1
|
Surgent O, Andrews DS, Lee JK, Boyle J, Dakopolos A, Miller M, Ozonoff S, Rogers SJ, Solomon M, Amaral DG, Nordahl CW. Sex Differences in the Striatal Contributions to Longitudinal Fine Motor Development in Autistic Children. Biol Psychiatry 2025; 97:1150-1162. [PMID: 39818327 PMCID: PMC12124950 DOI: 10.1016/j.biopsych.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/27/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Fine motor challenges are prevalent in autistic populations. However, little is known about their neurobiological underpinnings or how their related neural mechanisms are influenced by sex. The dorsal striatum, which comprises the caudate nucleus and putamen, is associated with motor learning and control and may hold critical information. We investigated how autism diagnosis and sex assigned at birth influence associations between the dorsal striatum and fine motor development in autistic and nonautistic children. METHODS We used multimodal assessment of striatal structures (volume and corticostriatal white matter microstructure) and longitudinal assessment of fine motor skills, first at approximately 3 years of age (time 1) and again 2 to 3 years later (follow-up). Fine motor and magnetic resonance imaging (T1 and diffusion) data were collected at time 1 from 356 children (234 autistic; 128 girls) and at follow-up from 195 children (113 autistic; 76 girls). RESULTS At time 1, associations among fine motor skills, putamen volume, and sensorimotor-striatal fractional anisotropy (sensorimotor-affiliated dorsal striatal structures) were different in autistic boys compared with autistic girls and were not significant for nonautistic children. Further, time 1 sensorimotor-striatal and prefrontal-striatal microstructure predicted fine motor development for autistic girls but not boys. CONCLUSIONS Sensorimotor-affiliated dorsal striatum structures may contribute to concurrent motor ability and predict fine motor improvement during critical windows of development in a sex-specific and diagnosis-dependent way. Moreover, the dorsal striatum may play a key role in the distinct neural mechanisms underlying motor challenges in autistic boys and girls.
Collapse
Affiliation(s)
- Olivia Surgent
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California.
| | - Derek S Andrews
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| | - Joshua K Lee
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| | - Joseph Boyle
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California; Department of Psychology, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| | - Andrew Dakopolos
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| | - Meghan Miller
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| | - Sally Ozonoff
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| | - Sally J Rogers
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| | - Marjorie Solomon
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| | - David G Amaral
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| | - Christine Wu Nordahl
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, University of California, Davis, Sacramento, California
| |
Collapse
|
2
|
Surgent O, Guerrero-Gonzalez J, Dean DC, Adluru N, Kirk GR, Kecskemeti SR, Alexander AL, Li JJ, Travers BG. Microstructural neural correlates of maximal grip strength in autistic children: the role of the cortico-cerebellar network and attention-deficit/hyperactivity disorder features. Front Integr Neurosci 2024; 18:1359099. [PMID: 38808069 PMCID: PMC11130426 DOI: 10.3389/fnint.2024.1359099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/24/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction Maximal grip strength, a measure of how much force a person's hand can generate when squeezing an object, may be an effective method for understanding potential neurobiological differences during motor tasks. Grip strength in autistic individuals may be of particular interest due to its unique developmental trajectory. While autism-specific differences in grip-brain relationships have been found in adult populations, it is possible that such differences in grip-brain relationships may be present at earlier ages when grip strength is behaviorally similar in autistic and non-autistic groups. Further, such neural differences may lead to the later emergence of diagnostic-group grip differences in adolescence. The present study sought to examine this possibility, while also examining if grip strength could elucidate the neuro-motor sources of phenotypic heterogeneity commonly observed within autism. Methods Using high resolution, multi-shell diffusion, and quantitative R1 relaxometry imaging, this study examined how variations in key sensorimotor-related white matter pathways of the proprioception input, lateral grasping, cortico-cerebellar, and corticospinal networks were associated with individual variations in grip strength in 68 autistic children and 70 non-autistic (neurotypical) children (6-11 years-old). Results In both groups, results indicated that stronger grip strength was associated with higher proprioceptive input, lateral grasping, and corticospinal (but not cortico-cerebellar modification) fractional anisotropy and R1, indirect measures concordant with stronger microstructural coherence and increased myelination. Diagnostic group differences in these grip-brain relationships were not observed, but the autistic group exhibited more variability particularly in the cortico-cerebellar modification indices. An examination into the variability within the autistic group revealed that attention-deficit/hyperactivity disorder (ADHD) features moderated the relationships between grip strength and both fractional anisotropy and R1 relaxometry in the premotor-primary motor tract of the lateral grasping network and the cortico-cerebellar network tracts. Specifically, in autistic children with elevated ADHD features (60% of the autistic group) stronger grip strength was related to higher fractional anisotropy and R1 of the cerebellar modification network (stronger microstructural coherence and more myelin), whereas the opposite relationship was observed in autistic children with reduced ADHD features. Discussion Together, this work suggests that while the foundational elements of grip strength are similar across school-aged autistic and non-autistic children, neural mechanisms of grip strength within autistic children may additionally depend on the presence of ADHD features. Specifically, stronger, more coherent connections of the cerebellar modification network, which is thought to play a role in refining and optimizing motor commands, may lead to stronger grip in children with more ADHD features, weaker grip in children with fewer ADHD features, and no difference in grip in non-autistic children. While future research is needed to understand if these findings extend to other motor tasks beyond grip strength, these results have implications for understanding the biological basis of neuromotor control in autistic children and emphasize the importance of assessing co-occurring conditions when evaluating brain-behavior relationships in autism.
Collapse
Affiliation(s)
- Olivia Surgent
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Jose Guerrero-Gonzalez
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Douglas C. Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States
| | - Nagesh Adluru
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Gregory R. Kirk
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Andrew L. Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - James J. Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Psychology Department, University of Wisconsin-Madison, Madison, WI, United States
| | - Brittany G. Travers
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Occupational Therapy Program in the Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
3
|
Carson RG, Berdondini D, Crosbie M, McConville C, Forbes S, Stewart M, Chiu RZX. Deficits in force production during multifinger tasks demarcate cognitive dysfunction. Aging Clin Exp Res 2024; 36:87. [PMID: 38578525 PMCID: PMC10997684 DOI: 10.1007/s40520-024-02723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/08/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND The multifinger force deficit (MFFD) is the decline in force generated by each finger as the number of fingers contributing to an action is increased. It has been shown to associate with cognitive status. AIMS The aim was to establish whether a particularly challenging form of multifinger grip dynamometry, that provides minimal tactile feedback via cutaneous receptors and requires active compensation for reaction forces, will yield an MFFD that is more sensitive to cognitive status. METHODS Associations between measures of motor function, and cognitive status (Montreal Cognitive Assessment [MoCA]) and latent components of cognitive function (derived from 11 tests using principal component analysis), were estimated cross-sectionally using generalized partial rank correlations. The participants (n = 62) were community dwelling, aged 65-87. RESULTS Approximately half the participants were unable to complete the dynamometry task successfully. Cognitive status demarcated individuals who could perform the task from those who could not. Among those who complied with the task requirements, the MFFD was negatively correlated with MoCA scores-those with the highest MoCA scores tended to exhibit the smallest deficits, and vice versa. There were corresponding associations with latent components of cognitive function. DISCUSSION The results support the view that neurodegenerative processes that are a feature of normal and pathological aging exert corresponding effects on expressions of motor coordination-in multifinger tasks, and cognitive sufficiency, due to their dependence on shared neural systems. CONCLUSIONS The outcomes add weight to the assertion that deficits in force production during multifinger tasks are sensitive to cognitive dysfunction.
Collapse
Affiliation(s)
- Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin 2, Ireland.
- School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK.
| | - Debora Berdondini
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin 2, Ireland
| | - Maebh Crosbie
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin 2, Ireland
| | - Caoilan McConville
- School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Shannon Forbes
- School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Marla Stewart
- School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Ruth Zhi Xian Chiu
- School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
4
|
Alahmadi AAS. Beyond boundaries: investigating shared and divergent connectivity in the pre-/postcentral gyri and supplementary motor area. Neuroreport 2024; 35:283-290. [PMID: 38407836 DOI: 10.1097/wnr.0000000000002011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
OBJECTIVE This study aimed to comprehensively investigate the functional connectivity of key brain regions involved in motor and sensory functions, namely the precentral gyrus, postcentral gyrus and supplementary motor area (SMA). Using advanced MRI, the objective was to understand the neurophysiological integrative characterizations of these regions by examining their connectivity with eight distinct functional brain networks. The goal was to uncover their roles beyond conventional motor and sensory functions, contributing to a more holistic understanding of brain functioning. METHODS The study involved 198 healthy volunteers, with the primary methodology being functional connectivity analysis using advanced MRI techniques. The bilateral precentral gyrus, postcentral gyrus and SMA served as seed regions, and their connectivity with eight distinct brain regional functional networks was investigated. This approach allowed for the exploration of synchronized activity between these critical brain areas, shedding light on their integrated functioning and relationships with other brain networks. RESULTS The study revealed a nuanced landscape of functional connectivity for the precentral gyrus, postcentral gyrus and SMA with the main functional brain networks. Despite their high functional connectedness, these regions displayed diverse functional integrations with other networks, particularly in the salience, visual, cerebellar and language networks. Specific data and statistical significance were not provided in the abstract, but the results suggested unique and distinct roles for each brain area in sophisticated cognitive tasks beyond their conventional motor and sensory functions. CONCLUSION The study emphasized the multifaceted roles of the precentral gyrus, postcentral gyrus and SMA. Beyond their crucial involvement in motor and sensory functions, these regions exhibited varied functional integrations with different brain networks. The observed disparities, especially in the salience, visual, cerebellar and language networks, indicated a nuanced and specialized involvement of these regions in diverse cognitive functions. The study underscores the importance of considering the broader neurophysiological landscape to comprehend the intricate roles of these brain areas, contributing to ongoing efforts in unraveling the complexities of brain function.
Collapse
Affiliation(s)
- Adnan A S Alahmadi
- Department of Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Chong JSX, Chua KY, Ng KK, Chong SW, Leong RLF, Chee MWL, Koh WP, Zhou JH. Higher handgrip strength is linked to higher salience ventral attention functional network segregation in older adults. Commun Biol 2024; 7:214. [PMID: 38383572 PMCID: PMC10881588 DOI: 10.1038/s42003-024-05862-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
Converging evidence suggests that handgrip strength is linked to cognition in older adults, and this may be subserved by shared age-related changes in brain function and structure. However, the interplay among handgrip strength, brain functional connectivity, and cognitive function remains poorly elucidated. Hence, our study sought to examine these relationships in 148 community-dwelling older adults. Specifically, we examined functional segregation, a measure of functional brain organization sensitive to ageing and cognitive decline, and its associations with handgrip strength and cognitive function. We showed that higher handgrip strength was related to better processing speed, attention, and global cognition. Further, higher handgrip strength was associated with higher segregation of the salience/ventral attention network, driven particularly by higher salience/ventral attention intra-network functional connectivity of the right anterior insula to the left posterior insula/frontal operculum and right midcingulate/medial parietal cortex. Importantly, these handgrip strength-related inter-individual differences in salience/ventral attention network functional connectivity were linked to cognitive function, as revealed by functional decoding and brain-cognition association analyses. Our findings thus highlight the importance of the salience/ventral attention network in handgrip strength and cognition, and suggest that inter-individual differences in salience/ventral attention network segregation and intra-network connectivity could underpin the handgrip strength-cognition relationship in older adults.
Collapse
Affiliation(s)
- Joanna Su Xian Chong
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kevin Yiqiang Chua
- Integrative Sciences and Engineering Programme (ISEP), NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Kwun Kei Ng
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shin Wee Chong
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ruth L F Leong
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michael W L Chee
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Woon Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Juan Helen Zhou
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Integrative Sciences and Engineering Programme (ISEP), NUS Graduate School, National University of Singapore, Singapore, Singapore.
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Unruh KE, Bartolotti JV, McKinney WS, Schmitt LM, Sweeney JA, Mosconi MW. Functional connectivity of cortical-cerebellar networks in relation to sensorimotor behavior and clinical features in autism spectrum disorder. Cereb Cortex 2023; 33:8990-9002. [PMID: 37246152 PMCID: PMC10350826 DOI: 10.1093/cercor/bhad177] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/30/2023] Open
Abstract
Sensorimotor issues are present in the majority of individuals with autism spectrum disorder (ASD) and are associated with core symptoms. The neural systems associated with these impairments remain unclear. Using a visually guided precision gripping task during functional magnetic resonance imaging, we characterized task-based connectivity and activation of cortical, subcortical, and cerebellar visuomotor networks. Participants with ASD (n = 19; ages 10-33) and age- and sex-matched neurotypical controls (n = 18) completed a visuomotor task at low and high force levels. Relative to controls, individuals with ASD showed reduced functional connectivity of right primary motor-anterior cingulate cortex and left anterior intraparietal lobule (aIPL)-right Crus I at high force only. At low force, increased caudate, and cerebellar activation each were associated with sensorimotor behavior in controls, but not in ASD. Reduced left aIPL-right Crus I connectivity was associated with more severe clinically rated ASD symptoms. These findings suggest that sensorimotor problems in ASD, particularly at high force levels, involve deficits in the integration of multimodal sensory feedback and reduced reliance on error-monitoring processes. Adding to literature positing that cerebellar dysfunction contributes to multiple developmental issues in ASD, our data implicate parietal-cerebellar connectivity as a key neural marker underlying both core and comorbid features of ASD.
Collapse
Affiliation(s)
- Kathryn E Unruh
- Life Span Institute, University of Kansas, Lawrence, KS, United States
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
| | - James V Bartolotti
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Walker S McKinney
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, United States
| | - Lauren M Schmitt
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - John A Sweeney
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Matthew W Mosconi
- Life Span Institute, University of Kansas, Lawrence, KS, United States
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
7
|
Surgent O, Guerrero-Gonzalez J, Dean DC, Kirk GR, Adluru N, Kecskemeti SR, Alexander AL, Travers BG. How we get a grip: Microstructural neural correlates of manual grip strength in children. Neuroimage 2023; 273:120117. [PMID: 37062373 PMCID: PMC10161685 DOI: 10.1016/j.neuroimage.2023.120117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023] Open
Abstract
Maximal grip strength is associated with a variety of health-related outcome measures and thus may be reflective of the efficiency of foundational brain-body communication. Non-human primate models of grip strength strongly implicate the cortical lateral grasping network, but little is known about the translatability of these models to human children. Further, it is unclear how supplementary networks that provide proprioceptive information and cerebellar-based motor command modification are associated with maximal grip strength. Therefore, this study employed high resolution, multi-shell diffusion and quantitative T1 imaging to examine how variations in lateral grasping, proprioception input, and cortico-cerebellar modification network white matter microstructure are associated with variations in grip strength across 70 children. Results indicated that stronger grip strength was associated with higher lateral grasping and proprioception input network fractional anisotropy and R1, indirect measures consistent with stronger microstructural coherence and increased myelination. No relationships were found in the cerebellar modification network. These results provide a neurobiological mechanism of grip behavior in children which suggests that increased myelination of cortical sensory and motor pathways is associated with stronger grip. This neurobiological mechanism may be a signature of pediatric neuro-motor behavior more broadly as evidenced by the previously demonstrated relationships between grip strength and behavioral outcome measures across a variety of clinical and non-clinical populations.
Collapse
Affiliation(s)
- Olivia Surgent
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Jose Guerrero-Gonzalez
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Douglas C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States
| | - Gregory R Kirk
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Nagesh Adluru
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States; Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Andrew L Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States; Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Brittany G Travers
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States; Occupational Therapy Program in the Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
8
|
Alahmadi AAS. The Cerebellum's Orchestra: Understanding the Functional Connectivity of Its Lobes and Deep Nuclei in Coordination and Integration of Brain Networks. Tomography 2023; 9:883-893. [PMID: 37104143 PMCID: PMC10142847 DOI: 10.3390/tomography9020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023] Open
Abstract
The cerebellum, a crucial brain region, significantly contributes to various brain functions. Although it occupies a small portion of the brain, it houses nearly half of the neurons in the nervous system. Previously thought to be solely involved in motor activities, the cerebellum has since been found to play a role in cognitive, sensory, and associative functions. To further elucidate the intricate neurophysiological characteristics of the cerebellum, we investigated the functional connectivity of cerebellar lobules and deep nuclei with 8 major functional brain networks in 198 healthy subjects. Our findings revealed both similarities and differences in the functional connectivity of key cerebellar lobules and nuclei. Despite robust functional connectivity among these lobules, our results demonstrated that they exhibit heterogeneous functional integration with different functional networks. For instance, lobules 4, 5, 6, and 8 were linked to sensorimotor networks, while lobules 1, 2, and 7 were associated with higher-order, non-motor, and complex functional networks. Notably, our study uncovered a lack of functional connectivity in lobule 3, strong connections between lobules 4 and 5 with the default mode networks, and connections between lobules 6 and 8 with the salience, dorsal attention, and visual networks. Additionally, we found that cerebellar nuclei, particularly the dentate cerebellar nuclei, were connected to sensorimotor, salience, language, and default-mode networks. This study provides valuable insights into the diverse functional roles of the cerebellum in cognitive processing.
Collapse
Affiliation(s)
- Adnan A S Alahmadi
- Department of Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Mapping grip-force related brain activity after a fatiguing motor task in multiple sclerosis. Neuroimage Clin 2022; 36:103147. [PMID: 36030719 PMCID: PMC9434128 DOI: 10.1016/j.nicl.2022.103147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Motor fatigue is common in multiple sclerosis (MS), but its pathophysiology is still poorly understood. Here we used functional magnetic resonance imaging (fMRI) to delineate how the acute induction of motor fatigue alters functional activity of the motor system and how these activity changes are related to motor fatigue. METHOD Forty-four right-handed mildly disabled patients with relapsing-remitting MS and 25 healthy controls performed a maximal tonic precision grip with their right hand until they developed motor fatigue. Before and after the fatiguing task, participants performed a non-fatiguing tonic grip force task, producing 15-20% of their maximum grip force based on visual feedback. Task related brain activity was mapped with blood-oxygen level dependent fMRI at 3 T. Statistical parametric mapping was used to identify relative changes in task-related activation from the pre-fatigue to the recovery MRI session. RESULTS Following fatigue induction, task performance was perturbed in both groups, and task-related activation increased in the right (ipsilateral) primary motor hand area. In patients with MS, task-related activity increased bilaterally during the recovery phase in the ventrolateral portion of the middle putamen and lateral prefrontal cortex relative to controls. The more patients increased task-related activity in left dorsal premotor cortex after the fatiguing task, the less they experienced motor fatigue during daily life. CONCLUSION Patients with MS show enhanced functional engagement of the associative cortico-basal ganglia loop following acute induction of motor fatigue in the contralateral hand. This may reflect increased mental effort to generate movements in the recovery phase after fatigue induction. The ability to recruit the contralateral dorsal premotor cortex after fatigue induction may constitute a protective mechanism against experiencing motor fatigue in everyday life.
Collapse
|
10
|
Miozzo M, Peressotti F. How the hand has shaped sign languages. Sci Rep 2022; 12:11980. [PMID: 35831441 PMCID: PMC9279340 DOI: 10.1038/s41598-022-15699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/28/2022] [Indexed: 11/20/2022] Open
Abstract
In natural languages, biological constraints push toward cross-linguistic homogeneity while linguistic, cultural, and historical processes promote language diversification. Here, we investigated the effects of these opposing forces on the fingers and thumb configurations (handshapes) used in natural sign languages. We analyzed over 38,000 handshapes from 33 languages. In all languages, the handshape exhibited the same form of adaptation to biological constraints found in tasks for which the hand has naturally evolved (e.g., grasping). These results were not replicated in fingerspelling—another task where the handshape is used—thus revealing a signing-specific adaptation. We also showed that the handshape varies cross-linguistically under the effects of linguistic, cultural, and historical processes. Their effects could thus emerge even without departing from the demands of biological constraints. Handshape’s cross-linguistic variability consists in changes in the frequencies with which the most faithful handshapes to biological constraints appear in individual sign languages.
Collapse
Affiliation(s)
- Michele Miozzo
- Psychology Department, Columbia University, 1190 Amsterdam Av., New York, NY, 10027, USA.
| | - Francesca Peressotti
- Dipartimento di Psicologia dello Sviluppo e della Socializzazione, University of Padua, Padua, Italy.,Neuroscience Center, University of Padua, Padua, Italy
| |
Collapse
|
11
|
Ranzini M, Scarpazza C, Radua J, Cutini S, Semenza C, Zorzi M. A common neural substrate for number comparison, hand reaching and grasping: a SDM-PSI meta-analysis of neuroimaging studies. Cortex 2022; 148:31-67. [DOI: 10.1016/j.cortex.2021.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 12/14/2022]
|
12
|
Matheson HE, Garcea FE, Buxbaum LJ. Scene context shapes category representational geometry during processing of tools. Cortex 2021; 141:1-15. [PMID: 34020166 DOI: 10.1016/j.cortex.2021.03.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/05/2021] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Abstract
Tools are ubiquitous in human environments and to think about them we use concepts. Increasingly, conceptual representation is thought to be dynamic and sensitive to the goals of the observer. Indeed, observer goals can reshape representational geometry within cortical networks supporting concepts. In the present study, we investigated the novel hypothesis that task-irrelevant scene context may implicitly alter the representational geometry of regions within the tool network. Participants performed conceptual judgments on images of tools embedded in scenes that either suggested their use (i.e., a kitchen timer sitting on a kitchen counter with vegetables in a frying pan) or that they would simply be moved (i.e., a kitchen timer sitting in an open drawer with other miscellaneous kitchen items around). We investigated whether representations in the tool network reflect category, grip, and shape information using a representational similarity analysis (RSA). We show that a) a number of regions of the tool network reflect category information about tools and b) category information predicts patterns in supramarginal gyrus more strongly in use contexts than in move contexts. Together, these results show that information about tool category is distributed across different regions of the tool network and that scene context helps shape the representational geometry of the tool network.
Collapse
Affiliation(s)
- Heath E Matheson
- University of Northern British Columbia, Prince George, BC, Canada.
| | - Frank E Garcea
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA; Department of Neurosurgery, University of Rochester Medical Center, New York, USA
| | | |
Collapse
|
13
|
Weitnauer L, Frisch S, Melie-Garcia L, Preisig M, Schroeter ML, Sajfutdinow I, Kherif F, Draganski B. Mapping grip force to motor networks. Neuroimage 2021; 229:117735. [PMID: 33454401 DOI: 10.1016/j.neuroimage.2021.117735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 11/18/2022] Open
Abstract
AIM There is ongoing debate about the role of cortical and subcortical brain areas in force modulation. In a whole-brain approach, we sought to investigate the anatomical basis of grip force whilst acknowledging interindividual differences in connectivity patterns. We tested if brain lesion mapping in patients with unilateral motor deficits can inform whole-brain structural connectivity analysis in healthy controls to uncover the networks underlying grip force. METHODS Using magnetic resonance imaging (MRI) and whole-brain voxel-based morphometry in chronic stroke patients (n=55) and healthy controls (n=67), we identified the brain regions in both grey and white matter significantly associated with grip force strength. The resulting statistical parametric maps (SPMs) provided seed areas for whole-brain structural covariance analysis in a large-scale community dwelling cohort (n=977) that included beyond volume estimates, parameter maps sensitive to myelin, iron and tissue water content. RESULTS The SPMs showed symmetrical bilateral clusters of correlation between upper limb motor performance, basal ganglia, posterior insula and cortico-spinal tract. The covariance analysis with the seed areas derived from the SPMs demonstrated a widespread anatomical pattern of brain volume and tissue properties, including both cortical, subcortical nodes of motor networks and sensorimotor areas projections. CONCLUSION We interpret our covariance findings as a biological signature of brain networks implicated in grip force. The data-driven definition of seed areas obtained from chronic stroke patients showed overlapping structural covariance patterns within cortico-subcortical motor networks across different tissue property estimates. This cumulative evidence lends face validity of our findings and their biological plausibility.
Collapse
Affiliation(s)
- Ladina Weitnauer
- LREN, Department of clinical neurosciences - CHUV, University Lausanne, Switzerland
| | - Stefan Frisch
- Max-Planck Institute for Human Brain and Cognitive Sciences, Leipzig, German; Department of Gerontopsychiatry, Psychosomatic Medicine, and Psychotherapy, Pfalzklinikum, Klingenmünster, Germany; Institute of Psychology, Goethe-University, Frankfurt am Main, Germany
| | - Lester Melie-Garcia
- LREN, Department of clinical neurosciences - CHUV, University Lausanne, Switzerland
| | - Martin Preisig
- Department of psychiatry - CHUV, University Lausanne, Switzerland
| | | | - Ines Sajfutdinow
- Day Clinic for Cognitive Neurology, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Ferath Kherif
- LREN, Department of clinical neurosciences - CHUV, University Lausanne, Switzerland
| | - Bogdan Draganski
- LREN, Department of clinical neurosciences - CHUV, University Lausanne, Switzerland; Max-Planck Institute for Human Brain and Cognitive Sciences, Leipzig, German.
| |
Collapse
|
14
|
Hannanu FF, Goundous I, Detante O, Naegele B, Jaillard A. Spatiotemporal patterns of sensorimotor fMRI activity influence hand motor recovery in subacute stroke: A longitudinal task-related fMRI study. Cortex 2020; 129:80-98. [DOI: 10.1016/j.cortex.2020.03.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/27/2019] [Accepted: 03/13/2020] [Indexed: 01/01/2023]
|
15
|
The Topography of Visually Guided Grasping in the Premotor Cortex: A Dense-Transcranial Magnetic Stimulation (TMS) Mapping Study. J Neurosci 2020; 40:6790-6800. [PMID: 32709693 DOI: 10.1523/jneurosci.0560-20.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 11/21/2022] Open
Abstract
Visuomotor transformations at the cortical level occur along a network where posterior parietal regions are connected to homologous premotor regions. Grasping-related activity is represented in a diffuse, ventral and dorsal system in the posterior parietal regions, but no systematic causal description of a premotor counterpart of a similar diffuse grasping representation is available. To fill this gap, we measured the kinematics of right finger movements in 17 male and female human participants during grasping of three objects of different sizes. Single-pulse transcranial magnetic stimulation was applied 100 ms after visual presentation of the object over a regular grid of 8 spots covering the left premotor cortex (PMC) and 2 Sham stimulations. Maximum finger aperture during reach was used as the feature to classify object size in different types of classifiers. Classification accuracy was taken as a measure of the efficiency of visuomotor transformations for grasping. Results showed that transcranial magnetic stimulation reduced classification accuracy compared with Sham stimulation when it was applied to 2 spots in the ventral PMC and 1 spot in the medial PMC, corresponding approximately to the ventral PMC and the dorsal portion of the supplementary motor area. Our results indicate a multifocal representation of object geometry for grasping in the PMC that matches the known multifocal parietal maps of grasping representations. Additionally, we confirm that, by applying a uniform spatial sampling procedure, transcranial magnetic stimulation can produce cortical functional maps independent of a priori spatial assumptions.SIGNIFICANCE STATEMENT Visually guided actions activate a large frontoparietal network. Here, we used a dense grid of transcranial magnetic stimulation spots covering the whole premotor cortex (PMC), to identify with accurate spatial mapping the functional specialization of the human PMC during grasping movement. Results corroborate previous findings about the role of the ventral PMC in preshaping the fingers according to the size of the target. Crucially, we found that the medial part of PMC, putatively covering the supplementary motor area, plays a direct role in object grasping. In concert with findings in nonhuman primates, these results indicate a multifocal representation of object geometry for grasping in the PMC and expand our understanding of how our brain integrates visual and motor information to perform visually guided actions.
Collapse
|
16
|
Mirifar A, Cross-Villasana F, Beckmann J, Ehrlenspiel F. Effects of the unilateral dynamic handgrip on resting cortical activity levels: A replication and extension. Int J Psychophysiol 2020; 156:40-48. [PMID: 32702385 DOI: 10.1016/j.ijpsycho.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/28/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
Previous studies have linked unilateral hand contractions to subsequent changes in hemispheric asymmetric activity, as reflected in the electroencephalographic alpha (8-12 Hz) range in each hemisphere. However, debate continues regarding the state of asymmetry induced by unilateral contractions. We have previously found a bilateral enhancement of alpha amplitude that occurs after contractions, reflecting cortical downregulation instead of changes in asymmetric activity. To corroborate our observations, we examined the effects of 45 s of unilateral dynamic handgrip contractions on subsequent resting alpha activity. Twenty-two right-handed participants were recruited (M = 25 years, 17 female). The study used a within-subjects design consisting of a pre- and post-test (2 min resting; eyes open) for the intervention (dynamic handgrip; at a self-determined pace of approximately twice a second for 45 s for each hand). Following the handgrip task, an increase in alpha amplitude above the baseline was observed over the entire cortex, which was greater after left-hand squeezing. This observation confirms our previous findings and we have extended them by adding more electrodes to gain further insights into the handgrip exercise as an external brain stimulator. Moreover, we grouped electrodes according to scalp regions to facilitate the visualization of the effects on the frequency spectrum. Our findings can be used to develop targeted interventions aimed at modifying behavioral outcomes affected by alpha activity.
Collapse
Affiliation(s)
- Arash Mirifar
- Department of Sport and Health Sciences, Chair of Sport Psychology, Technische Universität München, Germany.
| | - Fernando Cross-Villasana
- Department of Sport and Health Sciences, Chair of Sport Psychology, Technische Universität München, Germany
| | - Jürgen Beckmann
- School of Human Movement and Nutrition Sciences, University of Queensland, Australia
| | - Felix Ehrlenspiel
- Department of Sport and Health Sciences, Chair of Sport Psychology, Technische Universität München, Germany
| |
Collapse
|
17
|
Dean DJ, Bernard JA, Damme KSF, O’Reilly R, Orr JM, Mittal VA. Longitudinal Assessment and Functional Neuroimaging of Movement Variability Reveal Novel Insights Into Motor Dysfunction in Clinical High Risk for Psychosis. Schizophr Bull 2020; 46:1567-1576. [PMID: 32662507 PMCID: PMC7707079 DOI: 10.1093/schbul/sbaa072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Motor dysfunction in youth at clinical high risk (CHR) for psychosis is thought to reflect abnormal neurodevelopment within cortical-subcortical motor circuits and may be important for understanding clinical trajectories of CHR individuals. However, to date, our perspective of brain-behavior relationships has been informed solely by cross-sectional correlational studies linking behavior in the lab to brain structure or respective resting-state network connectivity. Here, we assess movement dysfunction from 2 perspectives: study 1 investigates the longitudinal progression of handwriting variability and positive symptoms in a sample of 91 CHR and healthy controls during a 12-month follow-up and study 2 involves a multiband functional magnetic resonance imaging task exploring the relationship between power grip force stability and motor network brain activation in a subset of participants. In study 1, we found that greater handwriting variability was a stable feature of CHR participants who experienced worse symptom progression. Study 2 results showed that CHR individuals had greater variability in their grip force and greater variability was related to decreased activation in the associative cortico-striatal network compared to controls. Motor variability may be a stable marker of vulnerability for psychosis risk and possible indicator of a vulnerable cortico-striatal brain network functioning in CHR participants, although the effects of antipsychotic medication should be considered.
Collapse
Affiliation(s)
- Derek J Dean
- Department of Psychology, Vanderbilt University, Nashville, TN
- To whom correspondence should be addressed; Department of Psychology, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37240; tel: 615-322-8768, fax: 615-343-8449, e-mail:
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX
- Institute for Neuroscience, Texas A&M University, College Station, TX
| | | | - Randall O’Reilly
- Departments of Psychology, Computer Science, and Center for Neuroscience, University of California Davis, Davis, CA
| | - Joseph M Orr
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX
- Institute for Neuroscience, Texas A&M University, College Station, TX
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL
- Department of Psychiatry, Northwestern University, Chicago IL
- Institute for Policy Research, Northwestern University, Evanston, IL
- Department of Medical Social Sciences, Northwestern University, Chicago, IL
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston/Chicago, IL
| |
Collapse
|
18
|
King M, Carnahan H. Revisiting the brain activity associated with innocuous and noxious cold exposure. Neurosci Biobehav Rev 2019; 104:197-208. [DOI: 10.1016/j.neubiorev.2019.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/29/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022]
|
19
|
Insula and putamen centered functional connectivity networks reflect healthy agers' subjective experience of cognitive fatigue in multiple tasks. Cortex 2019; 119:428-440. [PMID: 31499435 DOI: 10.1016/j.cortex.2019.07.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/31/2019] [Accepted: 07/23/2019] [Indexed: 01/10/2023]
Abstract
Cognitive fatigue (CF) impairs ability to perform daily activities, is a common complaint of aging and a symptom of multiple neurological conditions. However, knowledge of the neural basis of CF is limited. This is partially because CF is difficult to systematically modulate in brain imaging experiments. The most common approach has been to scan brain activity during effortful cognitive tasks. Consequently, neural correlates of CF tend to be task-specific and may vary across tasks. This makes it difficult to know how results generalize across studies and is outside the subjective experience of CF which tends to be similar in different tasks. It has been hypothesized that the subjective experience of CF might arise from domain general systems monitoring and acting on energy depletion in task specific circuits. Direct supporting neural evidence is lacking. By repeatedly scanning aging individuals undertaking four different tasks using functional Magnetic Resonance Imaging and referencing scans to detailed CF self-ratings taken before and after scanning, we sought task-general correlates of CF. We ran a data-driven representational similarity analysis, treating each brain region as a candidate CF functional connectivity hub, and correlating inter-participant differences in hub-based connectivity patterns with inter-participant differences in self-rated CF-profiles (a pattern of ratings across 18 questions). Both right insula and right putamen-based network connectivity patterns reflected CF across all tasks and could underpin subjective experience of CF.
Collapse
|
20
|
Carson RG. Get a grip: individual variations in grip strength are a marker of brain health. Neurobiol Aging 2018; 71:189-222. [PMID: 30172220 DOI: 10.1016/j.neurobiolaging.2018.07.023] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/06/2018] [Accepted: 07/29/2018] [Indexed: 02/06/2023]
Abstract
Demonstrations that grip strength has predictive power in relation to a range of health conditions-even when these are assessed decades later-has motivated claims that hand-grip dynamometry has the potential to serve as a "vital sign" for middle-aged and older adults. Central to this belief has been the assumption that grip strength is a simple measure of physical performance that provides a marker of muscle status in general, and sarcopenia in particular. It is now evident that while differences in grip strength between individuals are influenced by musculoskeletal factors, "lifespan" changes in grip strength within individuals are exquisitely sensitive to integrity of neural systems that mediate the control of coordinated movement. The close and pervasive relationships between age-related declines in maximum grip strength and expressions of cognitive dysfunction can therefore be understood in terms of the convergent functional and structural mediation of cognitive and motor processes by the human brain. In the context of aging, maximum grip strength is a discriminating measure of neurological function and brain health.
Collapse
Affiliation(s)
- Richard G Carson
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland; School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK; School of Human Movement and Nutrition Sciences, The University of Queensland, Australia.
| |
Collapse
|
21
|
King M, van Breda K, Rauch LH, Brooks SJ, Stein DJ, Ipser J. Methylphenidate alters brain connectivity after enhanced physical performance. Brain Res 2018; 1679:26-32. [DOI: 10.1016/j.brainres.2017.10.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/22/2022]
|
22
|
Farina E, Baglio F, Pomati S, D'Amico A, Campini IC, Di Tella S, Belloni G, Pozzo T. The Mirror Neurons Network in Aging, Mild Cognitive Impairment, and Alzheimer Disease: A functional MRI Study. Front Aging Neurosci 2017; 9:371. [PMID: 29249956 PMCID: PMC5715339 DOI: 10.3389/fnagi.2017.00371] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/30/2017] [Indexed: 12/19/2022] Open
Abstract
The aim of the current study is to investigate the integrity of the Mirror Neurons (MN) network in normal aging, Mild Cognitive Impairment (MCI), and Alzheimer disease (AD). Although AD and MCI are considered “cognitive” diseases, there has been increasing recognition of a link between motor function and AD. More recently the embodied cognition hypothesis has also been developed: it postulates that a part of cognition results from the coupling between action and perception representations. MN represent a neuronal population which links perception, action, and cognition, therefore we decided to characterize MN functioning in neurodegenerative cognitive decline. Three matched groups of 16 subjects (normal elderly-NE, amnesic MCI with hippocampal atrophy and AD) were evaluated with a focused neuropsychological battery and an fMRI task specifically created to test MN: that comprised of an observation run, where subjects were shown movies of a right hand grasping different objects, and of a motor run, where subjects observed visual pictures of objects oriented to be grasped with the right hand. In NE subjects, the conjunction analysis (comparing fMRI activation during observation and execution), showed the activation of a bilateral fronto-parietal network in “classical” MN areas, and of the superior temporal gyrus (STG). The MCI group showed the activation of areas belonging to the same network, however, parietal areas were activated to a lesser extent and the STG was not activated, while the opposite was true for the right Broca's area. We did not observe any activation of the fronto-parietal network in AD participants. They did not perform as well as the NE subjects in all the neuropsychological tests (including tests of functions attributed to MN) whereas the MCI subjects were significantly different from the NE subjects only in episodic memory and semantic fluency. Here we show that the MN network is largely preserved in aging, while it appears involved following an anterior-posterior gradient in neurodegenerative decline. In AD, task performance decays and the MN network appears clearly deficient. The preservation of the anterior part of the MN network in MCI could possibly supplement the initial decay of the posterior part, preserving cognitive performance.
Collapse
Affiliation(s)
- Elisabetta Farina
- Neurorehabilitation Unit, IRCCS S. Maria Nascente, Don Gnocchi Foundation, Milan, Italy.,INSERM-U1093, Cognition-Action-Plasticité sensorimotrice, Campus Universitaire, Dijon, France
| | - Francesca Baglio
- Neurorehabilitation Unit, IRCCS S. Maria Nascente, Don Gnocchi Foundation, Milan, Italy.,Neuroimaging Unit, IRCCS S. Maria Nascente, Don Gnocchi Foundation, Milan, Italy
| | - Simone Pomati
- Neurology Unit, Luigi Sacco Hospital, Università degli Studi di Milano, Milan, Italy
| | - Alessandra D'Amico
- Neurorehabilitation Unit, IRCCS S. Maria Nascente, Don Gnocchi Foundation, Milan, Italy
| | - Isabella C Campini
- Neurology Unit, Luigi Sacco Hospital, Università degli Studi di Milano, Milan, Italy
| | - Sonia Di Tella
- Neuroimaging Unit, IRCCS S. Maria Nascente, Don Gnocchi Foundation, Milan, Italy
| | - Giulia Belloni
- Neurorehabilitation Unit, IRCCS S. Maria Nascente, Don Gnocchi Foundation, Milan, Italy
| | - Thierry Pozzo
- INSERM-U1093, Cognition-Action-Plasticité sensorimotrice, Campus Universitaire, Dijon, France.,Centro di Neurofisiologia traslazionale, Istituto Italiano di Tecnologia, Ferrara, Italy
| |
Collapse
|
23
|
Floegel M, Kell CA. Functional hemispheric asymmetries during the planning and manual control of virtual avatar movements. PLoS One 2017; 12:e0185152. [PMID: 28957344 PMCID: PMC5619738 DOI: 10.1371/journal.pone.0185152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/07/2017] [Indexed: 11/18/2022] Open
Abstract
Both hemispheres contribute to motor control beyond the innervation of the contralateral alpha motoneurons. The left hemisphere has been associated with higher-order aspects of motor control like sequencing and temporal processing, the right hemisphere with the transformation of visual information to guide movements in space. In the visuomotor context, empirical evidence regarding the latter has been limited though the right hemisphere’s specialization for visuospatial processing is well-documented in perceptual tasks. This study operationalized temporal and spatial processing demands during visuomotor processing and investigated hemispheric asymmetries in neural activation during the unimanual control of a visual cursor by grip force. Functional asymmetries were investigated separately for visuomotor planning and online control during functional magnetic resonance imaging in 19 young, healthy, right-handed participants. The expected cursor movement was coded with different visual trajectories. During planning when spatial processing demands predominated, activity was right-lateralized in a hand-independent manner in the inferior temporal lobe, occipito-parietal border, and ventral premotor cortex. When temporal processing demands overweighed spatial demands, BOLD responses during planning were left-lateralized in the temporo-parietal junction. During online control of the cursor, right lateralization was not observed. Instead, left lateralization occurred in the intraparietal sulcus. Our results identify movement phase and spatiotemporal demands as important determinants of dynamic hemispheric asymmetries during visuomotor processing. We suggest that, within a bilateral visuomotor network, the right hemisphere exhibits a processing preference for planning global spatial movement features whereas the left hemisphere preferentially times local features of visual movement trajectories and adjusts movement online.
Collapse
Affiliation(s)
- Mareike Floegel
- Cognitive Neuroscience Group- Brain Imaging Center and Department of Neurology, Goethe University, Frankfurt, Germany
| | - Christian Alexander Kell
- Cognitive Neuroscience Group- Brain Imaging Center and Department of Neurology, Goethe University, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
24
|
KING MICHAEL, RAUCH LAURIEHG, BROOKS SAMANTHAJ, STEIN DANJ, LUTZ KAI. Methylphenidate Enhances Grip Force and Alters Brain Connectivity. Med Sci Sports Exerc 2017; 49:1443-1451. [DOI: 10.1249/mss.0000000000001252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Alahmadi AAS, Pardini M, Samson RS, Friston KJ, Toosy AT, D'Angelo E, Gandini Wheeler-Kingshott CAM. Cerebellar lobules and dentate nuclei mirror cortical force-related-BOLD responses: Beyond all (linear) expectations. Hum Brain Mapp 2017; 38:2566-2579. [PMID: 28240422 PMCID: PMC5413835 DOI: 10.1002/hbm.23541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/17/2017] [Accepted: 02/03/2017] [Indexed: 12/28/2022] Open
Abstract
The relationship between the BOLD response and an applied force was quantified in the cerebellum using a power grip task. To investigate whether the cerebellum responds in an on/off way to motor demands or contributes to motor responses in a parametric fashion, similarly to the cortex, five grip force levels were investigated under visual feedback. Functional MRI data were acquired in 13 healthy volunteers and their responses were analyzed using a cerebellum-optimized pipeline. This allowed us to evaluate, within the cerebellum, voxelwise linear and non-linear associations between cerebellar activations and forces. We showed extensive non-linear activations (with a parametric design), covering the anterior and posterior lobes of the cerebellum with a BOLD-force relationship that is region-dependent. Linear responses were mainly located in the anterior lobe, similarly to the cortex, where linear responses are localized in M1. Complex responses were localized in the posterior lobe, reflecting its key role in attention and executive processing, required during visually guided movement. Given the highly organized responses in the cerebellar cortex, a key question is whether deep cerebellar nuclei show similar parametric effects. We found positive correlations with force in the ipsilateral dentate nucleus and negative correlations on the contralateral side, suggesting a somatotopic organization of the dentate nucleus in line with cerebellar and cortical areas. Our results confirm that there is cerebellar organization involving all grey matter structures that reflect functional segregation in the cortex, where cerebellar lobules and dentate nuclei contribute to complex motor tasks with different BOLD response profiles in relation to the forces. Hum Brain Mapp 38:2566-2579, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Adnan A S Alahmadi
- Department of Diagnostic Radiology, Faculty of Applied Medical Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia.,NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, United Kingdom
| | - Matteo Pardini
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, United Kingdom.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Rebecca S Samson
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, United Kingdom
| | - Karl J Friston
- Wellcome Trust Centre for Human Neuroimaging, UCL, Institute of Neurology, London, United Kingdom
| | - Ahmed T Toosy
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, United Kingdom
| | - Egidio D'Angelo
- Brain Connectivity Centre, C. Mondino National Neurological Institute, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Italy
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, United Kingdom.,Department of Brain and Behavioural Sciences, University of Pavia, Italy.,Brain MRI 3T Mondino Research Center, C. Mondino National Neurological Institute, Pavia, Italy
| |
Collapse
|
26
|
Mizuguchi N, Kanosue K. Changes in brain activity during action observation and motor imagery: Their relationship with motor learning. PROGRESS IN BRAIN RESEARCH 2017; 234:189-204. [DOI: 10.1016/bs.pbr.2017.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation. Neuroimage 2016; 137:70-85. [PMID: 27179606 DOI: 10.1016/j.neuroimage.2016.04.072] [Citation(s) in RCA: 496] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/14/2016] [Accepted: 04/01/2016] [Indexed: 12/19/2022] Open
Abstract
Given the increasing number of neuroimaging publications, the automated knowledge extraction on brain-behavior associations by quantitative meta-analyses has become a highly important and rapidly growing field of research. Among several methods to perform coordinate-based neuroimaging meta-analyses, Activation Likelihood Estimation (ALE) has been widely adopted. In this paper, we addressed two pressing questions related to ALE meta-analysis: i) Which thresholding method is most appropriate to perform statistical inference? ii) Which sample size, i.e., number of experiments, is needed to perform robust meta-analyses? We provided quantitative answers to these questions by simulating more than 120,000 meta-analysis datasets using empirical parameters (i.e., number of subjects, number of reported foci, distribution of activation foci) derived from the BrainMap database. This allowed to characterize the behavior of ALE analyses, to derive first power estimates for neuroimaging meta-analyses, and to thus formulate recommendations for future ALE studies. We could show as a first consequence that cluster-level family-wise error (FWE) correction represents the most appropriate method for statistical inference, while voxel-level FWE correction is valid but more conservative. In contrast, uncorrected inference and false-discovery rate correction should be avoided. As a second consequence, researchers should aim to include at least 20 experiments into an ALE meta-analysis to achieve sufficient power for moderate effects. We would like to note, though, that these calculations and recommendations are specific to ALE and may not be extrapolated to other approaches for (neuroimaging) meta-analysis.
Collapse
|
28
|
Leo A, Handjaras G, Bianchi M, Marino H, Gabiccini M, Guidi A, Scilingo EP, Pietrini P, Bicchi A, Santello M, Ricciardi E. A synergy-based hand control is encoded in human motor cortical areas. eLife 2016; 5. [PMID: 26880543 PMCID: PMC4786436 DOI: 10.7554/elife.13420] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/13/2016] [Indexed: 01/17/2023] Open
Abstract
How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses. DOI:http://dx.doi.org/10.7554/eLife.13420.001 The human hand can perform an enormous range of movements with great dexterity. Some common everyday actions, such as grasping a coffee cup, involve the coordinated movement of all four fingers and thumb. Others, such as typing, rely on the ability of individual fingers to move relatively independently of one another. This flexibility is possible in part because of the complex anatomy of the hand, with its 27 bones and their connecting joints and muscles. But with this complexity comes a huge number of possibilities. Any movement-related task – such as picking up a cup – can be achieved via many different combinations of muscle contractions and joint positions. So how does the brain decide which muscles and joints to use? One theory is that the brain simplifies this problem by encoding particularly useful patterns of joint movements as distinct units or “synergies”. A given task can then be performed by selecting from a small number of synergies, avoiding the need to choose between huge numbers of options every time movement is required. Leo et al. now provide the first direct evidence for the encoding of synergies by the human brain. Volunteers lying inside a brain scanner reached towards virtual objects – from tennis rackets to toothpicks – while activity was recorded from the area of the brain that controls hand movements. As predicted, the scans showed specific and reproducible patterns of activity. Analysing these patterns revealed that each corresponded to a particular combination of joint positions. These activity patterns, or synergies, could even be ‘decoded’ to work out which type of movement a volunteer had just performed. Future experiments should examine how the brain combines synergies with sensory feedback to allow movements to be adjusted as they occur. Such findings could help to develop brain-computer interfaces and systems for controlling the movement of artificial limbs. DOI:http://dx.doi.org/10.7554/eLife.13420.002
Collapse
Affiliation(s)
- Andrea Leo
- Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa, Pisa, Italy.,Research Center 'E. Piaggio', University of Pisa, Pisa, Italy
| | - Giacomo Handjaras
- Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa, Pisa, Italy
| | - Matteo Bianchi
- Research Center 'E. Piaggio', University of Pisa, Pisa, Italy.,Advanced Robotics Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Hamal Marino
- Research Center 'E. Piaggio', University of Pisa, Pisa, Italy
| | - Marco Gabiccini
- Research Center 'E. Piaggio', University of Pisa, Pisa, Italy.,Advanced Robotics Department, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | - Andrea Guidi
- Research Center 'E. Piaggio', University of Pisa, Pisa, Italy
| | - Enzo Pasquale Scilingo
- Research Center 'E. Piaggio', University of Pisa, Pisa, Italy.,Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Pietro Pietrini
- Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa, Pisa, Italy.,Research Center 'E. Piaggio', University of Pisa, Pisa, Italy.,Clinical Psychology Branch, Pisa University Hospital, Pisa, Italy.,IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Antonio Bicchi
- Research Center 'E. Piaggio', University of Pisa, Pisa, Italy.,Advanced Robotics Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Marco Santello
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, United States
| | - Emiliano Ricciardi
- Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa, Pisa, Italy.,Research Center 'E. Piaggio', University of Pisa, Pisa, Italy
| |
Collapse
|
29
|
Alahmadi AAS, Pardini M, Samson RS, D'Angelo E, Friston KJ, Toosy AT, Gandini Wheeler-Kingshott CAM. Differential involvement of cortical and cerebellar areas using dominant and nondominant hands: An FMRI study. Hum Brain Mapp 2015; 36:5079-100. [PMID: 26415818 PMCID: PMC4737094 DOI: 10.1002/hbm.22997] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/09/2015] [Accepted: 09/06/2015] [Indexed: 12/26/2022] Open
Abstract
Motor fMRI studies, comparing dominant (DH) and nondominant (NDH) hand activations have reported mixed findings, especially for the extent of ipsilateral (IL) activations and their relationship with task complexity. To date, no study has directly compared DH and NDH activations using an event-related visually guided dynamic power-grip paradigm with parametric (three) forces (GF) in healthy right-handed subjects. We implemented a hierarchical statistical approach aimed to: (i) identify the main effect networks engaged when using either hand; (ii) characterise DH/NDH responses at different GFs; (iii) assess contralateral (CL)/IL-specific and hemisphere-specific activations. Beyond confirming previously reported results, this study demonstrated that increasing GF has an effect on motor response that is contextualised also by the use of DH or NDH. Linear analysis revealed increased activations in sensorimotor areas, with additional increased recruitments of subcortical and cerebellar areas when using the NDH. When looking at CL/IL-specific activations, CL sensorimotor areas and IL cerebellum were activated with both hands. When performing the task with the NDH, several areas were also recruited including the CL cerebellum. Finally, there were hand-side-independent activations of nonmotor-specific areas in the right and left hemispheres, with the right hemisphere being involved more extensively in sensori-motor integration through associative areas while the left hemisphere showing greater activation at higher GF. This study shows that the functional networks subtending DH/NDH power-grip visuomotor functions are qualitatively and quantitatively distinct and this should be taken into consideration when performing fMRI studies, particularly when planning interventions in patients with specific impairments.
Collapse
Affiliation(s)
- Adnan A S Alahmadi
- Department of Diagnostic Radiology, Faculty of Applied Medical Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, University College London (UCL), Institute of Neurology, London, United Kingdom
| | - Matteo Pardini
- Department of Diagnostic Radiology, Faculty of Applied Medical Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Rebecca S Samson
- Department of Diagnostic Radiology, Faculty of Applied Medical Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Karl J Friston
- Wellcome Centre for Imaging Neuroscience, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Ahmed T Toosy
- Department of Diagnostic Radiology, Faculty of Applied Medical Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- NMR Research Unit, Department of Brain Repair and Rehabilitation, Queen Square MS Centre, UCL Institute of Neurology, London, United Kingdom
| | - Claudia A M Gandini Wheeler-Kingshott
- Department of Diagnostic Radiology, Faculty of Applied Medical Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| |
Collapse
|
30
|
Alahmadi AAS, Samson RS, Gasston D, Pardini M, Friston KJ, D'Angelo E, Toosy AT, Wheeler-Kingshott CAM. Complex motor task associated with non-linear BOLD responses in cerebro-cortical areas and cerebellum. Brain Struct Funct 2015; 221:2443-58. [PMID: 25921976 PMCID: PMC4884204 DOI: 10.1007/s00429-015-1048-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 04/18/2015] [Indexed: 01/13/2023]
Abstract
Previous studies have used fMRI to address the relationship between grip force (GF) applied to an object and BOLD response. However, whilst the majority of these studies showed a linear relationship between GF and neural activity in the contralateral M1 and ipsilateral cerebellum, animal studies have suggested the presence of non-linear components in the GF–neural activity relationship. Here, we present a methodology for assessing non-linearities in the BOLD response to different GF levels, within primary motor as well as sensory and cognitive areas and the cerebellum. To be sensitive to complex forms, we designed a feasible grip task with five GF targets using an event-related visually guided paradigm and studied a cohort of 13 healthy volunteers. Polynomial functions of increasing order were fitted to the data. Major findings: (1) activated motor areas irrespective of GF; (2) positive higher-order responses in and outside M1, involving premotor, sensory and visual areas and cerebellum; (3) negative correlations with GF, predominantly involving the visual domain. Overall, our results suggest that there are physiologically consistent behaviour patterns in cerebral and cerebellar cortices; for example, we observed the presence of a second-order effect in sensorimotor areas, consistent with an optimum metabolic response at intermediate GF levels, while higher-order behaviour was found in associative and cognitive areas. At higher GF levels, sensory-related cortical areas showed reduced activation, interpretable as a redistribution of the neural activity for more demanding tasks. These results have the potential of opening new avenues for investigating pathological mechanisms of neurological diseases.
Collapse
Affiliation(s)
- Adnan A S Alahmadi
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK. .,Department of Diagnostic Radiology, Faculty of Applied Medical Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia.
| | - Rebecca S Samson
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - David Gasston
- Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK
| | - Matteo Pardini
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Karl J Friston
- Wellcome Centre for Imaging Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Egidio D'Angelo
- Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Ahmed T Toosy
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK.,Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London, London, UK
| | - Claudia A M Wheeler-Kingshott
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK.,Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| |
Collapse
|