1
|
Sun L, Bao L. Neuronal theta oscillation of hippocampal ensemble and memory function. Behav Brain Res 2025; 481:115429. [PMID: 39800078 DOI: 10.1016/j.bbr.2025.115429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/26/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Memory is the ability to acquire and store information following an experience, which can be retrieved by related context exposure. Pioneering studies have demonstrated that sparsely distributed neuronal ensembles or engram cells can serve as neural substrates for storing and recalling memory traces. Many studies of neuronal ensembles have focused on the hippocampus, and increasing evidence has indicated that the neuronal oscillation is closely associated with hippocampal memory functions, including both encoding and retrieval processes. In particular, the theta synchronization of hippocampal ensembles with other brain regions mediates the retrieval of multiple types of memory. The recent progress of theta oscillations in the formation of memory engrams is reviewed, as well as the increased theta power and neurotransmitter regulation on memory function. Detailed information based on an analysis of hippocampal local theta rhythms is presented. Moreover, the hippocampus theta synchronization with the sensory cortex, prefrontal cortex and amygdala, which mediate different types of memory retrieval, are also reviewed. Together, these findings contribute to understanding the important role of hippocampal theta oscillation in the storage and recall of memory traces.
Collapse
Affiliation(s)
- Lin Sun
- School of Clinical Medicine, Changzhi Medical College, Changzhi, Shanxi Province 046013, China
| | - Lihua Bao
- Department of Neurology, Changzhi People's Hospital, Changzhi, Shanxi Province 046000, China.
| |
Collapse
|
2
|
Vorobiova AN, Feurra M, Pavone EF, Stieglitz L, Imbach L, Moiseeva V, Sarnthein J, Fedele T. Functional segregation of rostral and caudal hippocampus in associative memory. Front Hum Neurosci 2025; 19:1509163. [PMID: 39996022 PMCID: PMC11848949 DOI: 10.3389/fnhum.2025.1509163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Introduction The hippocampus plays a crucial role in episodic memory. Given its complexity, the hippocampus participates in multiple aspects of higher cognitive functions, among which are semantics-based encoding and retrieval. However, the "where," "when" and "how" of distinct aspects of memory processing in the hippocampus are still under debate. Methods Here, we employed a visual associative memory task that involved encoding three levels of subjective congruence to delineate the differential involvement of the rostral and caudal portions (also referred as anterior/posterior portions) of the human hippocampus during memory encoding, recognition and associative recall. Results Through stereo-EEG recordings in epilepsy patients we show that associative memory is reflected by rostral hippocampal activity during encoding, and caudal hippocampal activity during retrieval. In contrast, recognition memory encoding selectively activates the rostral hippocampus. The temporal dynamics of memory processing are manifested by gamma power increase, which partially overlaps with low-frequency power decrease during encoding and retrieval. Congruence levels modulate low-frequency activity prominently in the caudal hippocampus. Discussion These findings highlight an anatomical segregation in the hippocampus in accordance with the contributions of its partitions to associative and recognition memory.
Collapse
Affiliation(s)
- Alicia Nunez Vorobiova
- Department of Psychology, National Research University Higher School of Economics, Moscow, Russia
| | - Matteo Feurra
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia
| | | | - Lennart Stieglitz
- University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Victoria Moiseeva
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia
| | | | - Tommaso Fedele
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia
- Swiss Epilepsy Center, Zurich, Switzerland
- Children's Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Bencze D, Marián M, Szőllősi Á, Simor P, Racsmány M. Increase in slow frequency and decrease in alpha and beta power during post-learning rest predict long-term memory success. Cortex 2025; 183:167-182. [PMID: 39662242 DOI: 10.1016/j.cortex.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/26/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Formation of episodic memories is linked to cortico-hippocampal interactions during learning, practice, and post-learning rest, although the role of cortical activity itself in such processes remains elusive. Behaviorally, long-term retention of episodic memories has been shown to be aided by several different practice strategies involving memory reencounters, such as repeated retrieval and repeated study. In a two-session resting state electroencephalography (EEG) experiment, using data from 68 participants, we investigated the electrophysiological predictors of long-term memory success in situations where such reencounters occurred after learning. Participants learned word pairs which were subsequently practiced either by cued recall or repeated studying in a between-subjects design. Participants' cortical activity was recorded before learning (baseline) and after practice during 15-min resting periods. Long-term memory retention after a 7-day period was measured. To assess cortical activity, we analyzed the change in spectral power from the pre-learning baseline to the post-practice resting state recordings. From baseline to post-practice, changes in alpha and beta power were negatively, while slow frequency power change was positively associated with long-term memory performance, regardless of practice strategy. These results are in line with previous observations pointing to the role of specific frequency bands in memory formation and extend them to situations where memory reencounters occur after learning. Our results also highlight that the effectiveness of practice by repeated testing seems to be independent from the beneficial neural mechanisms mirrored by EEG frequency power changes.
Collapse
Affiliation(s)
- Dorottya Bencze
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Institute of Psychology, University of Szeged, Szeged, Hungary
| | - Miklós Marián
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Institute of Psychology, University of Szeged, Szeged, Hungary.
| | - Ágnes Szőllősi
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Institute of Psychology, University of Szeged, Szeged, Hungary; Cognitive Medicine Research Group, Competence Centre for Neurocybernetics of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, University of Szeged, Szeged, Hungary
| | - Péter Simor
- Institute of Psychology, Eötvös Loránd University, Budapest, Hungary; Institute of Behavioral Sciences, Semmelweis University, Budapest, Hungary
| | - Mihály Racsmány
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Institute of Psychology, University of Szeged, Szeged, Hungary; Cognitive Medicine Research Group, Competence Centre for Neurocybernetics of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, University of Szeged, Szeged, Hungary
| |
Collapse
|
4
|
Guimarães AL, Lin FV, Panizzutti R, Turnbull A. Effective engagement in computerized cognitive training for older adults. Ageing Res Rev 2025; 104:102650. [PMID: 39755175 PMCID: PMC11807753 DOI: 10.1016/j.arr.2024.102650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
Computerized cognitive training (CCT) is a frontline therapy to prevent or slow age-related cognitive decline. A prerequisite for CCT research to provide clinically relevant improvements in cognition is to understand effective engagement, i.e., the pattern of energy investment that ensures CCT effectiveness. Even though previous studies have assessed whether particular variables (e.g., gamification) predict engagement and/or CCT effectiveness, the field lacks a systematic approach to understanding effective engagement. Here, by comprehensively reviewing and evaluating engagement and adjacent literature, we propose a standardized measurement and operational framework to promote effective engagement with CCT targeting cognitive decline in older adults. We suggest that promoting effective engagement with CCT has two key steps: 1) comprehensively measuring engagement with CCT and 2) identifying which aspects of engagement are essential to achieve the pre-specified outcome of clinically relevant improvements in cognition. The proposed measurement and operational framework of effective engagement will allow future research to maximize older adults' engagement with CCT to slow/prevent age-related cognitive decline.
Collapse
Affiliation(s)
- Anna Luiza Guimarães
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Brazil; CogT Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, United States
| | - Feng V Lin
- CogT Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, United States
| | - Rogerio Panizzutti
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Brazil
| | - Adam Turnbull
- CogT Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, United States.
| |
Collapse
|
5
|
Ramayya AG, Buch V, Richardson A, Lucas T, Gold JI. Human response times are governed by dual anticipatory processes with distinct neural signatures. Commun Biol 2025; 8:124. [PMID: 39863697 PMCID: PMC11762298 DOI: 10.1038/s42003-025-07516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Human behavior is strongly influenced by anticipation, but the underlying neural mechanisms are poorly understood. We obtained intracranial electrocephalography (iEEG) measurements in neurosurgical patients as they performed a simple sensory-motor task with variable (short or long) foreperiod delays that affected anticipation of the cue to respond. Participants showed two forms of anticipatory response biases, distinguished by more premature false alarms (FAs) or faster response times (RTs) on long-delay trials. These biases had distinct neural signatures in prestimulus neural activity modulations that were distributed and intermixed across the brain: the FA bias was most evident in preparatory motor activity immediately prior to response-cue presentation, whereas the RT bias was most evident in visuospatial activity at the beginning of the foreperiod. These results suggest that human anticipatory behavior emerges from a combination of motor-preparatory and attention-like modulations of neural activity, implemented by anatomically widespread and intermixed, but functionally identifiable, brain networks.
Collapse
Affiliation(s)
- Ashwin G Ramayya
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
| | - Vivek Buch
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Andrew Richardson
- Department of Neurosurgery, Hospital of University of Pennsylvania, Philadelphia, PA, USA
| | | | - Joshua I Gold
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Wheelock JR, Long NM. Prior memory responses modulate behavior and brain state engagement. COMMUNICATIONS PSYCHOLOGY 2024; 2:121. [PMID: 39702690 DOI: 10.1038/s44271-024-00165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Memory encoding and retrieval constitute neurally dissociable brain states and prior behavioral work suggests that these states may linger in time. Thus memory states may influence both the current experience and subsequent events; however, this account has not been directly tested. To test the hypothesis that memory judgments induce brain states that persist for several hundred milliseconds, we recorded scalp electroencephalography while participants completed a recognition task. We used an independently validated multivariate mnemonic state classifier to assess memory state engagement. We replicate previous behavioral findings, yet we find that memory states are modulated by response congruency. We find strong retrieval state engagement on incongruent trials, when the response switches between two consecutive trials. These findings indicate that cortical brain states are influenced by prior judgments and suggest that a non-mnemonic, internal attention state may be recruited in the face of changing demands in a dynamic environment.
Collapse
Affiliation(s)
- Justin R Wheelock
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Nicole M Long
- Department of Psychology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
7
|
Rudoler JH, Bruska JP, Chang W, Dougherty MR, Katerman BS, Halpern DJ, Diamond NB, Kahana MJ. Decoding EEG for optimizing naturalistic memory. J Neurosci Methods 2024; 410:110220. [PMID: 39033965 DOI: 10.1016/j.jneumeth.2024.110220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Spectral features of human electroencephalographic (EEG) recordings during learning predict subsequent recall variability. NEW METHOD Capitalizing on these fluctuating neural features, we develop a non-invasive closed-loop (NICL) system for real-time optimization of human learning. Participants play a virtual navigation-and-memory game; recording multi-session data across days allowed us to build participant-specific classification models of recall success. In subsequent closed-loop sessions, our platform manipulated the timing of memory encoding, selectively presenting items during periods of predicted good or poor memory function based on EEG features decoded in real time. RESULTS The induced memory effect (the difference between recall rates when presenting items during predicted good vs. poor learning periods) increased with the accuracy of neural decoding. COMPARISON WITH EXISTING METHODS This study demonstrates greater-than-chance memory decoding from EEG recordings in a naturalistic virtual navigation task with greater real-world validity than basic word-list recall paradigms. Here we modulate memory by timing stimulus presentation based on noninvasive scalp EEG recordings, whereas prior closed-loop studies for memory improvement involved intracranial recordings and direct electrical stimulation. Other noninvasive studies have investigated the use of neurofeedback or remedial study for memory improvement. CONCLUSIONS These findings present a proof-of-concept for using non-invasive closed-loop technology to optimize human learning and memory through principled stimulus timing, but only in those participants for whom classifiers reliably predict out-of-sample memory function.
Collapse
|
8
|
Das A, Menon V. Electrophysiological dynamics of salience, default mode, and frontoparietal networks during episodic memory formation and recall: A multi-experiment iEEG replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582593. [PMID: 38463954 PMCID: PMC10925291 DOI: 10.1101/2024.02.28.582593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Dynamic interactions between large-scale brain networks underpin human cognitive processes, but their electrophysiological mechanisms remain elusive. The triple network model, encompassing the salience (SN), default mode (DMN), and frontoparietal (FPN) networks, provides a framework for understanding these interactions. We analyzed intracranial EEG recordings from 177 participants across four diverse episodic memory experiments, each involving encoding as well as recall phases. Phase transfer entropy analysis revealed consistently higher directed information flow from the anterior insula (AI), a key SN node, to both DMN and FPN nodes. This directed influence was significantly stronger during memory tasks compared to resting-state, highlighting the AI's task-specific role in coordinating large-scale network interactions. This pattern persisted across externally-driven memory encoding and internally-governed free recall. Control analyses using the inferior frontal gyrus (IFG) showed an inverse pattern, with DMN and FPN exerting higher influence on IFG, underscoring the AI's unique role. We observed task-specific suppression of high-gamma power in the posterior cingulate cortex/precuneus node of the DMN during memory encoding, but not recall. Crucially, these results were replicated across all four experiments spanning verbal and spatial memory domains with high Bayes replication factors. Our findings advance understanding of how coordinated neural network interactions support memory processes, highlighting the AI's critical role in orchestrating large-scale brain network dynamics during both memory encoding and retrieval. By elucidating the electrophysiological basis of triple network interactions in episodic memory, our study provides insights into neural circuit dynamics underlying memory function and offer a framework for investigating network disruptions in memory-related disorders.
Collapse
Affiliation(s)
- Anup Das
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
9
|
Ezzyat Y, Clements A. Neural Activity Differentiates Novel and Learned Event Boundaries. J Neurosci 2024; 44:e2246232024. [PMID: 38871462 PMCID: PMC11411582 DOI: 10.1523/jneurosci.2246-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/22/2024] [Accepted: 05/25/2024] [Indexed: 06/15/2024] Open
Abstract
People parse continuous experiences at natural breakpoints called event boundaries, which is important for understanding an environment's causal structure and for responding to uncertainty within it. However, it remains unclear how different forms of uncertainty affect the parsing of continuous experiences and how such uncertainty influences the brain's processing of ongoing events. We exposed human participants of both sexes (N = 34) to a continuous sequence of semantically meaningless images. We generated sequences from random walks through a graph that grouped images into temporal communities. After learning, we asked participants to segment another sequence at natural breakpoints (event boundaries). Participants segmented the sequence at learned transitions between communities, as well as at novel transitions, suggesting that people can segment temporally extended experiences into events based on learned structure as well as prediction error. Greater segmentation at novel boundaries was associated with enhanced parietal scalp electroencephalography (EEG) activity between 250 and 450 ms after the stimulus onset. Multivariate classification of EEG activity showed that novel and learned boundaries evoked distinct patterns of neural activity, particularly theta band power in posterior electrodes. Learning also led to distinct neural representations for stimuli within the temporal communities, while neural activity at learned boundary nodes showed predictive evidence for the adjacent community. The data show that people segment experiences at both learned and novel boundaries and suggest that learned event boundaries trigger retrieval of information about the upcoming community that could underlie anticipation of the next event in a sequence.
Collapse
Affiliation(s)
- Youssef Ezzyat
- Department of Psychology, Wesleyan University, Middletown, Connecticut 06459
- Program in Neuroscience & Behavior, Wesleyan University, Middletown, Connecticut 06459
| | - Abby Clements
- Program in Neuroscience, Swarthmore College, Swarthmore, Pennsylvania 19081
| |
Collapse
|
10
|
Qi Z, Xiong H, Zhuo J, Cao D, Liu H, Shi W, Lang Y, Liu Y, Zhang G, Jiang T. Intracranial EEGs evidenced visual object processing in the human medial temporal lobe subregions. Neuroscience 2024; 555:205-212. [PMID: 39053670 DOI: 10.1016/j.neuroscience.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The perirhinal cortex (PRC) and parahippocampal cortex (PHC) are core regions along the visual dual-stream. The specific functional roles of the PRC and PHC and their interactions with the downstream hippocampus cortex (HPC) are crucial for understanding visual memory. Our research used human intracranial EEGs to study the neural mechanism of the PRC, PHC, and HPC in visual object encoding. Single-regional function analyses found evidence that the PRC, PHC, and HPC are activated ∼100 ms within the broad-gamma band and that the PRC was more strongly activated than either the PHC or the HPC after an object stimulus. Inter-regional analyses showed strong bidirectional interactions of the PRC with both the PHC and HPC in the low-frequency band, whereas the interactions between the PHC and HPC were not significant. These findings demonstrated the core role of the PRC in encoding visual object information and supported the hypothesis of PRC-HPC-ventral object pathway. The recruitment of the PHC and its interaction with the PRC in visual object encoding also provide new insights beyond the traditional dorsal-stream hypothesis.
Collapse
Affiliation(s)
- Zihui Qi
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Xiong
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Junjie Zhuo
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Hainan 570228, China
| | - Dan Cao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyang Shi
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongcui Lang
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, No. 3 Beiyuan Road, Chaoyang District, Beijing 100012, China
| | - Yaoling Liu
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, No. 3 Beiyuan Road, Chaoyang District, Beijing 100012, China
| | - Guangming Zhang
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, No. 3 Beiyuan Road, Chaoyang District, Beijing 100012, China.
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, Hunan Province, China.
| |
Collapse
|
11
|
Kucewicz MT, Cimbalnik J, Garcia-Salinas JS, Brazdil M, Worrell GA. High frequency oscillations in human memory and cognition: a neurophysiological substrate of engrams? Brain 2024; 147:2966-2982. [PMID: 38743818 PMCID: PMC11370809 DOI: 10.1093/brain/awae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
Despite advances in understanding the cellular and molecular processes underlying memory and cognition, and recent successful modulation of cognitive performance in brain disorders, the neurophysiological mechanisms remain underexplored. High frequency oscillations beyond the classic electroencephalogram spectrum have emerged as a potential neural correlate of fundamental cognitive processes. High frequency oscillations are detected in the human mesial temporal lobe and neocortical intracranial recordings spanning gamma/epsilon (60-150 Hz), ripple (80-250 Hz) and higher frequency ranges. Separate from other non-oscillatory activities, these brief electrophysiological oscillations of distinct duration, frequency and amplitude are thought to be generated by coordinated spiking of neuronal ensembles within volumes as small as a single cortical column. Although the exact origins, mechanisms and physiological roles in health and disease remain elusive, they have been associated with human memory consolidation and cognitive processing. Recent studies suggest their involvement in encoding and recall of episodic memory with a possible role in the formation and reactivation of memory traces. High frequency oscillations are detected during encoding, throughout maintenance, and right before recall of remembered items, meeting a basic definition for an engram activity. The temporal coordination of high frequency oscillations reactivated across cortical and subcortical neural networks is ideally suited for integrating multimodal memory representations, which can be replayed and consolidated during states of wakefulness and sleep. High frequency oscillations have been shown to reflect coordinated bursts of neuronal assembly firing and offer a promising substrate for tracking and modulation of the hypothetical electrophysiological engram.
Collapse
Affiliation(s)
- Michal T Kucewicz
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
- Bioelectronics, Neurophysiology and Engineering Laboratory, Mayo Clinic, Departments of Neurology and Biomedical Engineering & Physiology, Mayo Clinic, Rochester, MN 55902, USA
| | - Jan Cimbalnik
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
- Department of Biomedical Engineering, St. Anne’s University Hospital in Brno & International Clinical Research Center, Brno 602 00, Czech Republic
- Brno Epilepsy Center, 1th Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, member of the ERN-EpiCARE, Brno 602 00, Czech Republic
| | - Jesus S Garcia-Salinas
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Milan Brazdil
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
- Brno Epilepsy Center, 1th Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, member of the ERN-EpiCARE, Brno 602 00, Czech Republic
- Behavioural and Social Neuroscience Research Group, CEITEC—Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Gregory A Worrell
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
- Bioelectronics, Neurophysiology and Engineering Laboratory, Mayo Clinic, Departments of Neurology and Biomedical Engineering & Physiology, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
12
|
Das A, Menon V. Frequency-specific directed connectivity between the hippocampus and parietal cortex during verbal and spatial episodic memory: an intracranial EEG replication. Cereb Cortex 2024; 34:bhae287. [PMID: 39042030 PMCID: PMC11264422 DOI: 10.1093/cercor/bhae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/23/2024] [Indexed: 07/24/2024] Open
Abstract
Hippocampus-parietal cortex circuits are thought to play a crucial role in memory and attention, but their neural basis remains poorly understood. We employed intracranial intracranial electroencephalography (iEEG) to investigate the neurophysiological underpinning of these circuits across three memory tasks spanning verbal and spatial domains. We uncovered a consistent pattern of higher causal directed connectivity from the hippocampus to both lateral parietal cortex (supramarginal and angular gyrus) and medial parietal cortex (posterior cingulate cortex) in the delta-theta band during memory encoding and recall. This connectivity was independent of activation or suppression states in the hippocampus or parietal cortex. Crucially, directed connectivity from the supramarginal gyrus to the hippocampus was enhanced in participants with higher memory recall, highlighting its behavioral significance. Our findings align with the attention-to-memory model, which posits that attention directs cognitive resources toward pertinent information during memory formation. The robustness of these results was demonstrated through Bayesian replication analysis of the memory encoding and recall periods across the three tasks. Our study sheds light on the neural basis of casual signaling within hippocampus-parietal circuits, broadening our understanding of their critical roles in human cognition.
Collapse
Affiliation(s)
- Anup Das
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
13
|
Ehrhardt NM, Flöel A, Li SC, Lucchese G, Antonenko D. Brain oscillatory processes related to sequence memory in healthy older adults. Neurobiol Aging 2024; 139:64-72. [PMID: 38626525 DOI: 10.1016/j.neurobiolaging.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/05/2024] [Accepted: 04/02/2024] [Indexed: 04/18/2024]
Abstract
Sequence memory is subject to age-related decline, but the underlying processes are not yet fully understood. We analyzed electroencephalography (EEG) in 21 healthy older (60-80 years) and 26 young participants (20-30 years) and compared time-frequency spectra and theta-gamma phase-amplitude-coupling (PAC) during encoding of the order of visually presented items. In older adults, desynchronization in theta (4-8 Hz) and synchronization in gamma (30-45 Hz) power did not distinguish between subsequently correctly and incorrectly remembered trials, while there was a subsequent memory effect for young adults. Theta-gamma PAC was modulated by item position within a sequence for older but not young adults. Specifically, position within a sequence was coded by higher gamma amplitude for successive theta phases for later correctly remembered trials. Thus, deficient differentiation in theta desynchronization and gamma oscillations during sequence encoding in older adults may reflect neurophysiological correlates of age-related memory decline. Furthermore, our results indicate that sequences are coded by theta-gamma PAC in older adults, but that this mechanism might lose precision in aging.
Collapse
Affiliation(s)
- Nina M Ehrhardt
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald 17475, Germany.
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald 17475, Germany; German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, Greifswald, Germany
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TU Dresden, Zellescher Weg 17, Dresden 01062, Germany; Centre for Tactile Internet with Human-in-the-Loop, TU Dresden, Dresden 01062, Germany
| | - Guglielmo Lucchese
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald 17475, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatry University Hospital Zurich, University of Zurich, Lengstrasse 31, Zurich, Switzerland.
| | - Daria Antonenko
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald 17475, Germany
| |
Collapse
|
14
|
Sawczuk N, Rubinstein DY, Sperling MR, Wendel-Mitoraj K, Djuric P, Slezak DF, Kamienkowski J, Weiss SA. High-gamma and beta bursts in the Left Supramarginal Gyrus can accurately differentiate verbal memory states and performance. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.29.24308117. [PMID: 38853875 PMCID: PMC11160814 DOI: 10.1101/2024.05.29.24308117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The left supramarginal gyrus (LSMG) may mediate attention to memory, and gauge memory state and performance. We performed a secondary analysis of 142 verbal delayed free recall experiments, in patients with medically-refractory epilepsy with electrode contacts implanted in the LSMG. In 14 of 142 experiments (in 14 of 113 patients), the cross-validated convolutional neural networks (CNNs) that used 1-dimensional(1-D) pairs of convolved high-gamma and beta tensors, derived from the LSMG recordings, could label recalled words with an area under the receiver operating curve (AUROC) of greater than 60% [range: 60-90%]. These 14 patients were distinguished by: 1) higher amplitudes of high-gamma bursts; 2) distinct electrode placement within the LSMG; and 3) superior performance compared with a CNN that used a 1-D tensor of the broadband recordings in the LSMG. In a pilot study of 7 of these patients, we also cross-validated CNNs using paired 1-D convolved high-gamma and beta tensors, from the LSMG, to: a) distinguish word encoding epochs from free recall epochs [AUC 0.6-1]; and distinguish better performance from poor performance during delayed free recall [AUC 0.5-0.86]. These experiments show that bursts of high-gamma and beta generated in the LSMG are biomarkers of verbal memory state and performance.
Collapse
Affiliation(s)
- Nicolás Sawczuk
- Department of Computer Science, University of Buenos Aires, Buenos Aires, Argentina
| | - Daniel Y. Rubinstein
- Department of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Michael R. Sperling
- Department of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Petar Djuric
- Dept. of Electrical & Computer Engineering, Stony Brook, New York, 11794 USA
| | - Diego F. Slezak
- Department of Computer Science, University of Buenos Aires, Buenos Aires, Argentina
| | - Juan Kamienkowski
- Department of Computer Science, University of Buenos Aires, Buenos Aires, Argentina
| | - Shennan A. Weiss
- Department of Neurology, Stony Brook University, Stony Brook, New York, 11790 USA
| |
Collapse
|
15
|
Schmidig FJ, Ruch S, Henke K. Episodic long-term memory formation during slow-wave sleep. eLife 2024; 12:RP89601. [PMID: 38661727 PMCID: PMC11045222 DOI: 10.7554/elife.89601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
We are unresponsive during slow-wave sleep but continue monitoring external events for survival. Our brain wakens us when danger is imminent. If events are non-threatening, our brain might store them for later consideration to improve decision-making. To test this hypothesis, we examined whether novel vocabulary consisting of simultaneously played pseudowords and translation words are encoded/stored during sleep, and which neural-electrical events facilitate encoding/storage. An algorithm for brain-state-dependent stimulation selectively targeted word pairs to slow-wave peaks or troughs. Retrieval tests were given 12 and 36 hr later. These tests required decisions regarding the semantic category of previously sleep-played pseudowords. The sleep-played vocabulary influenced awake decision-making 36 hr later, if targeted to troughs. The words' linguistic processing raised neural complexity. The words' semantic-associative encoding was supported by increased theta power during the ensuing peak. Fast-spindle power ramped up during a second peak likely aiding consolidation. Hence, new vocabulary played during slow-wave sleep was stored and influenced decision-making days later.
Collapse
Affiliation(s)
| | - Simon Ruch
- Institute of Psychology, University of BernBernSwitzerland
- Faculty of Psychology, UniDistance SuisseBrigSwitzerland
| | | |
Collapse
|
16
|
Li Y, Pazdera JK, Kahana MJ. EEG decoders track memory dynamics. Nat Commun 2024; 15:2981. [PMID: 38582783 PMCID: PMC10998865 DOI: 10.1038/s41467-024-46926-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 03/14/2024] [Indexed: 04/08/2024] Open
Abstract
Encoding- and retrieval-related neural activity jointly determine mnemonic success. We ask whether electroencephalographic activity can reliably predict encoding and retrieval success on individual trials. Each of 98 participants performed a delayed recall task on 576 lists across 24 experimental sessions. Logistic regression classifiers trained on spectral features measured immediately preceding spoken recall of individual words successfully predict whether or not those words belonged to the target list. Classifiers trained on features measured during word encoding also reliably predict whether those words will be subsequently recalled and further predict the temporal and semantic organization of the recalled items. These findings link neural variability predictive of successful memory with item-to-context binding, a key cognitive process thought to underlie episodic memory function.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Jesse K Pazdera
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Das A, Menon V. Hippocampal-parietal cortex causal directed connectivity during human episodic memory formation: Replication across three experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.07.566056. [PMID: 37986855 PMCID: PMC10659286 DOI: 10.1101/2023.11.07.566056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Hippocampus-parietal cortex circuits are thought to play a crucial role in memory and attention, but their neural basis remains poorly understood. We employed intracranial EEG from 96 participants (51 females) to investigate the neurophysiological underpinning of these circuits across three memory tasks spanning verbal and spatial domains. We uncovered a consistent pattern of higher causal directed connectivity from the hippocampus to both lateral parietal cortex (supramarginal and angular gyrus) and medial parietal cortex (posterior cingulate cortex) in the delta-theta band during memory encoding and recall. This connectivity was independent of activation or suppression states in the hippocampus or parietal cortex. Crucially, directed connectivity from the supramarginal gyrus to the hippocampus was enhanced in participants with higher memory recall, highlighting its behavioral significance. Our findings align with the attention-to-memory model, which posits that attention directs cognitive resources toward pertinent information during memory formation. The robustness of these results was demonstrated through Bayesian replication analysis of the memory encoding and recall periods across the three tasks. Our study sheds light on the neural basis of casual signaling within hippocampus-parietal circuits, broadening our understanding of their critical roles in human cognition.
Collapse
Affiliation(s)
- Anup Das
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine Stanford, CA 94305
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine Stanford, CA 94305
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine Stanford, CA 94305
| |
Collapse
|
18
|
Moore IL, Long NM. Semantic associations restore neural encoding mechanisms. Learn Mem 2024; 31:a053996. [PMID: 38503491 PMCID: PMC11000581 DOI: 10.1101/lm.053996.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 03/21/2024]
Abstract
Lapses in attention can negatively impact later memory of an experience. Attention and encoding resources are thought to decline as more experiences are encountered in succession, accounting for the primacy effect in which memory is better for items encountered early compared to late in a study list. However, accessing prior knowledge during study can facilitate subsequent memory, suggesting a potential avenue to counteract this decline. Here, we investigated the extent to which semantic associations-shared meaning between experiences-can counteract declines in encoding resources. Our hypothesis is that semantic associations restore neural encoding mechanisms, which in turn improves memory. We recorded scalp electroencephalography (EEG) while male and female human participants performed a delayed free recall task. Half of the items from late in each study list were semantically associated with an item presented earlier in the list. We find that semantic associations improve memory specifically for late list items and selectively modulate the neural signals engaged during the study of late list items. Relative to other recalled items, late list items that are subsequently semantically clustered-recalled consecutively with their semantic associate-elicit increased high-frequency activity and decreased low-frequency activity, a hallmark of successful encoding. Our findings demonstrate that semantic associations restore neural encoding mechanisms and improve later memory. More broadly, these findings suggest that prior knowledge modulates the orientation of attention to influence encoding mechanisms.
Collapse
Affiliation(s)
- Isabelle L Moore
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Nicole M Long
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904, USA
| |
Collapse
|
19
|
Ezzyat Y, Kragel JE, Solomon EA, Lega BC, Aronson JP, Jobst BC, Gross RE, Sperling MR, Worrell GA, Sheth SA, Wanda PA, Rizzuto DS, Kahana MJ. Functional and anatomical connectivity predict brain stimulation's mnemonic effects. Cereb Cortex 2024; 34:bhad427. [PMID: 38041253 PMCID: PMC10793570 DOI: 10.1093/cercor/bhad427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 12/03/2023] Open
Abstract
Closed-loop direct brain stimulation is a promising tool for modulating neural activity and behavior. However, it remains unclear how to optimally target stimulation to modulate brain activity in particular brain networks that underlie particular cognitive functions. Here, we test the hypothesis that stimulation's behavioral and physiological effects depend on the stimulation target's anatomical and functional network properties. We delivered closed-loop stimulation as 47 neurosurgical patients studied and recalled word lists. Multivariate classifiers, trained to predict momentary lapses in memory function, triggered the stimulation of the lateral temporal cortex (LTC) during the study phase of the task. We found that LTC stimulation specifically improved memory when delivered to targets near white matter pathways. Memory improvement was largest for targets near white matter that also showed high functional connectivity to the brain's memory network. These targets also reduced low-frequency activity in this network, an established marker of successful memory encoding. These data reveal how anatomical and functional networks mediate stimulation's behavioral and physiological effects, provide further evidence that closed-loop LTC stimulation can improve episodic memory, and suggest a method for optimizing neuromodulation through improved stimulation targeting.
Collapse
Affiliation(s)
- Youssef Ezzyat
- Dept. of Psychology, Wesleyan University, Middletown, CT 06459, USA
| | - James E Kragel
- Dept. of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Ethan A Solomon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley C Lega
- Dept. of Neurosurgery, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Joshua P Aronson
- Dept. of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Barbara C Jobst
- Dept. of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Robert E Gross
- Dept. of Neurosurgery, Emory University Hospital, Atlanta, GA 30322, USA
| | - Michael R Sperling
- Dept. of Neurology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Sameer A Sheth
- Dept. of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A Wanda
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel S Rizzuto
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Kahana
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Koizumi K, Kunii N, Ueda K, Takabatake K, Nagata K, Fujitani S, Shimada S, Nakao M. Intracranial Neurofeedback Modulating Neural Activity in the Mesial Temporal Lobe During Memory Encoding: A Pilot Study. Appl Psychophysiol Biofeedback 2023; 48:439-451. [PMID: 37405548 PMCID: PMC10581957 DOI: 10.1007/s10484-023-09595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2023] [Indexed: 07/06/2023]
Abstract
Removal of the mesial temporal lobe (MTL) is an established surgical procedure that leads to seizure freedom in patients with intractable MTL epilepsy; however, it carries the potential risk of memory damage. Neurofeedback (NF), which regulates brain function by converting brain activity into perceptible information and providing feedback, has attracted considerable attention in recent years for its potential as a novel complementary treatment for many neurological disorders. However, no research has attempted to artificially reorganize memory functions by applying NF before resective surgery to preserve memory functions. Thus, this study aimed (1) to construct a memory NF system that used intracranial electrodes to feedback neural activity on the language-dominant side of the MTL during memory encoding and (2) to verify whether neural activity and memory function in the MTL change with NF training. Two intractable epilepsy patients with implanted intracranial electrodes underwent at least five sessions of memory NF training to increase the theta power in the MTL. There was an increase in theta power and a decrease in fast beta and gamma powers in one of the patients in the late stage of memory NF sessions. NF signals were not correlated with memory function. Despite its limitations as a pilot study, to our best knowledge, this study is the first to report that intracranial NF may modulate neural activity in the MTL, which is involved in memory encoding. The findings provide important insights into the future development of NF systems for the artificial reorganization of memory functions.
Collapse
Affiliation(s)
- Koji Koizumi
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Naoto Kunii
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ueda
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | | | - Keisuke Nagata
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Shigeta Fujitani
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Seijiro Shimada
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Masayuki Nakao
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Yin Q, Johnson EL, Ofen N. Neurophysiological mechanisms of cognition in the developing brain: Insights from intracranial EEG studies. Dev Cogn Neurosci 2023; 64:101312. [PMID: 37837918 PMCID: PMC10589793 DOI: 10.1016/j.dcn.2023.101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023] Open
Abstract
The quest to understand how the development of the brain supports the development of complex cognitive functions is fueled by advances in cognitive neuroscience methods. Intracranial EEG (iEEG) recorded directly from the developing human brain provides unprecedented spatial and temporal resolution for mapping the neurophysiological mechanisms supporting cognitive development. In this paper, we focus on episodic memory, the ability to remember detailed information about past experiences, which improves from childhood into adulthood. We review memory effects based on broadband spectral power and emphasize the importance of isolating narrowband oscillations from broadband activity to determine mechanisms of neural coordination within and between brain regions. We then review evidence of developmental variability in neural oscillations and present emerging evidence linking the development of neural oscillations to the development of memory. We conclude by proposing that the development of oscillations increases the precision of neural coordination and may be an essential factor underlying memory development. More broadly, we demonstrate how recording neural activity directly from the developing brain holds immense potential to advance our understanding of cognitive development.
Collapse
Affiliation(s)
- Qin Yin
- Department of Psychology, Wayne State University, Detroit, MI, USA; Life-span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI, USA
| | - Elizabeth L Johnson
- Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, IL, USA; Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Noa Ofen
- Department of Psychology, Wayne State University, Detroit, MI, USA; Life-span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
22
|
Cheng S, Ding Z, Chen C, Sun W, Jiang T, Liu X, Zhang M. The effect of choice on memory: The role of theta oscillations. Psychophysiology 2023; 60:e14390. [PMID: 37455343 DOI: 10.1111/psyp.14390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
People value the opportunity to exercise control over the environment or make their own choices. Recent studies have revealed that simply having the opportunity to make choices can facilitate memory performance, suggesting an interaction between reward (due to choice making) and memory systems. However, little is known about the electrophysiological basis of choice-related memory. In the current study, we used scalp electroencephalography combined with a choice encoding task to examine the role of theta oscillations (which have been widely connected to reward and memory processing) in choice-related memory formation. The encoding task had two conditions. In the choice condition, participants were asked to choose between two occluded memoranda by themselves, whereas in the fixed condition, the decision was made by the computer. Behavioral results showed the choice effect, with better performance in the choice condition than the fixed condition on the recognition test given after a 24-h delay. Increases in theta power during an early latency of encoding period predicted successful memory formation in the choice condition, but not in the fixed condition. Furthermore, decreases in theta power during a late latency predicted successful memory formation in both the fixed and the choice conditions. Finally, we observed increased theta power in the choice condition compared to the fixed condition during an early latency of encoding period and decreased theta power in the choice condition compared to the fixed condition during a late latency. Our results suggest that theta oscillations play a significant role in choice-related memory formation.
Collapse
Affiliation(s)
- Si Cheng
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, P.R. China
- General and Experimental Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Zhuolei Ding
- Faculty of Psychology, Beijing Normal University, Beijing, P.R. China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, California, USA
| | - Wenxiang Sun
- Faculty of Psychology, Beijing Normal University, Beijing, P.R. China
| | - Ting Jiang
- Faculty of Psychology, Beijing Normal University, Beijing, P.R. China
| | - Xun Liu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, P.R. China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Mingxia Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, P.R. China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
23
|
Leimeister F, Pesquita A, Jensen O, Pauli P, Wiemer J. To remember or not to remember: Neural oscillations and ERPs as predictors of intentional associative fear learning. Int J Psychophysiol 2023; 193:112235. [PMID: 37604281 DOI: 10.1016/j.ijpsycho.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
It is widely accepted that impaired safety learning to a safe stimulus is a pathological feature of anxiety disorders. Safety learning refers to learning that a stimulus is associated with the absence of threat. Cognitive mechanisms that underlie successful threat and safety learning are, however, poorly understood. This study aimed to identify various physiological markers, including neural oscillations and event-related potentials (ERPs) that predict successful threat and safety learning. Therefore, to detect potential differences in these markers, we measured EEG in a fear learning framework combined with a subsequent memory paradigm. Thirty-seven participants were asked to memorize a series of associations between faces and an aversive unconditioned stimulus (US) or its omission. We found a decrease of power in the alpha band in occipital brain regions during learning for both threatening (conditioned stimuli, CS+) and safe faces (control stimuli, CS-) that were subsequently remembered to be associated with a US or not. No effects in theta band were found. In regard to ERPs, a late positive potential (LPP) and a P300 component were larger for remembered than for forgotten CS-US associations. The P300 was also enhanced to remembered US and US omissions, thus replicating previous findings. These results point to the importance of cognitive resource allocation as an underlying mechanism of fear learning and electrophysiological measurements as potential biomarkers for successful threat and safety learning.
Collapse
Affiliation(s)
- Franziska Leimeister
- Institute of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Marcusstr. 9-11, 97070 Würzburg, Germany.
| | - Ana Pesquita
- Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Paul Pauli
- Institute of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Marcusstr. 9-11, 97070 Würzburg, Germany
| | - Julian Wiemer
- Institute of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Marcusstr. 9-11, 97070 Würzburg, Germany
| |
Collapse
|
24
|
Herz N, Bukala BR, Kragel JE, Kahana MJ. Hippocampal activity predicts contextual misattribution of false memories. Proc Natl Acad Sci U S A 2023; 120:e2305292120. [PMID: 37751551 PMCID: PMC10556612 DOI: 10.1073/pnas.2305292120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/02/2023] [Indexed: 09/28/2023] Open
Abstract
Failure of contextual retrieval can lead to false recall, wherein people retrieve an item or experience that occurred in a different context or did not occur at all. Whereas the hippocampus is thought to play a crucial role in memory retrieval, we lack understanding of how the hippocampus supports retrieval of items related to a target context while disregarding related but irrelevant information. Using direct electrical recordings from the human hippocampus, we investigate the neural process underlying contextual misattribution of false memories. In two large datasets, we characterize key physiological differences between correct and false recalls that emerge immediately prior to vocalization. By differentiating between false recalls that share high or low contextual similarity with the target context, we show that low-frequency activity (6 to 18 Hz) in the hippocampus tracks similarity between the current and retrieved context. Applying multivariate decoding methods, we were able to reliably predict the contextual source of the to-be-recalled item. Our findings elucidate one of the hallmark features of episodic memory: our ability to distinguish between memories that were formed on different occasions.
Collapse
Affiliation(s)
- Noa Herz
- Department of Psychology, University of Pennsylvania, Philadelphia, PA19104
| | - Bernard R. Bukala
- Department of Psychology, University of Pennsylvania, Philadelphia, PA19104
| | - James E. Kragel
- Department of Neurology, University of Chicago, Chicago, IL60637
| | - Michael J. Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
25
|
Koizumi K, Kunii N, Ueda K, Nagata K, Fujitani S, Shimada S, Nakao M. Paving the Way for Memory Enhancement: Development and Examination of a Neurofeedback System Targeting the Medial Temporal Lobe. Biomedicines 2023; 11:2262. [PMID: 37626758 PMCID: PMC10452721 DOI: 10.3390/biomedicines11082262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Neurofeedback (NF) shows promise in enhancing memory, but its application to the medial temporal lobe (MTL) still needs to be studied. Therefore, we aimed to develop an NF system for the memory function of the MTL and examine neural activity changes and memory task score changes through NF training. We created a memory NF system using intracranial electrodes to acquire and visualise the neural activity of the MTL during memory encoding. Twenty trials of a tug-of-war game per session were employed for NF and designed to control neural activity bidirectionally (Up/Down condition). NF training was conducted with three patients with drug-resistant epilepsy, and we observed an increasing difference in NF signal between conditions (Up-Down) as NF training progressed. Similarities and negative correlation tendencies between the transition of neural activity and the transition of memory function were also observed. Our findings demonstrate NF's potential to modulate MTL activity and memory encoding. Future research needs further improvements to the NF system to validate its effects on memory functions. Nonetheless, this study represents a crucial step in understanding NF's application to memory and provides valuable insights into developing more efficient memory enhancement strategies.
Collapse
Affiliation(s)
- Koji Koizumi
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (K.U.); (M.N.)
| | - Naoto Kunii
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-8655, Japan; (N.K.); (K.N.); (S.F.); (S.S.)
| | - Kazutaka Ueda
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (K.U.); (M.N.)
| | - Keisuke Nagata
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-8655, Japan; (N.K.); (K.N.); (S.F.); (S.S.)
| | - Shigeta Fujitani
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-8655, Japan; (N.K.); (K.N.); (S.F.); (S.S.)
| | - Seijiro Shimada
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-8655, Japan; (N.K.); (K.N.); (S.F.); (S.S.)
| | - Masayuki Nakao
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (K.U.); (M.N.)
| |
Collapse
|
26
|
Ezzyat Y, Kragel JE, Solomon EA, Lega BC, Aronson JP, Jobst BC, Gross RE, Sperling MR, Worrell GA, Sheth SA, Wanda PA, Rizzuto DS, Kahana MJ. Functional and anatomical connectivity predict brain stimulation's mnemonic effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550851. [PMID: 37609181 PMCID: PMC10441352 DOI: 10.1101/2023.07.27.550851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Closed-loop direct brain stimulation is a promising tool for modulating neural activity and behavior. However, it remains unclear how to optimally target stimulation to modulate brain activity in particular brain networks that underlie particular cognitive functions. Here, we test the hypothesis that stimulation's behavioral and physiological effects depend on the stimulation target's anatomical and functional network properties. We delivered closed-loop stimulation as 47 neurosurgical patients studied and recalled word lists. Multivariate classifiers, trained to predict momentary lapses in memory function, triggered stimulation of the lateral temporal cortex (LTC) during the study phase of the task. We found that LTC stimulation specifically improved memory when delivered to targets near white matter pathways. Memory improvement was largest for targets near white matter that also showed high functional connectivity to the brain's memory network. These targets also reduced low-frequency activity in this network, an established marker of successful memory encoding. These data reveal how anatomical and functional networks mediate stimulation's behavioral and physiological effects, provide further evidence that closed-loop LTC stimulation can improve episodic memory, and suggest a method for optimizing neuromodulation through improved stimulation targeting.
Collapse
Affiliation(s)
- Youssef Ezzyat
- Dept. of Psychology, Wesleyan University, Middletown CT 06459
| | | | - Ethan A. Solomon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104
| | - Bradley C. Lega
- Dept. of Neurosurgery, University of Texas Southwestern, Dallas TX 75390
| | - Joshua P. Aronson
- Dept. of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
| | - Barbara C. Jobst
- Dept. of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
| | - Robert E. Gross
- Dept. of Neurosurgery, Emory University Hospital, Atlanta GA 30322
| | - Michael R. Sperling
- Dept. of Neurology, Thomas Jefferson University Hospital, Philadelphia PA 19107
| | | | - Sameer A. Sheth
- Dept. of Neurosurgery, Columbia University Medical Center, New York, NY 10032
| | - Paul A. Wanda
- Dept. of Psychology, University of Pennsylvania, Philadelphia PA 19104
| | - Daniel S. Rizzuto
- Dept. of Psychology, University of Pennsylvania, Philadelphia PA 19104
| | - Michael J. Kahana
- Dept. of Psychology, University of Pennsylvania, Philadelphia PA 19104
| |
Collapse
|
27
|
Lohnas LJ, Healey MK, Davachi L. Neural temporal context reinstatement of event structure during memory recall. J Exp Psychol Gen 2023; 152:1840-1872. [PMID: 37036669 PMCID: PMC10293072 DOI: 10.1037/xge0001354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
The transformation of experiences into meaningful events and memories is intertwined with the notion of time. Temporal perception can influence, and be influenced by, segmenting continuous experience into meaningful events. Episodic memories formed from these events become associated with temporal information as well. However, it is less clear how temporal perception contributes to structuring events and organizing memory: whether it plays a more active or passive role, and whether this temporal information is encoded initially during perception or influenced by retrieval processes. To address these questions, we examined how event segmentation influences temporal representations during initial perception and memory retrieval, without testing temporal information explicitly. Using a neural measure of temporal context extracted from scalp electroencephalography in human participants (N = 170), we found reduced temporal context similarity between studied items separated by an event boundary when compared to items from the same event. Furthermore, while participants freely recalled list items, neural activity reflected reinstatement of temporal context representations from the study phase, including temporal disruption. A computational model of episodic memory, the context maintenance and retrieval (CMR) model, predicted these results, and made novel predictions regarding the influence of temporal disruption on recall order. These findings implicate the impact of event structure on memory organization via temporal representations, underscoring the role of temporal information in event segmentation and episodic memory. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
|
28
|
Joensen BH, Bush D, Vivekananda U, Horner AJ, Bisby JA, Diehl B, Miserocchi A, McEvoy AW, Walker MC, Burgess N. Hippocampal theta activity during encoding promotes subsequent associative memory in humans. Cereb Cortex 2023; 33:8792-8802. [PMID: 37160345 PMCID: PMC10321091 DOI: 10.1093/cercor/bhad162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023] Open
Abstract
Hippocampal theta oscillations have been implicated in associative memory in humans. However, findings from electrophysiological studies using scalp electroencephalography or magnetoencephalography, and those using intracranial electroencephalography are mixed. Here we asked 10 pre-surgical epilepsy patients undergoing intracranial electroencephalography recording, along with 21 participants undergoing magnetoencephalography recordings, to perform an associative memory task, and examined whether hippocampal theta activity during encoding was predictive of subsequent associative memory performance. Across the intracranial electroencephalography and magnetoencephalography studies, we observed that theta power in the hippocampus increased during encoding, and that this increase differed as a function of subsequent memory, with greater theta activity for pairs that were successfully retrieved in their entirety compared with those that were not remembered. This helps to clarify the role of theta oscillations in associative memory formation in humans, and further, demonstrates that findings in epilepsy patients undergoing intracranial electroencephalography recordings can be extended to healthy participants undergoing magnetoencephalography recordings.
Collapse
Affiliation(s)
- Bárður H Joensen
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
- UCL Institute of Cognitive Neuroscience, UCL, London, WC1N 3AZ, United Kingdom
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm 17165, Sweden
- Department of Psychology, Uppsala University, Uppsala 751 42, Sweden
| | - Daniel Bush
- Department of Neuroscience, Physiology and Pharmacology, UCL, London, WC1E 6BT, United Kingdom
| | - Umesh Vivekananda
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
| | - Aidan J Horner
- Department of Psychology, University of York, York, YO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, York, YO10 5DD, United Kingdom
| | - James A Bisby
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
- UCL Institute of Cognitive Neuroscience, UCL, London, WC1N 3AZ, United Kingdom
- Division of Psychiatry, UCL, London, W1T 7BN, United Kingdom
| | - Beate Diehl
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
| | - Anna Miserocchi
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
| | - Andrew W McEvoy
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
| | - Matthew C Walker
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
| | - Neil Burgess
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
- UCL Institute of Cognitive Neuroscience, UCL, London, WC1N 3AZ, United Kingdom
- Wellcome Centre for Human Neuroimaging, UCL, London, WC1N 3AR, United Kingdom
| |
Collapse
|
29
|
Rubinstein DY, Weidemann CT, Sperling MR, Kahana MJ. Direct brain recordings suggest a causal subsequent-memory effect. Cereb Cortex 2023; 33:6891-6901. [PMID: 36702495 PMCID: PMC10233277 DOI: 10.1093/cercor/bhad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/28/2023] Open
Abstract
Endogenous variation in brain state and stimulus-specific evoked activity can both contribute to successful encoding. Previous studies, however, have not clearly distinguished among these components. We address this question by analysing intracranial EEG recorded from epilepsy patients as they studied and subsequently recalled lists of words. We first trained classifiers to predict recall of either single items or entire lists and found that both classifiers exhibited similar performance. We found that list-level classifier output-a biomarker of successful encoding-tracked item presentation and recall events, despite having no information about the trial structure. Across widespread brain regions, decreased low- and increased high-frequency activity (HFA) marked successful encoding of both items and lists. We found regional differences in the hippocampus and prefrontal cortex, where in the hippocampus HFA correlated more strongly with item recall, whereas, in the prefrontal cortex, HFA correlated more strongly with list performance. Despite subtle differences in item- and list-level features, the similarity in overall classification performance, spectral signatures of successful recall and fluctuations of spectral activity across the encoding period argue for a shared endogenous process that causally impacts the brain's ability to learn new information.
Collapse
Affiliation(s)
- Daniel Y Rubinstein
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Christoph T Weidemann
- Department of Psychology, Swansea University, Swansea SA2 8PP, UK
- Department of Bioengineering, Columbia University, New York, NY 10027, USA
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
30
|
Qasim SE, Mohan UR, Stein JM, Jacobs J. Neuronal activity in the human amygdala and hippocampus enhances emotional memory encoding. Nat Hum Behav 2023; 7:754-764. [PMID: 36646837 PMCID: PMC11243592 DOI: 10.1038/s41562-022-01502-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/25/2022] [Indexed: 01/17/2023]
Abstract
Emotional events comprise our strongest and most valuable memories. Here we examined how the brain prioritizes emotional information for storage using direct brain recording and deep brain stimulation. First, 148 participants undergoing intracranial electroencephalographic (iEEG) recording performed an episodic memory task. Participants were most successful at remembering emotionally arousing stimuli. High-frequency activity (HFA), a correlate of neuronal spiking activity, increased in both the hippocampus and the amygdala when participants successfully encoded emotional stimuli. Next, in a subset of participants (N = 19), we show that applying high-frequency electrical stimulation to the hippocampus selectively diminished memory for emotional stimuli and specifically decreased HFA. Finally, we show that individuals with depression (N = 19) also exhibit diminished emotion-mediated memory and HFA. By demonstrating how direct stimulation and symptoms of depression unlink HFA, emotion and memory, we show the causal and translational potential of neural activity in the amygdalohippocampal circuit for prioritizing emotionally arousing memories.
Collapse
Affiliation(s)
- Salman E Qasim
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Uma R Mohan
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Joel M Stein
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Department of Neurological Surgery, Columbia University, New York, NY, USA.
| |
Collapse
|
31
|
Das A, Menon V. Concurrent- and After-Effects of Medial Temporal Lobe Stimulation on Directed Information Flow to and from Prefrontal and Parietal Cortices during Memory Formation. J Neurosci 2023; 43:3159-3175. [PMID: 36963847 PMCID: PMC10146497 DOI: 10.1523/jneurosci.1728-22.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023] Open
Abstract
Electrical stimulation of the medial temporal lobe (MTL) has the potential to uncover causal circuit mechanisms underlying memory function. However, little is known about how MTL stimulation alters information flow with frontoparietal cortical regions implicated in episodic memory. We used intracranial EEG recordings from humans (14 participants, 10 females) to investigate how MTL stimulation alters directed information flow between MTL and PFC and between MTL and posterior parietal cortex (PPC). Participants performed a verbal episodic memory task during which they were presented with words and asked to recall them after a delay of ∼20 s; 50 Hz stimulation was applied to MTL electrodes on selected trials during memory encoding. Directed information flow was examined using phase transfer entropy. Behaviorally, we observed that MTL stimulation reduced memory recall. MTL stimulation decreased top-down PFC→MTL directed information flow during both memory encoding and subsequent memory recall, revealing aftereffects more than 20 s after end of stimulation. Stimulation suppressed top-down PFC→MTL influences to a greater extent than PPC→MTL. Finally, MTL→PFC information flow on stimulation trials was significantly lower for successful, compared with unsuccessful, memory recall; in contrast, MTL→ventral PPC information flow was higher for successful, compared with unsuccessful, memory recall. Together, these results demonstrate that the effects of MTL stimulation are behaviorally, regionally, and directionally specific, that MTL stimulation selectively impairs directional signaling with PFC, and that causal MTL-ventral PPC circuits support successful memory recall. Findings provide new insights into dynamic casual circuits underling episodic memory and their modulation by MTL stimulation.SIGNIFICANCE STATEMENT The medial temporal lobe (MTL) and its interactions with prefrontal and parietal cortices (PFC and PPC) play a critical role in human memory. Dysfunctional MTL-PFC and MTL-PPC circuits are prominent in psychiatric and neurologic disorders, including Alzheimer's disease and schizophrenia. Brain stimulation has emerged as a potential mechanism for enhancing memory and cognitive functions, but the underlying neurophysiological mechanisms and dynamic causal circuitry underlying bottom-up and top-down signaling involving the MTL are unknown. Here, we use intracranial EEG recordings to investigate the effects of MTL stimulation on causal signaling in key episodic memory circuits linking the MTL with PFC and PPC. Our findings have implications for translational applications aimed at realizing the promise of brain stimulation-based treatment of memory disorders.
Collapse
Affiliation(s)
- Anup Das
- Department of Psychiatry & Behavioral Sciences
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences
- Department of Neurology & Neurological Sciences
- Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
32
|
Axelrod V, Rozier C, Sohier E, Lehongre K, Adam C, Lambrecq V, Navarro V, Naccache L. Intracranial study in humans: Neural spectral changes during watching comedy movie of Charlie Chaplin. Neuropsychologia 2023; 185:108558. [PMID: 37061128 DOI: 10.1016/j.neuropsychologia.2023.108558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/01/2023] [Accepted: 04/04/2023] [Indexed: 04/17/2023]
Abstract
Humor plays a prominent role in our lives. Thus, understanding the cognitive and neural mechanisms of humor is particularly important. Previous studies that investigated neural substrates of humor used functional MRI and to a lesser extent EEG. In the present study, we conducted intracranial recording in human patients, enabling us to obtain the signal with high temporal precision from within specific brain locations. Our analysis focused on the temporal lobe and the surrounding areas, the temporal lobe was most densely covered in our recording. Thirteen patients watched a fragment of a Charlie Chaplin movie. An independent group of healthy participants rated the same movie fragment, helping us to identify the most funny and the least funny frames of the movie. We compared neural activity occurring during the most funny and least funny frames across frequencies in the range of 1-170 Hz. The most funny compared to least funny parts of the movie were associated with activity modulation in the broadband high-gamma (70-170 Hz; mostly activation) and to a lesser extent gamma band (40-69Hz; activation) and low frequencies (1-12 Hz, delta, theta, alpha bands; mostly deactivation). With regard to regional specificity, we found three types of brain areas: (I) temporal pole, middle and inferior temporal gyrus (both anterior and posterior) in which there was both activation in the high-gamma/gamma bands and deactivation in low frequencies; (II) ventral part of the temporal lobe such as the fusiform gyrus, in which there was mostly deactivation the low frequencies; (III) posterior temporal cortex and its environment, such as the middle occipital and the temporo-parietal junction, in which there was activation in the high-gamma/gamma band. Overall, our results suggest that humor appreciation might be achieved by neural activity across the frequency spectrum.
Collapse
Affiliation(s)
- Vadim Axelrod
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, 52900, Israel.
| | - Camille Rozier
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Elisa Sohier
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Katia Lehongre
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Claude Adam
- AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France
| | - Virginie Lambrecq
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France; AP-HP, EEG Unit, Neurophysiology Department, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France
| | - Vincent Navarro
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France; AP-HP, EEG Unit, Neurophysiology Department, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France; AP-HP, Center of Reference for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France
| | - Lionel Naccache
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France; AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Neurophysiology, 47-83 boulevard de l'Hôpital, Paris 75013, France
| |
Collapse
|
33
|
Hippocampal Theta and Episodic Memory. J Neurosci 2023; 43:613-620. [PMID: 36639900 PMCID: PMC9888505 DOI: 10.1523/jneurosci.1045-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/16/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Computational models of rodent physiology implicate hippocampal theta as a key modulator of learning and memory (Buzsáki and Moser, 2013; Lisman and Jensen, 2013), yet human hippocampal recordings have shown divergent theta correlates of memory formation. Herweg et al. (2020) suggest that decreases in memory-related broadband power mask narrowband theta increases. Their survey also notes that the theta oscillations appear most prominently in contrasts that isolate memory retrieval processes and when aggregating signals across large brain regions. We evaluate these hypotheses by analyzing human hippocampal recordings captured as 162 neurosurgical patients (n = 86 female) performed a free recall task. Using the Irregular-Resampling Auto-Spectral Analysis (IRASA) to separate broad and narrowband components of the field potential, we show that (1) broadband and narrowband components of theta exhibit opposite effects, with broadband signals decreasing and narrowband theta increasing during successful encoding; (2) whereas low-frequency theta oscillations increase before successful recall, higher-frequency theta and alpha oscillations decrease, masking the positive effect of theta when aggregating across the full band; and (3) the effects of theta on memory encoding and retrieval do not differ between reference schemes that accentuate local signals (bipolar) and those that aggregate signals globally (whole-brain average). In line with computational models that ascribe a fundamental role for hippocampal theta in memory, our large-scale study of human hippocampal recordings shows that 3-4 Hz theta oscillations reliably increase during successful memory encoding and before spontaneous recall of previously studied items.SIGNIFICANCE STATEMENT Analyzing recordings from 162 participants, we resolve a long-standing question regarding the role of hippocampal theta oscillations in the formation and retrieval of episodic memories. We show that broadband spectral changes confound estimates of narrowband theta activity, thereby accounting for inconsistent results in the literature. After accounting for broadband effects, we find that increased theta activity marks successful encoding and retrieval of episodic memories, supporting rodent models that ascribe a key role for hippocampal theta in memory function.
Collapse
|
34
|
Jun S, Joo Y, Sim Y, Pyo C, Ham K. Fronto-parietal single-trial brain connectivity benefits successful memory recognition. Transl Neurosci 2022; 13:506-513. [PMID: 36660006 PMCID: PMC9816457 DOI: 10.1515/tnsci-2022-0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 01/04/2023] Open
Abstract
Successful recognition has been known to produce distinct patterns of neural activity. Many studies have used spectral power or event-related potentials of single recognition-specific regions as classification features. However, this does not accurately reflect the mechanisms behind recognition, in that recognition requires multiple brain regions to work together. Hence, classification accuracy of subsequent memory performance could be improved by using functional connectivity within memory-related brain networks instead of using local brain activity as classifiers. In this study, we examined electroencephalography (EEG) signals while performing a word recognition memory task. Recorded EEG signals were collected using a 32-channel cap. Connectivity measures related to the left hemispheric fronto-parietal connectivity (P3 and F3) were found to contribute to the accurate recognition of previously studied memory items. Classification of subsequent memory outcome using connectivity features revealed that the classifier with support vector machine achieved the highest classification accuracy of 86.79 ± 5.93% (mean ± standard deviation) by using theta (3-8 Hz) connectivity during successful recognition trials. The results strongly suggest that highly accurate classification of subsequent memory outcome can be achieved by using single-trial functional connectivity.
Collapse
Affiliation(s)
- Soyeon Jun
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Yihyun Joo
- National Forensic Services, Forensic Medical Examination Division, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, South Korea
| | - Youjin Sim
- National Forensic Services, Forensic Medical Examination Division, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, South Korea
| | - Chuyun Pyo
- National Forensic Services, Forensic Medical Examination Division, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, South Korea
| | - Keunsoo Ham
- National Forensic Services, Forensic Medical Examination Division, 10, Ipchun-ro, Wonju-si, Gangwon-do, 26460, South Korea
| |
Collapse
|
35
|
Das A, Menon V. Replicable patterns of causal information flow between hippocampus and prefrontal cortex during spatial navigation and spatial-verbal memory formation. Cereb Cortex 2022; 32:5343-5361. [PMID: 35136979 PMCID: PMC9712747 DOI: 10.1093/cercor/bhac018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/27/2022] Open
Abstract
Interactions between the hippocampus and prefrontal cortex (PFC) play an essential role in both human spatial navigation and episodic memory, but the underlying causal flow of information between these regions across task domains is poorly understood. Here we use intracranial EEG recordings and spectrally resolved phase transfer entropy to investigate information flow during two different virtual spatial navigation and memory encoding/recall tasks and examine replicability of information flow patterns across spatial and verbal memory domains. Information theoretic analysis revealed a higher causal information flow from hippocampus to lateral PFC than in the reverse direction. Crucially, an asymmetric pattern of information flow was observed during memory encoding and recall periods of both spatial navigation tasks. Further analyses revealed frequency specificity of interactions characterized by greater bottom-up information flow from hippocampus to PFC in delta-theta band (0.5-8 Hz); in contrast, top-down information flow from PFC to hippocampus was stronger in beta band (12-30 Hz). Bayesian analysis revealed a high degree of replicability between the two spatial navigation tasks (Bayes factor > 5.46e+3) and across tasks spanning the spatial and verbal memory domains (Bayes factor > 7.32e+8). Our findings identify a domain-independent and replicable frequency-dependent feedback loop engaged during memory formation in the human brain.
Collapse
Affiliation(s)
- Anup Das
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
36
|
Liu AA, Henin S, Abbaspoor S, Bragin A, Buffalo EA, Farrell JS, Foster DJ, Frank LM, Gedankien T, Gotman J, Guidera JA, Hoffman KL, Jacobs J, Kahana MJ, Li L, Liao Z, Lin JJ, Losonczy A, Malach R, van der Meer MA, McClain K, McNaughton BL, Norman Y, Navas-Olive A, de la Prida LM, Rueckemann JW, Sakon JJ, Skelin I, Soltesz I, Staresina BP, Weiss SA, Wilson MA, Zaghloul KA, Zugaro M, Buzsáki G. A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations. Nat Commun 2022; 13:6000. [PMID: 36224194 PMCID: PMC9556539 DOI: 10.1038/s41467-022-33536-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Decades of rodent research have established the role of hippocampal sharp wave ripples (SPW-Rs) in consolidating and guiding experience. More recently, intracranial recordings in humans have suggested their role in episodic and semantic memory. Yet, common standards for recording, detection, and reporting do not exist. Here, we outline the methodological challenges involved in detecting ripple events and offer practical recommendations to improve separation from other high-frequency oscillations. We argue that shared experimental, detection, and reporting standards will provide a solid foundation for future translational discovery.
Collapse
Affiliation(s)
- Anli A Liu
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA
| | - Simon Henin
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Saman Abbaspoor
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Anatol Bragin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Elizabeth A Buffalo
- Department of Physiology and Biophysics, Washington National Primate Center, University of Washington, Seattle, WA, USA
| | - Jordan S Farrell
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - David J Foster
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Loren M Frank
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Tamara Gedankien
- Department of Biomedical Engineering, Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Jean Gotman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jennifer A Guidera
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, Department of Bioengineering, University of California, San Francisco, San Francisco, CA, USA
| | - Kari L Hoffman
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Li
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Jack J Lin
- Department of Neurology, Center for Mind and Brain, University of California Davis, Oakland, CA, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Rafael Malach
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Kathryn McClain
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA
| | - Bruce L McNaughton
- The Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Yitzhak Norman
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | | | | | - Jon W Rueckemann
- Department of Physiology and Biophysics, Washington National Primate Center, University of Washington, Seattle, WA, USA
| | - John J Sakon
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Skelin
- Department of Neurology, Center for Mind and Brain, University of California Davis, Oakland, CA, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Bernhard P Staresina
- Department of Experimental Psychology, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Shennan A Weiss
- Brookdale Hospital Medical Center, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Matthew A Wilson
- Department of Brain and Cognitive Sciences and Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Michaël Zugaro
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - György Buzsáki
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
37
|
Aktürk T, de Graaf TA, Güntekin B, Hanoğlu L, Sack AT. Enhancing memory capacity by experimentally slowing theta frequency oscillations using combined EEG-tACS. Sci Rep 2022; 12:14199. [PMID: 35987918 PMCID: PMC9392784 DOI: 10.1038/s41598-022-18665-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022] Open
Abstract
The coupling of gamma oscillation (~ 40+ Hz) amplitude to the phase of ongoing theta (~ 6 Hz) oscillations has been proposed to be directly relevant for memory performance. Current theories suggest that memory capacity scales with number of gamma cycles that can be fitted into the preferred phase of a theta cycle. Following this logic, transcranial alternating current stimulation (tACS) may be used to adjust theta cycles (increasing/decreasing theta frequency) to decrease or increase memory performance during stimulation. Here, we used individualized EEG-informed theta tACS to (1) experimentally “slow down” individual theta frequency (ITF), (2) evaluate cognitive after effects on a battery of memory and learning tasks, and (3) link the cognitive performance changes to tACS-induced effects on theta-band oscillations as measured by post EEG. We found frequency- and task-specific tACS after effects demonstrating a specific enhancement in memory capacity. This tACS-induced cognitive enhancement was specific to the visual memory task performed immediately after tACS offset, and specific to the ITF-1 Hz (slowing) stimulation condition and thus following a protocol specifically designed to slow down theta frequency to enhance memory capacity. Follow-up correlation analyses in this group linked the enhanced memory performance to increased left frontal-parietal theta-band connectivity. Interestingly, resting-state theta power immediately after tACS offset revealed a theta power increase not for the ITF-1 Hz group, but only for the ITF group where the tACS frequency was ‘optimal’ for entrainment. These results suggest that while individually calibrated tACS at peak frequency maximally modulates resting-state oscillatory power, tACS stimulation slightly below this optimal peak theta frequency is better suited to enhance memory capacity performance. Importantly, our results further suggest that such cognitive enhancement effects can last beyond the period of stimulation and are linked to increased network connectivity, opening the door towards more clinical and applied relevance of using tACS in cognitive rehabilitation and/or neurocognitive enhancement.
Collapse
|
38
|
Topçu Ç, Marks VS, Saboo KV, Lech M, Nejedly P, Kremen V, Worrell GA, Kucewicz MT. Hotspot of human verbal memory encoding in the left anterior prefrontal cortex. EBioMedicine 2022; 82:104135. [PMID: 35785617 PMCID: PMC9254338 DOI: 10.1016/j.ebiom.2022.104135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
Background Treating memory and cognitive deficits requires knowledge about anatomical sites and neural activities to be targeted with particular therapies. Emerging technologies for local brain stimulation offer attractive therapeutic options but need to be applied to target specific neural activities, at distinct times, and in specific brain regions that are critical for memory formation. Methods The areas that are critical for successful encoding of verbal memory as well as the underlying neural activities were determined directly in the human brain with intracranial electrophysiological recordings in epilepsy patients. We recorded a broad range of spectral activities across the cortex of 135 patients as they memorised word lists for subsequent free recall. Findings The greatest differences in the spectral power between encoding subsequently recalled and forgotten words were found in low theta frequency (3–5 Hz) activities of the left anterior prefrontal cortex. This subsequent memory effect was proportionally greater in the lower frequency bands and in the more anterior cortical regions. We found the peak of this memory signal in a distinct part of the prefrontal cortex at the junction between the Broca's area and the frontal pole. The memory effect in this confined area was significantly higher (Tukey–Kramer test, p<0.05) than in other anatomically distinct areas. Interpretation Our results suggest a focal hotspot of human verbal memory encoding located in the higher-order processing region of the prefrontal cortex, which presents a prospective target for modulating cognitive functions in the human patients. The memory effect provides an electrophysiological biomarker of low frequency neural activities, at distinct times of memory encoding, and in one hotspot location in the human brain. Funding Open-access datasets were originally collected as part of a BRAIN Initiative project called Restoring Active Memory (RAM) funded by the Defence Advanced Research Project Agency (DARPA). CT, ML, MTK and this research were supported from the First Team grant of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund.
Collapse
|
39
|
Long Q, Li W, Zhang W, Han B, Chen Q, Shen L, Liu X. Electrical stimulation mapping in the medial prefrontal cortex induced auditory hallucinations of episodic memory: A case report. Front Hum Neurosci 2022; 16:815232. [PMID: 35966994 PMCID: PMC9366097 DOI: 10.3389/fnhum.2022.815232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
It has been well documented that the auditory system in the superior temporal cortex is responsible for processing basic auditory sound features, such as sound frequency and intensity, while the prefrontal cortex is involved in higher-order auditory functions, such as language processing and auditory episodic memory. The temporal auditory cortex has vast forward anatomical projections to the prefrontal auditory cortex, connecting with the lateral, medial, and orbital parts of the prefrontal cortex. The connections between the auditory cortex and the prefrontal cortex thus help in localizing, recognizing, and comprehending external auditory inputs. In addition, the medial prefrontal cortex (MPFC) is believed to be a core region of episodic memory retrieval and is one of the most important regions in the default mode network (DMN). However, previous neural evidence with regard to the comparison between basic auditory processing and auditory episodic memory retrieval mainly comes from fMRI studies. The specific neural networks and the corresponding critical frequency bands of neuronal oscillations underlying the two auditory functions remain unclear. In the present study, we reported results of direct cortical stimulations during stereo-electro-encephalography (SEEG) recording in a patient with drug-resistant epilepsy. Electrodes covered the superior temporal gyrus, the operculum and the insula cortex of bilateral hemispheres, the prefrontal cortex, the parietal lobe, the anterior and middle cingulate cortex, and the amygdala of the left hemisphere. Two types of auditory hallucinations were evoked with direct cortical stimulations, which were consistent with the habitual seizures. The noise hallucinations, i.e., “I could hear buzzing noises in my head,” were evoked with the stimulation of the superior temporal gyrus. The episodic memory hallucinations “I could hear a young woman who was dressed in a red skirt saying: What is the matter with you?,” were evoked with the stimulation of MPFC. The patient described how she had met this young woman when she was young and that the woman said the same sentence to her. Furthermore, by analyzing the high gamma power (HGP) induced by direct electrical stimulation, two dissociable neural networks underlying the two types of auditory hallucinations were localized. Taken together, the present results confirm the hierarchical processing of auditory information by showing the different involvements of the primary auditory cortex vs. the prefrontal cortex in the two types of auditory hallucinations.
Collapse
Affiliation(s)
- Qiting Long
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Wenjie Li
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Wei Zhang
- Department of Neurology, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Biao Han
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Qi Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Lu Shen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
- *Correspondence: Lu Shen,
| | - Xingzhou Liu
- Department of Neurology, Beijing Tsinghua Changgung Hospital, Beijing, China
- Xingzhou Liu,
| |
Collapse
|
40
|
Zhao C, Fukuda K, Woodman GF. Cross-frequency coupling of frontal theta and posterior alpha is unrelated to the fidelity of visual long-term memory encoding. VISUAL COGNITION 2022; 30:379-392. [DOI: 10.1080/13506285.2022.2084480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Chong Zhao
- Department of Psychology, University of Chicago, Chicago, IL, USA
| | - Keisuke Fukuda
- Department of Psychology, University of Toronto Mississauga, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Geoffrey F. Woodman
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
41
|
Solway A, Schneider I, Lei Y. The relationships between subclinical OCD symptoms, beta/gamma-band power, and the rate of evidence integration during perceptual decision making. Neuroimage Clin 2022; 34:102975. [PMID: 35255416 PMCID: PMC8904622 DOI: 10.1016/j.nicl.2022.102975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/25/2022] [Accepted: 02/25/2022] [Indexed: 11/25/2022]
Abstract
Previous studies have demonstrated that the rate of evidence integration during perceptual decision making, a specific computationally defined parameter, is negatively correlated with both subclinical symptoms of OCD measured on a continuum and categorically diagnosed patient status. However, the neural mechanisms underlying this deficit are unknown. Separate work has shown that both gamma and beta-band power are related to evidence integration, and differences in beta-band power in particular have been hypothesized to hinder flexible behavioral control. We sought to unify these two disparate literatures, one on OCD-related information processing differences constrained by behavioral data alone, and the other on the neural correlates of evidence integration. Using computational modeling and scalp EEG, we tested (N = 67) the relationships between subclinical symptom scores, drift rate, and gamma/beta-band activity during perceptual decision making. We replicated both prior work showing deficits in evidence integration as a function of OCD symptoms, and work showing a relationship between evidence integration and gamma and beta-band power. As predicted, the slope of beta-band power was correlated with OCD symptoms. However, the relationships between OCD symptoms and drift rate and the slopes of gamma and beta-band power and drift rate remained unchanged when simultaneously accounting for all variables, speaking against the hypothesis that differences in band-band power explain drift rate deficits.
Collapse
Affiliation(s)
- Alec Solway
- Department of Psychology, University of Maryland-College Park, United States; Program in Neuroscience and Cognitive Science, University of Maryland-College Park, United States.
| | - Isabella Schneider
- Department of Psychology, University of Maryland-College Park, United States
| | - Yuqing Lei
- Department of Psychology, University of Maryland-College Park, United States
| |
Collapse
|
42
|
Johnson EL, Yin Q, O'Hara NB, Tang L, Jeong JW, Asano E, Ofen N. Dissociable oscillatory theta signatures of memory formation in the developing brain. Curr Biol 2022; 32:1457-1469.e4. [PMID: 35172128 PMCID: PMC9007830 DOI: 10.1016/j.cub.2022.01.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
Abstract
Understanding complex human brain functions is critically informed by studying such functions during development. Here, we addressed a major gap in models of human memory by leveraging rare direct electrophysiological recordings from children and adolescents. Specifically, memory relies on interactions between the medial temporal lobe (MTL) and prefrontal cortex (PFC), and the maturation of these interactions is posited to play a key role in supporting memory development. To understand the nature of MTL-PFC interactions, we examined subdural recordings from MTL and PFC in 21 neurosurgical patients aged 5.9-20.5 years as they performed an established scene memory task. We determined signatures of memory formation by comparing the study of subsequently recognized to forgotten scenes in single trials. Results establish that MTL and PFC interact via two distinct theta mechanisms, an ∼3-Hz oscillation that supports amplitude coupling and slows down with age and an ∼7-Hz oscillation that supports phase coupling and speeds up with age. Slow and fast theta interactions immediately preceding scene onset further explained age-related differences in recognition performance. Last, with additional diffusion imaging data, we linked both functional mechanisms to the structural maturation of the cingulum tract. Our findings establish system-level dynamics of memory formation and suggest that MTL and PFC interact via increasingly dissociable mechanisms as memory improves across development.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI 48202, USA; Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, IL 60611, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Qin Yin
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI 48202, USA; Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | - Nolan B O'Hara
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA
| | - Lingfei Tang
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI 48202, USA; Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | - Jeong-Won Jeong
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA; Departments of Pediatrics and Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Eishi Asano
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA; Departments of Pediatrics and Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Noa Ofen
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI 48202, USA; Department of Psychology, Wayne State University, Detroit, MI 48202, USA; Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
43
|
Lurie SM, Kragel JE, Schuele SU, Voss JL. Human hippocampal responses to network intracranial stimulation vary with theta phase. eLife 2022; 11:78395. [PMID: 36453717 PMCID: PMC9733942 DOI: 10.7554/elife.78395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Hippocampal-dependent memory is thought to be supported by distinct connectivity states, with strong input to the hippocampus benefitting encoding and weak input benefitting retrieval. Previous research in rodents suggests that the hippocampal theta oscillation orchestrates the transition between these states, with opposite phase angles predicting minimal versus maximal input. We investigated whether this phase dependence exists in humans using network-targeted intracranial stimulation. Intracranial local field potentials were recorded from individuals with epilepsy undergoing medically necessary stereotactic electroencephalographic recording. In each subject, biphasic bipolar direct electrical stimulation was delivered to lateral temporal sites with demonstrated connectivity to hippocampus. Lateral temporal stimulation evoked ipsilateral hippocampal potentials with distinct early and late components. Using evoked component amplitude to measure functional connectivity, we assessed whether the phase of hippocampal theta predicted relatively high versus low connectivity. We observed an increase in the continuous phase-amplitude relationship selective to the early and late components of the response evoked by lateral temporal stimulation. The maximal difference in these evoked component amplitudes occurred across 180 degrees of separation in the hippocampal theta rhythm; that is, the greatest difference in component amplitude was observed when stimulation was delivered at theta peak versus trough. The pattern of theta-phase dependence observed for hippocampus was not identified for control locations. These findings demonstrate that hippocampal receptivity to input varies with theta phase, suggesting that theta phase reflects connectivity states of human hippocampal networks. These findings confirm a putative mechanism by which neural oscillations modulate human hippocampal function.
Collapse
Affiliation(s)
- Sarah M Lurie
- Interdepartmental Neuroscience Program, Northwestern UniversityChicagoUnited States
| | - James E Kragel
- Department of Neurology, University of ChicagoChicagoUnited States
| | - Stephan U Schuele
- Department of Neurology, Northwestern UniversityChicagoUnited States
| | - Joel L Voss
- Department of Neurology, University of ChicagoChicagoUnited States
| |
Collapse
|
44
|
Kwon H, Kronemer SI, Christison-Lagay KL, Khalaf A, Li J, Ding JZ, Freedman NC, Blumenfeld H. Early cortical signals in visual stimulus detection. Neuroimage 2021; 244:118608. [PMID: 34560270 DOI: 10.1016/j.neuroimage.2021.118608] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
During visual conscious perception, the earliest responses linked to signal detection are little known. The current study aims to reveal the cortical neural activity changes in the earliest stages of conscious perception using recordings from intracranial electrodes. Epilepsy patients (N=158) were recruited from a multi-center collaboration and completed a visual word recall task. Broadband gamma activity (40-115Hz) was extracted with a band-pass filter and gamma power was calculated across subjects on a common brain surface. Our results show early gamma power increases within 0-50ms after stimulus onset in bilateral visual processing cortex, right frontal cortex (frontal eye fields, ventral medial/frontopolar, orbital frontal) and bilateral medial temporal cortex regardless of whether the word was later recalled. At the same early times, decreases were seen in the left rostral middle frontal gyrus. At later times after stimulus onset, gamma power changes developed in multiple cortical regions. These included sustained changes in visual and other association cortical networks, and transient decreases in the default mode network most prominently at 300-650ms. In agreement with prior work in this verbal memory task, we also saw greater increases in visual and medial temporal regions as well as prominent later (> 300ms) increases in left hemisphere language areas for recalled versus not recalled stimuli. These results suggest an early signal detection network in the frontal, medial temporal, and visual cortex is engaged at the earliest stages of conscious visual perception.
Collapse
Affiliation(s)
- Hunki Kwon
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8018, USA
| | - Sharif I Kronemer
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8018, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Kate L Christison-Lagay
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8018, USA
| | - Aya Khalaf
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8018, USA; Biomedical Engineering and Systems, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Jiajia Li
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8018, USA; School of Information and Control Engineering, Xian University of Architecture and Technology, Xi'an 710055, China
| | - Julia Z Ding
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8018, USA
| | - Noah C Freedman
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8018, USA
| | - Hal Blumenfeld
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8018, USA; Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA.
| |
Collapse
|
45
|
Han L, Zhao S, Xu F, Wang Y, Zhou R, Huang S, Ding Y, Deng D, Mao W, Chen X. Sevoflurane Increases Hippocampal Theta Oscillations and Impairs Memory Via TASK-3 Channels. Front Pharmacol 2021; 12:728300. [PMID: 34776954 PMCID: PMC8581481 DOI: 10.3389/fphar.2021.728300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022] Open
Abstract
Sevoflurane can induce memory impairment during clinical anesthesia; however, the underlying mechanisms are largely unknown. TASK-3 channels are one of the potential targets of sevoflurane. Accumulating evidence supports a negative role of intracranial theta rhythms (4–12 Hz) in memory formation. Here, we investigated whether TASK-3 channels contribute to sevoflurane-induced memory impairment by regulating hippocampal theta rhythms. In this study, the memory performance of mice was tested by contextual fear conditioning and inhibitory avoidance experiments. The hippocampal local field potentials (LFPs) were recorded from chronically implanted electrodes located in CA3 region. The results showed that sevoflurane concentration-dependently impaired the memory function of mice, as evidenced by the decreased time mice spent on freezing and reduced latencies for mice to enter the shock compartment. Our electrophysiological results revealed that sevoflurane also enhanced the spectral power of hippocampal LFPs (1–30 Hz), particularly in memory-related theta rhythms (4–12 Hz). These effects were mitigated by viral-mediated knockdown of TASK-3 channels in the hippocampal CA3 region. The knockdown of hippocampal TASK-3 channels significantly reduced the enhancing effect of sevoflurane on hippocampal theta rhythms and alleviated sevoflurane-induced memory impairment. Our data indicate that sevoflurane can increase hippocampal theta oscillations and impair memory function via TASK-3 channels.
Collapse
Affiliation(s)
- Linlin Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruihui Zhou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weike Mao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Tong APS, Vaz AP, Wittig JH, Inati SK, Zaghloul KA. Ripples reflect a spectrum of synchronous spiking activity in human anterior temporal lobe. eLife 2021; 10:68401. [PMID: 34779398 PMCID: PMC8716101 DOI: 10.7554/elife.68401] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/13/2021] [Indexed: 11/13/2022] Open
Abstract
Direct brain recordings have provided important insights into how high-frequency activity captured through intracranial EEG (iEEG) supports human memory retrieval. The extent to which such activity is comprised of transient fluctuations that reflect the dynamic coordination of underlying neurons, however, remains unclear. Here, we simultaneously record iEEG, local field potential (LFP), and single unit activity in the human temporal cortex. We demonstrate that fast oscillations within the previously identified 80-120 Hz ripple band contribute to broadband high-frequency activity in the human cortex. These ripple oscillations exhibit a spectrum of amplitudes and durations related to the amount of underlying neuronal spiking. Ripples in the macro-scale iEEG are related to the number and synchrony of ripples in the micro-scale LFP, which in turn are related to the synchrony of neuronal spiking. Our data suggest that neural activity in the human temporal lobe is organized into transient bouts of ripple oscillations that reflect underlying bursts of spiking activity.
Collapse
Affiliation(s)
- Ai Phuong S Tong
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Alex P Vaz
- Medical Scientist Training Program, Duke University School of Medicine, Durham, United States
| | - John H Wittig
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Sara K Inati
- Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
47
|
Marks VS, Saboo KV, Topçu Ç, Lech M, Thayib TP, Nejedly P, Kremen V, Worrell GA, Kucewicz MT. Independent dynamics of low, intermediate, and high frequency spectral intracranial EEG activities during human memory formation. Neuroimage 2021; 245:118637. [PMID: 34644594 DOI: 10.1016/j.neuroimage.2021.118637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 01/23/2023] Open
Abstract
A wide spectrum of brain rhythms are engaged throughout the human cortex in cognitive functions. How the rhythms of various frequency ranges are coordinated across the space of the human cortex and time of memory processing is inconclusive. They can either be coordinated together across the frequency spectrum at the same cortical site and time or induced independently in particular bands. We used a large dataset of human intracranial electroencephalography (iEEG) to parse the spatiotemporal dynamics of spectral activities induced during formation of verbal memories. Encoding of words for subsequent free recall activated low frequency theta, intermediate frequency alpha and beta, and high frequency gamma power in a mosaic pattern of discrete cortical sites. A majority of the cortical sites recorded activity in only one of these frequencies, except for the visual cortex where spectral power was induced across multiple bands. Each frequency band showed characteristic dynamics of the induced power specific to cortical area and hemisphere. The power of the low, intermediate, and high frequency activities propagated in independent sequences across the visual, temporal and prefrontal cortical areas throughout subsequent phases of memory encoding. Our results provide a holistic, simplified model of the spectral activities engaged in the formation of human memory, suggesting an anatomically and temporally distributed mosaic of coordinated brain rhythms.
Collapse
Affiliation(s)
| | - Krishnakant V Saboo
- Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, IL, USA
| | - Çağdaş Topçu
- Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, BioTechMed Center, Gdansk University of Technology, Gdansk, Poland; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Michal Lech
- Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, BioTechMed Center, Gdansk University of Technology, Gdansk, Poland; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Theodore P Thayib
- Department of Computer Engineering, Iowa State University, Ames, Iowa, USA
| | - Petr Nejedly
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; The Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic
| | - Vaclav Kremen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Robotics, and Cybernetics, Czech Institute of Informatics, Czech Technical University in Prague, Prague, Czech Republic
| | - Gregory A Worrell
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, USA
| | - Michal T Kucewicz
- Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, BioTechMed Center, Gdansk University of Technology, Gdansk, Poland; Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, USA.
| |
Collapse
|
48
|
Das A, Menon V. Asymmetric Frequency-Specific Feedforward and Feedback Information Flow between Hippocampus and Prefrontal Cortex during Verbal Memory Encoding and Recall. J Neurosci 2021; 41:8427-8440. [PMID: 34433632 PMCID: PMC8496199 DOI: 10.1523/jneurosci.0802-21.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/05/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
Hippocampus and prefrontal cortex (PFC) circuits are thought to play a prominent role in human episodic memory, but the precise nature, and electrophysiological basis, of directed information flow between these regions and their role in verbal memory formation has remained elusive. Here we investigate nonlinear causal interactions between hippocampus and lateral PFC using intracranial EEG recordings (26 participants, 16 females) during verbal memory encoding and recall tasks. Direction-specific information theoretic analysis revealed higher causal information flow from the hippocampus to PFC than in the reverse direction. Crucially, this pattern was observed during both memory encoding and recall, and the strength of causal interactions was significantly greater during memory task performance than resting baseline. Further analyses revealed frequency specificity of interactions with greater causal information flow from hippocampus to the PFC in the delta-theta frequency band (0.5-8 Hz); in contrast, PFC to hippocampus causal information flow were stronger in the beta band (12-30 Hz). Across all hippocampus-PFC electrode pairs, propagation delay between the source and target signals was estimated to be 17.7 ms, which is physiologically meaningful and corresponds to directional signal interactions on a timescale consistent with monosynaptic influence. Our findings identify distinct asymmetric feedforward and feedback signaling mechanisms between the hippocampus and PFC and their dissociable roles in memory recall, demonstrate that these regions preferentially use different frequency channels, and provide novel insights into the electrophysiological basis of directed information flow during episodic memory formation in the human brain.SIGNIFICANCE STATEMENT Hippocampal-PFC circuits play a critical role in episodic memory in rodents, nonhuman primates, and humans. Investigations using noninvasive fMRI techniques have provided insights into coactivation of the hippocampus and PFC during memory formation; however, the electrophysiological basis of dynamic causal hippocampal-PFC interactions in the human brain is poorly understood. Here, we use data from a large cohort of intracranial EEG recordings to investigate the neurophysiological underpinnings of asymmetric feedforward and feedback hippocampal-PFC interactions and their nonlinear causal dynamics during both episodic memory encoding and recall. Our findings provide novel insights into the electrophysiological basis of directed bottom-up and top-down information flow during episodic memory formation in the human brain.
Collapse
Affiliation(s)
- Anup Das
- Department of Psychiatry & Behavioral Sciences
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences
- Department of Neurology & Neurological Sciences
- Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
49
|
Liu Y, Yang Q, Yin Y. Intracranial electroencephalography features of young and old mice under midazolam administration. Neuroreport 2021; 32:1192-1197. [PMID: 34406993 PMCID: PMC8389352 DOI: 10.1097/wnr.0000000000001714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022]
Abstract
Understanding the electroencephalography features of young and old patients treated with anesthetic drugs is important to allow accurate drug use in elderly patients. This study aimed to monitor the intracranial electroencephalography (in the cortex and hippocampus) in free-moving young and old mice under midazolam administration. Behavioral assessment revealed that compared with young mice, old mice had a longer immobility time with a similar midazolam dose. In both young and old mice, midazolam significantly suppressed the total, δ (0.5-4 Hz), θ (4-8 Hz), and α (8-12 Hz) power, and thus induced an increase in the relative β (12-30 Hz) and γ (30-140 Hz) power. Age had a main effect on the γ frequency; specifically, under normal conditions, old mice had a lower γ power than young mice. After midazolam administration, the relative power of high γ frequency (50-140 Hz) remained lower in old mice than in young mice. Our findings suggest that a lower γ power is indicative of an aging brain.
Collapse
Affiliation(s)
- Yue Liu
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing
| | - Quanyong Yang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yiqing Yin
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
50
|
Kragel JE, Ezzyat Y, Lega BC, Sperling MR, Worrell GA, Gross RE, Jobst BC, Sheth SA, Zaghloul KA, Stein JM, Kahana MJ. Distinct cortical systems reinstate the content and context of episodic memories. Nat Commun 2021; 12:4444. [PMID: 34290240 PMCID: PMC8295370 DOI: 10.1038/s41467-021-24393-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Episodic recall depends upon the reinstatement of cortical activity present during the formation of a memory. Evidence from functional neuroimaging and invasive recordings in humans suggest that reinstatement organizes our memories by time or content, yet the neural systems involved in reinstating these unique types of information remain unclear. Here, combining computational modeling and intracranial recordings from 69 epilepsy patients, we show that two cortical systems uniquely reinstate the semantic content and temporal context of previously studied items during free recall. Examining either the posterior medial or anterior temporal networks, we find that forward encoding models trained on the brain's response to the temporal and semantic attributes of items can predict the serial position and semantic category of unseen items. During memory recall, these models uniquely link reinstatement of temporal context and semantic content to these posterior and anterior networks, respectively. These findings demonstrate how specialized cortical systems enable the human brain to target specific memories.
Collapse
Affiliation(s)
- James E. Kragel
- grid.25879.310000 0004 1936 8972Department of Psychology, University of Pennsylvania, Philadelphia, PA USA
| | - Youssef Ezzyat
- grid.25879.310000 0004 1936 8972Department of Psychology, University of Pennsylvania, Philadelphia, PA USA
| | - Bradley C. Lega
- grid.267313.20000 0000 9482 7121Department of Neurosurgery, University of Texas Southwestern, Dallas, TX USA
| | - Michael R. Sperling
- grid.265008.90000 0001 2166 5843Department of Neurology, Thomas Jefferson University, Philadelphia, PA USA
| | - Gregory A. Worrell
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN USA
| | - Robert E. Gross
- grid.189967.80000 0001 0941 6502Department of Neurosurgery, Emory School of Medicine, Atlanta, GA USA
| | - Barbara C. Jobst
- grid.413480.a0000 0004 0440 749XDepartment of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH USA
| | - Sameer A. Sheth
- grid.239585.00000 0001 2285 2675Department of Neurosurgery, Columbia University Medical Center, New York, NY USA
| | - Kareem A. Zaghloul
- grid.94365.3d0000 0001 2297 5165Surgical Neurology Branch, National Institutes of Health, Bethesda, MD USA
| | - Joel M. Stein
- grid.411115.10000 0004 0435 0884Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA USA
| | - Michael J. Kahana
- grid.25879.310000 0004 1936 8972Department of Psychology, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|