1
|
Durkin C, Apicella M, Baldassano C, Kandel E, Shohamy D. The Beholder's Share: Bridging art and neuroscience to study individual differences in subjective experience. Proc Natl Acad Sci U S A 2025; 122:e2413871122. [PMID: 40193608 PMCID: PMC12012540 DOI: 10.1073/pnas.2413871122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/11/2025] [Indexed: 04/09/2025] Open
Abstract
Our experience of the world is inherently subjective, shaped by individual history, knowledge, and perspective. Art offers a framework within which this subjectivity is practiced and promoted, inviting viewers to engage in interpretation. According to art theory, different forms of art-ranging from the representational to the abstract-challenge these interpretive processes in different ways. Yet, much remains unknown about how art is subjectively interpreted. In this study, we sought to elucidate the neural and cognitive mechanisms that underlie the subjective interpretation of art. Using brain imaging and written descriptions, we quantified individual variability in responses to paintings by the same artists, contrasting figurative and abstract paintings. Our findings revealed that abstract art elicited greater interindividual variability in activity within higher-order, associative brain areas, particularly those comprising the default-mode network. By contrast, no such differences were found in early visual areas, suggesting that subjective variability arises from higher cognitive processes rather than differences in sensory processing. These findings provide insight into how the brain engages with and perceives different forms of art and imbues it with subjective interpretation.
Collapse
Affiliation(s)
- Celia Durkin
- Department of Psychology, Columbia University, New York, NY10027
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY10027
| | - Marc Apicella
- Department of Psychology, Columbia University, New York, NY10027
| | | | - Eric Kandel
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY10027
- Department of Neuroscience, Columbia University, New York, NY10027
- Kavli Institute for Brain Science, New York, NY10027
| | - Daphna Shohamy
- Department of Psychology, Columbia University, New York, NY10027
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY10027
- Kavli Institute for Brain Science, New York, NY10027
| |
Collapse
|
2
|
Steel A, Prasad D, Garcia BD, Robertson CE. Relating scene memory and perception activity to functional properties, networks, and landmarks of posterior cerebral cortex - a probabilistic atlas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631538. [PMID: 39829755 PMCID: PMC11741410 DOI: 10.1101/2025.01.06.631538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Adaptive behavior in complex environments requires integrating visual perception with memory of our spatial environment. Recent work has implicated three brain areas in posterior cerebral cortex - the place memory areas (PMAs) that are anterior to the three visual scene perception areas (SPAs) - in this function. However, PMAs' relationship to the broader cortical hierarchy remains unclear due to limited group-level characterization. Here, we examined the PMA and SPA locations across three fMRI datasets (44 participants, 29 female). SPAs were identified using a standard visual localizer where participants viewed scenes versus faces. PMAs were identified by contrasting activity when participants recalled personally familiar places versus familiar faces (Datasets 1-2) or places versus multiple categories (familiar faces, bodies, and objects, and famous faces; Dataset 3). Across datasets, the PMAs were located anterior to the SPAs on the ventral and lateral cortical surfaces. The anterior displacement between PMAs and SPAs was highly reproducible. Compared to public atlases, the PMAs fell at the boundary between externally-oriented networks (dorsal attention) and internally-oriented networks (default mode). Additionally, while SPAs overlapped with retinotopic maps, the PMAs were consistently located anterior to mapped visual cortex. These results establish the anatomical position of the PMAs at inflection points along the cortical hierarchy between unimodal sensory and transmodal, apical regions, which informs broader theories of how the brain integrates perception and memory for scenes. We have released probabilistic parcels of these regions to facilitate future research into their roles in spatial cognition.
Collapse
Affiliation(s)
- Adam Steel
- Department of Psychology, University of Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois
| | | | - Brenda D. Garcia
- University of California San Diego Medical School, University of California San Diego
| | | |
Collapse
|
3
|
Northoff G, Buccellato A, Zilio F. Connecting brain and mind through temporo-spatial dynamics: Towards a theory of common currency. Phys Life Rev 2025; 52:29-43. [PMID: 39615425 DOI: 10.1016/j.plrev.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 03/01/2025]
Abstract
Despite major progress in our understanding of the brain, the connection of neural and mental features, that is, brain and mind, remains yet elusive. In our 2020 target paper ("Is temporospatial dynamics the 'common currency' of brain and mind? Spatiotemporal Neuroscience") we proposed the "Common currency hypothesis": temporo-spatial dynamics are shared by neural and mental features, providing their connection. The current paper aims to further support and extend the original description of such common currency into a first outline of a "Common currency theory" (CCT) of neuro-mental relationship. First, we extend the range of examples to thoughts, meditation, depression and attention all lending support that temporal characteristics, (i.e. dynamics) are shared by both neural and mental features. Second, we now also show empirical examples of how spatial characteristics, i.e., topography, are shared by neural and mental features; this is illustrated by topographic reorganization of both neural and mental states in depression and meditation. Third, considering the neuro-mental connection in theoretical terms, we specify their relationship by distinct forms of temporospatial correspondences, ranging on a continuum from simple to complex. In conclusion, we extend our initial hypothesis about the key role of temporo-spatial dynamics in neuro-mental relationship into a first outline of an integrated mind-brain theory, the "Common currency theory" (CCT).
Collapse
Affiliation(s)
- Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada.
| | - Andrea Buccellato
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Federico Zilio
- Department of Philosophy, Sociology, Education, and Applied Psychology, University of Padova, Italy.
| |
Collapse
|
4
|
Paquola C, Garber M, Frässle S, Royer J, Zhou Y, Tavakol S, Rodriguez-Cruces R, Cabalo DG, Valk S, Eickhoff SB, Margulies DS, Evans A, Amunts K, Jefferies E, Smallwood J, Bernhardt BC. The architecture of the human default mode network explored through cytoarchitecture, wiring and signal flow. Nat Neurosci 2025; 28:654-664. [PMID: 39875581 PMCID: PMC11893468 DOI: 10.1038/s41593-024-01868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/06/2024] [Indexed: 01/30/2025]
Abstract
The default mode network (DMN) is implicated in many aspects of complex thought and behavior. Here, we leverage postmortem histology and in vivo neuroimaging to characterize the anatomy of the DMN to better understand its role in information processing and cortical communication. Our results show that the DMN is cytoarchitecturally heterogenous, containing cytoarchitectural types that are variably specialized for unimodal, heteromodal and memory-related processing. Studying diffusion-based structural connectivity in combination with cytoarchitecture, we found the DMN contains regions receptive to input from sensory cortex and a core that is relatively insulated from environmental input. Finally, analysis of signal flow with effective connectivity models showed that the DMN is unique amongst cortical networks in balancing its output across the levels of sensory hierarchies. Together, our study establishes an anatomical foundation from which accounts of the broad role the DMN plays in human brain function and cognition can be developed.
Collapse
Affiliation(s)
- Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada.
- Institute for Neuroscience and Medicine (INM-7), Forschungszentrum Jülich, Jülich, Germany.
| | - Margaret Garber
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Stefan Frässle
- Translational Neuromodeling Unit (TNU), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Jessica Royer
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Yigu Zhou
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Shahin Tavakol
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Raul Rodriguez-Cruces
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Donna Gift Cabalo
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Sofie Valk
- Institute for Neuroscience and Medicine (INM-7), Forschungszentrum Jülich, Jülich, Germany
- Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
- Institute for Systems Neuroscience, Heinrich Heine Universistät Dusseldorf, Dusseldorf, Germany
| | - Simon B Eickhoff
- Institute for Neuroscience and Medicine (INM-7), Forschungszentrum Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Heinrich Heine Universistät Dusseldorf, Dusseldorf, Germany
| | - Daniel S Margulies
- Integrative Neuroscience & Cognition Center (INCC - UMR 8002), University of Paris, Centre national de la recherche scientifique (CNRS), Paris, France
| | - Alan Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Katrin Amunts
- Institute for Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | | | | | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
5
|
Alberti F, Menardi A, Margulies DS, Vallesi A. Understanding the Link Between Functional Profiles and Intelligence Through Dimensionality Reduction and Graph Analysis. Hum Brain Mapp 2025; 46:e70149. [PMID: 39981715 PMCID: PMC11843225 DOI: 10.1002/hbm.70149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/27/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025] Open
Abstract
There is a growing interest in neuroscience for how individual-specific structural and functional features of the cortex relate to cognitive traits. This work builds on previous research which, by using classical high-dimensional approaches, has proven that the interindividual variability of functional connectivity (FC) profiles reflects differences in fluid intelligence. To provide an additional perspective into this relationship, the present study uses a recent framework for investigating cortical organization: functional gradients. This approach places local connectivity profiles within a common low-dimensional space whose axes are functionally interpretable dimensions. Specifically, this study uses a data-driven approach to model the association between FC variability and interindividual differences in intelligence. For one of these loci, in the right ventral-lateral prefrontal cortex (vlPFC), we describe an association between fluid intelligence and the relative functional distance of this area from sensory and high-cognition systems. Furthermore, the topological properties of this region indicate that, with decreasing functional affinity with high-cognition systems, vlPFC functional connections are more evenly distributed across all networks. Participating in multiple functional networks may reflect a better ability to coordinate sensory and high-order cognitive systems.
Collapse
Affiliation(s)
- Francesco Alberti
- Integrative Neuroscience and Cognition Center (UMR 8002)Centre National del la Recherche ScientifiqueParisFrance
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordUnited Kingdom
| | - Arianna Menardi
- Department of NeuroscienceUniversity of PadovaPadovaItaly
- Padova Neurosciene CenterUniversity of PadovaPadovaItaly
| | - Daniel S. Margulies
- Integrative Neuroscience and Cognition Center (UMR 8002)Centre National del la Recherche ScientifiqueParisFrance
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordUnited Kingdom
| | - Antonino Vallesi
- Department of NeuroscienceUniversity of PadovaPadovaItaly
- Padova Neurosciene CenterUniversity of PadovaPadovaItaly
| |
Collapse
|
6
|
Gonzalez Alam TRJ, Krieger-Redwood K, Varga D, Gao Z, Horner AJ, Hartley T, Thiebaut de Schotten M, Sliwinska M, Pitcher D, Margulies DS, Smallwood J, Jefferies E. A double dissociation between semantic and spatial cognition in visual to default network pathways. eLife 2025; 13:RP94902. [PMID: 39841127 PMCID: PMC11753780 DOI: 10.7554/elife.94902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Processing pathways between sensory and default mode network (DMN) regions support recognition, navigation, and memory but their organisation is not well understood. We show that functional subdivisions of visual cortex and DMN sit at opposing ends of parallel streams of information processing that support visually mediated semantic and spatial cognition, providing convergent evidence from univariate and multivariate task responses, intrinsic functional and structural connectivity. Participants learned virtual environments consisting of buildings populated with objects, drawn from either a single semantic category or multiple categories. Later, they made semantic and spatial context decisions about these objects and buildings during functional magnetic resonance imaging. A lateral ventral occipital to fronto-temporal DMN pathway was primarily engaged by semantic judgements, while a medial visual to medial temporal DMN pathway supported spatial context judgements. These pathways had distinctive locations in functional connectivity space: the semantic pathway was both further from unimodal systems and more balanced between visual and auditory-motor regions compared with the spatial pathway. When semantic and spatial context information could be integrated (in buildings containing objects from a single category), regions at the intersection of these pathways responded, suggesting that parallel processing streams interact at multiple levels of the cortical hierarchy to produce coherent memory-guided cognition.
Collapse
Affiliation(s)
- Tirso RJ Gonzalez Alam
- Department of Psychology, University of YorkNorth YorkshireUnited Kingdom
- York Neuroimaging Centre, Innovation Way, HeslingtonNorth YorkshireUnited Kingdom
- School of Human and Behavioural Sciences, Bangor University, Gwynedd, Wales, UKYorkUnited Kingdom
| | - Katya Krieger-Redwood
- Department of Psychology, University of YorkNorth YorkshireUnited Kingdom
- York Neuroimaging Centre, Innovation Way, HeslingtonNorth YorkshireUnited Kingdom
| | - Dominika Varga
- Sussex Neuroscience, School of Psychology, University of SussexBrighton and HoveUnited States
| | - Zhiyao Gao
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine StanfordStanfordUnited Kingdom
| | - Aidan J Horner
- Department of Psychology, University of YorkNorth YorkshireUnited Kingdom
- York Neuroimaging Centre, Innovation Way, HeslingtonNorth YorkshireUnited Kingdom
| | - Tom Hartley
- Department of Psychology, University of YorkNorth YorkshireUnited Kingdom
- York Neuroimaging Centre, Innovation Way, HeslingtonNorth YorkshireUnited Kingdom
| | - Michel Thiebaut de Schotten
- University of Bordeaux, CNRS, CEA, IMNBordeauxFrance
- Brain Connectivity and Behaviour Laboratory, Sorbonne UniversitiesParisFrance
| | - Magdalena Sliwinska
- Department of Psychology, Liverpool John Moores UniversityLiverpoolUnited Kingdom
| | - David Pitcher
- Department of Psychology, University of YorkNorth YorkshireUnited Kingdom
- York Neuroimaging Centre, Innovation Way, HeslingtonNorth YorkshireUnited Kingdom
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche Scientifique (CNRS) and Université de ParisParisFrance
| | | | - Elizabeth Jefferies
- Department of Psychology, University of YorkNorth YorkshireUnited Kingdom
- York Neuroimaging Centre, Innovation Way, HeslingtonNorth YorkshireUnited Kingdom
| |
Collapse
|
7
|
Mckeown B, Goodall-Halliwell I, Wallace R, Chitiz L, Mulholland B, Karapanagiotidis T, Hardikar S, Strawson W, Turnbull A, Vanderwal T, Ho N, Wang HT, Xu T, Milham M, Wang X, Zhang M, Gonzalez Alam TR, Vos de Wael R, Bernhardt B, Margulies D, Wammes J, Jefferies E, Leech R, Smallwood J. Self-reports map the landscape of task states derived from brain imaging. COMMUNICATIONS PSYCHOLOGY 2025; 3:8. [PMID: 39843761 PMCID: PMC11754446 DOI: 10.1038/s44271-025-00184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025]
Abstract
Psychological states influence our happiness and productivity; however, estimates of their impact have historically been assumed to be limited by the accuracy with which introspection can quantify them. Over the last two decades, studies have shown that introspective descriptions of psychological states correlate with objective indicators of cognition, including task performance and metrics of brain function, using techniques like functional magnetic resonance imaging (fMRI). Such evidence suggests it may be possible to quantify the mapping between self-reports of experience and objective representations of those states (e.g., those inferred from measures of brain activity). Here, we used machine learning to show that self-reported descriptions of experiences across tasks can reliably map the objective landscape of task states derived from brain activity. In our study, 194 participants provided descriptions of their psychological states while performing tasks for which the contribution of different brain systems was available from prior fMRI studies. We used machine learning to combine these reports with descriptions of brain function to form a 'state-space' that reliably predicted patterns of brain activity based solely on unseen descriptions of experience (N = 101). Our study demonstrates that introspective reports can share information with the objective task landscape inferred from brain activity.
Collapse
Affiliation(s)
- Brontë Mckeown
- Department of Psychology, Queens University, Kingston, Ontario, Canada.
| | | | - Raven Wallace
- Department of Psychology, Queens University, Kingston, Ontario, Canada
| | - Louis Chitiz
- Department of Psychology, Queens University, Kingston, Ontario, Canada
| | | | | | - Samyogita Hardikar
- Department of Psychology, Queens University, Kingston, Ontario, Canada
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Will Strawson
- Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Brighton, UK
| | - Adam Turnbull
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, USA
| | - Tamara Vanderwal
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, British Columbia, Canada
| | - Nerissa Ho
- School of Psychology, University of Plymouth, Plymouth, UK
| | - Hao-Ting Wang
- Centre de recherche de l'institut Universitaire de gériatrie de Montréal (CRIUGM), Montreal, Canada
| | - Ting Xu
- Centre for the Developing Brain, Child Mind Institute, New York, USA
| | - Michael Milham
- Centre for the Developing Brain, Child Mind Institute, New York, USA
| | - Xiuyi Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Meichao Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | | | | | - Boris Bernhardt
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Daniel Margulies
- Integrative Neuroscience and Cognition Center (UMR 8002, Centre National de la Recherche Scientifique (CNRS) and Université de Paris, Paris, France
| | - Jeffrey Wammes
- Department of Psychology, Queens University, Kingston, Ontario, Canada
| | | | - Robert Leech
- Centre for Neuroimaging Science, King's College, London, UK
| | | |
Collapse
|
8
|
Tong Z, Xing C, Xu X, Xu J, Wu Y, Salvi R, Yin X, Zhao F, Chen Y, Cai Y. Impaired network organization in mild age-related hearing loss. MedComm (Beijing) 2025; 6:e70002. [PMID: 39760112 PMCID: PMC11695200 DOI: 10.1002/mco2.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/30/2024] [Accepted: 09/24/2024] [Indexed: 01/07/2025] Open
Abstract
Age-related hearing loss (ARHL) is considered one of the most common neurodegenerative disorders in the elderly; however, how it contributes to cognitive decline is poorly understood. With resting-state functional magnetic resonance imaging from 66 individuals with ARHL and 54 healthy controls, group spatial independent component analyses, sliding window analyses, graph-theory methods, multilayer networks, and correlation analyses were used to identify ARHL-induced disturbances in static and dynamic functional network connectivity (sFNC/dFNC), alterations in global network switching and their links to cognitive performances. ARHL was associated with decreased sFNC/dFNC within the default mode network (DMN) and increased sFNC/dFNC between the DMN and central executive, salience (SN), and visual networks. The variability in dFNC between the DMN and auditory network (AUN) and between the SN and AUN was decreased in ARHL. The individuals with ARHL had lower network switching rates than controls among global network nodes, especially in the DMN. Some disturbances within DMN were associated with disrupted executive and memory performance. The prolonged loss of sensory information associated with ARHL-induced compensatory within-network segregations and between-network integrations in the DMN might reduce network information processing and accelerate brain aging and cognitive decline.
Collapse
Affiliation(s)
- Zhaopeng Tong
- Department of OtolaryngologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Hearing and Speech‐Language ScienceSun Yat‐sen UniversityGuangzhouChina
| | - Chunhua Xing
- Department of RadiologyNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Xiaomin Xu
- Department of RadiologyNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Jin‐Jing Xu
- Department of OtolaryngologyNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Yuanqing Wu
- Department of OtolaryngologyNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Richard Salvi
- Center for Hearing and DeafnessState University of New York at BuffaloBuffaloNew YorkUSA
| | - Xindao Yin
- Department of RadiologyNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Fei Zhao
- Department of Speech and Language Therapy and Hearing ScienceCardiff Metropolitan UniversityCardiffUK
| | - Yu‐Chen Chen
- Department of RadiologyNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Yuexin Cai
- Department of OtolaryngologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Hearing and Speech‐Language ScienceSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
9
|
Dong D, Wang Y, Zhou F, Chang X, Qiu J, Feng T, He Q, Lei X, Chen H. Functional Connectome Hierarchy in Schizotypy and Its Associations With Expression of Schizophrenia-Related Genes. Schizophr Bull 2024; 51:145-158. [PMID: 38156676 PMCID: PMC11661955 DOI: 10.1093/schbul/sbad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND HYPOTHESIS Schizotypy has been conceptualized as a continuum of symptoms with marked genetic, neurobiological, and sensory-cognitive overlaps to schizophrenia. Hierarchical organization represents a general organizing principle for both the cortical connectome supporting sensation-to-cognition continuum and gene expression variability across the cortex. However, a mapping of connectome hierarchy to schizotypy remains to be established. Importantly, the underlying changes of the cortical connectome hierarchy that mechanistically link gene expressions to schizotypy are unclear. STUDY DESIGN The present study applied novel connectome gradient on resting-state fMRI data from 1013 healthy young adults to investigate schizotypy-associated sensorimotor-to-transmodal connectome hierarchy and assessed its similarity with the connectome hierarchy of schizophrenia. Furthermore, normative and differential postmortem gene expression data were utilized to examine transcriptional profiles linked to schizotypy-associated connectome hierarchy. STUDY RESULTS We found that schizotypy was associated with a compressed functional connectome hierarchy. Moreover, the pattern of schizotypy-related hierarchy exhibited a positive correlation with the connectome hierarchy observed in schizophrenia. This pattern was closely colocated with the expression of schizophrenia-related genes, with the correlated genes being enriched in transsynaptic, receptor signaling and calcium ion binding. CONCLUSIONS The compressed connectome hierarchy suggests diminished functional system differentiation, providing a novel and holistic system-level basis for various sensory-cognition deficits in schizotypy. Importantly, its linkage with schizophrenia-altered hierarchy and schizophrenia-related gene expression yields new insights into the neurobiological continuum of psychosis. It also provides mechanistic insight into how gene variation may drive alterations in functional hierarchy, mediating biological vulnerability of schizotypy to schizophrenia.
Collapse
Affiliation(s)
- Debo Dong
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Yulin Wang
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | - Feng Zhou
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Xuebin Chang
- Department of Information Sciences, School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing, China
| | - Qinghua He
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing, China
| | - Xu Lei
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Kewenig VN, Vigliocco G, Skipper JI. When abstract becomes concrete, naturalistic encoding of concepts in the brain. eLife 2024; 13:RP91522. [PMID: 39636743 PMCID: PMC11620750 DOI: 10.7554/elife.91522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Language is acquired and processed in complex and dynamic naturalistic contexts, involving the simultaneous processing of connected speech, faces, bodies, objects, etc. How words and their associated concepts are encoded in the brain during real-world processing is still unknown. Here, the representational structure of concrete and abstract concepts was investigated during movie watching to address the extent to which brain responses dynamically change depending on visual context. First, across contexts, concrete and abstract concepts are shown to encode different experience-based information in separable sets of brain regions. However, these differences are reduced when multimodal context is considered. Specifically, the response profile of abstract words becomes more concrete-like when these are processed in visual scenes highly related to their meaning. Conversely, when the visual context is unrelated to a given concrete word, the activation pattern resembles more that of abstract conceptual processing. These results suggest that while concepts generally encode habitual experiences, the underlying neurobiological organisation is not fixed but depends dynamically on available contextual information.
Collapse
Affiliation(s)
| | | | - Jeremy I Skipper
- Experimental Psychology, University College LondonLondonUnited Kingdom
| |
Collapse
|
11
|
Martino M, Magioncalda P. A working model of neural activity and phenomenal experience in psychosis. Mol Psychiatry 2024; 29:3814-3825. [PMID: 38844531 DOI: 10.1038/s41380-024-02607-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 12/05/2024]
Abstract
According to classical phenomenology, phenomenal experience is composed of perceptions (related to environmental stimuli) and imagery/ideas (unrelated to environmental stimuli). Intensity/vividness is supposed to represent the key phenomenal difference between perceptions and ideas, higher in perceptions than ideas, and thus the core subjective criterion to distinguish reality from imagination. At a neural level, phenomenal experience is related to brain activity in the sensory areas, driven by receptor stimulation (underlying perception) or associative areas (underlying imagery/ideas). An alteration of the phenomenal experience that leads to a loss of contact with reality characterizes psychosis, which mainly consists of hallucinations (false perceptions) and delusions (fixed ideas). According to the current data on their neural correlates across subclinical conditions and different neuropsychiatric disorders (such as schizophrenia), hallucinations are mainly associated with: transient (modality-specific) activations of sensory cortices (primarily superior temporal gyrus, occipito-temporal cortex, postcentral gyrus, and insula) during the hallucinatory experience; increased intrinsic activity/connectivity of associative/default-mode network (DMN) areas (primarily temporoparietal junction, posterior cingulate cortex, and medial prefrontal cortex); and deficits in the sensory systems. Analogously, delusions are mainly associated with increased intrinsic activity/connectivity of associative/DMN areas (primarily medial prefrontal cortex). Integrating these data into our three-dimensional model of neural activity and phenomenal-behavioral patterns, we propose the following model of psychosis. A functional/structural deficit in the sensory systems complemented by a functional reconfiguration of intrinsic brain activity favoring hyperactivity of associative/DMN areas may drive neuronal activations in the sensory (auditory/visual/somatosensory) areas and insular (interoceptive) areas with spatiotemporal configurations maximally independent from environmental stimuli and predominantly related to associative processing. This manifests in perception deficit and imagery/ideas composed of exteroceptive-like and interoceptive/affective-like elements that show a phenomenal intensity indistinguishable from perceptions, impairing the reality monitoring, along with minimal changeability by environmental stimuli, ultimately resulting in dissociation of the phenomenal experience from the environment, i.e., psychosis.
Collapse
Affiliation(s)
- Matteo Martino
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
| | - Paola Magioncalda
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Medical Research, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
- Department of Radiology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
| |
Collapse
|
12
|
Wang Y, Tang L, Wang J, Li W, Wang M, Chen Q, Yang Z, Li Z, Wang Z, Wu G, Zhang P. Disruption of network hierarchy pattern in bulimia nervosa reveals brain information integration disorder. Appetite 2024; 203:107694. [PMID: 39341080 DOI: 10.1016/j.appet.2024.107694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
The human brain works as a hierarchical organization that is a continuous axis spanning sensorimotor cortex to transmodal cortex (referring to cortex that integrates multimodal sensory information and participates in complex cognitive functions). Previous studies have demonstrated abnormalities in several specific networks that may account for their multiple behavioral deficits in patients with bulimia nervosa (BN), but whether and how the network hierarchical organization changes in BN remain unknown. This study aimed to investigate alterations of the hierarchy organization in BN network and their clinical relevance. Connectome gradient analyses were applied to depict the network hierarchy patterns of fifty-nine patients with BN and thirty-nine healthy controls (HCs). Then, we evaluated the network- and voxel-level gradient alterations of BN by comparing gradient values in each network and each voxel between patients with BN and HCs. Finally, the association between altered gradient values and clinical variables was explored. In the principal gradient, patients with BN exhibited reduced gradient values in dorsal attention network and increased gradient values in subcortical regions compared to HCs. In the secondary gradient, patients with BN showed decreased gradient values in ventral attention network and increased gradient values in limbic network. Regionally, the areas with altered principal or secondary gradient values in BN group were mainly located in transmodal networks, i.e., the default-mode and frontoparietal network. In BN group, the principal gradient values of right inferior frontal gyrus were negatively associated with external eating behavior. This study revealed the disordered network hierarchy patterns in patients with BN, which suggested a disturbance of brain information integration from attention network and subcortical regions to transmodal networks in these patients. These findings may provide insight into the neurobiological underpinnings of BN.
Collapse
Affiliation(s)
- Yiling Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No.95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Lirong Tang
- Beijing Anding Hospital Capital Medical University, No.5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China; The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, No.5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China
| | - Jiani Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No.95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Weihua Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No.95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Miao Wang
- Peking University, No.5 Summer Palace Road, Haidian District, Beijing, 100871, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No.95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No.95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Zhanjiang Li
- Beijing Anding Hospital Capital Medical University, No.5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China; The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, No.5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No.95 Yongan Road, Xicheng District, Beijing, 100050, China.
| | - Guowei Wu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, No.16 Lincui Road, Chaoyang District, Beijing, 100020, China.
| | - Peng Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No.95 Yongan Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
13
|
Strawson WH, Mckeown B, Quadt L, Wang HT, Larrson DEO, Mulcahy J, Silva M, Kampoureli C, Turnbull A, Garfinkel SN, Smallwood J, Critchley HD. Differences in ongoing thought between autistic and non-autistic adults. Sci Rep 2024; 14:29236. [PMID: 39587112 PMCID: PMC11589611 DOI: 10.1038/s41598-024-78286-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/29/2024] [Indexed: 11/27/2024] Open
Abstract
Autistic people may be distinguishable from non-autistic individuals in the content and modality of their thoughts. Such differences potentially underlie both psychological vulnerability and strengths, motivating the need to better understand autistic thought patterns. In non-clinical undergraduates, a recent study found that autistic traits were associated with thinking more in words than images. However, it is unclear whether such differences in thought are present in clinically diagnosed autistic individuals. The current study applied the same methods (multidimensional experience sampling during an N-back task) to examine ongoing thought in autistic and non-autistic adults. We found that autistic individuals showed less variability in the modality of their thoughts between easy and difficult task contexts. While both non-autistic and autistic participants tended to report thinking more in words during the difficult task context, the difference between conditions was significantly smaller for the autistic group. In addition, autistic individuals showed a weaker coupling between task performance and off-task social thinking, a finding that may be related to differences in social processing during the off-task state. Overall, our results provide a clinical replication and extension of previous work, highlighting the differential effects of changing external context on internal mental states in autism.
Collapse
Affiliation(s)
- Will H Strawson
- Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Brighton, UK.
| | - Brontë Mckeown
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Lisa Quadt
- Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Brighton, UK
| | - Hao-Ting Wang
- Laboratory for Brain Simulation and Exploration (SIMEXP), Montreal Geriatrics Institute (CRIUGM), University of Montreal, Montreal, Canada
| | - Dennis E O Larrson
- Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Brighton, UK
| | - James Mulcahy
- Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Brighton, UK
| | - Marta Silva
- Institute of Neurosciences, University of Barcelona, Catalunya, Spain
| | - Christina Kampoureli
- Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Brighton, UK
| | - Adam Turnbull
- CogT Lab, Department of Psychiatry and Behavioural Sciences, Stanford University, Stanford, CA, USA
- Departments of Brain and Cognitive Sciences, Neuroscience and Ophthalmology, University of Rochester, Rochester, NY, USA
| | - Sarah N Garfinkel
- Institute of Cognitive Neuroscience, University College London, London, UK
| | | | - Hugo D Critchley
- Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Brighton, UK
| |
Collapse
|
14
|
Steel A, Angeli PA, Silson EH, Robertson CE. Retinotopic coding organizes the interaction between internally and externally oriented brain networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615084. [PMID: 39386717 PMCID: PMC11463438 DOI: 10.1101/2024.09.25.615084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The human brain seamlessly integrates internally generated thoughts with incoming sensory information, yet the networks supporting internal (default network, DN) and external (dorsal attention network, dATN) processing are traditionally viewed as antagonistic. This raises a crucial question: how does the brain integrate information between these seemingly opposed systems? Here, using precision neuroimaging methods, we show that these internal/external networks are not as dissociated as traditionally thought. Using densely-sampled 7T fMRI data, we defined individualized whole-brain networks from participants at rest and calculated the retinotopic preferences of individual voxels within these networks during an visual mapping task. We show that while the overall network activity between the DN and dATN is independent at rest, considering a latent retinotopic code reveals a complex, voxel-scale interaction stratified by visual responsiveness. Specifically, the interaction between the DN and dATN at rest is structured at the voxel-level by each voxel's retinotopic preferences, such that the spontaneous activity of voxels preferring similar visual field locations is more anti-correlated than that of voxels preferring different visual field locations. Further, this retinotopic scaffold integrates with the domain-specific preferences of subregions within these networks, enabling efficient, parallel processing of retinotopic and domain-specific information. Thus, DN and dATN are not independent at rest: voxel-scale interaction between these networks preserves and encodes information in both positive and negative BOLD responses, even in the absence of visual input or task demands. These findings suggest that retinotopic coding may serve as a fundamental organizing principle for brain-wide communication, providing a new framework for understanding how the brain balances and integrates internal cognition with external perception.
Collapse
Affiliation(s)
- Adam Steel
- Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Psychology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Psychology, Dartmouth College, Hanover, NH, USA
- Lead contact
| | - Peter A. Angeli
- Department of Psychology, Dartmouth College, Hanover, NH, USA
| | - Edward H. Silson
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
15
|
Gim S, Hong SJ, Reynolds Losin EA, Woo CW. Spatiotemporal integration of contextual and sensory information within the cortical hierarchy in human pain experience. PLoS Biol 2024; 22:e3002910. [PMID: 39536050 PMCID: PMC11602096 DOI: 10.1371/journal.pbio.3002910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/27/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Pain is not a mere reflection of noxious input. Rather, it is constructed through the dynamic integration of current predictions with incoming sensory input. However, the temporal dynamics of the behavioral and neural processes underpinning this integration remain elusive. In the current study involving 59 human participants, we identified a series of brain mediators that integrated cue-induced expectations with noxious inputs into ongoing pain predictions using a semicircular scale designed to capture rating trajectories. Temporal mediation analysis revealed that during the early-to-mid stages of integration, the frontoparietal and dorsal attention network regions, such as the lateral prefrontal, premotor, and parietal cortex, mediated the cue effects. Conversely, during the mid-to-late stages of integration, the somatomotor network regions mediated the effects of stimulus intensity, suggesting that the integration occurs along the cortical hierarchy from the association to sensorimotor brain systems. Our findings advance the understanding of how the brain integrates contextual and sensory information into pain experience over time.
Collapse
Affiliation(s)
- Suhwan Gim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
- Center for the Developing Brain, Child Mind Institute, New York, New York State, United States of America
- Life-inspired Neural Network for Prediction and Optimization Research Group, Suwon, South Korea
| | - Elizabeth A. Reynolds Losin
- Department of Psychology, University of Miami, Coral Gables, Florida, United States of America
- Department of Biobehavioral Health, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
- Life-inspired Neural Network for Prediction and Optimization Research Group, Suwon, South Korea
| |
Collapse
|
16
|
Jang H, Fotiadis P, Mashour GA, Hudetz AG, Huang Z. Thalamic Roles in Conscious Perception Revealed by Low-Intensity Focused Ultrasound Neuromodulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617034. [PMID: 39416133 PMCID: PMC11483030 DOI: 10.1101/2024.10.07.617034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The neural basis of conscious perception remains incompletely understood. While cortical mechanisms of conscious content have been extensively investigated, the role of subcortical structures, including the thalamus, remains less explored. We aim to elucidate the causal contributions of different thalamic regions to conscious perception using transcranial low-intensity focused ultrasound (LIFU) neuromodulation. We hypothesize that modulating different thalamic regions would result in distinct perceptual outcomes. We apply LIFU in human volunteers to investigate region-specific and sonication parameter-dependent effects. We target anterior (transmodal-dominant) and posterior (unimodal-dominant) thalamic regions, further divided into ventral and dorsal regions, while participants perform a near-threshold visual perception task. Task performance is evaluated using Signal Detection Theory metrics. We find that the high duty cycle stimulation of the ventral anterior thalamus enhanced object recognition sensitivity. We also observe a general (i.e., region-independent) effect of LIFU on decision bias (i.e., a tendency toward a particular response) and object categorization accuracy. Specifically, high duty cycle stimulation decreases categorization accuracy, whereas low duty cycle shifts decision bias towards a more conservative stance. In conclusion, our results provide causal insight into the functional organization of the thalamus in shaping human visual experience and highlight the unique role of the transmodal-dominant ventral anterior thalamus.
Collapse
Affiliation(s)
- Hyunwoo Jang
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Panagiotis Fotiadis
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - George A. Mashour
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Anthony G. Hudetz
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Zirui Huang
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
17
|
Huang Z, Mashour GA, Hudetz AG. Propofol disrupts the functional core-matrix architecture of the thalamus in humans. Nat Commun 2024; 15:7496. [PMID: 39251579 PMCID: PMC11384736 DOI: 10.1038/s41467-024-51837-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/15/2024] [Indexed: 09/11/2024] Open
Abstract
Research into the role of thalamocortical circuits in anesthesia-induced unconsciousness is difficult due to anatomical and functional complexity. Prior neuroimaging studies have examined either the thalamus as a whole or focused on specific subregions, overlooking the distinct neuronal subtypes like core and matrix cells. We conducted a study of heathy volunteers and functional magnetic resonance imaging during conscious baseline, deep sedation, and recovery. We advanced the functional gradient mapping technique to delineate the functional geometry of thalamocortical circuits, within a framework of the unimodal-transmodal functional axis of the cortex. Here we show a significant shift in this geometry during deep sedation, marked by a transmodal-deficient geometry. This alteration is closely linked to the spatial variations in the matrix cell composition within the thalamus. This research bridges cellular and systems-level understanding, highlighting the crucial role of thalamic core-matrix functional architecture in understanding the neural mechanisms of states of consciousness.
Collapse
Affiliation(s)
- Zirui Huang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, USA.
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, USA.
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA.
| | - George A Mashour
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anthony G Hudetz
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Cao Q, Wang P, Zhang Z, Castellanos FX, Biswal BB. Compressed cerebro-cerebellar functional gradients in children and adolescents with attention-deficit/hyperactivity disorder. Hum Brain Mapp 2024; 45:e26796. [PMID: 39254180 PMCID: PMC11386319 DOI: 10.1002/hbm.26796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 09/11/2024] Open
Abstract
Both cortical and cerebellar developmental differences have been implicated in attention-deficit/hyperactivity disorder (ADHD). Recently accumulating neuroimaging studies have highlighted hierarchies as a fundamental principle of brain organization, suggesting the importance of assessing hierarchy abnormalities in ADHD. A novel gradient-based resting-state functional connectivity analysis was applied to investigate the cerebro-cerebellar disturbed hierarchy in children and adolescents with ADHD. We found that the interaction of functional gradient between diagnosis and age was concentrated in default mode network (DMN) and visual network (VN). At the same time, we also found that the opposite gradient changes of DMN and VN caused the compression of the cortical main gradient in ADHD patients, implicating the co-occurrence of both low- (visual processing) and high-order (self-related thought) cognitive dysfunction manifesting in abnormal cerebro-cerebellar organizational hierarchy in ADHD. Our study provides a neurobiological framework to better understand the co-occurrence and interaction of both low-level and high-level functional abnormalities in the cortex and cerebellum in ADHD.
Collapse
Affiliation(s)
- Qingquan Cao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Pan Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Ziqian Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - F. Xavier Castellanos
- Department of Child and Adolescent PsychiatryNew York University Grossman School of MedicineNew YorkNew YorkUSA
- Nathan Kline Institute for Psychiatric ResearchOrangeburgNew YorkUSA
| | - Bharat B. Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew JerseyUSA
| |
Collapse
|
19
|
Bang M, Park K, Choi SH, Ahn SS, Kim J, Lee SK, Park YW, Lee SH. Identification of schizophrenia by applying interpretable radiomics modeling with structural magnetic resonance imaging of the cerebellum. Psychiatry Clin Neurosci 2024; 78:527-535. [PMID: 38953397 DOI: 10.1111/pcn.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
AIMS The cerebellum is involved in higher-order mental processing as well as sensorimotor functions. Although structural abnormalities in the cerebellum have been demonstrated in schizophrenia, neuroimaging techniques are not yet applicable to identify them given the lack of biomarkers. We aimed to develop a robust diagnostic model for schizophrenia using radiomic features from T1-weighted magnetic resonance imaging (T1-MRI) of the cerebellum. METHODS A total of 336 participants (174 schizophrenia; 162 healthy controls [HCs]) were allocated to training (122 schizophrenia; 115 HCs) and test (52 schizophrenia; 47 HCs) cohorts. We obtained 2568 radiomic features from T1-MRI of the cerebellar subregions. After feature selection, a light gradient boosting machine classifier was trained. The discrimination and calibration of the model were evaluated. SHapley Additive exPlanations (SHAP) was applied to determine model interpretability. RESULTS We identified 17 radiomic features to differentiate participants with schizophrenia from HCs. In the test cohort, the radiomics model had an area under the curve, accuracy, sensitivity, and specificity of 0.89 (95% confidence interval: 0.82-0.95), 78.8%, 88.5%, and 75.4%, respectively. The model explanation by SHAP suggested that the second-order size zone non-uniformity feature from the right lobule IX and first-order energy feature from the right lobules V and VI were highly associated with the risk of schizophrenia. CONCLUSION The radiomics model focused on the cerebellum demonstrates robustness in diagnosing schizophrenia. Our results suggest that microcircuit disruption in the posterior cerebellum is a disease-defining feature of schizophrenia, and radiomics modeling has potential for supporting biomarker-based decision-making in clinical practice.
Collapse
Affiliation(s)
- Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Kisung Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Seoung-Ho Choi
- National Program Excellence in Software at Kwangwoon University, Seoul, Republic of Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinna Kim
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| |
Collapse
|
20
|
Balgova E, Diveica V, Jackson RL, Binney RJ. Overlapping neural correlates underpin theory of mind and semantic cognition: Evidence from a meta-analysis of 344 functional neuroimaging studies. Neuropsychologia 2024; 200:108904. [PMID: 38759780 DOI: 10.1016/j.neuropsychologia.2024.108904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/21/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Key unanswered questions for cognitive neuroscience include whether social cognition is underpinned by specialised brain regions and to what extent it simultaneously depends on more domain-general systems. Until we glean a better understanding of the full set of contributions made by various systems, theories of social cognition will remain fundamentally limited. In the present study, we evaluate a recent proposal that semantic cognition plays a crucial role in supporting social cognition. While previous brain-based investigations have focused on dissociating these two systems, our primary aim was to assess the degree to which the neural correlates are overlapping, particularly within two key regions, the anterior temporal lobe (ATL) and the temporoparietal junction (TPJ). We focus on activation associated with theory of mind (ToM) and adopt a meta-analytic activation likelihood approach to synthesise a large set of functional neuroimaging studies and compare their results with studies of semantic cognition. As a key consideration, we sought to account for methodological differences across the two sets of studies, including the fact that ToM studies tend to use nonverbal stimuli while the semantics literature is dominated by language-based tasks. Overall, we observed consistent overlap between the two sets of brain regions, especially in the ATL and TPJ. This supports the claim that tasks involving ToM draw upon more general semantic retrieval processes. We also identified activation specific to ToM in the right TPJ, bilateral anterior mPFC, and right precuneus. This is consistent with the view that, nested amongst more domain-general systems, there is specialised circuitry that is tuned to social processes.
Collapse
Affiliation(s)
- Eva Balgova
- Cognitive Neuroscience Institute, Department of Psychology, Bangor University, Gwynedd, Wales, UK; Department of Psychology, Aberystwyth University, Ceredigion, Wales, UK
| | - Veronica Diveica
- Cognitive Neuroscience Institute, Department of Psychology, Bangor University, Gwynedd, Wales, UK; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Rebecca L Jackson
- Department of Psychology & York Biomedical Research Institute, University of York, Heslington, York, UK
| | - Richard J Binney
- Cognitive Neuroscience Institute, Department of Psychology, Bangor University, Gwynedd, Wales, UK.
| |
Collapse
|
21
|
Schatz S, Gutiérrez GR. Enhancing socio-communicative functions in an MCI patient with intra-nasal insulin: a case report. Front Psychiatry 2024; 15:1326702. [PMID: 39006824 PMCID: PMC11239438 DOI: 10.3389/fpsyt.2024.1326702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/28/2024] [Indexed: 07/16/2024] Open
Abstract
This report examines extended intra-nasal insulin treatment [INI] for an Insulin Resistant early Mild Cognitive Impairment [MCI] patient. Patient [EJ] also had medial temporal lobe [MTL] damage, poor short-term memory, significant irritability, and social and linguistic withdrawal at treatment start. Compared to baseline, nine months INI treatment increased grey matter volume, lowered beta-amyloid levels, and improved MCI and FAS scores. Patient also increased pragmatic capacities in social conversation and procedural memory. These findings align with results from prior clinical trials on INI and suggest that treatment can slow neurodegenerative disease progression in early MCI patients.
Collapse
Affiliation(s)
- Sara Schatz
- International Studies, The Ohio State University, Columbus, OH, United States
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, United States
| | - Grace Rose Gutiérrez
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
22
|
Nick Q, Gale DJ, Areshenkoff C, De Brouwer A, Nashed J, Wammes J, Zhu T, Flanagan R, Smallwood J, Gallivan J. Reconfigurations of cortical manifold structure during reward-based motor learning. eLife 2024; 12:RP91928. [PMID: 38916598 PMCID: PMC11198988 DOI: 10.7554/elife.91928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
Adaptive motor behavior depends on the coordinated activity of multiple neural systems distributed across the brain. While the role of sensorimotor cortex in motor learning has been well established, how higher-order brain systems interact with sensorimotor cortex to guide learning is less well understood. Using functional MRI, we examined human brain activity during a reward-based motor task where subjects learned to shape their hand trajectories through reinforcement feedback. We projected patterns of cortical and striatal functional connectivity onto a low-dimensional manifold space and examined how regions expanded and contracted along the manifold during learning. During early learning, we found that several sensorimotor areas in the dorsal attention network exhibited increased covariance with areas of the salience/ventral attention network and reduced covariance with areas of the default mode network (DMN). During late learning, these effects reversed, with sensorimotor areas now exhibiting increased covariance with DMN areas. However, areas in posteromedial cortex showed the opposite pattern across learning phases, with its connectivity suggesting a role in coordinating activity across different networks over time. Our results establish the neural changes that support reward-based motor learning and identify distinct transitions in the functional coupling of sensorimotor to transmodal cortex when adapting behavior.
Collapse
Affiliation(s)
- Qasem Nick
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
| | - Daniel J Gale
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
| | - Corson Areshenkoff
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
| | - Anouk De Brouwer
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
| | - Joseph Nashed
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Medicine, Queen's UniversityKingstonCanada
| | - Jeffrey Wammes
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
| | - Tianyao Zhu
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
| | - Randy Flanagan
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
| | - Jonny Smallwood
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
| | - Jason Gallivan
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingstonCanada
| |
Collapse
|
23
|
Hu J, Chen G, Zeng Z, Ran H, Zhang R, Yu Q, Xie Y, He Y, Wang F, Li X, Huang K, Liu H, Zhang T. Systematically altered connectome gradient in benign childhood epilepsy with centrotemporal spikes: Potential effect on cognitive function. Neuroimage Clin 2024; 43:103628. [PMID: 38850833 PMCID: PMC11201345 DOI: 10.1016/j.nicl.2024.103628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVE Benign childhood epilepsy with centrotemporal spikes (BECTS) affects brain network hierarchy and cognitive function; however, itremainsunclearhowhierarchical changeaffectscognition in patients with BECTS. A major aim of this study was to examine changes in the macro-network function hierarchy in BECTS and its potential contribution to cognitive function. METHODS Overall, the study included 50 children with BECTS and 69 healthy controls. Connectome gradient analysis was used to determine the brain network hierarchy of each group. By comparing gradient scores at each voxel level and network between groups, we assessed changes in whole-brain voxel-level and network hierarchy. Functional connectivity was used to detect the functional reorganization of epilepsy caused by these abnormal brain regions based on these aberrant gradients. Lastly, we explored the relationships between the change gradient and functional connectivity values and clinical variables and further predicted the cognitive function associated with BECTS gradient changes. RESULTS In children with BECTS, the gradient was extended at different network and voxel levels. The gradient scores frontoparietal network was increased in the principal gradient of patients with BECTS. The left precentral gyrus (PCG) and right angular gyrus gradient scores were significantly increased in the principal gradient of children with BECTS. Moreover, in regions of the brain with abnormal principal gradients, functional connectivity was disrupted. The left PCG gradient score of children with BECTS was correlated with the verbal intelligence quotient (VIQ), and the disruption of functional connectivity in brain regions with abnormal principal gradients was closely related to cognitive function. VIQ was significantly predicted by the principal gradient map of patients. SIGNIFICANCE The results indicate connectome gradient disruption in children with BECTS and its relationship to cognitive function, thereby increasing our understanding of the functional connectome hierarchy and providing potential biomarkers for cognitive function of children with BECTS.
Collapse
Affiliation(s)
- Jie Hu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China; Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guiqin Chen
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China; Department of Radiology, The Second Affiliated Hospital of Guizhou University of TCM, Guiyang 550001, China
| | - Zhen Zeng
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Haifeng Ran
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Ruoxi Zhang
- Department of Radiology, The Second Affiliated Hospital of Guizhou University of TCM, Guiyang 550001, China
| | - Qiane Yu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Yuxin Xie
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Yulun He
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Fuqin Wang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Xuhong Li
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Kexing Huang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China
| | - Heng Liu
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China.
| | - Tijiang Zhang
- Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563000, China.
| |
Collapse
|
24
|
Wang X, Krieger-Redwood K, Lyu B, Lowndes R, Wu G, Souter NE, Wang X, Kong R, Shafiei G, Bernhardt BC, Cui Z, Smallwood J, Du Y, Jefferies E. The Brain's Topographical Organization Shapes Dynamic Interaction Patterns That Support Flexible Behavior Based on Rules and Long-Term Knowledge. J Neurosci 2024; 44:e2223232024. [PMID: 38527807 PMCID: PMC11140685 DOI: 10.1523/jneurosci.2223-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/27/2024] Open
Abstract
Adaptive behavior relies both on specific rules that vary across situations and stable long-term knowledge gained from experience. The frontoparietal control network (FPCN) is implicated in the brain's ability to balance these different influences on action. Here, we investigate how the topographical organization of the cortex supports behavioral flexibility within the FPCN. Functional properties of this network might reflect its juxtaposition between the dorsal attention network (DAN) and the default mode network (DMN), two large-scale systems implicated in top-down attention and memory-guided cognition, respectively. Our study tests whether subnetworks of FPCN are topographically proximal to the DAN and the DMN, respectively, and how these topographical differences relate to functional differences: the proximity of each subnetwork is anticipated to play a pivotal role in generating distinct cognitive modes relevant to working memory and long-term memory. We show that FPCN subsystems share multiple anatomical and functional similarities with their neighboring systems (DAN and DMN) and that this topographical architecture supports distinct interaction patterns that give rise to different patterns of functional behavior. The FPCN acts as a unified system when long-term knowledge supports behavior but becomes segregated into discrete subsystems with different patterns of interaction when long-term memory is less relevant. In this way, our study suggests that the topographical organization of the FPCN and the connections it forms with distant regions of cortex are important influences on how this system supports flexible behavior.
Collapse
Affiliation(s)
- Xiuyi Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Katya Krieger-Redwood
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Baihan Lyu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rebecca Lowndes
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Guowei Wu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nicholas E Souter
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Xiaokang Wang
- Department of Biomedical Engineering, University of California, Davis, California 95616
| | - Ru Kong
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Golia Shafiei
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Jonathan Smallwood
- Department of Psychology, Queens University, Kingston, Ontario K7L 3N6, Canada
| | - Yi Du
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Institute for Brain Research, Beijing 102206, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China
| | - Elizabeth Jefferies
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
25
|
Shao X, Krieger-Redwood K, Zhang M, Hoffman P, Lanzoni L, Leech R, Smallwood J, Jefferies E. Distinctive and Complementary Roles of Default Mode Network Subsystems in Semantic Cognition. J Neurosci 2024; 44:e1907232024. [PMID: 38589231 PMCID: PMC11097276 DOI: 10.1523/jneurosci.1907-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024] Open
Abstract
The default mode network (DMN) typically deactivates to external tasks, yet supports semantic cognition. It comprises medial temporal (MT), core, and frontotemporal (FT) subsystems, but its functional organization is unclear: the requirement for perceptual coupling versus decoupling, input modality (visual/verbal), type of information (social/spatial), and control demands all potentially affect its recruitment. We examined the effect of these factors on activation and deactivation of DMN subsystems during semantic cognition, across four task-based human functional magnetic resonance imaging (fMRI) datasets, and localized these responses in whole-brain state space defined by gradients of intrinsic connectivity. FT showed activation consistent with a central role across domains, tasks, and modalities, although it was most responsive to abstract, verbal tasks; this subsystem uniquely showed more "tuned" states characterized by increases in both activation and deactivation when semantic retrieval demands were higher. MT also activated to both perceptually coupled (scenes) and decoupled (autobiographical memory) tasks and showed stronger responses to picture associations, consistent with a role in scene construction. Core DMN consistently showed deactivation, especially to externally oriented tasks. These diverse contributions of DMN subsystems to semantic cognition were related to their location on intrinsic connectivity gradients: activation was closer to the sensory-motor cortex than deactivation, particularly for FT and MT, while activation for core DMN was distant from both visual cortex and cognitive control. These results reveal distinctive yet complementary DMN responses: MT and FT support different memory-based representations that are accessed externally and internally, while deactivation in core DMN is associated with demanding, external semantic tasks.
Collapse
Affiliation(s)
- Ximing Shao
- Department of Psychology, University of York, York, YO10 5DD, United Kingdom
| | | | - Meichao Zhang
- Department of Psychology, University of York, York, YO10 5DD, United Kingdom
- CAS Key Laboratory of Behavioural Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Paul Hoffman
- School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Lucilla Lanzoni
- Department of Psychology, University of York, York, YO10 5DD, United Kingdom
| | - Robert Leech
- Centre for Neuroimaging Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RT, United Kingdom
| | - Jonathan Smallwood
- Department of Psychology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Elizabeth Jefferies
- Department of Psychology, University of York, York, YO10 5DD, United Kingdom
| |
Collapse
|
26
|
Souter NE, de Freitas A, Zhang M, Shao X, del Jesus Gonzalez Alam TR, Engen H, Smallwood J, Krieger‐Redwood K, Jefferies E. Default mode network shows distinct emotional and contextual responses yet common effects of retrieval demands across tasks. Hum Brain Mapp 2024; 45:e26703. [PMID: 38716714 PMCID: PMC11077571 DOI: 10.1002/hbm.26703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
The default mode network (DMN) lies towards the heteromodal end of the principal gradient of intrinsic connectivity, maximally separated from the sensory-motor cortex. It supports memory-based cognition, including the capacity to retrieve conceptual and evaluative information from sensory inputs, and to generate meaningful states internally; however, the functional organisation of DMN that can support these distinct modes of retrieval remains unclear. We used fMRI to examine whether activation within subsystems of DMN differed as a function of retrieval demands, or the type of association to be retrieved, or both. In a picture association task, participants retrieved semantic associations that were either contextual or emotional in nature. Participants were asked to avoid generating episodic associations. In the generate phase, these associations were retrieved from a novel picture, while in the switch phase, participants retrieved a new association for the same image. Semantic context and emotion trials were associated with dissociable DMN subnetworks, indicating that a key dimension of DMN organisation relates to the type of association being accessed. The frontotemporal and medial temporal DMN showed a preference for emotional and semantic contextual associations, respectively. Relative to the generate phase, the switch phase recruited clusters closer to the heteromodal apex of the principal gradient-a cortical hierarchy separating unimodal and heteromodal regions. There were no differences in this effect between association types. Instead, memory switching was associated with a distinct subnetwork associated with controlled internal cognition. These findings delineate distinct patterns of DMN recruitment for different kinds of associations yet common responses across tasks that reflect retrieval demands.
Collapse
Affiliation(s)
- Nicholas E. Souter
- Department of PsychologyUniversity of YorkYorkUK
- School of PsychologyUniversity of SussexBrightonUK
| | - Antonia de Freitas
- Department of PsychologyUniversity of YorkYorkUK
- Experimental Psychology, Division of Psychology and Language SciencesUniversity College LondonLondonUK
| | - Meichao Zhang
- Department of PsychologyUniversity of YorkYorkUK
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Ximing Shao
- Department of PsychologyUniversity of YorkYorkUK
- Experimental Psychology, Division of Psychology and Language SciencesUniversity College LondonLondonUK
| | | | - Haakon Engen
- Institute for Military Psychiatry, Joint Medical ServicesNorwegian Armed ForcesNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | | | | | | |
Collapse
|
27
|
Luo AC, Sydnor VJ, Pines A, Larsen B, Alexander-Bloch AF, Cieslak M, Covitz S, Chen AA, Esper NB, Feczko E, Franco AR, Gur RE, Gur RC, Houghton A, Hu F, Keller AS, Kiar G, Mehta K, Salum GA, Tapera T, Xu T, Zhao C, Salo T, Fair DA, Shinohara RT, Milham MP, Satterthwaite TD. Functional connectivity development along the sensorimotor-association axis enhances the cortical hierarchy. Nat Commun 2024; 15:3511. [PMID: 38664387 PMCID: PMC11045762 DOI: 10.1038/s41467-024-47748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Human cortical maturation has been posited to be organized along the sensorimotor-association axis, a hierarchical axis of brain organization that spans from unimodal sensorimotor cortices to transmodal association cortices. Here, we investigate the hypothesis that the development of functional connectivity during childhood through adolescence conforms to the cortical hierarchy defined by the sensorimotor-association axis. We tested this pre-registered hypothesis in four large-scale, independent datasets (total n = 3355; ages 5-23 years): the Philadelphia Neurodevelopmental Cohort (n = 1207), Nathan Kline Institute-Rockland Sample (n = 397), Human Connectome Project: Development (n = 625), and Healthy Brain Network (n = 1126). Across datasets, the development of functional connectivity systematically varied along the sensorimotor-association axis. Connectivity in sensorimotor regions increased, whereas connectivity in association cortices declined, refining and reinforcing the cortical hierarchy. These consistent and generalizable results establish that the sensorimotor-association axis of cortical organization encodes the dominant pattern of functional connectivity development.
Collapse
Affiliation(s)
- Audrey C Luo
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Valerie J Sydnor
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Adam Pines
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Aaron F Alexander-Bloch
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Matthew Cieslak
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sydney Covitz
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrew A Chen
- Division of Biostatistics and Bioinformatics, Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | | | - Eric Feczko
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
| | - Alexandre R Franco
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Audrey Houghton
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Fengling Hu
- Penn Statistics in Imaging and Visualization Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arielle S Keller
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gregory Kiar
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
| | - Kahini Mehta
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Giovanni A Salum
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tinashe Tapera
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
| | - Chenying Zhao
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Taylor Salo
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
- Institute of Child Development, College of Education and Human Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
28
|
Krieger-Redwood K, Wang X, Souter N, Gonzalez Alam TRDJ, Smallwood J, Jackson RL, Jefferies E. Graded and sharp transitions in semantic function in left temporal lobe. BRAIN AND LANGUAGE 2024; 251:105402. [PMID: 38484446 DOI: 10.1016/j.bandl.2024.105402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
Recent work has focussed on how patterns of functional change within the temporal lobe relate to whole-brain dimensions of intrinsic connectivity variation (Margulies et al., 2016). We examined two such 'connectivity gradients' reflecting the separation of (i) unimodal versus heteromodal and (ii) visual versus auditory-motor cortex, examining visually presented verbal associative and feature judgments, plus picture-based context and emotion generation. Functional responses along the first dimension sometimes showed graded change between modality-tuned and heteromodal cortex (in the verbal matching task), and other times showed sharp functional transitions, with deactivation at the extremes and activation in the middle of this gradient (internal generation). The second gradient revealed more visual than auditory-motor activation, regardless of content (associative, feature, context, emotion) or task process (matching/generation). We also uncovered subtle differences across each gradient for content type, which predominantly manifested as differences in relative magnitude of activation or deactivation.
Collapse
Affiliation(s)
- Katya Krieger-Redwood
- Department of Psychology, York Neuroimaging Centre, York Biomedical Research Institute, University of York, United Kingdom
| | - Xiuyi Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nicholas Souter
- Department of Psychology, York Neuroimaging Centre, York Biomedical Research Institute, University of York, United Kingdom; School of Psychology, University of Sussex, Brighton, United Kingdom
| | | | | | - Rebecca L Jackson
- Department of Psychology, York Neuroimaging Centre, York Biomedical Research Institute, University of York, United Kingdom
| | - Elizabeth Jefferies
- Department of Psychology, York Neuroimaging Centre, York Biomedical Research Institute, University of York, United Kingdom.
| |
Collapse
|
29
|
Yin X, Yang J, Xiang Q, Peng L, Song J, Liang S, Wu J. Brain network hierarchy reorganization in subthreshold depression. Neuroimage Clin 2024; 42:103594. [PMID: 38518552 PMCID: PMC10973537 DOI: 10.1016/j.nicl.2024.103594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Hierarchy is the organizing principle of human brain network. How network hierarchy changes in subthreshold depression (StD) is unclear. The aim of this study was to investigate the altered brain network hierarchy and its clinical significance in patients with StD. METHODS A total of 43 patients with StD and 43 healthy controls matched for age, gender and years of education participated in this study. Alterations in the hierarchy of StD brain networks were depicted by connectome gradient analysis. We assessed changes in network hierarchy by comparing gradient scores in each network in patients with StD and healthy controls. The study compared different brain subdivisions if there was a different network. Finally, we analysed the relationship between the altered gradient scores and clinical characteristics. RESULTS Patients with StD had contracted network hierarchy and suppressed cortical range gradients. In the principal gradient, the gradient scores of default mode network were significantly reduced in patients with StD compared to controls. In the default network, the subdivisions of reduced gradient scores were mainly located in the precuneus, superior temporal gyrus, and anterior and posterior cingulate gyrus. Reduced gradient scores in the default mode network, the anterior and posterior cingulate gyrus were correlated with severity of depression. CONCLUSIONS The network hierarchy of the StD changed and was significantly correlated with depressive symptoms and severity. These results provided new insights into further understanding of the neural mechanisms of StD.
Collapse
Affiliation(s)
- Xiaolong Yin
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Junchao Yang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Qing Xiang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Lixin Peng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jian Song
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Shengxiang Liang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Jingsong Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
30
|
Martino M, Magioncalda P. A three-dimensional model of neural activity and phenomenal-behavioral patterns. Mol Psychiatry 2024; 29:639-652. [PMID: 38114633 DOI: 10.1038/s41380-023-02356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
How phenomenal experience and behavior are related to neural activity in physiology and psychopathology represents a fundamental question in neuroscience and psychiatry. The phenomenal-behavior patterns may be deconstructed into basic dimensions, i.e., psychomotricity, affectivity, and thought, which might have distinct neural correlates. This work provides a data overview on the relationship of these phenomenal-behavioral dimensions with brain activity across physiological and pathological conditions (including major depressive disorder, bipolar disorder, schizophrenia, attention-deficit/hyperactivity disorder, anxiety disorders, addictive disorders, Parkinson's disease, Tourette syndrome, Alzheimer's disease, and frontotemporal dementia). Accordingly, we propose a three-dimensional model of neural activity and phenomenal-behavioral patterns. In this model, neural activity is organized into distinct units in accordance with connectivity patterns and related input/output processing, manifesting in the different phenomenal-behavioral dimensions. (1) An external neural unit, which involves the sensorimotor circuit/brain's sensorimotor network and is connected with the external environment, processes external inputs/outputs, manifesting in the psychomotor dimension (processing of exteroception/somatomotor activity). External unit hyperactivity manifests in psychomotor excitation (hyperactivity/hyperkinesia/catatonia), while external unit hypoactivity manifests in psychomotor inhibition (retardation/hypokinesia/catatonia). (2) An internal neural unit, which involves the interoceptive-autonomic circuit/brain's salience network and is connected with the internal/body environment, processes internal inputs/outputs, manifesting in the affective dimension (processing of interoception/autonomic activity). Internal unit hyperactivity manifests in affective excitation (anxiety/dysphoria-euphoria/panic), while internal unit hypoactivity manifests in affective inhibition (anhedonia/apathy/depersonalization). (3) An associative neural unit, which involves the brain's associative areas/default-mode network and is connected with the external/internal units (but not with the environment), processes associative inputs/outputs, manifesting in the thought dimension (processing of ideas). Associative unit hyperactivity manifests in thought excitation (mind-wandering/repetitive thinking/psychosis), while associative unit hypoactivity manifests in thought inhibition (inattention/cognitive deficit/consciousness loss). Finally, these neural units interplay and dynamically combine into various neural states, resulting in the complex phenomenal experience and behavior across physiology and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Matteo Martino
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
| | - Paola Magioncalda
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Radiology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
- Department of Medical Research, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
| |
Collapse
|
31
|
Eisenhauer S, Gonzalez Alam TRDJ, Cornelissen PL, Smallwood J, Jefferies E. Individual word representations dissociate from linguistic context along a cortical unimodal to heteromodal gradient. Hum Brain Mapp 2024; 45:e26607. [PMID: 38339897 PMCID: PMC10836172 DOI: 10.1002/hbm.26607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
Language comprehension involves multiple hierarchical processing stages across time, space, and levels of representation. When processing a word, the sensory input is transformed into increasingly abstract representations that need to be integrated with the linguistic context. Thus, language comprehension involves both input-driven as well as context-dependent processes. While neuroimaging research has traditionally focused on mapping individual brain regions to the distinct underlying processes, recent studies indicate that whole-brain distributed patterns of cortical activation might be highly relevant for cognitive functions, including language. One such pattern, based on resting-state connectivity, is the 'principal cortical gradient', which dissociates sensory from heteromodal brain regions. The present study investigated the extent to which this gradient provides an organizational principle underlying language function, using a multimodal neuroimaging dataset of functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) recordings from 102 participants during sentence reading. We found that the brain response to individual representations of a word (word length, orthographic distance, and word frequency), which reflect visual; orthographic; and lexical properties, gradually increases towards the sensory end of the gradient. Although these properties showed opposite effect directions in fMRI and MEG, their association with the sensory end of the gradient was consistent across both neuroimaging modalities. In contrast, MEG revealed that properties reflecting a word's relation to its linguistic context (semantic similarity and position within the sentence) involve the heteromodal end of the gradient to a stronger extent. This dissociation between individual word and contextual properties was stable across earlier and later time windows during word presentation, indicating interactive processing of word representations and linguistic context at opposing ends of the principal gradient. To conclude, our findings indicate that the principal gradient underlies the organization of a range of linguistic representations while supporting a gradual distinction between context-independent and context-dependent representations. Furthermore, the gradient reveals convergent patterns across neuroimaging modalities (similar location along the gradient) in the presence of divergent responses (opposite effect directions).
Collapse
Affiliation(s)
- Susanne Eisenhauer
- Department of PsychologyUniversity of YorkYorkUK
- York Neuroimaging Centre, Innovation WayYorkUK
| | | | | | | | - Elizabeth Jefferies
- Department of PsychologyUniversity of YorkYorkUK
- York Neuroimaging Centre, Innovation WayYorkUK
| |
Collapse
|
32
|
Assem M, Shashidhara S, Glasser MF, Duncan J. Basis of executive functions in fine-grained architecture of cortical and subcortical human brain networks. Cereb Cortex 2024; 34:bhad537. [PMID: 38244562 PMCID: PMC10839840 DOI: 10.1093/cercor/bhad537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024] Open
Abstract
Theoretical models suggest that executive functions rely on both domain-general and domain-specific processes. Supporting this view, prior brain imaging studies have revealed that executive activations converge and diverge within broadly characterized brain networks. However, the lack of precise anatomical mappings has impeded our understanding of the interplay between domain-general and domain-specific processes. To address this challenge, we used the high-resolution multimodal magnetic resonance imaging approach of the Human Connectome Project to scan participants performing 3 canonical executive tasks: n-back, rule switching, and stop signal. The results reveal that, at the individual level, different executive activations converge within 9 domain-general territories distributed in frontal, parietal, and temporal cortices. Each task exhibits a unique topography characterized by finely detailed activation gradients within domain-general territory shifted toward adjacent resting-state networks; n-back activations shift toward the default mode, rule switching toward dorsal attention, and stop signal toward cingulo-opercular networks. Importantly, the strongest activations arise at multimodal neurobiological definitions of network borders. Matching results are seen in circumscribed regions of the caudate nucleus, thalamus, and cerebellum. The shifting peaks of local gradients at the intersection of task-specific networks provide a novel mechanistic insight into how partially-specialized networks interact with neighboring domain-general territories to generate distinct executive functions.
Collapse
Affiliation(s)
- Moataz Assem
- MRC Cognition and Brain Sciences Unit, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
| | - Sneha Shashidhara
- MRC Cognition and Brain Sciences Unit, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
- Psychology Department, Ashoka University, Sonipat, 131029, India
| | - Matthew F Glasser
- Department of Radiology, Washington University in St. Louis, Saint Louis, MO, 63110, United States
- Department of Neuroscience, Washington University in St. Louis, Saint Louis, MO, 63110, United States
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, United Kingdom
| |
Collapse
|
33
|
Huang Z, Mashour GA, Hudetz AG. Propofol Disrupts the Functional Core-Matrix Architecture of the Thalamus in Humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576934. [PMID: 38328136 PMCID: PMC10849566 DOI: 10.1101/2024.01.23.576934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Research into the role of thalamocortical circuits in anesthesia-induced unconsciousness is difficult due to anatomical and functional complexity. Prior neuroimaging studies have examined either the thalamus as a whole or focused on specific subregions, overlooking the distinct neuronal subtypes like core and matrix cells. We conducted a study of heathy volunteers and functional magnetic resonance imaging during conscious baseline, deep sedation, and recovery. We advanced the functional gradient mapping technique to delineate the functional geometry of thalamocortical circuits, within a framework of the unimodal-transmodal functional axis of the cortex. We observed a significant shift in this geometry during unconsciousness, marked by the dominance of unimodal over transmodal geometry. This alteration was closely linked to the spatial variations in the density of matrix cells within the thalamus. This research bridges cellular and systems-level understanding, highlighting the crucial role of thalamic core-matrix functional architecture in understanding the neural mechanisms of states of consciousness.
Collapse
Affiliation(s)
- Zirui Huang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - George A Mashour
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Anthony G Hudetz
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
34
|
Luppi AI, Girn M, Rosas FE, Timmermann C, Roseman L, Erritzoe D, Nutt DJ, Stamatakis EA, Spreng RN, Xing L, Huttner WB, Carhart-Harris RL. A role for the serotonin 2A receptor in the expansion and functioning of human transmodal cortex. Brain 2024; 147:56-80. [PMID: 37703310 DOI: 10.1093/brain/awad311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
Integrating independent but converging lines of research on brain function and neurodevelopment across scales, this article proposes that serotonin 2A receptor (5-HT2AR) signalling is an evolutionary and developmental driver and potent modulator of the macroscale functional organization of the human cerebral cortex. A wealth of evidence indicates that the anatomical and functional organization of the cortex follows a unimodal-to-transmodal gradient. Situated at the apex of this processing hierarchy-where it plays a central role in the integrative processes underpinning complex, human-defining cognition-the transmodal cortex has disproportionately expanded across human development and evolution. Notably, the adult human transmodal cortex is especially rich in 5-HT2AR expression and recent evidence suggests that, during early brain development, 5-HT2AR signalling on neural progenitor cells stimulates their proliferation-a critical process for evolutionarily-relevant cortical expansion. Drawing on multimodal neuroimaging and cross-species investigations, we argue that, by contributing to the expansion of the human cortex and being prevalent at the apex of its hierarchy in the adult brain, 5-HT2AR signalling plays a major role in both human cortical expansion and functioning. Owing to its unique excitatory and downstream cellular effects, neuronal 5-HT2AR agonism promotes neuroplasticity, learning and cognitive and psychological flexibility in a context-(hyper)sensitive manner with therapeutic potential. Overall, we delineate a dual role of 5-HT2ARs in enabling both the expansion and modulation of the human transmodal cortex.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, CB2 1SB, UK
- The Alan Turing Institute, London, NW1 2DB, UK
| | - Manesh Girn
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
| | - Fernando E Rosas
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
- Data Science Institute, Imperial College London, London, SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London, SW7 2AZ, UK
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David Erritzoe
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
35
|
Del Río M, Racey C, Ren Z, Qiu J, Wang HT, Ward J. Higher Sensory Sensitivity is Linked to Greater Expansion Amongst Functional Connectivity Gradients. J Autism Dev Disord 2024; 54:56-74. [PMID: 36227443 DOI: 10.1007/s10803-022-05772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 11/29/2022]
Abstract
Insofar as the autistic-like phenotype presents in the general population, it consists of partially dissociable traits, such as social and sensory issues. Here, we investigate individual differences in cortical organisation related to autistic-like traits. Connectome gradient decomposition based on resting state fMRI data reliably reveals a principal gradient spanning from unimodal to transmodal regions, reflecting the transition from perception to abstract cognition. In our non-clinical sample, this gradient's expansion, indicating less integration between visual and default mode networks, correlates with subjective sensory sensitivity (measured using the Glasgow Sensory Questionnaire, GSQ), but not other autistic-like traits (measured using the Autism Spectrum Quotient, AQ). This novel brain-based correlate of the GSQ demonstrates sensory issues can be disentangled from the wider autistic-like phenotype.
Collapse
Affiliation(s)
| | - Chris Racey
- School of Psychology, University of Sussex, Brighton, UK
- Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Zhiting Ren
- School of Psychology, Southwest University, Chongqing, China
| | - Jiang Qiu
- School of Psychology, Southwest University, Chongqing, China
| | - Hao-Ting Wang
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK
- Laboratory for Brain Simulation and Exploration (SIMEXP), Montreal Geriatrics Institute (CRIUGM), University of Montreal, Montreal, Canada
| | - Jamie Ward
- School of Psychology, University of Sussex, Brighton, UK
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK
- Sussex Neuroscience, University of Sussex, Brighton, UK
| |
Collapse
|
36
|
Dai R, Huang Z, Larkin TE, Tarnal V, Picton P, Vlisides PE, Janke E, McKinney A, Hudetz AG, Harris RE, Mashour GA. Psychedelic concentrations of nitrous oxide reduce functional differentiation in frontoparietal and somatomotor cortical networks. Commun Biol 2023; 6:1284. [PMID: 38114805 PMCID: PMC10730842 DOI: 10.1038/s42003-023-05678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
Despite the longstanding use of nitrous oxide and descriptions of its psychological effects more than a century ago, there is a paucity of neurobiological investigation of associated psychedelic experiences. We measure the brain's functional geometry (through analysis of cortical gradients) and temporal dynamics (through analysis of co-activation patterns) using human resting-state functional magnetic resonance imaging data acquired before and during administration of 35% nitrous oxide. Both analyses demonstrate that nitrous oxide reduces functional differentiation in frontoparietal and somatomotor networks. Importantly, the subjective psychedelic experience induced by nitrous oxide is inversely correlated with the degree of functional differentiation. Thus, like classical psychedelics acting on serotonin receptors, nitrous oxide flattens the functional geometry of the cortex and disrupts temporal dynamics in association with psychoactive effects.
Collapse
Affiliation(s)
- Rui Dai
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Zirui Huang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Tony E Larkin
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Chronic Pain and Fatigue Research Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Vijay Tarnal
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Paul Picton
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Phillip E Vlisides
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ellen Janke
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Amy McKinney
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Anthony G Hudetz
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Richard E Harris
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Chronic Pain and Fatigue Research Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - George A Mashour
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
37
|
Peraza JA, Salo T, Riedel MC, Bottenhorn KL, Poline JB, Dockès J, Kent JD, Bartley JE, Flannery JS, Hill-Bowen LD, Lobo RP, Poudel R, Ray KL, Robinson JL, Laird RW, Sutherland MT, de la Vega A, Laird AR. Methods for decoding cortical gradients of functional connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551505. [PMID: 37577598 PMCID: PMC10418206 DOI: 10.1101/2023.08.01.551505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Macroscale gradients have emerged as a central principle for understanding functional brain organization. Previous studies have demonstrated that a principal gradient of connectivity in the human brain exists, with unimodal primary sensorimotor regions situated at one end and transmodal regions associated with the default mode network and representative of abstract functioning at the other. The functional significance and interpretation of macroscale gradients remains a central topic of discussion in the neuroimaging community, with some studies demonstrating that gradients may be described using meta-analytic functional decoding techniques. However, additional methodological development is necessary to fully leverage available meta-analytic methods and resources and quantitatively evaluate their relative performance. Here, we conducted a comprehensive series of analyses to investigate and improve the framework of data-driven, meta-analytic methods, thereby establishing a principled approach for gradient segmentation and functional decoding. We found that a two-segment solution determined by a k-means segmentation approach and an LDA-based meta-analysis combined with the NeuroQuery database was the optimal combination of methods for decoding functional connectivity gradients. Finally, we proposed a method for decoding additional components of the gradient decomposition. The current work aims to provide recommendations on best practices and flexible methods for gradient-based functional decoding of fMRI data.
Collapse
Affiliation(s)
- Julio A. Peraza
- Department of Physics, Florida International University, Miami, FL, USA
| | - Taylor Salo
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Katherine L. Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jean-Baptiste Poline
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jérôme Dockès
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - James D. Kent
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | | | - Jessica S. Flannery
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | | | | | - Ranjita Poudel
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL, USA
| | - Kimberly L. Ray
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | | | - Robert W. Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | | | | | - Angela R. Laird
- Department of Physics, Florida International University, Miami, FL, USA
| |
Collapse
|
38
|
Mckeown B, Strawson WH, Zhang M, Turnbull A, Konu D, Karapanagiotidis T, Wang HT, Leech R, Xu T, Hardikar S, Bernhardt B, Margulies D, Jefferies E, Wammes J, Smallwood J. Experience sampling reveals the role that covert goal states play in task-relevant behavior. Sci Rep 2023; 13:21710. [PMID: 38066069 PMCID: PMC10709616 DOI: 10.1038/s41598-023-48857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Cognitive neuroscience has gained insight into covert states using experience sampling. Traditionally, this approach has focused on off-task states. However, task-relevant states are also maintained via covert processes. Our study examined whether experience sampling can also provide insights into covert goal-relevant states that support task performance. To address this question, we developed a neural state space, using dimensions of brain function variation, that allows neural correlates of overt and covert states to be examined in a common analytic space. We use this to describe brain activity during task performance, its relation to covert states identified via experience sampling, and links between individual variation in overt and covert states and task performance. Our study established deliberate task focus was linked to faster target detection, and brain states underlying this experience-and target detection-were associated with activity patterns emphasizing the fronto-parietal network. In contrast, brain states underlying off-task experiences-and vigilance periods-were linked to activity patterns emphasizing the default mode network. Our study shows experience sampling can not only describe covert states that are unrelated to the task at hand, but can also be used to highlight the role fronto-parietal regions play in the maintenance of covert task-relevant states.
Collapse
Affiliation(s)
- Brontë Mckeown
- Psychology Department, Queen's University, Kingston, K7L 3N6, Canada.
| | - Will H Strawson
- Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9RH, UK
| | - Meichao Zhang
- CAS Key Laboratory of Behavioural Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Adam Turnbull
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Delali Konu
- Department of Psychology, Durham University, Durham, DH1 3LE, UK
| | | | - Hao-Ting Wang
- Centre de Recherche de l'institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, H3W 1W5, Canada
| | - Robert Leech
- Centre for Neuroimaging Science, King's College, London, SE5 8AF, UK
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, 10022, USA
| | - Samyogita Hardikar
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| | - Boris Bernhardt
- Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, Canada
| | - Daniel Margulies
- Integrative Neuroscience and Cognition Center (UMR 8002, Centre National de la Recherche Scientifique (CNRS) and Université de Paris, 75006, Paris, France
| | | | - Jeffrey Wammes
- Psychology Department, Queen's University, Kingston, K7L 3N6, Canada
| | | |
Collapse
|
39
|
Kucyi A, Kam JWY, Andrews-Hanna JR, Christoff K, Whitfield-Gabrieli S. Recent advances in the neuroscience of spontaneous and off-task thought: implications for mental health. NATURE MENTAL HEALTH 2023; 1:827-840. [PMID: 37974566 PMCID: PMC10653280 DOI: 10.1038/s44220-023-00133-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/25/2023] [Indexed: 11/19/2023]
Abstract
People spend a remarkable 30-50% of awake life thinking about something other than what they are currently doing. These experiences of being "off-task" can be described as spontaneous thought when mental dynamics are relatively flexible. Here we review recent neuroscience developments in this area and consider implications for mental wellbeing and illness. We provide updated overviews of the roles of the default mode network and large-scale network dynamics, and we discuss emerging candidate mechanisms involving hippocampal memory (sharp-wave ripples, replay) and neuromodulatory (noradrenergic and serotonergic) systems. We explore how distinct brain states can be associated with or give rise to adaptive and maladaptive forms of thought linked to distinguishable mental health outcomes. We conclude by outlining new directions in the neuroscience of spontaneous and off-task thought that may clarify mechanisms, lead to personalized biomarkers, and facilitate therapy developments toward the goals of better understanding and improving mental health.
Collapse
Affiliation(s)
- Aaron Kucyi
- Department of Psychological and Brain Sciences, Drexel University
| | - Julia W. Y. Kam
- Department of Psychology and Hotchkiss Brain Institute, University of Calgary
| | | | | | | |
Collapse
|
40
|
Zarghami TS. A new causal centrality measure reveals the prominent role of subcortical structures in the causal architecture of the extended default mode network. Brain Struct Funct 2023; 228:1917-1941. [PMID: 37658184 DOI: 10.1007/s00429-023-02697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/09/2023] [Indexed: 09/03/2023]
Abstract
Network representation has been an incredibly useful concept for understanding the behavior of complex systems in social sciences, biology, neuroscience, and beyond. Network science is mathematically founded on graph theory, where nodal importance is gauged using measures of centrality. Notably, recent work suggests that the topological centrality of a node should not be over-interpreted as its dynamical or causal importance in the network. Hence, identifying the influential nodes in dynamic causal models (DCM) remains an open question. This paper introduces causal centrality for DCM, a dynamics-sensitive and causally-founded centrality measure based on the notion of intervention in graphical models. Operationally, this measure simplifies to an identifiable expression using Bayesian model reduction. As a proof of concept, the average DCM of the extended default mode network (eDMN) was computed in 74 healthy subjects. Next, causal centralities of different regions were computed for this causal graph, and compared against several graph-theoretical centralities. The results showed that the subcortical structures of the eDMN were more causally central than the cortical regions, even though the graph-theoretical centralities unanimously favored the latter. Importantly, model comparison revealed that only the pattern of causal centrality was causally relevant. These results are consistent with the crucial role of the subcortical structures in the neuromodulatory systems of the brain, and highlight their contribution to the organization of large-scale networks. Potential applications of causal centrality-to study causal models of other neurotypical and pathological functional networks-are discussed, and some future lines of research are outlined.
Collapse
Affiliation(s)
- Tahereh S Zarghami
- Bio-Electric Department, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| |
Collapse
|
41
|
Deco G, Sanz Perl Y, de la Fuente L, Sitt JD, Yeo BTT, Tagliazucchi E, Kringelbach ML. The arrow of time of brain signals in cognition: Potential intriguing role of parts of the default mode network. Netw Neurosci 2023; 7:966-998. [PMID: 37781151 PMCID: PMC10473271 DOI: 10.1162/netn_a_00300] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/14/2022] [Indexed: 10/03/2023] Open
Abstract
A promising idea in human cognitive neuroscience is that the default mode network (DMN) is responsible for coordinating the recruitment and scheduling of networks for computing and solving task-specific cognitive problems. This is supported by evidence showing that the physical and functional distance of DMN regions is maximally removed from sensorimotor regions containing environment-driven neural activity directly linked to perception and action, which would allow the DMN to orchestrate complex cognition from the top of the hierarchy. However, discovering the functional hierarchy of brain dynamics requires finding the best way to measure interactions between brain regions. In contrast to previous methods measuring the hierarchical flow of information using, for example, transfer entropy, here we used a thermodynamics-inspired, deep learning based Temporal Evolution NETwork (TENET) framework to assess the asymmetry in the flow of events, 'arrow of time', in human brain signals. This provides an alternative way of quantifying hierarchy, given that the arrow of time measures the directionality of information flow that leads to a breaking of the balance of the underlying hierarchy. In turn, the arrow of time is a measure of nonreversibility and thus nonequilibrium in brain dynamics. When applied to large-scale Human Connectome Project (HCP) neuroimaging data from close to a thousand participants, the TENET framework suggests that the DMN plays a significant role in orchestrating the hierarchy, that is, levels of nonreversibility, which changes between the resting state and when performing seven different cognitive tasks. Furthermore, this quantification of the hierarchy of the resting state is significantly different in health compared to neuropsychiatric disorders. Overall, the present thermodynamics-based machine-learning framework provides vital new insights into the fundamental tenets of brain dynamics for orchestrating the interactions between cognition and brain in complex environments.
Collapse
Affiliation(s)
- Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Clayton VIC, Australia
| | - Yonatan Sanz Perl
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
| | - Laura de la Fuente
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
| | - Jacobo D. Sitt
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - B. T. Thomas Yeo
- Centre for Sleep & Cognition, Centre for Translational MR Research, Department of Electrical and Computer Engineering, N.1. Institute for Health and Institute for Digital Medicine, National University of Singapore, Singapore
| | - Enzo Tagliazucchi
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
| | - Morten L. Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
42
|
Servais A, Hurter C, Barbeau EJ. Attentional switch to memory: An early and critical phase of the cognitive cascade allowing autobiographical memory retrieval. Psychon Bull Rev 2023; 30:1707-1721. [PMID: 37118526 DOI: 10.3758/s13423-023-02270-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/30/2023]
Abstract
Remembering and mentally reliving yesterday's lunch is a typical example of episodic autobiographical memory retrieval. In the present review, we reappraised the complex cascade of cognitive processes involved in memory retrieval, by highlighting one particular phase that has received little interest so far: attentional switch to memory (ASM). As attention cannot be simultaneously directed toward external stimuli and internal memories, there has to be an attentional switch from the external to the internal world in order to initiate memory retrieval. We formulated hypotheses and developed hypothetical models of both the cognitive and brain processes that accompany ASM. We suggest that gaze aversion could serve as an objective temporal marker of the point at which people switch their attention to memory, and highlight several fields (neuropsychology, neuroscience, social cognition, comparative psychology) in which ASM markers could be essential. Our review thus provides a new framework for understanding the early stages of autobiographical memory retrieval.
Collapse
Affiliation(s)
- Anaïs Servais
- CerCo, CNRS UMR5549-Université de Toulouse, CHU Purpan, Pavillon Baudot, 31052, Toulouse, France.
- ENAC, 7, avenue Edouard Belin, 31055, Toulouse, France.
| | | | - Emmanuel J Barbeau
- CerCo, CNRS UMR5549-Université de Toulouse, CHU Purpan, Pavillon Baudot, 31052, Toulouse, France
| |
Collapse
|
43
|
Chaudhari A, Wang X, Wu A, Liu H. Repeated Transcranial Photobiomodulation with Light-Emitting Diodes Improves Psychomotor Vigilance and EEG Networks of the Human Brain. Bioengineering (Basel) 2023; 10:1043. [PMID: 37760145 PMCID: PMC10525861 DOI: 10.3390/bioengineering10091043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Transcranial photobiomodulation (tPBM) has been suggested as a non-invasive neuromodulation tool. The repetitive administration of light-emitting diode (LED)-based tPBM for several weeks significantly improves human cognition. To understand the electrophysiological effects of LED-tPBM on the human brain, we investigated alterations by repeated tPBM in vigilance performance and brain networks using electroencephalography (EEG) in healthy participants. Active and sham LED-based tPBM were administered to the right forehead of young participants twice a week for four weeks. The participants performed a psychomotor vigilance task (PVT) during each tPBM/sham experiment. A 64-electrode EEG system recorded electrophysiological signals from each participant during the first and last visits in a 4-week study. Topographical maps of the EEG power enhanced by tPBM were statistically compared for the repeated tPBM effect. A new data processing framework combining the group's singular value decomposition (gSVD) with eLORETA was implemented to identify EEG brain networks. The reaction time of the PVT in the tPBM-treated group was significantly improved over four weeks compared to that in the sham group. We observed acute increases in EEG delta and alpha powers during a 10 min LED-tPBM while the participants performed the PVT task. We also found that the theta, beta, and gamma EEG powers significantly increased overall after four weeks of LED-tPBM. Combining gSVD with eLORETA enabled us to identify EEG brain networks and the corresponding network power changes by repeated 4-week tPBM. This study clearly demonstrated that a 4-week prefrontal LED-tPBM can neuromodulate several key EEG networks, implying a possible causal effect between modulated brain networks and improved psychomotor vigilance outcomes.
Collapse
Affiliation(s)
| | | | | | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, TX 76019, USA; (A.C.); (X.W.); (A.W.)
| |
Collapse
|
44
|
Royer J, Larivière S, Rodriguez-Cruces R, Cabalo DG, Tavakol S, Auer H, Ngo A, Park BY, Paquola C, Smallwood J, Jefferies E, Caciagli L, Bernasconi A, Bernasconi N, Frauscher B, Bernhardt BC. Cortical microstructural gradients capture memory network reorganization in temporal lobe epilepsy. Brain 2023; 146:3923-3937. [PMID: 37082950 PMCID: PMC10473569 DOI: 10.1093/brain/awad125] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/21/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Abstract
Temporal lobe epilepsy (TLE), one of the most common pharmaco-resistant epilepsies, is associated with pathology of paralimbic brain regions, particularly in the mesiotemporal lobe. Cognitive dysfunction in TLE is frequent, and particularly affects episodic memory. Crucially, these difficulties challenge the quality of life of patients, sometimes more than seizures, underscoring the need to assess neural processes of cognitive dysfunction in TLE to improve patient management. Our work harnessed a novel conceptual and analytical approach to assess spatial gradients of microstructural differentiation between cortical areas based on high-resolution MRI analysis. Gradients track region-to-region variations in intracortical lamination and myeloarchitecture, serving as a system-level measure of structural and functional reorganization. Comparing cortex-wide microstructural gradients between 21 patients and 35 healthy controls, we observed a reorganization of this gradient in TLE driven by reduced microstructural differentiation between paralimbic cortices and the remaining cortex with marked abnormalities in ipsilateral temporopolar and dorsolateral prefrontal regions. Findings were replicated in an independent cohort. Using an independent post-mortem dataset, we observed that in vivo findings reflected topographical variations in cortical cytoarchitecture. We indeed found that macroscale changes in microstructural differentiation in TLE reflected increased similarity of paralimbic and primary sensory/motor regions. Disease-related transcriptomics could furthermore show specificity of our findings to TLE over other common epilepsy syndromes. Finally, microstructural dedifferentiation was associated with cognitive network reorganization seen during an episodic memory functional MRI paradigm and correlated with interindividual differences in task accuracy. Collectively, our findings showing a pattern of reduced microarchitectural differentiation between paralimbic regions and the remaining cortex provide a structurally-grounded explanation for large-scale functional network reorganization and cognitive dysfunction characteristic of TLE.
Collapse
Affiliation(s)
- Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hans Auer
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Bo-yong Park
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Data Science, Inha University, Incheon 22212, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 34126, Republic of Korea
| | - Casey Paquola
- Multiscale Neuroanatomy Lab, INM-1, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jonathan Smallwood
- Department of Psychology, Queen’s University, Kingston, ON, K7L 3N6, Canada
| | | | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, MA 19104, USA
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
45
|
Huang Z. Temporospatial Nestedness in Consciousness: An Updated Perspective on the Temporospatial Theory of Consciousness. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1074. [PMID: 37510023 PMCID: PMC10378228 DOI: 10.3390/e25071074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Time and space are fundamental elements that permeate the fabric of nature, and their significance in relation to neural activity and consciousness remains a compelling yet unexplored area of research. The Temporospatial Theory of Consciousness (TTC) provides a framework that links time, space, neural activity, and consciousness, shedding light on the intricate relationships among these dimensions. In this review, I revisit the fundamental concepts and mechanisms proposed by the TTC, with a particular focus on the central concept of temporospatial nestedness. I propose an extension of temporospatial nestedness by incorporating the nested relationship between the temporal circuit and functional geometry of the brain. To further unravel the complexities of temporospatial nestedness, future research directions should emphasize the characterization of functional geometry and the temporal circuit across multiple spatial and temporal scales. Investigating the links between these scales will yield a more comprehensive understanding of how spatial organization and temporal dynamics contribute to conscious states. This integrative approach holds the potential to uncover novel insights into the neural basis of consciousness and reshape our understanding of the world-brain dynamic.
Collapse
Affiliation(s)
- Zirui Huang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
46
|
Valk SL, Kanske P, Park BY, Hong SJ, Böckler A, Trautwein FM, Bernhardt BC, Singer T. Functional and microstructural plasticity following social and interoceptive mental training. eLife 2023; 12:e85188. [PMID: 37417306 PMCID: PMC10414971 DOI: 10.7554/elife.85188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/01/2023] [Indexed: 07/08/2023] Open
Abstract
The human brain supports social cognitive functions, including Theory of Mind, empathy, and compassion, through its intrinsic hierarchical organization. However, it remains unclear how the learning and refinement of social skills shapes brain function and structure. We studied if different types of social mental training induce changes in cortical function and microstructure, investigating 332 healthy adults (197 women, 20-55 years) with repeated multimodal neuroimaging and behavioral testing. Our neuroimaging approach examined longitudinal changes in cortical functional gradients and myelin-sensitive T1 relaxometry, two complementary measures of cortical hierarchical organization. We observed marked changes in intrinsic cortical function and microstructure, which varied as a function of social training content. In particular, cortical function and microstructure changed as a result of attention-mindfulness and socio-cognitive training in regions functionally associated with attention and interoception, including insular and parietal cortices. Conversely, socio-affective and socio-cognitive training resulted in differential microstructural changes in regions classically implicated in interoceptive and emotional processing, including insular and orbitofrontal areas, but did not result in functional reorganization. Notably, longitudinal changes in cortical function and microstructure predicted behavioral change in attention, compassion and perspective-taking. Our work demonstrates functional and microstructural plasticity after the training of social-interoceptive functions, and illustrates the bidirectional relationship between brain organisation and human social skills.
Collapse
Affiliation(s)
- Sofie Louise Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- INM-7, FZ JülichJülichGermany
| | - Philipp Kanske
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität DresdenDresdenGermany
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Bo-yong Park
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
- Department of Data Science, Inha UniversityIncheonRepublic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic ScienceSuwonRepublic of Korea
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic ScienceSuwonRepublic of Korea
- Center for the Developing Brain, Child Mind InstituteNew YorkUnited States
- Department of Biomedical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Anne Böckler
- Department of Psychology, Wurzburg UniversityWurzburgGermany
| | - Fynn-Mathis Trautwein
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Tania Singer
- Social Neuroscience Lab, Max Planck SocietyBerlinGermany
| |
Collapse
|
47
|
Lei W, Xiao Q, Wang C, Cai Z, Lu G, Su L, Zhong Y. The disruption of functional connectome gradient revealing networks imbalance in pediatric bipolar disorder. J Psychiatr Res 2023; 164:72-79. [PMID: 37331260 DOI: 10.1016/j.jpsychires.2023.05.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
OBJECTIVE Pediatric bipolar disorder (PBD) is a psychiatric disorder marked by alteration of brain networks. However, the understanding of these alterations in topological organization still unclear. This study aims to leverage the functional connectome gradient to examine changes in functional network hierarchy in PBD. METHOD Connectome gradients were used to scrutinize the differences between functional gradient map in PBD patients (n = 68, aged 11 to 18) and healthy controls (HC, n = 37, aged 11 to 18). The association between regional altered gradient scores and clinical factors was examined. We further used Neurosynth to determine the correlation of the cognitive terms with the PBD principal gradient changes. RESULTS Global topographic alterations were exhibited in the connectome gradient in PBD patients, involving gradient variance, explanation ratio, gradient range, and gradient dispersion in the principal gradient. Regionally, PBD patients revealed that the default mode network (DMN) held the most majority of the brain areas with higher gradient scores, whereas a higher proportion of brain regions with lower gradient scores in the sensorimotor network (SMN). These regional gradient differences exhibited significant correlation with clinical features and meta-analysis terms including cognitive behavior and sensory processing. CONCLUSION Functional connectome gradient presents a thorough investigation of large-scale networks hierarchy in PBD patients. This exhibited excessive segregation between DMN and SMN supports the theory of imbalance in top-down control and bottom-up in PBD and provides a possible biomarker for diagnostic assessment.
Collapse
Affiliation(s)
- Wenkun Lei
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, 210097, China; Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing, Jiangsu, 210097, China; International Joint Laboratory of Child and Adolescent Psychological Development and Crisis Intervention, Nanjing, Jiangsu, 210097, China
| | - Qian Xiao
- Mental Health Centre of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Chun Wang
- Department of Psychiatry, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zhen Cai
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, 210097, China; Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing, Jiangsu, 210097, China; International Joint Laboratory of Child and Adolescent Psychological Development and Crisis Intervention, Nanjing, Jiangsu, 210097, China
| | - Guangming Lu
- Department of Medical Imaging, Nanjing General Hospital of Nanjing Military Command, Nanjing, Jiangsu, 210002, China
| | - Linyan Su
- The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, 210097, China; Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing, Jiangsu, 210097, China; International Joint Laboratory of Child and Adolescent Psychological Development and Crisis Intervention, Nanjing, Jiangsu, 210097, China.
| |
Collapse
|
48
|
Alberti F, Menardi A, Margulies D, Vallesi A. Understanding the link between functional profiles and intelligence through dimensionality reduction and graph analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536421. [PMID: 37090501 PMCID: PMC10120667 DOI: 10.1101/2023.04.12.536421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
There is a growing interest in neuroscience for how individual-specific structural and functional features of the cortex relate to cognitive traits. This work builds on previous research which, using classical high-dimensional approaches, has proven that the interindividual variability of functional connectivity profiles reflects differences in fluid intelligence. To provide an additional perspective into this relationship, the present study uses a recent framework for investigating cortical organization: functional gradients. This approach places local connectivity profiles within a common low-dimensional space whose axes are functionally interretable dimensions. Specifically, this study uses a data-driven approach focussing on areas where FC variability is highest across individuals to model different facets of intelligence. For one of these loci, in the right ventral-lateral prefrontal cortex (vlPFC), we describe an association between fluid intelligence and relative functional distance from sensory and high-cognition systems. Furthermore, the topological properties of this region indicate that with decreasing functional affinity with the latter, its functional connections are more evenly distributed across all networks. Participating in multiple functional networks may reflect a better ability to coordinate sensory and high-order cognitive systems.
Collapse
Affiliation(s)
- F. Alberti
- Department of Neuroscience, University of Padova, Padova, Italy
| | - A. Menardi
- Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - D.S. Margulies
- Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche Scientifique, Paris, France
| | - A. Vallesi
- Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
49
|
Caciagli L, Paquola C, He X, Vollmar C, Centeno M, Wandschneider B, Braun U, Trimmel K, Vos SB, Sidhu MK, Thompson PJ, Baxendale S, Winston GP, Duncan JS, Bassett DS, Koepp MJ, Bernhardt BC. Disorganization of language and working memory systems in frontal versus temporal lobe epilepsy. Brain 2023; 146:935-953. [PMID: 35511160 PMCID: PMC9976988 DOI: 10.1093/brain/awac150] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 02/28/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
Cognitive impairment is a common comorbidity of epilepsy and adversely impacts people with both frontal lobe (FLE) and temporal lobe (TLE) epilepsy. While its neural substrates have been investigated extensively in TLE, functional imaging studies in FLE are scarce. In this study, we profiled the neural processes underlying cognitive impairment in FLE and directly compared FLE and TLE to establish commonalities and differences. We investigated 172 adult participants (56 with FLE, 64 with TLE and 52 controls) using neuropsychological tests and four functional MRI tasks probing expressive language (verbal fluency, verb generation) and working memory (verbal and visuo-spatial). Patient groups were comparable in disease duration and anti-seizure medication load. We devised a multiscale approach to map brain activation and deactivation during cognition and track reorganization in FLE and TLE. Voxel-based analyses were complemented with profiling of task effects across established motifs of functional brain organization: (i) canonical resting-state functional systems; and (ii) the principal functional connectivity gradient, which encodes a continuous transition of regional connectivity profiles, anchoring lower-level sensory and transmodal brain areas at the opposite ends of a spectrum. We show that cognitive impairment in FLE is associated with reduced activation across attentional and executive systems, as well as reduced deactivation of the default mode system, indicative of a large-scale disorganization of task-related recruitment. The imaging signatures of dysfunction in FLE are broadly similar to those in TLE, but some patterns are syndrome-specific: altered default-mode deactivation is more prominent in FLE, while impaired recruitment of posterior language areas during a task with semantic demands is more marked in TLE. Functional abnormalities in FLE and TLE appear overall modulated by disease load. On balance, our study elucidates neural processes underlying language and working memory impairment in FLE, identifies shared and syndrome-specific alterations in the two most common focal epilepsies and sheds light on system behaviour that may be amenable to future remediation strategies.
Collapse
Affiliation(s)
- Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Casey Paquola
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Xiaosong He
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christian Vollmar
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Department of Neurology, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Maria Centeno
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Epilepsy Unit, Hospital Clínic de Barcelona, IDIBAPS, 08036 Barcelona, Spain
| | - Britta Wandschneider
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Urs Braun
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Karin Trimmel
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Centre for Medical Image Computing, University College London, London, UK
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Meneka K Sidhu
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Pamela J Thompson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Sallie Baxendale
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Department of Medicine, Division of Neurology, Queen's University, Kingston, Ontario, Canada
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
50
|
Dong D, Yao D, Wang Y, Hong SJ, Genon S, Xin F, Jung K, He H, Chang X, Duan M, Bernhardt BC, Margulies DS, Sepulcre J, Eickhoff SB, Luo C. Compressed sensorimotor-to-transmodal hierarchical organization in schizophrenia. Psychol Med 2023; 53:771-784. [PMID: 34100349 DOI: 10.1017/s0033291721002129] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Schizophrenia has been primarily conceptualized as a disorder of high-order cognitive functions with deficits in executive brain regions. Yet due to the increasing reports of early sensory processing deficit, recent models focus more on the developmental effects of impaired sensory process on high-order functions. The present study examined whether this pathological interaction relates to an overarching system-level imbalance, specifically a disruption in macroscale hierarchy affecting integration and segregation of unimodal and transmodal networks. METHODS We applied a novel combination of connectome gradient and stepwise connectivity analysis to resting-state fMRI to characterize the sensorimotor-to-transmodal cortical hierarchy organization (96 patients v. 122 controls). RESULTS We demonstrated compression of the cortical hierarchy organization in schizophrenia, with a prominent compression from the sensorimotor region and a less prominent compression from the frontal-parietal region, resulting in a diminished separation between sensory and fronto-parietal cognitive systems. Further analyses suggested reduced differentiation related to atypical functional connectome transition from unimodal to transmodal brain areas. Specifically, we found hypo-connectivity within unimodal regions and hyper-connectivity between unimodal regions and fronto-parietal and ventral attention regions along the classical sensation-to-cognition continuum (voxel-level corrected, p < 0.05). CONCLUSIONS The compression of cortical hierarchy organization represents a novel and integrative system-level substrate underlying the pathological interaction of early sensory and cognitive function in schizophrenia. This abnormal cortical hierarchy organization suggests cascading impairments from the disruption of the somatosensory-motor system and inefficient integration of bottom-up sensory information with attentional demands and executive control processes partially account for high-level cognitive deficits characteristic of schizophrenia.
Collapse
Affiliation(s)
- Debo Dong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China
| | - Yulin Wang
- Faculty of Psychological and Educational Sciences, Department of Experimental and Applied Psychology, Vrije Universiteit Brussel, Belgium
- Faculty of Psychology and Educational Sciences, Department of Data Analysis, Ghent University, Belgium
| | - Seok-Jun Hong
- Center for the Developing Brain, Child Mind Institute, NY, USA
- Department of Biomedical Engineering, Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, South Korea
| | - Sarah Genon
- Institute for Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Fei Xin
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, China
| | - Kyesam Jung
- Institute for Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Hui He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, China
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Xuebin Chang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, China
| | - Mingjun Duan
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Daniel S Margulies
- Centre National de la Recherche Scientifique (CNRS) UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Jorge Sepulcre
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Simon B Eickhoff
- Institute for Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, China
- Department of Neurology, Brain Disorders and Brain Function Key Laboratory, First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|