1
|
Orcioli-Silva D, Vitório R, Beretta VS, Souza Oliveira A, Conceição NRD, Nóbrega-Sousa P, Santos PCRD, Gobbi LTB, Barela JA. Aerobic exercise acutely increases EEG gamma power in the motor/sensorimotor areas during walking in people with Parkinson's disease. Clin Neurophysiol 2025; 175:2110755. [PMID: 40413811 DOI: 10.1016/j.clinph.2025.2110755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 02/07/2025] [Accepted: 04/25/2025] [Indexed: 05/27/2025]
Abstract
OBJECTIVE This study investigated the effects of acute aerobic exercise on gait function and cortical activity during single and dual-task walking in people with Parkinson's disease (PwPD). METHODS Thirty PwPD were randomly assigned to the Experimental (EG) and Control Group (CG). Both groups completed a single 40-minute session of cycling. Exercise intensity was maintained at 65-70% of the maximum heart rate for EG and within 5% of the resting heart rate for CG. Participants performed five walking trials under each condition before and after exercise. EEG and accelerometers measured cortical activity and gait parameters. RESULTS In the post- vs. pre-exercise, the EG increased gamma power in the C and CP channels during single and dual-task walking. Increased step length during dual-task condition was positively associated with increased gamma power at the C and CP channels. CONCLUSION Acute exercise enhances movement control and sensorimotor integration during walking, evidenced by increased gamma power. Changes in gamma power in the motor/sensorimotor areas may improve step length during dual-task walking. SIGNIFICANCE This study underscores the potential of aerobic exercise to increase the involvement of motor and sensorimotor cortical regions, highlighting the relevance of aerobic exercise in the neurorehabilitation and gait functions in PwPD.
Collapse
Affiliation(s)
- Diego Orcioli-Silva
- São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, SP, Brazil.
| | - Rodrigo Vitório
- Northumbria University, Faculty of Health and Life Sciences, Newcastle upon Tyne, UK
| | - Victor Spiandor Beretta
- São Paulo State University (UNESP), School of Technology and Sciences, Presidente Prudente, SP, Brazil
| | | | | | - Priscila Nóbrega-Sousa
- School of Health Sciences, University of New South Wales, Randwick, Sydney, NSW, Australia; Neuroscience Research Australia, University of New South Wales, Randwick, Sydney, NSW, Australia
| | - Paulo Cezar Rocha Dos Santos
- IDOR/Pioneer Science Initiative, Rio de Janeiro, RJ, Brazil; Weizmann Institute of Science, Department of Computer Science & Applied Mathematics, Rehovot, Israel; Center of Advanced Technologies in Rehabilitation - CATR, Sheba Tel-HaShomer Medical Center, Ramat Gan, Israel
| | | | - José Angelo Barela
- São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, SP, Brazil
| |
Collapse
|
2
|
Cupertino L, Bersotti FM, Novaes TM, Mochizuki L, Shokur S, Bouri M, Barbieri FA, Coelho DB. Effect of Medication and Freezing of Gait on Rambling and Trembling in Quiet Standing in Individuals With Parkinson's Disease. Motor Control 2025; 29:202-214. [PMID: 40088896 DOI: 10.1123/mc.2024-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Individuals with Parkinson's disease (PD) with freezing of gait (FoG) exhibit difficulty with changes in sensory input, indicating a potential sensorimotor integration deficit. Understanding how levodopa impacts balance particularly in FoG, is critical. As traditional postural sway measures may not fully capture the complexity of balance control, rambling and trembling decomposition of the center of pressure allows a more detailed assessment of postural control by distinguishing between supraspinal and spinal contributions, offering insights into sensorimotor integration deficits. This study aims to analyze the effects of medication and FoG on rambling and trembling in quiet standing in individuals with PD. METHODS We analyzed 13 individuals with PD with FoG (PD freezers) and 19 individuals with PD without FoG (PD nonfreezers) while quiet standing on a rigid and malleable surface under (ON) and without (OFF) dopaminergic medication. Area, root mean square, and mean velocity were calculated for rambling and trembling trajectory. RESULTS For the rambling, all variables were significantly higher on the malleable compared with the rigid surface. For trembling, (a) all variables were higher on the malleable compared with the rigid surface (p < .001), and (b) area and medial-lateral root mean square were significantly higher ON compared with OFF medication for both groups of participants similarly. CONCLUSION Our results strengthen the evidence that PD freezers have the same postural sway in quiet posture as PD nonfreezers, using similar mechanisms to control the posture. In addition, levodopa influences spinal mechanisms more than supraspinal ones in individuals with PD in quiet standing.
Collapse
Affiliation(s)
- Layla Cupertino
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | | | - Thayna Magalhães Novaes
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | - Luis Mochizuki
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, SP, Brazil
| | - Solaiman Shokur
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Mohamed Bouri
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Fabio Augusto Barbieri
- Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, Faculty of Sciences, São Paulo State University (Unesp), Bauru, SP, Brazil
| | - Daniel Boari Coelho
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, São Bernardo do Campo, SP, Brazil
- Biomedical Engineering, Federal University of ABC, São Bernardo do Campo, SP, Brazil
- Centre for Engineering, Modeling and Applied Social Sciences (CECS), Federal University of ABC (UFABC), São Bernardo do Campo, SP, Brazil
| |
Collapse
|
3
|
Tosserams A, Fasano A, Gilat M, Factor SA, Giladi N, Lewis SJG, Moreau C, Bloem BR, Nieuwboer A, Nonnekes J. Management of freezing of gait - mechanism-based practical recommendations. Nat Rev Neurol 2025:10.1038/s41582-025-01079-6. [PMID: 40169855 DOI: 10.1038/s41582-025-01079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/03/2025]
Abstract
Freezing of gait (FOG) is a debilitating motor symptom that commonly occurs in Parkinson disease, atypical parkinsonism and other neurodegenerative conditions. Management of FOG is complex and requires a multifaceted approach that includes pharmacological, surgical and non-pharmacological interventions. In this Expert Recommendation, we provide state-of-the-art practical recommendations for the management of FOG, based on the latest insights into the pathophysiology of the condition. We propose two complementary treatment flows, both of which are linked to the pathophysiology and tailored to specific FOG phenotypes. The first workflow focuses on the reduction of excessive inhibitory outflow from the basal ganglia through use of dopaminergic medication or advanced therapies such as deep brain stimulation and infusion therapy. The second workflow focuses on facilitation of processing across cerebral compensatory networks by use of non-pharmacological interventions. We also highlight interventions that have potential for FOG but are not supported by sufficient evidence to recommend for clinical application. Our updated recommendations are intended to enable effective symptomatic relief once FOG has developed, but we also consider potential targets for preventive approaches. The recommendations are based on scientific evidence where available, supplemented with practice-based evidence informed by our clinical experience.
Collapse
Affiliation(s)
- Anouk Tosserams
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Rehabilitation, Center of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, Toronto, Ontario, Canada
| | - Moran Gilat
- Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, KU Leuven, Leuven, Belgium
| | - Stewart A Factor
- Jean and Paul Amos Parkinson's disease and Movement Disorder Program, Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nir Giladi
- Brain Institute, Tel-Aviv Sourasky Medical Center, Faculty of Medicine and Health Sciences, Sagol School of Neurosciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Simon J G Lewis
- Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Caroline Moreau
- Expert Centre for Parkinson's Disease, Lille Neuroscience and Cognition, Lille University Hospital, Lille, France
| | - Bastiaan R Bloem
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, KU Leuven, Leuven, Belgium
| | - Jorik Nonnekes
- Department of Rehabilitation, Center of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands.
- Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, Netherlands.
| |
Collapse
|
4
|
Hulzinga F, Pelicioni PHS, D'Cruz N, de Rond V, McCrum C, Ginis P, Gilat M, Nieuwboer A. Cortical Activation During Split-Belt Treadmill Walking in People With Parkinson's Disease and Healthy Controls. Neurorehabil Neural Repair 2025:15459683251329882. [PMID: 40129136 DOI: 10.1177/15459683251329882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
BackgroundPeople with Parkinson's disease (PwPD) have difficulty adapting their gait to asymmetrical conditions. Objective. We investigated cortical activity between 42 PwPD (HY 2-3) and 42 healthy controls using functional near-infrared spectroscopy during tied-belt (TB) and split-belt (SB) treadmill walking.MethodsOxygenated hemoglobin (HbO2) was measured in the prefrontal cortex, supplementary motor area (SMA), premotor cortex (PMC), and posterior parietal cortex (PPC) during 3 blocks of treadmill walking: (1) with the belts moving at the same speed (TB) and (2) when the speed of 1 side was reduced by 50% (SB; 2 blocks). The ability to adjust gait to asymmetric conditions was quantified by step length asymmetry and its variability.ResultsAdaptive gait was worse during the last 5 steps of SB versus TB in PwPD compared to controls. PwPD showed higher HbO2 in the PMC (P = .005) and PPC (P = .004) relative to controls, regardless of condition. However, an increase in HbO2 in the SMA during SB was shown relative to TB in PwPD, a change not observed in controls (group × condition interaction P = .048; pairwise post hoc P = .032). Interestingly, increased PPC activity in PwPD was associated with poorer adapted gait.ConclusionsBoth regular and adaptive gait required enhanced cortical processing in PwPD, as evidenced by the increased activation in the PMC and PPC. However, this heightened cortical activity did not correlate with a reduction in gait asymmetry, suggesting that these changes might be maladaptive. Instead, the elevated cortical activity may reflect the challenges PwPD face in adapting to asymmetrical walking conditions. Careful interpretation is warranted given the relatively small sample of mildly affected PwPD, limiting generalizability to the broader population and the measurement errors inherent to functional near-infrared spectroscopy .
Collapse
Affiliation(s)
- Femke Hulzinga
- Neurorehabilitation Research Group (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Leuven, Vlaams-Brabant, Belgium
| | - Paulo Henrique Silva Pelicioni
- School of Health Sciences, University of New South Wales, Randwick, Sydney, NSW, Australia
- Neuroscience Research Australia, University of New South Wales, Randwick, Sydney, NSW, Australia
| | - Nicholas D'Cruz
- Neurorehabilitation Research Group (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Leuven, Vlaams-Brabant, Belgium
| | - Veerle de Rond
- Neurorehabilitation Research Group (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Leuven, Vlaams-Brabant, Belgium
| | - Christopher McCrum
- Neurorehabilitation Research Group (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Leuven, Vlaams-Brabant, Belgium
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Pieter Ginis
- Neurorehabilitation Research Group (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Leuven, Vlaams-Brabant, Belgium
| | - Moran Gilat
- Neurorehabilitation Research Group (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Leuven, Vlaams-Brabant, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
| | - Alice Nieuwboer
- Neurorehabilitation Research Group (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Leuven, Vlaams-Brabant, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
| |
Collapse
|
5
|
Qing G, Ye S, Wei B, Yang Y. Real-world safety analysis of deutetrabenazine post-marketing: a disproportionality study leveraging the FDA Adverse Event Reporting System (FAERS) database. BMC Pharmacol Toxicol 2025; 26:41. [PMID: 39985106 PMCID: PMC11846250 DOI: 10.1186/s40360-025-00872-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/18/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Deutetrabenazine, a selective vesicular monoamine transporter type 2 (VMAT2) inhibitor, has been demonstrated efficacy in treating refractory neurologic disorders such as Tardive Dyskinesia (TD) and Huntington's disease but have potential adverse events (AEs) that require detailed pharmacovigilance. This study aimed to comprehensively assess the safety profile of deutetrabenazine in real-world settings by analyzing AEs reported from the FDA Adverse Event Reporting System (FAERS) database. METHODS We conducted a retrospective pharmacovigilance study using FAERS data from Q3 2017 to Q3 2024, focusing on deutetrabenazine-related AEs. We applied four disproportionality analysis methods-Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN) and Multinomial Gamma Poisson Shrinkage (MGPS)--to identify potential safety signals. Furthermore, we utilized the Weibull distribution model to analyze the temporal risk of AEs. RESULTS Among the 10,571,578 reports obtained from the FAERS database, 4,337 AE reports were associated with deutetrabenazine. Using four independent computational methods at the preferred term (PT) level, we identified 1,131 PTs that indicated noteworthy adverse reactions. The drug's label-listed adverse reactions, including depression, somnolence, suicidal ideation, and fatigue, showed remarkable signals. Furthermore, we detected potential adverse reactions that were not specified on the label, such as drug ineffectiveness, dyskinesia, death, falls, and insomnia. The majority of these AEs were reported within the initial month of deutetrabenazine treatment, with a median time to onset of 40.5 days. CONCLUSION This research has yielded initial safety insights into the practical use of deutetrabenazine, validating established adverse reactions and uncovering further possible risks. These findings present essential safety considerations for physicians when prescribing deutetrabenazine for the clinical treatment.
Collapse
Affiliation(s)
- Guangwei Qing
- Department of Psychiatry, Jiangxi Mental Hospital & Affiliated Mental Hospital of Nanchang University, Nanchang, Jiangxi, 330029, China
- Third Clinical Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Shiyi Ye
- Department of Psychiatry, Jiangxi Mental Hospital & Affiliated Mental Hospital of Nanchang University, Nanchang, Jiangxi, 330029, China
- Third Clinical Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Bo Wei
- Department of Psychiatry, Jiangxi Mental Hospital & Affiliated Mental Hospital of Nanchang University, Nanchang, Jiangxi, 330029, China.
- Nanchang City Key Laboratory of Biological Psychiatry, Jiangxi Provincial Clinical Research Center on Mental Disorders, Jiangxi Mental Hospital, Nanchang, Jiangxi, 330029, China.
| | - Yuanjian Yang
- Department of Psychiatry, Jiangxi Mental Hospital & Affiliated Mental Hospital of Nanchang University, Nanchang, Jiangxi, 330029, China.
- Nanchang City Key Laboratory of Biological Psychiatry, Jiangxi Provincial Clinical Research Center on Mental Disorders, Jiangxi Mental Hospital, Nanchang, Jiangxi, 330029, China.
| |
Collapse
|
6
|
Tard C, Delval A, Defebvre L, Lenfant P, Devos D, Moreau C, Betrouni N. Metabolic connectivity of freezing in Parkinson's disease. JOURNAL OF PARKINSON'S DISEASE 2025; 15:154-162. [PMID: 39973482 DOI: 10.1177/1877718x241305713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BackgroundFreezing of gait (FoG) is among the most disabling gait disorders of Parkinson's disease. The full understanding of its mechanisms requires a network study approach. So far, FoG was mainly studied using magnetic resonance imaging, and especially using the resting state functional sequence, which does not completely reflect the brain actual modifications.ObjectiveThis study aims to investigate metabolic networks using position emission tomography (PET) imaging. Exploration after a rest or gait session combined with a delayed tracer's uptake are assumed to reflect the actual metabolism modifications.MethodsTwenty-six patients in the off-drug state underwent two PET imaging sessions using [18F]- fluorodeoxyglucose, the first after 30 min of rest (rest condition) and the second after 30 min of real gait (gait condition). Twelve patients presented real FoG during cerebral glucose uptake. Brain connectivity matrices were measured for each group and condition, and then compared.ResultsIn the rest condition, the freezing group showed globally reduced metabolic connectivity between brain regions compared to the non-freezing group. During gait, enhanced connectivity was observed in the cerebellum, cerebello-cortical loops and parieto-frontal regions, with high recruitment of the visual cortex in the freezing group. However, connectivity inside cerebellar networks remained lower in the freezing group than in the non-freezing group, while occipito-frontal connectivity was higher in the freezing group.ConclusionsStudying real freezing of gait in a vertical position emphasized the role of the visual cortex and cerebellum in gait problems.
Collapse
Affiliation(s)
- Céline Tard
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Arnaud Delval
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Luc Defebvre
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Pierre Lenfant
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - David Devos
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Caroline Moreau
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Nacim Betrouni
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| |
Collapse
|
7
|
Klotzbier TJ, Schott N, Park SY, Almeida QJ. Exploring Motor-Cognitive Interference Effects and the Influence of Self-Reported Physical Activity on Dual-Task Walking in Parkinson's Disease and Healthy Older Adults. Brain Sci 2025; 15:114. [PMID: 40002447 PMCID: PMC11853502 DOI: 10.3390/brainsci15020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Introduction: Parkinson's disease (PD) is characterized by motor and cognitive impairments that often manifest as distinct motor subtypes: Postural Instability Gait Difficulty (PIGD) and Tremor-Dominant (TD). Motor-cognitive interference, especially under dual-task (DT) walking conditions, may vary by subtype, providing insights into specific impairments. This study explored DT interference effects in PD subtypes, focusing on the potential impact of self-reported physical activity, which may help mitigate subtype-specific impairments and improve motor-cognitive function. Methods: PD patients classified as PIGD or TD and healthy controls completed single-task (ST) and DT walking assessments involving different cognitive tasks (Serial Subtraction, Auditory Stroop, and Clock Task). Physical activity levels were evaluated using the CHAMPS questionnaire, analyzing the self-reported frequency and duration of weekly exercise-related activities. Results: Interference effects were significantly different between PD patients and controls, with the PIGD group showing greater motor impairment under high cognitive load, primarily affecting gait, than the TD and control groups. Performance differences between groups diminished as cognitive load increased. Self-reported physical activity does not significantly moderate motor performance under DT conditions, suggesting that activity levels in this sample are insufficient to offset motor-cognitive interference. However, like group affiliation, physical activity directly influences motor performance during DT conditions, indicating that both factors independently impact motor-cognitive function in PD. Discussion: These findings suggest that DT assessments help differentiate PD motor subtypes, as group differences were minimal in ST conditions. While physical activity is associated with general improvements in motor ST and DT performance in PD and controls, the lack of a significant moderating effect from self-reported exercise-related physical activity indicates that current activity levels may not be high enough to counter motor-cognitive interference. More intensive or DT-specific exercise may be required to reduce interference effects. Future research should examine the role of structured physical activity programs, potentially incorporating DT training, to evaluate their impact on motor-cognitive interference in PD.
Collapse
Affiliation(s)
- Thomas Jürgen Klotzbier
- Institute of Sport and Movement Science, University of Stuttgart, 70569 Stuttgart, Germany; (N.S.); (S.-Y.P.)
| | - Nadja Schott
- Institute of Sport and Movement Science, University of Stuttgart, 70569 Stuttgart, Germany; (N.S.); (S.-Y.P.)
| | - Soo-Yong Park
- Institute of Sport and Movement Science, University of Stuttgart, 70569 Stuttgart, Germany; (N.S.); (S.-Y.P.)
| | - Quincy J. Almeida
- Parkinson’s & Neurodegenerative Disease Programs, Carespace Health & Wellness, Waterloo, ON N2L 3C5, Canada;
| |
Collapse
|
8
|
Abhilash PL, Bharti U, Rashmi SK, Philip M, Raju TR, Kutty BM, Sagar BKC, Alladi PA. Aging and MPTP Sensitivity Depend on Molecular and Ultrastructural Signatures of Astroglia and Microglia in Mice Substantia Nigra. Cell Mol Neurobiol 2025; 45:13. [PMID: 39833644 PMCID: PMC11753320 DOI: 10.1007/s10571-024-01528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Both astroglia and microglia show region-specific distribution in CNS and often maladapt to age-associated alterations within their niche. Studies on autopsied substantia nigra (SN) of Parkinson's disease (PD) patients and experimental models propose gliosis as a trigger for neuronal loss. Epidemiological studies propose an ethnic bias in PD prevalence, since Caucasians are more susceptible than non-whites. Similarly, different mice strains are variably sensitive to MPTP. We had earlier likened divergent MPTP sensitivity of C57BL/6 J and CD-1 mice with differential susceptibility to PD, based on the numbers of SN neurons. We examined whether the variability was incumbent to inter-strain differences in glial features of male C57BL/6 J and CD-1 mice. Stereological counts showed relatively more microglia and fewer astrocytes in the SN of normal C57BL/6 J mice, suggesting persistence of an immune-vigilant state. MPTP-induced microgliosis and astrogliosis in both strains suggest their involvement in pathogenesis. ELISA of pro-inflammatory cytokines in the ventral-midbrain revealed augmentation of TNF-α and IL-6 at middle age in both strains that reduced at old age, suggesting middle age as a critical, inflamm-aging-associated time point. TNF-α levels were high in C57BL/6 J, through aging and post-MPTP, while IL-6 and IL-1β were upregulated at old age. CD-1 had higher levels of anti-inflammatory cytokine TGF-β. MPTP challenge caused upregulation of enzymes MAO-A, MAO-B, and iNOS in both strains. Post-MPTP enhancement in fractalkine and hemeoxygenase-1 may be neuron-associated compensatory signals. Ultrastructural observations of elongated astroglial/microglial mitochondria vis-à-vis the shrunken ones in neurons suggest a scale-up of their functions with neurotoxic consequences. Thus, astroglia and microglia may modulate aging and PD susceptibility.
Collapse
Affiliation(s)
- P L Abhilash
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bengaluru, 560029, India
| | - Upasna Bharti
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Santhosh Kumar Rashmi
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Mariamma Philip
- Department of Biostatistics, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - T R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bengaluru, 560029, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bengaluru, 560029, India
| | - B K Chandrasekhar Sagar
- Department of Biostatistics, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bengaluru, 560029, India.
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India.
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bangalore, India.
| |
Collapse
|
9
|
Lee H, Choi BJ, Kang N. Non-invasive brain stimulation enhances motor and cognitive performances during dual tasks in patients with Parkinson's disease: a systematic review and meta-analysis. J Neuroeng Rehabil 2024; 21:205. [PMID: 39581969 PMCID: PMC11587594 DOI: 10.1186/s12984-024-01505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) induces progressive deficits in motor and cognitive functions as well as impaired dual-task performance requiring both motor and cognitive functions. This systematic review and meta-analysis evaluated the effects of non-invasive brain stimulation (NIBS) on dual-task performance in patients with PD. METHODS 11 studies met the following inclusion criteria: (a) patients with PD, (b) NIBS intervention, (c) comparison with the sham stimulation group, (d) motor and cognitive performance outcomes during dual tasks, and (e) randomized controlled trials with parallel or crossover designs. Individual effect size (i.e., comparison) was quantified by comparing motor and cognitive performances changes during dual tasks between active NIBS and sham stimulation conditions. Thus, higher values of the overall effect size indicate more improvements in either motor or cognitive performances after NIBS. Moreover, moderator variable analyses determined whether NIBS effects on dual-task performances differed depending on targeted brain regions. Finally, meta-regression analyses determined whether NIBS effects on dual-task performances were associated with demographic characteristics. RESULTS The random-effects model meta-analysis revealed that NIBS significantly improved motor (73 comparisons from 11 studies) and cognitive (12 comparisons from four studies) performances during dual tasks in patients with PD. Specifically, anodal transcranial direct current stimulation protocols on the dorsolateral prefrontal cortex were effective. Moreover, greater improvements in motor performance during dual tasks significantly correlated with decreased age and increased proportion of females, respectively. CONCLUSION This meta-analysis suggests that excitatory stimulation on the dorsolateral prefrontal cortex may be effective for improving dual-task performance in patients with PD.
Collapse
Affiliation(s)
- Hajun Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
| | - Beom Jin Choi
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea.
- Division of Sport Science, Sport Science Institute & Health Promotion Center, Incheon National University, Incheon, South Korea.
- Neuromechanical Rehabilitation Research Laboratory, Division of Sport Science & Sport Science Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, South Korea.
| |
Collapse
|
10
|
Ziri D, Hugueville L, Olivier C, Boulinguez P, Gunasekaran H, Lau B, Welter ML, George N. Inhibitory control of gait initiation in humans: An electroencephalography study. Psychophysiology 2024; 61:e14647. [PMID: 38987662 DOI: 10.1111/psyp.14647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/18/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Response inhibition is a crucial component of executive control. Although mainly studied in upper limb tasks, it is fully implicated in gait initiation. Here, we assessed the influence of proactive and reactive inhibitory control during gait initiation in healthy adult participants. For this purpose, we measured kinematics and electroencephalography (EEG) activity (event-related potential [ERP] and time-frequency data) during a modified Go/NoGo gait initiation task in 23 healthy adults. The task comprised Go-certain, Go-uncertain, and NoGo conditions. Each trial included preparatory and imperative stimuli. Our results showed that go-uncertainty resulted in delayed reaction time, without any difference for the other parameters of gait initiation. Proactive inhibition, that is, Go uncertain versus Go certain conditions, influenced EEG activity as soon as the preparatory stimulus. Moreover, both proactive and reactive inhibition influenced the amplitude of the ERPs (central P1, occipito-parietal N1, and N2/P3) and theta and alpha/low beta band activities in response to the imperative-Go-uncertain versus Go-certain and NoGo versus Go-uncertain-stimuli. These findings demonstrate that the uncertainty context; induced proactive inhibition, as reflected in delayed gait initiation. Proactive and reactive inhibition elicited extended and overlapping modulations of ERP and time-frequency activities. This study shows the protracted influence of inhibitory control in gait initiation.
Collapse
Affiliation(s)
- Deborah Ziri
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Laurent Hugueville
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Centre MEG-EEG, CENIR, Paris, France
| | - Claire Olivier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
- PANAM Core Facility, CENIR, Paris Brain Institute, Paris, France
| | - Philippe Boulinguez
- INSERM, CNRS, Lyon Neuroscience Research Center, Université de Lyon, Lyon, France
| | - Harish Gunasekaran
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Brian Lau
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Marie-Laure Welter
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Centre MEG-EEG, CENIR, Paris, France
- Department of Neurophysiology, Rouen University Hospital and University of Rouen, Rouen, France
| | - Nathalie George
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Centre MEG-EEG, CENIR, Paris, France
| |
Collapse
|
11
|
Bernard JA. Cerebello-Hippocampal Interactions in the Human Brain: A New Pathway for Insights Into Aging. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2130-2141. [PMID: 38438826 PMCID: PMC11371944 DOI: 10.1007/s12311-024-01670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 03/06/2024]
Abstract
The cerebellum is recognized as being important for optimal behavioral performance across task domains, including motor function, cognition, and affect. Decades of work have highlighted cerebello-thalamo-cortical circuits, from both structural and functional perspectives. However, these circuits of interest have been primarily (though not exclusively) focused on targets in the cerebral cortex. In addition to these cortical connections, the circuit linking the cerebellum and hippocampus is of particular interest. Recently, there has been an increased interest in this circuit, thanks in large part to novel findings in the animal literature demonstrating that neuronal firing in the cerebellum impacts that in the hippocampus. Work in the human brain has provided evidence for interactions between the cerebellum and hippocampus, though primarily this has been in the context of spatial navigation. Given the role of both regions in cognition and aging, and emerging evidence indicating that the cerebellum is impacted in age-related neurodegenerative disease such as Alzheimer's, I propose that further attention to this circuit is warranted. Here, I provide an overview of cerebello-hippocampal interactions in animal models and from human imaging and outline the possible utility of further investigations to improve our understanding of aging and age-related cognitive decline.
Collapse
Affiliation(s)
- Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, 77843-4235, USA.
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843-4235, USA.
| |
Collapse
|
12
|
Silva-Batista C, Liu W, Vitorio R, Stuart S, Quinn JF, Mancini M. The Time Course of Changes in Prefrontal Cortex Activity During Walking in People With Parkinson's Disease. Neurorehabil Neural Repair 2024; 38:635-645. [PMID: 39075890 DOI: 10.1177/15459683241265935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
BACKGROUND Walking abnormalities in people with Parkinson's disease (PD) are characterized by a shift in locomotor control from healthy automaticity to compensatory, executive control, mainly located in the prefrontal cortex (PFC). Although PFC activity during walking increases in people with PD, the time course of PFC activity during walking and its relationship to clinical or gait characteristics is unknown. OBJECTIVE To identify the time course of PFC activity during walking in people with PD. To investigate whether clinical or gait variables would explain the PFC activity changes. METHODS Thirty-eight people with PD tested OFF medication wore a portable, functional near-infrared spectroscopy (fNIRS) system to record relative PFC activity while walking. Wearable inertial sensors recorded spatiotemporal gait characteristics. Based on the PFC activity (fNIRS) in the late phase of the walking task (final 40 seconds), compared to the early phase (initial 40 seconds), participants were separated into 2 groups: reduced or sustained PFC activity. RESULTS People with PD who reduced PFC activity during walking had less impaired gait (eg, faster gait speed) than those who had a sustained increase in PFC activity (P < .05). Cognitive set-shifting ability explained 18% of the PFC activation in the group with a sustained increase in PFC activity (P = .033). CONCLUSIONS The time course of reduction in PFC activity corresponds to less impaired gait performance in people with PD, while a sustained increase in PFC activity is related to worse cognitive flexibility. Reduction in PFC activity while walking may indicate a less impaired, automatic control of walking.
Collapse
Affiliation(s)
- Carla Silva-Batista
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - William Liu
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Rodrigo Vitorio
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| | - Samuel Stuart
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| | - Joseph F Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Department of Neurology, Veterans Affairs Portland Health Care System (VAPORHCS), Portland, OR, USA
| | - Martina Mancini
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
13
|
Cockx HM, Oostenveld R, Flórez R YA, Bloem BR, Cameron IGM, van Wezel RJA. Freezing of gait in Parkinson's disease is related to imbalanced stopping-related cortical activity. Brain Commun 2024; 6:fcae259. [PMID: 39229492 PMCID: PMC11369826 DOI: 10.1093/braincomms/fcae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/17/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
Freezing of gait, characterized by involuntary interruptions of walking, is a debilitating motor symptom of Parkinson's disease that restricts people's autonomy. Previous brain imaging studies investigating the mechanisms underlying freezing were restricted to scan people in supine positions and yielded conflicting theories regarding the role of the supplementary motor area and other cortical regions. We used functional near-infrared spectroscopy to investigate cortical haemodynamics related to freezing in freely moving people. We measured functional near-infrared spectroscopy activity over multiple motor-related cortical areas in 23 persons with Parkinson's disease who experienced daily freezing ('freezers') and 22 age-matched controls during freezing-provoking tasks including turning and doorway passing, voluntary stops and actual freezing. Crucially, we corrected the measured signals for confounds of walking. We first compared cortical activity between freezers and controls during freezing-provoking tasks without freezing (i.e. turning and doorway passing) and during stops. Secondly, within the freezers, we compared cortical activity between freezing, stopping and freezing-provoking tasks without freezing. First, we show that turning and doorway passing (without freezing) resemble cortical activity during stopping in both groups involving activation of the supplementary motor area and prefrontal cortex, areas known for their role in inhibiting actions. During these freezing-provoking tasks, the freezers displayed higher activity in the premotor areas than controls. Secondly, we show that, during actual freezing events, activity in the prefrontal cortex was lower than during voluntary stopping. The cortical relation between the freezing-provoking tasks (turning and doorway passing) and stopping may explain their susceptibility to trigger freezing by activating a stopping mechanism. Besides, the stopping-related activity of the supplementary motor area and prefrontal cortex seems to be out of balance in freezers. In this paper, we postulate that freezing results from a paroxysmal imbalance between the supplementary motor area and prefrontal cortex, thereby extending upon the current role of the supplementary motor area in freezing pathophysiology.
Collapse
Affiliation(s)
- Helena M Cockx
- Department of Neurobiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525AJ Nijmegen, The Netherlands
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GC Nijmegen, The Netherlands
| | - Robert Oostenveld
- Donders Center for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525EN Nijmegen, The Netherlands
- NatMEG, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Yuli A Flórez R
- Department of Neurobiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525AJ Nijmegen, The Netherlands
- Department of Psychiatry, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Bastiaan R Bloem
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GC Nijmegen, The Netherlands
| | - Ian G M Cameron
- Department of Neurobiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525AJ Nijmegen, The Netherlands
- Biomedical Signals and Systems Group, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), University of Twente, 7522NB Enschede, The Netherlands
- Domain Expert Precision Health, Nutrition & Behavior, OnePlanet Research Center, 6525EC Nijmegen, The Netherlands
| | - Richard J A van Wezel
- Department of Neurobiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525AJ Nijmegen, The Netherlands
- Biomedical Signals and Systems Group, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), University of Twente, 7522NB Enschede, The Netherlands
| |
Collapse
|
14
|
Taniguchi S, Marumoto K, Kajiyama Y, Revankar G, Inoue M, Yamamoto H, Kayano R, Mizuta E, Takahashi R, Shirahata E, Saeki C, Ozono T, Kimura Y, Ikenaka K, Mochizuki H. The validation of a Japanese version of the New Freezing of Gait Questionnaire (NFOG-Q). Neurol Sci 2024; 45:3147-3152. [PMID: 38383749 PMCID: PMC11176215 DOI: 10.1007/s10072-024-07405-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
OBJECTIVE This study aimed to develop a Japanese version of the New Freezing of Gait Questionnaire (NFOG-Q) and investigate its validity and reliability. METHODS After translating the NFOG-Q according to a standardised protocol, 56 patients with Parkinson's disease (PD) were administered it. Additionally, the MDS-UPDRS parts II and III, Hoehn and Yahr (H&Y) stage, and number of falls over 1 month were evaluated. Spearman's correlation coefficients (rho) were used to determine construct validity, and Cronbach's alpha (α) was used to examine reliability. RESULTS The interquartile range of the NFOG-Q scores was 10.0-25.3 (range 0-29). The NFOG-Q scores were strongly correlated with the MDS-UPDRS part II, items 2.12 (walking and balance), 2.13 (freezing), 3.11 (freezing of gait), and 3.12 (postural stability) and the postural instability and gait difficulty score (rho = 0.515-0.669), but only moderately related to the MDS-UPDRS item 3.10 (gait), number of falls, disease duration, H&Y stage, and time of the Timed Up-and-Go test (rho = 0.319-0.434). No significant correlations were observed between age and the time of the 10-m walk test. The internal consistency was excellent (α = 0.96). CONCLUSIONS The Japanese version of the NFOG-Q is a valid and reliable tool for assessing the severity of freezing in patients with PD.
Collapse
Affiliation(s)
- Seira Taniguchi
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Kohei Marumoto
- Hyogo Prefectural Rehabilitation Hospital at Nishi-Harima, 1-7-1 Koto, Shingu-Cho, Tatsuno, Hyogo, Japan
| | - Yuta Kajiyama
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Gajanan Revankar
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Michiko Inoue
- Hyogo Prefectural Rehabilitation Hospital at Nishi-Harima, 1-7-1 Koto, Shingu-Cho, Tatsuno, Hyogo, Japan
| | - Hiroshi Yamamoto
- Hyogo Prefectural Rehabilitation Hospital at Nishi-Harima, 1-7-1 Koto, Shingu-Cho, Tatsuno, Hyogo, Japan
| | - Rika Kayano
- Hyogo Prefectural Rehabilitation Hospital at Nishi-Harima, 1-7-1 Koto, Shingu-Cho, Tatsuno, Hyogo, Japan
| | - Eiji Mizuta
- Hyogo Prefectural Rehabilitation Hospital at Nishi-Harima, 1-7-1 Koto, Shingu-Cho, Tatsuno, Hyogo, Japan
| | - Ryuichi Takahashi
- Hyogo Prefectural Rehabilitation Hospital at Nishi-Harima, 1-7-1 Koto, Shingu-Cho, Tatsuno, Hyogo, Japan
| | - Emi Shirahata
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Chizu Saeki
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tatsuhiko Ozono
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuyoshi Kimura
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
15
|
Rocha RMS, Faria-Fortini ID, Scalzo PL. Telephone-based application of the Activities of Daily Living Questionnaire in patients with Parkinson's disease. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-8. [PMID: 38857888 DOI: 10.1055/s-0044-1787135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
BACKGROUND The Activities of Daily Living Questionnaire (ADLQ) focuses on assessing the ability to perform activities of daily living (ADLs) based on the self-perception of individuals with Parkinson's disease (PD). A Brazilian Portuguese version of the questionnaire is available (ADLQ-Brazil), and further investigation is needed to fully assess its measurement properties. OBJECTIVE To investigate construct and concurrent validity of the telephone-based administration of the ADLQ-Brazil with community individuals with PD. METHODS There were 50 adults with PD (mean age: 68 ± 9.5 years) invited to answer the ADLQ-Brazil on two randomized occasions, face-to-face and by telephone, 7 to 10 days apart. Clinical-based measures including the Movement Disorder Society-Sponsored Revision of the Unified Parkinson Disease Rating Scale, Timed Up and Go Test, Nine Hole Peg Test, Mini-Balance Evaluation Systems Test, Apathy Scale, Beck Depression Inventory, Modified Fatigue Impact Scale, and Parkinson Disease Quality of Life Questionnaire were applied during the first session, to establish construct validity. RESULTS The total scores on the ADLQ-Brazil were significantly associated with the clinical-based measures, thus providing evidence of construct validity. No significant differences were observed between the mean scores obtained with the face-to-face and telephone-based administration of the questionnaire (95%CI = 0.997). A high level of agreement was found in the total scores obtained between both applications of the ADLQ-Brazil (95%CI = 0.994-0.998), and most of the individual items had, on average, moderate agreement. CONCLUSION The findings provide psychometric support for the ADLQ-Brazil as a telephone interview to assess the performance of ADLs in individuals with PD.
Collapse
Affiliation(s)
- Rafaela Moura Santos Rocha
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Neurociências, Belo Horizonte MG, Brazil
| | - Iza de Faria-Fortini
- Universidade Federal de Minas Gerais, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Departamento de Terapia Ocupacional, Belo Horizonte MG, Brazil
| | - Paula Luciana Scalzo
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Morfologia, Belo Horizonte MG, Brazil
| |
Collapse
|
16
|
Albrecht F, Johansson H, Ekman U, Poulakis K, Bezuidenhout L, Pereira JB, Franzén E. Investigating underlying brain structures and influence of mild and subjective cognitive impairment on dual-task performance in people with Parkinson's disease. Sci Rep 2024; 14:9513. [PMID: 38664471 PMCID: PMC11045833 DOI: 10.1038/s41598-024-60050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Cognitive impairment can affect dual-task abilities in Parkinson's disease (PD), but it remains unclear whether this is also driven by gray matter alterations across different cognitive classifications. Therefore, we investigated associations between dual-task performance during gait and functional mobility and gray matter alterations and explored whether these associations differed according to the degree of cognitive impairment. Participants with PD were classified according to their cognitive function with 22 as mild cognitive impairment (PD-MCI), 14 as subjective cognitive impairment (PD-SCI), and 20 as normal cognition (PD-NC). Multiple regression models associated dual-task absolute and interference values of gait speed, step-time variability, and reaction time, as well as dual-task absolute and difference values for Timed Up and Go (TUG) with PD cognitive classification. We repeated these regressions including the nucleus basalis of Meynert, dorsolateral prefrontal cortex, and hippocampus. We additionally explored whole-brain regressions with dual-task measures to identify dual-task-related regions. There was a trend that cerebellar alterations were associated with worse TUG dual-task in PD-SCI, but also with higher dual-task gait speed and higher dual-task step-time variability in PD-NC. After multiple comparison corrections, no effects of interest were significant. In summary, no clear set of variables associated with dual-task performance was found that distinguished between PD cognitive classifications in our cohort. Promising but non-significant trends, in particular regarding the TUG dual-task, do however warrant further investigation in future large-scale studies.
Collapse
Affiliation(s)
- Franziska Albrecht
- Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels Allé 23, 141 52, Huddinge, Stockholm, Sweden.
- Medical Unit Occupational Therapy & Physiotherapy, Women's Health and Allied Health Professionals Theme, Karolinska University Hospital, Stockholm, Sweden.
| | - Hanna Johansson
- Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels Allé 23, 141 52, Huddinge, Stockholm, Sweden
- Medical Unit Occupational Therapy & Physiotherapy, Women's Health and Allied Health Professionals Theme, Karolinska University Hospital, Stockholm, Sweden
- Stockholm Sjukhem Foundation, Stockholm, Sweden
| | - Urban Ekman
- Division of Neuro, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
- Medical Unit Medical Psychology, Women's Health and Allied Health Professionals Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Konstantinos Poulakis
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Lucian Bezuidenhout
- Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels Allé 23, 141 52, Huddinge, Stockholm, Sweden
| | - Joana B Pereira
- Division of Neuro, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Erika Franzén
- Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels Allé 23, 141 52, Huddinge, Stockholm, Sweden
- Medical Unit Occupational Therapy & Physiotherapy, Women's Health and Allied Health Professionals Theme, Karolinska University Hospital, Stockholm, Sweden
- Stockholm Sjukhem Foundation, Stockholm, Sweden
| |
Collapse
|
17
|
Quek DYL, Taylor N, Gilat M, Lewis SJG, Ehgoetz Martens KA. Effect of dopamine on limbic network connectivity at rest in Parkinson's disease patients with freezing of gait. Transl Neurosci 2024; 15:20220336. [PMID: 38708096 PMCID: PMC11066616 DOI: 10.1515/tnsci-2022-0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 05/07/2024] Open
Abstract
Background Freezing of gait (FOG) in Parkinson's disease (PD) has a poorly understood pathophysiology, which hinders treatment development. Recent work showed a dysfunctional fronto-striato-limbic circuitry at rest in PD freezers compared to non-freezers in the dopamine "OFF" state. While other studies found that dopaminergic replacement therapy alters functional brain organization in PD, the specific effect of dopamine medication on fronto-striato-limbic functional connectivity in freezers remains unclear. Objective To evaluate how dopamine therapy alters resting state functional connectivity (rsFC) of the fronto-striato-limbic circuitry in PD freezers, and whether the degree of connectivity change is related to freezing severity and anxiety. Methods Twenty-three PD FOG patients underwent MRI at rest (rsfMRI) in their clinically defined "OFF" and "ON" dopaminergic medication states. A seed-to-seed based analysis was performed between a priori defined limbic circuitry ROIs. Functional connectivity was compared between OFF and ON states. A secondary correlation analyses evaluated the relationship between Hospital Anxiety and Depression Scale (HADS)-Anxiety) and FOG Questionnaire with changes in rsFC from OFF to ON. Results PD freezers' OFF compared to ON showed increased functional coupling between the right hippocampus and right caudate nucleus, and between the left putamen and left posterior parietal cortex (PPC). A negative association was found between HADS-Anxiety and the rsFC change from OFF to ON between the left amygdala and left prefrontal cortex, and left putamen and left PPC. Conclusion These findings suggest that dopaminergic medication partially modulates the frontoparietal-limbic-striatal circuitry in PD freezers, and that the influence of medication on the amygdala, may be related to clinical anxiety in freezer.
Collapse
Affiliation(s)
- Dione Y. L. Quek
- Parkinson’s Disease Research Clinic, Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Natasha Taylor
- Parkinson’s Disease Research Clinic, Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Moran Gilat
- Neurorehabilitation Research Group (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Simon J. G. Lewis
- Parkinson’s Disease Research Clinic, Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Kaylena A. Ehgoetz Martens
- Parkinson’s Disease Research Clinic, Brain and Mind Centre, University of Sydney, Sydney, Australia
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, WaterlooON, N2L3G1Canada
| |
Collapse
|
18
|
DeGutis J, Aul C, Barthelemy OJ, Davis BL, Alshuaib S, Marin A, Kinger SB, Ellis TD, Cronin-Golomb A. Side of motor symptom onset predicts sustained attention deficits and motor improvements after attention training in Parkinson's disease. Neuropsychologia 2023; 190:108698. [PMID: 37806442 DOI: 10.1016/j.neuropsychologia.2023.108698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/28/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE Parkinson's disease (PD) side of motor symptom onset has been associated with distinct cognitive deficits; individuals with left-side onset (LPD) show more visuospatial impairments, whereas those with right-side onset (RPD) show more verbal impairments. Non-spatial attention is a critical cognitive ability associated with motor functioning that is right hemisphere lateralized but has not been characterized with regard to PD side of onset. We compared individuals with LPD and RPD on non-spatial attention tasks and examined differential responses to a 4-week sustained attention training program. METHOD Participants included 9 with LPD and 12 with RPD, who performed both brief and extended go/no-go continuous performance tasks and an attentional blink task. Participants also engaged in an at-home sustained attention training program, Tonic and Phasic Alertness Training (TAPAT), 5 days/week for 4 weeks. We assessed cognitive and motor symptoms before and after training, and after a 4-week no-contact period. RESULTS At baseline, participants with LPD exhibited worse performance than those with RPD on the extended continuous performance task, indicating specific deficits in sustaining attention. Poorer attention was associated with worse clinical motor scores. Notably, side of onset had a significant effect on clinical motor changes after sustained attention training, with only LPD participants improving after training, and 4/9 showing clinically meaningful improvements. CONCLUSIONS Compared to RPD, participants with LPD had poorer sustained attention pre-training and were more likely to improve on clinical motor functioning after sustained attention training. These findings support mechanistic differences between LPD and RPD and suggest potential differential treatment approaches.
Collapse
Affiliation(s)
- Joseph DeGutis
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA; Boston Attention and Learning Laboratory (BALLAB), VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Courtney Aul
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA; Boston Attention and Learning Laboratory (BALLAB), VA Boston Healthcare System, Boston, MA, USA
| | - Olivier J Barthelemy
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Breanna L Davis
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Shaikhah Alshuaib
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Anna Marin
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Shraddha B Kinger
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Terry D Ellis
- Department of Physical Therapy, Boston University College of Health and Rehabilitation Sciences: Sargent College, Boston, MA, USA
| | - Alice Cronin-Golomb
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA.
| |
Collapse
|
19
|
Sun H, Gan C, Wang L, Ji M, Cao X, Yuan Y, Zhang H, Shan A, Gao M, Zhang K. Cortical Disinhibition Drives Freezing of Gait in Parkinson's Disease and an Exploratory Repetitive Transcranial Magnetic Stimulation Study. Mov Disord 2023; 38:2072-2083. [PMID: 37646183 DOI: 10.1002/mds.29595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Dysfunction of the primary motor cortex, participating in regulation of posture and gait, is implicated in freezing of gait (FOG) in Parkinson's disease (PD). OBJECTIVE The aim was to reveal the mechanisms of "OFF-period" FOG (OFF-FOG) and "levodopa-unresponsive" FOG (ONOFF-FOG) in PD. METHODS We measured the transcranial magnetic stimulation (TMS) indicators and gait parameters in 21 healthy controls (HCs), 15 PD patients with ONOFF-FOG, 15 PD patients with OFF-FOG, and 15 PD patients without FOG (Non-FOG) in "ON" and "OFF" medication conditions. Difference of TMS indicators in the four groups and two conditions and its correlations with gait parameters were explored. Additionally, we explored the effect of 10 Hz repetitive TMS on gait and TMS indicators in ONOFF-FOG patients. RESULTS In "OFF" condition, short interval intracortical inhibition (SICI) exhibited remarkable attenuation in FOG patients (both ONOFF-FOG and OFF-FOG) compared to Non-FOG patients and HCs. The weakening of SICI correlated with impaired gait characteristics in FOG. However, in "ON" condition, SICI in ONOFF-FOG patients reduced compared to OFF-FOG patients. Pharmacological treatment significantly improved SICI and gait in OFF-FOG patients, and high-frequency repetitive TMS distinctly improved gait in ONOFF-FOG patients, accompanied by enhanced SICI. CONCLUSIONS Motor cortex disinhibition, represented by decreased SICI, is related to FOG in PD. Refractory freezing in ONOFF-FOG patients correlated with the their reduced SICI insensitive to dopaminergic medication. SICI can serve as an indicator of the severity of impaired gait characteristics in FOG and reflect treatments efficacy for FOG in PD patients. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Huimin Sun
- Department of Neurology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Caiting Gan
- Department of Neurology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lina Wang
- Department of Neurology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Ji
- Department of Neurology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xingyue Cao
- Department of Neurology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongsheng Yuan
- Department of Neurology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Heng Zhang
- Department of Neurology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Aidi Shan
- Department of Neurology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengxi Gao
- Department of Neurology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kezhong Zhang
- Department of Neurology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Camicioli R, Morris ME, Pieruccini‐Faria F, Montero‐Odasso M, Son S, Buzaglo D, Hausdorff JM, Nieuwboer A. Prevention of Falls in Parkinson's Disease: Guidelines and Gaps. Mov Disord Clin Pract 2023; 10:1459-1469. [PMID: 37868930 PMCID: PMC10585979 DOI: 10.1002/mdc3.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 10/24/2023] Open
Abstract
Background People living with Parkinson's disease (PD) have a high risk for falls. Objective To examine gaps in falls prevention targeting people with PD as part of the Task Force on Global Guidelines for Falls in Older Adults. Methods A Delphi consensus process was used to identify specific recommendations for falls in PD. The current narrative review was conducted as educational background with a view to identifying gaps in fall prevention. Results A recent Cochrane review recommended exercises and structured physical activities for PD; however, the types of exercises and activities to recommend and PD subgroups likely to benefit require further consideration. Freezing of gait, reduced gait speed, and a prior history of falls are risk factors for falls in PD and should be incorporated in assessments to identify fall risk and target interventions. Multimodal and multi-domain fall prevention interventions may be beneficial. With advanced or complex PD, balance and strength training should be administered under supervision. Medications, particularly cholinesterase inhibitors, show promise for falls prevention. Identifying how to engage people with PD, their families, and health professionals in falls education and implementation remains a challenge. Barriers to the prevention of falls occur at individual, environmental, policy, and health system levels. Conclusion Effective mitigation of fall risk requires specific targeting and strategies to reduce this debilitating and common problem in PD. While exercise is recommended, the types and modalities of exercise and how to combine them as interventions for different PD subgroups (cognitive impairment, freezing, advanced disease) need further study.
Collapse
Affiliation(s)
- Richard Camicioli
- Department of Medicine (Neurology) and Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Meg E. Morris
- La Trobe University, Academic and Research Collaborative in Health & HealthscopeMelbourneVictoriaAustralia
| | - Frederico Pieruccini‐Faria
- Gait and Brain Lab, Parkwood InstituteLawson Health Research InstituteLondonOntarioCanada
- Division of Geriatric Medicine, Department of Medicine, Schulich School of Medicine & DentistryWestern UniversityLondonOntarioCanada
| | - Manuel Montero‐Odasso
- Gait and Brain Lab, Parkwood InstituteLawson Health Research InstituteLondonOntarioCanada
- Division of Geriatric Medicine, Department of Medicine, Schulich School of Medicine & DentistryWestern UniversityLondonOntarioCanada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & DentistryWestern UniversityLondonOntarioCanada
| | - Surim Son
- Gait and Brain Lab, Parkwood InstituteLawson Health Research InstituteLondonOntarioCanada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & DentistryWestern UniversityLondonOntarioCanada
| | - David Buzaglo
- Center for the Study of Movement, Cognition and Mobility, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Jeffrey M. Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
- Department of Physical Therapy, Faculty of Medicine, Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
- Rush Alzheimer's Disease Center and Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences, Neurorehabilitation Research Group (eNRGy)KU LeuvenLeuvenBelgium
| |
Collapse
|
21
|
Girnis JL, Cavanaugh JT, Baker TC, Duncan RP, Fulford D, LaValley MP, Lawrence M, Nordahl T, Porciuncula F, Rawson KS, Saint-Hilaire M, Thomas CA, Zajac JA, Earhart GM, Ellis TD. Natural Walking Intensity in Persons With Parkinson Disease. J Neurol Phys Ther 2023; 47:146-154. [PMID: 37016469 PMCID: PMC10330027 DOI: 10.1097/npt.0000000000000440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
BACKGROUND AND PURPOSE Few persons with Parkinson disease (PD) appear to engage in moderate-intensity walking associated with disease-modifying health benefits. How much time is spent walking at lower, yet still potentially beneficial, intensities is poorly understood. The purpose of this exploratory, observational study was to describe natural walking intensity in ambulatory persons with PD. METHODS Accelerometer-derived real-world walking data were collected for more than 7 days at baseline from 82 participants enrolled in a PD clinical trial. Walking intensity was defined according to the number of steps in each active minute (1-19, 20-39, 40-59, 60-79, 80-99, or ≥100 steps). Daily minutes of walking and duration of the longest sustained walking bout were calculated at each intensity. Number of sustained 10 to 19, 20 to 29, and 30-minute bouts and greater at any intensity also were calculated. Values were analyzed in the context of physical activity guidelines. RESULTS Most daily walking occurred at lower intensities (157.3 ± 58.1 min of 1-19 steps; 81.3 ± 32.6 min of 20-39 steps; 38.2 ± 21.3 min of 40-59 steps; 15.1 ± 11.5 min of 60-79 steps; 7.4 ± 7.0 min of 80-99 steps; 7.3 ± 9.6 min of ≥100 steps). The longest daily sustained walking bout occurred at the lowest intensity level (15.9 ± 5.2 min of 1-19 steps). Few bouts lasting 20 minutes and greater occurred at any intensity. DISCUSSION AND CONCLUSIONS Despite relatively high daily step counts, participants tended to walk at remarkably low intensity, in bouts of generally short duration, with relatively few instances of sustained walking. The findings reinforced the need for health promotion interventions designed specifically to increase walking intensity.Video Abstract available for more insight from authors (see the Video, Supplemental Digital Content 1 available at: http://links.lww.com/JNPT/A426 ).
Collapse
Affiliation(s)
- Jaimie L. Girnis
- Department of Physical Therapy, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, Massachusetts
| | - James T. Cavanaugh
- Department of Physical Therapy, University of New England, Portland, Maine
| | - Teresa C. Baker
- Department of Physical Therapy, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, Massachusetts
| | - Ryan P. Duncan
- Program in Physical Therapy, Washington University in St Louis School of Medicine, St Louis, Missouri
- Department of Neurology, Washington University in St Louis School of Medicine, St Louis, Missouri
| | - Daniel Fulford
- Department of Occupational Therapy, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, Massachusetts
| | | | - Michael Lawrence
- Department of Physical Therapy, University of New England, Portland, Maine
| | - Timothy Nordahl
- Department of Physical Therapy, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, Massachusetts
| | - Franchino Porciuncula
- Department of Physical Therapy, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, Massachusetts
| | - Kerri S. Rawson
- Program in Physical Therapy, Washington University in St Louis School of Medicine, St Louis, Missouri
- Department of Neurology, Washington University in St Louis School of Medicine, St Louis, Missouri
| | - Marie Saint-Hilaire
- Department of Neurology, Parkinson’s Disease and Movement Disorders Center, Boston University, Boston Massachusetts
| | - Cathi A. Thomas
- Department of Neurology, Parkinson’s Disease and Movement Disorders Center, Boston University, Boston Massachusetts
| | - Jenna A. Zajac
- Department of Physical Therapy, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, Massachusetts
| | - Gammon M. Earhart
- Program in Physical Therapy, Washington University in St Louis School of Medicine, St Louis, Missouri
- Department of Neurology, Washington University in St Louis School of Medicine, St Louis, Missouri
- Department of Neuroscience, Washington University in St Louis School of Medicine, St Louis, Missouri
| | - Terry D. Ellis
- Department of Physical Therapy, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, Massachusetts
| |
Collapse
|
22
|
Mahoney-Rafferty EC, Tucker HR, Akhtar K, Herlihy R, Audil A, Shah D, Gupta M, Kochman EM, Feustel PJ, Molho ES, Pilitsis JG, Shin DS. Assessing the Location, Relative Expression and Subclass of Dopamine Receptors in the Cerebellum of Hemi-Parkinsonian Rats. Neuroscience 2023; 521:1-19. [PMID: 37116741 DOI: 10.1016/j.neuroscience.2023.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 04/30/2023]
Abstract
Parkinson's Disease (PD) is a neurodegenerative disease with loss of dopaminergic neurons in the nigrostriatal pathway resulting in basal ganglia (BG) dysfunction. This is largely why much of the preclinical and clinical research has focused on pathophysiological changes in these brain areas in PD. The cerebellum is another motor area of the brain. Yet, if and how this brain area responds to PD therapy and contributes to maintaining motor function fidelity in the face of diminished BG function remains largely unanswered. Limited research suggests that dopaminergic signaling exists in the cerebellum with functional dopamine receptors, tyrosine hydroxylase (TH) and dopamine transporters (DATs); however, much of this information is largely derived from healthy animals and humans. Here, we identified the location and relative expression of dopamine 1 receptors (D1R) and dopamine 2 receptors (D2R) in the cerebellum of a hemi-parkinsonian male rat model of PD. D1R expression was higher in PD animals compared to sham animals in both hemispheres in the purkinje cell layer (PCL) and granule cell layer (GCL) of the cerebellar cortex. Interestingly, D2R expression was higher in PD animals than sham animals mostly in the posterior lobe of the PCL, but no discernible pattern of D2R expression was seen in the GCL between PD and sham animals. To our knowledge, we are the first to report these findings, which may lay the foundation for further interrogation of the role of the cerebellum in PD therapy and/or pathophysiology.
Collapse
Affiliation(s)
- Emily C Mahoney-Rafferty
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Heidi R Tucker
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Kainat Akhtar
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Rachael Herlihy
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Aliyah Audil
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Dia Shah
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Megan Gupta
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Eliyahu M Kochman
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Paul J Feustel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Eric S Molho
- Department of Neurology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Julie G Pilitsis
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA; Department of Neurosurgery, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Damian S Shin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA; Department of Neurology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
23
|
Bayot M, Dujardin K, Gérard M, Braquet A, Tard C, Betrouni N, Defebvre L, Delval A. The contribution of executive control dysfunction to freezing of gait in Parkinson's disease. Clin Neurophysiol 2023; 152:75-89. [PMID: 37356311 DOI: 10.1016/j.clinph.2023.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/16/2023] [Accepted: 05/06/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE An executive dysfunction is supposed to contribute to freezing of gait (FoG) in Parkinson's disease. We aimed to investigate at a behavioral and cortical levels whether an attentional load (particularly, a conflicting situation) can specifically impact preparation and execution phases of step initiation in parkinsonian patients with FoG. METHODS Fifteen patients with FoG, 16 without and 15 controls performed an adapted version of the Attention Network Test, with step initiation as response instead of the standard manual keypress. Kinetic and kinematic features of gait initiation as well as high-resolution electroencephalography were recorded during the task. RESULTS Patients with FoG presented an impaired executive control. Step execution time was longer in parkinsonian patients. However, the executive control effect on step execution time was not different between all groups. Compared to patients, controls showed a shorter step initiation-locked alpha desynchronization, and an earlier, more intense and shorter beta desynchronization over the sensorimotor cortex. Even though controls were faster, the induced alpha and beta activity associated with the effect of executive control didn't differ between patients and controls. CONCLUSIONS Tasks of conflict resolution lead to a comparable alteration of step initiation and its underlying brain activity in all groups. Links between executive control, gait initiation and FoG seem more complex than expected. SIGNIFICANCE This study questions the cognitive hypothesis in the pathophysiology of freezing of gait. Executive dysfunction is associated with FoG but is not the main causal mechanism since the interaction between attention and motor preparation didn't provoke FoG.
Collapse
Affiliation(s)
- Madli Bayot
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Clinical Neurophysiology, F-59000 Lille, France.
| | - Kathy Dujardin
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Neurology and Movement Disorders, F-59000 Lille, France.
| | - Morgane Gérard
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Clinical Neurophysiology, F-59000 Lille, France.
| | | | - Céline Tard
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Neurology and Movement Disorders, F-59000 Lille, France.
| | - Nacim Betrouni
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Clinical Neurophysiology, F-59000 Lille, France.
| | - Luc Defebvre
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Neurology and Movement Disorders, F-59000 Lille, France.
| | - Arnaud Delval
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Clinical Neurophysiology, F-59000 Lille, France.
| |
Collapse
|
24
|
Johansson H, Folkerts AK, Hammarström I, Kalbe E, Leavy B. Effects of motor-cognitive training on dual-task performance in people with Parkinson's disease: a systematic review and meta-analysis. J Neurol 2023; 270:2890-2907. [PMID: 36820916 PMCID: PMC10188503 DOI: 10.1007/s00415-023-11610-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/24/2023]
Abstract
Motor-cognitive training in Parkinson's disease (PD) can positively affect gait and balance, but whether motor-cognitive (dual-task) performance improves is unknown. This meta-analysis, therefore, aimed to establish the current evidence on the effects of motor-cognitive training on dual-task performance in PD. Systematic searches were conducted in five databases and 11 studies with a total of 597 people (mean age: 68.9 years; mean PD duration: 6.8 years) were included. We found a mean difference in dual-task gait speed (0.12 m/s (95% CI 0.08, 0.17)), dual-task cadence (2.91 steps/min (95% CI 0.08, 5.73)), dual-task stride length (10.12 cm (95% CI 4.86, 15.38)) and dual-task cost on gait speed (- 8.75% (95% CI - 14.57, - 2.92)) in favor of motor-cognitive training compared to controls. The GRADE analysis revealed that the findings were based on high certainty evidence. Thus, we can for the first time systematically show that people with PD can improve their dual-task ability through motor-cognitive training.
Collapse
Affiliation(s)
- Hanna Johansson
- Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels Allé 23, Huddinge, 14183, Stockholm, Sweden.
- Karolinska University Hospital, Theme Womens Health and Allied Health Professionals, Stockholm, Sweden.
| | - Ann-Kristin Folkerts
- Medical Psychology | Neuropsychology and Gender Studies, Centre for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ida Hammarström
- Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels Allé 23, Huddinge, 14183, Stockholm, Sweden
| | - Elke Kalbe
- Medical Psychology | Neuropsychology and Gender Studies, Centre for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Breiffni Leavy
- Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels Allé 23, Huddinge, 14183, Stockholm, Sweden
- Karolinska University Hospital, Theme Womens Health and Allied Health Professionals, Stockholm, Sweden
- Stockholm Sjukhem Foundation, Mariebergsgatan 22, 112 19, Stockholm, Sweden
| |
Collapse
|
25
|
Espinoza AI, Scholl JL, Singh A. TMS Bursts Can Modulate Local and Networks Oscillations During Lower-Limb Movement. J Clin Neurophysiol 2023; 40:371-377. [PMID: 34560704 DOI: 10.1097/wnp.0000000000000896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Lower-limb motor functions involve processing information via both motor and cognitive control networks. Measuring oscillations is a key element in communication within and between cortical networks during high-order motor functions. Increased midfrontal theta oscillations are related to improved lower-limb motor performances in patients with movement disorders. Noninvasive neuromodulation approaches have not been explored extensively to understand the oscillatory mechanism of lower-limb motor functions. This study aims to examine the effects of repetitive transcranial magnetic stimulation on local and network EEG oscillations in healthy elderly subjects. METHODS Eleven healthy elderly subjects (67-73 years) were recruited via advertisements, and they underwent both active and sham stimulation procedures in a random, counterbalanced design. Transcranial magnetic stimulation bursts (θ-transcranial magnetic stimulation; 4 pulses/second) were applied over the midfrontal lead (vertex) before a GO-Cue pedaling task, and signals were analyzed using time-frequency methods. RESULTS Transcranial magnetic stimulation bursts increase the theta activity in the local ( p = 0.02) and the associated network during the lower-limb pedaling task ( p = 0.02). Furthermore, after task-related transcranial magnetic stimulation burst sessions, increased resting-state alpha activity was observed in the midfrontal region ( p = 0.01). CONCLUSIONS This study suggests the ability of midfrontal transcranial magnetic stimulation bursts to directly modulate local and network oscillations in a frequency manner during lower-limb motor task. Transcranial magnetic stimulation burst-induced modulation may provide insights into the functional roles of oscillatory activity during lower-limb movement in normal and disease conditions.
Collapse
Affiliation(s)
| | - Jamie L Scholl
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, South Dakota, U.S.A. ; and
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, U.S.A
| | - Arun Singh
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, South Dakota, U.S.A. ; and
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, U.S.A
| |
Collapse
|
26
|
Longhurst JK, Sreenivasan KR, Kim J, Cummings JL, John SE, Poston B, Cordes D, Rider JV, Landers MR. Cortical thickness is related to cognitive-motor automaticity and attention allocation in individuals with Alzheimer's disease: a regions of interest study. Exp Brain Res 2023; 241:1489-1499. [PMID: 37085647 DOI: 10.1007/s00221-023-06618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Alzheimer's disease (AD) is characterized by a distinct pattern of cortical thinning and resultant changes in cognition and function. These result in prominent deficits in cognitive-motor automaticity. The relationship between AD-related cortical thinning and decreased automaticity is not well-understood. We aimed to investigate the relationship between cortical thickness regions-of-interest (ROI) and automaticity and attention allocation in AD using hypothesis-driven and exploratory approaches. We performed an ROI analysis of 46 patients with AD. Data regarding MR images, demographic characteristics, cognitive-motor dual task performance, and cognition were extracted from medical records. Cortical thickness was calculated from MR T1 images using FreeSurfer. Data from the dual task assessment was used to calculate the combined dual task effect (cDTE), a measure of cognitive-motor automaticity, and the modified attention allocation index (mAAI). Four hierarchical multiple linear regression models were conducted regressing cDTE and mAAI separately on (1) hypothesis-generated ROIs and (2) exploratory ROIs. For cDTE, cortical thicknesses explained 20.5% (p = 0.014) and 25.9% (p = 0.002) variability in automaticity in the hypothesized ROI and exploratory models, respectively. The dorsal lateral prefrontal cortex (DLPFC) (β = - 0.479, p = 0.018) and superior parietal cortex (SPC) (β = 0.467, p = 0.003), and were predictors of automaticity. For mAAI, cortical thicknesses explained 20.7% (p = 0.025) and 28.3% (p = 0.003) variability in attention allocation in the hypothesized ROI and exploratory models, respectively. Thinning of SPC and fusiform gyrus were associated with motor prioritization (β = - 0.405, p = 0.013 and β = - 0.632, p = 0.004, respectively), whereas thinning of the DLPFC was associated with cognitive prioritization (β = 0.523, p = 0.022). Cortical thinning in AD was related to cognitive-motor automaticity and task prioritization, particularly in the DLPFC and SPC. This suggests that these regions may play a primary role in automaticity and attentional strategy during dual-tasking.
Collapse
Affiliation(s)
- Jason K Longhurst
- Department of Physical Therapy and Athletic Training, Saint Louis University, 3437 Caroline Mall Suite 1026, Saint Louis, MO, 63104, USA.
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA.
- Department of Physical Therapy, University of Nevada, Las Vegas, USA.
| | - Karthik R Sreenivasan
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
- Department of Brain Health, University of Nevada, Las Vegas, USA
| | - Jemma Kim
- Department of Physical Therapy and Athletic Training, Saint Louis University, 3437 Caroline Mall Suite 1026, Saint Louis, MO, 63104, USA
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, USA
| | - Samantha E John
- Department of Brain Health, University of Nevada, Las Vegas, USA
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, USA
| | - Dietmar Cordes
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
- Department of Brain Health, University of Nevada, Las Vegas, USA
- Department of Psychology and Neuroscience, University of Colorado, Boulder, USA
| | - John V Rider
- School of Occupational Therapy, Touro University, Henderson, NV, USA
| | - Merrill R Landers
- Department of Physical Therapy, University of Nevada, Las Vegas, USA
| |
Collapse
|
27
|
Ohara M, Hirata K, Hallett M, Matsubayashi T, Chen Q, Kina S, Shimano K, Hirakawa A, Yokota T, Hattori T. Long-term levodopa ameliorates sequence effect in simple, but not complex walking in early Parkinson's disease patients. Parkinsonism Relat Disord 2023; 108:105322. [PMID: 36822140 PMCID: PMC10082924 DOI: 10.1016/j.parkreldis.2023.105322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND The sequence effect (SE) is characterized by the progressive decrement of movements and is often observed in Parkinson's disease (PD) patients. While acute effect of levodopa does not ameliorate the SE, the effect of long-term levodopa treatment for the SE remains unknown. OBJECTIVE We aimed to elucidate the SEs during various gait conditions and their response to long-term levodopa treatment in drug-naïve PD patients. METHODS Nineteen drug-naïve PD patients and 21 healthy controls were enrolled. Gait parameters were measured via wearable inertial sensors in the following conditions:1) straight walking, 2) circular walking: walking a circle of 1 m diameter in a clock-wise direction for 3 laps, 3) straight or circular walking under cognitive-motor dual-task (serial 7s subtractions). PD patients were evaluated at baseline, within 1 h after intravenous administration of levodopa, and after one, three, and six months treatment with levodopa. The SE was measured by a linear regression slope by plotting consecutive stride lengths over steps. Patients were also separately analyzed depending on laterality of symptoms. RESULTS Long-term levodopa treatment ameliorated the SE only during single-task straight walking. The SE during circular walking was exacerbated after long-term levodopa treatment for right-side dominant patients. During dual-task straight walking, the SE at baseline was greater in right-side dominant PD patients. CONCLUSIONS The SE only during single-task straight walking can be ameliorated by long-term levodopa treatment. However, the SE may be exaggerated by cognitive motor interference or by asymmetrical stride length with/without long-term levodopa treatment, depending on the laterality of symptoms.
Collapse
Affiliation(s)
- Masahiro Ohara
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kosei Hirata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Taiki Matsubayashi
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Qingmeng Chen
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoko Kina
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kaoru Shimano
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akihiro Hirakawa
- Department of Clinical Biostatistics, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takaaki Hattori
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
28
|
Pu L, Liu T, Tang WC, Song C, Jin M, Ren L, Li T, Liang Z. Greater prefrontal activation during sitting toe tapping predicts severer freezing of gait in Parkinson's disease: an fNIRS study. Cereb Cortex 2023; 33:959-968. [PMID: 35348637 DOI: 10.1093/cercor/bhac114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Previous studies have revealed that, compared with Parkinson's disease (PD) patients without freezing of gait (FoG), the ones with FoG showed greater prefrontal activation while doing lower-limb movements involving standing, walking and turning, which require both locomotor and balance control. However, the relation between FoG and pure locomotor control as well as its underlying mechanism remain unclear. METHODS A total of 56 PD subjects were recruited and allocated to PD-FoG and PD-noFoG subgroups, and 34 age-matched heathy adults were included as heathy control (HC). Functional near-infrared spectroscopy was used to measure their prefrontal activation in a sitting lower-limb movement task, wherein subjects were asked to sit and tap their right toes as big and as fast as possible. RESULTS Result of one-way ANOVA (Group: PD-FoG vs. PD-noFoG vs. HC) revealed greater activation in the right prefrontal cortex in the PD-FoG group than in the other 2 groups. Linear mixed-effects model showed consistent result. Furthermore, the right prefrontal activation positively correlated with the severity of FoG symptoms in PD-FoG patients. CONCLUSION These findings suggested that PD patients with FoG require additional cognitive resources to compensate their damaged automaticity in locomotor control, which is more pronounced in severe FoG patients than milder ones.
Collapse
Affiliation(s)
- Lanlan Pu
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road, Dalian, Liaoning 116011, China
| | - Tao Liu
- School of Health, Fujian Medical University, Xuefubei Road, Fuzhou 350122, Fujian, China.,School of Management, Shanghai University, Shangda Road, Shanghai 200444, China.,School of Management, Zhejiang University, Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - William C Tang
- Department of Biomedical Engineering, University of California, Irvine 92697, CA, USA
| | - Chunli Song
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road, Dalian, Liaoning 116011, China
| | - Mingyan Jin
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Linggong Road, Dalian 116024, Liaoning, China
| | - Lu Ren
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road, Dalian, Liaoning 116011, China
| | - Tao Li
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road, Dalian, Liaoning 116011, China
| | - Zhanhua Liang
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road, Dalian, Liaoning 116011, China
| |
Collapse
|
29
|
Acute Hypobaric Hypoxia Exposure Causes Neurobehavioral Impairments in Rats: Role of Brain Catecholamines and Tetrahydrobiopterin Alterations. Neurochem Res 2023; 48:471-486. [PMID: 36205808 DOI: 10.1007/s11064-022-03767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 02/07/2023]
Abstract
Hypoxia is a state in which the body or a specific part of the body is deprived of adequate oxygen supply at the tissue level. Sojourners involved in different activities at high altitudes (> 2500 m) face hypobaric hypoxia (HH) due to low oxygen in the atmosphere. HH is an example of generalized hypoxia, where the homeostasis of the entire body of an organism is affected and results in neurochemical changes. It is known that lower O2 levels affect catecholamines (CA), severely impairing cognitive and locomotor behavior. However, there is less evidence on the effect of HH-mediated alteration in brain Tetrahydrobiopterin (BH4) levels and its role in neurobehavioral impairments. Hence, this study aimed to shed light on the effect of acute HH on CA and BH4 levels with its neurobehavioral impact on Wistar rat models. After HH exposure, significant alteration of the CA levels in the discrete brain regions, viz., frontal cortex, hippocampus, midbrain, and cerebellum was observed. HH exposure significantly reduced spontaneous motor activity, motor coordination, and spatial memory. The present study suggests that the HH-induced behavioral changes might be related to the alteration of the expression pattern of CA and BH4-related genes and proteins in different rat brain regions. Overall, this study provides novel insights into the role of BH4 and CA in HH-induced neurobehavioral impairments.
Collapse
|
30
|
Löfgren M, Sandström A, Bileviciute-Ljungar I, Mannerkorpi K, Gerdle B, Ernberg M, Fransson P, Kosek E. The effects of a 15-week physical exercise intervention on pain modulation in fibromyalgia: Increased pain-related processing within the cortico-striatal- occipital networks, but no improvement of exercise-induced hypoalgesia. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100114. [PMID: 36660198 PMCID: PMC9843267 DOI: 10.1016/j.ynpai.2023.100114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Dysfunctional top-down pain modulation is a hallmark of fibromyalgia (FM) and physical exercise is a cornerstone in FM treatment. The aim of this study was to explore the effects of a 15-week intervention of strengthening exercises, twice per week, supervised by a physiotherapist, on exercise-induced hypoalgesia (EIH) and cerebral pain processing in FM patients and healthy controls (HC). FM patients (n = 59) and HC (n = 39) who completed the exercise intervention as part of a multicenter study were examined at baseline and following the intervention. Following the exercise intervention, FM patients reported a reduction of pain intensity, fibromyalgia severity and depression. Reduced EIH was seen in FM patients compared to HC at baseline and no improvement of EIH was seen following the 15-week resistance exercise intervention in either group. Furthermore, a subsample (Stockholm site: FM n = 18; HC n = 19) was also examined with functional magnetic resonance imaging (fMRI) during subjectively calibrated thumbnail pressure pain stimulations at baseline and following intervention. A significant main effect of exercise (post > pre) was observed both in FM patients and HC, in pain-related brain activation within left dorsolateral prefrontal cortex and caudate, as well as increased functional connectivity between caudate and occipital lobe bordering cerebellum (driven by the FM patients). In conclusion, the results indicate that 15-week resistance exercise affect pain-related processing within the cortico-striatal-occipital networks (involved in motor control and cognition), rather than directly influencing top-down descending pain inhibition. In alignment with this, exercise-induced hypoalgesia remained unaltered.
Collapse
Key Words
- AAL, Automated Anatomical Labeling
- ACR, American College of Rheumatology
- CNS, central nervous system
- CPM, conditioned pain modulation
- EIH, exercise-induced hypoalgesia
- Exercise induced hypoalgesia
- Exercise intervention
- FD, Frame-wise displacement
- FEW, family-wise error
- FIQ, Fibromyalgia Impact Questionnaire
- FM, fibromyalgia
- FOV, field of view
- FWHM, full-width-half-maximum
- Fibromyalgia
- Functional connectivity
- Functional magnetic resonance imaging (fMRI)
- GLM, general linear model
- HADS, Hospital Anxiety and Depression Scale
- HC, healthy controls
- MNI, Montreal Neurological Institute
- MVC, maximum voluntary contraction force
- NSAIDs, non-steroidal anti-inflammatory drugs
- P50, pressure stimuli corresponding to a pain rating of 50mm on a 100 mm VAS
- PPI, psychophysiological interaction
- PPTs, pressure pain thresholds
- Pressure pain
- RM, repetition maximum
- SM, stimulation maximum
- SPM, Statistical Parametric Mapping
- T1, longitudinal relaxation time
- T2, transverse relaxation time
- TR/TE, time repetition/time echo
- VAS, visual analogue scale
- VOI, volume of interest
- dlPFC, dorsolateral prefrontal cortex
- fMRI, functional magnetic resonance imaging
- rACC, rostral anterior cingulate cortex
Collapse
Affiliation(s)
- Monika Löfgren
- Department of Clinical Sciences, Karolinska Institutet and Department of Rehabilitation Medicine, Danderyd Hospital, Stockholm SE-182 88, Sweden
| | - Angelica Sandström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden,Department of Neuroradiology, Karolinska University Hospital, Stockholm SE-171 78, Sweden,Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Indre Bileviciute-Ljungar
- Department of Clinical Sciences, Karolinska Institutet and Department of Rehabilitation Medicine, Danderyd Hospital, Stockholm SE-182 88, Sweden
| | - Kaisa Mannerkorpi
- Institute of Neuroscience and Physiology, Department of Health and Rehabilitation, Physiotherapy Unit, Sahlgrenska Academy, Gothenburg University, Gothenburg SE- 413 90, Sweden
| | - Björn Gerdle
- Pain and Rehabilitation Centre, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping SE-581 83, Sweden
| | - Malin Ernberg
- Department of Dental Medicine, Karolinska Institutet and Scandinavian Centre for Orofacial Neurosciences, Huddinge SE-141 04, Sweden
| | - Peter Fransson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden,Department of Neuroradiology, Karolinska University Hospital, Stockholm SE-171 78, Sweden
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden,Department of Neuroradiology, Karolinska University Hospital, Stockholm SE-171 78, Sweden,Department of Surgical Sciences, Uppsala University, Uppsala SE- 752 36, Sweden,Corresponding author at: Department of Clinical Neuroscience, Karolinska Institutet, Nobels väg 9, Stockholm SE-171 77, Sweden.
| |
Collapse
|
31
|
Zajac JA, Porciuncula F, Cavanaugh JT, McGregor C, Harris BA, Smayda KE, Awad LN, Pantelyat A, Ellis TD. Feasibility and Proof-of-Concept of Delivering an Autonomous Music-Based Digital Walking Intervention to Persons with Parkinson's Disease in a Naturalistic Setting. JOURNAL OF PARKINSON'S DISEASE 2023; 13:1253-1265. [PMID: 37840504 PMCID: PMC10657706 DOI: 10.3233/jpd-230169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Reduced motor automaticity in Parkinson's disease (PD) negatively impacts the quality, intensity, and amount of daily walking. Rhythmic auditory stimulation (RAS), a clinical intervention shown to improve walking outcomes, has been limited by barriers associated with the need for ongoing clinician input. OBJECTIVE To assess the feasibility, proof-of-concept, and preliminary clinical outcomes associated with delivering an autonomous music-based digital walking intervention based on RAS principles to persons with PD in a naturalistic setting. METHODS Twenty-three persons with PD used the digital intervention independently for four weeks to complete five weekly 30-minute sessions of unsupervised, overground walking with music-based cues. The intervention progressed autonomously according to real-time gait sensing. Feasibility of independent use was assessed by examining participant adherence, safety, and experience. Intervention proof-of-concept was assessed by examining spatiotemporal metrics of gait quality, daily minutes of moderate intensity walking, and daily steps. Preliminary clinical outcomes were assessed following intervention completion. RESULTS Participants completed 86.4% of sessions and 131.1% of the prescribed session duration. No adverse events were reported. Gait speed, stride length, and cadence increased within sessions, and gait variability decreased (p < 0.05). Compared to baseline, increased daily moderate intensity walking (mean Δ= +21.44 minutes) and steps (mean Δ= +3,484 steps) occurred on designated intervention days (p < 0.05). Quality of life, disease severity, walking endurance, and functional mobility were improved after four weeks (p < 0.05). CONCLUSIONS Study findings supported the feasibility and potential clinical utility of delivering an autonomous digital walking intervention to persons with PD in a naturalistic setting.
Collapse
Affiliation(s)
- Jenna A. Zajac
- College of Health and Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, USA
| | - Franchino Porciuncula
- College of Health and Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, USA
| | - James T. Cavanaugh
- Department of Physical Therapy, University of New England, Portland, ME, USA
| | - Colin McGregor
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Louis N. Awad
- College of Health and Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, USA
| | - Alexander Pantelyat
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Terry D. Ellis
- College of Health and Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, USA
| |
Collapse
|
32
|
Feng H, Jiang Y, Lin J, Qin W, Jin L, Shen X. Cortical activation and functional connectivity during locomotion tasks in Parkinson's disease with freezing of gait. Front Aging Neurosci 2023; 15:1068943. [PMID: 36967824 PMCID: PMC10032375 DOI: 10.3389/fnagi.2023.1068943] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Freezing of gait (FoG) is a severely disabling symptom in Parkinson's disease (PD). The cortical mechanisms underlying FoG during locomotion tasks have rarely been investigated. Objectives We aimed to compare the cerebral haemodynamic response during FoG-prone locomotion tasks in patients with PD and FoG (PD-FoG), patients with PD but without FoG (PD-nFoG), and healthy controls (HCs). Methods Twelve PD-FoG patients, 10 PD-nFoG patients, and 12 HCs were included in the study. Locomotion tasks included normal stepping, normal turning and fast turning ranked as three difficulty levels based on kinematic requirements and probability of provoking FoG. During each task, we used functional near-infrared spectroscopy to capture concentration changes of oxygenated haemoglobin (ΔHBO2) and deoxygenated haemoglobin (ΔHHB) that reflected cortical activation, and recorded task performance time. The cortical regions of interest (ROIs) were prefrontal cortex (PFC), supplementary motor area (SMA), premotor cortex (PMC), and sensorimotor cortex (SMC). Intra-cortical functional connectivity during each task was estimated based on correlation of ΔHBO2 between ROIs. Two-way multivariate ANOVA with task performance time as a covariate was conducted to investigate task and group effects on cerebral haemodynamic responses of ROIs. Z statistics of z-scored connectivity between ROIs were used to determine task and group effects on functional connectivity. Results PD-FoG patients spent a nearly significant longer time completing locomotion tasks than PD-nFoG patients. Compared with PD-nFoG patients, they showed weaker activation (less ΔHBO2) in the PFC and PMC. Compared with HCs, they had comparable ΔHBO2 in all ROIs but more negative ΔHHB in the SMC, whereas PD-nFoG showed SMA and PMC hyperactivity but more negative ΔHHB in the SMC. With increased task difficulty, ΔHBO2 increased in each ROI except in the PFC. Regarding functional connectivity during normal stepping, PD-FoG patients showed positive and strong PFC-PMC connectivity, in contrast to the negative PFC-PMC connectivity observed in HCs. They also had greater PFC-SMC connectivity than the other groups. However, they exhibited decreased SMA-SMC connectivity when task difficulty increased and had lower SMA-PMC connectivity than HCs during fast turning. Conclusion Insufficient compensatory cortical activation and depletion of functional connectivity during complex locomotion in PD-FoG patients could be potential mechanisms underlying FoG. Clinical trial registration Chinese clinical trial registry (URL: http://www.chictr.org.cn, registration number: ChiCTR2100042813).
Collapse
Affiliation(s)
- HongSheng Feng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - YanNa Jiang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - JinPeng Lin
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - WenTing Qin
- Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - LingJing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Xia Shen
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Rehabilitation Medicine Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Xia Shen,
| |
Collapse
|
33
|
Moreira-Neto A, Ugrinowitsch C, Coelho DB, de Lima-Pardini AC, Barbosa ER, Teixeira LA, Amaro E, Horak FB, Mancini M, Nucci MP, Silva-Batista C. Freezing of gait, gait initiation, and gait automaticity share a similar neural substrate in Parkinson's disease. Hum Mov Sci 2022; 86:103018. [DOI: 10.1016/j.humov.2022.103018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/17/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
|
34
|
Vitório R, Morris R, Das J, Walker R, Mancini M, Stuart S. Brain activity response to cues during gait in Parkinson’s disease: A study protocol. PLoS One 2022; 17:e0275894. [PMID: 36395190 PMCID: PMC9671304 DOI: 10.1371/journal.pone.0275894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 09/22/2022] [Indexed: 11/19/2022] Open
Abstract
Various cueing strategies (internal and external) have been used to alleviate gait deficits in Parkinson’s disease (PD). However, it remains unclear which type of cueing strategy is most effective at different disease stages or with more severe walking impairment, such as freezing of gait (FOG). The underlying neural mechanisms of response to cueing are also unknown. This trial aims to: (i) determine brain activity response to cue stimulus (internal, visual, auditory or tactile) when walking in PD and; (ii) examine changes in brain activity to cues at different stages of PD. This ongoing single-site study uses an exploratory observational design, with laboratory application of cues for gait deficit. A total of 80 people with PD who meet the inclusion criteria will be enrolled. Participants are split into groups dependent on their disease stage (classified with the Hoehn and Yahr (H&Y) scale); n = 20 H&YI; n = 30 H&YII; n = 30 H&YIII. Within the H&Y stage II and III groups, we will also ensure recruitment of a sub-group of 15 individuals with FOG within each group. Participants perform walking tasks under several conditions: baseline walking without cues; randomized cued walking conditions [internal and external (visual, auditory and tactile) cues]. A combined functional near-infrared spectroscopy and electroencephalography system quantifies cortical brain activity while walking. Inertial sensors are used to assess gait. Primary outcome measures are cue-related changes in cortical brain activity while walking, including the relative change in cortical HbO2 and the power spectral densities at alpha (8-13Hz), beta (13-30Hz), delta (0.5-4Hz), theta (4-8Hz) and gamma (30-40Hz) frequency bandwidths. Secondary outcome measures are cue-related changes in spatiotemporal gait characteristics. Findings will enhance our understanding about the cortical responses to different cueing strategies and how they are influenced by PD progression and FOG status. This trial is registered at clinicaltrials.gov (NCT04863560; April 28, 2021, https://clinicaltrials.gov/ct2/show/NCT04863560).
Collapse
Affiliation(s)
- Rodrigo Vitório
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Rosie Morris
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Julia Das
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Richard Walker
- Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, Newcastle upon Tyne, United Kingdom
| | - Martina Mancini
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Samuel Stuart
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Siew-Pin Leuk J, Yow KE, Zi-Xin Tan C, Hendy AM, Kar-Wing Tan M, Hock-Beng Ng T, Teo WP. A meta-analytical review of transcranial direct current stimulation parameters on upper limb motor learning in healthy older adults and people with Parkinson's disease. Rev Neurosci 2022; 34:325-348. [PMID: 36138560 DOI: 10.1515/revneuro-2022-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022]
Abstract
Current literature lacks consolidated evidence for the impact of stimulation parameters on the effects of transcranial direct current stimulation (tDCS) in enhancing upper limb motor learning. Hence, we aim to synthesise available methodologies and results to guide future research on the usage of tDCS on upper limb motor learning, specifically in older adults and Parkinson's disease (PD). Thirty-two studies (Healthy older adults, N = 526, M = 67.25, SD = 4.30 years; PD, N = 216, M = 66.62, SD = 6.25 years) were included in the meta-analysis. All included studies consisted of active and sham protocols. Random effect meta-analyses were conducted for (i) subjects (healthy older adults and PD); (ii) intensity (1.0, 1.5, 2 mA); (iii) electrode montage (unilateral anodal, bilateral anodal, unilateral cathodal); (iv) stimulation site (cerebellum, frontal, motor, premotor, SMA, somatosensory); (v) protocol (online, offline). Significant tDCS effect on motor learning was reported for both populations, intensity 1.0 and 2.0 mA, unilateral anodal and cathodal stimulation, stimulation site of the motor and premotor cortex, and both online and offline protocols. Regression showed no significant relationship between tDCS effects and density. The efficacy of tDCS is also not affected by the number of sessions. However, studies that reported only single session tDCS found significant negative association between duration with motor learning outcomes. Our findings suggest that different stimulation parameters enhanced upper limb motor learning in older adults and PD. Future research should combine tDCS with neuroimaging techniques to help with optimisation of the stimulation parameters, considering the type of task and population.
Collapse
Affiliation(s)
- Jessie Siew-Pin Leuk
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Kai-En Yow
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Clenyce Zi-Xin Tan
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Ashlee M Hendy
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences (SENS), Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia
| | - Mika Kar-Wing Tan
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Tommy Hock-Beng Ng
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Wei-Peng Teo
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| |
Collapse
|
36
|
Attentional focus effect on dual-task walking in Parkinson's disease with and without freezing of gait. GeroScience 2022; 45:177-195. [PMID: 35726118 PMCID: PMC9886752 DOI: 10.1007/s11357-022-00606-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 06/07/2022] [Indexed: 02/03/2023] Open
Abstract
In Parkinson's disease, the optimal attentional focus strategy for dual-task walking may vary with freezing of gait (FOG), due to different severities of impaired automaticity. The study aimed to investigate (i) the immediate effect of attentional focus on dual-task walking in participants with and without FOG, and (ii) the training effect of attentional focus on walking, FOG, and falls. In experiment 1, FOG and non-FOG groups (16 participants each) performed a dual-task of holding two interlocking rings apart while walking, either without attention instruction or with instructions to focus attention internally or externally. Gait parameters and ring-touching times were measured. In experiment 2, 30 participants with FOG were randomized to 6 weeks of dual-task training with internal-focus or external-focus instruction. Before and after training, we recorded timed up-and-go (TUG) and TUG dual-task (TUGdt) in on-medication and off-medication states, and the numbers of FOG episodes and falls. The non-FOG group showed less step length variability and shorter ring-touching times with external-focus. The FOG group showed less step length variability, less cadence, increased gait velocity, and longer step lengths with internal-focus compared to external-focus and no-focus instructions. Both internal-focus and external-focus training reduced FOG and falls after intervention, but only internal-focus training reduced TUG and TUGdt in both on-medication and off-medication states. Our findings suggest external-focus would enhance walking automaticity and the concurrent task accuracy for non-freezers, whereas for freezers, internal-focus could increase gait stability and lead to a more positive effect on improving locomotion control and reducing falling risk.
Collapse
|
37
|
Sigurdsson HP, Yarnall AJ, Galna B, Lord S, Alcock L, Lawson RA, Colloby SJ, Firbank MJ, Taylor J, Pavese N, Brooks DJ, O'Brien JT, Burn DJ, Rochester L. Gait‐Related Metabolic Covariance Networks at Rest in Parkinson's Disease. Mov Disord 2022; 37:1222-1234. [PMID: 35285068 PMCID: PMC9314598 DOI: 10.1002/mds.28977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/09/2022] Open
Abstract
Background Gait impairments are characteristic motor manifestations and significant predictors of poor quality of life in Parkinson's disease (PD). Neuroimaging biomarkers for gait impairments in PD could facilitate effective interventions to improve these symptoms and are highly warranted. Objective The aim of this study was to identify neural networks of discrete gait impairments in PD. Methods Fifty‐five participants with early‐stage PD and 20 age‐matched healthy volunteers underwent quantitative gait assessment deriving 12 discrete spatiotemporal gait characteristics and [18F]‐2‐fluoro‐2‐deoxyglucose‐positron emission tomography measuring resting cerebral glucose metabolism. A multivariate spatial covariance approach was used to identify metabolic brain networks that were related to discrete gait characteristics in PD. Results In PD, we identified two metabolic gait‐related covariance networks. The first correlated with mean step velocity and mean step length (pace gait network), which involved relatively increased and decreased metabolism in frontal cortices, including the dorsolateral prefrontal and orbital frontal, insula, supplementary motor area, ventrolateral thalamus, cerebellum, and cuneus. The second correlated with swing time variability and step time variability (temporal variability gait network), which included relatively increased and decreased metabolism in sensorimotor, superior parietal cortex, basal ganglia, insula, hippocampus, red nucleus, and mediodorsal thalamus. Expression of both networks was significantly elevated in participants with PD relative to healthy volunteers and were not related to levodopa dosage or motor severity. Conclusions We have identified two novel gait‐related brain networks of altered glucose metabolism at rest. These gait networks could serve as a potential neuroimaging biomarker of gait impairments in PD and facilitate development of therapeutic strategies for these disabling symptoms. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Hilmar P. Sigurdsson
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
| | - Alison J. Yarnall
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne United Kingdom
| | - Brook Galna
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
- Health Futures Institute Murdoch University Perth Australia
| | - Sue Lord
- Auckland University of Technology Auckland New Zealand
| | - Lisa Alcock
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
| | - Rachael A. Lawson
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
| | - Sean J. Colloby
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
| | - Michael J. Firbank
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
| | - John‐Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
| | - Nicola Pavese
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
- Department of Nuclear Medicine and PET Aarhus University Hospital Aarhus Denmark
| | - David J. Brooks
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
- Department of Nuclear Medicine and PET Aarhus University Hospital Aarhus Denmark
| | - John T. O'Brien
- Department of Psychiatry University of Cambridge Cambridge United Kingdom
| | - David J. Burn
- Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
| | - Lynn Rochester
- Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne United Kingdom
| |
Collapse
|
38
|
Ehgoetz Martens KA, Matar E, Phillips JR, Shine JM, Grunstein RR, Halliday GM, Lewis SJG. Narrow doorways alter brain connectivity and step patterns in isolated REM sleep behaviour disorder. Neuroimage Clin 2022; 33:102958. [PMID: 35151040 PMCID: PMC8844611 DOI: 10.1016/j.nicl.2022.102958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/19/2022]
Abstract
iRBD had slower and more variable stepping compared to controls in this VR task. iRBD showed exaggerated responses when passing narrow compared to wide doorways iRBD had altered task-related brain connectivity which was correlated to motor deficits.
Background Motor impairments in those with isolated REM sleep behaviour disorder (iRBD) significantly increases the likelihood of developing Lewy body disease (e.g. Parkinson’s disease and Dementia with Lewy Bodies). Objective This study sought to explore the prodromal process of neurodegeneration by examining the neural signature underlying motor deficits in iRBD patients. Methods A virtual reality (VR) gait paradigm (which has previously been shown to elicit adaptive changes in gait performance whilst navigating doorways in Parkinson’s Disease - PD) was paired with fMRI to investigate whether iRBD patients demonstrated worsened motor performance and altered connectivity across frontoparietal, motor and basal ganglia networks compared to healthy controls. Forty participants (23 iRBD and 17 healthy controls) completed the virtual reality gait task whilst in the MRI scanner, and an additional cohort of 19 Early PD patients completed the behavioural virtual reality gait task. Results As predicted, iRBD patients demonstrated slower and more variable stepping compared to healthy control participants and demonstrated an exaggerated response when navigating narrow compared to wide doorways, a phenomenon characteristically seen in PD. The iRBD patients also demonstrated less BOLD signal change in the left posterior putamen and right mesencephalic locomotor region, as well as reduced functional connectivity between the frontoparietal network and the motor network, when navigating narrow versus wide doorways compared to healthy control participants. Conclusions Taken together, this study demonstrates that iRBD patients have altered task-related brain connectivity, which may represent the neural underpinnings of early motor impairments that are evident in iRBD.
Collapse
Affiliation(s)
- Kaylena A Ehgoetz Martens
- ForeFront Research Team, Brain and Mind Centre, University of Sydney, Australia; Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Australia; Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Canada.
| | - Elie Matar
- ForeFront Research Team, Brain and Mind Centre, University of Sydney, Australia; Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Australia; Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Canada
| | - Joseph R Phillips
- ForeFront Research Team, Brain and Mind Centre, University of Sydney, Australia; Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Australia; School of Social Sciences and Psychology, Western Sydney University, Sydney, Australia
| | - James M Shine
- ForeFront Research Team, Brain and Mind Centre, University of Sydney, Australia; Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Australia
| | - Ron R Grunstein
- ForeFront Research Team, Brain and Mind Centre, University of Sydney, Australia; Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Canada
| | - Glenda M Halliday
- ForeFront Research Team, Brain and Mind Centre, University of Sydney, Australia
| | - Simon J G Lewis
- ForeFront Research Team, Brain and Mind Centre, University of Sydney, Australia; Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Australia; Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Canada; Sleep and Circadian Group (CIRUS), Woolcock Institute of Medical Research, University of Sydney and Royal Prince Alfred Hospital, Australia
| |
Collapse
|
39
|
Li R, Zou T, Wang X, Wang H, Hu X, Xie F, Meng L, Chen H. Basal ganglia atrophy-associated causal structural network degeneration in Parkinson's disease. Hum Brain Mapp 2022; 43:1145-1156. [PMID: 34792836 PMCID: PMC8764481 DOI: 10.1002/hbm.25715] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/09/2021] [Accepted: 11/02/2021] [Indexed: 01/18/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by both motor and non-motor symptoms. A convergent pathophysiological hallmark of PD is an early selective vulnerability within the basal ganglia circuit. However, the causal interactions between basal ganglia atrophy and progressive structural network alterations in PD remain unaddressed. Here, we adopted voxel-based morphometry method to measure gray matter (GM) volume for each participant (n = 84 PD patients and n = 70 matched healthy controls). Patients were first divided into three stages according to the Hoehn and Yahr (H&Y) and the Part III of Unified Parkinson's Disease Rating Scale scores respectively to analyze the stage-specific GM atrophy patterns. Then, the modulation of early caudate atrophy over other brain structures was evaluated using the whole-brain voxel-wise and region-of-interest-wise causal structural covariance network approaches. We found that GM atrophy progressively expands from the basal ganglia to the angular gyrus, temporal areas, and eventually spreads through the subcortical-cortical networks as PD progresses. Notably, we identified a shared caudate-associated degeneration network including the basal ganglia, thalamus, cerebellum, sensorimotor cortex, and cortical association areas with the PD progressive factors. These findings suggest that the early structural vulnerability of basal ganglia in PD may play a pivotal role in the modulation of motor and non-motor circuits at the structural level. Our work provides evidence for a novel mechanism of network degeneration that underlies the pathology of PD and may have potential clinical applications in the development of early predictors of PD onset and progress.
Collapse
Affiliation(s)
- Rong Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Ting Zou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xuyang Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Hongyu Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xiaofei Hu
- Department of Radiology, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Fangfang Xie
- Department of Radiology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Li Meng
- Department of Radiology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of Radiology, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
40
|
Lenormand D, Piolino P. In search of a naturalistic neuroimaging approach: Exploration of general feasibility through the case of VR-fMRI and application in the domain of episodic memory. Neurosci Biobehav Rev 2021; 133:104499. [PMID: 34914938 DOI: 10.1016/j.neubiorev.2021.12.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022]
Abstract
Virtual Reality (VR) is an increasingly widespread tool for research as it allows the creation of experiments taking place in multimodal and daily-life-like environments, while keeping a strong experimental control. Adding neuroimaging to VR leads to a better understanding of the underlying brain networks activated during a naturalistic task, whether for research purposes or rehabilitation. The present paper focuses on the specific use of concurrent VR and fMRI and its technical challenges and feasibility, with a brief examination of the general existing solutions. Following the PRISMA guidelines, the review investigates the particular case of how VR-fMRI has explored episodic memory so far, with a comparison of object- and place-based episodic memory. This review confirms the involvement of cerebral regions well-known to be implicated in episodic memory and unravels other regions devoted to bodily and narrative aspects of the self, promoting new avenues of research in the domain of naturalistic episodic memory. Future studies should develop more immersive and interactive virtual neuroimaging features to increase ecological and embodied neurocognition aspects.
Collapse
Affiliation(s)
- Diane Lenormand
- Université de Paris, MC(2)Lab, 71 avenue Edouard Vaillant, 92100, Boulogne-Billancourt, France.
| | - Pascale Piolino
- Université de Paris, MC(2)Lab, 71 avenue Edouard Vaillant, 92100, Boulogne-Billancourt, France; Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
41
|
Araújo-Silva F, Santinelli FB, Felipe I Imaizumi L, Silveira APB, Vieira LHP, Alcock L, Barbieri FA. Temporal dynamics of cortical activity and postural control in response to the first levodopa dose of the day in people with Parkinson's disease. Brain Res 2021; 1775:147727. [PMID: 34788638 DOI: 10.1016/j.brainres.2021.147727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 11/02/2022]
Abstract
BACKGROUND Our understanding of how balance control responds to levodopa over the course of a single day in people with Parkinson's disease (PD) is limited with the majority of studies focused on isolated comparisons of ON vs. OFF levodopa medication. OBJECTIVE To evaluate the temporal dynamics of postural control following the first levodopa dose of the day during a challenging standing task in a group of people with PD. METHODS Changes in postural control were evaluated by monitoring cortical activity (covering frontal, motor, parietal and occipital areas), body sway parameters (force platform), and lower limb muscle activity (tibialis anterior and gastrocnemius medialis) in 15 individuals with PD during a semi-tandem standing task. Participants were assessed during two 60 second trials every 30 minutes (ON-30 ON-60 etc.) for 3 hours after the first matinal dose (ON-180). RESULTS Compared to when tested OFF-medication, cortical activity was increased across all four regions from ON-60 to ON-120 with early increases in alpha and beta band activity observed at ON-30. Levodopa was associated with increased gastrocnemius medialis activity (ON-30 to ON-120) and ankle co-contraction (ON-60 to ON-120). Changes in body sway outcomes (particularly in the anterior-posterior direction) were evident from ON-60 to ON-120. CONCLUSIONS Our results reveal a 60-minute window within which postural control outcomes may be obtained that are different compared to OFF-state and remain stable (from 60-minutes to 120-minutes after levodopa intake). Identifying a window of opportunity for measurement when individuals are optimally medicated is important for observations in a clinical and research setting.
Collapse
Affiliation(s)
- Fabiana Araújo-Silva
- São Paulo State University (UNESP), School of Sciences, Graduate Program in Movement Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, Brazil
| | - Felipe B Santinelli
- São Paulo State University (UNESP), School of Sciences, Graduate Program in Movement Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, Brazil; REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| | - Luis Felipe I Imaizumi
- São Paulo State University (UNESP), School of Sciences, Graduate Program in Movement Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, Brazil
| | - Aline P B Silveira
- São Paulo State University (UNESP), School of Sciences, Graduate Program in Movement Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, Brazil
| | - Luiz H P Vieira
- São Paulo State University (UNESP), School of Sciences, Graduate Program in Movement Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, Brazil
| | - Lisa Alcock
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, UK
| | - Fabio A Barbieri
- São Paulo State University (UNESP), School of Sciences, Graduate Program in Movement Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, Brazil.
| |
Collapse
|
42
|
Maiti B, Rawson KS, Tanenbaum AB, Koller JM, Snyder AZ, Campbell MC, Earhart GM, Perlmutter JS. Functional Connectivity of Vermis Correlates with Future Gait Impairments in Parkinson's Disease. Mov Disord 2021; 36:2559-2568. [PMID: 34109682 PMCID: PMC8595492 DOI: 10.1002/mds.28684] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Dysfunction of cerebellar vermis contributes to gait abnormalities in multiple conditions and may play a key role in gait impairment in Parkinson's disease (PD). OBJECTIVE The purpose of this study was to investigate whether altered resting-state functional connectivity of the vermis relates to subsequent impairment of specific domains of gait in PD. METHODS We conducted morphometric and resting-state functional connectivity MRI analyses contrasting 45 PD and 32 age-matched healthy participants. Quantitative gait measures were acquired with a GAITRite walkway at varying intervals after functional connectivity data acquisition. RESULTS At baseline, PD participants had significantly altered functional connectivity between vermis and sensorimotor cortex compared with controls. Altered vermal functional connectivity with bilateral paracentral lobules correlated with subsequent measures of variability in stride length, step time, and single support time after controlling for confounding variables including the interval between imaging and gait measures. Similarly, altered functional connectivity between vermis and left sensorimotor cortex correlated with mean stride length and its variability. Vermis volume did not relate to any gait measure. PD participants did not differ from controls in vermis volume or cortical thickness at the site of significant regional clusters. Only altered lobule V:sensorimotor cortex functional connectivity correlated with subsequent gait measures in exploratory analyses involving all the other cerebellar lobules. CONCLUSIONS These results demonstrate that abnormal vermal functional connectivity with sensorimotor cortex, in the absence of relevant vermal or cortical atrophy, correlates with subsequent gait impairment in PD. Our data reflect the potential of vermal functional connectivity as a novel imaging biomarker of gait impairment in PD. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Baijayanta Maiti
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Kerri S. Rawson
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO
| | - Aaron B. Tanenbaum
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Jonathan M. Koller
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Abraham Z. Snyder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Meghan C. Campbell
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Gammon M. Earhart
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO
| | - Joel S. Perlmutter
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
43
|
Gilat M, Ginis P, Zoetewei D, De Vleeschhauwer J, Hulzinga F, D'Cruz N, Nieuwboer A. A systematic review on exercise and training-based interventions for freezing of gait in Parkinson's disease. NPJ Parkinsons Dis 2021; 7:81. [PMID: 34508083 PMCID: PMC8433229 DOI: 10.1038/s41531-021-00224-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 08/12/2021] [Indexed: 12/16/2022] Open
Abstract
Freezing of gait (FOG) in Parkinson's disease (PD) causes severe patient burden despite pharmacological management. Exercise and training are therefore advocated as important adjunct therapies. In this meta-analysis, we assess the existing evidence for such interventions to reduce FOG, and further examine which type of training helps the restoration of gait function in particular. The primary meta-analysis across 41 studies and 1838 patients revealed a favorable moderate effect size (ES = -0.37) of various training modalities for reducing subjective FOG-severity (p < 0.00001), though several interventions were not directly aimed at FOG and some included non-freezers. However, exercise and training also proved beneficial in a secondary analysis on freezers only (ES = -0.32, p = 0.007). We further revealed that dedicated training aimed at reducing FOG episodes (ES = -0.24) or ameliorating the underlying correlates of FOG (ES = -0.40) was moderately effective (p < 0.01), while generic exercises were not (ES = -0.14, p = 0.12). Relevantly, no retention effects were seen after cessation of training (ES = -0.08, p = 0.36). This review thereby supports the implementation of targeted training as a treatment for FOG with the need for long-term engagement.
Collapse
Affiliation(s)
- Moran Gilat
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group (eNRGy), Leuven, Belgium.
| | - Pieter Ginis
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group (eNRGy), Leuven, Belgium
| | - Demi Zoetewei
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group (eNRGy), Leuven, Belgium
| | - Joni De Vleeschhauwer
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group (eNRGy), Leuven, Belgium
| | - Femke Hulzinga
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group (eNRGy), Leuven, Belgium
| | - Nicholas D'Cruz
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group (eNRGy), Leuven, Belgium
| | - Alice Nieuwboer
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group (eNRGy), Leuven, Belgium
| |
Collapse
|
44
|
Martini DN, Morris R, Madhyastha TM, Grabowski TJ, Oakley J, Hu SC, Zabetian CP, Edwards KL, Hiller A, Chung K, Ramsey K, Lapidus JA, Cholerton B, Montine TJ, Quinn JF, Horak FB. Relationships Between Sensorimotor Inhibition and Mobility in Older Adults With and Without Parkinson's Disease. J Gerontol A Biol Sci Med Sci 2021; 76:630-637. [PMID: 33252618 DOI: 10.1093/gerona/glaa300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Reduced cortical sensorimotor inhibition is associated with mobility and cognitive impairments in people with Parkinson's disease (PD) and older adults (OAs). However, there is a lack of clarity regarding the relationships among sensorimotor, cognitive, and mobility impairments. The purpose of this study was to determine how cortical sensorimotor inhibition relates to impairments in mobility and cognition in people with PD and OAs. METHOD Cortical sensorimotor inhibition was characterized with short-latency afferent inhibition (SAI) in 81 people with PD and 69 OAs. Six inertial sensors recorded single- and dual-task gait and postural sway characteristics during a 2-minute walk and a 1-minute quiet stance. Cognition was assessed across the memory, visuospatial, executive function, attention, and language domains. RESULTS SAI was significantly impaired in the PD compared to the OA group. The PD group preformed significantly worse across all gait and postural sway tasks. In PD, SAI significantly correlated with single-task foot strike angle and stride length variability, sway area, and jerkiness of sway in the coronal and sagittal planes. In OAs, SAI significantly related to single-task gait speed and stride length, dual-task stride length, and immediate recall (memory domain). No relationship among mobility, cognition, and SAI was observed. CONCLUSIONS Impaired SAI related to slower gait in OA and to increased gait variability and postural sway in people with PD, all of which have been shown to be related to increased fall risk.
Collapse
Affiliation(s)
- Douglas N Martini
- Department of Neurology, Oregon Health and Science University, Portland.,Department of Kinesiology, University of Massachusetts Amherst
| | - Rosie Morris
- Department of Neurology, Oregon Health and Science University, Portland
| | - Tara M Madhyastha
- Department of Radiology, University of Washington School of Medicine, Seattle
| | - Thomas J Grabowski
- Department of Radiology, University of Washington School of Medicine, Seattle
| | - John Oakley
- Department of Neurology, University of Washington School of Medicine, Seattle
| | - Shu-Ching Hu
- Department of Neurology, University of Washington School of Medicine, Seattle.,Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| | - Cyrus P Zabetian
- Department of Neurology, University of Washington School of Medicine, Seattle.,Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| | - Karen L Edwards
- Department of Epidemiology, University of California, Irvine
| | - Amie Hiller
- Department of Neurology, Oregon Health and Science University, Portland.,Portland Veterans Affairs Health Care System, Oregon
| | - Kathryn Chung
- Department of Neurology, Oregon Health and Science University, Portland.,Portland Veterans Affairs Health Care System, Oregon
| | - Katrina Ramsey
- Biostatistics & Design Program, Oregon Health and Science University, Portland
| | - Jodi A Lapidus
- Biostatistics & Design Program, Oregon Health and Science University, Portland.,School of Public Health, Oregon Health and Science University, Portland
| | - Brenna Cholerton
- Department of Pathology, Stanford University School of Medicine, Palo Alto, California
| | - Thomas J Montine
- Department of Pathology, Stanford University School of Medicine, Palo Alto, California
| | - Joseph F Quinn
- Department of Neurology, Oregon Health and Science University, Portland.,Portland Veterans Affairs Health Care System, Oregon
| | - Fay B Horak
- Department of Neurology, Oregon Health and Science University, Portland.,Portland Veterans Affairs Health Care System, Oregon
| |
Collapse
|
45
|
Quek DYL, Economou K, MacDougall H, Lewis SJG, Ehgoetz Martens KA. Validating a Seated Virtual Reality Threat Paradigm for Inducing Anxiety and Freezing of Gait in Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 11:1443-1454. [PMID: 34057098 DOI: 10.3233/jpd-212619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Although prior research has established that freezing of gait (FOG) in Parkinson's disease (PD) is associated with anxiety, only one study to date has directly manipulated anxiety levels to induce FOG. OBJECTIVE The current study aimed to replicate these previous findings and evaluate whether a seated version of a 'threat' virtual reality (VR) paradigm could induce anxiety and provoke FOG. METHODS Twenty-four PD patients with FOG were assessed across various threat conditions in both a walking VR paradigm (Experiment 1) and a seated VR paradigm (Experiment 2). Both paradigms manipulated the height (i.e., elevated vs ground) and width (wide vs narrow) of the planks participants were instructed to walk across. RESULTS Across both experiments, the Elevated + Narrow condition provoked significantly greater number of freezing episodes compared to all other conditions. Higher levels of self-reported anxiety were reported during the Elevated+Narrow condition compared to all other conditions in Experiment 1, and compared to the Ground condition in Experiment 2. CONCLUSION These findings confirm that anxiety contributes to FOG and validates the use of a seated VR threat paradigm for provoking anxiety-related freezing. This enables future studies to combine this paradigm with functional MRI to explore the neural correlates underlying the role of anxiety in FOG.
Collapse
Affiliation(s)
- Dione Y L Quek
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, University of Sydney, Australia
| | - Kristin Economou
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, University of Sydney, Australia
| | | | - Simon J G Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, University of Sydney, Australia
| | - Kaylena A Ehgoetz Martens
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, University of Sydney, Australia.,Department of Kinesiology, University of Waterloo, Canada
| |
Collapse
|
46
|
Bhatt M, Mahana B, Ko JH, Kolesar TA, Kanitkar A, Szturm T. Computerized Dual-Task Testing of Gait Visuomotor and Cognitive Functions in Parkinson's Disease: Test-Retest Reliability and Validity. Front Hum Neurosci 2021; 15:706230. [PMID: 34335213 PMCID: PMC8320846 DOI: 10.3389/fnhum.2021.706230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Mobility and cognitive impairments in Parkinson's disease (PD) often coexist and are prognostic of adverse health events. Consequently, assessment and training that simultaneously address both gait function and cognition are important to consider in rehabilitation and promotion of healthy aging. For this purpose, a computer game-based rehabilitation treadmill platform (GRP) was developed for dual-task (DT) assessment and training. OBJECTIVE The first objective was to establish the test-retest reliability of the GRP assessment protocol for DT gait, visuomotor and executive cognitive function in PD patients. The second objective was to examine the effect of task condition [single task (ST) vs. DT] and disease severity (stage 2 vs. stage 3) on gait, visuomotor and cognitive function. METHODS Thirty individuals aged 55 to 70 years, diagnosed with PD; 15 each at Hoehn and Yahr scale stage 2 (PD-2) and 3 (PD-3) performed a series of computerized visuomotor and cognitive game tasks while sitting (ST) and during treadmill walking (DT). A treadmill instrumented with a pressure mat was used to record center of foot pressure and compute the average and coefficient of variation (COV) of step time, step length, and drift during 1-min, speed-controlled intervals. Visuomotor and cognitive game performance measures were quantified using custom software. Testing was conducted on two occasions, 1 week apart. RESULTS With few exceptions, the assessment protocol showed moderate to high intraclass correlation coefficient (ICC) values under both ST and DT conditions for the spatio-temporal gait measures (average and COV), as well as the visuomotor tracking and cognitive game performance measures. A significant decline in gait, visuomotor, and cognitive game performance measures was observed during DT compared to ST conditions, and in the PD-3 compared to PD-2 groups. CONCLUSION The high to moderate ICC values along with the lack of systematic errors in the measures indicate that this tool has the ability to repeatedly record reliable DT interference (DTI) effects over time. The use of interactive digital media provides a flexible method to produce and evaluate DTI for a wide range of executive cognitive activities. This also proves to be a sensitive tool for tracking disease progression. CLINICAL TRIAL REGISTRATION www.ClinicalTrials.gov, identifier NCT03232996.
Collapse
Affiliation(s)
- Mayank Bhatt
- College of Rehabilitation Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Bhuvan Mahana
- College of Rehabilitation Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Tiffany A. Kolesar
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Anuprita Kanitkar
- College of Rehabilitation Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Tony Szturm
- College of Rehabilitation Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
47
|
Szturm T, Kolesar TA, Mahana B, Goertzen AL, Hobson DE, Marotta JJ, Strafella AP, Ko JH. Changes in Metabolic Activity and Gait Function by Dual-Task Cognitive Game-Based Treadmill System in Parkinson's Disease: Protocol of a Randomized Controlled Trial. Front Aging Neurosci 2021; 13:680270. [PMID: 34149399 PMCID: PMC8211751 DOI: 10.3389/fnagi.2021.680270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/10/2021] [Indexed: 01/22/2023] Open
Abstract
Balance and gait impairments, and consequently, mobility restrictions and falls are common in Parkinson’s disease (PD). Various cognitive deficits are also common in PD and are associated with increased fall risk. These mobility and cognitive deficits are limiting factors in a person’s health, ability to perform activities of daily living, and overall quality of life. Community ambulation involves many dual-task (DT) conditions that require processing of several cognitive tasks while managing or reacting to sudden or unexpected balance challenges. DT training programs that can simultaneously target balance, gait, visuomotor, and cognitive functions are important to consider in rehabilitation and promotion of healthy active lives. In the proposed multi-center, randomized controlled trial (RCT), novel behavioral positron emission tomography (PET) brain imaging methods are used to evaluate the molecular basis and neural underpinnings of: (a) the decline of mobility function in PD, specifically, balance, gait, visuomotor, and cognitive function, and (b) the effects of an engaging, game-based DT treadmill walking program on mobility and cognitive functions. Both the interactive cognitive game tasks and treadmill walking require continuous visual attention, and share spatial processing functions, notably to minimize any balance disturbance or gait deviation/stumble. The ability to “walk and talk” normally includes activation of specific regions of the prefrontal cortex (PFC) and the basal ganglia (site of degeneration in PD). The PET imaging analysis and comparison with healthy age-matched controls will allow us to identify areas of abnormal, reduced activity levels, as well as areas of excessive activity (increased attentional resources) during DT-walking. We will then be able to identify areas of brain plasticity associated with improvements in mobility functions (balance, gait, and cognition) after intervention. We expect the gait-cognitive training effect to involve re-organization of PFC activity among other, yet to be identified brain regions. The DT mobility-training platform and behavioral PET brain imaging methods are directly applicable to other diseases that affect gait and cognition, e.g., cognitive vascular impairment, Alzheimer’s disease, as well as in aging.
Collapse
Affiliation(s)
- Tony Szturm
- College of Rehabilitation Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Tiffany A Kolesar
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Bhuvan Mahana
- College of Rehabilitation Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Andrew L Goertzen
- Department of Radiology, University of Manitoba, Winnipeg, MB, Canada
| | - Douglas E Hobson
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | | | - Antonio P Strafella
- Morton and Gloria Shulman Movement Disorder Unit, E. J. Safra Parkinson Disease Program, Neurology Division/Department of Medicine, Toronto Western Hospital, Krembil Brain Institute, University Health Network (UHN), Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, ON, Canada
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
48
|
Peng X, Feng Y, Ji S, Amos JT, Wang W, Li M, Ai S, Qiu X, Dong Y, Ma D, Yao D, Valdes-Sosa PA, Ren P. Gait Analysis by Causal Decomposition. IEEE Trans Neural Syst Rehabil Eng 2021; 29:953-964. [PMID: 34029190 DOI: 10.1109/tnsre.2021.3082936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent studies have investigated bilateral gaits based on the causality analysis of kinetic (or kinematic) signals recorded using both feet. However, these approaches have not considered the influence of their simultaneous causation, which might lead to inaccurate causality inference. Furthermore, the causal interaction of these signals has not been investigated within their frequency domain. Therefore, in this study we attempted to employ a causal-decomposition approach to analyze bilateral gait. The vertical ground reaction force (VGRF) signals of Parkinson's disease (PD) patients and healthy control (HC) individuals were taken as an example to illustrate this method. To achieve this, we used ensemble empirical mode decomposition to decompose the left and right VGRF signals into intrinsic mode functions (IMFs) from the high to low frequency bands. The causal interaction strength (CIS) between each pair of IMFs was then assessed through the use of their instantaneous phase dependency. The results show that the CISes between pairwise IMFs decomposed in the high frequency band of VGRF signals can not only markedly distinguish PD patients from HC individuals, but also found a significant correlation with disease progression, while other pairwise IMFs were not able to produce this. In sum, we found for the first time that the frequency specific causality of bilateral gait may reflect the health status and disease progression of individuals. This finding may help to understand the underlying mechanisms of walking and walking-related diseases, and offer broad applications in the fields of medicine and engineering.
Collapse
|
49
|
Orcioli-Silva D, Vitório R, Nóbrega-Sousa P, Beretta VS, Conceição NRD, Oliveira AS, Pereira MP, Gobbi LTB. Cortical Activity Underlying Gait Improvements Achieved With Dopaminergic Medication During Usual Walking and Obstacle Avoidance in Parkinson Disease. Neurorehabil Neural Repair 2021; 35:406-418. [PMID: 33754884 DOI: 10.1177/15459683211000736] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dopaminergic medication improves gait in people with Parkinson disease (PD). However, it remains unclear if dopaminergic medication modulates cortical activity while walking. OBJECTIVE We investigated the effects of dopaminergic medication on cortical activity during unobstructed walking and obstacle avoidance in people with PD. METHODS A total of 23 individuals with PD, in both off (PDOFF) and on (PDON) medication states, and 30 healthy older adults (control group [CG]) performed unobstructed walking and obstacle avoidance conditions. Cortical activity was acquired through a combined functional near-infrared spectroscopy electroencephalography (EEG) system, along with gait parameters, through an electronic carpet. Prefrontal cortex (PFC) oxygenated hemoglobin (HbO2) and EEG absolute power from FCz, Cz, and CPz channels were calculated. RESULTS HbO2 concentration reduced for people with PDOFF during obstacle avoidance compared with unobstructed walking. In contrast, both people with PDON and the CG had increased HbO2 concentration when avoiding obstacles compared with unobstructed walking. Dopaminergic medication increased step length, step velocity, and β and γ power in the CPz channel, regardless of walking condition. Moreover, dopaminergic-related changes (ie, on-off) in FCz/CPz γ power were associated with dopaminergic-related changes in step length for both walking conditions. CONCLUSIONS PD compromises the activation of the PFC during obstacle avoidance, and dopaminergic medication facilitates its recruitment. In addition, PD medication increases sensorimotor integration during walking by increasing posterior parietal cortex (CPz) activity. Increased γ power in the CPz and FCz channels is correlated with step length improvements achieved with dopaminergic medication during unobstructed walking and obstacle avoidance in PD.
Collapse
Affiliation(s)
- Diego Orcioli-Silva
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, São Paulo, Brazil
| | - Rodrigo Vitório
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, São Paulo, Brazil
| | - Priscila Nóbrega-Sousa
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, São Paulo, Brazil
| | - Victor Spiandor Beretta
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, São Paulo, Brazil
| | - Núbia Ribeiro da Conceição
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, São Paulo, Brazil
| | | | - Marcelo Pinto Pereira
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, São Paulo, Brazil
| | - Lilian Teresa Bucken Gobbi
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, São Paulo, Brazil
| |
Collapse
|
50
|
Johansson H, Ekman U, Rennie L, Peterson DS, Leavy B, Franzén E. Dual-Task Effects During a Motor-Cognitive Task in Parkinson's Disease: Patterns of Prioritization and the Influence of Cognitive Status. Neurorehabil Neural Repair 2021; 35:356-366. [PMID: 33719728 PMCID: PMC8073879 DOI: 10.1177/1545968321999053] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
People with Parkinson’s disease (PD) experience greater difficulties during dual task (DT) walking compared to healthy controls, but factors explaining the variance in DT costs remain largely unknown. Additionally, as cognitive impairments are common in PD it is important to understand whether cognitive status influences the strategies used during DT paradigms. The study aimed to (1) explore DT costs on gait and cognition during DT walking, (2) investigate factors associated with DT costs, and (3) to investigate to what extent patterns of DT costs and prioritization differed according to cognitive status. A total of 93 people with Parkinson’s disease were examined when walking in single and DT conditions. Information regarding demographics, PD severity, mobility, and cognitive and affective symptoms was collected, and an extensive neuropsychological test battery was used to classify whether participants had mild cognitive impairment (PD MCI) or not (PD non-MCI). Dual task costs were observed across all gait domains except asymmetry. Cognitive status was associated with DT costs on both gait and cognition. Nonmotor experiences of daily living were further associated with DT cost on cognition, and TUG-cog associated with DT cost on gait. People with PD MCI had larger DT costs on gait than PD non-MCI. Strategies differed according to cognitive status, whereby PD MCI used a posture-second strategy, and PD non-MCI used a posture-first strategy. Once verified in future studies, these results can inform clinicians and researchers when tailoring DT training paradigms to the specific characteristics of people with PD.
Collapse
Affiliation(s)
- Hanna Johansson
- Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Stockholm, Sweden
| | - Urban Ekman
- Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Stockholm, Sweden
| | - Linda Rennie
- Sunnaas Rehabilitation Hospital, Nesodden, Norway
| | - Daniel S Peterson
- Arizona State University, Phoenix, AZ, USA.,Phoenix Veterans Affairs Health Care System, Phoenix, AZ, USA
| | - Breiffni Leavy
- Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Stockholm, Sweden.,Stockholm Sjukhem Foundation, Stockholm, Sweden
| | - Erika Franzén
- Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Stockholm, Sweden.,Stockholm Sjukhem Foundation, Stockholm, Sweden
| |
Collapse
|