BMI to altered hypothalamic structure. This has important implications for study of the neural mechanisms of obesity in humans.
Collapse
Affiliation(s)
- Stephanie S G Brown
- Department of Psychiatry, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, United Kingdom.
| | - Margaret L Westwater
- Department of Psychiatry, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, United Kingdom
| | - Jakob Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA; Lifespan Brain Institute of Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Hisham Ziauddeen
- Department of Psychiatry, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Paul C Fletcher
- Department of Psychiatry, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, United Kingdom; Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom; Cambridgeshire and Peterborough NHS Trust, United Kingdom
| |
Collapse
|
31
|
Alkemade A, Großmann R, Bazin PL, Forstmann BU. Mixed methodology in human brain research: integrating MRI and histology. Brain Struct Funct 2023; 228:1399-1410. [PMID: 37365411 PMCID: PMC10335951 DOI: 10.1007/s00429-023-02675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Postmortem magnetic resonance imaging (MRI) can provide a bridge between histological observations and the in vivo anatomy of the human brain. Approaches aimed at the co-registration of data derived from the two techniques are gaining interest. Optimal integration of the two research fields requires detailed knowledge of the tissue property requirements for individual research techniques, as well as a detailed understanding of the consequences of tissue fixation steps on the imaging quality outcomes for both MRI and histology. Here, we provide an overview of existing studies that bridge between state-of-the-art imaging modalities, and discuss the background knowledge incorporated into the design, execution and interpretation of postmortem studies. A subset of the discussed challenges transfer to animal studies as well. This insight can contribute to furthering our understanding of the normal and diseased human brain, and to facilitate discussions between researchers from the individual disciplines.
Collapse
Affiliation(s)
- Anneke Alkemade
- Integrative Model-Based Cognitive Neuroscience Unit, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.
| | - Rosa Großmann
- Integrative Model-Based Cognitive Neuroscience Unit, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Pierre-Louis Bazin
- Integrative Model-Based Cognitive Neuroscience Unit, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Birte U Forstmann
- Integrative Model-Based Cognitive Neuroscience Unit, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Nowak M, Schindler S, Storch M, Geyer S, Schönknecht P. Mammillary body and hypothalamic volumes in mood disorders. J Psychiatr Res 2023; 158:216-225. [PMID: 36603316 DOI: 10.1016/j.jpsychires.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/20/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
We have previously reported an in vivo enlargement of the left hypothalamus in mood disorders using 7 T magnetic resonance imaging. The aim of this follow-up study was to find out whether the hypothalamic volume difference may be located in the mammillary bodies (MB) rather than being widespread across the hypothalamus. We developed and evaluated a detailed segmentation algorithm that allowed a reliable segmentation of the MBs, and applied it to 20 unmedicated (MDDu) and 20 medicated patients with major depressive disorder, 21 medicated patients with bipolar disorder, and 23 controls. 20 out of 23 healthy controls were matched to the MDDu. We tested for group differences in MB and hypothalamus without MB (HTh) volumes using analyses of covariance. Associations between both volumes of interest were analysed using bivariate and partial correlations. In contrast to postmortem findings, we found no statistically significant differences of the MB volumes between the study groups. Left HTh volumes differed significantly across the study groups after correction for intracranial volume (ICV) and for ICV and sex. Our result of an HTh enlargement in mood disorders was confirmed by a paired t-test between the matched pairs of MDDu and healthy controls using the native MB and HTh volumes. In the whole sample, MB volumes correlated significantly with the ipsilateral HTh volumes. Our results indicate a structural relationship between both volumes, and that our previous in vivo finding of a hypothalamus enlargement does not extend to the MB, but is limited to the HTh. The enlargement is more likely related to the dysregulation of the HPA axis than to cognitive dysfunctions accompanying mood disorders.
Collapse
Affiliation(s)
- Markus Nowak
- University Hospital Leipzig, Department of Psychiatry and Psychotherapy, Semmelweisstraße 10, 04103, Leipzig, Germany; Charité University of Medicine, Department of Psychiatry and Psychotherapy and St. Hedwig Hospital Berlin, Große Hamburger Straße 5-11, 10115, Berlin, Germany.
| | - Stephanie Schindler
- University Hospital Leipzig, Department of Psychiatry and Psychotherapy, Semmelweisstraße 10, 04103, Leipzig, Germany
| | - Melanie Storch
- University Hospital Leipzig, Department of Psychiatry and Psychotherapy, Semmelweisstraße 10, 04103, Leipzig, Germany
| | - Stefan Geyer
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurophysics, Stephanstraße 1a, 04103, Leipzig, Germany
| | - Peter Schönknecht
- University Hospital Leipzig, Department of Psychiatry and Psychotherapy, Semmelweisstraße 10, 04103, Leipzig, Germany; University Hospital Leipzig, Out-patient Department for Sexual-therapeutic Prevention and Forensic Psychiatry, Semmelweisstraße 10, 04103, Leipzig, Germany; Academic State Hospital Arnsdorf, Hufelandstraße 15, 01477, Arnsdorf, Germany
| |
Collapse
|
33
|
Tillet Y. Magnetic Resonance Imaging, a New Tool for Neuroendocrine Research in Sheep. Neuroendocrinology 2023; 113:208-215. [PMID: 35051936 DOI: 10.1159/000522087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/06/2022] [Indexed: 11/19/2022]
Abstract
Magnetic resonance imaging (MRI) brain analysis is used in rodents and for clinical investigation in humans, and it becomes also possible now for large animal models studies. Specific facilities are available with clinical scanners and benefit to neuroendocrine investigations in sheep. Sheep has a large gyrencephalic brain and its organization is very similar to primates and human, and among physiological regulations, oestrous cycle of the ewes is similar to women. Therefore, this animal is a good model for preclinical researches using MRI, as illustrated with steroids impact on the brain. New data were obtained concerning the effect of sexual steroids on neuronal networks involved in the control of reproduction and in the influence of sexual steroids on cognition. In addition to the importance of such data for understanding the role of these hormones on brain functions, they give new insights to consider the sheep as a powerful model for preclinical studies in the field of neuroendocrinology. These points are discussed in this short review.
Collapse
Affiliation(s)
- Yves Tillet
- CNRS UMR 7247, IFCE, INRAE, University of Tours, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
34
|
Chang J, Shaw TB, Holdom CJ, McCombe PA, Henderson RD, Fripp J, Barth M, Guo CC, Ngo ST, Steyn FJ. Lower hypothalamic volume with lower body mass index is associated with shorter survival in patients with amyotrophic lateral sclerosis. Eur J Neurol 2023; 30:57-68. [PMID: 36214080 PMCID: PMC10099625 DOI: 10.1111/ene.15589] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Weight loss in patients with amyotrophic lateral sclerosis (ALS) is associated with faster disease progression and shorter survival. Decreased hypothalamic volume is proposed to contribute to weight loss due to loss of appetite and/or hypermetabolism. We aimed to investigate the relationship between hypothalamic volume and body mass index (BMI) in ALS and Alzheimer's disease (AD), and the associations of hypothalamic volume with weight loss, appetite, metabolism and survival in patients with ALS. METHODS We compared hypothalamic volumes from magnetic resonance imaging scans with BMI for patients with ALS (n = 42), patients with AD (n = 167) and non-neurodegenerative disease controls (n = 527). Hypothalamic volumes from patients with ALS were correlated with measures of appetite and metabolism, and change in anthropomorphic measures and disease outcomes. RESULTS Lower hypothalamic volume was associated with lower and higher BMI in ALS (quadratic association; probability of direction = 0.96). This was not observed in AD patients or controls. Hypothalamic volume was not associated with loss of appetite (p = 0.58) or hypermetabolism (p = 0.49). Patients with lower BMI and lower hypothalamic volume tended to lose weight (p = 0.08) and fat mass (p = 0.06) over the course of their disease, and presented with an increased risk of earlier death (hazard ratio [HR] 3.16, p = 0.03). Lower hypothalamic volume alone trended for greater risk of earlier death (HR 2.61, p = 0.07). CONCLUSION These observations suggest that lower hypothalamic volume in ALS contributes to positive and negative energy balance, and is not universally associated with loss of appetite or hypermetabolism. Critically, lower hypothalamic volume with lower BMI was associated with weight loss and earlier death.
Collapse
Affiliation(s)
- Jeryn Chang
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Saint Lucia, Australia
| | - Thomas B Shaw
- Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Australia.,Centre for Advanced Imaging, The University of Queensland, Saint Lucia, Australia.,School of Information Technology and Electrical Engineering, The University of Queensland, Saint Lucia, Australia
| | - Cory J Holdom
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Saint Lucia, Australia
| | - Pamela A McCombe
- Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Australia.,UQ Centre for Clinical Research, The University of Queensland, Herston, Australia.,Wesley Medical Research, The Wesley Hospital, Auchenflower, Australia
| | - Robert D Henderson
- Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Australia.,UQ Centre for Clinical Research, The University of Queensland, Herston, Australia.,Wesley Medical Research, The Wesley Hospital, Auchenflower, Australia
| | - Jurgen Fripp
- CSIRO Health and Biosecurity, Herston, Australia
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, Saint Lucia, Australia.,School of Information Technology and Electrical Engineering, The University of Queensland, Saint Lucia, Australia
| | | | - Shyuan T Ngo
- Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Australia.,Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Saint Lucia, Australia.,Wesley Medical Research, The Wesley Hospital, Auchenflower, Australia
| | - Frederik J Steyn
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Saint Lucia, Australia.,Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Australia.,Wesley Medical Research, The Wesley Hospital, Auchenflower, Australia
| | | |
Collapse
|
35
|
Ruzok T, Schmitz-Koep B, Menegaux A, Eves R, Daamen M, Boecker H, Rieger-Fackeldey E, Priller J, Zimmer C, Bartmann P, Wolke D, Sorg C, Hedderich DM. Lower hypothalamus subunit volumes link with impaired long-term body weight gain after preterm birth. Front Endocrinol (Lausanne) 2022; 13:1057566. [PMID: 36589836 PMCID: PMC9797519 DOI: 10.3389/fendo.2022.1057566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Preterm birth is associated with an increased risk for impaired body weight gain. While it is known that in prematurity several somatic and environmental factors (e.g., endocrine factors, nutrition) modulate short- and long-term body weight gain, the contribution of potentially impaired body weight control in the brain remains elusive. We hypothesized that the structure of hypothalamic nuclei involved in body weight control is altered after preterm birth, with these alterations being associated with aberrant body weight development into adulthood. Materials and methods We assessed 101 very preterm (i.e., <32 weeks of gestational age) and/or very low birth weight (i.e., <1500g; VP/VLBW) and 110 full-term born (FT) adults of the population-based Bavarian Longitudinal Study with T1-weighted MRI, deep learning-based hypothalamus subunit segmentation, and multiple body weight assessments from birth into adulthood. Results Volumes of the whole hypothalamus and hypothalamus subunits relevant for body weight control were reduced in VP/VLBW adults and associated with birth variables (i.e., gestational age and intensity of neonatal treatment), body weight (i.e., weight at birth and adulthood), and body weight trajectories (i.e., trajectory slopes and cluster/types such as long-term catch-up growth). Particularly, VP/VLBW subgroups, whose individuals showed catch-up growth and/or were small for gestational age, were mostly associated with volumes of distinct hypothalamus subunits such as lateral or infundibular/ventromedial hypothalamus. Conclusion Results demonstrate lower volumes of body weight control-related hypothalamus subunits after preterm birth that link with long-term body weight gain. Data suggest postnatal development of body weight -related hypothalamic nuclei in VP/VLBW individuals that corresponds with distinct body weight trajectories into adulthood.
Collapse
Affiliation(s)
- Tobias Ruzok
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC, Technical University of Munich Neuroimaging Center, Munich, Germany
| | - Benita Schmitz-Koep
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC, Technical University of Munich Neuroimaging Center, Munich, Germany
| | - Aurore Menegaux
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC, Technical University of Munich Neuroimaging Center, Munich, Germany
| | - Robert Eves
- Department of Psychology, University of Warwick, Coventry, United Kingdom
- Department of Psychology, Bielefeld University, Bielefeld, Germany
| | - Marcel Daamen
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Esther Rieger-Fackeldey
- Department of Neonatology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Neuropsychiatry, Charité - Universitätsmedizin Berlin and German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- UK Dementia Research Institute, University of Edinburgh (UK DRI), Edinburgh, United Kingdom
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC, Technical University of Munich Neuroimaging Center, Munich, Germany
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Christian Sorg
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC, Technical University of Munich Neuroimaging Center, Munich, Germany
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dennis M. Hedderich
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC, Technical University of Munich Neuroimaging Center, Munich, Germany
| |
Collapse
|
36
|
Rodrigues L, Rezende TJR, Wertheimer G, Santos Y, França M, Rittner L. A benchmark for hypothalamus segmentation on T1-weighted MR images. Neuroimage 2022; 264:119741. [PMID: 36368499 DOI: 10.1016/j.neuroimage.2022.119741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 09/23/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
The hypothalamus is a small brain structure that plays essential roles in sleep regulation, body temperature control, and metabolic homeostasis. Hypothalamic structural abnormalities have been reported in neuropsychiatric disorders, such as schizophrenia, amyotrophic lateral sclerosis, and Alzheimer's disease. Although mag- netic resonance (MR) imaging is the standard examination method for evaluating this region, hypothalamic morphological landmarks are unclear, leading to subjec- tivity and high variability during manual segmentation. Due to these limitations, it is common to find contradicting results in the literature regarding hypothalamic volumetry. To the best of our knowledge, only two automated methods are available in the literature for hypothalamus segmentation, the first of which is our previous method based on U-Net. However, both methods present performance losses when predicting images from different datasets than those used in training. Therefore, this project presents a benchmark consisting of a diverse T1-weighted MR image dataset comprising 1381 subjects from IXI, CC359, OASIS, and MiLI (the latter created specifically for this benchmark). All data were provided using automatically generated hypothalamic masks and a subset containing manually annotated masks. As a baseline, a method for fully automated segmentation of the hypothalamus on T1-weighted MR images with a greater generalization ability is presented. The pro- posed method is a teacher-student-based model with two blocks: segmentation and correction, where the second corrects the imperfections of the first block. After using three datasets for training (MiLI, IXI, and CC359), the prediction performance of the model was measured on two test sets: the first was composed of data from IXI, CC359, and MiLI, achieving a Dice coefficient of 0.83; the second was from OASIS, a dataset not used for training, achieving a Dice coefficient of 0.74. The dataset, the baseline model, and all necessary codes to reproduce the experiments are available at https://github.com/MICLab-Unicamp/HypAST and https://sites.google.com/ view/calgary-campinas-dataset/hypothalamus-benchmarking. In addition, a leaderboard will be maintained with predictions for the test set submitted by anyone working on the same task.
Collapse
Affiliation(s)
- Livia Rodrigues
- Medical Image Computing Lab, School of Electrical and Computer Engineering (FEEC), University of Campinas, Albert Einstein Street, 400, Campinas, SP 13083-887, Brazil.
| | - Thiago Junqueira Ribeiro Rezende
- Department of Neurology, School of Medical Sciences, University of Campinas, Tessalia Vieira de Camargo Street, 126, Campinas, SP 13083-887, Brazil
| | - Guilherme Wertheimer
- Department of Neurology, School of Medical Sciences, University of Campinas, Tessalia Vieira de Camargo Street, 126, Campinas, SP 13083-887, Brazil
| | - Yves Santos
- Department of Neurology, School of Medical Sciences, University of Campinas, Tessalia Vieira de Camargo Street, 126, Campinas, SP 13083-887, Brazil
| | - Marcondes França
- Department of Neurology, School of Medical Sciences, University of Campinas, Tessalia Vieira de Camargo Street, 126, Campinas, SP 13083-887, Brazil
| | - Leticia Rittner
- Medical Image Computing Lab, School of Electrical and Computer Engineering (FEEC), University of Campinas, Albert Einstein Street, 400, Campinas, SP 13083-887, Brazil
| |
Collapse
|
37
|
Khobo IL, Jankiewicz M, Holmes MJ, Little F, Cotton MF, Laughton B, van der Kouwe AJW, Moreau A, Nwosu E, Meintjes EM, Robertson FC. Multimodal magnetic resonance neuroimaging measures characteristic of early cART-treated pediatric HIV: A feature selection approach. Hum Brain Mapp 2022; 43:4128-4144. [PMID: 35575438 PMCID: PMC9374890 DOI: 10.1002/hbm.25907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/03/2022] [Accepted: 04/26/2022] [Indexed: 11/09/2022] Open
Abstract
Children with perinatally acquired HIV (CPHIV) have poor cognitive outcomes despite early combination antiretroviral therapy (cART). While CPHIV-related brain alterations can be investigated separately using proton magnetic resonance spectroscopy (1 H-MRS), structural magnetic resonance imaging (sMRI), diffusion tensor imaging (DTI), and functional MRI (fMRI), a set of multimodal MRI measures characteristic of children on cART has not been previously identified. We used the embedded feature selection of a logistic elastic-net (EN) regularization to select neuroimaging measures that distinguish CPHIV from controls and measured their classification performance via the area under the receiver operating characteristic curve (AUC) using repeated cross validation. We also wished to establish whether combining MRI modalities improved the models. In single modality analysis, sMRI volumes performed best followed by DTI, whereas individual EN models on spectroscopic, gyrification, and cortical thickness measures showed no class discrimination capability. Adding DTI and 1 H-MRS in basal measures to sMRI volumes produced the highest classification performancevalidation accuracy = 85 % AUC = 0.80 . The best multimodal MRI set consisted of 22 DTI and sMRI volume features, which included reduced volumes of the bilateral globus pallidus and amygdala, as well as increased mean diffusivity (MD) and radial diffusivity (RD) in the right corticospinal tract in cART-treated CPHIV. Consistent with previous studies of CPHIV, select subcortical volumes obtained from sMRI provide reasonable discrimination between CPHIV and controls. This may give insight into neuroimaging measures that are relevant in understanding the effects of HIV on the brain, thereby providing a starting point for evaluating their link with cognitive performance in CPHIV.
Collapse
Affiliation(s)
- Isaac L. Khobo
- Division of Biomedical Engineering, Department of Human Biology, Biomedical Engineering Research CenterUniversity of Cape TownCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Marcin Jankiewicz
- Division of Biomedical Engineering, Department of Human Biology, Biomedical Engineering Research CenterUniversity of Cape TownCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- Cape Universities Body Imaging CenterUniversity of Cape TownCape TownSouth Africa
| | - Martha J. Holmes
- Division of Biomedical Engineering, Department of Human Biology, Biomedical Engineering Research CenterUniversity of Cape TownCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Francesca Little
- Department of Statistical SciencesUniversity of Cape TownCape TownSouth Africa
| | - Mark F. Cotton
- Department of Pediatrics & Child Health, Family Center for Research with Ubuntu, Tygerberg HospitalStellenbosch UniversityCape TownSouth Africa
| | - Barbara Laughton
- Department of Pediatrics & Child Health, Family Center for Research with Ubuntu, Tygerberg HospitalStellenbosch UniversityCape TownSouth Africa
| | - Andre J. W. van der Kouwe
- Division of Biomedical Engineering, Department of Human Biology, Biomedical Engineering Research CenterUniversity of Cape TownCape TownSouth Africa
- A.A. Martinos Centre for Biomedical ImagingMassachusetts General HospitalBostonMassachusettsUSA
- Department of RadiologyHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Emmanuel Nwosu
- Division of Biomedical Engineering, Department of Human Biology, Biomedical Engineering Research CenterUniversity of Cape TownCape TownSouth Africa
| | - Ernesta M. Meintjes
- Division of Biomedical Engineering, Department of Human Biology, Biomedical Engineering Research CenterUniversity of Cape TownCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- Cape Universities Body Imaging CenterUniversity of Cape TownCape TownSouth Africa
| | - Frances C. Robertson
- Division of Biomedical Engineering, Department of Human Biology, Biomedical Engineering Research CenterUniversity of Cape TownCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- Cape Universities Body Imaging CenterUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
38
|
Hypothalamic volume and asymmetry in the pediatric population: a retrospective MRI study. Brain Struct Funct 2022; 227:2489-2501. [PMID: 35972644 DOI: 10.1007/s00429-022-02542-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/24/2022] [Indexed: 11/02/2022]
Abstract
This study investigated age- and sex-related changes in the volumetric development and asymmetry of the normal hypothalamus from birth to 18. Individuals aged 0-18 with MRI from 2012 to 2020 were selected for this retrospective study. Seven hundred individuals (369 [52.7%] Males) who had 3D-T1 sequences and were radiologically normal were included in the study. Hypothalamus volume was calculated using MRICloud automated segmentation pipelines. Hypothalamus asymmetry was calculated as the difference between right and left volumes divided by the mean (in percent). The measurement results of 23 age groups were analyzed with SPSS (ver.23). The mean hypothalamic volume in the first year of life reached 69% of the mean hypothalamic volume between 0 and 18 years (1119.01 ± 196.09 mm3), 88% in the second year. The mean volume of the hypothalamus without mammillary body increased in the five-age segment, while it increased in the six-age segment with mammillary body. Although the hypothalamus volumes of males were larger than females in all age groups, a significant difference was found between the age groups of 3-8 and 12-18 years (p < 0.05). In the pediatric brain, the hypothalamus was right-lateralized between 2.39% and 14.02%. The first 2 years of life were critical in the volumetric development of the hypothalamus. A segmental and logarithmic increase in the hypothalamus volume was demonstrated. In the pediatric brain, asymmetry and sexual dimorphism were detected in the hypothalamus. Information on normal hypothalamus structure and development facilitates the recognition of abnormal developmental trajectories.
Collapse
|
39
|
Guo J, Jiang Z, Biswal BB, Zhou B, Xie D, Gao Q, Sheng W, Chen H, Zhang Y, Fan Y, Wang J, Liu C, Chen H. Hypothalamic Atrophy, Expanded
CAG
Repeat, and Low Body Mass Index in Spinocerebellar Ataxia Type 3. Mov Disord 2022; 37:1541-1546. [PMID: 35426475 DOI: 10.1002/mds.29029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jing Guo
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital University of Electronic Science and Technology of China Chengdu China
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology University of Electronic Science and Technology of China Chengdu China
- Department of Radiology, Southwest Hospital Army Medical University (Third Military Medical University) Chongqing China
| | - Zhouyu Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology University of Electronic Science and Technology of China Chengdu China
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province University of Electronic Science and Technology of China Chengdu China
| | - Bharat B. Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology University of Electronic Science and Technology of China Chengdu China
- Department of Biomedical Engineering New Jersey Institute of Technology Newark New Jersey USA
| | - Bo Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital University of Electronic Science and Technology of China Chengdu China
| | - Dongjing Xie
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital Army Medical University (Third Military Medical University) Chongqing China
| | - Qing Gao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology University of Electronic Science and Technology of China Chengdu China
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province University of Electronic Science and Technology of China Chengdu China
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology University of Electronic Science and Technology of China Chengdu China
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province University of Electronic Science and Technology of China Chengdu China
| | - Hui Chen
- Department of Radiology, Southwest Hospital Army Medical University (Third Military Medical University) Chongqing China
| | - Yuhan Zhang
- Department of Radiology, Southwest Hospital Army Medical University (Third Military Medical University) Chongqing China
| | - Yunshuang Fan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology University of Electronic Science and Technology of China Chengdu China
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province University of Electronic Science and Technology of China Chengdu China
| | - Jian Wang
- Department of Radiology, Southwest Hospital Army Medical University (Third Military Medical University) Chongqing China
| | - Chen Liu
- Department of Radiology, Southwest Hospital Army Medical University (Third Military Medical University) Chongqing China
| | - Huafu Chen
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital University of Electronic Science and Technology of China Chengdu China
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology University of Electronic Science and Technology of China Chengdu China
- Department of Radiology, Southwest Hospital Army Medical University (Third Military Medical University) Chongqing China
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province University of Electronic Science and Technology of China Chengdu China
| |
Collapse
|
40
|
Roger C, Lasbleiz A, Guye M, Dutour A, Gaborit B, Ranjeva JP. The Role of the Human Hypothalamus in Food Intake Networks: An MRI Perspective. Front Nutr 2022; 8:760914. [PMID: 35047539 PMCID: PMC8762294 DOI: 10.3389/fnut.2021.760914] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Hypothalamus (HT), this small structure often perceived through the prism of neuroimaging as morphologically and functionally homogeneous, plays a key role in the primitive act of feeding. The current paper aims at reviewing the contribution of magnetic resonance imaging (MRI) in the study of the role of the HT in food intake regulation. It focuses on the different MRI techniques that have been used to describe structurally and functionally the Human HT. The latest advances in HT parcellation as well as perspectives in this field are presented. The value of MRI in the study of eating disorders such as anorexia nervosa (AN) and obesity are also highlighted.
Collapse
Affiliation(s)
- Coleen Roger
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Centre National de la Recherche Scientifique (CNRS), Université Aix-Marseille, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital Universitaire de la Timone, Marseille, France
| | - Adèle Lasbleiz
- Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital Universitaire de la Timone, Marseille, France.,Département d'Endocrinologie, Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital de la Conception, Marseille, France
| | - Maxime Guye
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Centre National de la Recherche Scientifique (CNRS), Université Aix-Marseille, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital Universitaire de la Timone, Marseille, France
| | - Anne Dutour
- Département d'Endocrinologie, Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital de la Conception, Marseille, France
| | - Bénédicte Gaborit
- Département d'Endocrinologie, Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital de la Conception, Marseille, France
| | - Jean-Philippe Ranjeva
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Centre National de la Recherche Scientifique (CNRS), Université Aix-Marseille, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital Universitaire de la Timone, Marseille, France
| |
Collapse
|
41
|
Chang RS, Cerit H, Hye T, Durham EL, Aizley H, Boukezzi S, Haimovici F, Goldstein JM, Dillon DG, Pizzagalli DA, Holsen LM. Stress-induced alterations in HPA-axis reactivity and mesolimbic reward activation in individuals with emotional eating. Appetite 2022; 168:105707. [PMID: 34562531 PMCID: PMC8671188 DOI: 10.1016/j.appet.2021.105707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Emotional eating has emerged as a contributing factor to overeating, potentially leading to obesity or disordered eating behaviors. However, the underlying biological mechanisms related to emotional eating remain unclear. The present study examined emotional, hormonal, and neural alterations elicited by an acute laboratory stressor in individuals with and without emotional eating. METHODS Emotional (n = 13) and non-emotional eaters (n = 15) completed two main study visits, one week apart: one visit included a Stress version and the other a No-stress version of the Maastricht Acute Stress Task (MAST). Immediately pre- and post-MAST, blood was drawn for serum cortisol and participants rated their anxiety level. After the MAST, participants completed a Food Incentive Delay (FID) task during functional magnetic resonance imaging (fMRI), followed by an ad libitum snack period. RESULTS Emotional eaters exhibited elevated anxiety (p = 0.037) and cortisol (p = 0.001) in response to the Stress MAST. There were no changes in anxiety or cortisol among non-emotional eaters in response to the Stress MAST or in either group in response to the No-stress MAST. In response to the Stress MAST, emotional eaters exhibited reduced activation during anticipation of food reward in mesolimbic reward regions (caudate: p = 0.014, nucleus accumbens: p = 0.022, putamen: p = 0.013), compared to non-emotional eaters. Groups did not differ in snack consumption. CONCLUSIONS These data indicate disrupted neuroendocrine and neural responsivity to psychosocial stress amongst otherwise-healthy emotional eaters, who demonstrated hyperactive HPA-axis response coupled with hypoactivation in reward circuitry. Differential responsivity to stress may represent a risk factor in the development of maladaptive eating behaviors.
Collapse
Affiliation(s)
- Rose Seoyoung Chang
- Division of Women’s Health, Department of Medicine, 75 Francis St., Boston, Massachusetts, 02115, USA
| | - Hilâl Cerit
- Division of Women’s Health, Department of Medicine, 75 Francis St., Boston, Massachusetts, 02115, USA,Harvard Medical School, 25 Shattuck St., Boston, Massachusetts, 02115, USA
| | - Taryn Hye
- Division of Women’s Health, Department of Medicine, 75 Francis St., Boston, Massachusetts, 02115, USA
| | - E. Leighton Durham
- Division of Women’s Health, Department of Medicine, 75 Francis St., Boston, Massachusetts, 02115, USA
| | - Harlyn Aizley
- Department of Psychiatry, Massachusetts General Hospital, 55 Fruit St., Boston, MA, 02114, USA
| | - Sarah Boukezzi
- Division of Women’s Health, Department of Medicine, 75 Francis St., Boston, Massachusetts, 02115, USA,Harvard Medical School, 25 Shattuck St., Boston, Massachusetts, 02115, USA
| | - Florina Haimovici
- Department of Psychiatry, Brigham and Women’s Hospital, 75 Francis St., Boston, Massachusetts, 02115, USA,Harvard Medical School, 25 Shattuck St., Boston, Massachusetts, 02115, USA
| | - Jill M. Goldstein
- Division of Women’s Health, Department of Medicine, 75 Francis St., Boston, Massachusetts, 02115, USA,Harvard Medical School, 25 Shattuck St., Boston, Massachusetts, 02115, USA,Department of Psychiatry, Massachusetts General Hospital, 55 Fruit St., Boston, MA, 02114, USA,Department of Obstetrics and Gynecology, Massachusetts General Hospital, 55 Fruit St., Boston, MA, 02114, USA,Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, 55 Fruit St., Boston, MA, 02114, USA
| | - Daniel G. Dillon
- Harvard Medical School, 25 Shattuck St., Boston, Massachusetts, 02115, USA,Center for Depression, Anxiety and Stress Research, McLean Hospital, 115 Mill St., Belmont, Massachusetts, 02478, USA
| | - Diego A. Pizzagalli
- Harvard Medical School, 25 Shattuck St., Boston, Massachusetts, 02115, USA,Center for Depression, Anxiety and Stress Research, McLean Hospital, 115 Mill St., Belmont, Massachusetts, 02478, USA,McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, Massachusetts, 02478, USA
| | - Laura M. Holsen
- Division of Women’s Health, Department of Medicine, 75 Francis St., Boston, Massachusetts, 02115, USA,Department of Psychiatry, Brigham and Women’s Hospital, 75 Francis St., Boston, Massachusetts, 02115, USA,Harvard Medical School, 25 Shattuck St., Boston, Massachusetts, 02115, USA,Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, 55 Fruit St., Boston, MA, 02114, USA,Corresponding author: Laura Holsen, Ph.D., Division of Women’s Health, 1620 Tremont St., BC-3, Brigham and Women’s Hospital, Boston, MA 02120,
| |
Collapse
|
42
|
Spindler M, Thiel CM. Quantitative magnetic resonance imaging for segmentation and white matter extraction of the hypothalamus. J Neurosci Res 2021; 100:564-577. [PMID: 34850453 DOI: 10.1002/jnr.24988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 11/09/2022]
Abstract
Since the hypothalamus is involved in many neuroendocrine, metabolic, and affective disorders, detailed hypothalamic imaging has become of major interest to better characterize disease-induced tissue damages and abnormalities. Still, image contrast of conventional anatomical magnetic resonance imaging lacks morphological detail, thus complicating complete and precise segmentation of the hypothalamus. The hypothalamus' position lateral to the third ventricle and close proximity to white matter tracts including the optic tract, fornix, and mammillothalamic tract display one of the remaining shortcomings of hypothalamic segmentation, as reliable exclusion of white matter is not yet possible. Recent studies found that quantitative magnetic resonance imaging (qMRI), a method to create maps of different standardized tissue contents, improved segmentation of cortical and subcortical brain regions. So far, this has not been tested for the hypothalamus. Therefore, in this study, we investigated the usability of qMRI and diffusion MRI for the purpose of detailed and reproducible manual segmentation of the hypothalamus and data-driven white matter extraction and compared our results to recent state-of-the-art segmentations. Our results show that qMRI presents good contrast for delineation of the hypothalamus and white matter, and that the properties of these images differ between subunits, such that they can be used to reliably exclude white matter from hypothalamic tissue. We propose that qMRI poses a useful addition to detailed hypothalamic segmentation and volumetry.
Collapse
Affiliation(s)
- Melanie Spindler
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Christiane M Thiel
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,Cluster of Excellence "Hearing4all", Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,Research Centre Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
43
|
Long M, Puhlmann L, Vrtička P. Hypothalamus volume in men: Investigating associations with paternal status, self-reported caregiving beliefs, and adult attachment style. Soc Neurosci 2021; 16:639-652. [PMID: 34704890 DOI: 10.1080/17470919.2021.1997799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Most studies on mammalian caregiving and attachment focused on the mother-child relationship, particularly in humans. Yet, changing societal roles of male caregivers have highlighted the necessity for research with fathers.We examined the volume of the hypothalamus, an important subcortical brain area for caregiving and attachment, in N = 50 fathering (child age 5-6 years) and N = 45 non-fathering men using a novel technique to identify the hypothalamus in 3T MRI. We furthermore employed three self-report measures to assess interindividual differences in adult attachment style across all men and caregiving beliefs in fathers.While we did not observe any significant difference in hypothalamus volume between fathers and non-fathers or associations between hypothalamus volume and self-reported adult attachment style across all men, self-reported caregiving beliefs were positively related to total hypothalamus volume in fathers. A follow-up analysis showed that fathers' self-reported belief that a father's role is important to child development was specifically related to tuberal hypothalamus volume, while self-reported enjoyment of spending time with the child was not associated with sub-regional hypothalamus volume.Together, these findings suggest that interindividual variability in self-reported caregiving beliefs in fathers is related to brain structure, warranting further research.
Collapse
Affiliation(s)
- M Long
- Alberta Children's Hospital Research Institute, University of Calgary, Canada.,Research Group "Social Stress and Family Health", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - L Puhlmann
- Research Group "Social Stress and Family Health", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - P Vrtička
- Research Group "Social Stress and Family Health", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Centre for Brain Science, Department of Psychology, University of Essex, Colchester, UK
| |
Collapse
|
44
|
Holsen LM, Hoge WS, Lennerz BS, Cerit H, Hye T, Moondra P, Goldstein JM, Ebbeling CB, Ludwig DS. Diets Varying in Carbohydrate Content Differentially Alter Brain Activity in Homeostatic and Reward Regions in Adults. J Nutr 2021; 151:2465-2476. [PMID: 33852013 PMCID: PMC8349124 DOI: 10.1093/jn/nxab090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/18/2021] [Accepted: 03/11/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Obesity has one of the highest refractory rates of all chronic diseases, in part because weight loss induced by calorie restriction, the first-line treatment for obesity, elicits biological adaptations that promote weight regain. Although acute feeding trials suggest a role for macronutrient composition in modifying brain activity related to hunger and satiety, relevance of these findings to weight-loss maintenance has not been studied. OBJECTIVES We investigated effects of weight-loss maintenance diets varying in macronutrient content on regional cerebral blood flow (rCBF) in brain regions involved in hunger and reward. METHODS In conjunction with a randomized controlled feeding trial, we investigated the effects of weight-loss maintenance diets varying in carbohydrate content [high, 60% of total energy: n = 20; 6 men/14 women; mean age: 32.5 y; mean BMI (in kg/m 2): 27.4; moderate, 40% of total energy: n = 22; 10 men/12 women; mean age: 32.5 y; mean BMI: 29.0; low, 20% of total energy: n = 28; 12 men/16 women; mean age: 33.2 y; mean BMI: 27.7] on rCBF in brain regions involved in hunger and reward preprandial and 4 h postprandial after 14-20 wk on the diets. The primary outcome was rCBF in the nucleus accumbens (NAcc) at 4 h postprandial; the secondary outcome was preprandial rCBF in the hypothalamus. RESULTS Consistent with a priori hypothesis, at 4 h postprandial, NAcc rCBF was 43% higher in adults assigned to the high- compared with low-carbohydrate diet {P[family-wise error (FWE)-corrected] < 0.05}. Preprandial hypothalamus rCBF was 41% higher on high-carbohydrate diet [P(FWE-corrected) < 0.001]. Exploratory analyses revealed that elevated rCBF on high-carbohydrate diet was not specific to prandial state: preprandial NAcc rCBF [P(FWE-corrected) < 0.001] and 4 h postprandial rCBF in hypothalamus [P(FWE-corrected) < 0.001]. Insulin secretion predicted differential postprandial activation of the NAcc by diet. CONCLUSIONS We report significant differences in rCBF in adults assigned to diets varying in carbohydrate content for several months, which appear to be partially associated with insulin secretion. These findings suggest that chronic intake of a high-carbohydrate diet may affect brain reward and homeostatic activity in ways that could impede weight-loss maintenance. This trial was registered at clinicaltrials.gov as NCT02300857.
Collapse
Affiliation(s)
- Laura M Holsen
- Division of Women's Health and Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - W Scott Hoge
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Belinda S Lennerz
- Harvard Medical School, Boston, MA, USA
- New Balance Foundation Obesity Prevention Center, Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
| | - Hilâl Cerit
- Division of Women's Health and Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Taryn Hye
- Division of Women's Health and Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Priyanka Moondra
- Division of Women's Health and Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jill M Goldstein
- Division of Women's Health and Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Psychiatry and Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Cara B Ebbeling
- Harvard Medical School, Boston, MA, USA
- New Balance Foundation Obesity Prevention Center, Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
| | - David S Ludwig
- Harvard Medical School, Boston, MA, USA
- New Balance Foundation Obesity Prevention Center, Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
45
|
Kerem L, Holsen L, Fazeli P, Bredella MA, Mancuso C, Resulaj M, Holmes TM, Klibanski A, Lawson EA. Modulation of neural fMRI responses to visual food cues by overeating and fasting interventions: A preliminary study. Physiol Rep 2021; 8:e14639. [PMID: 33369272 PMCID: PMC7758977 DOI: 10.14814/phy2.14639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/17/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Neural processing of visual food stimuli is perturbated at extremes of weight. Human fMRI studies investigating diet effects on neural processing of food cues could aid in understanding altered brain activation in conditions of under- and overnutrition. In this preliminary study, we examined brain activity changes in response to 10 days of high-calorie-diet (HCD), followed by 10 days of fasting, hypothesizing that HCD would decrease activation in homeostatic and reward regions, while fasting would increase activation in homeostatic/reward regions and decrease activation of self-control regions. Seven adults completed fMRI scanning during a food-cue paradigm (high- and low-calorie food images and nonfood objects), pre- and post-10-day HCD. Six adults completed fMRI scanning pre- and post-10-day fasting. BOLD response changes for contrasts of interest pre- versus post-intervention in regions of interest were examined (peak-level significance set at p(FWE)<0.05). BMI increased by 6.8% and decreased by 8.1% following HCD and fasting, respectively. Following HCD, BOLD response in the hypothalamus (homeostatic control), was attenuated at trend level in response to high- versus low-calorie foods. Following fasting, BOLD response to food versus objects in inhibitory-control areas (dorsolateral prefrontal cortex) was reduced, whereas the activation of homeostatic (hypothalamus), gustatory, and reward brain areas (anterior insula and orbitofrontal cortex) increased. Overfeeding and fasting for 10 days modulate brain activity in response to food stimuli, suggesting that in healthy adults, changes in energy balance affect saliency and reward value of food cues. Future studies are required to understand this interaction in states of unhealthy weight.
Collapse
Affiliation(s)
- Liya Kerem
- Neuroendocrine UnitDepartment of MedicineMassachusetts General HospitalBostonMAUSA
- Pediatric EndocrinologyMassachusetts General Hospital for ChildrenBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
| | - Laura Holsen
- Harvard Medical SchoolBostonMAUSA
- Division of Women’s HealthDepartment of MedicineBrigham and Women’s HospitalBostonMaUSA
- Department of PsychiatryBrigham and Women’s HospitalBostonMAUSA
| | - Pouneh Fazeli
- Neuroendocrine UnitDepartment of MedicineMassachusetts General HospitalBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
| | - Miriam A. Bredella
- Harvard Medical SchoolBostonMAUSA
- Department of RadiologyMassachusetts General HospitalBostonMAUSA
| | - Christopher Mancuso
- Neuroendocrine UnitDepartment of MedicineMassachusetts General HospitalBostonMAUSA
| | - Megi Resulaj
- Neuroendocrine UnitDepartment of MedicineMassachusetts General HospitalBostonMAUSA
| | - Tara M. Holmes
- Translational and Clinical Research CenterMassachusetts General HospitalBostonMAUSA
| | - Anne Klibanski
- Neuroendocrine UnitDepartment of MedicineMassachusetts General HospitalBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
| | - Elizabeth A. Lawson
- Neuroendocrine UnitDepartment of MedicineMassachusetts General HospitalBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
46
|
Lemaire JJ, De Salles A. MRI maps, segregation, and white matter connectivity of the human hypothalamus in health. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:87-94. [PMID: 34225986 DOI: 10.1016/b978-0-12-819975-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The human hypothalamus is composed of several gray matter territories, forming 10 different structures mainly referred to as nuclei: the preoptic, suprachiasmatic, supraoptic, infundibular, paraventricular, dorsomedial, ventromedial, posterior (dorsal; dorsal hypothalamic area), and tuberomamillary nuclei, and the lateral hypothalamic area. The macroconnectivity, described since the middle of the 19th century, is currently probed using MRI methods, notably those relying on diffusion techniques. The structural connections can be grouped as follows: connections with the olfactory system; stria terminalis connections; stria medullaris connections; ansa lenticularis connections; subthalamus connections; optic tract connections; intrahypothalamic connections; hypothalamo-hypophysis connections; hypothalamic commissures; cortex connections.
Collapse
Affiliation(s)
- Jean-Jacques Lemaire
- Institut Pascal, Clermont-Ferrand, and Service de Neurochirurgie, Centre Hospitalier et Universitaire, Clermont-Ferrand, France.
| | - Antonio De Salles
- Departments of Neurosurgery and Radiation Oncology, University of California, Los Angeles, CA, United States; Department of Neurosurgery and Radiation Oncology, HCor Neuroscience, São Paulo, Brazil
| |
Collapse
|
47
|
Alkemade A, Forstmann BU. Imaging of the human subthalamic nucleus. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:403-416. [PMID: 34225944 DOI: 10.1016/b978-0-12-820107-7.00025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The human subthalamic nucleus (STN) is a small lens shaped iron rich nucleus, which has gained substantial interest as a target for deep brain stimulation surgery for a variety of movement disorders. The internal anatomy of the human STN has not been fully elucidated, and an intensive debate, discussing the level of overlap between putative limbic, associative, and motor zones within the STN is still ongoing. In this chapter, we have summarized anatomical information obtained using different neuroimaging modalities focusing on the anatomy of the STN. Additionally, we have highlighted a number of major challenges faced when using magnetic resonance imaging (MRI) approaches for the visualization of small iron rich deep brain structures such as the STN. In vivo MRI and postmortem microscopy efforts provide valuable complementary information on the internal structure of the STN, although the results are not always fully aligned. Finally, we provide an outlook on future efforts that could contribute to the development of an integrative research approach that will help with the reconciliation of seemingly divergent results across research approaches.
Collapse
Affiliation(s)
- Anneke Alkemade
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - Birte U Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
48
|
Hong AR, Lee M, Lee JH, Kim JH, Kim YH, Choi HJ. Clinical Implication of Individually Tailored Segmentation Method for Distorted Hypothalamus in Craniopharyngioma. Front Endocrinol (Lausanne) 2021; 12:763523. [PMID: 34987474 PMCID: PMC8720929 DOI: 10.3389/fendo.2021.763523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Several attempts have been done to capture damaged hypothalamus (HT) using volumetric measurements to predict the development of hypothalamic obesity in patients with craniopharyngioma (CP). This study was to develop a novel method of HT volume measurement and examine the associations between postoperative HT volume and clinical parameters in patients with CP. METHODS We included 78 patients with adult-onset CP who underwent surgical resection. Postoperative HT volume was measured using T1- and T2-weighted magnetic resonance imaging (MRI) with a slice thickness of 3 mm, and corrected for temporal lobe volume. We collected data on pre- and postoperative body weights, which were measured at the time of HT volume measurements. RESULTS The corrected postoperative HT volume measured using T1- and T2-weighted images was significantly correlated (r=0.51 [95% confidence interval (CI) 0.32 to 0.67], P<0.01). However, HT volume was overestimated using T1-weighted images owing to obscured MR signal of the thalamus in patients with severe HT damage. Therefore, we used T2-weighted images to evaluate its clinical implications in 72 patients with available medical data. Postoperative HT volume was negatively associated with preoperative body weight and preoperative tumor volume (r=-0.25 [95% CI -0.45 to -0.04], P=0.04 and r=-0.26 [95% CI -0.40 to -0.15], P=0.03, respectively). In the subgroup analysis of CP patients who underwent primary surgery (n=56), pre- and postoperative body weights were negatively associated with HT volume (r=-0.30 [95% CI -0.53 to -0.03], P=0.03 and r=-0.29 [95% CI -0.53 to -0.02], P=0.03, respectively). CONCLUSIONS Adult-onset CP patients showed negative associations between postoperative HT volume and preoperative/postoperative body weight using a new method of HT volume measurement based on T2-weighted images.
Collapse
Affiliation(s)
- A Ram Hong
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Miwoo Lee
- Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung Hyun Lee
- Department of Pituitary Center, Seoul National University College of Medicine, Seoul, South Korea
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung Hee Kim
- Department of Pituitary Center, Seoul National University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Yong Hwy Kim
- Department of Pituitary Center, Seoul National University College of Medicine, Seoul, South Korea
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyung Jin Choi
- Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea
- *Correspondence: Hyung Jin Choi,
| |
Collapse
|
49
|
Skakkebæk A, Wallentin M, Gravholt CH. Klinefelter syndrome or testicular dysgenesis: Genetics, endocrinology, and neuropsychology. HANDBOOK OF CLINICAL NEUROLOGY 2021; 181:445-462. [PMID: 34238477 DOI: 10.1016/b978-0-12-820683-6.00032-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Klinefelter syndrome (47,XXY) is a frequent chromosomal disorder among males, often presenting with hypergonadotropic hypogonadism, small firm testicles, metabolic disorders, neurocognitive challenges, and increased height. Neurologic disorders such as epilepsy, seizures, and tremor as well as psychiatric disorders are also seen more frequently. The neurocognitive deficits seen are present in many areas of cognition, typically affecting general cognitive abilities, language, and executive functioning. Also, social dysfunction is frequent. Dyslexia is present in more than half of all males. Brain imaging studies generally show a typical pattern, with many nuclei and brain areas being smaller than among controls. However, it has not been possible to link the brain alterations found in imaging studies with the neurocognitive profile. The genetics underlying the phenotypic traits found among males with Klinefelter syndrome still remains to be elucidated; however, recent studies have described pervasive changes in the methylome and transcriptome and new and interesting candidate genes have been pinpointed, but their involvement in the phenotype of Klinefelter syndrome has not been proven.
Collapse
Affiliation(s)
- Anne Skakkebæk
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Mikkel Wallentin
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark; Center for Semiotics, Aarhus University, Aarhus, Denmark
| | - Claus Højbjerg Gravholt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
50
|
Spindler M, Özyurt J, Thiel CM. Automated diffusion-based parcellation of the hypothalamus reveals subunit-specific associations with obesity. Sci Rep 2020; 10:22238. [PMID: 33335266 PMCID: PMC7747731 DOI: 10.1038/s41598-020-79289-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/07/2020] [Indexed: 01/10/2023] Open
Abstract
The hypothalamus is a small, yet highly versatile structure mainly involved in bodily functions such as control of food intake and endocrine activity. Functional anatomy of different hypothalamic areas is mainly investigated using structural MRI, validated by ex-vivo histological studies. Based on diffusion-weighted imaging (DWI), recent automated clustering methods provide robust tools for parcellation. Using data of 100 healthy adults provided by the Human Connectome Project Database, we applied DWI-based automated clustering to the hypothalamus and related microstructural properties in these hypothalamic compartments to obesity. Our results suggest that the hypothalamus can be reliably partitioned into four clusters in each hemisphere using diffusion-based parcellation. These correspond to an anterior–superior, anterior-inferior, intermediate, and posterior cluster. Obesity was predicted by mean diffusivity of the anterior–superior cluster, suggesting altered inhibition of food intake. The proposed method provides an automated hypothalamic parcellation technique based on DWI data to explore anatomy and function of hypothalamic subunits in vivo in humans.
Collapse
Affiliation(s)
- Melanie Spindler
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
| | - Jale Özyurt
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Christiane M Thiel
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,Cluster of Excellence "Hearing4all", Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,Research Centre Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|