1
|
Tiwari YV, Muir ER, Jiang Z, Duong TQ. Diffusion-weighted arterial spin labeling MRI to investigate mannitol-induced blood brain barrier disruption. Magn Reson Imaging 2025; 117:110335. [PMID: 39864601 DOI: 10.1016/j.mri.2025.110335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/27/2024] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
PURPOSE Diffusion-weighted arterial spin labeling (DW-ASL) MRI has been proposed to determine the rate of water exchange (Kw) across the blood brain barrier (BBB). This study aims to further evaluate Kw MRI by comparing it with standard dynamic contrast-enhanced (DCE) MRI and histology in association with mannitol-induced disruption of the BBB. METHODS DW-ASL was measured using a multiple b-value MRI protocol in normal rats at three post-labeling delays (N = 19), before and after intra-carotid injection of mannitol to disrupt BBB in one hemisphere (N = 13). An approach using only two b-values to detect mannitol-induced changes was also tested. DCE MRI and Evans blue histology were performed on the same animals. Quantitative analysis and pixel-by-pixel correlation were performed amongst Kw, DCE MRI and Evans blue histology. RESULTS Kw in the grey matter in the normal rat brain was 252 ± 38 min-1 (±standard error of the mean). The two b-value approach provided reasonable approximation of multiple-b DW-ASL parameters, reducing acquisition time. Kw is sensitive to mannitol-induced changes in BBB permeability and was reduced to 89 ± 17 min-1 in the affected hemisphere compared to 191 ± 22 min-1 in the unaffected hemisphere (P < 0.05). Regions with abnormality in Kw maps were in general agreement with DCE and Evans blue maps, although there are some distinct differences in location and the change in values. CONCLUSION Kw is sensitive to mannitol-induced changes in the BBB, with BBB disruption confirmed by DCE MRI and Evans blue histology.
Collapse
Affiliation(s)
- Yash Vardhan Tiwari
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Eric R Muir
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
| | - Zhao Jiang
- Department of Radiology, Stony Brook University, Stony Brook, NY, USA
| | - Tim Q Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
2
|
Ohene Y, Morrey WJ, Powell E, Smethers KF, Luka N, South K, Berks M, Lawrence CB, Parker GJM, Parkes LM, Boutin H, Dickie BR. MRI detects blood-brain barrier alterations in a rat model of Alzheimer's disease and lung infection. NPJ IMAGING 2025; 3:8. [PMID: 40051735 PMCID: PMC11879872 DOI: 10.1038/s44303-025-00071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 01/23/2025] [Indexed: 03/09/2025]
Abstract
Pneumonia is a common infection in people suffering with Alzheimer's disease, leading to delirium, critical illness or severe neurological decline, which may be due to an amplified response of the blood-brain barrier (BBB) to peripheral insult. We assess the response of the BBB to repeated Streptococcus pneumoniae lung infection in rat model of Alzheimer's disease (TgF344-AD), at 13- and 18-months old, using dynamic contrast-enhanced (DCE) MRI and filter exchange imaging. Higher BBB water exchange rate is initially detected in infected TgF344-AD rats. BBB water exchange rates correlated with hippocampus aquaporin-4 water channel expression in infected animals. We detected no differences in BBB permeability to gadolinium contrast agent measured by DCE-MRI, confirmed by staining for tight junction proteins, occludin and claudin-5. These findings provide insight into the mechanisms of how peripheral inflammation impacts the BBB.
Collapse
Affiliation(s)
- Yolanda Ohene
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - William J. Morrey
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Elizabeth Powell
- Department of Medical Physics and Biomedical Engineering and Department of Neuroinflammation, Centre for Medical Image Computing, UCL, London, UK
| | - Katherine F. Smethers
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Nadim Luka
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kieron South
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Michael Berks
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Catherine B. Lawrence
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Geoff. J. M. Parker
- Department of Medical Physics and Biomedical Engineering and Department of Neuroinflammation, Centre for Medical Image Computing, UCL, London, UK
- Bioxydyn Limited, Manchester, UK
| | - Laura M. Parkes
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Hervé Boutin
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Imaging Brain & Neuropsychiatry iBraiN, Université de Tours, INSERM, Tours, France
| | - Ben R. Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
3
|
Daskoulidou N, Carpanini SM, Zelek WM, Morgan BP. Involvement of Complement in Alzheimer's Disease: From Genetics Through Pathology to Therapeutic Strategies. Curr Top Behav Neurosci 2025; 69:3-24. [PMID: 39455500 DOI: 10.1007/7854_2024_524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Complement is a critical component of innate immunity, evolved to defend against pathogens and clear toxic debris ranging from dead and dying cells to immune complexes. These roles make complement a key player in homeostasis; however, complement has a dark side. When the rigid control mechanisms fail, complement becomes dysregulated, acting as a driver of inflammation and resultant pathology in numerous diseases. Roles of complement in Alzheimer's disease (AD) and other dementias have emerged in recent years, supported by genetic, biomarker and pathological evidence and animal model studies. Numerous questions remain regarding the precise roles of complement in the brain in health and disease, including where and when complement is expressed, how it contributes to immune defence and garbage disposal in the healthy brain, and exactly how complement contributes to pathology in dementias. In this brief review, we will summarise current knowledge on complement roles in brain, present the evidence implicating complement in AD and explore whether complement represents an attractive therapeutic target for AD.
Collapse
Affiliation(s)
| | - Sarah M Carpanini
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff, UK
| | - Wioleta M Zelek
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff, UK
| | - B Paul Morgan
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff, UK.
| |
Collapse
|
4
|
Zhang H, Ai Y, Zhang X, Deng F, Jiang S, Xie S, Peng M, Chen W, Hu J, Deng S, Zhang L. Visualization of Blood-Brain Barrier Disruption in Septic Mice with the New Method Based on in Vivo Imaging Technology. Neurocrit Care 2024; 41:925-941. [PMID: 38982003 DOI: 10.1007/s12028-024-02018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/16/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Dynamic monitoring of the blood-brain barrier (BBB) functional status in septic mice can help to explore the pathological mechanisms. Therefore, we proposed a new method for monitoring BBB permeability and applied it to the detection of sepsis models. METHODS The new method involves the construction of an optical cranial window and in vivo imaging. We performed dynamic monitoring of BBB permeability and cerebral blood flow (CBF) in cecal ligation puncture (CLP) and endotoxemia (lipopolysaccharide [LPS]) mice. RESULTS The sensitivity and accuracy of this method were higher than those of Evans blue evaluation. The increase of BBB permeability in the group of CLP mice was relatively mild and correlated with overall survival, and the damage was irreversible. Contrarily, BBB damage in the LPS group was more acute and severe, unrelated to overall survival, but recoverable. The CBF decreased significantly in both model mouse groups 24 h after modeling, but only the CBF proportion decrease in the LPS group was significantly correlated with an increase in BBB permeability. Within 24 h after both models were established, the decrease in blood flow in the digestive organs occurred earlier than in the brain and kidneys, and the decrease in small intestine blood flow in the LPS group progressed faster. CONCLUSIONS We have successfully demonstrated the feasibility of our novel method to detect BBB permeability in mice. Our results revealed a significant difference in the BBB permeability change trend between the CLP and LPS model mice when survival curves were consistent. Notably, the CLP-model mice demonstrated a closer resemblance to clinical patients. Our findings suggest that early-stage brain tissue hypoperfusion has a greater impact on BBB function damage in endotoxemia mice, which is related to the faster progression of blood flow redistribution.
Collapse
Affiliation(s)
- Haisong Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuhang Ai
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiaolei Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Fuxing Deng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shiwei Jiang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shucai Xie
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Milin Peng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wei Chen
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiyun Hu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Songyun Deng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lina Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
5
|
Morgan CA, Thomas DL, Shao X, Mahroo A, Manson TJ, Suresh V, Jansson D, Ohene Y, Günther M, Wang DJJ, Tippett LJ, Dragunow M. Measurement of blood-brain barrier water exchange rate using diffusion-prepared and multi-echo arterial spin labelling: Comparison of quantitative values and age dependence. NMR IN BIOMEDICINE 2024; 37:e5256. [PMID: 39252500 DOI: 10.1002/nbm.5256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
Water exchange rate (Kw) across the blood-brain barrier (BBB) is an important physiological parameter that may provide new insight into ageing and neurodegenerative disease. Recently, two non-invasive arterial spin labelling (ASL) MRI methods have been developed to measure Kw, but results from the different methods have not been directly compared. Furthermore, the association of Kw with age for each method has not been investigated in a single cohort. Thirty participants (70% female, 63.8 ± 10.4 years) were scanned at 3 T with Diffusion-Prepared ASL (DP-ASL) and Multi-Echo ASL (ME-ASL) using previously implemented acquisition and analysis protocols. Grey matter Kw, cerebral blood flow (CBF) and arterial transit time (ATT) were extracted. CBF values were consistent; approximately 50 ml/min/100 g for both methods, and a strong positive correlation in CBF from both methods across participants (r = 0.82, p < 0.001). ATT was significantly different between methods (on average 147.7 ms lower when measured with DP-ASL compared to ME-ASL) but was positively correlated across participants (r = 0.39, p < 0.05). Significantly different Kw values of 106.6 ± 19.7 min-1 and 306.8 ± 71.7 min-1 were measured using DP-ASL and ME-ASL, respectively, and DP-ASL Kw and ME-ASL Kw were negatively correlated across participants (r = -0.46, p < 0.01). Kw measured using ME-ASL had a significant linear relationship with age (p < 0.05). In conclusion, DP-ASL and ME-ASL provided estimates of Kw with significantly different quantitative values and inconsistent dependence with age. We propose future standardisation of modelling and fitting methods for DP-ASL and ME-ASL, to evaluate the effect on Kw quantification. Also, sensitivity and bias analyses should be performed for both approaches, to assess the effect of varying acquisition and fitting parameters. Lastly, comparison with independent measures of BBB water transport, and with physiological and clinical biomarkers known to be associated with changes in BBB permeability, are essential to validate the ASL methods, and to demonstrate their clinical utility.
Collapse
Affiliation(s)
- Catherine A Morgan
- School of Psychology and Centre for Brain Research, University of Auckland, New Zealand
- Centre for Advanced MRI, Auckland Uniservices Limited, University of Auckland, New Zealand
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, California, Los Angeles, USA
| | - Amnah Mahroo
- Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Tabitha J Manson
- School of Psychology and Centre for Brain Research, University of Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Vinod Suresh
- Auckland Bioengineering Institute, University of Auckland, New Zealand
- Department of Engineering Science and Biomedical Engineering, University of Auckland, New Zealand
| | - Deidre Jansson
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, USA
- School of Biological Sciences, Faculty of Science, University of Auckland, New Zealand
| | - Yolanda Ohene
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester Academic Health Science Centre, UK
| | - Matthias Günther
- Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, California, Los Angeles, USA
| | - Lynette J Tippett
- School of Psychology and Centre for Brain Research, University of Auckland, New Zealand
- Dementia Prevention Research Clinic, University of Auckland, New Zealand
| | - Michael Dragunow
- Department of Pharmacology and Centre for Brain Research, University of Auckland, New Zealand
| |
Collapse
|
6
|
Yue Q, Leng X, Xie N, Zhang Z, Yang D, Hoi MPM. Endothelial Dysfunctions in Blood-Brain Barrier Breakdown in Alzheimer's Disease: From Mechanisms to Potential Therapies. CNS Neurosci Ther 2024; 30:e70079. [PMID: 39548663 PMCID: PMC11567945 DOI: 10.1111/cns.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/13/2024] [Accepted: 09/28/2024] [Indexed: 11/18/2024] Open
Abstract
Recent research has shown the presence of blood-brain barrier (BBB) breakdown in Alzheimer's disease (AD). BBB is a dynamic interface consisting of a continuous monolayer of brain endothelial cells (BECs) enveloped by pericytes and astrocytes. The restricted permeability of BBB strictly controls the exchange of substances between blood and brain parenchyma, which is crucial for brain homeostasis by excluding blood-derived detrimental factors and pumping out brain-derived toxic molecules. BBB breakdown in AD is featured as a series of BEC pathologies such as increased paracellular permeability, abnormal levels and functions of transporters, and inflammatory or oxidative profile, which may disturb the substance transportation across BBB, thereafter induce CNS disorders such as hypometabolism, Aβ accumulation, and neuroinflammation, eventually aggravate cognitive decline. Therefore, it seems important to protect BEC properties for BBB maintenance and neuroprotection. In this review, we thoroughly summarized the pathological alterations of BEC properties reported in AD patients and numerous AD models, including paracellular permeability, influx and efflux transporters, and inflammatory and oxidative profiles, and probably associated underlying mechanisms. Then we reviewed current therapeutic agents that are effective in ameliorating a series of BEC pathologies, and ultimately protecting BBB integrity and cognitive functions. Regarding the current drug development for AD proceeds extremely hard, this review aims to discuss the therapeutic potentials of targeting BEC pathologies and BBB maintenance for AD treatment, therefore expecting to shed a light on the future AD drug development by targeting BEC pathologies and BBB protection.
Collapse
Affiliation(s)
- Qian Yue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
- Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacao SARChina
- Department of CardiologyThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
- The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital)HeyuanGuangdongChina
| | - Xinyue Leng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
- Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacao SARChina
| | - Ningqing Xie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐Cerebrovascular Diseases, and Institute of New Drug ResearchJinan UniversityGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan University College of PharmacyGuangzhouChina
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)Jinan University College of PharmacyGuangzhouChina
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐Cerebrovascular Diseases, and Institute of New Drug ResearchJinan UniversityGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan University College of PharmacyGuangzhouChina
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)Jinan University College of PharmacyGuangzhouChina
| | - Deguang Yang
- Department of CardiologyThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
- The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital)HeyuanGuangdongChina
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)Jinan University College of PharmacyGuangzhouChina
| | - Maggie Pui Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
- Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacao SARChina
| |
Collapse
|
7
|
Sun Z, Chen G, Gan J, Tang Y, Wu H, Shi Z, Yi T, Yang Y, Liu S, Ji Y. Exploring the Neural Mechanisms of Mirrored-Self Misidentification in Alzheimer's Disease. Int J Geriatr Psychiatry 2024; 39:e6148. [PMID: 39334521 DOI: 10.1002/gps.6148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a complex neurodegenerative condition that causes a range of cognitive disturbances, including mirror-self misidentification syndrome (MSM), in which patients cannot recognize themselves in a mirror. However, the mechanism of action of MSM is not precisely known. This study aimed to explore the possible neural mechanisms of action of MSM in AD using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). METHODS This study included 48 AD patients, 13 in the MSM group and 35 in the non-MSM group. The permeability of the blood-brain barrier (BBB) was quantitatively monitored by measuring the transfer rate (Ktrans) of the contrast agent from the vasculature to the surrounding tissue using DCE-MRI. The concentration of contrast agents in different brain regions was measured, and the Patlak model was used to calculate Ktrans. Ktrans values were compared between the left and right cerebral hemispheres in different brain areas between the MSM and non-MSM groups. Additionally, the difference in Ktrans values between mild and severe MSM was assessed. Logistic regression analysis was used to examine the risk factors for MSM. RESULTS The Mann‒Whitney U test was used to compare two groups and revealed elevated Ktrans values in the left thalamus, left putamen, left globus pallidus, left corona radiata, and right caudate in the MSM group (p < 0.05). Logistic regression analysis revealed that increased Ktrans values in the left putamen (OR = 1.53, 95% CI = 1.04, 2.26) and left globus pallidus (OR = 1.54, 95% CI = 1.02, 2.31) may be risk factors for MSM. After dividing MSM patients into mild and moderate-severe groups, the Ktrans values of the thalamus in the moderate-severe group were greater than those in the mild group (p < 0.05). CONCLUSION Our study revealed the relationship between BBB permeability and MSM in AD. MSM is associated with BBB breakdown in the left putamen and globus pallidus. The left putamen and globus pallidus may function in mirror self-recognition. Higher BBB permeability in the thalamus may reflect the severity of AD in MSM.
Collapse
Affiliation(s)
- Zhen Sun
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China
- Department of Neurology, Linfen Central Hospital, Linfen, China
| | - Gang Chen
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Interventional Vascular Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Jinghuan Gan
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuqiao Tang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Hao Wu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China
| | - Zhihong Shi
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China
| | - Tingting Yi
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yaqi Yang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Shuai Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China
| | - Yong Ji
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China
| |
Collapse
|
8
|
Abdennadher M, Jacobellis S, Václavů L, Juttukonda M, Inati S, Goldstein L, van Osch MJP, Rosen B, Hua N, Theodore W. Water exchange across the blood-brain barrier and epilepsy: Review on pathophysiology and neuroimaging. Epilepsia Open 2024; 9:1123-1135. [PMID: 38884502 PMCID: PMC11296120 DOI: 10.1002/epi4.12994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
The blood-brain barrier (BBB) is a barrier protecting the brain and a milieu of continuous exchanges between blood and brain. There is emerging evidence that the BBB plays a major role in epileptogenesis and drug-resistant epilepsy, through several mechanisms, such as water homeostasis dysregulation, overexpression of drug transporters, and inflammation. Studies have shown abnormal water homeostasis in epileptic tissue and altered aquaporin-4 water channel expression in animal epilepsy models. This review focuses on abnormal water exchange in epilepsy and describes recent non-invasive MRI methods of quantifying water exchange. PLAIN LANGUAGE SUMMARY: Abnormal exchange between blood and brain contribute to seizures and epilepsy. The authors describe why correct water balance is necessary for healthy brain functioning and how it is impacted in epilepsy. This review also presents recent MRI methods to measure water exchange in human brain. These measures would improve our understanding of factors leading to seizures.
Collapse
Affiliation(s)
- Myriam Abdennadher
- Neurology Department, Boston Medical CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Sara Jacobellis
- Boston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Lena Václavů
- C.J. Gorter MRI Center, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Meher Juttukonda
- Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Sara Inati
- National Institute of Neurological Disorders and Stroke, NIHBethesdaMarylandUSA
| | - Lee Goldstein
- Psychiatry and Neurology DepartmentBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Matthias J. P. van Osch
- C.J. Gorter MRI Center, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Bruce Rosen
- Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Ning Hua
- Radiology Department, Boston Medical CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - William Theodore
- National Institute of Neurological Disorders and Stroke, NIHBethesdaMarylandUSA
| |
Collapse
|
9
|
Ying Y, Li Y, Yao T, Shao X, Tang W, Montagne A, Chabriat H, Wang DJJ, Wang C, Yang Q, Cheng X. Heterogeneous blood-brain barrier dysfunction in cerebral small vessel diseases. Alzheimers Dement 2024; 20:4527-4539. [PMID: 38787758 PMCID: PMC11247670 DOI: 10.1002/alz.13874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/12/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024]
Abstract
INTRODUCTION We explored how blood-brain barrier (BBB) leakage rate of gadolinium chelates (Ktrans) and BBB water exchange rate (kw) varied in cerebral small vessel disease (cSVD) subtypes. METHODS Thirty sporadic cSVD, 40 cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and 13 high-temperature requirement factor A serine peptidase 1 (HTRA) -related cSVD subjects were investigated parallel to 40 healthy individuals. Subjects underwent clinical, cognitive, and MRI assessment. RESULTS In CADASIL, no difference in Ktrans, but lower kw was observed in multiple brain regions. In sporadic cSVD, no difference in kw, but higher Ktrans was found in the whole brain and normal-appearing white matter. In HTRA1-related cSVD, both higher Ktrans in the whole brain and lower kw in multiple brain regions were observed. In each patient group, the altered BBB measures were correlated with lesion burden or clinical severity. DISCUSSION In cSVD subtypes, distinct alterations of kw and Ktrans were observed. The combination of Ktrans and kw can depict the heterogeneous BBB dysfunction. HIGHLIGHTS We measured BBB leakage to gadolinium-based contrast agent (Ktrans) and water exchange rate (kw) across BBB in three subtypes of cSVD. CADASIL is characterized by lower kw, HTRA1-related cSVD exhibits both higher Ktrans and lower kw, while sporadic cSVD is distinguished by higher Ktrans. There are distinct alterations in kw and Ktrans among subtypes of cSVD, indicating the heterogeneous nature of BBB dysfunction.
Collapse
Affiliation(s)
- Yunqing Ying
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingying Li
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Tingyan Yao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Weijun Tang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Axel Montagne
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Hugues Chabriat
- Centre Neurovasculaire Translationnel, CERVCO, INSERM U1141, FHU NeuroVasc, Université Paris Cité, Paris, France
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Chaodong Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xin Cheng
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Suleiman Khoury Z, Sohail F, Wang J, Mendoza M, Raake M, Tahoor Silat M, Reddy Bathinapatta M, Sadeghzadegan A, Meghana P, Paul J. Neuroinflammation: A Critical Factor in Neurodegenerative Disorders. Cureus 2024; 16:e62310. [PMID: 39006715 PMCID: PMC11246070 DOI: 10.7759/cureus.62310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
This review offers a comprehensive review of the signals and the paramount role neuroinflammation plays in neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis. The study explores the sophisticated interactions between microglial, astrocytic, and dendritic cells and how neuroinflammation affects long-term neuronal damage and dysfunction. There are specific pathways related to the mentioned inflammatory processes, including Janus kinases/signal transducer and activator of transcriptions, nuclear factor-κB, and mitogen-activated protein kinases pathways. Neuroinflammation is argued to be a double-edged sword, being not only a protective agent that prevents further neuron damage but also the causative factor in more cell injury development. This concept of contrasting inflammation with neuroprotection advocates for the use of therapeutic techniques that seek to modulate neuroinflammatory responses as part of the neurodegeneration treatment. The recent research findings are integrated with the established knowledge to help present a comprehensive image of neuroinflammation's impact on neurodegenerative diseases and its implications for future therapy.
Collapse
Affiliation(s)
| | - Fatima Sohail
- Department of Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, USA
| | - Jada Wang
- Department of Medicine, St. George's University, Brooklyn, USA
| | - Moises Mendoza
- Department of Health Sciences, Universidad Centroccidental Lisandro Alvarado, Barquisimeto, VEN
| | - Mohammed Raake
- Department of Medicine, Annamalai University, Chennai, IND
| | | | | | - Amirali Sadeghzadegan
- Department of General Practice, Marmara University School of Medicine, Istanbul, TUR
| | - Patel Meghana
- Department of Medicine, Ramaiah University of Applied Sciences, Bengaluru, IND
| | - Janisha Paul
- Department of Medicine, Punjab Institute of Medical Sciences, Jalandhar, IND
| |
Collapse
|
11
|
Nakkazi A, Forster D, Whitfield GA, Dyer DP, Dickie BR. A systematic review of normal tissue neurovascular unit damage following brain irradiation-Factors affecting damage severity and timing of effects. Neurooncol Adv 2024; 6:vdae098. [PMID: 39239570 PMCID: PMC11375288 DOI: 10.1093/noajnl/vdae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Background Radiotherapy is key in the treatment of primary and secondary brain tumors. However, normal tissue is inevitably irradiated, causing toxicity and contributing to cognitive dysfunction. The relative importance of vascular damage to cognitive decline is poorly understood. Here, we systematically review the evidence for radiation-induced damage to the entire neurovascular unit (NVU), particularly focusing on establishing the factors that influence damage severity, and timing and duration of vascular effects relative to effects on neural tissue. Methods Using PubMed and Web of Science, we searched preclinical and clinical literature published between January 1, 1970 and December 1, 2022 and evaluated factors influencing NVU damage severity and timing of NVU effects resulting from ionizing radiation. Results Seventy-two rodents, 4 canines, 1 rabbit, and 5 human studies met inclusion criteria. Radiation increased blood-brain barrier (BBB) permeability, reduced endothelial cell number and extracellular matrix proteoglycans, reduced tight junction proteins, upregulated cellular adhesion molecule expression, reduced activity of glucose and BBB efflux transporters and activated glial cells. In the brain parenchyma, increased metalloproteinases 2 and 9 levels, demyelination, cell death, and inhibited differentiation were observed. Effects on the vasculature and neural compartment were observed across acute, delayed, and late timepoints, and damage extent was higher with low linear energy transfer radiation, higher doses, lower dose rates, broader beams, and in the presence of a tumor. Conclusions Irradiation of normal brain tissue leads to widespread and varied impacts on the NVU. Data indicate that vascular damage is in most cases an early effect that does not quickly resolve. More studies are needed to confirm sequence of damages, and mechanisms that lead to cognitive dysfunction.
Collapse
Affiliation(s)
- Annet Nakkazi
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, The University of Manchester, Manchester, UK
- Faculty of Biology, Medicine, and Health, Division of Informatics, Imaging, and Data Sciences, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Duncan Forster
- Faculty of Biology, Medicine, and Health, Division of Informatics, Imaging, and Data Sciences, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Gillian A Whitfield
- Division of Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Douglas P Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, The University of Manchester, Manchester, UK
| | - Ben R Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, The University of Manchester, Manchester, UK
- Faculty of Biology, Medicine, and Health, Division of Informatics, Imaging, and Data Sciences, School of Health Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
12
|
Wang Z, Wang B, Li Z, Han G, Meng C, Jiao B, Guo K, Hsu YC, Sun Y, Liu Y, Bai R. The Consistence of Dynamic Contrast-Enhanced MRI and Filter-Exchange Imaging in Measuring Water Exchange Across the Blood-Brain Barrier in High-Grade Glioma. J Magn Reson Imaging 2023; 58:1850-1860. [PMID: 37021659 DOI: 10.1002/jmri.28729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Water exchange across blood-brain barrier (BBB) (WEXBBB ) is an emerging biomarker of BBB dysfunction with potential applications in many brain diseases. Several MRI methods have been proposed to measure WEXBBB , but evidence remains scarce whether different methods can produce comparable WEXBBB . PURPOSE To explore whether dynamic contrast-enhanced (DCE)-MRI and vascular water exchange imaging (VEXI) could produce comparable WEXBBB in high-grade glioma (HGG) patients. STUDY TYPE Prospective cross-sectional. SUBJECTS 13 HGG patients (58.4 ± 9.4 years, 9 females, 4 WHO III and 9 WHO IV). FIELD STRENGTH/SEQUENCE A 3 T, spoiled gradient-recalled-echo DCE-MRI and VEXI containing two pulsed-gradient spin-echo blocks separated by a mixing block. ASSESSMENTS The enhanced tumor and contralateral normal-appearing white matter (cNAWM) volume-of-interests (VOIs) were drew by two neuroradiologists. And whole-brain NAWM and normal-appearing gray matter (NAGM) without tumor-affected regions were segmented by automated segmentation algorithm in FSL. STATISTICAL TESTS Student's t-test was used to evaluate parameters difference between cNAWM and tumor, NAGM and NAWM, respectively. The correlation between vascular water efflux rate constant (kbo ) from DCE-MRI and apparent exchange rate across BBB (AXRBBB ) from VEXI was evaluated by Pearson correlation. P < 0.05 was considered statistically significant. RESULTS Compared with cNAWM, both kbo and AXRBBB were significantly reduced in tumor (kbo = 3.50 ± 1.18 sec-1 vs. 1.03 ± 0.75 sec-1 ; AXRBBB = 3.54 ± 1.11 sec-1 vs. 1.94 ± 1.04 sec-1 ). Both kbo and AXRBBB showed significantly higher values in NAWM than NAGM (kbo = 3.50 ± 0.59 sec-1 vs. 2.10 ± 0.56 sec-1 ; AXRBBB = 3.35 ± 0.77 sec-1 vs. 2.07 ± 0.52 sec-1 ). The VOI-averaged kbo and AXRBBB were also linearly correlated in tumor, NAWM, and NAGM (r = 0.59). DATA CONCLUSION DCE-MRI and VEXI showed comparable and correlated WEXBBB in HGG patients, suggesting that the consistence and reliability of these two MRI methods in measuring WEXBBB . EVIDENCE LEVEL 2. TECHNICAL EFFICACY Stage 1.
Collapse
Affiliation(s)
- Zejun Wang
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Run Shaw Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Bao Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhaoqing Li
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Run Shaw Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Guangxu Han
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Run Shaw Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Cheng Meng
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bingjie Jiao
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Run Shaw Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Kaiyue Guo
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthcare, Shanghai, China
| | - Yi Sun
- MR Collaboration, Siemens Healthcare, Shanghai, China
| | - Yingchao Liu
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ruiliang Bai
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Run Shaw Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Powell E, Dickie BR, Ohene Y, Maskery M, Parker GJM, Parkes LM. Blood-brain barrier water exchange measurements using contrast-enhanced ASL. NMR IN BIOMEDICINE 2023; 36:e5009. [PMID: 37666494 PMCID: PMC10909569 DOI: 10.1002/nbm.5009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 09/06/2023]
Abstract
A technique for quantifying regional blood-brain barrier (BBB) water exchange rates using contrast-enhanced arterial spin labelling (CE-ASL) is presented and evaluated in simulations and in vivo. The two-compartment ASL model describes the water exchange rate from blood to tissue,k b , but to estimatek b in practice it is necessary to separate the intra- and extravascular signals. This is challenging in standard ASL data owing to the small difference inT 1 values. Here, a gadolinium-based contrast agent is used to increase thisT 1 difference and enable the signal components to be disentangled. The optimal post-contrast bloodT 1 (T 1 , b post ) at 3 T was determined in a sensitivity analysis, and the accuracy and precision of the method quantified using Monte Carlo simulations. Proof-of-concept data were acquired in six healthy volunteers (five female, age range 24-46 years). The sensitivity analysis identified the optimalT 1 , b post at 3 T as 0.8 s. Simulations showed thatk b could be estimated in individual cortical regions with a relative error ϵ < 1 % and coefficient of variation CoV = 30 %; however, a high dependence on bloodT 1 was also observed. In volunteer data, mean parameter values in grey matter were: arterial transit timet A = 1 . 15 ± 0 . 49 s, cerebral blood flow f = 58 . 0 ± 14 . 3 mL blood/min/100 mL tissue and water exchange ratek b = 2 . 32 ± 2 . 49 s-1 . CE-ASL can provide regional BBB water exchange rate estimates; however, the clinical utility of the technique is dependent on the achievable accuracy of measuredT 1 values.
Collapse
Affiliation(s)
- Elizabeth Powell
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Ben R. Dickie
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Yolanda Ohene
- Geoffrey Jefferson Brain Research CentreUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Mark Maskery
- Department of NeurologyLancashire Teaching Hospitals NHS Foundation TrustPrestonUK
| | - Geoff J. M. Parker
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
- Queen Square MS Centre, Institute of NeurologyUniversity College LondonLondonUK
- Bioxydyn LimitedManchesterUnited Kingdom
| | - Laura M. Parkes
- Geoffrey Jefferson Brain Research CentreUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
14
|
Ling C, Zhang J, Shao X, Bai L, Li Z, Sun Y, Li F, Wang Z, Xue R, Zhuo Y, Yang Q, Zhang Z, Wang DJJ, Yuan Y. Diffusion prepared pseudo-continuous arterial spin labeling reveals blood-brain barrier dysfunction in patients with CADASIL. Eur Radiol 2023; 33:6959-6969. [PMID: 37099178 PMCID: PMC10567537 DOI: 10.1007/s00330-023-09652-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 04/27/2023]
Abstract
OBJECTIVES Diffusion prepared pseudo-continuous arterial spin labeling (DP-pCASL) is a newly proposed MRI method to noninvasively measure the function of the blood-brain barrier (BBB). We aim to investigate whether the water exchange rate across the BBB, estimated with DP-pCASL, is changed in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and to analyze the association between the BBB water exchange rate and MRI/clinical features of these patients. METHODS Forty-one patients with CADASIL and thirty-six age- and sex-matched controls were scanned with DP-pCASL MRI to estimate the BBB water exchange rate (kw). The MRI lesion burden, the modified Rankin scale (mRS), and the neuropsychological scales were also examined. The association between kw and MRI/clinical features was analyzed. RESULTS Compared with that in the controls, kw in patients with CADASIL was decreased at normal-appearing white matter (NAWM) (t = - 4.742, p < 0.001), cortical gray matter (t = - 5.137, p < 0.001), and deep gray matter (t = - 3.552, p = 0.001). After adjustment for age, gender, and arterial transit time, kw at NAWM was negatively associated with the volume of white matter hyperintensities (β = - 0.754, p = 0.001), whereas decreased kw at NAWM was independently associated with an increased risk of abnormal mRS scale (OR = 1.058, 95% CI: 1.013-1.106, p = 0.011) in these patients. CONCLUSIONS This study found that the BBB water exchange rate was decreased in patients with CADASIL. The decreased BBB water exchange rate was associated with an increased MRI lesion burden and functional dependence of the patients, suggesting the involvement of BBB dysfunction in the pathogenesis of CADASIL. CLINICAL RELEVANCE STATEMENT DP-pCASL reveals BBB dysfunction in patients with CADASIL. The decreased BBB water exchange rate is associated with MRI lesion burden and functional dependence, indicating the potential of DP-pCASL as an evaluation method for disease severity. KEY POINTS • DP-pCASL reveals blood-brain barrier dysfunction in patients with CADASIL. • Decreased BBB water exchange rate, an indicator of BBB dysfunction detected by DP-pCASL, was associated with MRI/clinical features of patients with CADASIL. • DP-pCASL can be used as an evaluation method to assess the severity of disease in patients with CADASIL.
Collapse
Affiliation(s)
- Chen Ling
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Jinyuan Zhang
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine University of Southern California, CA, Los Angeles, USA
| | - Li Bai
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Zhixin Li
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunchuang Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Fan Li
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Rong Xue
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhuo
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
- Key Lab of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing, China.
| | - Zihao Zhang
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine University of Southern California, CA, Los Angeles, USA
- Department of Neurology, Keck School of Medicine University of Southern California, CA, Los Angeles, USA
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China.
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China.
| |
Collapse
|
15
|
Kim E, Carreira Figueiredo I, Simmons C, Randall K, Rojo Gonzalez L, Wood T, Ranieri B, Sureda-Gibert P, Howes O, Pariante C, Nima Consortium, Pasternak O, Dell'Acqua F, Turkheimer F, Cash D. Mapping acute neuroinflammation in vivo with diffusion-MRI in rats given a systemic lipopolysaccharide challenge. Brain Behav Immun 2023; 113:289-301. [PMID: 37482203 DOI: 10.1016/j.bbi.2023.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/19/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023] Open
Abstract
It is becoming increasingly apparent that neuroinflammation plays a critical role in an array of neurological and psychiatric disorders. Recent studies have demonstrated the potential of diffusion MRI (dMRI) to characterize changes in microglial density and morphology associated with neuroinflammation, but these were conducted mostly ex vivo and/or in extreme, non-physiological animal models. Here, we build upon these studies by investigating the utility of well-established dMRI methods to detect neuroinflammation in vivo in a more clinically relevant animal model of sickness behavior. We show that diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) indicate widespread increases in diffusivity in the brains of rats given a systemic lipopolysaccharide challenge (n = 20) vs. vehicle-treated controls (n = 12). These diffusivity changes correlated with histologically measured changes in microglial morphology, confirming the sensitivity of dMRI to neuroinflammatory processes. This study marks a further step towards establishing a noninvasive indicator of neuroinflammation, which would greatly facilitate early diagnosis and treatment monitoring in various neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Ines Carreira Figueiredo
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Camilla Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Karen Randall
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Loreto Rojo Gonzalez
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Tobias Wood
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Brigida Ranieri
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Paula Sureda-Gibert
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Carmine Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Nima Consortium
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), United Kingdom
| | - Ofer Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Flavio Dell'Acqua
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
16
|
Powell E, Ohene Y, Battiston M, Dickie BR, Parkes LM, Parker GJM. Blood-brain barrier water exchange measurements using FEXI: Impact of modeling paradigm and relaxation time effects. Magn Reson Med 2023; 90:34-50. [PMID: 36892973 PMCID: PMC10962589 DOI: 10.1002/mrm.29616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 03/10/2023]
Abstract
PURPOSE To evaluate potential modeling paradigms and the impact of relaxation time effects on human blood-brain barrier (BBB) water exchange measurements using FEXI (BBB-FEXI), and to quantify the accuracy, precision, and repeatability of BBB-FEXI exchange rate estimates at 3 T $$ \mathrm{T} $$ . METHODS Three modeling paradigms were evaluated: (i) the apparent exchange rate (AXR) model; (ii) a two-compartment model (2 CM $$ 2\mathrm{CM} $$ ) explicitly representing intra- and extravascular signal components, and (iii) a two-compartment model additionally accounting for finite compartmentalT 1 $$ {\mathrm{T}}_1 $$ andT 2 $$ {\mathrm{T}}_2 $$ relaxation times (2 CM r $$ 2{\mathrm{CM}}_r $$ ). Each model had three free parameters. Simulations quantified biases introduced by the assumption of infinite relaxation times in the AXR and2 CM $$ 2\mathrm{CM} $$ models, as well as the accuracy and precision of all three models. The scan-rescan repeatability of all paradigms was quantified for the first time in vivo in 10 healthy volunteers (age range 23-52 years; five female). RESULTS The assumption of infinite relaxation times yielded exchange rate errors in simulations up to 42%/14% in the AXR/2 CM $$ 2\mathrm{CM} $$ models, respectively. Accuracy was highest in the compartmental models; precision was best in the AXR model. Scan-rescan repeatability in vivo was good for all models, with negligible bias and repeatability coefficients in grey matter ofRC AXR = 0 . 43 $$ {\mathrm{RC}}_{\mathrm{AXR}}=0.43 $$ s - 1 $$ {\mathrm{s}}^{-1} $$ ,RC 2 CM = 0 . 51 $$ {\mathrm{RC}}_{2\mathrm{CM}}=0.51 $$ s - 1 $$ {\mathrm{s}}^{-1} $$ , andRC 2 CM r = 0 . 61 $$ {\mathrm{RC}}_{2{\mathrm{CM}}_r}=0.61 $$ s - 1 $$ {\mathrm{s}}^{-1} $$ . CONCLUSION Compartmental modelling of BBB-FEXI signals can provide accurate and repeatable measurements of BBB water exchange; however, relaxation time and partial volume effects may cause model-dependent biases.
Collapse
Affiliation(s)
- Elizabeth Powell
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Yolanda Ohene
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Marco Battiston
- Queen Square MS CentreUCL Institute of Neurology, University College LondonLondonUK
| | - Ben R. Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Informatics, Imaging and Data SciencesSchool of Health Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUK
| | - Laura M. Parkes
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Geoff J. M. Parker
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
- Queen Square MS CentreUCL Institute of Neurology, University College LondonLondonUK
- Bioxydyn LimitedManchesterUK
| |
Collapse
|
17
|
Shao X, Zhao C, Shou Q, St Lawrence KS, Wang DJJ. Quantification of blood-brain barrier water exchange and permeability with multidelay diffusion-weighted pseudo-continuous arterial spin labeling. Magn Reson Med 2023; 89:1990-2004. [PMID: 36622951 PMCID: PMC10079266 DOI: 10.1002/mrm.29581] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/22/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE To present a pulse sequence and mathematical models for quantification of blood-brain barrier water exchange and permeability. METHODS Motion-compensated diffusion-weighted (MCDW) gradient-and-spin echo (GRASE) pseudo-continuous arterial spin labeling (pCASL) sequence was proposed to acquire intravascular/extravascular perfusion signals from five postlabeling delays (PLDs, 1590-2790 ms). Experiments were performed on 11 healthy subjects at 3 T. A comprehensive set of perfusion and permeability parameters including cerebral blood flow (CBF), capillary transit time (τc ), and water exchange rate (kw ) were quantified, and permeability surface area product (PSw ), total extraction fraction (Ew ), and capillary volume (Vc ) were derived simultaneously by a three-compartment single-pass approximation (SPA) model on group-averaged data. With information (i.e., Vc and τc ) obtained from three-compartment SPA modeling, a simplified linear regression of logarithm (LRL) approach was proposed for individual kw quantification, and Ew and PSw can be estimated from long PLD (2490/2790 ms) signals. MCDW-pCASL was compared with a previously developed diffusion-prepared (DP) pCASL sequence, which calculates kw by a two-compartment SPA model from PLD = 1800 ms signals, to evaluate the improvements. RESULTS Using three-compartment SPA modeling, group-averaged CBF = 51.5/36.8 ml/100 g/min, kw = 126.3/106.7 min-1 , PSw = 151.6/93.8 ml/100 g/min, Ew = 94.7/92.2%, τc = 1409.2/1431.8 ms, and Vc = 1.2/0.9 ml/100 g in gray/white matter, respectively. Temporal SNR of MCDW-pCASL perfusion signals increased 3-fold, and individual kw maps calculated by the LRL method achieved higher spatial resolution (3.5 mm3 isotropic) as compared with DP pCASL (3.5 × 3.5 × 8 mm3 ). CONCLUSION MCDW-pCASL allows visualization of intravascular/extravascular ASL signals across multiple PLDs. The three-compartment SPA model provides a comprehensive measurement of blood-brain barrier water dynamics from group-averaged data, and a simplified LRL method was proposed for individual kw quantification.
Collapse
Affiliation(s)
- Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chenyang Zhao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Qinyang Shou
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Keith S St Lawrence
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Danny JJ Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
18
|
Zhang Y, Wang Y, Li Z, Wang Z, Cheng J, Bai X, Hsu YC, Sun Y, Li S, Shi J, Sui B, Bai R. Vascular-water-exchange MRI (VEXI) enables the detection of subtle AXR alterations in Alzheimer's disease without MRI contrast agent, which may relate to BBB integrity. Neuroimage 2023; 270:119951. [PMID: 36805091 DOI: 10.1016/j.neuroimage.2023.119951] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023] Open
Abstract
Blood-brain barrier (BBB) impairment is an important pathophysiological process in Alzheimer's disease (AD) and a potential biomarker for early diagnosis of AD. However, most current neuroimaging methods assessing BBB function need the injection of exogenous contrast agents (or tracers), which limits the application of these methods in a large population. In this study, we aim to explore the feasibility of vascular water exchange MRI (VEXI), a diffusion-MRI-based method proposed to assess the BBB permeability to water molecules without using a contrast agent, in the detection of the BBB breakdown in AD. We tested VEXI on a 3T MRI scanner on three groups: AD patients (AD group), mild cognitive impairment (MCI) patients due to AD (MCI group), and the age-matched normal cognition subjects (NC group). Interestingly, we find that the apparent water exchange across the BBB (AXRBBB) measured by VEXI shows higher values in MCI compared with NC, and this higher AXRBBB happens specifically in the hippocampus. This increase in AXRBBB value gets larger and extends to more brain regions (medial orbital frontal cortex and thalamus) from MCI group to the AD group. Furthermore, we find that the AXRBBB values of these three regions is correlated significantly with the impairment of respective cognitive domains independent of age, sex and education. These results suggest VEXI is a promising method to assess the BBB breakdown in AD.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Shaw Hospital AND Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Yue Wang
- National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhaoqing Li
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Shaw Hospital AND Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Zejun Wang
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Shaw Hospital AND Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Juange Cheng
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Shaw Hospital AND Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyan Bai
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing Neurosurgical Institute, Beijing, China
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthcare, Shanghai, China
| | - Yi Sun
- MR Collaboration, Siemens Healthcare, Shanghai, China
| | - Shiping Li
- National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jiong Shi
- National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Binbin Sui
- National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Ruiliang Bai
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Shaw Hospital AND Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University.
| |
Collapse
|
19
|
Ohene Y, Harris WJ, Powell E, Wycech NW, Smethers KF, Lasič S, South K, Coutts G, Sharp A, Lawrence CB, Boutin H, Parker GJM, Parkes LM, Dickie BR. Filter exchange imaging with crusher gradient modelling detects increased blood-brain barrier water permeability in response to mild lung infection. Fluids Barriers CNS 2023; 20:25. [PMID: 37013549 PMCID: PMC10071630 DOI: 10.1186/s12987-023-00422-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/08/2023] [Indexed: 04/05/2023] Open
Abstract
Blood-brain barrier (BBB) dysfunction occurs in many brain diseases, and there is increasing evidence to suggest that it is an early process in dementia which may be exacerbated by peripheral infection. Filter-exchange imaging (FEXI) is an MRI technique for measuring trans-membrane water exchange. FEXI data is typically analysed using the apparent exchange rate (AXR) model, yielding estimates of the AXR. Crusher gradients are commonly used to remove unwanted coherence pathways arising from longitudinal storage pulses during the mixing period. We first demonstrate that when using thin slices, as is needed for imaging the rodent brain, crusher gradients result in underestimation of the AXR. To address this, we propose an extended crusher-compensated exchange rate (CCXR) model to account for diffusion-weighting introduced by the crusher gradients, which is able to recover ground truth values of BBB water exchange (kin) in simulated data. When applied to the rat brain, kin estimates obtained using the CCXR model were 3.10 s-1 and 3.49 s-1 compared to AXR estimates of 1.24 s-1 and 0.49 s-1 for slice thicknesses of 4.0 mm and 2.5 mm respectively. We then validated our approach using a clinically relevant Streptococcus pneumoniae lung infection. We observed a significant 70 ± 10% increase in BBB water exchange in rats during active infection (kin = 3.78 ± 0.42 s-1) compared to before infection (kin = 2.72 ± 0.30 s-1; p = 0.02). The BBB water exchange rate during infection was associated with higher levels of plasma von Willebrand factor (VWF), a marker of acute vascular inflammation. We also observed 42% higher expression of perivascular aquaporin-4 (AQP4) in infected animals compared to non-infected controls, while levels of tight junction proteins remain consistent between groups. In summary, we propose a modelling approach for FEXI data which removes the bias in estimated water-exchange rates associated with the use of crusher gradients. Using this approach, we demonstrate the impact of peripheral infection on BBB water exchange, which appears to be mediated by endothelial dysfunction and associated with an increase in perivascular AQP4.
Collapse
Affiliation(s)
- Yolanda Ohene
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Zochonis Building, Oxford Road, Manchester, M13 9PL, UK.
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| | - William J Harris
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Elizabeth Powell
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering and Department of Neuroinflammation, UCL, London, UK
| | - Nina W Wycech
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Katherine F Smethers
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Zochonis Building, Oxford Road, Manchester, M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Samo Lasič
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Random Walk Imaging, Lund, Sweden
| | - Kieron South
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Zochonis Building, Oxford Road, Manchester, M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Graham Coutts
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Zochonis Building, Oxford Road, Manchester, M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Andrew Sharp
- Evotec (UK) Ltd., Alderley Park, Block 23F, Mereside, Cheshire, SK10 4TG, UK
| | - Catherine B Lawrence
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hervé Boutin
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Geoff J M Parker
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering and Department of Neuroinflammation, UCL, London, UK
- Bioxydyn Limited, Manchester, UK
| | - Laura M Parkes
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Zochonis Building, Oxford Road, Manchester, M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Ben R Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
20
|
Wei Z, Liu H, Lin Z, Yao M, Li R, Liu C, Li Y, Xu J, Duan W, Lu H. Non-contrast assessment of blood-brain barrier permeability to water in mice: An arterial spin labeling study at cerebral veins. Neuroimage 2023; 268:119870. [PMID: 36640948 PMCID: PMC9908858 DOI: 10.1016/j.neuroimage.2023.119870] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/15/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Blood-brain barrier (BBB) plays a critical role in protecting the brain from toxins and pathogens. However, in vivo tools to assess BBB permeability are scarce and often require the use of exogenous contrast agents. In this study, we aimed to develop a non-contrast arterial-spin-labeling (ASL) based MRI technique to estimate BBB permeability to water in mice. By determining the relative fraction of labeled water spins that were exchanged into the brain tissue as opposed to those that remained in the cerebral veins, we estimated indices of global BBB permeability to water including water extraction fraction (E) and permeability surface-area product (PS). First, using multiple post-labeling delay ASL experiments, we estimated the bolus arrival time (BAT) of the labeled spins to reach the great vein of Galen (VG) to be 691.2 ± 14.5 ms (N = 5). Next, we investigated the dependence of the VG ASL signal on labeling duration and identified an optimal imaging protocol with a labeling duration of 1200 ms and a PLD of 100 ms. Quantitative E and PS values in wild-type mice were found to be 59.9 ± 3.2% and 260.9 ± 18.9 ml/100 g/min, respectively. In contrast, mice with Huntington's disease (HD) revealed a significantly higher E (69.7 ± 2.4%, P = 0.026) and PS (318.1 ± 17.1 ml/100 g/min, P = 0.040), suggesting BBB breakdown in this mouse model. Reproducibility studies revealed a coefficient-of-variation (CoV) of 4.9 ± 1.7% and 6.1 ± 1.2% for E and PS, respectively. The proposed method may open new avenues for preclinical research on pathophysiological mechanisms of brain diseases and therapeutic trials in animal models.
Collapse
Affiliation(s)
- Zhiliang Wei
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600N. Wolfe Street, Park 326, Baltimore, MD 21287, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA.
| | - Hongshuai Liu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, MD 21287, USA
| | - Zixuan Lin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600N. Wolfe Street, Park 326, Baltimore, MD 21287, USA
| | - Minmin Yao
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, MD 21287, USA
| | - Ruoxuan Li
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, MD 21287, USA
| | - Chang Liu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, MD 21287, USA
| | - Yuguo Li
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600N. Wolfe Street, Park 326, Baltimore, MD 21287, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Jiadi Xu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600N. Wolfe Street, Park 326, Baltimore, MD 21287, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 8-121, Baltimore, MD 21287, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600N. Wolfe Street, Park 326, Baltimore, MD 21287, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
21
|
Harris WJ, Asselin MC, Hinz R, Parkes LM, Allan S, Schiessl I, Boutin H, Dickie BR. In vivo methods for imaging blood-brain barrier function and dysfunction. Eur J Nucl Med Mol Imaging 2023; 50:1051-1083. [PMID: 36437425 PMCID: PMC9931809 DOI: 10.1007/s00259-022-05997-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/09/2022] [Indexed: 11/29/2022]
Abstract
The blood-brain barrier (BBB) is the interface between the central nervous system and systemic circulation. It tightly regulates what enters and is removed from the brain parenchyma and is fundamental in maintaining brain homeostasis. Increasingly, the BBB is recognised as having a significant role in numerous neurological disorders, ranging from acute disorders (traumatic brain injury, stroke, seizures) to chronic neurodegeneration (Alzheimer's disease, vascular dementia, small vessel disease). Numerous approaches have been developed to study the BBB in vitro, in vivo, and ex vivo. The complex multicellular structure and effects of disease are difficult to recreate accurately in vitro, and functional aspects of the BBB cannot be easily studied ex vivo. As such, the value of in vivo methods to study the intact BBB cannot be overstated. This review discusses the structure and function of the BBB and how these are affected in diseases. It then discusses in depth several established and novel methods for imaging the BBB in vivo, with a focus on MRI, nuclear imaging, and high-resolution intravital fluorescence microscopy.
Collapse
Affiliation(s)
- William James Harris
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Marie-Claude Asselin
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Laura Michelle Parkes
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Stuart Allan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Ingo Schiessl
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Herve Boutin
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK.
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.
| | - Ben Robert Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
22
|
Cui J, Zheng J, Niu W, Bian W, Wang J, Niu J. Quantitative IVIM parameters evaluating perfusion changes in brain parenchyma in patients newly diagnosed with acute leukemia: Compared with healthy participants. Front Neurol 2023; 14:1093003. [PMID: 36816571 PMCID: PMC9932664 DOI: 10.3389/fneur.2023.1093003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
Purpose To study the value of quantitative IVIM parameters in evaluating cerebral blood perfusion changes in patients newly diagnosed with acute leukemia (AL) by comparing them with healthy participants. Materials and methods This prospective study consecutively recruited 49 participants with newly diagnosed AL and 40 normal controls between July 2020 and September 2022. All participants underwent an MRI of the brain using an axial T1-weighted and an IVIM sequence. The IVIM parameters (water diffusion coefficient, sADC, pseudoperfusion fraction, f; diffusion coefficient, D, pseudodiffusion coefficient, D *, and perfusion-diffusion ratio, PDR) and peripheral white blood cell (WBC) counts were obtained. An unpaired t-test or the Mann-Whitney U-test was performed to compare the differences in gray matter (GM) and white matter (WM) of healthy participants and AL patients and the differences in IVIM parameters between healthy participants and patients with AL. In addition, multivariate (logistic regression) analyses were used to identify independent predictors and then, the receiver operating characteristic curve (ROC) analyses were performed. Results 40 healthy participants and 49 patients with newly diagnosed AL were evaluated. In healthy participants, sADC, PDR, D and f values of GM were significantly higher than those of WM (t = 5.844, t = 3.838, t = 7.711, z = -2.184, respectively, all P < 0.05). In AL patients, the D, f and sADC values of GM were significantly higher than those of WM (t = 3.450, t = 6.262, t = 4.053, respectively, all P < 0.05). The sADC and f value from AL patients were significantly lower than those from healthy participants in GM (z = -2.537, P = 0.011; and z = -2.583, P = 0.010, respectively) and WM (z = -2.969, P = 0.003; z = -2.923, P = 0.003, respectively). The WBC counts of AL patients were significantly higher than those of healthy participants (t = 3.147, P = 0.002). Multivariate analyses showed that the f values of GM and WM were independent predictors of AL (P = 0.030, and 0.010, respectively), with the optimal cut-off value at 7.08% (AUC ROC curve: 0.661, specificity: 11.4%, sensitivity: 98%) and 13.77% (AUC ROC curve: 0.682, specificity: 79.5%, sensitivity: 59.2%). Conclusion The IVIM parameters of brain parenchyma in patients newly diagnosed with AL differed from those of the healthy participants. The changes of cerebral blood flow perfusion are expected to provide new ideas for studying central nervous system infiltration in AL.
Collapse
Affiliation(s)
- Jianing Cui
- Medical Imaging Department, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Zheng
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weiran Niu
- Department of Mental Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenjin Bian
- Medical Imaging Department, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jun Wang
- Department of Radiology, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jinliang Niu
- Department of Radiology, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, China,*Correspondence: Jinliang Niu ✉
| |
Collapse
|
23
|
Davenport F, Gallacher J, Kourtzi Z, Koychev I, Matthews PM, Oxtoby NP, Parkes LM, Priesemann V, Rowe JB, Smye SW, Zetterberg H. Neurodegenerative disease of the brain: a survey of interdisciplinary approaches. J R Soc Interface 2023; 20:20220406. [PMID: 36651180 PMCID: PMC9846433 DOI: 10.1098/rsif.2022.0406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/16/2022] [Indexed: 01/19/2023] Open
Abstract
Neurodegenerative diseases of the brain pose a major and increasing global health challenge, with only limited progress made in developing effective therapies over the last decade. Interdisciplinary research is improving understanding of these diseases and this article reviews such approaches, with particular emphasis on tools and techniques drawn from physics, chemistry, artificial intelligence and psychology.
Collapse
Affiliation(s)
| | - John Gallacher
- Director of Dementias Platform, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Zoe Kourtzi
- Professor of Cognitive Computational Neuroscience, Department of Psychology, University of Cambridge, UK
| | - Ivan Koychev
- Senior Clinical Researcher, Department of Psychiatry, University of Oxford, Oxford, UK
- Consultant Neuropsychiatrist, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Paul M. Matthews
- Department of Brain Sciences and UK Dementia Research Institute Centre, Imperial College London, Oxford, UK
| | - Neil P. Oxtoby
- UCL Centre for Medical Image Computing and Department of Computer Science, University College London, Gower Street, London, UK
| | - Laura M. Parkes
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Viola Priesemann
- Max Planck Group Leader and Fellow of the Schiemann Kolleg, Max Planck Institute for Dynamics and Self-Organization and Bernstein Center for Computational Neuroscience, Göttingen, Germany
| | - James B. Rowe
- Department of Clinical Neurosciences, MRC Cognition and Brain Sciences Unit and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | | | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, People's Republic of China
| |
Collapse
|
24
|
Measurement of Protein Synthesis Rate in Rat by [11C]Leucine PET Imaging: Application to the TgF344-AD Model of Alzheimer’s Disease. Mol Imaging Biol 2022; 25:596-605. [PMID: 36538180 PMCID: PMC10172255 DOI: 10.1007/s11307-022-01796-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
AbstractLong-term memory requires stable protein synthesis and is altered in Alzheimer’s disease (AD). This study aimed to implement a method to measure the cerebral protein synthesis rate (PSR) with [11C]leucine PET in vivo in rats and evaluate potential PSR alterations longitudinally (6, 12 and 18 months old) in the TgF344-AD rat model of AD. Wistar, wild-type (WT) and TgF344-AD rats (TG) were scanned for 60 min with [11C]leucine. Arterial blood activity was monitored online and with discrete whole blood and plasma samples by γ-counting in Wistar rats, WT (n = 4) and TG (n = 5). Unlabelled amino acids were measured in plasma. The sensitivity of [11C]leucine PET to measure alterations in PSR was assessed in Wistar rats by injection of PSR inhibitor anisomycin before PET acquisition. Anisomycin administration significantly reduced the net uptake rate constant (Kcplx) of [11C]leucine and PSR, proving the suitability of the method. For the longitudinal study, averaged population-based input functions were used to calculate PSR. We found a significant genotype effect on PSR (decrease in TG vs WT) only in the globus pallidus. This study suggests that [11C]leucine PET is sensitive enough to measure brain PSR in rat but that cross-sectional design with individual input function should be preferred.
Collapse
|
25
|
Lin Z, Jiang D, Liu P, Ge Y, Moghekar A, Lu H. Blood-brain barrier permeability in response to caffeine challenge. Magn Reson Med 2022; 88:2259-2266. [PMID: 35754146 PMCID: PMC9420773 DOI: 10.1002/mrm.29355] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 01/22/2023]
Abstract
PURPOSE Caffeine is known to alter brain perfusion by acting as an adenosine antagonist, but its effect on blood-brain barrier (BBB) permeability is not fully elucidated. This study aimed to dynamically monitor BBB permeability to water after a single dose of caffeine tablet using a non-contrast MRI technique. METHODS Ten young healthy volunteers who were not regular coffee drinkers were studied. The experiment began with a pre-caffeine measurement, followed by four measurements at the post-caffeine stage. Water-extraction-with-phase-contrast-arterial-spin-tagging (WEPCAST) MRI was used to assess the time dependence of BBB permeability to water following the ingestion of 200 mg caffeine. Other cerebral physiological parameters including cerebral blood flow (CBF), venous oxygenation (Yv ), and cerebral metabolic rate of oxygen (CMRO2 ) were also examined. The relationships between cerebral physiological parameters and time were studied with mixed-effect models. RESULTS It was found that, after caffeine ingestion, CBF and Yv showed a time-dependent decrease (p < 0.001), while CMRO2 did not change significantly. The fraction of arterial water crossing the BBB (E) showed a significant increase (p < 0.001). In contrast, the permeability-surface-area product (PS), i.e., BBB permeability to water, remained constant (p = 0.94). Additionally, it was observed that changes in physiological parameters were non-linear with regard to time and occurred at as early as 9 min after caffeine tablet ingestion. CONCLUSION These results suggest an unchanged BBB permeability despite alterations in perfusion during a vasoconstrictive caffeine challenge.
Collapse
Affiliation(s)
- Zixuan Lin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yulin Ge
- Department of Radiology, New York University, NY, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Wang B, Wang Z, Jia Y, Zhao P, Han G, Meng C, Li X, Bai R, Liu Y. Water exchange detected by shutter speed dynamic contrast enhanced-MRI help distinguish solitary brain metastasis from glioblastoma. Eur J Radiol 2022; 156:110526. [PMID: 36219917 DOI: 10.1016/j.ejrad.2022.110526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE This study aimed to explore the feasibility of transmembrane water exchange parameters detected by brain shutter speed (BSS) dynamic contrast enhanced (DCE)MRI, which is validated to be associated with aquaporin-4 expression, in distinguishing glioblastoma (GBM) from solitary brain metastasis (SBM). METHODS 40 patients (mean age: 58.6 ± 11.7 years old, male/female: 23/17) with GBM and 48 patients (mean age: 61.7 ± 10.5 years old, male/female: 28/20) with SBM were enrolled in this observational study. BSS DCE-MRI was performed before operation. Intravascular water efflux rate constant (kbo) and intracellular water efflux rate constant (kio) within the peritumoral region and enhancing tumor were calculated from SS-DCE, respectively. The difference of these two parameters between GBM and SBM was explored. Immunohistochemical staining aquaporin-4 of was performed to validate its underlying biological mechanism. RESULTS The kbo was found to be statistically different within both peritumoral region {SBM vs. GBM (s-1): 1.0[0.4,1.7] vs. 1.5[0.9,2.1], p = 0.009} and enhanced tumor {SBM vs. GBM (s-1): 0.2[0.1,0.5] vs. 0.4[0.1,1.3], p = 0.034}. Immunohistochemical analysis reveals the high perivascular aquaporin-4 expression in GBM may contribute the higher kbo value than that of SBM. CONCLUSIONS kbo derived from BSS DCE-MRI was an independent pathophysiological parameter for separating GBM from SBM, in which kbo might be associated with the perivascular aquaporin-4 expression.
Collapse
Affiliation(s)
- Bao Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, PR China
| | - Zejun Wang
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Shaw Hospital AND Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, PR China
| | - Yinhang Jia
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Shaw Hospital AND Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Peng Zhao
- Department of Radiology, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, PR China
| | - Guangxu Han
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Shaw Hospital AND Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, PR China
| | - Cheng Meng
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China
| | - Xiaomei Li
- Tumor Research and Therapy Center, Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China.
| | - Ruiliang Bai
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Shaw Hospital AND Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, PR China.
| | - Yingchao Liu
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China.
| |
Collapse
|
27
|
Zelek WM, Morgan BP. Targeting complement in neurodegeneration: challenges, risks, and strategies. Trends Pharmacol Sci 2022; 43:615-628. [DOI: 10.1016/j.tips.2022.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
|
28
|
Abstract
In 2001, the concept of the neurovascular unit was introduced at the Stroke Progress Review Group meeting. The neurovascular unit is an important element of the health and disease status of blood vessels and nerves in the central nervous system. Since then, the neurovascular unit has attracted increasing interest from research teams, who have contributed greatly to the prevention, treatment, and prognosis of stroke and neurodegenerative diseases. However, additional research is needed to establish an efficient, low-cost, and low-energy in vitro model of the neurovascular unit, as well as enable noninvasive observation of neurovascular units in vivo and in vitro. In this review, we first summarize the composition of neurovascular units, then investigate the efficacy of different types of stem cells and cell culture methods in the construction of neurovascular unit models, and finally assess the progress of imaging methods used to observe neurovascular units in recent years and their positive role in the monitoring and investigation of the mechanisms of a variety of central nervous system diseases.
Collapse
Affiliation(s)
- Taiwei Dong
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Min Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Feng Gao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Peifeng Wei
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Jian Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Provinve, China
| |
Collapse
|
29
|
Tao QQ, Lin RR, Chen YH, Wu ZY. Discerning the Role of Blood Brain Barrier Dysfunction in Alzheimer’s Disease. Aging Dis 2022; 13:1391-1404. [PMID: 36186141 PMCID: PMC9466977 DOI: 10.14336/ad.2022.0130-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/30/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of neurodegenerative disease. The predominant characteristics of AD are the accumulation of amyloid-β (Aβ) and hyperphosphorylated tau in the brain. Blood brain barrier (BBB) dysfunction as one of the causative factors of cognitive impairment is increasingly recognized in the last decades. However, the role of BBB dysfunction in AD pathogenesis is still not fully understood. It remains elusive whether BBB dysfunction is a consequence or causative fact of Aβ pathology, tau pathology, neuroinflammation, or other conditions. In this review, we summarized the major findings of BBB dysfunction in AD and the reciprocal relationships between BBB dysfunction, Aβ pathology, tau pathology, and neuroinflammation. In addition, the implications of BBB dysfunction in AD for delivering therapeutic drugs were presented. Finally, we discussed how to better determine the underlying mechanisms between BBB dysfunction and AD, as well as how to explore new therapies for BBB regulation to treat AD in the future.
Collapse
Affiliation(s)
| | | | | | - Zhi-Ying Wu
- Correspondence should be addressed to: Dr. Zhi-Ying Wu, the Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China. E-mail:
| |
Collapse
|
30
|
Mahroo A, Buck MA, Huber J, Breutigam NJ, Mutsaerts HJMM, Craig M, Chappell M, Günther M. Robust Multi-TE ASL-Based Blood-Brain Barrier Integrity Measurements. Front Neurosci 2021; 15:719676. [PMID: 34924924 PMCID: PMC8678075 DOI: 10.3389/fnins.2021.719676] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/25/2021] [Indexed: 12/30/2022] Open
Abstract
Multiple echo-time arterial spin labelling (multi-TE ASL) offers estimation of blood–tissue exchange dynamics by probing the T2 relaxation of the labelled spins. In this study, we provide a recipe for robust assessment of exchange time (Texch) as a proxy measure of blood–brain barrier (BBB) integrity based on a test-retest analysis. This includes a novel scan protocol and an extension of the two-compartment model with an “intra-voxel transit time” (ITT) to address tissue transit effects. With the extended model, we intend to separate the underlying two distinct mechanisms of tissue transit and exchange. The performance of the extended model in comparison with the two-compartment model was evaluated in simulations. Multi-TE ASL sequence with two different bolus durations was used to acquire in vivo data (n = 10). Cerebral blood flow (CBF), arterial transit time (ATT) and Texch were fitted with the two models, and mean grey matter values were compared. Additionally, the extended model also extracted ITT parameter. The test-retest reliability of Texch was assessed for intra-session, inter-session and inter-visit pairs of measurements. Intra-class correlation coefficient (ICC) and within-subject coefficient of variance (CoV) for grey matter were computed to assess the precision of the method. Mean grey matter Texch and ITT values were found to be 227.9 ± 37.9 ms and 310.3 ± 52.9 ms, respectively. Texch estimated by the extended model was 32.6 ± 5.9% lower than the two-compartment model. A significant ICC was observed for all three measures of Texch reliability (P < 0.05). Texch intra-session CoV, inter-session CoV and inter-visit CoV were found to be 6.6%, 7.9%, and 8.4%, respectively. With the described improvements addressing intra-voxel transit effects, multi-TE ASL shows good reproducibility as a non-invasive measure of BBB permeability. These findings offer an encouraging step forward to apply this potential BBB permeability biomarker in clinical research.
Collapse
Affiliation(s)
- Amnah Mahroo
- MR Physics, Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Mareike Alicja Buck
- MR Physics, Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany.,MR-Imaging and Spectroscopy, University of Bremen, Bremen, Germany
| | - Jörn Huber
- MR Physics, Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | | | - Henk J M M Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Martin Craig
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Michael Chappell
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Nottingham Biomedical Research Centre, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Matthias Günther
- MR Physics, Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany.,MR-Imaging and Spectroscopy, University of Bremen, Bremen, Germany.,mediri GmbH, Heidelberg, Germany
| |
Collapse
|
31
|
Ni R. Magnetic Resonance Imaging in Animal Models of Alzheimer's Disease Amyloidosis. Int J Mol Sci 2021; 22:12768. [PMID: 34884573 PMCID: PMC8657987 DOI: 10.3390/ijms222312768] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Amyloid-beta (Aβ) plays an important role in the pathogenesis of Alzheimer's disease. Aberrant Aβ accumulation induces neuroinflammation, cerebrovascular alterations, and synaptic deficits, leading to cognitive impairment. Animal models recapitulating the Aβ pathology, such as transgenic, knock-in mouse and rat models, have facilitated the understanding of disease mechanisms and the development of therapeutics targeting Aβ. There is a rapid advance in high-field MRI in small animals. Versatile high-field magnetic resonance imaging (MRI) sequences, such as diffusion tensor imaging, arterial spin labeling, resting-state functional MRI, anatomical MRI, and MR spectroscopy, as well as contrast agents, have been developed for preclinical imaging in animal models. These tools have enabled high-resolution in vivo structural, functional, and molecular readouts with a whole-brain field of view. MRI has been used to visualize non-invasively the Aβ deposits, synaptic deficits, regional brain atrophy, impairment in white matter integrity, functional connectivity, and cerebrovascular and glymphatic system in animal models of Alzheimer's disease amyloidosis. Many of the readouts are translational toward clinical MRI applications in patients with Alzheimer's disease. In this review, we summarize the recent advances in MRI for visualizing the pathophysiology in amyloidosis animal models. We discuss the outstanding challenges in brain imaging using MRI in small animals and propose future outlook in visualizing Aβ-related alterations in the brains of animal models.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Biomedical Engineering, ETH Zurich & University of Zurich, 8093 Zurich, Switzerland;
- Institute for Regenerative Medicine, University of Zurich, 8952 Zurich, Switzerland
| |
Collapse
|
32
|
Lin Z, Lance E, McIntyre T, Li Y, Liu P, Lim C, Fan H, Tekes A, Cannon A, Casella JF, Lu H. Imaging Blood-Brain Barrier Permeability Through MRI in Pediatric Sickle Cell Disease: A Feasibility Study. J Magn Reson Imaging 2021; 55:1551-1558. [PMID: 34676938 PMCID: PMC9018466 DOI: 10.1002/jmri.27965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) disruption may lead to endothelium dysfunction and inflammation in sickle cell disease (SCD). However, abnormalities of BBB in SCD, especially in pediatric patients for whom contrast agent administration less than optimal, have not been fully characterized. PURPOSE To examine BBB permeability to water in a group of pediatric SCD participants using a non-invasive magnetic resonance imaging technique. We hypothesized that SCD participants will have increased BBB permeability. STUDY TYPE Prospective cross-sectional. POPULATION Twenty-six pediatric participants (10 ± 1 years, 15F/11M) were enrolled, including 21 SCD participants and 5 sickle cell trait (SCT) participants, who were siblings of SCD patients. FIELD STRENGTH/SEQUENCE 3 T. Water extraction with phase-contrast arterial spin tagging with echo-planer imaging, phase-contrast and T1 -weighted magnetization-prepared rapid acquisition of gradient echo. ASSESSMENT Water extraction fraction (E), BBB permeability-surface area product (PS), cerebral blood flow, hematological measures (hemoglobin, hematocrit, hemoglobin S), neuropsychological scores (including domains of intellectual ability, attention and executive function, academic achievement and adaptive function, and a composite score). Regions of interest were drawn by Z.L. (6 years of experience). STATISTICAL TESTS Wilcoxon rank sum test and chi-square test for group comparison of demographics. Multiple linear regression analysis of PS with diagnostic category (SCD or SCT), hematological measures, and neuropsychological scores. A two-tailed P value of 0.05 or less was considered statistically significant. RESULTS Compared with SCT participants, SCD participants had a significantly higher BBB permeability to water (SCD: 207.0 ± 33.3 mL/100 g/minute, SCT: 171.2 ± 27.2 mL/100 g/minute). SCD participants with typically more severe phenotypes also had a significantly leakier BBB than those with typically milder phenotypes (severe: 217.3 ± 31.7 mL/100 g/minute, mild: 193.3 ± 31.8 mL/100 g/minute). Furthermore, more severe BBB disruption was associated with worse hematological symptoms, including lower hemoglobin concentrations (β = -8.84, 95% confidence interval [CI] [-14.69, -3.00]), lower hematocrits (β = -2.96, 95% CI [-4.84, -1.08]), and higher hemoglobin S fraction (β = 0.77, 95% CI [0.014, 1.53]). DATA CONCLUSION These findings support a potential role for BBB dysfunction in SCD pathogenesis of ischemic injury. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Zixuan Lin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eboni Lance
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tiffany McIntyre
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Yang Li
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chantelle Lim
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hongli Fan
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aylin Tekes
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alicia Cannon
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - James F Casella
- Department of Pediatrics, Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
33
|
Singh CSB, Choi KB, Munro L, Wang HY, Pfeifer CG, Jefferies WA. Reversing pathology in a preclinical model of Alzheimer's disease by hacking cerebrovascular neoangiogenesis with advanced cancer therapeutics. EBioMedicine 2021; 71:103503. [PMID: 34534764 PMCID: PMC8449085 DOI: 10.1016/j.ebiom.2021.103503] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Cognitive decline leading to dementia, accompanied by the accumulation of amyloid-beta (Aβ) in neuritic plaques together with the appearance of neurofibrillary tangles (NFT) composed of hyperphosphorylated tau protein (tau), are previously noted hallmarks of Alzheimer's disease (AD). We previously discovered hypervascularity in brain specimens from AD patients and consistent with this observation, we demonstrated that overexpression of Aβ drives cerebrovascular neoangiogenesis leading to hypervascularity and coincident tight-junction disruption and blood-brain barrier (BBB) leakiness in animal models of AD. We subsequently demonstrated that amyloid plaque burden and cerebrovascular pathogenesis subside when pro-angiogenic Aβ levels are reduced. Based on these data, we propose a paradigm of AD etiology where, as a compensatory response to impaired cerebral blood flow (CBF), Aβ triggers pathogenic cerebrovascular neoangiogenesis that underlies the conventional hallmarks of AD. Consequently, here we present evidence that repurposing anti-cancer drugs to modulate cerebrovascular neoangiogenesis, rather than directly targeting the amyloid cascade, may provide an effective treatment for AD and related vascular diseases of the brain. METHODS We explored whether the anti-cancer drug, Axitinib, a small molecule tyrosine kinase inhibitor that targets vascular endothelial growth factor receptors (VEGFR) can inhibit aberrant cerebrovascular neoangiogenic changes, reduce Aβ deposits and reverse cognitive decline in an animal model of AD. One month post-treatment with Axitinib, we employed a battery of tests to assess cognition and memory in aged Tg2576 AD mice and used molecular analysis to demonstrate reduction of amyloid plaques, BBB leakage, hypervascularity and associated disease pathology. FINDINGS Targeting the pro-angiogenic pathway in AD using the cancer drug, Axitinib, dramatically reduced cerebrovascular neoangiogenesis, restored BBB integrity, resolved tight-junction pathogenesis, diminishes Aβ depositions in plaques and effectively restores memory and cognitive performance in a preclinical mouse model of AD. INTERPRETATION Modulation of neoangiogenesis, in an analogous approach to those used to treat aberrant vascularization in cancer and also in the wet form of age-related macular degeneration (AMD), provides an alternative therapeutic strategy for intervention in AD that warrants clinical investigation. FUNDING None.
Collapse
Affiliation(s)
- Chaahat S B Singh
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6T 1Z4, Canada
| | - Kyung Bok Choi
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6T 1Z4, Canada
| | - Lonna Munro
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6T 1Z4, Canada
| | - Hong Yue Wang
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Cheryl G Pfeifer
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6T 1Z4, Canada
| | - Wilfred A Jefferies
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6T 1Z4, Canada; Department of Urologic Sciences, University of British Columbia, Gordon & Leslie Diamond Health Care Centre, Level 6, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada.
| |
Collapse
|
34
|
Tagge IJ, Anderson VC, Springer CS, Sammi MK, Bourdette DN, Spain RI, Rooney WD. Gray matter blood-brain barrier water exchange dynamics are reduced in progressive multiple sclerosis. J Neuroimaging 2021; 31:1111-1118. [PMID: 34355458 PMCID: PMC9291753 DOI: 10.1111/jon.12912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022] Open
Abstract
Background and Purpose To compare transcapillary wall water exchange, a putative marker of cerebral metabolic health, in brain T2 white matter (WM) lesions and normal appearing white and gray matter (NAWM and NAGM, respectively) in individuals with progressive multiple sclerosis (PMS) and healthy controls (HC). Methods Dynamic‐contrast‐enhanced 7T MRI data were obtained from 19 HC and 23 PMS participants. High‐resolution pharmacokinetic parametric maps representing tissue microvascular and microstructural properties were created by shutter‐speed (SS) paradigm modeling to obtain estimates of blood volume fraction (vb), water molecule capillary efflux rate constant (kpo), and the water capillary wall permeability surface area product (PwS ≡ vb*kpo). Linear regression models were used to investigate differences in (i) kpo and PwS between groups in NAWM and NAGM, and (ii) between WM lesions and NAWM in PMS. Results High‐resolution parametric maps were produced to visualize tissue classes and resolve individual WM lesions. Normal‐appearing gray matter kpo and PwS were significantly decreased in PMS compared to HC (p ≤ .01). Twenty‐one T2 WM lesions were analyzed in 10 participants with PMS. kpo was significantly decreased in WM lesions compared to PMS NAWM (p < .0001). Conclusions Transcapillary water exchange is reduced in PMS NAGM compared to HC and is further reduced in PMS WM lesions, suggesting pathologically impaired brain metabolism. kpo provides a sensitive measure of cerebral metabolic activity and/or coupling, and can be mapped at higher spatial resolution than conventional imaging techniques assessing metabolic activity.
Collapse
Affiliation(s)
- Ian J Tagge
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA.,Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Valerie C Anderson
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Charles S Springer
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Manoj K Sammi
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Dennis N Bourdette
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Rebecca I Spain
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA.,Neurology Division, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA.,Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
35
|
Dickie BR, Boutin H, Parker GJM, Parkes LM. Alzheimer's disease pathology is associated with earlier alterations to blood-brain barrier water permeability compared with healthy ageing in TgF344-AD rats. NMR IN BIOMEDICINE 2021; 34:e4510. [PMID: 33723901 PMCID: PMC11475392 DOI: 10.1002/nbm.4510] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/06/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
The effects of Alzheimer's disease (AD) and ageing on blood-brain barrier (BBB) breakdown are investigated in TgF344-AD and wild-type rats aged 13, 18 and 21 months. Permeability surface area products of the BBB to water (PSw ) and gadolinium-based contrast agent (PSg ) were measured in grey matter using multiflip angle multiecho dynamic contrast-enhanced MRI. At 13 months of age, there was no significant difference in PSw between TgF344-AD and wild-types (p = 0.82). Between 13 and 18 months, PSw increased in TgF344-AD rats (p = 0.027), but not in wild-types (p = 0.99), leading to significantly higher PSw in TgF344-AD rats at 18 months, as previously reported (p = 0.012). Between 18 and 21 months, PSw values increased in wild-types (p = 0.050), but not in TgF344-AD rats (p = 0.50). These results indicate that BBB water permeability is affected by both AD pathology and ageing, but that changes occur earlier in the presence of AD pathology. There were no significant genotype or ageing effects on PSg (p > 0.05). In conclusion, we detected increases in BBB water permeability with age in TgF344-AD and wild-type rats, and found that changes occurred at an earlier age in rats with AD pathology.
Collapse
Affiliation(s)
- Ben R. Dickie
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, Stopford BuildingUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreManchester Academic Health Science CentreManchesterUK
| | - Hervé Boutin
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, Stopford BuildingUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreManchester Academic Health Science CentreManchesterUK
- Wolfson Molecular Imaging Centre, Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
| | - Geoff J. M. Parker
- Bioxydyn LtdManchesterUK
- Centre for Medical Image Computing, Department of Computer Science and Department of NeuroinflammationUniversity College LondonLondonUK
| | - Laura M. Parkes
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, Stopford BuildingUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreManchester Academic Health Science CentreManchesterUK
| |
Collapse
|
36
|
Lin Z, Sur S, Liu P, Li Y, Jiang D, Hou X, Darrow J, Pillai JJ, Yasar S, Rosenberg P, Albert M, Moghekar A, Lu H. Blood-Brain Barrier Breakdown in Relationship to Alzheimer and Vascular Disease. Ann Neurol 2021; 90:227-238. [PMID: 34041783 PMCID: PMC8805295 DOI: 10.1002/ana.26134] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 02/06/2023]
Abstract
Objective: Blood–brain barrier (BBB) breakdown has been suggested to be an early biomarker in human cognitive impairment. However, the relationship between BBB breakdown and brain pathology, most commonly Alzheimer disease (AD) and vascular disease, is still poorly understood. The present study measured human BBB function in mild cognitive impairment (MCI) patients on 2 molecular scales, specifically BBB’s permeability to water and albumin molecules. Methods: Fifty-five elderly participants were enrolled, including 33 MCI patients and 22 controls. BBB permeability to water was measured with a new magnetic resonance imaging technique, water extraction with phase contrast arterial spin tagging. BBB permeability to albumin was determined using cerebrospinal fluid (CSF)/serum albumin ratio. Cognitive performance was assessed by domain-specific composite scores. AD pathology (including CSF Aβ and ptau) and vascular risk factors were examined. Results: Compared to cognitively normal subjects, BBB in MCI patients manifested an increased permeability to small molecules such as water but was no more permeable to large molecules such as albumin. BBB permeability to water was found to be related to AD markers of CSF Aβ and ptau. On the other hand, BBB permeability to albumin was found to be related to vascular risk factors, especially hypercholesterolemia, but was not related to AD pathology. BBB permeability to small molecules, but not to large molecules, was found to be predictive of cognitive function. Interpretation: These findings provide early evidence that BBB breakdown is related to both AD and vascular risks, but their effects can be differentiated by spatial scales. BBB permeability to small molecules has a greater impact on cognitive performance.
Collapse
Affiliation(s)
- Zixuan Lin
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sandeepa Sur
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Peiying Liu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yang Li
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Dengrong Jiang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Xirui Hou
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jacqueline Darrow
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jay J Pillai
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sevil Yasar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Paul Rosenberg
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Hanzhang Lu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD
| |
Collapse
|
37
|
Chang CY, Luo DZ, Pei JC, Kuo MC, Hsieh YC, Lai WS. Not Just a Bystander: The Emerging Role of Astrocytes and Research Tools in Studying Cognitive Dysfunctions in Schizophrenia. Int J Mol Sci 2021; 22:ijms22105343. [PMID: 34069523 PMCID: PMC8160762 DOI: 10.3390/ijms22105343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/16/2022] Open
Abstract
Cognitive dysfunction is one of the core symptoms in schizophrenia, and it is predictive of functional outcomes and therefore useful for treatment targets. Rather than improving cognitive deficits, currently available antipsychotics mainly focus on positive symptoms, targeting dopaminergic/serotoninergic neurons and receptors in the brain. Apart from investigating the neural mechanisms underlying schizophrenia, emerging evidence indicates the importance of glial cells in brain structure development and their involvement in cognitive functions. Although the etiopathology of astrocytes in schizophrenia remains unclear, accumulated evidence reveals that alterations in gene expression and astrocyte products have been reported in schizophrenic patients. To further investigate the role of astrocytes in schizophrenia, we highlighted recent progress in the investigation of the effect of astrocytes on abnormalities in glutamate transmission and impairments in the blood–brain barrier. Recent advances in animal models and behavioral methods were introduced to examine schizophrenia-related cognitive deficits and negative symptoms. We also highlighted several experimental tools that further elucidate the role of astrocytes. Instead of focusing on schizophrenia as a neuron-specific disorder, an additional astrocytic perspective provides novel and promising insight into its causal mechanisms and treatment. The involvement of astrocytes in the pathogenesis of schizophrenia and other brain disorders is worth further investigation.
Collapse
Affiliation(s)
- Chia-Yuan Chang
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan; (C.-Y.C.); (D.-Z.L.); (J.-C.P.); (Y.-C.H.)
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan;
| | - Da-Zhong Luo
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan; (C.-Y.C.); (D.-Z.L.); (J.-C.P.); (Y.-C.H.)
| | - Ju-Chun Pei
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan; (C.-Y.C.); (D.-Z.L.); (J.-C.P.); (Y.-C.H.)
| | - Ming-Che Kuo
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan;
- Department of Neurology, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Yi-Chen Hsieh
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan; (C.-Y.C.); (D.-Z.L.); (J.-C.P.); (Y.-C.H.)
| | - Wen-Sung Lai
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan; (C.-Y.C.); (D.-Z.L.); (J.-C.P.); (Y.-C.H.)
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan;
- Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: ; Tel.: +886-2-3366-3112; Fax: +886-2-3362-9909
| |
Collapse
|
38
|
Manning C, Stringer M, Dickie B, Clancy U, Valdés Hernandez MC, Wiseman SJ, Garcia DJ, Sakka E, Backes WH, Ingrisch M, Chappell F, Doubal F, Buckley C, Parkes LM, Parker GJM, Marshall I, Wardlaw JM, Thrippleton MJ. Sources of systematic error in DCE-MRI estimation of low-level blood-brain barrier leakage. Magn Reson Med 2021; 86:1888-1903. [PMID: 34002894 DOI: 10.1002/mrm.28833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/19/2021] [Accepted: 04/16/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE Dynamic contrast-enhanced (DCE) -MRI with Patlak model analysis is increasingly used to quantify low-level blood-brain barrier (BBB) leakage in studies of pathophysiology. We aimed to investigate systematic errors due to physiological, experimental, and modeling factors influencing quantification of the permeability-surface area product PS and blood plasma volume vp , and to propose modifications to reduce the errors so that subtle differences in BBB permeability can be accurately measured. METHODS Simulations were performed to predict the effects of potential sources of systematic error on conventional PS and vp quantification: restricted BBB water exchange, reduced cerebral blood flow, arterial input function (AIF) delay and B 1 + error. The impact of targeted modifications to the acquisition and processing were evaluated, including: assumption of fast versus no BBB water exchange, bolus versus slow injection of contrast agent, exclusion of early data from model fitting and B 1 + correction. The optimal protocol was applied in a cohort of recent mild ischaemic stroke patients. RESULTS Simulation results demonstrated substantial systematic errors due to the factors investigated (absolute PS error ≤ 4.48 × 10-4 min-1 ). However, these were reduced (≤0.56 × 10-4 min-1 ) by applying modifications to the acquisition and processing pipeline. Processing modifications also had substantial effects on in-vivo normal-appearing white matter PS estimation (absolute change ≤ 0.45 × 10-4 min-1 ). CONCLUSION Measuring subtle BBB leakage with DCE-MRI presents unique challenges and is affected by several confounds that should be considered when acquiring or interpreting such data. The evaluated modifications should improve accuracy in studies of neurodegenerative diseases involving subtle BBB breakdown.
Collapse
Affiliation(s)
- Cameron Manning
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Ben Dickie
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Una Clancy
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria C Valdés Hernandez
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Stewart J Wiseman
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniela Jaime Garcia
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Eleni Sakka
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Walter H Backes
- Department of Radiology & Nuclear Medicine, School for Mental Health & Neuroscience and School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Michael Ingrisch
- Department of Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Francesca Chappell
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Fergus Doubal
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Laura M Parkes
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Geoff J M Parker
- Centre for Medical Image Computing and Department of Neuroinflammation, UCL, London, United Kingdom
| | - Ian Marshall
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael J Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
39
|
Chaney AM, Lopez-Picon FR, Serrière S, Wang R, Bochicchio D, Webb SD, Vandesquille M, Harte MK, Georgiadou C, Lawrence C, Busson J, Vercouillie J, Tauber C, Buron F, Routier S, Reekie T, Snellman A, Kassiou M, Rokka J, Davies KE, Rinne JO, Salih DA, Edwards FA, Orton LD, Williams SR, Chalon S, Boutin H. Prodromal neuroinflammatory, cholinergic and metabolite dysfunction detected by PET and MRS in the TgF344-AD transgenic rat model of AD: a collaborative multi-modal study. Am J Cancer Res 2021; 11:6644-6667. [PMID: 34093845 PMCID: PMC8171096 DOI: 10.7150/thno.56059] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Mouse models of Alzheimer's disease (AD) are valuable but do not fully recapitulate human AD pathology, such as spontaneous Tau fibril accumulation and neuronal loss, necessitating the development of new AD models. The transgenic (TG) TgF344-AD rat has been reported to develop age-dependent AD features including neuronal loss and neurofibrillary tangles, despite only expressing APP and PSEN1 mutations, suggesting an improved modelling of AD hallmarks. Alterations in neuronal networks as well as learning performance and cognition tasks have been reported in this model, but none have combined a longitudinal, multimodal approach across multiple centres, which mimics the approaches commonly taken in clinical studies. We therefore aimed to further characterise the progression of AD-like pathology and cognition in the TgF344-AD rat from young-adults (6 months (m)) to mid- (12 m) and advanced-stage (18 m, 25 m) of the disease. Methods: TgF344-AD rats and wild-type (WT) littermates were imaged at 6 m, 12 m and 18 m with [18F]DPA-714 (TSPO, neuroinflammation), [18F]Florbetaben (Aβ) and [18F]ASEM (α7-nicotinic acetylcholine receptor) and with magnetic resonance spectroscopy (MRS) and with (S)-[18F]THK5117 (Tau) at 15 and 25 m. Behaviour tests were also performed at 6 m, 12 m and 18 m. Immunohistochemistry (CD11b, GFAP, Aβ, NeuN, NeuroChrom) and Tau (S)-[18F]THK5117 autoradiography, immunohistochemistry and Western blot were also performed. Results: [18F]DPA-714 positron emission tomography (PET) showed an increase in neuroinflammation in TG vs wildtype animals from 12 m in the hippocampus (+11%), and at the advanced-stage AD in the hippocampus (+12%), the thalamus (+11%) and frontal cortex (+14%). This finding coincided with strong increases in brain microgliosis (CD11b) and astrogliosis (GFAP) at these time-points as assessed by immunohistochemistry. In vivo [18F]ASEM PET revealed an age-dependent increase uptake in the striatum and pallidum/nucleus basalis of Meynert in WT only, similar to that observed with this tracer in humans, resulting in TG being significantly lower than WT by 18 m. In vivo [18F]Florbetaben PET scanning detected Aβ accumulation at 18 m, and (S)-[18F]THK5117 PET revealed subsequent Tau accumulation at 25m in hippocampal and cortical regions. Aβ plaques were low but detectable by immunohistochemistry from 6 m, increasing further at 12 and 18 m with Tau-positive neurons adjacent to Aβ plaques at 18 m. NeuroChrom (a pan neuronal marker) immunohistochemistry revealed a loss of neuronal staining at the Aβ plaques locations, while NeuN labelling revealed an age-dependent decrease in hippocampal neuron number in both genotypes. Behavioural assessment using the novel object recognition task revealed that both WT & TgF344-AD animals discriminated the novel from familiar object at 3 m and 6 m of age. However, low levels of exploration observed in both genotypes at later time-points resulted in neither genotype successfully completing the task. Deficits in social interaction were only observed at 3 m in the TgF344-AD animals. By in vivo MRS, we showed a decrease in neuronal marker N-acetyl-aspartate in the hippocampus at 18 m (-18% vs age-matched WT, and -31% vs 6 m TG) and increased Taurine in the cortex of TG (+35% vs age-matched WT, and +55% vs 6 m TG). Conclusions: This multi-centre multi-modal study demonstrates, for the first time, alterations in brain metabolites, cholinergic receptors and neuroinflammation in vivo in this model, validated by robust ex vivo approaches. Our data confirm that, unlike mouse models, the TgF344-AD express Tau pathology that can be detected via PET, albeit later than by ex vivo techniques, and is a useful model to assess and longitudinally monitor early neurotransmission dysfunction and neuroinflammation in AD.
Collapse
|
40
|
Patten KT, Valenzuela AE, Wallis C, Berg EL, Silverman JL, Bein KJ, Wexler AS, Lein PJ. The Effects of Chronic Exposure to Ambient Traffic-Related Air Pollution on Alzheimer's Disease Phenotypes in Wildtype and Genetically Predisposed Male and Female Rats. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:57005. [PMID: 33971107 PMCID: PMC8110309 DOI: 10.1289/ehp8905] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND Epidemiological data link traffic-related air pollution (TRAP) to increased risk of Alzheimer's disease (AD). Preclinical data corroborating this association are largely from studies of male animals exposed acutely or subchronically to high levels of isolated fractions of TRAP. What remains unclear is whether chronic exposure to ambient TRAP modifies AD risk and the influence of sex on this interaction. OBJECTIVES This study sought to assess effects of chronic exposure to ambient TRAP on the time to onset and severity of AD phenotypes in a preclinical model and to determine whether sex or genetic susceptibility influences outcomes. METHODS Male and female TgF344-AD rats that express human AD risk genes and wildtype littermates were housed in a vivarium adjacent to a heavily trafficked tunnel in Northern California and exposed for up to 14 months to filtered air (FA) or TRAP drawn from the tunnel and delivered to animals unchanged in real time. Refractive particles in the brain and AD phenotypes were quantified in 3-, 6-, 10-, and 15-month-old animals using hyperspectral imaging, behavioral testing, and neuropathologic measures. RESULTS Particulate matter (PM) concentrations in TRAP exposure chambers fluctuated with traffic flow but remained below 24-h PM with aerodynamic diameter less than or equal to 2.5 micrometers (PM2.5) U.S. National Ambient Air Quality Standards limits. Ultrafine PM was a predominant component of TRAP. Nano-sized refractive particles were detected in the hippocampus of TRAP animals. TRAP-exposed animals had more amyloid plaque deposition, higher hyperphosphorylated tau levels, more neuronal cell loss, and greater cognitive deficits in an age-, genotype-, and sex-dependent manner. TRAP-exposed animals also had more microglial cell activation, but not astrogliosis. DISCUSSION These data demonstrate that chronic exposure to ambient TRAP promoted AD phenotypes in wildtype and genetically susceptible rats. TRAP effects varied according to age, sex, and genotype, suggesting that AD progression depends on complex interactions between environment and genetics. These findings suggest current PM2.5 regulations are insufficient to protect the aging brain. https://doi.org/10.1289/EHP8905.
Collapse
Affiliation(s)
- Kelley T. Patten
- Department of Molecular Biosciences, University of California Davis (UC Davis) School of Veterinary Medicine, Davis, California, USA
| | - Anthony E. Valenzuela
- Department of Molecular Biosciences, University of California Davis (UC Davis) School of Veterinary Medicine, Davis, California, USA
| | | | - Elizabeth L. Berg
- Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, Sacramento, California, USA
| | - Jill L. Silverman
- Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, Sacramento, California, USA
- The MIND Institute, UC Davis School of Medicine, Sacramento, California, USA
| | - Keith J. Bein
- Air Quality Research Center, UC Davis, Davis, California, USA
- Center for Health and the Environment, UC Davis, Davis, California, USA
| | - Anthony S. Wexler
- Air Quality Research Center, UC Davis, Davis, California, USA
- Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, UC Davis, Davis, California, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California Davis (UC Davis) School of Veterinary Medicine, Davis, California, USA
- The MIND Institute, UC Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
41
|
Lin Z, Jiang D, Liu D, Li Y, Uh J, Hou X, Pillai JJ, Qin Q, Ge Y, Lu H. Noncontrast assessment of blood-brain barrier permeability to water: Shorter acquisition, test-retest reproducibility, and comparison with contrast-based method. Magn Reson Med 2021; 86:143-156. [PMID: 33559214 DOI: 10.1002/mrm.28687] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/28/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Assessment of the blood-brain barrier (BBB) permeability without the need for contrast agent is desirable, and the ability to measure the permeability to small molecules such as water may further increase the sensitivity in detecting diseases. This study proposed a time-efficient, noncontrast method to measure BBB permeability to water, evaluated its test-retest reproducibility, and compared it with a contrast agent-based method. METHODS A single-delay water extraction with phase-contrast arterial spin tagging (WEPCAST) method was devised in which spatial profile of the signal along the superior sagittal sinus was used to estimate bolus arrival time, and the WEPCAST signal at the corresponding location was used to compute water extraction fraction, which was combined with global cerebral blood flow to estimate BBB permeability surface area product to water. The reliability of WEPCAST sequence was examined in terms of intrasession, intersession, and inter-vendor (Philips [Ingenia, Best, the Netherlands] and Siemens [Prisma, Erlangen, Germany]) reproducibility. Finally, we compared this new technique to a contrast agent-based method. RESULTS Single-delay WEPCAST reduced the scan duration from approximately 20 min to 5 min. Extract fraction values estimated from single-delay WEPCAST showed good consistency with the multi-delay method (R = 0.82, P = .004). Group-averaged permeability surface area product values were found to be 137.5 ± 9.3 mL/100 g/min. Intrasession, intersession, and inter-vendor coefficient of variation of the permeability surface area product values were 6.6 ± 4.5%, 6.9 ± 3.7%, and 8.9 ± 3.0%, respectively. Finally, permeability surface area product obtained from WEPCAST MRI showed a significant correlation with that from the contrast-based method (R = .73, P = .02). CONCLUSION Single-delay WEPCAST MRI can measure BBB permeability to water within 5 min with an intrasession, intersession, and inter-vendor test-retest reproducibility of 6% to 9%. This method may provide a useful marker of BBB breakdown in clinical studies.
Collapse
Affiliation(s)
- Zixuan Lin
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dapeng Liu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Yang Li
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jinsoo Uh
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Xirui Hou
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jay J Pillai
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Yulin Ge
- Department of Radiology, New York University Langone Medical Center, New York, New York, USA
| | - Hanzhang Lu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
42
|
Wei J, Dai Y, Wen W, Li J, Ye LL, Xu S, Duan DD. Blood-brain barrier integrity is the primary target of alcohol abuse. Chem Biol Interact 2021; 337:109400. [PMID: 33516661 DOI: 10.1016/j.cbi.2021.109400] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/31/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
The effects of long-term alcohol consumptions on cognitive function remain elusive with contradictory results. Whilst it is widely accepted that long-term intoxication can cause cognitive impairment, moderate drinking can improve cognitive function. In reality, many older people and those with chronic medical conditions are long-term alcohol consumers in Asian countries. Our previous studies have suggested that long-term alcohol consumption can damage blood-brain barrier (BBB) integrity and aggravate cognitive deficit in APPswe/PS1De9 mice, but little is known about the underlying mechanisms, especially whether this consumption can cause cognitive decline via aggravating BBB damage in people who are exposed to the risk factors for cognitive disorders such as aging or inflammation. These questions were addressed in this study. The mouse models of cognitive deficit induced by d-galactose or lipopolysaccharide, the important risk conditions in human on cognitive function, were used to evaluate the effects of long-term alcohol consumption on the BBB integrity. After alcohol administration for 30 days in these models the BBB integrity was significantly destroyed with remarkably increased permeability and down-regulated protein expression of zonula occludens-1, VE-cadherin, occludin, low-density lipoprotein receptor-related protein-1, receptor for advanced glycation end products, major facilitator superfamily domain-containing protein-2a and aquaporin-4, which is the most closely related with the structure and function of BBB integrity. Meanwhile, the level of oxidative stress in d-galactose mice or inflammatory factors in cortex and serum in lipopolysaccharide mice, which might be involved in the cognitive dysfunctions, was significantly amplified. Furthermore, the impaired memory and hippocampal neuron damage induced by d-galactose and lipopolysaccharide were concurrently aggravated. Collectively, our study provided novel and compelling evidence that the structural and functional proteins for BBB integrity may be the primary targets for the detrimental effects of alcohol abuse that lead to cognitive dysfunction and neurological deficits in high risk populations.
Collapse
Affiliation(s)
- Jiangping Wei
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Yuan Dai
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Wen Wen
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Jin Li
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Lingyu Linda Ye
- Center for Phenomics of Traditional Chinese Medicine and the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Shijun Xu
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| | - Dayue Darrel Duan
- Center for Phenomics of Traditional Chinese Medicine and the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
43
|
Shao X, Jann K, Ma SJ, Yan L, Montagne A, Ringman JM, Zlokovic BV, Wang DJJ. Comparison Between Blood-Brain Barrier Water Exchange Rate and Permeability to Gadolinium-Based Contrast Agent in an Elderly Cohort. Front Neurosci 2020; 14:571480. [PMID: 33328848 PMCID: PMC7733970 DOI: 10.3389/fnins.2020.571480] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Dynamic contrast-enhanced (DCE) MRI using intravenous injection of gadolinium-based contrast agents (GBCAs) is commonly used for imaging blood-brain barrier (BBB) permeability. Water is an alternative endogenous tracer with limited exchange rate across the BBB. A direct comparison between BBB water exchange rate and BBB permeability to GBCA is missing. The purpose of this study was to directly compare BBB permeability to GBCA (Ktrans and kGad = Ktrans/Vp) and water exchange rate (kw) in a cohort of elderly subjects at risk of cerebral small vessel disease (cSVD). Methods: Ktrans/kGad and kw were measured by DCE-MRI and diffusion prepared pseudo-continuous arterial spin labeling (DP-pCASL), respectively, at 3 Tesla in 16 elderly subjects (3 male, age = 67.9 ± 3.0 yrs) at risk of cSVD. The test-retest reproducibility of kw measurements was evaluated with repeated scans ~6 weeks apart. Mixed effects linear regression was performed in the whole brain, gray matter (GM), white matter (WM), and 6 subcortical brain regions to investigate associations between Ktrans/kGad and test-retest kw. In addition, kw and Ktrans/kGad were compared in normal appearing white matter (NAWM), white matter hyperintensity (WMH) lesions and penumbra. Results: Significant correlation was found between kw and Ktrans only in WM (β = 6.7 × 104, P = 0.036), caudate (β = 8.6 × 104, P = 0.029), and middle cerebral artery (MCA) perforator territory (β = 6.9 × 104, P = 0.009), but not in the whole brain, GM or rest 5 brain regions. Significant correlation was found between kw and kGad in MCA perforator territory (β = 1.5 × 103, P = 0.049), medial-temporal lobe (β = 3.5 × 103, P = 0.032), and hippocampus (β = 3.4 × 103, P = 0.038), but not in the rest brain regions. Good reproducibility of kw measurements (ICC=0.75) was achieved. Ktrans was significantly lower inside WMH than WMH penumbra (16.2%, P = 0.026), and kGad was significantly lower in NAWM than in the WMH penumbra (20.8%, P < 0.001). Conclusion: kw provides a measure of water exchange rate across the BBB with good test-retest reproducibility. The BBB mechanism underlying kw and Ktrans/kGad is likely to be different, as manifested by correlations in only three brain regions for each pair of comparison between kw and Ktrans or kGad.
Collapse
Affiliation(s)
- Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kay Jann
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Samantha J. Ma
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lirong Yan
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Axel Montagne
- Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - John M. Ringman
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Berislav V. Zlokovic
- Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Danny J. J. Wang
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
44
|
Bai R, Li Z, Sun C, Hsu YC, Liang H, Basser P. Feasibility of filter-exchange imaging (FEXI) in measuring different exchange processes in human brain. Neuroimage 2020; 219:117039. [DOI: 10.1016/j.neuroimage.2020.117039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 12/15/2022] Open
|
45
|
Abstract
The blood-brain barrier (BBB) is the interface between the blood and brain tissue, which regulates the maintenance of homeostasis within the brain. Impaired BBB integrity is increasingly associated with various neurological diseases. To gain a better understanding of the underlying processes involved in BBB breakdown, magnetic resonance imaging (MRI) techniques are highly suitable for noninvasive BBB assessment. Commonly used MRI techniques to assess BBB integrity are dynamic contrast-enhanced and dynamic susceptibility contrast MRI, both relying on leakage of gadolinium-based contrast agents. A number of conceptually different methods exist that target other aspects of the BBB. These alternative techniques make use of endogenous markers, such as water and glucose, as contrast media. A comprehensive overview of currently available MRI techniques to assess the BBB condition is provided from a scientific point of view, including potential applications in disease. Improvements that are required to make these techniques clinically more easily applicable will also be discussed.
Collapse
|
46
|
Ohene Y, Harrison IF, Evans PG, Thomas DL, Lythgoe MF, Wells JA. Increased blood-brain barrier permeability to water in the aging brain detected using noninvasive multi-TE ASL MRI. Magn Reson Med 2020; 85:326-333. [PMID: 32910547 PMCID: PMC8432141 DOI: 10.1002/mrm.28496] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 11/25/2022]
Abstract
Purpose A fundamental goal in the drive to understand and find better treatments for dementia is the identification of the factors that render the aging brain vulnerable to neurodegenerative disease. Recent evidence indicates the integrity of the blood–brain barrier (BBB) to be an important component of functional failure underlying age‐related cognitive decline. Practical and sensitive measurement is necessary, therefore, to support diagnostic and therapeutic strategies targeted at maintaining BBB integrity in aging patients. Here, we investigated changes in BBB permeability to endogenous blood water in the aging brain. Methods A multiple‐echo‐time arterial spin‐labeling MRI technique, implemented on a 9.4T Bruker imaging system, was applied to 7‐ and 27‐month‐old mice to measure changes in water permeability across the BBB with aging. Results We observed that BBB water permeability was 32% faster in aged mice. This occurred along with a 2.1‐fold increase in mRNA expression of aquaporin‐4 water channels and a 7.1‐fold decrease in mRNA expression of α‐syntrophin protein, which anchors aquaporin‐4 to the BBB. Conclusion Age‐related changes to water permeability across the BBB can be captured using noninvasive noncontrast MRI techniques. Click here for author‐reader discussions
Collapse
Affiliation(s)
- Yolanda Ohene
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Ian F Harrison
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Phoebe G Evans
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - David L Thomas
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Mark F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Jack A Wells
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
47
|
Anderson VC, Tagge IJ, Li X, Quinn JF, Kaye JA, Bourdette DN, Spain RI, Riccelli LP, Sammi MK, Springer CS, Rooney WD. Observation of Reduced Homeostatic Metabolic Activity and/or Coupling in White Matter Aging. J Neuroimaging 2020; 30:658-665. [PMID: 32558031 PMCID: PMC7529981 DOI: 10.1111/jon.12744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Transvascular water exchange plays a key role in the functional integrity of the blood-brain barrier (BBB). In white matter (WM), a variety of imaging modalities have demonstrated age-related changes in structure and metabolism, but the extent to which water exchange is altered remains unclear. Here, we investigated the cumulative effects of healthy aging on WM capillary water exchange. METHODS A total of 38 healthy adults (aged 36-80 years) were studied using 7T dynamic contrast enhanced MRI. Blood volume fraction (vb ) and capillary water efflux rate constant (kpo ) were determined by fitting changes in the 1 H2 O longitudinal relaxation rate constant (R1 ) during contrast agent bolus passage to a two-compartment exchange model. WM volume was determined by morphometric analysis of structural images. RESULTS R1 values and WM volume showed similar trajectories of age-related decline. Among all subjects, vb and kpo averaged 1.7 (±0.5) mL/100 g of tissue and 2.1 (±1.1) s-1 , respectively. While vb showed minimal changes over the 40-year-age span of participants, kpo declined 0.06 s-1 (ca. 3%) per year (r = -.66; P < .0005), from near 4 s-1 at age 30 to ca. 2 s-1 at age 70. The association remained significant after controlling for WM volume. CONCLUSIONS Previous studies have shown that kpo tracks Na+ , K+ -ATPase activity-dependent water exchange at the BBB and likely reflects neurogliovascular unit (NGVU) coupled metabolic activity. The age-related decline in kpo observed here is consistent with compromised NGVU metabolism in older individuals and the dysregulated cellular bioenergetics that accompany normal brain aging.
Collapse
Affiliation(s)
- Valerie C Anderson
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR
| | - Ian J Tagge
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR
| | - Xin Li
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR
| | - Joseph F Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR
| | - Jeffrey A Kaye
- Department of Neurology, Oregon Health & Science University, Portland, OR
| | - Dennis N Bourdette
- Department of Neurology, Oregon Health & Science University, Portland, OR
| | - Rebecca I Spain
- Department of Neurology, Oregon Health & Science University, Portland, OR
| | - Louis P Riccelli
- Diagnostic Radiology, Oregon Health & Science University, Portland, OR
| | - Manoj K Sammi
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR
| | - Charles S Springer
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR
| |
Collapse
|
48
|
Multilevel fMRI adaptation for spoken word processing in the awake dog brain. Sci Rep 2020; 10:11968. [PMID: 32747731 PMCID: PMC7398925 DOI: 10.1038/s41598-020-68821-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/30/2020] [Indexed: 01/08/2023] Open
Abstract
Human brains process lexical meaning separately from emotional prosody of speech at higher levels of the processing hierarchy. Recently we demonstrated that dog brains can also dissociate lexical and emotional prosodic information in human spoken words. To better understand the neural dynamics of lexical processing in the dog brain, here we used an event-related design, optimized for fMRI adaptation analyses on multiple time scales. We investigated repetition effects in dogs’ neural (BOLD) responses to lexically marked (praise) words and to lexically unmarked (neutral) words, in praising and neutral prosody. We identified temporally and anatomically distinct adaptation patterns. In a subcortical auditory region, we found both short- and long-term fMRI adaptation for emotional prosody, but not for lexical markedness. In multiple cortical auditory regions, we found long-term fMRI adaptation for lexically marked compared to unmarked words. This lexical adaptation showed right-hemisphere bias and was age-modulated in a near-primary auditory region and was independent of prosody in a secondary auditory region. Word representations in dogs’ auditory cortex thus contain more than just the emotional prosody they are typically associated with. These findings demonstrate multilevel fMRI adaptation effects in the dog brain and are consistent with a hierarchical account of spoken word processing.
Collapse
|
49
|
Wengler K, Ha J, Syritsyna O, Bangiyev L, Coyle PK, Duong TQ, Schweitzer ME, He X. Abnormal blood-brain barrier water exchange in chronic multiple sclerosis lesions: A preliminary study. Magn Reson Imaging 2020; 70:126-133. [DOI: 10.1016/j.mri.2020.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/17/2022]
|
50
|
Bai R, Wang B, Jia Y, Wang Z, Springer CS, Li Z, Lan C, Zhang Y, Zhao P, Liu Y. Shutter-Speed DCE-MRI Analyses of Human Glioblastoma Multiforme (GBM) Data. J Magn Reson Imaging 2020; 52:850-863. [PMID: 32167637 DOI: 10.1002/jmri.27118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The shutter-speed model dynamic contrast-enhanced (SSM-DCE) MRI pharmacokinetic analysis adds a metabolic dimension to DCE-MRI. This is of particular interest in cancers, since abnormal metabolic activity might happen. PURPOSE To develop a DCE-MRI SSM analysis framework for glioblastoma multiforme (GBM) cases considering the heterogeneous tissue found in GBM. STUDY TYPE Prospective. SUBJECTS Ten GBM patients. FIELD STRENGTH/SEQUENCE 3T MRI with DCE-MRI. ASSESSMENTS The corrected Akaike information criterion (AICc ) was used to automatically separate DCE-MRI data into proper SSM versions based on the contrast agent (CA) extravasation in each pixel. The supra-intensive parameters, including the vascular water efflux rate constant (kbo ), the cellular efflux rate constant (kio ), and the CA vascular efflux rate constant (kpe ), together with intravascular and extravascular-extracellular water mole fractions (pb and po , respectively) were determined. Further error analyses were also performed to eliminate unreliable estimations on kio and kbo . STATISTICAL TESTS Student's t-test. RESULTS For tumor pixels of all subjects, 88% show lower AICc with SSM than with the Tofts model. Compared to normal-appearing white matter (NAWM), tumor tissue showed significantly larger pb (0.045 vs. 0.011, P < 0.001) and higher kpe (3.0 × 10-2 s-1 vs. 6.1 × 10-4 s-1 , P < 0.001). In the contrast, significant kbo reduction was observed from NAWM to GBM tumor tissue (2.8 s-1 vs. 1.0 s-1 , P < 0.001). In addition, kbo is four orders and two orders of magnitude greater than kpe in the NAWM and GBM tumor, respectively. These results indicate that CA and water molecule have different transmembrane pathways. The mean tumor kio of all subjects was 0.57 s-1 . DATA CONCLUSION We demonstrate the feasibility of applying SSM models in GBM cases. Within the proposed SSM analysis framework, kio and kbo could be estimated, which might be useful biomarkers for GBM diagnosis and survival prediction in future. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY: Stage 1 J. Magn. Reson. Imaging 2020;52:850-863.
Collapse
Affiliation(s)
- Ruiliang Bai
- Department of Physical Medicine and Rehabilitation, Interdisciplinary Institute of Neuroscience and Technology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Bao Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yinhang Jia
- Department of Physical Medicine and Rehabilitation, Interdisciplinary Institute of Neuroscience and Technology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zejun Wang
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Charles S Springer
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Zhaoqing Li
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Chuanjin Lan
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Zhang
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
| | - Peng Zhao
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingchao Liu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|