1
|
Orhan Kubat G, Özen Ö, Çolak E. Morphometric evaluation of cerebral and cerebellar structures in long-term unilateral sensorineural hearing loss. Braz J Otorhinolaryngol 2025; 91:101635. [PMID: 40344693 DOI: 10.1016/j.bjorl.2025.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/26/2025] [Accepted: 03/27/2025] [Indexed: 05/11/2025] Open
Abstract
OBJECTIVE Structural changes in the brain have been identified in patients with hearing loss. However, the effect of long-term Unilateral Sensorineural Hearing Loss (USNHL) on cerebral and cerebellar morphology is not fully understood. METHODS In this study, Magnetic Resonance Imaging (MRI) of 12 long-term USNHL adults was compared with their Normal-Hearing (NH) side using Voxel-Based Morphometry (VBM). The USNHL group was also compared to a control group of 12 hearing-healthy individuals. Volume and cortical thickness changes in cerebral and cerebellar structures, possibly related to hearing loss severity and duration, were assessed using VBM. RESULTS The study found that, compared to the control group, USNHL patients had significantly higher measurements in the Frontal Operculum (FO) Gray Matter (GM) volume (cm3) (p = 0.024), Superior Temporal Gyrus (STG) thickness (p = 0.041), and cerebellum IX GM volume (cm3) (p = 0.025). No significant differences were observed between the intact and NH sides in the USNHL group (p > 0.05). CONCLUSION Cerebral and cerebellar structures, which are essential for perceiving and interpreting sound, integrating information, and coordinating movement, may undergo morphological changes due to neuroadaptive mechanisms in long-term USNHL patients. Larger case series are needed to explore the clinical implications of these changes for diagnosis, treatment, and prognosis. LEVELS OF EVIDENCE Level 3.
Collapse
Affiliation(s)
- Gözde Orhan Kubat
- Alanya Alaaddin Keykubat University School of Medicine, Department of Otolaryngology, Alanya, Antalya, Turkey.
| | - Özkan Özen
- Alanya Alaaddin Keykubat University School of Medicine, Department of Radiology, Alanya, Antalya, Turkey
| | - Emre Çolak
- Alanya Alaaddin Keykubat University School of Medicine, Department of Otolaryngology, Alanya, Antalya, Turkey
| |
Collapse
|
2
|
Palmis S, Easson K, Devenyi G, Gilbert G, Saint-Martin C, Chakravarty MM, Brossard-Racine M. Similarities and differences in cerebellar alterations between youth born preterm and youth born with congenital heart disease. Sci Rep 2025; 15:10420. [PMID: 40140462 PMCID: PMC11947447 DOI: 10.1038/s41598-025-94584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Individuals born preterm (PT) or with complex congenital heart disease (CHD) present with comparable prevalence of developmental challenges and patterns of neonatal brain injury. Converging evidence also supports that cerebellar development is altered in PT and in CHD survivors. However, no study compared cerebellar integrity between these two groups. This study aims to assess total and regional cerebellar development between youth born PT or with CHD as compared to controls. Participants aged 16-27 years born before 33 weeks of gestational age or who underwent open-heart surgery for CHD during infancy and a group of healthy term-born controls, underwent a brain MRI. Cerebellums were segmented at the lobular level. Youth born PT or with CHD exhibited a comparable pattern of volume reduction affecting total, regional and lobular cerebellar volumes. After adjusting for total brain volume, no significant differences remained between CHD and controls. Only regions and lobules in the anterior cerebellum remained significantly smaller than controls in the youth born PT. Atypical cerebellar development is present in youth born PT and in youth with CHD. However, our results suggested that premature exposure to the extra-uterine environment alters cerebellar development selectively while the cumulative effect of CHD globally hinders brain development.
Collapse
Affiliation(s)
- Sarah Palmis
- Advances in Brain and Child Development Laboratory, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Kaitlyn Easson
- Advances in Brain and Child Development Laboratory, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Gabriel Devenyi
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre - Douglas Mental Health University Institute, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Christine Saint-Martin
- Department of Medical Imaging, Division of Pediatric Radiology, Montreal Children's Hospital, Montreal, QC, Canada
| | - Mallar M Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre - Douglas Mental Health University Institute, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Marie Brossard-Racine
- Advances in Brain and Child Development Laboratory, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada.
- Department of Pediatrics, Division of Neonatology, Montreal Children's Hospital, Montreal, QC, Canada.
| |
Collapse
|
3
|
Morell-Ortega S, Ruiz-Perez M, Gadea M, Vivo-Hernando R, Rubio G, Aparici F, Iglesia-Vaya MDL, Catheline G, Mansencal B, Coupé P, Manjón JV. DeepCERES: A deep learning method for cerebellar lobule segmentation using ultra-high resolution multimodal MRI. Neuroimage 2025; 308:121063. [PMID: 39922330 DOI: 10.1016/j.neuroimage.2025.121063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025] Open
Abstract
This paper introduces a novel multimodal and high-resolution human brain cerebellum lobule segmentation method. Unlike current tools that operate at standard resolution (1 mm3) or using mono-modal data, the proposed method improves cerebellum lobule segmentation through the use of a multimodal and ultra-high resolution (0.125 mm3) training dataset. To develop the method, first, a database of semi-automatically labelled cerebellum lobules was created to train the proposed method with ultra-high resolution T1 and T2 MR images. Then, an ensemble of deep networks has been designed and developed, allowing the proposed method to excel in the complex cerebellum lobule segmentation task, improving precision while being memory efficient. Notably, our approach deviates from the traditional U-Net model by exploring alternative architectures. We have also integrated deep learning with classical machine learning methods incorporating a priori knowledge from multi-atlas segmentation which improved precision and robustness. Finally, a new online pipeline, named DeepCERES, has been developed to make available the proposed method to the scientific community requiring as input only a single T1 MR image at standard resolution.
Collapse
Affiliation(s)
- Sergio Morell-Ortega
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| | - Marina Ruiz-Perez
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Marien Gadea
- Department of Psychobiology, Faculty of Psychology, Universitat de Valencia, Valencia, Spain
| | - Roberto Vivo-Hernando
- Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Gregorio Rubio
- Departamento de matemática aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Fernando Aparici
- Área de Imagen Médica. Hospital Universitario y Politécnico La Fe. Valencia, Spain
| | - Maria de la Iglesia-Vaya
- Unidad Mixta de Imagen Biomédica FISABIO-CIPF. Fundación para el Fomento de la Investigación Sanitario y Biomédica de la Comunidad Valenciana - Valencia, Spain
| | - Gwenaelle Catheline
- Univ. Bordeaux, CNRS, UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Bordeaux, France
| | - Boris Mansencal
- CNRS, Univ. Bordeaux, Bordeaux INP, LABRI, UMR5800, in2brain, F-33400 Talence, France
| | - Pierrick Coupé
- CNRS, Univ. Bordeaux, Bordeaux INP, LABRI, UMR5800, in2brain, F-33400 Talence, France
| | - José V Manjón
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| |
Collapse
|
4
|
Navarro J, Ribot J, Schnebelen D, Seguin P, Ouimet MC, Reynaud E. Are Wayfinding Abilities Correlated With Specific Brain Anatomy? An Investigation on Regular Car Drivers Using a Navigational Map in an Unknown Environment. Hippocampus 2025; 35:e70000. [PMID: 39980091 DOI: 10.1002/hipo.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/10/2024] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
The ability to navigate spatially in the physical world is a fundamental cognitive skill. This study examines the anatomical correlates of map-assisted wayfinding in an unfamiliar virtual environment using structural magnetic resonance magining (MRI). Thirty-three participants were required to reach up to seven different locations represented on a navigational map in a simulated environment, while their gazing behavior was recorded, and, in close temporal proximity, the anatomical MRI of their brain was acquired. Significant predictors of wayfinding performance were the volumes of the right hippocampus, left retrosplenial cortex, and posterior cingulate cortex-left inferior frontal gyrus, right superior frontal gyrus, and right cerebellar lobule VIIB. Detailed analyses revealed a dissociation between two clusters of gray matter density in the right hippocampus. Compared with the poorest wayfinders, the best wayfinders exhibited more gray matter density in a cluster located in the right posterior hippocampus but less gray matter density in a cluster located in the anterior section of the hippocampus. In addition, top performers spent more time gazing at the map, highlighting the benefit of using external aids during navigation tasks. Altogether, these results underscore how structural adaptations are associated with spatial navigation performance.
Collapse
Affiliation(s)
- Jordan Navarro
- Laboratoire d'Etude Des Mécanismes Cognitifs (EA 3082), University Lyon 2, Lyon, France
- Institut Universitaire de France, Paris, France
| | - Jean Ribot
- Laboratoire d'Etude Des Mécanismes Cognitifs (EA 3082), University Lyon 2, Lyon, France
| | - Damien Schnebelen
- Laboratoire d'Etude Des Mécanismes Cognitifs (EA 3082), University Lyon 2, Lyon, France
| | - Perrine Seguin
- Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, CRNL, Lyon, France
| | - Marie Claude Ouimet
- Faculté De Médecine Et Des Sciences de la Santé, University of Sherbrooke, Sherbrooke, Canada
| | - Emanuelle Reynaud
- Laboratoire d'Etude Des Mécanismes Cognitifs (EA 3082), University Lyon 2, Lyon, France
| |
Collapse
|
5
|
Alasmar Z, Chakravarty MM, Penhune VB, Steele CJ. Patterns of Cerebellar-Cortical Structural Covariance Mirror Anatomical Connectivity of Sensorimotor and Cognitive Networks. Hum Brain Mapp 2025; 46:e70079. [PMID: 39791308 PMCID: PMC11718418 DOI: 10.1002/hbm.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/30/2024] [Accepted: 11/09/2024] [Indexed: 01/12/2025] Open
Abstract
The cortex and cerebellum are densely connected through reciprocal input/output projections that form segregated circuits. These circuits are shown to differentially connect anterior lobules of the cerebellum to sensorimotor regions, and lobules Crus I and II to prefrontal regions. This differential connectivity pattern leads to the hypothesis that individual differences in structure should be related, especially for connected regions. To test this hypothesis, we examined covariation between the volumes of anterior sensorimotor and lateral cognitive lobules of the cerebellum and measures of cortical thickness (CT) and surface area (SA) across the whole brain in a sample of 270 young adults drawn from the HCP dataset. We observed that patterns of cerebellar-cortical covariance differed between sensorimotor and cognitive networks. Anterior motor lobules of the cerebellum showed greater covariance with sensorimotor regions of the cortex, while lobules Crus I and Crus II showed greater covariance with frontal and temporal regions. Interestingly, cerebellar volume showed predominantly negative relationships with CT and predominantly positive relationships with SA. Individual differences in SA are thought to be largely under genetic control while CT is thought to be more malleable by experience. This suggests that cerebellar-cortical covariation for SA may be a more stable feature, whereas covariation for CT may be more affected by development. Additionally, similarity metrics revealed that the pattern of covariance showed a gradual transition between sensorimotor and cognitive lobules, consistent with evidence of functional gradients within the cerebellum. Taken together, these findings are consistent with known patterns of structural and functional connectivity between the cerebellum and cortex. They also shed new light on possibly differing relationships between cerebellar volume and cortical thickness and surface area. Finally, our findings are consistent with the interactive specialization framework which proposes that structurally and functionally connected brain regions develop in concert.
Collapse
Affiliation(s)
- Zaki Alasmar
- Department of PsychologyConcordia UniversityMontrealQuebecCanada
- School of HealthConcordia UniversityMontrealQuebecCanada
| | - M. Mallar Chakravarty
- Cerebral Imaging CenterDouglas Mental Health University InstituteMontrealQuebecCanada
- Department of PsychiatryMcGill UniversityMontrealQuebecCanada
- Biological and Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
| | - Virginia B. Penhune
- Department of PsychologyConcordia UniversityMontrealQuebecCanada
- International Laboratory for Brain, Music, and Sound Research (BRAMS)MontrealQuebecCanada
- Center for Research in Brain, Language, and Music (CRBLM)MontrealQuebecCanada
| | - Christopher J. Steele
- Department of PsychologyConcordia UniversityMontrealQuebecCanada
- School of HealthConcordia UniversityMontrealQuebecCanada
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
6
|
Inuggi A, Marenco G, Bode J, Bovio A, Versaggi S, Favilla L, Pereira da Silva B, Picci RL, Amore M, Serafini G, Escelsior A. Possible compensatory role of cerebellum in bipolar disorder. A cortical thickness study. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01952-3. [PMID: 39741206 DOI: 10.1007/s00406-024-01952-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 12/08/2024] [Indexed: 01/02/2025]
Abstract
Recent studies suggested that structural changes in the cerebellum are implicated in the pathophysiology of bipolar disorder (BD). Here, we aimed to characterize the structural alterations of cerebellar lobules in BD, evaluating their possible relation with those occurring in the rest of the brain. One-hundred-fifty-five type I BD patients were recruited and compared with one-hundred-nineteen controls subjects. Cerebral cortical thickness (CT) was evaluated vertex-wise, while cerebellar CT at the level of its twelve lobules. A widespread pattern of cortical thinning was found in several clusters of BD patients. In the cerebellum, we found an anterior thinning (lobule I_II, III, X) and a posterior thickening (crus I, crus II, lobule VI and lobule IX) of its lobules in BD. Exploring the relation between cerebral and cerebellar CT changes in BD patients, after correcting for age and disease duration, the CT of a large subset of cerebral regions, found thinned in BD, were also inversely correlated with the thickening of cerebellar lobule IX. We speculate that this lobule may undergo adaptive changes to compensate the widespread cortical thinning which characterizes BD syndrome. Such a compensatory adaptation of the cerebellum would be similar to that found in other neurological and psychiatric disorders.
Collapse
Affiliation(s)
| | - Giacomo Marenco
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Juxhin Bode
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Anna Bovio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Silvio Versaggi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Luca Favilla
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Beatriz Pereira da Silva
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Rocco Luigi Picci
- Dipartimento Di Salute Mentale E Dipendenze Patologiche, ASL3, Liguria, Italy
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Gianluca Serafini
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy.
| | - Andrea Escelsior
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| |
Collapse
|
7
|
Tassi E, Bianchi AM, Calesella F, Vai B, Bellani M, Nenadić I, Piras F, Benedetti F, Brambilla P, Maggioni E. Assessment of ComBat Harmonization Performance on Structural Magnetic Resonance Imaging Measurements. Hum Brain Mapp 2024; 45:e70085. [PMID: 39704541 PMCID: PMC11660414 DOI: 10.1002/hbm.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/16/2024] [Accepted: 11/15/2024] [Indexed: 12/21/2024] Open
Abstract
Data aggregation across multiple research centers is gaining importance in the context of MRI research, driving diverse high-dimensional datasets to form large-scale heterogeneous sample, increasing statistical power and relevance of machine learning and deep learning algorithm. Site-related effects have been demonstrated to introduce bias in MRI features and confound subsequent analyses. Although Combating Batch (ComBat) technique has been recently reported to successfully harmonize multi-scale neuroimaging features, its performance assessments are still limited and largely based on qualitative visualizations and statistical analyses. In this study, we stand out by using a robust cross-validation approach to assess ComBat performances applied on volume- and surface-based measures acquired across three sites. A machine learning approach based on Multi-Class Gaussian Process Classifier was applied to predict imaging site based on raw and harmonized brain features, providing quantitative insights into ComBat effectiveness, and verifying the association between biological covariates and harmonized brain features. Our findings showed differences in terms of ComBat performances across measures of regional brain morphology, demonstrating tissue specific site effect modeling. ComBat adjustment of site effects also varied across regional level of each specific volume-based and surface-based measures. ComBat effectively eliminates unwanted data site-related variability, by maintaining or even enhancing data association with biological factors. Of note, ComBat has demonstrated flexibility and robustness of application on unseen independent gray matter volume data from the same sites.
Collapse
Affiliation(s)
- Emma Tassi
- Department of Neurosciences and Mental HealthFondazione IRCS Cà Granda Ospedale PoliclinicoMilanoItaly
- Department of Electronics, Information and BioengineeringPolitecnico di MilanoMilanoItaly
| | - Anna Maria Bianchi
- Department of Electronics, Information and BioengineeringPolitecnico di MilanoMilanoItaly
| | - Federico Calesella
- Unit of Psychiatry and Clinical Psychobiology, Division of NeuroscienceIRCCS Ospedale San RaffaeleMilanoItaly
- University Vita‐Salute San RaffaeleMilanoItaly
| | - Benedetta Vai
- Unit of Psychiatry and Clinical Psychobiology, Division of NeuroscienceIRCCS Ospedale San RaffaeleMilanoItaly
- University Vita‐Salute San RaffaeleMilanoItaly
| | - Marcella Bellani
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly
| | - Igor Nenadić
- Department of Psychiatry and PsychotherapyPhilipps‐University Marburg/Marburg University HospitalMarburgGermany
| | | | - Francesco Benedetti
- Unit of Psychiatry and Clinical Psychobiology, Division of NeuroscienceIRCCS Ospedale San RaffaeleMilanoItaly
- University Vita‐Salute San RaffaeleMilanoItaly
| | - Paolo Brambilla
- Department of Neurosciences and Mental HealthFondazione IRCS Cà Granda Ospedale PoliclinicoMilanoItaly
- Department of Pathophysiology and TransplantationUniversity of MilanMilanoItaly
| | - Eleonora Maggioni
- Department of Neurosciences and Mental HealthFondazione IRCS Cà Granda Ospedale PoliclinicoMilanoItaly
- Department of Electronics, Information and BioengineeringPolitecnico di MilanoMilanoItaly
| |
Collapse
|
8
|
Eom TY, Schmitt JE, Li Y, Davenport CM, Steinberg J, Bonnan A, Alam S, Ryu YS, Paul L, Hansen BS, Khairy K, Pelletier S, Pruett-Miller SM, Roalf DR, Gur RE, Emanuel BS, McDonald-McGinn DM, Smith JN, Li C, Christie JM, Northcott PA, Zakharenko SS. Tbx1 haploinsufficiency leads to local skull deformity, paraflocculus and flocculus dysplasia, and motor-learning deficit in 22q11.2 deletion syndrome. Nat Commun 2024; 15:10510. [PMID: 39638997 PMCID: PMC11621701 DOI: 10.1038/s41467-024-54837-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Neurodevelopmental disorders are thought to arise from intrinsic brain abnormalities. Alternatively, they may arise from disrupted crosstalk among tissues. Here we show the local reduction of two vestibulo-cerebellar lobules, the paraflocculus and flocculus, in mouse models and humans with 22q11.2 deletion syndrome (22q11DS). In mice, this paraflocculus/flocculus dysplasia is associated with haploinsufficiency of the Tbx1 gene. Tbx1 haploinsufficiency also leads to impaired cerebellar synaptic plasticity and motor learning. However, neural cell compositions and neurogenesis are not altered in the dysplastic paraflocculus/flocculus. Interestingly, 22q11DS and Tbx1+/- mice have malformations of the subarcuate fossa, a part of the petrous temporal bone, which encapsulates the paraflocculus/flocculus. Single-nuclei RNA sequencing reveals that Tbx1 haploinsufficiency leads to precocious differentiation of chondrocytes to osteoblasts in the petrous temporal bone autonomous to paraflocculus/flocculus cell populations. These findings suggest a previously unrecognized pathogenic structure/function relation in 22q11DS in which local skeletal deformity and cerebellar dysplasia result in behavioral deficiencies.
Collapse
Affiliation(s)
- Tae-Yeon Eom
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - J Eric Schmitt
- Division of Neuroradiology, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yiran Li
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Christopher M Davenport
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jeffrey Steinberg
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Audrey Bonnan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Shahinur Alam
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Young Sang Ryu
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Leena Paul
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Baranda S Hansen
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Khaled Khairy
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Stephane Pelletier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - David R Roalf
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Raquel E Gur
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Beverly S Emanuel
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Donna M McDonald-McGinn
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Molecular Medicine, Division of Human Biology and Medical Genetics, Sapienza University, Rome, 00185, Italy
| | - Jesse N Smith
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cai Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jason M Christie
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
- Department of Physiology and Biophysics, University of Colorado Anschutz School of Medicine, Aurora, CO, 80045, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
9
|
Yakemow G, Kolesar TA, Wright N, Beheshti I, Choi EH, Ryner L, Chaulk S, Patel R, Ko JH. Investigating neural markers of Alzheimer's disease in posttraumatic stress disorder using machine learning algorithms and magnetic resonance imaging. Front Neurol 2024; 15:1470727. [PMID: 39574505 PMCID: PMC11578870 DOI: 10.3389/fneur.2024.1470727] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Posttraumatic stress disorder (PTSD) is a mental health disorder caused by experiencing or witnessing traumatic events. Recent studies show that patients with PTSD have an increased risk of developing dementia, including Alzheimer's disease (AD), but there is currently no way to predict which patients will go on to develop AD. The objective of this study was to identify structural and functional neural changes in patients with PTSD that may contribute to the future development of AD. Methods Neuroimaging (pseudo-continuous arterial spin labeling [pCASL] and structural magnetic resonance imaging [MRI]) and behavioral data for the current study (n = 67) were taken from our non-randomized open label clinical trial (ClinicalTrials.gov Identifier: NCT03229915) for treatment-seeking individuals with PTSD (n = 40) and age-matched healthy controls (HC; n = 27). Only the baseline measures were utilized for this study. Mean cerebral blood flow (CBF) and gray matter (GM) volume were compared between groups. Additionally, we utilized two previously established machine learning-based algorithms, one representing AD-like brain activity (Machine learning-based AD Designation [MAD]) and the other focused on AD-like brain structural changes (AD-like Brain Structure [ABS]). MAD scores were calculated from pCASL data and ABS scores were calculated from structural T1-MRI images. Correlations between neuroimaging data (regional CBF, GM volume, MAD scores, ABS scores) and PTSD symptom severity scores measured by the clinician-administered PTSD scale for DSM-5 (CAPS-5) were assessed. Results Decreased CBF was observed in two brain regions (left caudate/striatum and left inferior parietal lobule/middle temporal lobe) in the PTSD group, compared to the HC group. Decreased GM volume was also observed in the PTSD group in the right temporal lobe (parahippocampal gyrus, middle temporal lobe), compared to the HC group. GM volume within the right temporal lobe cluster negatively correlated with CAPS-5 scores and MAD scores in the PTSD group. Conclusion Results suggest that patients with PTSD with reduced GM volume in the right temporal regions (parahippocampal gyrus) experienced greater symptom severity and showed more AD-like brain activity. These results show potential for early identification of those who may be at an increased risk for future development of dementia.
Collapse
Affiliation(s)
- Gabriella Yakemow
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- PrairieNeuro Brain Research Centre, Health Sciences Centre, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
| | - Tiffany A. Kolesar
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- PrairieNeuro Brain Research Centre, Health Sciences Centre, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
| | - Natalie Wright
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- PrairieNeuro Brain Research Centre, Health Sciences Centre, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
- Undergraduate Medical Education, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Iman Beheshti
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- PrairieNeuro Brain Research Centre, Health Sciences Centre, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
| | - Eun Hyung Choi
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- PrairieNeuro Brain Research Centre, Health Sciences Centre, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
| | - Lawrence Ryner
- Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Sarah Chaulk
- Department of Clinical Health Psychology, University of Manitoba, Winnipeg, MB, Canada
| | - Ronak Patel
- Department of Clinical Health Psychology, University of Manitoba, Winnipeg, MB, Canada
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- PrairieNeuro Brain Research Centre, Health Sciences Centre, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
10
|
Bang M, Park K, Choi SH, Ahn SS, Kim J, Lee SK, Park YW, Lee SH. Identification of schizophrenia by applying interpretable radiomics modeling with structural magnetic resonance imaging of the cerebellum. Psychiatry Clin Neurosci 2024; 78:527-535. [PMID: 38953397 DOI: 10.1111/pcn.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
AIMS The cerebellum is involved in higher-order mental processing as well as sensorimotor functions. Although structural abnormalities in the cerebellum have been demonstrated in schizophrenia, neuroimaging techniques are not yet applicable to identify them given the lack of biomarkers. We aimed to develop a robust diagnostic model for schizophrenia using radiomic features from T1-weighted magnetic resonance imaging (T1-MRI) of the cerebellum. METHODS A total of 336 participants (174 schizophrenia; 162 healthy controls [HCs]) were allocated to training (122 schizophrenia; 115 HCs) and test (52 schizophrenia; 47 HCs) cohorts. We obtained 2568 radiomic features from T1-MRI of the cerebellar subregions. After feature selection, a light gradient boosting machine classifier was trained. The discrimination and calibration of the model were evaluated. SHapley Additive exPlanations (SHAP) was applied to determine model interpretability. RESULTS We identified 17 radiomic features to differentiate participants with schizophrenia from HCs. In the test cohort, the radiomics model had an area under the curve, accuracy, sensitivity, and specificity of 0.89 (95% confidence interval: 0.82-0.95), 78.8%, 88.5%, and 75.4%, respectively. The model explanation by SHAP suggested that the second-order size zone non-uniformity feature from the right lobule IX and first-order energy feature from the right lobules V and VI were highly associated with the risk of schizophrenia. CONCLUSION The radiomics model focused on the cerebellum demonstrates robustness in diagnosing schizophrenia. Our results suggest that microcircuit disruption in the posterior cerebellum is a disease-defining feature of schizophrenia, and radiomics modeling has potential for supporting biomarker-based decision-making in clinical practice.
Collapse
Affiliation(s)
- Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Kisung Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Seoung-Ho Choi
- National Program Excellence in Software at Kwangwoon University, Seoul, Republic of Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinna Kim
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| |
Collapse
|
11
|
Bègue I, Elandaloussi Y, Delavari F, Cao H, Moussa-Tooks A, Roser M, Coupé P, Leboyer M, Kaiser S, Houenou J, Brady R, Laidi C. The Cerebellum and Cognitive Function: Anatomical Evidence from a Transdiagnostic Sample. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1399-1410. [PMID: 38151675 PMCID: PMC11269336 DOI: 10.1007/s12311-023-01645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 12/29/2023]
Abstract
Multiple lines of evidence across human functional, lesion, and animal data point to a cerebellar role, in particular of crus I, crus II, and lobule VIIB, in cognitive function. However, a mapping of distinct facets of cognitive function to cerebellar structure is missing. We analyzed structural neuroimaging data from the Healthy Brain Network (HBN). Cerebellar parcellation was performed with a validated automated segmentation pipeline (CERES) and stringent visual quality check (n = 662 subjects retained from initial n = 1452). Canonical correlation analyses (CCA) examined regional gray matter volumetric (GMV) differences in association to cognitive function (quantified with NIH Toolbox Cognition domain, NIH-TB), accounting for psychopathology severity, age, sex, scan location, and intracranial volume. Multivariate CCA uncovered a significant correlation between two components entailing a latent cognitive canonical (NIH-TB subscales) and a brain canonical variate (cerebellar GMV and intracranial volume, ICV), surviving bootstrapping and permutation procedures. The components correspond to partly shared cerebellar-cognitive function relationship with a first map encompassing cognitive flexibility (r = 0.89), speed of processing (r = 0.65), and working memory (r = 0.52) associated with regional GMV in crus II (r = 0.57) and lobule X (r = 0.59) and a second map including the crus I (r = 0.49) and lobule VI (r = 0.49) associated with working memory (r = 0.51). We show evidence for a structural subspecialization of the cerebellum topography for cognitive function in a transdiagnostic sample.
Collapse
Affiliation(s)
- Indrit Bègue
- Department of Psychiatry, Beth Israel Deaconess Medical School & Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, McLean Hospital & Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, University Hospitals of Geneva & University of Geneva, Geneva, Switzerland.
| | - Yannis Elandaloussi
- INSERM U955, Institut Mondor de La Recherche Biomédicale (IRMB), Univ. Paris Est Créteil, Equipe 15 Neuropsychiatrie Translationnelle, Créteil, France
- La Fondation Fondamental, Créteil, France
- NeuroSpin, Neuroimaging Platform, CEA, UNIACT Lab, PsyBrain Team, Saclay, France
| | - Farnaz Delavari
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Hengyi Cao
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Division of Psychiatry Research, Zucker Hillside Hospital, Queens, NY, USA
| | - Alexandra Moussa-Tooks
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mathilde Roser
- INSERM U955, Institut Mondor de La Recherche Biomédicale (IRMB), Univ. Paris Est Créteil, Equipe 15 Neuropsychiatrie Translationnelle, Créteil, France
- La Fondation Fondamental, Créteil, France
- NeuroSpin, Neuroimaging Platform, CEA, UNIACT Lab, PsyBrain Team, Saclay, France
| | - Pierrick Coupé
- LABRI UMR 5800, CNRS, Univ. Bordeaux, Bordeaux INPTalence, France
| | - Marion Leboyer
- INSERM U955, Institut Mondor de La Recherche Biomédicale (IRMB), Univ. Paris Est Créteil, Equipe 15 Neuropsychiatrie Translationnelle, Créteil, France
- La Fondation Fondamental, Créteil, France
| | - Stefan Kaiser
- Department of Psychiatry, University Hospitals of Geneva & University of Geneva, Geneva, Switzerland
| | - Josselin Houenou
- INSERM U955, Institut Mondor de La Recherche Biomédicale (IRMB), Univ. Paris Est Créteil, Equipe 15 Neuropsychiatrie Translationnelle, Créteil, France
- La Fondation Fondamental, Créteil, France
- NeuroSpin, Neuroimaging Platform, CEA, UNIACT Lab, PsyBrain Team, Saclay, France
| | - Roscoe Brady
- Department of Psychiatry, Beth Israel Deaconess Medical School & Harvard Medical School, Boston, MA, USA
| | - Charles Laidi
- INSERM U955, Institut Mondor de La Recherche Biomédicale (IRMB), Univ. Paris Est Créteil, Equipe 15 Neuropsychiatrie Translationnelle, Créteil, France.
- La Fondation Fondamental, Créteil, France.
- NeuroSpin, Neuroimaging Platform, CEA, UNIACT Lab, PsyBrain Team, Saclay, France.
| |
Collapse
|
12
|
Guimond S, Alftieh A, Devenyi GA, Mike L, Chakravarty MM, Shah JL, Parker DA, Sweeney JA, Pearlson G, Clementz BA, Tamminga CA, Keshavan M. Enlarged pituitary gland volume: a possible state rather than trait marker of psychotic disorders. Psychol Med 2024; 54:1835-1843. [PMID: 38357733 PMCID: PMC11132920 DOI: 10.1017/s003329172300380x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
BACKGROUND Enlarged pituitary gland volume could be a marker of psychotic disorders. However, previous studies report conflicting results. To better understand the role of the pituitary gland in psychosis, we examined a large transdiagnostic sample of individuals with psychotic disorders. METHODS The study included 751 participants (174 with schizophrenia, 114 with schizoaffective disorder, 167 with psychotic bipolar disorder, and 296 healthy controls) across six sites in the Bipolar-Schizophrenia Network on Intermediate Phenotypes consortium. Structural magnetic resonance images were obtained, and pituitary gland volumes were measured using the MAGeT brain algorithm. Linear mixed models examined between-group differences with controls and among patient subgroups based on diagnosis, as well as how pituitary volumes were associated with symptom severity, cognitive function, antipsychotic dose, and illness duration. RESULTS Mean pituitary gland volume did not significantly differ between patients and controls. No significant effect of diagnosis was observed. Larger pituitary gland volume was associated with greater symptom severity (F = 13.61, p = 0.0002), lower cognitive function (F = 4.76, p = 0.03), and higher antipsychotic dose (F = 5.20, p = 0.02). Illness duration was not significantly associated with pituitary gland volume. When all variables were considered, only symptom severity significantly predicted pituitary gland volume (F = 7.54, p = 0.006). CONCLUSIONS Although pituitary volumes were not increased in psychotic disorders, larger size may be a marker associated with more severe symptoms in the progression of psychosis. This finding helps clarify previous inconsistent reports and highlights the need for further research into pituitary gland-related factors in individuals with psychosis.
Collapse
Affiliation(s)
- Synthia Guimond
- Department of Psychiatry, The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Psychoeducation and Psychology, Université du Québec en Outaouais, Gatineau, QC, Canada
- Department of Psychiatry, Massachusetts Mental Health Center and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ahmad Alftieh
- Department of Psychiatry, The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Gabriel A. Devenyi
- Department of Psychiatry, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Luke Mike
- Department of Psychiatry, Massachusetts Mental Health Center and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - M. Mallar Chakravarty
- Department of Psychiatry, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Verdun, QC, Canada
- Department of Biomedical Engineering, McGill University Montréal, QC, Canada
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Jai L. Shah
- Department of Psychiatry, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Verdun, QC, Canada
| | - David A. Parker
- Department of Psychology, BioImaging Research Center, University of Georgia, Athens, GA, USA
- Department of and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - John A. Sweeney
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, USA
| | - Godfrey Pearlson
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Brett A. Clementz
- Department of Psychology, BioImaging Research Center, University of Georgia, Athens, GA, USA
- Department of and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
| | - Carol A. Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Massachusetts Mental Health Center and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Klaus J, Stoodley CJ, Schutter DJLG. Neurodevelopmental trajectories of cerebellar grey matter associated with verbal abilities in males with autism spectrum disorder. Dev Cogn Neurosci 2024; 67:101379. [PMID: 38615557 PMCID: PMC11026694 DOI: 10.1016/j.dcn.2024.101379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/14/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition frequently associated with structural cerebellar abnormalities. Whether cerebellar grey matter volumes (GMV) are linked to verbal impairments remains controversial. Here, the association between cerebellar GMV and verbal abilities in ASD was examined across the lifespan. Lobular segmentation of the cerebellum was performed on structural MRI scans from the ABIDE I dataset in male individuals with ASD (N=144, age: 8.5-64.0 years) and neurotypical controls (N=188; age: 8.0-56.2 years). Stepwise linear mixed effects modeling including group (ASD vs. neurotypical controls), lobule-wise GMV, and age was performed to identify cerebellar lobules which best predicted verbal abilities as measured by verbal IQ (VIQ). An age-specific association between VIQ and GMV of bilateral Crus II was found in ASD relative to neurotypical controls. In children with ASD, higher VIQ was associated with larger GMV of left Crus II but smaller GMV of right Crus II. By contrast, in adults with ASD, higher VIQ was associated with smaller GMV of left Crus II and larger GMV of right Crus II. These findings indicate that relative to the contralateral hemisphere, an initial reliance on the language-nonspecific left cerebellar hemisphere is offset by more typical right-lateralization in adulthood.
Collapse
Affiliation(s)
- Jana Klaus
- Department of Experimental Psychology, Utrecht University, the Netherlands; Helmholtz Institute, Utrecht, the Netherlands.
| | | | - Dennis J L G Schutter
- Department of Experimental Psychology, Utrecht University, the Netherlands; Helmholtz Institute, Utrecht, the Netherlands
| |
Collapse
|
14
|
Tustison NJ, Yassa MA, Rizvi B, Cook PA, Holbrook AJ, Sathishkumar MT, Tustison MG, Gee JC, Stone JR, Avants BB. ANTsX neuroimaging-derived structural phenotypes of UK Biobank. Sci Rep 2024; 14:8848. [PMID: 38632390 PMCID: PMC11024129 DOI: 10.1038/s41598-024-59440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
UK Biobank is a large-scale epidemiological resource for investigating prospective correlations between various lifestyle, environmental, and genetic factors with health and disease progression. In addition to individual subject information obtained through surveys and physical examinations, a comprehensive neuroimaging battery consisting of multiple modalities provides imaging-derived phenotypes (IDPs) that can serve as biomarkers in neuroscience research. In this study, we augment the existing set of UK Biobank neuroimaging structural IDPs, obtained from well-established software libraries such as FSL and FreeSurfer, with related measurements acquired through the Advanced Normalization Tools Ecosystem. This includes previously established cortical and subcortical measurements defined, in part, based on the Desikan-Killiany-Tourville atlas. Also included are morphological measurements from two recent developments: medial temporal lobe parcellation of hippocampal and extra-hippocampal regions in addition to cerebellum parcellation and thickness based on the Schmahmann anatomical labeling. Through predictive modeling, we assess the clinical utility of these IDP measurements, individually and in combination, using commonly studied phenotypic correlates including age, fluid intelligence, numeric memory, and several other sociodemographic variables. The predictive accuracy of these IDP-based models, in terms of root-mean-squared-error or area-under-the-curve for continuous and categorical variables, respectively, provides comparative insights between software libraries as well as potential clinical interpretability. Results demonstrate varied performance between package-based IDP sets and their combination, emphasizing the need for careful consideration in their selection and utilization.
Collapse
Affiliation(s)
- Nicholas J Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA.
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.
| | - Michael A Yassa
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Batool Rizvi
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Philip A Cook
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew J Holbrook
- Department of Biostatistics, University of California, Los Angeles, CA, USA
| | | | | | - James C Gee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - James R Stone
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Brian B Avants
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
15
|
Sadeghi F, Pötter-Nerger M, Grimm K, Gerloff C, Schulz R, Zittel S. Smaller Cerebellar Lobule VIIb is Associated with Tremor Severity in Parkinson's Disease. CEREBELLUM (LONDON, ENGLAND) 2024; 23:355-362. [PMID: 36802020 PMCID: PMC10950956 DOI: 10.1007/s12311-023-01532-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 02/23/2023]
Abstract
Alterations in the cerebellum's morphology in Parkinson's disease (PD) point to its pathophysiological involvement in this movement disorder. Such abnormalities have previously been attributed to different PD motor subtypes. The aim of the study was to relate volumes of specific cerebellar lobules to motor symptom severity, in particular tremor (TR), bradykinesia/rigidity (BR), and postural instability and gait disorders (PIGD) in PD. We performed a volumetric analysis based on T1-weighted MRI images of 55 participants with PD (22 females, median age 65 years, Hoehn and Yahr stage 2). Multiple regression models were fitted to investigate associations between volumes of cerebellar lobules with clinical symptom severity based on MDS-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III score and sub-scores for TR, BR, and PIGD; adjusted for age, sex, disease duration, and intercranial volume as cofactors. Smaller volume of lobule VIIb was associated with higher tremor severity (P = 0.004). No structure-function relationships were detected for other lobules or other motor symptoms. This distinct structural association denotes the involvement of the cerebellum in PD tremor. Characterizing morphological features of the cerebellum leads to a better understanding of its role in the spectrum of motor symptoms in PD and contributes further to identifying potential biological markers.
Collapse
Affiliation(s)
- Fatemeh Sadeghi
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Monika Pötter-Nerger
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Kai Grimm
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Christian Gerloff
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Robert Schulz
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Simone Zittel
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
16
|
Gaiser C, van der Vliet R, de Boer AAA, Donchin O, Berthet P, Devenyi GA, Mallar Chakravarty M, Diedrichsen J, Marquand AF, Frens MA, Muetzel RL. Population-wide cerebellar growth models of children and adolescents. Nat Commun 2024; 15:2351. [PMID: 38499518 PMCID: PMC10948906 DOI: 10.1038/s41467-024-46398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
In the past, the cerebellum has been best known for its crucial role in motor function. However, increasingly more findings highlight the importance of cerebellar contributions in cognitive functions and neurodevelopment. Using a total of 7240 neuroimaging scans from 4862 individuals, we describe and provide detailed, openly available models of cerebellar development in childhood and adolescence (age range: 6-17 years), an important time period for brain development and onset of neuropsychiatric disorders. Next to a traditionally used anatomical parcellation of the cerebellum, we generated growth models based on a recently proposed functional parcellation. In both, we find an anterior-posterior growth gradient mirroring the age-related improvements of underlying behavior and function, which is analogous to cerebral maturation patterns and offers evidence for directly related cerebello-cortical developmental trajectories. Finally, we illustrate how the current approach can be used to detect cerebellar abnormalities in clinical samples.
Collapse
Affiliation(s)
- Carolin Gaiser
- Department of Neuroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Rick van der Vliet
- Department of Neuroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Neurology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Augustijn A A de Boer
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Opher Donchin
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Pierre Berthet
- Department of Psychology, University of Oslo, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Gabriel A Devenyi
- Cerebral Imaging Centre, Douglas Research Centre, McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Research Centre, McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| | - Jörn Diedrichsen
- Western Institute of Neuroscience, Western University, London, Ontario, Canada
- Department of Statistical and Actuarial Sciences, Western University, London, Ontario, Canada
- Department of Computer Science, Western University, London, Ontario, Canada
| | - Andre F Marquand
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Maarten A Frens
- Department of Neuroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Lyu W, Wu Y, Huynh KM, Ahmad S, Yap PT. A multimodal submillimeter MRI atlas of the human cerebellum. Sci Rep 2024; 14:5622. [PMID: 38453991 PMCID: PMC10920891 DOI: 10.1038/s41598-024-55412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
The human cerebellum is engaged in a broad array of tasks related to motor coordination, cognition, language, attention, memory, and emotional regulation. A detailed cerebellar atlas can facilitate the investigation of the structural and functional organization of the cerebellum. However, existing cerebellar atlases are typically limited to a single imaging modality with insufficient characterization of tissue properties. Here, we introduce a multifaceted cerebellar atlas based on high-resolution multimodal MRI, facilitating the understanding of the neurodevelopment and neurodegeneration of the cerebellum based on cortical morphology, tissue microstructure, and intra-cerebellar and cerebello-cerebral connectivity.
Collapse
Affiliation(s)
- Wenjiao Lyu
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Ye Wu
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Khoi Minh Huynh
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Sahar Ahmad
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Pew-Thian Yap
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
18
|
Jalanko P, Säisänen L, Kallioniemi E, Könönen M, Lakka TA, Määttä S, Haapala EA. Associations between physical fitness and cerebellar gray matter volume in adolescents. Scand J Med Sci Sports 2024; 34:e14513. [PMID: 37814505 DOI: 10.1111/sms.14513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
Despite the importance of the developing cerebellum on cognition, the associations between physical fitness and cerebellar volume in adolescents remain unclear. We explored the associations of physical fitness with gray matter (GM) volume of VI, VIIb and Crus I & II, which are cerebellar lobules related to cognition, in 40 (22 females; 17.9 ± 0.8 year-old) adolescents, and whether the associations were sex-specific. Peak oxygen uptake (V̇O2peak ) and power were assessed by maximal ramp test on a cycle ergometer, muscular strength with standing long jump (SLJ), speed-agility with the shuttle-run test (SRT), coordination with the Box and Block Test (BBT) and neuromuscular performance index (NPI) as the sum of SLJ, BBT and SRT z-scores. Body composition was measured using a dual-energy X-ray absorptiometry. Cerebellar volumes were assessed by magnetic resonance imaging. V̇O2peak relative to lean mass was inversely associated with the GM volume of the cerebellum (standardized regression coefficient (β) = -0.038, 95% confidence interval (CI) -0.075 to 0.001, p = 0.044). Cumulative NPI was positively associated with the GM volume of Crus I (β = 0.362, 95% CI 0.045 to 0.679, p = 0.027). In females, better performance in SRT was associated with a larger GM volume of Crus I (β = -0.373, 95% CI -0.760 to -0.028, p = 0.036). In males, cumulative NPI was inversely associated with the GM volume of Crus II (β = -0.793, 95% CI -1.579 to -0.008 p = 0.048). Other associations were nonsignificant. In conclusion, cardiorespiratory fitness, neuromuscular performance and speed-agility were associated with cerebellar GM volume, and the strength and direction of associations were sex-specific.
Collapse
Affiliation(s)
- Petri Jalanko
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Helsinki Clinic for Sports and Exercise Medicine (HULA), Foundation for Sports and Exercise Medicine, Helsinki, Finland
| | - Laura Säisänen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Neurophysiology/Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Elisa Kallioniemi
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Mervi Könönen
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Timo A Lakka
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Sara Määttä
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Eero A Haapala
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
19
|
Sharma AA, Mackensie Terry D, Popp JL, Szaflarski JP, Martin RC, Nenert R, Kaur M, Brokamp GA, Bolding M, Allendorfer JB. Neuromorphometric associations with mood, cognition, and self-reported exercise levels in epilepsy and healthy individuals. Epilepsy Behav Rep 2023; 25:100643. [PMID: 38264358 PMCID: PMC10803905 DOI: 10.1016/j.ebr.2023.100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024] Open
Abstract
Regular physical activity may promote beneficial neuroplasticity, e.g., increased hippocampus volume. However, it is unclear whether self-reported physical exercise in leisure (PEL) levels are associated with the brain structure features demonstrated by exercise interventions. This pilot study investigated the relationship between PEL, mood, cognition, and neuromorphometry in patients with idiopathic generalized epilepsy (IGEs) compared to healthy controls (HCs). Seventeen IGEs and 19 age- and sex-matched HCs underwent magnetic resonance imaging (MRI) at 3T. The Baecke Questionnaire of Habitual Physical Activity, Profile of Mood States, and Montreal Cognitive Assessment (MoCA) assessed PEL, mood, and cognition, respectively. Structural MRI data were analyzed by voxel- and surface-based morphometry. IGEs had significantly lower PEL (p < 0.001), poorer mood (p = 0.029), and lower MoCA scores (p = 0.027) than HCs. These group differences were associated with reduced volume, decreased gyrification, and altered surface topology (IGEs < HCs) in frontal, temporal and cerebellar regions involved in executive function, memory retrieval, and emotional regulation, respectively. These preliminary results support the notion that increased PEL may promote neuroplasticity in IGEs, thus emphasizing the role of physical activity in promoting brain health in people with epilepsy.
Collapse
Affiliation(s)
- Ayushe A. Sharma
- University of Alabama at Birmingham (UAB), Department of Neurology, Birmingham, AL, USA
| | - D. Mackensie Terry
- University of Alabama at Birmingham (UAB), Department of Neurology, Birmingham, AL, USA
| | - Johanna L. Popp
- University of Alabama at Birmingham (UAB), Department of Neurology, Birmingham, AL, USA
| | - Jerzy P. Szaflarski
- University of Alabama at Birmingham (UAB), Department of Neurology, Birmingham, AL, USA
- University of Alabama at Birmingham (UAB), Department of Neurobiology, Birmingham, AL, USA
- University of Alabama at Birmingham (UAB), Department of Neurosurgery, Birmingham, AL, USA
- University of Alabama at Birmingham (UAB), UAB Epilepsy Center, Birmingham, AL, USA
| | - Roy C. Martin
- University of Alabama at Birmingham (UAB), Department of Neurology, Birmingham, AL, USA
- University of Alabama at Birmingham (UAB), UAB Epilepsy Center, Birmingham, AL, USA
| | - Rodolphe Nenert
- University of Alabama at Birmingham (UAB), Department of Neurology, Birmingham, AL, USA
| | - Manmeet Kaur
- University of Alabama at Birmingham (UAB), Department of Neurology, Birmingham, AL, USA
- University of Alabama at Birmingham (UAB), UAB Epilepsy Center, Birmingham, AL, USA
| | - Gabrielle A. Brokamp
- University of Alabama at Birmingham (UAB), Department of Neurology, Birmingham, AL, USA
| | - Mark Bolding
- University of Alabama at Birmingham (UAB), Department of Radiology, Birmingham, AL, USA
| | - Jane B. Allendorfer
- University of Alabama at Birmingham (UAB), Department of Neurology, Birmingham, AL, USA
- University of Alabama at Birmingham (UAB), Department of Neurobiology, Birmingham, AL, USA
- University of Alabama at Birmingham (UAB), UAB Epilepsy Center, Birmingham, AL, USA
- University of Alabama at Birmingham (UAB), UAB Center for Exercise Medicine, Birmingham, AL, USA
| |
Collapse
|
20
|
Wu Y, Ridwan AR, Niaz MR, Bennett DA, Arfanakis K. High resolution 0.5mm isotropic T 1-weighted and diffusion tensor templates of the brain of non-demented older adults in a common space for the MIITRA atlas. Neuroimage 2023; 282:120387. [PMID: 37783362 PMCID: PMC10625170 DOI: 10.1016/j.neuroimage.2023.120387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023] Open
Abstract
High quality, high resolution T1-weighted (T1w) and diffusion tensor imaging (DTI) brain templates located in a common space can enhance the sensitivity and precision of template-based neuroimaging studies. However, such multimodal templates have not been constructed for the older adult brain. The purpose of this work which is part of the MIITRA atlas project was twofold: (A) to develop 0.5 mm isotropic resolution T1w and DTI templates that are representative of the brain of non-demented older adults and are located in the same space, using advanced multimodal template construction techniques and principles of super resolution on data from a large, diverse, community cohort of 400 non-demented older adults, and (B) to systematically compare the new templates to other standardized templates. It was demonstrated that the new MIITRA-0.5mm T1w and DTI templates are well-matched in space, exhibit good definition of brain structures, including fine structures, exhibit higher image sharpness than other standardized templates, and are free of artifacts. The MIITRA-0.5mm T1w and DTI templates allowed higher intra-modality inter-subject spatial normalization precision as well as higher inter-modality intra-subject spatial matching of older adult T1w and DTI data compared to other available templates. Consequently, MIITRA-0.5mm templates allowed detection of smaller inter-group differences for older adult data compared to other templates. The MIITRA-0.5mm templates were also shown to be most representative of the brain of non-demented older adults compared to other templates with submillimeter resolution. The new templates constructed in this work constitute two of the final products of the MIITRA atlas project and are anticipated to have important implications for the sensitivity and precision of studies on older adults.
Collapse
Affiliation(s)
- Yingjuan Wu
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, United States
| | - Abdur Raquib Ridwan
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, United States
| | - Mohammad Rakeen Niaz
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, United States
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Konstantinos Arfanakis
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, United States; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States.
| |
Collapse
|
21
|
Guder S, Sadeghi F, Zittel S, Quandt F, Choe C, Bönstrup M, Cheng B, Thomalla G, Gerloff C, Schulz R. Disability and persistent motor deficits are linked to structural crossed cerebellar diaschisis in chronic stroke. Hum Brain Mapp 2023; 44:5336-5345. [PMID: 37471691 PMCID: PMC10543354 DOI: 10.1002/hbm.26434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/15/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
Brain imaging has significantly contributed to our understanding of the cerebellum being involved in recovery after non-cerebellar stroke. Due to its connections with supratentorial brain networks, acute stroke can alter the function and structure of the contralesional cerebellum, known as crossed cerebellar diaschisis (CCD). Data on the spatially precise distribution of structural CCD and their implications for persistent deficits after stroke are notably limited. In this cross-sectional study, structural MRI and clinical data were analyzed from 32 chronic stroke patients, at least 6 months after the event. We quantified lobule-specific contralesional atrophy, as a surrogate of structural CCD, in patients and healthy controls. Volumetric data were integrated with clinical scores of disability and motor deficits. Diaschisis-outcome models were adjusted for the covariables age, lesion volume, and damage to the corticospinal tract. We found that structural CCD was evident for the whole cerebellum, and particularly for lobules V and VI. Lobule VI diaschisis was significantly correlated with clinical scores, that is, volume reductions in contralesional lobule VI were associated with higher levels of disability and motor deficits. Lobule V and the whole cerebellum did not show similar diaschisis-outcome relationships across the spectrum of the clinical scores. These results provide novel insights into stroke-related cerebellar plasticity and might thereby promote lobule VI as a key area prone to structural CCD and potentially involved in recovery and residual motor functioning.
Collapse
Affiliation(s)
- Stephanie Guder
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Fatemeh Sadeghi
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Simone Zittel
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Fanny Quandt
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Chi‐un Choe
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Marlene Bönstrup
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Department of NeurologyUniversity Medical Center LeipzigLeipzigGermany
| | - Bastian Cheng
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Götz Thomalla
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Christian Gerloff
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Robert Schulz
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
22
|
Işıklar S, Demir İ, Özdemir ST, Özpar R. Examination of the Development and Asymmetry of the Cerebellum and Its Lobules in Individuals Aged 1-18 Years: A Retrospective MRI Study. Brain Topogr 2023; 36:901-925. [PMID: 37550413 DOI: 10.1007/s10548-023-00997-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023]
Abstract
Developmental studies of cerebellar lobules were limited. To our knowledge, structural asymmetry has not been studied in immature cerebellar lobules in the 1-18 age group. This study investigated the effect of age and gender on the volumetric development and asymmetry of the global cerebellum and cerebellar lobules in children and adolescents. In this retrospective study, we included 670 individuals [376 (56.1%) males] aged 1-18 years with normal brain MRIs between 2012 and 2021. volBrain CERES automatically segmented the right and left sides of the cerebellar lobules on three-dimensional T1-weighted MRIs. Volume and asymmetry data from individuals in 16 different age ranges were compared with SPSS (ver.28). The absolute volumetric development of the total cerebellum was consistent with the "S" development model in both sexes. The developmental trajectories of the cerebellar lobules were different from each other and showed sexual dimorphism. In the 1-18 age group, the absolute volumes of the total cerebellum and cerebellar lobules were significantly greater in males (p < 0.05). Absolute volumes of lobules IV, VIIB, VIIIA and VIIIB in the age groups had more gender differences. However, sexual dimorphism was insignificant in the cerebellum's total and lobular relative volume. Lobules IV, V, VI, VIIIA and VIIIB had left > right asymmetry and other lobules and total cerebellum had right > left asymmetry. This study confirmed the developmental heterogeneity and sexual dimorphism in the cerebellar lobules. It also provided volumetric data of the immature cerebellum to enable comparison in various neurological and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Sefa Işıklar
- Medical Imaging Techniques Program, Vocational School of Health Services, Bursa Uludag University, 16240, Bursa, Turkey.
| | - İmren Demir
- Medical Imaging Techniques Program, Vocational School of Health Services, Bursa Uludag University, 16240, Bursa, Turkey
| | - Senem Turan Özdemir
- Department of Anatomy, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Rıfat Özpar
- Department of Radiology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
23
|
Sadat-Nejad Y, Vandewouw MM, Cardy R, Lerch J, Taylor MJ, Iaboni A, Hammill C, Syed B, Brian JA, Kelley E, Ayub M, Crosbie J, Schachar R, Georgiades S, Nicolson R, Anagnostou E, Kushki A. Investigating heterogeneity across autism, ADHD, and typical development using measures of cortical thickness, surface area, cortical/subcortical volume, and structural covariance. FRONTIERS IN CHILD AND ADOLESCENT PSYCHIATRY 2023; 2:1171337. [PMID: 39839588 PMCID: PMC11747914 DOI: 10.3389/frcha.2023.1171337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/30/2023] [Indexed: 01/23/2025]
Abstract
Introduction Attention-deficit/hyperactivity disorder (ADHD) and autism are multi-faceted neurodevelopmental conditions with limited biological markers. The clinical diagnoses of autism and ADHD are based on behavioural assessments and may not predict long-term outcomes or response to interventions and supports. To address this gap, data-driven methods can be used to discover groups of individuals with shared biological patterns. Methods In this study, we investigated measures derived from cortical/subcortical volume, surface area, cortical thickness, and structural covariance investigated of 565 participants with diagnoses of autism [n = 262, median(IQR) age = 12.2(5.9), 22% female], and ADHD [n = 171, median(IQR) age = 11.1(4.0), 21% female] as well neurotypical children [n = 132, median(IQR) age = 12.1(6.7), 43% female]. We integrated cortical thickness, surface area, and cortical/subcortical volume, with a measure of single-participant structural covariance using a graph neural network approach. Results Our findings suggest two large clusters, which differed in measures of adaptive functioning (χ 2 = 7.8, P = 0.004), inattention (χ 2 = 11.169, P < 0.001), hyperactivity (χ 2 = 18.44, P < 0.001), IQ (χ 2 = 9.24, P = 0.002), age (χ 2 = 70.87, P < 0.001), and sex (χ 2 = 105.6, P < 0.001). Discussion These clusters did not align with existing diagnostic labels, suggesting that brain structure is more likely to be associated with differences in adaptive functioning, IQ, and ADHD features.
Collapse
Affiliation(s)
- Younes Sadat-Nejad
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Marlee M. Vandewouw
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - R. Cardy
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - J. Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, Department of Medical Biophysics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, Oxford, United Kingdom
| | - M. J. Taylor
- Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - A. Iaboni
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - C. Hammill
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - B. Syed
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - J. A. Brian
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - E. Kelley
- Department of Psychology, Queen's University, Kingston, ON, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - M. Ayub
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - J. Crosbie
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - R. Schachar
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - S. Georgiades
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - R. Nicolson
- Department of Psychiatry, Western University, London, ON, Canada
| | - E. Anagnostou
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - A. Kushki
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Borges MS, Hoffmann MS, Simioni A, Axelrud LK, Teixeira DS, Zugman A, Jackowski A, Pan PM, Bressan RA, Parker N, Germann J, Bado PP, Satterthwaite TD, Milham MP, Chakravarty MM, Paim Rohde LA, Constantino Miguel E, Paus T, Salum GA. Deviations from a typical development of the cerebellum in youth are associated with psychopathology, executive functions and educational outcomes. Psychol Med 2023; 53:5698-5708. [PMID: 36226568 DOI: 10.1017/s0033291722002926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Understanding deviations from typical brain development is a promising approach to comprehend pathophysiology in childhood and adolescence. We investigated if cerebellar volumes different than expected for age and sex could predict psychopathology, executive functions and academic achievement. METHODS Children and adolescents aged 6-17 years from the Brazilian High-Risk Cohort Study for Mental Conditions had their cerebellar volume estimated using Multiple Automatically Generated Templates from T1-weighted images at baseline (n = 677) and at 3-year follow-up (n = 447). Outcomes were assessed using the Child Behavior Checklist and standardized measures of executive functions and school achievement. Models of typically developing cerebellum were based on a subsample not exposed to risk factors and without mental-health conditions (n = 216). Deviations from this model were constructed for the remaining individuals (n = 461) and standardized variation from age and sex trajectory model was used to predict outcomes in cross-sectional, longitudinal and mediation analyses. RESULTS Cerebellar volumes higher than expected for age and sex were associated with lower externalizing specific factor and higher executive functions. In a longitudinal analysis, deviations from typical development at baseline predicted inhibitory control at follow-up, and cerebellar deviation changes from baseline to follow-up predicted changes in reading and writing abilities. The association between deviations in cerebellar volume and academic achievement was mediated by inhibitory control. CONCLUSIONS Deviations in the cerebellar typical development are associated with outcomes in youth that have long-lasting consequences. This study highlights both the potential of typical developing models and the important role of the cerebellum in mental health, cognition and education.
Collapse
Affiliation(s)
- Marina S Borges
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
| | - Maurício S Hoffmann
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Neuropsychiatry, Universidade Federal de Santa Maria, Avenida Roraima 1000, Santa Maria, 97105-900, Brazil
| | - André Simioni
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiza K Axelrud
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Danielle S Teixeira
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Zugman
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Laboratório Interdisciplinar de Neurociências Integrativas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Andrea Jackowski
- Laboratório Interdisciplinar de Neurociências Integrativas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Pedro M Pan
- Laboratório Interdisciplinar de Neurociências Integrativas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Rodrigo A Bressan
- Laboratório Interdisciplinar de Neurociências Integrativas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Nadine Parker
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Jurgen Germann
- University Health Network, Toronto, ON, Canada
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Patrícia P Bado
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Michael P Milham
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Center for the Developing Brain, Child Mind Institute, New York, NY 10022, USA
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Luis Augusto Paim Rohde
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
| | - Eurípedes Constantino Miguel
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
- Universidade de São Paulo (USP), São Paulo, Brazil
| | - Tomas Paus
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- Centre hospitalier universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Giovanni A Salum
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
- Department of Psychiatry and Legal Medicine, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
| |
Collapse
|
25
|
Shenker JJ, Steele CJ, Zatorre RJ, Penhune VB. Using cortico-cerebellar structural patterns to classify early- and late-trained musicians. Hum Brain Mapp 2023. [PMID: 37326147 PMCID: PMC10365229 DOI: 10.1002/hbm.26395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/19/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023] Open
Abstract
A body of current evidence suggests that there is a sensitive period for musical training: people who begin training before the age of seven show better performance on tests of musical skill, and also show differences in brain structure-especially in motor cortical and cerebellar regions-compared with those who start later. We used support vector machine models-a subtype of supervised machine learning-to investigate distributed patterns of structural differences between early-trained (ET) and late-trained (LT) musicians and to better understand the age boundaries of the sensitive period for early musicianship. After selecting regions of interest from the cerebellum and cortical sensorimotor regions, we applied recursive feature elimination with cross-validation to produce a model which optimally and accurately classified ET and LT musicians. This model identified a combination of 17 regions, including 9 cerebellar and 8 sensorimotor regions, and maintained a high accuracy and sensitivity (true positives, i.e., ET musicians) without sacrificing specificity (true negatives, i.e., LT musicians). Critically, this model-which defined ET musicians as those who began their training before the age of 7-outperformed all other models in which age of start was earlier or later (between ages 5-10). Our model's ability to accurately classify ET and LT musicians provides additional evidence that musical training before age 7 affects cortico-cerebellar structure in adulthood, and is consistent with the hypothesis that connected brain regions interact during development to reciprocally influence brain and behavioral maturation.
Collapse
Affiliation(s)
- Joseph J Shenker
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
- BRAMS: International Laboratory for Brain, Music, and Sound Research, Montreal, Quebec, Canada
| | - Christopher J Steele
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Robert J Zatorre
- BRAMS: International Laboratory for Brain, Music, and Sound Research, Montreal, Quebec, Canada
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Virginia B Penhune
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
- BRAMS: International Laboratory for Brain, Music, and Sound Research, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Zheng J, Yang Q, Makris N, Huang K, Liang J, Ye C, Yu X, Tian M, Ma T, Mou T, Guo W, Kikinis R, Gao Y. Three-Dimensional Digital Reconstruction of the Cerebellar Cortex: Lobule Thickness, Surface Area Measurements, and Layer Architecture. CEREBELLUM (LONDON, ENGLAND) 2023; 22:249-260. [PMID: 35286708 PMCID: PMC9470778 DOI: 10.1007/s12311-022-01390-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 11/28/2022]
Abstract
The cerebellum is ontogenetically one of the first structures to develop in the central nervous system; nevertheless, it has been only recently reconsidered for its significant neurobiological, functional, and clinical relevance in humans. Thus, it has been a relatively under-studied compared to the cerebrum. Currently, non-invasive imaging modalities can barely reach the necessary resolution to unfold its entire, convoluted surface, while only histological analyses can reveal local information at the micrometer scale. Herein, we used the BigBrain dataset to generate area and point-wise thickness measurements for all layers of the cerebellar cortex and for each lobule in particular. We found that the overall surface area of the cerebellar granular layer (including Purkinje cells) was 1,732 cm2 and the molecular layer was 1,945 cm2. The average thickness of the granular layer is 0.88 mm (± 0.83) and that of the molecular layer is 0.32 mm (± 0.08). The cerebellum (both granular and molecular layers) is thicker at the depth of the sulci and thinner at the crowns of the gyri. Globally, the granular layer is thicker in the lateral-posterior-inferior region than the medial-superior regions. The characterization of individual layers in the cerebellum achieved herein represents a stepping-stone for investigations interrelating structural and functional connectivity with cerebellar architectonics using neuroimaging, which is a matter of considerable relevance in basic and clinical neuroscience. Furthermore, these data provide templates for the construction of cerebellar topographic maps and the precise localization of structural and functional alterations in diseases affecting the cerebellum.
Collapse
Affiliation(s)
- Junxiao Zheng
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Qinzhu Yang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Nikos Makris
- Center for Morphometric Analysis, Departments of Psychiatry, Neurology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
- Department of Anatomy and Neurobiology, Boston University Medical School, Boston, USA
| | - Kaibin Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Jianwen Liang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Chenfei Ye
- Pengcheng Lab, Shenzhen, Guangdong, China
| | - Xiaxia Yu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Mu Tian
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Ting Ma
- Pengcheng Lab, Shenzhen, Guangdong, China
- Department of Electronic and Information Engineering, Harbin Institute of Technology Campus, Shenzhen, Guangdong, China
| | - Tian Mou
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Wenlong Guo
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ron Kikinis
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Yi Gao
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China.
- Pengcheng Lab, Shenzhen, Guangdong, China.
- Marshall Laboratory of Biomedical Engineering, Shenzhen, Guangdong, China.
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen, Guangdong, China.
| |
Collapse
|
27
|
Ozen O, Yuksel Y, Torun E, Ergun T. Morphometric evaluation of cerebellar lobules in individuals with unilateral vertebral artery hypoplasia. Surg Radiol Anat 2023; 45:401-407. [PMID: 36813912 DOI: 10.1007/s00276-023-03108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
PURPOSE Vertebral arteries (VAs) provide blood circulation to the posterior fossa in general and are the main blood supply of the posterior fossa structures of the brain. Our aim in this study is to analyze the segmental volumetric values of cerebellar structures with the voxel-based volumetric analysis system in individuals with unilateral vertebral artery hypoplasia. METHODS In this retrospective study, segmental volumetric values/percentile ratios of cerebellar lobules were calculated using 3D fast spoiled gradient recall acquisition in steady-state (3D T1 FSPGR) MRI sequence images of the brain in individuals with unilateral vertebral artery hypoplasia (VAH) and in those without bilateral VAH and any symptoms of vertebrobasilar insufficiency as the control group was evaluated in volBrain ( http://volbrain.upv.es/ ). RESULTS The VAH group consisted of 50 (19 males/31 females) and the control group had 50 (21 males/29 females) individuals. The cerebellar lobule III, IV, VIIIA and X total volumes and the cerebellar lobule I-II, III, IV, VIIIA and X gray matter volumes were lower in the hypoplastic side than the non-hypoplastic cases and also than the contralateral side of the hypoplastic cases in the VAH group. In addition, it was found that that lobules IV and V had lower cortical thickness and lobules I-II had a higher coverage rate in the intracranial cavity in the hypoplastic side than the non-hypoplastic cases and also than the contralateral side of the hypoplastic cases (p < 0.05). CONCLUSION In this study, it was found that cerebellar lobule III, IV, VIIIA, X total volumes and cerebellar lobule I-II, III, IV, VIIIA, X gray matter volumes in addition to lobule IV, V cortical thicknesses were low in individuals with unilateral VAH. Being aware of these variations and taking them into account during future volumetric studies on the cerebellum are very important.
Collapse
Affiliation(s)
- Ozkan Ozen
- Department of Radiology, Alanya Education and Research Hospital, Alanya Alaaddin Keykubat University, Oba District, Alanya, Antalya, Turkey.
| | - Yavuz Yuksel
- Department of Radiology, Alanya Education and Research Hospital, Alanya Alaaddin Keykubat University, Oba District, Alanya, Antalya, Turkey
| | - Ebru Torun
- Department of Radiology, Alanya Education and Research Hospital, Alanya Alaaddin Keykubat University, Oba District, Alanya, Antalya, Turkey
| | - Tarkan Ergun
- Department of Radiology, Alanya Education and Research Hospital, Alanya Alaaddin Keykubat University, Oba District, Alanya, Antalya, Turkey
| |
Collapse
|
28
|
Nalepa J, Kotowski K, Machura B, Adamski S, Bozek O, Eksner B, Kokoszka B, Pekala T, Radom M, Strzelczak M, Zarudzki L, Krason A, Arcadu F, Tessier J. Deep learning automates bidimensional and volumetric tumor burden measurement from MRI in pre- and post-operative glioblastoma patients. Comput Biol Med 2023; 154:106603. [PMID: 36738710 DOI: 10.1016/j.compbiomed.2023.106603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
Tumor burden assessment by magnetic resonance imaging (MRI) is central to the evaluation of treatment response for glioblastoma. This assessment is, however, complex to perform and associated with high variability due to the high heterogeneity and complexity of the disease. In this work, we tackle this issue and propose a deep learning pipeline for the fully automated end-to-end analysis of glioblastoma patients. Our approach simultaneously identifies tumor sub-regions, including the enhancing tumor, peritumoral edema and surgical cavity in the first step, and then calculates the volumetric and bidimensional measurements that follow the current Response Assessment in Neuro-Oncology (RANO) criteria. Also, we introduce a rigorous manual annotation process which was followed to delineate the tumor sub-regions by the human experts, and to capture their segmentation confidences that are later used while training deep learning models. The results of our extensive experimental study performed over 760 pre-operative and 504 post-operative adult patients with glioma obtained from the public database (acquired at 19 sites in years 2021-2020) and from a clinical treatment trial (47 and 69 sites for pre-/post-operative patients, 2009-2011) and backed up with thorough quantitative, qualitative and statistical analysis revealed that our pipeline performs accurate segmentation of pre- and post-operative MRIs in a fraction of the manual delineation time (up to 20 times faster than humans). Volumetric measurements were in strong agreement with experts with the Intraclass Correlation Coefficient (ICC): 0.959, 0.703, 0.960 for ET, ED, and cavity. Similarly, automated RANO compared favorably with experienced readers (ICC: 0.681 and 0.866) producing consistent and accurate results. Additionally, we showed that RANO measurements are not always sufficient to quantify tumor burden. The high performance of the automated tumor burden measurement highlights the potential of the tool for considerably improving and simplifying radiological evaluation of glioblastoma in clinical trials and clinical practice.
Collapse
Affiliation(s)
- Jakub Nalepa
- Graylight Imaging, Gliwice, Poland; Department of Algorithmics and Software, Silesian University of Technology, Gliwice, Poland.
| | | | | | | | - Oskar Bozek
- Department of Radiodiagnostics and Invasive Radiology, School of Medicine in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Bartosz Eksner
- Department of Radiology and Nuclear Medicine, ZSM Chorzów, Chorzów, Poland
| | - Bartosz Kokoszka
- Department of Radiodiagnostics, Interventional Radiology and Nuclear Medicine, University Clinical Centre, Katowice, Poland
| | - Tomasz Pekala
- Department of Radiodiagnostics, Interventional Radiology and Nuclear Medicine, University Clinical Centre, Katowice, Poland
| | - Mateusz Radom
- Department of Radiology and Diagnostic Imaging, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Marek Strzelczak
- Department of Radiology and Diagnostic Imaging, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Lukasz Zarudzki
- Department of Radiology and Diagnostic Imaging, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Agata Krason
- Roche Pharmaceutical Research & Early Development, Early Clinical Development Oncology, Roche Innovation Center Basel, Basel, Switzerland
| | - Filippo Arcadu
- Roche Pharmaceutical Research & Early Development, Early Clinical Development Informatics, Roche Innovation Center Basel, Basel, Switzerland
| | - Jean Tessier
- Roche Pharmaceutical Research & Early Development, Early Clinical Development Oncology, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
29
|
Wang Q, Aljassar M, Bhagwat N, Zeighami Y, Evans AC, Dagher A, Pike GB, Sadikot AF, Poline JB. Reproducibility of cerebellar involvement as quantified by consensus structural MRI biomarkers in advanced essential tremor. Sci Rep 2023; 13:581. [PMID: 36631461 PMCID: PMC9834264 DOI: 10.1038/s41598-022-25306-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/28/2022] [Indexed: 01/13/2023] Open
Abstract
Essential tremor (ET) is the most prevalent movement disorder with poorly understood etiology. Some neuroimaging studies report cerebellar involvement whereas others do not. This discrepancy may stem from underpowered studies, differences in statistical modeling or variation in magnetic resonance imaging (MRI) acquisition and processing. To resolve this, we investigated the cerebellar structural differences using a local advanced ET dataset augmented by matched controls from PPMI and ADNI. We tested the hypothesis of cerebellar involvement using three neuroimaging biomarkers: VBM, gray/white matter volumetry and lobular volumetry. Furthermore, we assessed the impacts of statistical models and segmentation pipelines on results. Results indicate that the detected cerebellar structural changes vary with methodology. Significant reduction of right cerebellar gray matter and increase of the left cerebellar white matter were the only two biomarkers consistently identified by multiple methods. Results also show substantial volumetric overestimation from SUIT-based segmentation-partially explaining previous literature discrepancies. This study suggests that current estimation of cerebellar involvement in ET may be overemphasized in MRI studies and highlights the importance of methods sensitivity analysis on results interpretation. ET datasets with large sample size and replication studies are required to improve our understanding of regional specificity of cerebellum involvement in ET. PROTOCOL REGISTRATION: The stage 1 protocol for this Registered Report was accepted in principle on 21 March 2022. The protocol, as accepted by the journal, can be found at: https://doi.org/10.6084/m9.figshare.19697776 .
Collapse
Affiliation(s)
- Qing Wang
- grid.14709.3b0000 0004 1936 8649Neuro Data Science - ORIGAMI Laboratory, McConnell Brain Imaging Centre, The Neuro (Montreal Neurological Institute-Hospital), Faculty of Medicine and Health Sciences, McGill University, Montreal, QC Canada
| | - Meshal Aljassar
- grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McConnell Brain Imaging Centre (BIC), The Neuro (Montreal Neurological Institute-Hospital), Faculty of Medicine and Health Sciences, McGill University, Montreal, QC Canada
| | - Nikhil Bhagwat
- grid.14709.3b0000 0004 1936 8649Neuro Data Science - ORIGAMI Laboratory, McConnell Brain Imaging Centre, The Neuro (Montreal Neurological Institute-Hospital), Faculty of Medicine and Health Sciences, McGill University, Montreal, QC Canada
| | - Yashar Zeighami
- grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics and Mental Health, McConnell Brain Imaging Centre (BIC), The Neuro (Montreal Neurological Institute-Hospital), Faculty of Medicine and Health Sciences, McGill University, Montreal, QC Canada
| | - Alan C. Evans
- grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics and Mental Health, McConnell Brain Imaging Centre (BIC), The Neuro (Montreal Neurological Institute-Hospital), Faculty of Medicine and Health Sciences, McGill University, Montreal, QC Canada
| | - Alain Dagher
- grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics and Mental Health, McConnell Brain Imaging Centre (BIC), The Neuro (Montreal Neurological Institute-Hospital), Faculty of Medicine and Health Sciences, McGill University, Montreal, QC Canada
| | - G. Bruce Pike
- grid.22072.350000 0004 1936 7697Department of Radiology, Cumming School of Medicine, Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, QC Canada
| | - Abbas F. Sadikot
- grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McConnell Brain Imaging Centre (BIC), The Neuro (Montreal Neurological Institute-Hospital), Faculty of Medicine and Health Sciences, McGill University, Montreal, QC Canada
| | - Jean-Baptiste Poline
- Neuro Data Science - ORIGAMI Laboratory, McConnell Brain Imaging Centre, The Neuro (Montreal Neurological Institute-Hospital), Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
30
|
Schmitt JE, DeBevits JJ, Roalf DR, Ruparel K, Gallagher RS, Gur RC, Alexander-Bloch A, Eom TY, Alam S, Steinberg J, Akers W, Khairy K, Crowley TB, Emanuel B, Zakharenko SS, McDonald-McGinn DM, Gur RE. A Comprehensive Analysis of Cerebellar Volumes in the 22q11.2 Deletion Syndrome. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:79-90. [PMID: 34848384 PMCID: PMC9162086 DOI: 10.1016/j.bpsc.2021.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/12/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND The presence of a 22q11.2 microdeletion (22q11.2 deletion syndrome [22q11DS]) ranks among the greatest known genetic risk factors for the development of psychotic disorders. There is emerging evidence that the cerebellum is important in the pathophysiology of psychosis. However, there is currently limited information on cerebellar neuroanatomy in 22q11DS specifically. METHODS High-resolution 3T magnetic resonance imaging was acquired in 79 individuals with 22q11DS and 70 typically developing control subjects (N = 149). Lobar and lobule-level cerebellar volumes were estimated using validated automated segmentation algorithms, and subsequently group differences were compared. Hierarchical clustering, principal component analysis, and graph theoretical models were used to explore intercerebellar relationships. Cerebrocerebellar structural connectivity with cortical thickness was examined via linear regression models. RESULTS Individuals with 22q11DS had, on average, 17.3% smaller total cerebellar volumes relative to typically developing subjects (p < .0001). The lobules of the superior posterior cerebellum (e.g., VII and VIII) were particularly affected in 22q11DS. However, all cerebellar lobules were significantly smaller, even after adjusting for total brain volumes (all cerebellar lobules p < .0002). The superior posterior lobule was disproportionately associated with cortical thickness in the frontal lobes and cingulate cortex, brain regions known be affected in 22q11DS. Exploratory analyses suggested that the superior posterior lobule, particularly Crus I, may be associated with psychotic symptoms in 22q11DS. CONCLUSIONS The cerebellum is a critical but understudied component of the 22q11DS neuroendophenotype.
Collapse
Affiliation(s)
- J Eric Schmitt
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania; Division of Neuroradiology, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania.
| | - John J DeBevits
- Division of Neuroradiology, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - David R Roalf
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania
| | - Kosha Ruparel
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania
| | - R Sean Gallagher
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania
| | - Ruben C Gur
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania
| | - Aaron Alexander-Bloch
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania
| | - Tae-Yeon Eom
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Shahinur Alam
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jeffrey Steinberg
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Walter Akers
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Khaled Khairy
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - T Blaine Crowley
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Beverly Emanuel
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Donna M McDonald-McGinn
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Raquel E Gur
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania; Division of Neuroradiology, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
31
|
Salvan P, Fonseca M, Winkler AM, Beauchamp A, Lerch JP, Johansen-Berg H. Serotonin regulation of behavior via large-scale neuromodulation of serotonin receptor networks. Nat Neurosci 2023; 26:53-63. [PMID: 36522497 PMCID: PMC9829536 DOI: 10.1038/s41593-022-01213-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/24/2022] [Indexed: 12/23/2022]
Abstract
Although we understand how serotonin receptors function at the single-cell level, what role different serotonin receptors play in regulating brain-wide activity and, in turn, human behavior, remains unknown. Here, we developed transcriptomic-neuroimaging mapping to characterize brain-wide functional signatures associated with specific serotonin receptors: serotonin receptor networks (SRNs). Probing SRNs with optogenetics-functional magnetic resonance imaging (MRI) and pharmacology in mice, we show that activation of dorsal raphe serotonin neurons differentially modulates the amplitude and functional connectivity of different SRNs, showing that receptors' spatial distributions can confer specificity not only at the local, but also at the brain-wide, network level. In humans, using resting-state functional MRI, SRNs replicate established divisions of serotonin effects on impulsivity and negative biases. These results provide compelling evidence that heterogeneous brain-wide distributions of different serotonin receptor types may underpin behaviorally distinct modes of serotonin regulation. This suggests that serotonin neurons may regulate multiple aspects of human behavior via modulation of large-scale receptor networks.
Collapse
Affiliation(s)
- Piergiorgio Salvan
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Madalena Fonseca
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anderson M Winkler
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Human Genetics, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Antoine Beauchamp
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jason P Lerch
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Heidi Johansen-Berg
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
32
|
Faber J, Kügler D, Bahrami E, Heinz LS, Timmann D, Ernst TM, Deike-Hofmann K, Klockgether T, van de Warrenburg B, van Gaalen J, Reetz K, Romanzetti S, Oz G, Joers JM, Diedrichsen J, Reuter M. CerebNet: A fast and reliable deep-learning pipeline for detailed cerebellum sub-segmentation. Neuroimage 2022; 264:119703. [PMID: 36349595 PMCID: PMC9771831 DOI: 10.1016/j.neuroimage.2022.119703] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Quantifying the volume of the cerebellum and its lobes is of profound interest in various neurodegenerative and acquired diseases. Especially for the most common spinocerebellar ataxias (SCA), for which the first antisense oligonculeotide-base gene silencing trial has recently started, there is an urgent need for quantitative, sensitive imaging markers at pre-symptomatic stages for stratification and treatment assessment. This work introduces CerebNet, a fully automated, extensively validated, deep learning method for the lobular segmentation of the cerebellum, including the separation of gray and white matter. For training, validation, and testing, T1-weighted images from 30 participants were manually annotated into cerebellar lobules and vermal sub-segments, as well as cerebellar white matter. CerebNet combines FastSurferCNN, a UNet-based 2.5D segmentation network, with extensive data augmentation, e.g. realistic non-linear deformations to increase the anatomical variety, eliminating additional preprocessing steps, such as spatial normalization or bias field correction. CerebNet demonstrates a high accuracy (on average 0.87 Dice and 1.742mm Robust Hausdorff Distance across all structures) outperforming state-of-the-art approaches. Furthermore, it shows high test-retest reliability (average ICC >0.97 on OASIS and Kirby) as well as high sensitivity to disease effects, including the pre-ataxic stage of spinocerebellar ataxia type 3 (SCA3). CerebNet is compatible with FreeSurfer and FastSurfer and can analyze a 3D volume within seconds on a consumer GPU in an end-to-end fashion, thus providing an efficient and validated solution for assessing cerebellum sub-structure volumes. We make CerebNet available as source-code (https://github.com/Deep-MI/FastSurfer).
Collapse
Affiliation(s)
- Jennifer Faber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurology, University Hospital Bonn, Germany
| | - David Kügler
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Emad Bahrami
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Computer Science Department, University Bonn, Bonn, Germany
| | - Lea-Sophie Heinz
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dagmar Timmann
- Department of Neurology, Center for Translational Neuro, and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thomas M Ernst
- Department of Neurology, Center for Translational Neuro, and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Thomas Klockgether
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurology, University Hospital Bonn, Germany
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Judith van Gaalen
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Germany; JARA-Brain Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich, Germany
| | | | - Gulin Oz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - James M Joers
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Jorn Diedrichsen
- Departments of Computer Science and Statistical and Actuarial Sciences, Western University, London, ON, Canada
| | - Martin Reuter
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Rousseau PN, Chakravarty MM, Steele CJ. Mapping pontocerebellar connectivity with diffusion MRI. Neuroimage 2022; 264:119684. [PMID: 36252913 DOI: 10.1016/j.neuroimage.2022.119684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
Abstract
The cerebellum's involvement in cognitive, affective and motor functions is mediated by connections to different regions of the cerebral cortex. A distinctive feature of cortico-cerebellar loops that has been demonstrated in the animal work is a topographic organization that is preserved across its corticopontine, pontocerebellar, and cerebello-thalmo-cortical segments. Here we used tractography derived from diffusion imaging data to characterize the connections between the pons and the individual lobules of the cerebellum and generate a parcellation of the pons and middle cerebellar peduncle based on the pattern of connectivity. We identified a rostral to caudal gradient in the pons, similar to that observed in the animal work, such that rostral regions were preferentially connected to cerebellar lobules involved in non-motor, and caudal regions with motor regions. These findings advance our fundamental understanding of the cerebellum, and the parcellations we generated provide context for future research into the pontocerebellar tract's involvement in health and disease.
Collapse
Affiliation(s)
| | - M Mallar Chakravarty
- Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Christopher J Steele
- Department of Psychology, Concordia University, Montreal, QC, Canada; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; PERFORM Centre, Concordia University, Montreal, QC, Canada
| |
Collapse
|
34
|
Glutig K, Lange L, Krüger PC, Gräger S, de Vries H, Brandl U, Gaser C, Mentzel HJ. Differences in Cerebellar Volume as a Diagnostic and Prognostic Biomarker in Children and Adolescents With Epilepsy of Unknown Etiology. J Child Neurol 2022; 37:939-948. [PMID: 36113051 PMCID: PMC9703387 DOI: 10.1177/08830738221114241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION AND OBJECTIVE Epilepsy is one of the most common brain diseases during childhood and adolescence. Atrophy in different brain areas is possible during epilepsy. This study aimed to verify whether cerebellar volume differences could be detected by volume analysis using magnetic resonance imaging (MRI) in children with epilepsy. METHOD In this retrospective study, 41 children (3.1-18.8 years) with epilepsy of unknown etiology were included (duration of epilepsy 1.9 ± 3 years). A cranial MRI with a volumetric 3-dimensional, T1-weighted sequence was used for volume analysis. The MRIs of 26 patients with headache (5.3-17.1 years) were analyzed for comparison. A volume analysis of the cerebellum was performed using region-based morphometry. Total cerebellar volume, total white and gray matter volume, and 48 regional lobules (L), separated into white and gray matter, were calculated. Cerebellar volumes are presented in relative ratios as the volume fraction of cerebellar volume to total intracranial volume: CV/TIV. RESULTS The ratio of overall white matter volume was significantly lower in the case group (23.93 × 10-3, P = .039). A significantly lower ratio of regional white matter volume was detected in LV right (P = .031) and left (P = .014), in LVIIIB right (P = .011) and left (P = .019), and in LVIIIA left (P = .009). CONCLUSION Our results emphasize that volume analysis of the total cerebellar volume alone is insufficient to characterize cerebellar differences in children with epilepsy. Rather, in specific cerebellar region volume analysis using region-based morphometry, children with epilepsy showed significantly lower regional volumes of lobules, which are important for sensorimotor function (LV, LVIII) and higher cognitive function (crus I).
Collapse
Affiliation(s)
- Katja Glutig
- Department of Radiology, Section of Pediatric Radiology, University Hospital, Jena, Germany,Katja Glutig, Jena University Hospital, Department of Radiology, Section of Pediatric Radiology, Am Klinikum 1, 07747 Jena, Germany.
| | - Luisa Lange
- Department of Radiology, Section of Pediatric Radiology, University Hospital, Jena, Germany
| | - Paul-Christian Krüger
- Department of Radiology, Section of Pediatric Radiology, University Hospital, Jena, Germany
| | - Stephanie Gräger
- Department of Radiology, Section of Pediatric Radiology, University Hospital, Jena, Germany
| | - Heike de Vries
- Department of Neuropediatrics, University Children’s Hospital, Jena, Germany
| | - Ulrich Brandl
- Department of Neuropediatrics, University Children’s Hospital, Jena, Germany
| | - Christian Gaser
- Structural Brain Mapping Group, Departments of Psychiatry and Neurology, University Hospital, Jena, Germany
| | - Hans-Joachim Mentzel
- Department of Radiology, Section of Pediatric Radiology, University Hospital, Jena, Germany
| |
Collapse
|
35
|
Laidi C, Floris DL, Tillmann J, Elandaloussi Y, Zabihi M, Charman T, Wolfers T, Durston S, Moessnang C, Dell'Acqua F, Ecker C, Loth E, Murphy D, Baron-Cohen S, Buitelaar JK, Marquand AF, Beckmann CF, Frouin V, Leboyer M, Duchesnay E, Coupé P, Houenou J. Cerebellar Atypicalities in Autism? Biol Psychiatry 2022; 92:674-682. [PMID: 36137706 DOI: 10.1016/j.biopsych.2022.05.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND The cerebellum contains more than 50% of the brain's neurons and is involved in social cognition. Cerebellar anatomical atypicalities have repeatedly been reported in individuals with autism. However, studies have yielded inconsistent findings, likely because of a lack of statistical power, and did not capture the clinical and neuroanatomical diversity of autism. Our aim was to better understand cerebellar anatomy and its diversity in autism. METHODS We studied cerebellar gray matter morphology in 274 individuals with autism and 219 control subjects of a multicenter European cohort, EU-AIMS LEAP (European Autism Interventions-A Multicentre Study for Developing New Medications; Longitudinal European Autism Project). To ensure the robustness of our results, we conducted lobular parcellation of the cerebellum with 2 different pipelines in addition to voxel-based morphometry. We performed statistical analyses with linear, multivariate (including normative modeling), and meta-analytic approaches to capture the diversity of cerebellar anatomy in individuals with autism and control subjects. Finally, we performed a dimensional analysis of cerebellar anatomy in an independent cohort of 352 individuals with autism-related symptoms. RESULTS We did not find any significant difference in the cerebellum when comparing individuals with autism and control subjects using linear models. In addition, there were no significant deviations in our normative models in the cerebellum in individuals with autism. Finally, we found no evidence of cerebellar atypicalities related to age, IQ, sex, or social functioning in individuals with autism. CONCLUSIONS Despite positive results published in the last decade from relatively small samples, our results suggest that there is no striking difference in cerebellar anatomy of individuals with autism.
Collapse
Affiliation(s)
- Charles Laidi
- Department of Translational Neuro-Psychiatry, Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale U955, Créteil, France; Fondation FondaMental, Créteil, France; Département Médico-Universitaire de Psychiatrie et d'Addictologie, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Créteil, France; Neurospin, CEA, Paris-Saclay University, Gif-sur-Yvette; Center for the Developing Brain, Child Mind Institute, New York, New York.
| | - Dorothea L Floris
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands; Methods of Plasticity Research, Department of Psychology, University of Zürich, Zürich, Switzerland
| | - Julian Tillmann
- Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Yannis Elandaloussi
- Department of Translational Neuro-Psychiatry, Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale U955, Créteil, France; Fondation FondaMental, Créteil, France; Neurospin, CEA, Paris-Saclay University, Gif-sur-Yvette
| | - Mariam Zabihi
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Thomas Wolfers
- Department of Psychology, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Norwegian Center for Mental Disorders Research, Oslo, Norway
| | - Sarah Durston
- Education Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University Heidelberg, Heidelberg
| | - Flavio Dell'Acqua
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Christine Ecker
- Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Frankfurt am Main, Goethe University, Frankfurt, Germany
| | - Eva Loth
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Declan Murphy
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Simon Baron-Cohen
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Jan K Buitelaar
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands; Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Andre F Marquand
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | | | - Marion Leboyer
- Department of Translational Neuro-Psychiatry, Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale U955, Créteil, France; Fondation FondaMental, Créteil, France; Département Médico-Universitaire de Psychiatrie et d'Addictologie, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Créteil, France
| | | | - Pierrick Coupé
- Pictura Research Group, Unité Mixte de Recherche Centre National de la Recherche Scientifique (UMR 5800), Laboratoire Bordelais de Recherche en Informatique, Centre National de la Recherche Scientifique, Talence, France; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands; Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Josselin Houenou
- Department of Translational Neuro-Psychiatry, Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale U955, Créteil, France; Fondation FondaMental, Créteil, France; Département Médico-Universitaire de Psychiatrie et d'Addictologie, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Créteil, France; Neurospin, CEA, Paris-Saclay University, Gif-sur-Yvette
| |
Collapse
|
36
|
Joshi J, Patel R, Figley CR, Figley TD, Salter J, Bernstein CN, Marrie RA. Neuropsychological and Structural Neuroimaging Outcomes in LGI1-Limbic Encephalitis: A Case Study. Arch Clin Neuropsychol 2022; 38:139-153. [PMID: 36064192 PMCID: PMC9868528 DOI: 10.1093/arclin/acac072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Anti-leucine-rich glioma-inactivated 1 limbic encephalitis (LGI1-LE) is a rare autoimmune condition that affects the structural integrity and functioning of the brain's limbic system. Little is known about its impact on long-term neuropsychological functioning and the structural integrity of the medial temporal lobe. Here we examined the long-term neuropsychological and neuroanatomical outcomes of a 68-year-old male who acquired LGI1-LE. METHODS Our case patient underwent standardized neuropsychological testing at two time points. Volumetric analyses of T1-weighted images were undertaken at four separate time points and qualitatively compared with a group of age-matched healthy controls. RESULTS At the time of initial assessment, our case study exhibited focal impairments in verbal and visual episodic memory and these impairments continued to persist after undergoing a course of immunotherapy. Furthermore, in reference to an age-matched healthy control group, over the course of 11 months, volumetric brain imaging analyses revealed that areas of the medial temporal lobe including specific hippocampal subfields (e.g., CA1 and dentate gyrus) underwent a subacute period of volumetric enlargement followed by a chronic period of volumetric reduction in the same regions. CONCLUSIONS In patients with persisting neurocognitive deficits, LGI1-LE may produce chronic volume loss in specific areas of the medial temporal lobe; however, this appears to follow a subacute period of volume enlargement possibly driven by neuro-inflammatory processes.
Collapse
Affiliation(s)
- Jarod Joshi
- Corresponding author at: Department of Psychology, University of Windsor, Windsor, ON, Canada. E-mail address: (J. Joshi)
| | - Ronak Patel
- Department of Clinical Health Psychology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chase R Figley
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Teresa D Figley
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jennifer Salter
- Department of Internal Medicine (Physical Medicine and Rehabilitation), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Charles N Bernstein
- Department of Internal Medicine (Gastroenterology), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ruth Ann Marrie
- Department of Internal Medicine (Neurology), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada,Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
37
|
Cortical and subcortical grey matter atrophy in Amyotrophic Lateral Sclerosis correlates with measures of disease accumulation independent of disease aggressiveness. Neuroimage Clin 2022; 36:103162. [PMID: 36067613 PMCID: PMC9460837 DOI: 10.1016/j.nicl.2022.103162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/11/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
There is a growing demand for reliable biomarkers to monitor disease progression in Amyotrophic Lateral Sclerosis (ALS) that also take the heterogeneity of ALS into account. In this study, we explored the association between Magnetic Resonance Imaging (MRI)-derived measures of cortical thickness (CT) and subcortical grey matter (GM) volume with D50 model parameters. T1-weighted MRI images of 72 Healthy Controls (HC) and 100 patients with ALS were analyzed using Surface-based Morphometry for cortical structures and Voxel-based Morphometry for subcortical Region-Of-Interest analyses using the Computational Anatomy Toolbox (CAT12). In Inter-group contrasts, these parameters were compared between patients and HC. Further, the D50 model was used to conduct subgroup-analyses, dividing patients by a) Phase of disease covered at the time of MRI-scan and b) individual overall disease aggressiveness. Finally, correlations between GM and D50 model-derived parameters were examined. Inter-group analyses revealed ALS-related cortical thinning compared to HC located mainly in frontotemporal regions and a decrease in GM volume in the left hippocampus and amygdala. A comparison of patients in different phases showed further cortical and subcortical GM atrophy along with disease progression. Correspondingly, regression analyses identified negative correlations between cortical thickness and individual disease covered. However, there were no differences in CT and subcortical GM between patients with low and high disease aggressiveness. By application of the D50 model, we identified correlations between cortical and subcortical GM atrophy and ALS-related functional disability, but not with disease aggressiveness. This qualifies CT and subcortical GM volume as biomarkers representing individual disease covered to monitor therapeutic interventions in ALS.
Collapse
|
38
|
Sadeghihassanabadi F, Frey BM, Backhaus W, Choe CU, Zittel S, Schön G, Bönstrup M, Cheng B, Thomalla G, Gerloff C, Schulz R. Structural cerebellar reserve positively influences outcome after severe stroke. Brain Commun 2022; 4:fcac203. [PMID: 36337341 PMCID: PMC9629400 DOI: 10.1093/braincomms/fcac203] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/30/2022] [Accepted: 08/02/2022] [Indexed: 12/25/2022] Open
Abstract
The concept of brain reserve capacity positively influencing the process of recovery after stroke has been continuously developed in recent years. Global measures of brain health have been linked with a favourable outcome. Numerous studies have evidenced that the cerebellum is involved in recovery after stroke. However, it remains an open question whether characteristics of cerebellar anatomy, quantified directly after stroke, might have an impact on subsequent outcome after stroke. Thirty-nine first-ever ischaemic non-cerebellar stroke patients underwent MRI brain imaging early after stroke and longitudinal clinical follow-up. Structural images were used for volumetric analyses of distinct cerebellar regions. Ordinal logistic regression analyses were conducted to associate cerebellar volumes with functional outcome 3-6 months after stroke, operationalized by the modified Rankin Scale. Larger volumes of cerebellar lobules IV, VI, and VIIIB were positively correlated with favourable outcome, independent of the severity of initial impairment, age, and lesion volume (P < 0.01). The total cerebellar volume did not exhibit a significant structure-outcome association. The present study reveals that pre-stroke anatomy of distinct cerebellar lobules involved in motor and cognitive functioning might be linked to outcome after acute non-cerebellar stroke, thereby promoting the emerging concepts of structural brain reserve for recovery processes after stroke.
Collapse
Affiliation(s)
| | - Benedikt M Frey
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Winifried Backhaus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Chi-un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Gerhard Schön
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marlene Bönstrup
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany,Department of Neurology, University Medical Center Leipzig, 04103 Leipzig, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Robert Schulz
- Correspondence to: Robert Schulz MD University Medical Center Hamburg-Eppendorf Martinistraße 52, 20246 Hamburg, Germany E-mail:
| |
Collapse
|
39
|
An Update on the Measurement of Motor Cerebellar Dysfunction in Multiple Sclerosis. THE CEREBELLUM 2022:10.1007/s12311-022-01435-y. [PMID: 35761144 PMCID: PMC9244122 DOI: 10.1007/s12311-022-01435-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 12/03/2022]
Abstract
Multiple sclerosis (MS) is a progressive disease that often affects the cerebellum. It is characterised by demyelination, inflammation, and neurodegeneration within the central nervous system. Damage to the cerebellum in MS is associated with increased disability and decreased quality of life. Symptoms include gait and balance problems, motor speech disorder, upper limb dysfunction, and oculomotor difficulties. Monitoring symptoms is crucial for effective management of MS. A combination of clinical, neuroimaging, and task-based measures is generally used to diagnose and monitor MS. This paper reviews the present and new tools used by clinicians and researchers to assess cerebellar impairment in people with MS (pwMS). It also describes recent advances in digital and home-based monitoring for people with MS.
Collapse
|
40
|
Guimond S, Mothi SS, Makowski C, Chakravarty MM, Keshavan MS. Altered amygdala shape trajectories and emotion recognition in youth at familial high risk of schizophrenia who develop psychosis. Transl Psychiatry 2022; 12:202. [PMID: 35562339 PMCID: PMC9106712 DOI: 10.1038/s41398-022-01957-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 01/04/2023] Open
Abstract
Relatives of individuals with schizophrenia have a higher risk of developing the illness compared to the general population. Thus, youth at familial high risk (FHR) offer a unique opportunity to identify neuroimaging-based endophenotypes of psychosis. Previous studies have identified lower amygdalo-hippocampal volume in FHR, as well as lower verbal memory and emotion recognition. However, whether these phenotypes increase the risk of transition to psychosis remains unclear. To determine if individuals who develop psychosis have abnormal neurodevelopmental trajectories of the amygdala and hippocampus, we investigated longitudinal changes of these structures in a unique cohort of 82 youth FHR and 56 healthy controls during a 3-year period. Ten individuals from the FHR group converted to psychosis. Longitudinal changes were compared using linear mixed-effects models. Group differences in verbal memory and emotion recognition performance at baseline were also analyzed. Surface-based morphometry measures revealed variation in amygdalar shape (concave shape of the right dorsomedial region) in those who converted to psychosis. Significantly lower emotion recognition performance at baseline was observed in converters. Percent trial-to-trial transfer on the verbal learning task was also significantly impaired in FHR, independently of the conversion status. Our results identify abnormal shape development trajectories in the dorsomedial amygdala and lower emotion recognition abilities as phenotypes of transition to psychosis. Our findings illustrate potential markers for early identification of psychosis, aiding prevention efforts in youth at risk of schizophrenia.
Collapse
Affiliation(s)
- Synthia Guimond
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Psychoeducation and Psychology, University of Quebec in Outaouais, Gatineau, QC, Canada
| | - Suraj S Mothi
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Carolina Makowski
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, Montreal, QC, Canada
- Center for Multimodal Imaging and Genetics, Department of Radiology, University of California San Diego, San Diego, United States
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Nalepa J, Adamski S, Kotowski K, Chelstowska S, Machnikowska-Sokolowska M, Bozek O, Wisz A, Jurkiewicz E. Segmenting pediatric optic pathway gliomas from MRI using deep learning. Comput Biol Med 2022; 142:105237. [DOI: 10.1016/j.compbiomed.2022.105237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/03/2022]
|
42
|
Niaz MR, Ridwan AR, Wu Y, Bennett DA, Arfanakis K. Development and evaluation of a high resolution 0.5mm isotropic T1-weighted template of the older adult brain. Neuroimage 2022; 248:118869. [PMID: 34986396 PMCID: PMC8855670 DOI: 10.1016/j.neuroimage.2021.118869] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/08/2021] [Accepted: 12/29/2021] [Indexed: 10/28/2022] Open
Abstract
Investigating the structure of the older adult brain at high spatial resolution is of high significance, and a dedicated older adult structural brain template with sub-millimeter resolution is currently lacking. Therefore, the purpose of this work was twofold: (A) to develop a 0.5mm isotropic resolution standardized T1-weighted template of the older adult brain by applying principles of super resolution to high quality MRI data from 222 older adults (65-95 years of age), and (B) to systematically compare the new template to other standardized and study-specific templates in terms of image quality and performance when used as a reference for alignment of older adult data. The new template exhibited higher spatial resolution and improved visualization of fine structural details of the older adult brain compared to a template constructed using a conventional template building approach and the same data. In addition, the new template exhibited higher image sharpness and did not contain image artifacts observed in some of the other templates considered in this work. Due to the above enhancements, the new template provided higher inter-subject spatial normalization precision for older adult data compared to the other templates, and consequently enabled detection of smaller inter-group morphometric differences in older adult data. Finally, the new template was among those that were most representative of older adult brain data. Overall, the new template constructed here is an important resource for studies of aging, and the findings of the present work have important implications in template selection for investigations on older adults.
Collapse
Affiliation(s)
- Mohammad Rakeen Niaz
- Department of Biomedical Engineering, Illinois Institute of Technology, 3440 S Dearborn St, M-100, Chicago, IL 60616, United States
| | - Abdur Raquib Ridwan
- Department of Biomedical Engineering, Illinois Institute of Technology, 3440 S Dearborn St, M-100, Chicago, IL 60616, United States
| | - Yingjuan Wu
- Department of Biomedical Engineering, Illinois Institute of Technology, 3440 S Dearborn St, M-100, Chicago, IL 60616, United States
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Konstantinos Arfanakis
- Department of Biomedical Engineering, Illinois Institute of Technology, 3440 S Dearborn St, M-100, Chicago, IL 60616, United States; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States; Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, United States.
| |
Collapse
|
43
|
Finegan E, Siah WF, Li Hi Shing S, Chipika RH, Hardiman O, Bede P. Cerebellar degeneration in primary lateral sclerosis: an under-recognized facet of PLS. Amyotroph Lateral Scler Frontotemporal Degener 2022; 23:542-553. [PMID: 34991421 DOI: 10.1080/21678421.2021.2023188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
While primary lateral sclerosis (PLS) has traditionally been regarded as a pure upper motor neuron disorder, recent clinical, neuroimaging and postmortem studies have confirmed significant extra-motor involvement. Sporadic reports have indicated that in addition to the motor cortex and corticospinal tracts, the cerebellum may also be affected in PLS. Cerebellar manifestations are difficult to ascertain in PLS as the clinical picture is dominated by widespread upper motor neuron signs. The likely contribution of cerebellar dysfunction to gait disturbance, falls, pseudobulbar affect and dysarthria may be overlooked in the context of progressive spasticity. The objective of this study is the comprehensive characterization of cerebellar gray and white matter degeneration in PLS using multiparametric quantitative neuroimaging methods to systematically evaluate each cerebellar lobule and peduncle. Forty-two patients with PLS and 117 demographically-matched healthy controls were enrolled in a prospective MRI study. Complementary volumetric and voxelwise analyses revealed focal cerebellar alterations instead of global cerebellar atrophy. Bilateral gray matter volume reductions were observed in lobules III, IV and VIIb. Significant diffusivity alterations within the superior cerebellar peduncle indicate disruption of the main cerebellar outflow tracts. These findings suggest that the considerable intra-cerebellar disease-burden is coupled with concomitant cerebro-cerebellar connectivity disruptions. While cerebellar dysfunction is challenging to demonstrate clinically, cerebellar pathology is likely to be a significant contributor to disability in PLS.
Collapse
Affiliation(s)
- Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - We Fong Siah
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital Dublin, Dublin, Ireland
| |
Collapse
|
44
|
Nalepa J. AIM and Brain Tumors. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Transcranial direct current stimulation of cerebellum alters spiking precision in cerebellar cortex: A modeling study of cellular responses. PLoS Comput Biol 2021; 17:e1009609. [PMID: 34882680 PMCID: PMC8691604 DOI: 10.1371/journal.pcbi.1009609] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 12/21/2021] [Accepted: 11/02/2021] [Indexed: 01/13/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) of the cerebellum has rapidly raised interest but the effects of tDCS on cerebellar neurons remain unclear. Assessing the cellular response to tDCS is challenging because of the uneven, highly stratified cytoarchitecture of the cerebellum, within which cellular morphologies, physiological properties, and function vary largely across several types of neurons. In this study, we combine MRI-based segmentation of the cerebellum and a finite element model of the tDCS-induced electric field (EF) inside the cerebellum to determine the field imposed on the cerebellar neurons throughout the region. We then pair the EF with multicompartment models of the Purkinje cell (PC), deep cerebellar neuron (DCN), and granule cell (GrC) and quantify the acute response of these neurons under various orientations, physiological conditions, and sequences of presynaptic stimuli. We show that cerebellar tDCS significantly modulates the postsynaptic spiking precision of the PC, which is expressed as a change in the spike count and timing in response to presynaptic stimuli. tDCS has modest effects, instead, on the PC tonic firing at rest and on the postsynaptic activity of DCN and GrC. In Purkinje cells, anodal tDCS shortens the repolarization phase following complex spikes (-14.7 ± 6.5% of baseline value, mean ± S.D.; max: -22.7%) and promotes burstiness with longer bursts compared to resting conditions. Cathodal tDCS, instead, promotes irregular spiking by enhancing somatic excitability and significantly prolongs the repolarization after complex spikes compared to baseline (+37.0 ± 28.9%, mean ± S.D.; max: +84.3%). tDCS-induced changes to the repolarization phase and firing pattern exceed 10% of the baseline values in Purkinje cells covering up to 20% of the cerebellar cortex, with the effects being distributed along the EF direction and concentrated in the area under the electrode over the cerebellum. Altogether, the acute effects of tDCS on cerebellum mainly focus on Purkinje cells and modulate the precision of the response to synaptic stimuli, thus having the largest impact when the cerebellar cortex is active. Since the spatiotemporal precision of the PC spiking is critical to learning and coordination, our results suggest cerebellar tDCS as a viable therapeutic option for disorders involving cerebellar hyperactivity such as ataxia. Transcranial direct current stimulation (tDCS) of the cerebellum is gaining momentum as a neuromodulation tool for the treatment of neurological diseases like movement disorders. Nonetheless, the response of cells in the cerebellum to tDCS is unclear and hardly generalizes from our understanding of tDCS of the cerebral cortex. We use computational models to investigate the response of several types of cerebellar neurons to the electric field induced by tDCS and show that, differently from the cerebral cortex, tDCS has significant acute effects on the cerebellar cortex. These effects (i) primarily alter the way Purkinje cells encode synaptic stimuli from the molecular layer and (ii) can help hyperactive cells regain postsynaptic spiking precision. Since the spatiotemporal precision of the Purkinje cell spiking is critical to learning and coordination, the study shows how tDCS can operate at the cellular level to treat movement disorders like tremor and ataxia.
Collapse
|
46
|
Bede P, Chipika RH, Christidi F, Hengeveld JC, Karavasilis E, Argyropoulos GD, Lope J, Li Hi Shing S, Velonakis G, Dupuis L, Doherty MA, Vajda A, McLaughlin RL, Hardiman O. Genotype-associated cerebellar profiles in ALS: focal cerebellar pathology and cerebro-cerebellar connectivity alterations. J Neurol Neurosurg Psychiatry 2021; 92:1197-1205. [PMID: 34168085 PMCID: PMC8522463 DOI: 10.1136/jnnp-2021-326854] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Cerebellar disease burden and cerebro-cerebellar connectivity alterations are poorly characterised in amyotrophic lateral sclerosis (ALS) despite the likely contribution of cerebellar pathology to the clinical heterogeneity of the condition. METHODS A prospective imaging study has been undertaken with 271 participants to systematically evaluate cerebellar grey and white matter alterations, cerebellar peduncle integrity and cerebro-cerebellar connectivity in ALS. Participants were stratified into four groups: (1) patients testing positive for GGGGCC repeat expansions in C9orf72, (2) patients carrying an intermediate-length repeat expansion in ATXN2, (3) patients without established ALS-associated mutations and (4) healthy controls. Additionally, the cerebellar profile of a single patient with ALS who had an ATXN2 allele length of 62 was evaluated. Cortical thickness, grey matter and white matter volumes were calculated in each cerebellar lobule complemented by morphometric analyses to characterise genotype-associated atrophy patterns. A Bayesian segmentation algorithm was used for superior cerebellar peduncle volumetry. White matter diffusivity parameters were appraised both within the cerebellum and in the cerebellar peduncles. Cerebro-cerebellar connectivity was assessed using deterministic tractography. RESULTS Cerebellar pathology was confined to lobules I-V of the anterior lobe in patients with sporadic ALS in contrast to the considerable posterior lobe and vermis disease burden identified in C9orf72 mutation carriers. Patients with intermediate ATXN2 expansions did not exhibit significant cerebellar pathology. CONCLUSIONS Focal rather than global cerebellar degeneration characterises ALS. Pathognomonic ALS symptoms which are typically attributed to other anatomical regions, such as dysarthria, dysphagia, pseudobulbar affect, eye movement abnormalities and cognitive deficits, may be modulated, exacerbated or partially driven by cerebellar changes in ALS.
Collapse
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | | | - Foteini Christidi
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
- National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | - Jasmin Lope
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | | | - Léonie Dupuis
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- University of Central Florida College of Medicine, Orlando, Florida, USA
| | - Mark A Doherty
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Alice Vajda
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Orla Hardiman
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
47
|
Germann J, Gouveia FV, Brentani H, Bedford SA, Tullo S, Chakravarty MM, Devenyi GA. Involvement of the habenula in the pathophysiology of autism spectrum disorder. Sci Rep 2021; 11:21168. [PMID: 34707133 PMCID: PMC8551275 DOI: 10.1038/s41598-021-00603-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022] Open
Abstract
The habenula is a small epithalamic structure with widespread connections to multiple cortical, subcortical and brainstem regions. It has been identified as the central structure modulating the reward value of social interactions, behavioral adaptation, sensory integration and circadian rhythm. Autism spectrum disorder (ASD) is characterized by social communication deficits, restricted interests, repetitive behaviors, and is frequently associated with altered sensory perception and mood and sleep disorders. The habenula is implicated in all these behaviors and results of preclinical studies suggest a possible involvement of the habenula in the pathophysiology of this disorder. Using anatomical magnetic resonance imaging and automated segmentation we show that the habenula is significantly enlarged in ASD subjects compared to controls across the entire age range studied (6-30 years). No differences were observed between sexes. Furthermore, support-vector machine modeling classified ASD with 85% accuracy (model using habenula volume, age and sex) and 64% accuracy in cross validation. The Social Responsiveness Scale (SRS) significantly differed between groups, however, it was not related to individual habenula volume. The present study is the first to provide evidence in human subjects of an involvement of the habenula in the pathophysiology of ASD.
Collapse
Affiliation(s)
- Jürgen Germann
- grid.231844.80000 0004 0474 0428University Health Network, 399 Bathurst Street, Toronto, ON Canada ,grid.14709.3b0000 0004 1936 8649Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada
| | - Flavia Venetucci Gouveia
- grid.42327.300000 0004 0473 9646Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON Canada
| | - Helena Brentani
- grid.11899.380000 0004 1937 0722Department of Psychiatry, University of Sao Paulo, Medical School, São Paulo, São Paulo Brazil ,grid.500696.cNational Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, São Paulo Brazil
| | - Saashi A. Bedford
- grid.14709.3b0000 0004 1936 8649Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada ,grid.5335.00000000121885934Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Stephanie Tullo
- grid.14709.3b0000 0004 1936 8649Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Integrated Program in Neuroscience, McGill University, Montreal, QC Canada
| | - M. Mallar Chakravarty
- grid.14709.3b0000 0004 1936 8649Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Biomedical Engineering, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC Canada
| | - Gabriel A. Devenyi
- grid.14709.3b0000 0004 1936 8649Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC Canada
| |
Collapse
|
48
|
Droby A, El Mendili MM, Giladi N, Hausdorff JM, Maidan I, Mirelman A. Gait and cognitive abnormalities are associated with regional cerebellar atrophy in elderly fallers - A pilot study. Gait Posture 2021; 90:99-105. [PMID: 34428633 DOI: 10.1016/j.gaitpost.2021.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To investigate cerebellar lobule atrophy patterns in elderly fallers (EFs) and their association with gait and cognitive performance. BACKGROUND Cognitive impairments, gait, and balance deficits are major risk factors for falls in older adults, however, their neural fingerprints remain poorly understood. Recent evidence from neuroimaging studies highlight the role of the cerebellum in both sensorimotor and cognitive networks, suggesting that it may contribute to fall risk. METHODS Fourteen EFs (mean age ± SD = 78 ± 1.5 yrs.) and 20 healthy controls (HCs) (mean age ± SD = 69.6 ± 1.3 yrs.) underwent a 3 T MRI scan obtaining 3D T1-weighted images, cognitive, and gait assessments. Cerebellar lobule segmentation was performed, and the obtained cerebellar lobules volumes were adjusted for intracranial volume (ICV). The relationship between lobules volumes, gait, and cognitive performance scores was assessed using hierarchical multiple linear regression adjusted for age and gender. RESULTS EFs exhibited lower cerebellar volumes in the posterior cerebellum, lobules V, VI, VIIB, VIIIA, VIIIB, and Crus II, and significantly higher volumes in the anterior cerebellum and lobule IV (p = 0.018 and p = 0.046) compared to HCs. In EFs, lobule V, VI, VIIB, VIIIA, VIIIB, and anterior cerebellum volumes were found to be independent predictors of usual walking (UW) gait speed, dual-task (DT) gait speed, mini Best, MOCA, CTTa, and CTTb (p < 0.05). CONCLUSIONS The observed patterns of cerebellar lobule atrophy and their associations with motor and cognitive performance scores suggest that cerebellar atrophy contributes to the pathophysiology of fall risk in EFs.
Collapse
Affiliation(s)
- Amgad Droby
- Laboratory for Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility (CMCM), Neurological Institute, Tel Aviv Sourasky Medical Center, Israel; Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel; Sagol School of Neuroscience, Tel Aviv University, Israel.
| | - Mohamed Mounir El Mendili
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, Hôpital de la Timone, CEMEREM, Marseille, France
| | - Nir Giladi
- Laboratory for Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility (CMCM), Neurological Institute, Tel Aviv Sourasky Medical Center, Israel; Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel; Sagol School of Neuroscience, Tel Aviv University, Israel
| | - Jeffery M Hausdorff
- Laboratory for Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility (CMCM), Neurological Institute, Tel Aviv Sourasky Medical Center, Israel; Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel; Sagol School of Neuroscience, Tel Aviv University, Israel; Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Israel; Rush Alzheimer's Disease Center and Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, lL, USA
| | - Inbal Maidan
- Laboratory for Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility (CMCM), Neurological Institute, Tel Aviv Sourasky Medical Center, Israel; Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel; Sagol School of Neuroscience, Tel Aviv University, Israel
| | - Anat Mirelman
- Laboratory for Early Markers of Neurodegeneration (LEMON), Center for the Study of Movement, Cognition, and Mobility (CMCM), Neurological Institute, Tel Aviv Sourasky Medical Center, Israel; Department of Neurology, Sackler School of Medicine, Tel Aviv University, Israel; Sagol School of Neuroscience, Tel Aviv University, Israel
| |
Collapse
|
49
|
Razavi F, Raminfard S, Kalantar Hormozi H, Sisakhti M, Batouli SAH. A Probabilistic Atlas of the Pineal Gland in the Standard Space. Front Neuroinform 2021; 15:554229. [PMID: 34079447 PMCID: PMC8165226 DOI: 10.3389/fninf.2021.554229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
Pineal gland (PG) is a structure located in the midline of the brain, and is considered as a main part of the epithalamus. There are numerous reports on the facilitatory role of this area for brain function; hormone secretion and its role in sleep cycle are the major reports. However, reports are rarely available on the direct role of this structure in brain cognition and in information processing. A suggestion for the limited number of such studies is the lack of a standard atlas for the PG; none of the available MRI templates and atlases has provided parcellations for this structure. In this study, we used the three-dimensional (3D) T1-weighted MRI data of 152 healthy young volunteers, and provided a probabilistic map of the PG in the standard Montreal Neurologic Institute (MNI) space. The methods included collecting the data using a 64-channel head coil on a 3-Tesla Prisma MRI Scanner, manual delineation of the PG by two experts, and robust template and atlas construction algorithms. This atlas is freely accessible, and we hope importing this atlas in the well-known neuroimaging software packages would help to identify other probable roles of the PG in brain function. It could also be used to study pineal cysts, for volumetric analyses, and to test any associations between the cognitive abilities of the human and the structure of the PG.
Collapse
Affiliation(s)
- Foroogh Razavi
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Raminfard
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadis Kalantar Hormozi
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Minoo Sisakhti
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran.,Department of Cognitive Psychology, Institute for Cognitive Sciences Studies, Tehran, Iran
| | - Seyed Amir Hossein Batouli
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran.,Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Fotopoulos NH, Devenyi GA, Guay S, Sengupta SM, Chakravarty MM, Grizenko N, Karama S, Joober R. Cumulative exposure to ADHD medication is inversely related to hippocampus subregional volume in children. NEUROIMAGE-CLINICAL 2021; 31:102695. [PMID: 34015673 PMCID: PMC8141923 DOI: 10.1016/j.nicl.2021.102695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022]
Abstract
Cumulative exposure to ADHD medication characterized as the product of lifetime duration and dose. Medication effects investigated on 51 subregional volumes. Smaller hippocampus CA1 volumes associated with higher medication exposure. Effects remained when correcting for age and ADHD symptom severity. No global effects of medication on cortical thickness or surface area detected.
Background Although there is some evidence for a normalization of brain structure following exposure to ADHD medication, literature on the effects of duration and dose of continued use on the brain is scarce. Here, we investigated the association between cumulative exposure to medication (range 1 week to 4.69 years) and cortical structures and subcortical volumes in a clinical sample of children with ADHD taking medication (n = 109). To the best of our knowledge, this is the first structural MRI study investigating the effects of cumulative exposure to medication on subregional volumes in children treated for ADHD. Methods Cumulative exposure to ADHD medication (CEM) was defined as the product of duration on medication (days) and dose (mg/day), yielding the area under the curve (total mg). Cortical thickness and surface area measurements (CIVET-1.1.12), and subcortical volumes in 51 regions (MAGeT-Brain) were analyzed using general linear modelling. Results Significant effects of CEM were found in two subregions of the left hippocampus, the CA1 (df = 95; q = 0.003) and the strata radiatum/lacunosum/moleculare (df = 95; q = 0.003). Specifically, higher CEM was associated with smaller volumes within these subregions. No effects of medication exposure were detected on cortical thickness or surface area. Conclusions Although this study is cross-sectional, the results found within this sample of children show that prolonged ADHD medication use at higher doses is significantly associated with smaller hippocampus volumes in specific subregions. More research is required to determine whether these results are reproduced in other samples of children of ADHD, and further, whether these are beneficial or off-target effects of the medication.
Collapse
Affiliation(s)
- Nellie H Fotopoulos
- Douglas Mental Health University Institute, Montréal, Québec, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Gabriel A Devenyi
- Douglas Mental Health University Institute, Montréal, Québec, Canada; Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Stephanie Guay
- Faculty of Dentistry, McGill University, Montréal, Québec, Canada
| | - Sarojini M Sengupta
- Douglas Mental Health University Institute, Montréal, Québec, Canada; Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - M Mallar Chakravarty
- Douglas Mental Health University Institute, Montréal, Québec, Canada; Department of Psychiatry, McGill University, Montréal, Québec, Canada; Department of Biological and Biomedical Engineering, McGill University, Montréal, Québec, Canada
| | - Natalie Grizenko
- Douglas Mental Health University Institute, Montréal, Québec, Canada; Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Sherif Karama
- Douglas Mental Health University Institute, Montréal, Québec, Canada; Department of Psychiatry, McGill University, Montréal, Québec, Canada; Montréal Neurological Institute, Montréal, Québec, Canada.
| | - Ridha Joober
- Douglas Mental Health University Institute, Montréal, Québec, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada; Department of Psychiatry, McGill University, Montréal, Québec, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada.
| |
Collapse
|