1
|
van den Hoven E, Weiller C, Reisert M, Rijntjes M. Inferring the 'functions' of tracts: a cautionary note. Brain 2025; 148:1447-1450. [PMID: 40126915 DOI: 10.1093/brain/awaf114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025] Open
Abstract
This scientific commentary refers to ‘The inferior fronto-occipital fasciculus: bridging phylogeny, ontogeny and functional anatomy’ by Giampiccolo et al. (https://doi.org/10.1093/brain/awaf055).
Collapse
Affiliation(s)
- Emiel van den Hoven
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany
| | - Cornelius Weiller
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany
| | - Marco Reisert
- Department of Radiology-Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg D-79106, Germany
| | - Michel Rijntjes
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany
| |
Collapse
|
2
|
Giampiccolo D, Herbet G, Duffau H. The inferior fronto-occipital fasciculus: bridging phylogeny, ontogeny and functional anatomy. Brain 2025; 148:1507-1525. [PMID: 39932875 PMCID: PMC12074009 DOI: 10.1093/brain/awaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/27/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
The inferior-fronto-occipital fasciculus (IFOF) is a long-range white matter tract that connects the prefrontal cortex with parietal, posterior temporal and occipital cortices. First identified in the 19th century through the pioneering studies of Mayo and Meynert using blunt dissection, its anatomy and function remain contentious topics. Structurally, its projections are well documented in human blunt dissection and tractography literature, yet its existence has been questioned by tract-tracing studies in macaques. Functionally, while traditional results from direct white matter stimulation during awake surgery suggested a contribution to language, recent evidence from stimulation and lesion data may indicate a broader role in executive control, extending to attention, motor cognition, memory, reading, emotion recognition and theory of mind. This review begins by examining anatomical evidence suggesting that the IFOF evolved in non-human primates to connect temporal and occipital cortices to prefrontal regions involved in context-dependent selection of visual features for action. We then integrate developmental, electrophysiological, functional and anatomical evidence for the human IFOF to propose it has a similar role in manipulation of visual features in our species-particularly when inhibition of overriding but task-irrelevant stimuli is required to prioritize a second, task-relevant stimulus. Next, we introduce a graded model in which dorsal (orbitofrontal, superior and middle frontal to precuneal, angular and supero-occipital projections) and ventral (inferior frontal to posterotemporal, basal temporal and infero-occipital) projections of the IFOF support perceptual or conceptual control of visual representations for action, respectively. Leveraging this model, we address controversies in the current literature regarding language, motor cognition, attention and emotion under the unifying view of cognitive control. Finally, we discuss surgical implications for this model and its impact on predicting and preventing neurological deficits in neurosurgery.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
- Department of Neurosurgery, Institute of Neuroscience, Cleveland Clinic London, London SW1X 7HY, UK
| | - Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier 34295, France
- Institut Universitaire de France, Paris 75005, France
- Department of Medicine, University of Montpellier, Montpellier 34090, France
- Praxiling Laboratory, UMR 5267, CNRS, Paul Valéry University, Montpellier 34090, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier 34295, France
- Institute of Functional Genomics, University of Montpellier, INSERM, CNRS, Montpellier 34000, France
| |
Collapse
|
3
|
Kim GS, Chandio BQ, Benavidez SM, Feng Y, Thompson PM, Lawrence KE. Mapping Along-Tract White Matter Microstructural Differences in Autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.21.644498. [PMID: 40196471 PMCID: PMC11974747 DOI: 10.1101/2025.03.21.644498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Previous diffusion magnetic resonance imaging (dMRI) research has indicated altered white matter microstructure in autism, but the implicated regions are highly inconsistent across studies. Such prior work has largely used conventional dMRI analysis methods, including the traditional microstructure model, based on diffusion tensor imaging (DTI). However, these methods are limited in their ability to precisely map microstructural differences and accurately resolve complex fiber configurations. In our study, we investigated white matter microstructure alterations in autism using the refined along-tract analytic approach, BUndle ANalytics (BUAN), and an advanced microstructure model, the tensor distribution function (TDF). We analyzed dMRI data from 365 autistic and neurotypical participants (5-24 years; 34% female) from 10 cohorts to examine commissural and association tracts. Autism was associated with lower fractional anisotropy and higher diffusivity in localized portions of nearly every commissural and association tract examined; these tracts inter-connected a wide range of brain regions, including frontal, temporal, parietal, and occipital. Taken together, BUAN and TDF allow robust and spatially precise mapping of microstructural properties in autism. Our findings rigorously demonstrate that white matter microstructure alterations in autism may be greater within specific regions of individual tracts, and that the implicated tracts are distributed across the brain.
Collapse
Affiliation(s)
- Gaon S Kim
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, 1670 Mindanao Way, Marina del Rey, CA, 90292 USA
| | - Bramsh Q Chandio
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, 1670 Mindanao Way, Marina del Rey, CA, 90292 USA
| | - Sebastian M Benavidez
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, 1670 Mindanao Way, Marina del Rey, CA, 90292 USA
| | - Yixue Feng
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, 1670 Mindanao Way, Marina del Rey, CA, 90292 USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, 1670 Mindanao Way, Marina del Rey, CA, 90292 USA
| | - Katherine E Lawrence
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, 1670 Mindanao Way, Marina del Rey, CA, 90292 USA
| |
Collapse
|
4
|
Weiller C, Reisert M, Levan P, Hosp J, Coenen VA, Rijntjes M. Hubs and interaction: the brain's meta-loop. Cereb Cortex 2025; 35:bhaf035. [PMID: 40077916 PMCID: PMC11903256 DOI: 10.1093/cercor/bhaf035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 03/14/2025] Open
Abstract
We must reconcile the needs of the internal world and the demands of the external world to make decisions relevant to homeostasis, well-being, and flexible behavior. Engagement with the internal (eg interoceptive) world is linked to medial brain systems, whereas the extrapersonal space (eg exteroceptive) is associated with lateral brain systems. Using Human Connectome Project data, we found three association tracts connecting the action-related frontal lobe with perception-related posterior lobes. A lateral dorsal tract and a medial dorsal tract interact independently with a ventral tract at frontal and posterior hubs. The two frontal and the two posterior hubs are interconnected, forming a meta-loop that integrates lateral and medial brain systems. The four anatomical hubs correspond to the common nodes of the intrinsic cognitive brain networks such as the default mode network. These functional networks depend on the integration of both realms. Thus, the positioning of functional cognitive networks can be understood as the intersection of long anatomical association tracts. The strength of structural connectivity within lateral and medial brain systems correlates with performance on behavioral tests assessing theory of mind. The meta-loop provides an anatomical framework to associate neurological and psychiatric symptoms with functional and structural changes.
Collapse
Affiliation(s)
- Cornelius Weiller
- Department of Neurology and Clinical Neuroscience, Faculty of Medicine, University of Freiburg, Breisacherstrasse 64, D-79106 Freiburg i.Br., Germany
| | - Marco Reisert
- Department of Medical Physics, Faculty of Medicine, University of Freiburg, Breisacherstrasse 64, D-79106 Freiburg i.Br., Germany
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, University of Freiburg, Breisacherstrasse 64, D-79106 Freiburg i.Br., Germany
| | - Pierre Levan
- Department of Radiology, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Jonas Hosp
- Department of Neurology and Clinical Neuroscience, Faculty of Medicine, University of Freiburg, Breisacherstrasse 64, D-79106 Freiburg i.Br., Germany
| | - Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, University of Freiburg, Breisacherstrasse 64, D-79106 Freiburg i.Br., Germany
| | - Michel Rijntjes
- Department of Neurology and Clinical Neuroscience, Faculty of Medicine, University of Freiburg, Breisacherstrasse 64, D-79106 Freiburg i.Br., Germany
| |
Collapse
|
5
|
Bohsali AA, Gullett JM, FitzGerald DB, Mareci T, Crosson B, White K, Nadeau SE. Neural connectivity underlying core language functions. BRAIN AND LANGUAGE 2025; 262:105535. [PMID: 39855029 DOI: 10.1016/j.bandl.2025.105535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/24/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Although many white matter tracts underlying language functions have been identified, even in aggregate they do not provide a sufficiently detailed and expansive picture to enable us to fully understand the computational processes that might underly language production and comprehension. We employed diffusion tensor tractography (DTT) with a tensor distribution model to more extensively explore the white matter tracts supporting core language functions. Our study was guided by hypotheses stemming largely from the aphasia literature. METHODS We employed high angular resolution diffusion imaging (HARDI) with a dual region of interest tractography approach. Our diffusion tensor distribution model uses a mixture of Wishart distributions to estimate the water molecule displacement probability functions on a voxel-by-voxel basis and to model crossing/branching fibers using a multicompartmental approach. RESULTS We replicated the results of previously published studies of tracts underlying language function. Our study also yielded a number of novel findings: 1) extensive connectivity between Broca's region and the entirety of the middle and superior frontal gyri; 2) extensive interconnectivity between the four subcomponents of Broca's region, pars orbitalis, pars triangularis, pars opercularis, and the inferior precentral gyrus; 3) connectivity between the mid-superior temporal gyrus and the transverse gyrus; 4) connectivity between the mid-superior temporal gyrus, the transverse gyrus, and the planum temporale and the inferior and middle temporal gyri; and 5) connectivity between mid- and anterior superior temporal gyrus and all components of Broca's region. DISCUSSION These results, which replicate the results of prior DTT studies, also considerably extend them and thereby provide a fuller picture of the structural basis of language function and the basis for a novel model of the neural network architecture of language function. This new model is entirely consistent with discoveries from the aphasia literature and with parallel distributed processing conceptualizations of language function.
Collapse
Affiliation(s)
- Anastasia A Bohsali
- Department of Veterans Affairs Rehabilitation Research and Development Brain Rehabilitation Research Center at the Malcom Randall VA Medical Center, Gainesville, FL 32608, USA; University of Florida Department of Neurology, Gainesville, FL 32610, USA
| | - Joseph M Gullett
- Department of Veterans Affairs Rehabilitation Research and Development Brain Rehabilitation Research Center at the Malcom Randall VA Medical Center, Gainesville, FL 32608, USA; University of Florida Department of Clinical and Health Psychology, Gainesville, FL 32610, USA
| | - David B FitzGerald
- University of Florida Department of Neurology, Gainesville, FL 32610, USA
| | - Thomas Mareci
- University of Florida Department of Biochemistry and Molecular Biology, Gainesville, FL 32610, USA; McKnight Brain Institute, Gainesville, FL 32611, USA
| | - Bruce Crosson
- Department of Veterans Affairs Rehabilitation Research and Development Center of Excellence at the Atlanta VA Medical Center, Atlanta, GA 30033, USA; Department of Neurology, Emory University, Atlanta, GA 30322, USA; Department of Psychology, Georgia State University, Atlanta, GA 30303, USA
| | - Keith White
- Department of Veterans Affairs Rehabilitation Research and Development Brain Rehabilitation Research Center at the Malcom Randall VA Medical Center, Gainesville, FL 32608, USA; University of Florida Department of Psychology, Gainesville, FL 32611, USA
| | - Stephen E Nadeau
- Department of Veterans Affairs Rehabilitation Research and Development Brain Rehabilitation Research Center at the Malcom Randall VA Medical Center, Gainesville, FL 32608, USA; University of Florida Department of Neurology, Gainesville, FL 32610, USA; Neurology Service, North Florida/South GeorgiaUSA Veterans Health System and Department of Neurology, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
6
|
Ha J, Lee S, Kim S, Lee JS, Ahn JH, Cho JW, Fasano A, Youn J. The "Hedgehog-Halo Sign" Is Associated with Gait Symptom Severity and Tap Response in Normal Pressure Hydrocephalus. Mov Disord Clin Pract 2025; 12:21-33. [PMID: 39503269 PMCID: PMC11736875 DOI: 10.1002/mdc3.14255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/26/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Reduced cerebrospinal fluid (CSF) clearance may play a vital role in the pathogenesis of normal pressure hydrocephalus (NPH), but the radiologic marker is yet to be elucidated. OBJECTIVES This open-label study presents two novel neuroimaging biomarkers based on enlarged perivascular spaces (ePVS) of the sub-insular territory: the Hedgehog and Hedgehog-Halo (H-H) sign, designed to predict gait symptom severity and tap response in NPH. METHODS We retrospectively reviewed 203 patients with possible NPH with baseline magnetic resonance imaging and gait analyses before and after lumbar puncture (LP). The Hedgehog/H-H sign was scored using T2-weighted images. The clinical severity at baseline and post-tap gait improvement was compared in patients with and without Hedgehog/H-H sign. The association between Hedgehog/H-H sign and post-tap gait outcomes was assessed using multivariate regression. The diagnostic performance of Hedgehog/H-H sign was compared with conventional radiological markers. RESULTS Patients with H-H showed higher global disability and more severe gait impairment than those without any signs. Following LP, patients with Hedgehog/H-H sign significantly improved in various gait parameters, unlike those with neither sign. Additionally, sub-insular ePVS was significantly associated with post-tap gait improvement after adjusting covariates. Finally, the Hedgehog/H-H sign showed a higher performance than conventional markers in predicting post-tap gait response. CONCLUSIONS The Hedgehog/H-H sign is a useful neuroimaging biomarker related to the severity and tap response in NPH. This biomarker can be readily applied in clinical practice before undergoing LP, independent of conventional radiological signs. Further research is warranted to determine applicability in predicting post-shunt gait response.
Collapse
Affiliation(s)
- Jongmok Ha
- Department of NeurologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulKorea
- Neuroscience Center, Samsung Medical CenterSeoulKorea
- Department of NeurologyEmory School of MedicineAtlantaGeorgiaUSA
| | - Suin Lee
- Department of NeurologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulKorea
- Neuroscience Center, Samsung Medical CenterSeoulKorea
| | - Seongmi Kim
- Department of NeurologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulKorea
- Neuroscience Center, Samsung Medical CenterSeoulKorea
| | - Jun Seok Lee
- Department of NeurologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulKorea
- Neuroscience Center, Samsung Medical CenterSeoulKorea
| | - Jong Hyeon Ahn
- Department of NeurologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulKorea
- Neuroscience Center, Samsung Medical CenterSeoulKorea
| | - Jin Whan Cho
- Department of NeurologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulKorea
- Neuroscience Center, Samsung Medical CenterSeoulKorea
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western HospitalUniversity Health NetworkTorontoOntarioCanada
- Division of NeurologyUniversity of TorontoTorontoOntarioCanada
- Krembil Brain Institute, NeuroscienceTorontoOntarioCanada
| | - Jinyoung Youn
- Department of NeurologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulKorea
- Neuroscience Center, Samsung Medical CenterSeoulKorea
| |
Collapse
|
7
|
Federico G, Lesourd M, Fournel A, Bluet A, Bryche C, Metaireau M, Baldi D, Brandimonte MA, Soricelli A, Rossetti Y, Osiurak F. Two distinct neural pathways for mechanical versus digital technology. Neuroimage 2025; 305:120971. [PMID: 39667539 DOI: 10.1016/j.neuroimage.2024.120971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024] Open
Abstract
Technology pervades every aspect of our lives, making it crucial to investigate how the human mind deals with it. Here we examine the cognitive and neural foundations of technological cognition. In the first fMRI experiment, participants viewed videos depicting the use of mechanical tools (e.g., a screwdriver) and digital tools (e.g., a smartphone) compared to simple object movements. Results revealed a key dissociation: mechanical tools extensively activated the dorsal and ventro-dorsal visual streams, which are motor- and action-oriented brain systems. Conversely, digital tools largely engaged the ventral visual stream, associated with conceptual and social cognition. A second behavioral experiment showed a pronounced tendency to anthropomorphize digital tools. A third experiment involving a priming task confirmed that digital tools activate the social brain. The discovery of two different neurocognitive systems for mechanical versus digital technology offers new insights into human-technology interaction and its implications for the evolution of the human mind.
Collapse
Affiliation(s)
- Giovanni Federico
- Laboratory of Experimental Psychology and Cognitive Neuroscience, Suor Orsola Benincasa University, Naples, Italy.
| | - Mathieu Lesourd
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive (UMR INSERM 1322), Université de Bourgogne Franche-Comté, Besançon, France; MSHE Ledoux, CNRS, Université de Bourgogne Franche-Comté, Besançon, France
| | - Arnaud Fournel
- Laboratoire d'Étude des Mécanismes Cognitifs (EA 3082), Université de Lyon, France
| | - Alexandre Bluet
- Laboratoire d'Étude des Mécanismes Cognitifs (EA 3082), Université de Lyon, France; Karolinska Institutet, Stockholm, Sweden
| | - Chloé Bryche
- Laboratoire d'Étude des Mécanismes Cognitifs (EA 3082), Université de Lyon, France
| | - Maximilien Metaireau
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive (UMR INSERM 1322), Université de Bourgogne Franche-Comté, Besançon, France; Laboratoire d'Étude des Mécanismes Cognitifs (EA 3082), Université de Lyon, France
| | | | - Maria Antonella Brandimonte
- Laboratory of Experimental Psychology and Cognitive Neuroscience, Suor Orsola Benincasa University, Naples, Italy
| | | | - Yves Rossetti
- Mouvement, Handicap, et Neuro-Immersion, Hospices Civils de Lyon et Centre de Recherche en Neurosciences de Lyon, Hôpital Henry Gabrielle, St Genis Laval, France; Centre de Recherche en Neurosciences de Lyon, Trajectoires Team, CNRS U5292, Inserm U1028, Université de Lyon, France
| | - François Osiurak
- Laboratoire d'Étude des Mécanismes Cognitifs (EA 3082), Université de Lyon, France; Institut Universitaire de France, Paris, France
| |
Collapse
|
8
|
Roelofs A. Wernicke's functional neuroanatomy model of language turns 150: what became of its psychological reflex arcs? Brain Struct Funct 2024; 229:2079-2096. [PMID: 38581582 PMCID: PMC11611947 DOI: 10.1007/s00429-024-02785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/05/2024] [Indexed: 04/08/2024]
Abstract
Wernicke (Der aphasische Symptomencomplex: Eine psychologische Studie auf anatomischer Basis. Cohn und Weigert, Breslau. https://wellcomecollection.org/works/dwv5w9rw , 1874) proposed a model of the functional neuroanatomy of spoken word repetition, production, and comprehension. At the heart of this epoch-making model are psychological reflex arcs underpinned by fiber tracts connecting sensory to motor areas. Here, I evaluate the central assumption of psychological reflex arcs in light of what we have learned about language in the brain during the past 150 years. I first describe Wernicke's 1874 model and the evidence he presented for it. Next, I discuss his updates of the model published in 1886 and posthumously in 1906. Although the model had an enormous immediate impact, it lost influence after the First World War. Unresolved issues included the anatomical underpinnings of the psychological reflex arcs, the role of auditory images in word production, and the sufficiency of psychological reflex arcs, which was questioned by Wundt (Grundzüge der physiologischen Psychologie. Engelmann, Leipzig. http://vlp.mpiwg-berlin.mpg.de/references?id=lit46 , 1874; Grundzüge der physiologischen Psychologie (Vol. 1, 5th ed.). Engelmann, Leipzig. http://vlp.mpiwg-berlin.mpg.de/references?id=lit806 , 1902). After a long dormant period, Wernicke's model was revived by Geschwind (Science 170:940-944. https://doi.org/10.1126/science.170.3961.940 , 1970; Selected papers on language and the brain. Reidel, Dordrecht, 1974), who proposed a version of it that differed in several important respects from Wernicke's original. Finally, I describe how new evidence from modern research has led to a novel view on language in the brain, supplementing contemporary equivalents of psychological reflex arcs by other mechanisms such as attentional control and assuming different neuroanatomical underpinnings. In support of this novel view, I report new analyses of patient data and computer simulations using the WEAVER++/ARC model (Roelofs 2014, 2022) that incorporates attentional control and integrates the new evidence.
Collapse
Affiliation(s)
- Ardi Roelofs
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognition, Radboud University, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands.
| |
Collapse
|
9
|
van den Hoven E, Reisert M, Musso M, Glauche V, Rijntjes M, Weiller C. Time to bury the chisel: a continuous dorsal association tract system. Brain Struct Funct 2024; 229:1527-1532. [PMID: 39012483 PMCID: PMC11374912 DOI: 10.1007/s00429-024-02829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/06/2024] [Indexed: 07/17/2024]
Abstract
The arcuate fasciculus may be subdivided into a tract directly connecting frontal and temporal lobes and a pair of indirect subtracts in which the fronto-temporal connection is mediated by connections to the inferior parietal lobe. This tripartition has been advanced as an improvement over the centuries-old consensus that the lateral dorsal association fibers form a continuous system with no discernible discrete parts. Moreover, it has been used as the anatomical basis for functional hypotheses regarding linguistic abilities. Ex hypothesi, damage to the indirect subtracts leads to deficits in the repetition of multi-word sequences, whereas damage to the direct subtract leads to deficits in the immediate reproduction of single multisyllabic words. We argue that this partitioning of the dorsal association tract system enjoys no special anatomical status, and the search for the anatomical substrates of linguistic abilities should not be constrained by it. Instead, the merit of any postulated partitioning should primarily be judged on the basis of whether it enlightens or obfuscates our understanding of the behavior of patients in which individual subtracts are damaged.
Collapse
Affiliation(s)
- Emiel van den Hoven
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Breisacher Straße 64, 79104, Freiburg, Germany.
| | - Marco Reisert
- Department of Radiology - Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Killianstraße 5a, Freiburg, 79106, Germany
| | - Mariacristina Musso
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Breisacher Straße 64, 79104, Freiburg, Germany
| | - Volkmar Glauche
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Breisacher Straße 64, 79104, Freiburg, Germany
| | - Michel Rijntjes
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Breisacher Straße 64, 79104, Freiburg, Germany
| | - Cornelius Weiller
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Breisacher Straße 64, 79104, Freiburg, Germany
| |
Collapse
|
10
|
Angelopoulou G, Kasselimis D, Varkanitsa M, Tsolakopoulos D, Papageorgiou G, Velonakis G, Meier E, Karavassilis E, Pantoleon V, Laskaris N, Kelekis N, Tountopoulou A, Vassilopoulou S, Goutsos D, Kiran S, Weiller C, Rijntjes M, Potagas C. Investigating silent pauses in connected speech: integrating linguistic, neuropsychological, and neuroanatomical perspectives across narrative tasks in post-stroke aphasia. Front Neurol 2024; 15:1347514. [PMID: 38682034 PMCID: PMC11047180 DOI: 10.3389/fneur.2024.1347514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/07/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Silent pauses are regarded as integral components of the temporal organization of speech. However, it has also been hypothesized that they serve as markers for internal cognitive processes, including word access, monitoring, planning, and memory functions. Although existing evidence across various pathological populations underscores the importance of investigating silent pauses' characteristics, particularly in terms of frequency and duration, there is a scarcity of data within the domain of post-stroke aphasia. Methods The primary objective of the present study is to scrutinize the frequency and duration of silent pauses in two distinct narrative tasks within a cohort of 32 patients with chronic post-stroke aphasia, in comparison with a control group of healthy speakers. Subsequently, we investigate potential correlation patterns between silent pause measures, i.e., frequency and duration, across the two narrative tasks within the patient group, their performance in neuropsychological assessments, and lesion data. Results Our findings showed that patients exhibited a higher frequency of longer-duration pauses in both narrative tasks compared to healthy speakers. Furthermore, within-group comparisons revealed that patients tended to pause more frequently and for longer durations in the picture description task, while healthy participants exhibited the opposite trend. With regard to our second research question, a marginally significant interaction emerged between performance in semantic verbal fluency and the narrative task, in relation to the location of silent pauses-whether between or within clauses-predicting the duration of silent pauses in the patient group. However, no significant results were observed for the frequency of silent pauses. Lastly, our study identified that the duration of silent pauses could be predicted by distinct Regions of Interest (ROIs) in spared tissue within the left hemisphere, as a function of the narrative task. Discussion Overall, this study follows an integrative approach of linguistic, neuropsychological and neuroanatomical data to define silent pauses in connected speech, and illustrates interrelations between cognitive components, temporal aspects of speech, and anatomical indices, while it further highlights the importance of studying connected speech indices using different narrative tasks.
Collapse
Affiliation(s)
- G. Angelopoulou
- Neuropsychology&Language Disorders Unit, 1st Department of Neurology, Eginition Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - D. Kasselimis
- Neuropsychology&Language Disorders Unit, 1st Department of Neurology, Eginition Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Department of Psychology, Panteion University of Social and Political Sciences, Athens, Greece
| | - M. Varkanitsa
- Center for Brain Recovery, Boston University, Boston, MA, United States
| | - D. Tsolakopoulos
- Neuropsychology&Language Disorders Unit, 1st Department of Neurology, Eginition Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - G. Papageorgiou
- Neuropsychology&Language Disorders Unit, 1st Department of Neurology, Eginition Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - G. Velonakis
- 2nd Department of Radiology, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - E. Meier
- The Aphasia Network Lab, Department of Communication Sciences and Disorders, Northeastern University, Boston, MA, United States
| | - E. Karavassilis
- 2nd Department of Radiology, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - V. Pantoleon
- 2nd Department of Radiology, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - N. Laskaris
- Neuropsychology&Language Disorders Unit, 1st Department of Neurology, Eginition Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Department of Industrial Design and Production Engineering, School of Engineering, University of West Attica, Athens, Greece
| | - N. Kelekis
- 2nd Department of Radiology, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - A. Tountopoulou
- Stroke Unit, 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - S. Vassilopoulou
- Stroke Unit, 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - D. Goutsos
- Department of Linguistics, School of Philosophy, National and Kapodistrian University of Athens, Athens, Greece
| | - S. Kiran
- Center for Brain Recovery, Boston University, Boston, MA, United States
| | - C. Weiller
- Department of Neurology and Clinical Neuroscience, University Hospital Freiburg, Freiburg, Germany
| | - M. Rijntjes
- Department of Neurology and Clinical Neuroscience, University Hospital Freiburg, Freiburg, Germany
| | - C. Potagas
- Neuropsychology&Language Disorders Unit, 1st Department of Neurology, Eginition Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
Zhang Y, Shen SX, Bibic A, Wang X. Evolutionary continuity and divergence of auditory dorsal and ventral pathways in primates revealed by ultra-high field diffusion MRI. Proc Natl Acad Sci U S A 2024; 121:e2313831121. [PMID: 38377216 PMCID: PMC10907247 DOI: 10.1073/pnas.2313831121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Auditory dorsal and ventral pathways in the human brain play important roles in supporting speech and language processing. However, the evolutionary root of the dual auditory pathways in the primate brain is unclear. By parcellating the auditory cortex of marmosets (a New World monkey species), macaques (an Old World monkey species), and humans using the same individual-based analysis method and tracking the pathways from the auditory cortex based on multi-shell diffusion-weighted MRI (dMRI), homologous auditory dorsal and ventral fiber tracks were identified in these primate species. The ventral pathway was found to be well conserved in all three primate species analyzed but extend to more anterior temporal regions in humans. In contrast, the dorsal pathway showed a divergence between monkey and human brains. First, frontal regions in the human brain have stronger connections to the higher-level auditory regions than to the lower-level auditory regions along the dorsal pathway, while frontal regions in the monkey brain show opposite connection patterns along the dorsal pathway. Second, the left lateralization of the dorsal pathway is only found in humans. Moreover, the connectivity strength of the dorsal pathway in marmosets is more similar to that of humans than macaques. These results demonstrate the continuity and divergence of the dual auditory pathways in the primate brains along the evolutionary path, suggesting that the putative neural networks supporting human speech and language processing might have emerged early in primate evolution.
Collapse
Affiliation(s)
- Yang Zhang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Sherry Xinyi Shen
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Adnan Bibic
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, F. M. Kirby Center, Baltimore, MD21205
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
| |
Collapse
|
12
|
Liuzzi AG, Meersmans K, Peeters R, De Deyne S, Dupont P, Vandenberghe R. Semantic representations in inferior frontal and lateral temporal cortex during picture naming, reading, and repetition. Hum Brain Mapp 2024; 45:e26603. [PMID: 38339900 PMCID: PMC10836176 DOI: 10.1002/hbm.26603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/12/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
Reading, naming, and repetition are classical neuropsychological tasks widely used in the clinic and psycholinguistic research. While reading and repetition can be accomplished by following a direct or an indirect route, pictures can be named only by means of semantic mediation. By means of fMRI multivariate pattern analysis, we evaluated whether this well-established fundamental difference at the cognitive level is associated at the brain level with a difference in the degree to which semantic representations are activated during these tasks. Semantic similarity between words was estimated based on a word association model. Twenty subjects participated in an event-related fMRI study where the three tasks were presented in pseudo-random order. Linear discriminant analysis of fMRI patterns identified a set of regions that allow to discriminate between words at a high level of word-specificity across tasks. Representational similarity analysis was used to determine whether semantic similarity was represented in these regions and whether this depended on the task performed. The similarity between neural patterns of the left Brodmann area 45 (BA45) and of the superior portion of the left supramarginal gyrus correlated with the similarity in meaning between entities during picture naming. In both regions, no significant effects were seen for repetition or reading. The semantic similarity effect during picture naming was significantly larger than the similarity effect during the two other tasks. In contrast, several regions including left anterior superior temporal gyrus and left ventral BA44/frontal operculum, among others, coded for semantic similarity in a task-independent manner. These findings provide new evidence for the dynamic, task-dependent nature of semantic representations in the left BA45 and a more task-independent nature of the representational activation in the lateral temporal cortex and ventral BA44/frontal operculum.
Collapse
Affiliation(s)
- Antonietta Gabriella Liuzzi
- Laboratory for Cognitive Neurology, Department of NeurosciencesLeuven Brain Institute, KU LeuvenLeuvenBelgium
| | - Karen Meersmans
- Laboratory for Cognitive Neurology, Department of NeurosciencesLeuven Brain Institute, KU LeuvenLeuvenBelgium
| | - Ronald Peeters
- Radiology DepartmentUniversity Hospitals LeuvenLeuvenBelgium
| | - Simon De Deyne
- School of Psychological SciencesUniversity of MelbourneMelbourneAustralia
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of NeurosciencesLeuven Brain Institute, KU LeuvenLeuvenBelgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of NeurosciencesLeuven Brain Institute, KU LeuvenLeuvenBelgium
- Neurology DepartmentUniversity Hospitals LeuvenLeuvenBelgium
| |
Collapse
|
13
|
Gonzalez Alam TRJ, Cruz Arias J, Jefferies E, Smallwood J, Leemans A, Marino Davolos J. Ventral and dorsal aspects of the inferior frontal-occipital fasciculus support verbal semantic access and visually-guided behavioural control. Brain Struct Funct 2024; 229:207-221. [PMID: 38070006 PMCID: PMC10827863 DOI: 10.1007/s00429-023-02729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/03/2023] [Indexed: 01/31/2024]
Abstract
The Inferior Frontal Occipital Fasciculus (IFOF) is a major anterior-to-posterior white matter pathway in the ventral human brain that connects parietal, temporal and occipital regions to frontal cortex. It has been implicated in a range of functions, including language, semantics, inhibition and the control of action. The recent research shows that the IFOF can be sub-divided into a ventral and dorsal branch, but the functional relevance of this distinction, as well as any potential hemispheric differences, are poorly understood. Using DTI tractography, we investigated the involvement of dorsal and ventral subdivisions of the IFOF in the left and right hemisphere in a response inhibition task (Go/No-Go), where the decision to respond or to withhold a prepotent response was made on the basis of semantic or non-semantic aspects of visual inputs. The task also varied the presentation modality (whether concepts were presented as written words or images). The results showed that the integrity of both dorsal and ventral IFOF in the left hemisphere were associated with participants' inhibition performance when the signal to stop was meaningful and presented in the verbal modality. This effect was absent in the right hemisphere. The integrity of dorsal IFOF was also associated with participants' inhibition efficiency in difficult perceptually guided decisions. This pattern of results indicates that left dorsal IFOF is implicated in the domain-general control of visually-guided behaviour, while the left ventral branch might interface with the semantic system to support the control of action when the inhibitory signal is based on meaning.
Collapse
Affiliation(s)
- Tirso R J Gonzalez Alam
- Department of Psychology and York Neuroimaging Centre, University of York, York, UK.
- School of Psychology, Bangor University, Bangor, UK.
| | | | - Elizabeth Jefferies
- Department of Psychology and York Neuroimaging Centre, University of York, York, UK
| | | | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
14
|
Barbeau EB, Badhwar A, Kousaie S, Bellec P, Descoteaux M, Klein D, Petrides M. Dissection of the Temporofrontal Extreme Capsule Fasciculus Using Diffusion MRI Tractography and Association with Lexical Retrieval. eNeuro 2024; 11:ENEURO.0363-23.2023. [PMID: 38164578 PMCID: PMC10849018 DOI: 10.1523/eneuro.0363-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/06/2023] [Indexed: 01/03/2024] Open
Abstract
The well-known arcuate fasciculus that connects the posterior superior temporal region with the language production region in the ventrolateral frontal cortex constitutes the classic peri-Sylvian dorsal stream of language. A second temporofrontal white matter tract connects ventrally the anterior to intermediate lateral temporal cortex with frontal areas via the extreme capsule. This temporofrontal extreme capsule fasciculus (TFexcF) constitutes the ventral stream of language processing. The precise origin, course, and termination of this pathway has been examined in invasive tract tracing studies in macaque monkeys, but there have been no standard protocols for its reconstruction in the human brain using diffusion imaging tractography. Here we provide a protocol for the dissection of the TFexcF in vivo in the human brain using diffusion magnetic resonance imaging (MRI) tractography which provides a solid basis for exploring its functional role. A key finding of the current dissection protocol is the demonstration that the TFexcF is left hemisphere lateralized. Furthermore, using the present dissection protocol, we demonstrate that the TFexcF is related to lexical retrieval scores measured with the category fluency test, in contrast to the classical arcuate fasciculus (the dorsal language pathway) that was also dissected and was related to sentence repetition.
Collapse
Affiliation(s)
- E B Barbeau
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
- Center for Research on Brain, Language and Music (CRBLM), Montreal, Quebec H3G 2A8, Canada
| | - A Badhwar
- Département de pharmacologie et physiologie, Faculté de médecine, Université de Montréal, Montreal, Québec H3C 3J7, Canada
- Institut de génie biomédical, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, Québec H3C 3J7, Canada
| | - S Kousaie
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - P Bellec
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, Québec H3C 3J7, Canada
- Département de Psychologie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - M Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - D Klein
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
- Center for Research on Brain, Language and Music (CRBLM), Montreal, Quebec H3G 2A8, Canada
- Departments of Neurology and Neurosurgery
| | - M Petrides
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
- Center for Research on Brain, Language and Music (CRBLM), Montreal, Quebec H3G 2A8, Canada
- Departments of Neurology and Neurosurgery
- Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| |
Collapse
|
15
|
Chen HJ, Qiu J, Xu X, Guo Y, Fu L, Fu Q, Wu Y, Qi Y, Chen F. Abnormal white matter along fibers by automated fiber quantification in patients undergoing hemodialysis. Neurol Sci 2023; 44:4499-4509. [PMID: 37393206 DOI: 10.1007/s10072-023-06912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Abnormal white matter has been reported in patients with end-stage renal disease (ESRD). However, few studies have investigated the relationship between specific damage segments and cognition in ESRD. This study aimed to delineate white matter alterations in ESRD and its relationship with cognition. METHODS A total of 36 patients undergoing hemodialysis and 25 healthy controls underwent diffusion tensor imaging (DTI) and a series of neuropsychiatric tests. Automated fiber quantification was used to extract distinct DTI indices, and the relationship between the specific segment of the white matter and clinical properties was investigated. Furthermore, a support vector machine was applied to differentiate patients with ESRD from healthy controls. RESULTS Fractional anisotropy values decreased in multiple fiber bundles, including bilateral thalamic radiata, cingulum cingulate, inferior fronto-occipital fasciculus (IFOF), uncinate, Callosum_Forceps_Major/Callosum_Forceps_Minor (CFMaj/CFMin), and left uncinate from the tract level in patients with ESRD. Specific damaged segments were detected in 8 fiber bundles, including bilateral thalamic radiation, cingulum cingulate, IFOF, CFMin, and left corticospinal tract. Few alterations in these fiber bundles were correlated with cognition impairment and hemoglobin levels. The tract profiles of the left thalamic radiata and left cingulum cingulate could be used to differentiate hemodialysis patients from healthy controls, with an accuracy of 76.9% and 67.6%, respectively. CONCLUSIONS This study revealed white matter damage in hemodialysis patients. This damage occurred in specific segments of the tract, especially in the left thalamic radiata and left cingulum cingulate, which might become a new biomarker for patients with ESRD and cognition impairment.
Collapse
Affiliation(s)
- Hui Juan Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dis, Haikou, Hainan, 570311, People's Republic of China
| | - Jie Qiu
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dis, Haikou, Hainan, 570311, People's Republic of China
| | - Xiaoling Xu
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dis, Haikou, Hainan, 570311, People's Republic of China
| | - Yihao Guo
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dis, Haikou, Hainan, 570311, People's Republic of China
| | - Lili Fu
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dis, Haikou, Hainan, 570311, People's Republic of China
| | - Qingqing Fu
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dis, Haikou, Hainan, 570311, People's Republic of China
| | - Yanglei Wu
- MR Collaboration, Siemens Healthineers Ltd, Beijing, China
| | - Yonghui Qi
- Blood Purification Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dis, Haikou, Hainan, 570311, People's Republic of China.
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dis, Haikou, Hainan, 570311, People's Republic of China.
| |
Collapse
|
16
|
Seidel G, Rijntjes M, Güllmar D, Weiller C, Hamzei F. Understanding the concept of a novel tool requires interaction of the dorsal and ventral streams. Cereb Cortex 2023; 33:9652-9663. [PMID: 37365863 DOI: 10.1093/cercor/bhad234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
The left hemisphere tool-use network consists of the dorso-dorsal, ventro-dorsal, and ventral streams, each with distinct computational abilities. In the dual-loop model, the ventral pathway through the extreme capsule is associated with conceptual understanding. We performed a learning experiment with fMRI to investigate how these streams interact when confronted with novel tools. In session one, subjects observed pictures and video sequences in real world action of known and unknown tools and were asked whether they knew the tools and whether they understood their function. In session two, video sequences of unknown tools were presented again, followed again by the question of understanding their function. Different conditions were compared to each other and effective connectivity (EC) in the tool-use network was examined. During concept acquisition of an unknown tool, EC between dorsal and ventral streams was found posterior in fusiform gyrus and anterior in inferior frontal gyrus, with a functional interaction between BA44d and BA45. When previously unknown tools were presented for a second time, EC was prominent only between dorsal stream areas. Understanding the concept of a novel tool requires an interaction of the ventral stream with the dorsal streams. Once the concept is acquired, dorsal stream areas are sufficient.
Collapse
Affiliation(s)
- Gundula Seidel
- Section of Neurological Rehabilitation, Hans Berger Department of Neurology, Jena University Hospital, Hermann-Sachse-Strasse 46, 07639 Bad Klosterlausnitz, Germany
- Department of Neurology, Moritz Klinik Bad Klosterlausnitz, CW Breisacher Str. 64, 79106 Freiburg im Breisgau, Germany
| | - Michel Rijntjes
- Department of Neurology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, CW Breisacher Str. 64, 79106 Freiburg im Breisgau, Germany
| | - Daniel Güllmar
- Medical Physics Group, Department of Radiology, Jena University Hospital, Philosophenweg 3, Gebäude 5, 07743 Jena, Germany
| | - Cornelius Weiller
- Department of Neurology, Moritz Klinik Bad Klosterlausnitz, CW Breisacher Str. 64, 79106 Freiburg im Breisgau, Germany
| | - Farsin Hamzei
- Section of Neurological Rehabilitation, Hans Berger Department of Neurology, Jena University Hospital, Hermann-Sachse-Strasse 46, 07639 Bad Klosterlausnitz, Germany
- Department of Neurology, Moritz Klinik Bad Klosterlausnitz, CW Breisacher Str. 64, 79106 Freiburg im Breisgau, Germany
| |
Collapse
|
17
|
López-Barroso D, Paredes-Pacheco J, Torres-Prioris MJ, Dávila G, Berthier ML. Brain structural and functional correlates of the heterogenous progression of mixed transcortical aphasia. Brain Struct Funct 2023:10.1007/s00429-023-02655-6. [PMID: 37256346 DOI: 10.1007/s00429-023-02655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/13/2023] [Indexed: 06/01/2023]
Abstract
Mixed transcortical aphasia (MTCA) is characterized by non-fluent speech and comprehension deficits coexisting with preserved repetition. MTCA may evolve to less severe variants of aphasias or even to full language recovery. Mechanistically, MCTA has traditionally been attributed to a disconnection between the spared left perisylvian language network (PSLN) responsible for preserved verbal repetition, and damaged left extrasylvian networks, which are responsible for language production and comprehension impairments. However, despite significant advances in in vivo neuroimaging, the structural and functional status of the PSLN network in MTCA and its evolution has not been investigated. Thus, the aim of the present study is to examine the status of the PSLN, both in terms of its functional activity and structural integrity, in four cases who developed acute post-stroke MTCA and progressed to different types of aphasia. For it, we conducted a neuroimaging-behavioral study performed in the chronic stage of four patients. The behavioral profile of MTCA persisted in one patient, whereas the other three patients progressed to less severe types of aphasias. Neuroimaging findings suggest that preserved verbal repetition in MTCA does not always depend on the optimal status of the PSLN and its dorsal connections. Instead, the right hemisphere or the left ventral pathway may also play a role in supporting verbal repetition. The variability in the clinical evolution of MTCA may be explained by the varying degree of PSLN alteration and individual premorbid neuroanatomical language substrates. This study offers a fresh perspective of MTCA through the lens of modern neuroscience and unveils novel insights into the neural underpinnings of repetition.
Collapse
Affiliation(s)
- Diana López-Barroso
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias (CIMES), University of Malaga, Malaga, Spain
- Research Laboratory on the Neuroscience of Language, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga - IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of Malaga, Malaga, Spain
| | - José Paredes-Pacheco
- Radiology and Psychiatry Department, Faculty of Medicine, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias (CIMES), General Foundation of the University of Malaga, Malaga, Spain
| | - María José Torres-Prioris
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias (CIMES), University of Malaga, Malaga, Spain
- Research Laboratory on the Neuroscience of Language, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga - IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of Malaga, Malaga, Spain
| | - Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias (CIMES), University of Malaga, Malaga, Spain
- Research Laboratory on the Neuroscience of Language, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga - IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of Malaga, Malaga, Spain
| | - Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias (CIMES), University of Malaga, Malaga, Spain.
- Research Laboratory on the Neuroscience of Language, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.
- Instituto de Investigación Biomédica de Málaga - IBIMA, Malaga, Spain.
| |
Collapse
|
18
|
Schwartz E, Nenning KH, Heuer K, Jeffery N, Bertrand OC, Toro R, Kasprian G, Prayer D, Langs G. Evolution of cortical geometry and its link to function, behaviour and ecology. Nat Commun 2023; 14:2252. [PMID: 37080952 PMCID: PMC10119184 DOI: 10.1038/s41467-023-37574-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/22/2023] [Indexed: 04/22/2023] Open
Abstract
Studies in comparative neuroanatomy and of the fossil record demonstrate the influence of socio-ecological niches on the morphology of the cerebral cortex, but have led to oftentimes conflicting theories about its evolution. Here, we study the relationship between the shape of the cerebral cortex and the topography of its function. We establish a joint geometric representation of the cerebral cortices of ninety species of extant Euarchontoglires, including commonly used experimental model organisms. We show that variability in surface geometry relates to species' ecology and behaviour, independent of overall brain size. Notably, ancestral shape reconstruction of the cortical surface and its change during evolution enables us to trace the evolutionary history of localised cortical expansions, modal segregation of brain function, and their association to behaviour and cognition. We find that individual cortical regions follow different sequences of area increase during evolutionary adaptations to dynamic socio-ecological niches. Anatomical correlates of this sequence of events are still observable in extant species, and relate to their current behaviour and ecology. We decompose the deep evolutionary history of the shape of the human cortical surface into spatially and temporally conscribed components with highly interpretable functional associations, highlighting the importance of considering the evolutionary history of cortical regions when studying their anatomy and function.
Collapse
Affiliation(s)
- Ernst Schwartz
- Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna, Austria
| | - Karl-Heinz Nenning
- Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA
| | - Katja Heuer
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et Théorique, F-75015, Paris, France
| | - Nathan Jeffery
- Institute of Life Course & Medical Sciences, University of Liverpool, Liverpool, England
| | - Ornella C Bertrand
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès., Barcelona, Spain
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland, EH9 3FE, United Kingdom
| | - Roberto Toro
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et Théorique, F-75015, Paris, France
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna, Austria
| | - Georg Langs
- Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna, Austria.
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
19
|
Weiller C, Rijntjes M. Should concepts of brain functions be based on psychology or anatomy? An echo from Kurt Goldstein. Brain 2023; 146:1234-1235. [PMID: 36897131 PMCID: PMC10115225 DOI: 10.1093/brain/awad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
This scientific commentary refers to ‘Joint impact on attention, alertness and inhibition of lesions at a frontal white matter crossroad’ by Kaufmann et al. (https://doi.org/10.1093/brain/awac359).
Collapse
Affiliation(s)
- Cornelius Weiller
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Michel Rijntjes
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
20
|
Kaufmann BC, Cazzoli D, Pastore-Wapp M, Vanbellingen T, Pflugshaupt T, Bauer D, Müri RM, Nef T, Bartolomeo P, Nyffeler T. Joint impact on attention, alertness and inhibition of lesions at a frontal white matter crossroad. Brain 2023; 146:1467-1482. [PMID: 36200399 PMCID: PMC10115237 DOI: 10.1093/brain/awac359] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
In everyday life, information from different cognitive domains-such as visuospatial attention, alertness and inhibition-needs to be integrated between different brain regions. Early models suggested that completely segregated brain networks control these three cognitive domains. However, more recent accounts, mainly based on neuroimaging data in healthy participants, indicate that different tasks lead to specific patterns of activation within the same, higher-order and 'multiple-demand' network. If so, then a lesion to critical substrates of this common network should determine a concomitant impairment in all three cognitive domains. The aim of the present study was to critically investigate this hypothesis, i.e. to identify focal stroke lesions within the network that can concomitantly affect visuospatial attention, alertness and inhibition. We studied an unselected sample of 60 first-ever right-hemispheric, subacute stroke patients using a data-driven, bottom-up approach. Patients performed 12 standardized neuropsychological and oculomotor tests, four per cognitive domain. A principal component analysis revealed a strong relationship between all three cognitive domains: 10 of 12 tests loaded on a first, common component. Analysis of the neuroanatomical lesion correlates using different approaches (i.e. voxel-based and tractwise lesion-symptom mapping, disconnectome maps) provided convergent evidence on the association between severe impairment of this common component and lesions at the intersection of superior longitudinal fasciculus II and III, frontal aslant tract and, to a lesser extent, the putamen and inferior fronto-occipital fasciculus. Moreover, patients with a lesion involving this region were significantly more impaired in daily living cognition, which provides an ecological validation of our results. A probabilistic functional atlas of the multiple-demand network was performed to confirm the potential relationship between patients' lesion substrates and observed cognitive impairments as a function of the multiple-demand network connectivity disruption. These findings show, for the first time, that a lesion to a specific white matter crossroad can determine a concurrent breakdown in all three considered cognitive domains. Our results support the multiple-demand network model, proposing that different cognitive operations depend on specific collaborators and their interaction, within the same underlying neural network. Our findings also extend this hypothesis by showing (i) the contribution of superior longitudinal fasciculus and frontal aslant tract to the multiple-demand network; and (ii) a critical neuroanatomical intersection, crossed by a vast amount of long-range white matter tracts, many of which interconnect cortical areas of the multiple-demand network. The vulnerability of this crossroad to stroke has specific cognitive and clinical consequences; this has the potential to influence future rehabilitative approaches.
Collapse
Affiliation(s)
- Brigitte C Kaufmann
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, Paris, France
- Neurocenter, Luzerner Kantonsspital, 6000 Lucerne, Switzerland
| | - Dario Cazzoli
- Neurocenter, Luzerner Kantonsspital, 6000 Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation, University of Bern, 3008 Bern, Switzerland
- Department of Psychology, University of Bern, Bern, Switzerland
| | - Manuela Pastore-Wapp
- Neurocenter, Luzerner Kantonsspital, 6000 Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation, University of Bern, 3008 Bern, Switzerland
| | - Tim Vanbellingen
- Neurocenter, Luzerner Kantonsspital, 6000 Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation, University of Bern, 3008 Bern, Switzerland
| | | | - Daniel Bauer
- Neurocenter, Luzerner Kantonsspital, 6000 Lucerne, Switzerland
| | - René M Müri
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation, University of Bern, 3008 Bern, Switzerland
- Department of Neurology, Inselspital, University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Tobias Nef
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation, University of Bern, 3008 Bern, Switzerland
| | - Paolo Bartolomeo
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, Paris, France
| | - Thomas Nyffeler
- Neurocenter, Luzerner Kantonsspital, 6000 Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation, University of Bern, 3008 Bern, Switzerland
- Department of Neurology, Inselspital, University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
21
|
Shekari E, Nozari N. A narrative review of the anatomy and function of the white matter tracts in language production and comprehension. Front Hum Neurosci 2023; 17:1139292. [PMID: 37051488 PMCID: PMC10083342 DOI: 10.3389/fnhum.2023.1139292] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/24/2023] [Indexed: 03/28/2023] Open
Abstract
Much is known about the role of cortical areas in language processing. The shift towards network approaches in recent years has highlighted the importance of uncovering the role of white matter in connecting these areas. However, despite a large body of research, many of these tracts' functions are not well-understood. We present a comprehensive review of the empirical evidence on the role of eight major tracts that are hypothesized to be involved in language processing (inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, extreme capsule, middle longitudinal fasciculus, superior longitudinal fasciculus, arcuate fasciculus, and frontal aslant tract). For each tract, we hypothesize its role based on the function of the cortical regions it connects. We then evaluate these hypotheses with data from three sources: studies in neurotypical individuals, neuropsychological data, and intraoperative stimulation studies. Finally, we summarize the conclusions supported by the data and highlight the areas needing further investigation.
Collapse
Affiliation(s)
- Ehsan Shekari
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Nazbanou Nozari
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition (CNBC), Pittsburgh, PA, United States
| |
Collapse
|
22
|
Neuroplasticity enables bio-cultural feedback in Paleolithic stone-tool making. Sci Rep 2023; 13:2877. [PMID: 36807588 PMCID: PMC9938911 DOI: 10.1038/s41598-023-29994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/14/2023] [Indexed: 02/20/2023] Open
Abstract
Stone-tool making is an ancient human skill thought to have played a key role in the bio-cultural co-evolutionary feedback that produced modern brains, culture, and cognition. To test the proposed evolutionary mechanisms underpinning this hypothesis we studied stone-tool making skill learning in modern participants and examined interactions between individual neurostructural differences, plastic accommodation, and culturally transmitted behavior. We found that prior experience with other culturally transmitted craft skills increased both initial stone tool-making performance and subsequent neuroplastic training effects in a frontoparietal white matter pathway associated with action control. These effects were mediated by the effect of experience on pre-training variation in a frontotemporal pathway supporting action semantic representation. Our results show that the acquisition of one technical skill can produce structural brain changes conducive to the discovery and acquisition of additional skills, providing empirical evidence for bio-cultural feedback loops long hypothesized to link learning and adaptive change.
Collapse
|
23
|
Musso M, Altenmüller E, Reisert M, Hosp J, Schwarzwald R, Blank B, Horn J, Glauche V, Kaller C, Weiller C, Schumacher M. Speaking in gestures: Left dorsal and ventral frontotemporal brain systems underlie communication in conducting. Eur J Neurosci 2023; 57:324-350. [PMID: 36509461 DOI: 10.1111/ejn.15883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
Conducting constitutes a well-structured system of signs anticipating information concerning the rhythm and dynamic of a musical piece. Conductors communicate the musical tempo to the orchestra, unifying the individual instrumental voices to form an expressive musical Gestalt. In a functional magnetic resonance imaging (fMRI) experiment, 12 professional conductors and 16 instrumentalists conducted real-time novel pieces with diverse complexity in orchestration and rhythm. For control, participants either listened to the stimuli or performed beat patterns, setting the time of a metronome or complex rhythms played by a drum. Activation of the left superior temporal gyrus (STG), supplementary and premotor cortex and Broca's pars opercularis (F3op) was shared in both musician groups and separated conducting from the other conditions. Compared to instrumentalists, conductors activated Broca's pars triangularis (F3tri) and the STG, which differentiated conducting from time beating and reflected the increase in complexity during conducting. In comparison to conductors, instrumentalists activated F3op and F3tri when distinguishing complex rhythm processing from simple rhythm processing. Fibre selection from a normative human connectome database, constructed using a global tractography approach, showed that the F3op and STG are connected via the arcuate fasciculus, whereas the F3tri and STG are connected via the extreme capsule. Like language, the anatomical framework characterising conducting gestures is located in the left dorsal system centred on F3op. This system reflected the sensorimotor mapping for structuring gestures to musical tempo. The ventral system centred on F3Tri may reflect the art of conductors to set this musical tempo to the individual orchestra's voices in a global, holistic way.
Collapse
Affiliation(s)
- Mariacristina Musso
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eckart Altenmüller
- Institute of Music Physiology and Musician's Medicine, Hannover University of Music Drama and Media, Hannover, Germany
| | - Marco Reisert
- Department of Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jonas Hosp
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralf Schwarzwald
- Department of Neuroradiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bettina Blank
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julian Horn
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volkmar Glauche
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Kaller
- Department of Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelius Weiller
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Schumacher
- Department of Neuroradiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
24
|
Quartarone C, Navarrete E, Budisavljević S, Peressotti F. Exploring the ventral white matter language network in bimodal and unimodal bilinguals. BRAIN AND LANGUAGE 2022; 235:105187. [PMID: 36244164 DOI: 10.1016/j.bandl.2022.105187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
We used diffusion magnetic resonance imaging tractography to investigate the effect of language modality on the anatomy of the ventral white matter language network by comparing unimodal (Italian/English) and bimodal bilinguals (Italian/Italian Sign Language). We extracted the diffusion tractography measures of the Inferior Longitudinal fasciculus (ILF), Uncinate fasciculus (UF) and Inferior Fronto-Occipital fasciculus (IFOF) and we correlated them with the degree of bilingualism and the individual performance in fluency tasks. For both groups of bilinguals, the microstructural properties of the right ILF were correlated with individual level of proficiency in L2, confirming the involvement of this tract in bilingualism. In addition, we found that the degree of left lateralization of the ILF predicted the performance in semantic fluency in L1. The microstructural properties of the right UF correlated with performance in phonological fluency in L1, only for bimodal bilinguals. Overall, the pattern shows both similarities and differences between the two groups of bilinguals.
Collapse
Affiliation(s)
- Cinzia Quartarone
- Dipartimento di Psicologia dello Sviluppo e della Socializzazione - University of Padua, Via Venezia, 8, 35137 Padova, Italy
| | - Eduardo Navarrete
- Dipartimento di Psicologia dello Sviluppo e della Socializzazione - University of Padua, Via Venezia, 8, 35137 Padova, Italy
| | - Sanja Budisavljević
- School of Medicine, St. Andrews University, College Gate, St Andrews KY16, 9AJ, UK
| | - Francesca Peressotti
- Dipartimento di Psicologia dello Sviluppo e della Socializzazione - University of Padua, Via Venezia, 8, 35137 Padova, Italy.
| |
Collapse
|
25
|
Bonetti L, Brattico E, Bruzzone SEP, Donati G, Deco G, Pantazis D, Vuust P, Kringelbach ML. Brain recognition of previously learned versus novel temporal sequences: a differential simultaneous processing. Cereb Cortex 2022; 33:5524-5537. [PMID: 36346308 PMCID: PMC10152090 DOI: 10.1093/cercor/bhac439] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Memory for sequences is a central topic in neuroscience, and decades of studies have investigated the neural mechanisms underlying the coding of a wide array of sequences extended over time. Yet, little is known on the brain mechanisms underlying the recognition of previously memorized versus novel temporal sequences. Moreover, the differential brain processing of single items in an auditory temporal sequence compared to the whole superordinate sequence is not fully understood. In this magnetoencephalography (MEG) study, the items of the temporal sequence were independently linked to local and rapid (2–8 Hz) brain processing, while the whole sequence was associated with concurrent global and slower (0.1–1 Hz) processing involving a widespread network of sequentially active brain regions. Notably, the recognition of previously memorized temporal sequences was associated to stronger activity in the slow brain processing, while the novel sequences required a greater involvement of the faster brain processing. Overall, the results expand on well-known information flow from lower- to higher order brain regions. In fact, they reveal the differential involvement of slow and faster whole brain processing to recognize previously learned versus novel temporal information.
Collapse
Affiliation(s)
- L Bonetti
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg , Universitetsbyen 3, 8000, Aarhus C , Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford , Stoke place 7, OX39BX, Oxford , UK
- University of Oxford Department of Psychiatry, , Oxford, UK
- University of Bologna Department of Psychology, , Italy
| | - E Brattico
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg , Universitetsbyen 3, 8000, Aarhus C , Denmark
- University of Bari Aldo Moro Department of Education, Psychology, Communication, , Italy
| | - S E P Bruzzone
- Center for Music in the Brain (MIB) , Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Universitetsbyen 3, 8000, Aarhus C , Denmark
- Copenhagen University Hospital Rigshospitalet Neurobiology Research Unit (NRU), , Inge Lehmanns Vej 6, 2100, Copenhagen , Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen , Blegdamsvej 3B, 2200, Copenhagen , Denmark
| | - G Donati
- University of Bologna Department of Psychology, , Italy
| | - G Deco
- Center for Brain and Cognition, Universitat Pompeu Fabra Computational and Theoretical Neuroscience Group, , Edifici Merce Rodereda, C/ de Ramon Trias Fargas, 25, 08018 Barcelona , Spain
| | - D Pantazis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT) , 77 Massachusetts Ave, Cambridge, MA 02139 , USA
| | - P Vuust
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg , Universitetsbyen 3, 8000, Aarhus C , Denmark
| | - M L Kringelbach
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg , Universitetsbyen 3, 8000, Aarhus C , Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford , Stoke place 7, OX39BX, Oxford , UK
- University of Oxford Department of Psychiatry, , Oxford, UK
| |
Collapse
|
26
|
Rolls ET, Deco G, Huang CC, Feng J. Prefrontal and somatosensory-motor cortex effective connectivity in humans. Cereb Cortex 2022; 33:4939-4963. [PMID: 36227217 DOI: 10.1093/cercor/bhac391] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/12/2022] Open
Abstract
Effective connectivity, functional connectivity, and tractography were measured between 57 cortical frontal and somatosensory regions and the 360 cortical regions in the Human Connectome Project (HCP) multimodal parcellation atlas for 171 HCP participants. A ventral somatosensory stream connects from 3b and 3a via 1 and 2 and then via opercular and frontal opercular regions to the insula, which then connects to inferior parietal PF regions. This stream is implicated in "what"-related somatosensory processing of objects and of the body and in combining with visual inputs in PF. A dorsal "action" somatosensory stream connects from 3b and 3a via 1 and 2 to parietal area 5 and then 7. Inferior prefrontal regions have connectivity with the inferior temporal visual cortex and orbitofrontal cortex, are implicated in working memory for "what" processing streams, and provide connectivity to language systems, including 44, 45, 47l, TPOJ1, and superior temporal visual area. The dorsolateral prefrontal cortex regions that include area 46 have connectivity with parietal area 7 and somatosensory inferior parietal regions and are implicated in working memory for actions and planning. The dorsal prefrontal regions, including 8Ad and 8Av, have connectivity with visual regions of the inferior parietal cortex, including PGs and PGi, and are implicated in visual and auditory top-down attention.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK.,Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.,Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| | - Gustavo Deco
- Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain.,Brain and Cognition, Pompeu Fabra University, Barcelona 08018, Spain.,Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200602, China.,Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200602, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.,Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| |
Collapse
|
27
|
Common Neuroanatomical Substrate of Cholinergic Pathways and Language-Related Brain Regions as an Explanatory Framework for Evaluating the Efficacy of Cholinergic Pharmacotherapy in Post-Stroke Aphasia: A Review. Brain Sci 2022; 12:brainsci12101273. [PMID: 36291207 PMCID: PMC9599395 DOI: 10.3390/brainsci12101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/08/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022] Open
Abstract
Despite the relative scarcity of studies focusing on pharmacotherapy in aphasia, there is evidence in the literature indicating that remediation of language disorders via pharmaceutical agents could be a promising aphasia treatment option. Among the various agents used to treat chronic aphasic deficits, cholinergic drugs have provided meaningful results. In the current review, we focused on published reports investigating the impact of acetylcholine on language and other cognitive disturbances. It has been suggested that acetylcholine plays an important role in neuroplasticity and is related to several aspects of cognition, such as memory and attention. Moreover, cholinergic input is diffused to a wide network of cortical areas, which have been associated with language sub-processes. This could be a possible explanation for the positive reported outcomes of cholinergic drugs in aphasia recovery, and specifically in distinct language processes, such as naming and comprehension, as well as overall communication competence. However, evidence with regard to functional alterations in specific brain areas after pharmacotherapy is rather limited. Finally, despite the positive results derived from the relevant studies, cholinergic pharmacotherapy treatment in post-stroke aphasia has not been widely implemented. The present review aims to provide an overview of the existing literature in the common neuroanatomical substrate of cholinergic pathways and language related brain areas as a framework for interpreting the efficacy of cholinergic pharmacotherapy interventions in post-stroke aphasia, following an integrated approach by converging evidence from neuroanatomy, neurophysiology, and neuropsychology.
Collapse
|
28
|
Weiller C, Reisert M, Glauche V, Musso M, Rijntjes M. The dual-loop model for combining external and internal worlds in our brain. Neuroimage 2022; 263:119583. [PMID: 36007823 DOI: 10.1016/j.neuroimage.2022.119583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/03/2022] [Accepted: 08/21/2022] [Indexed: 11/19/2022] Open
Abstract
Intelligible communication with others as well as covert conscious thought requires us to combine a representation of the external world with inner abstract concepts. Interaction with the external world through sensory perception and motor execution is arranged as sequences in time and space, whereas abstract thought and invariant categories are independent of the moment. Using advanced MRI-based fibre tracking on high resolution data from 183 participants in the Human Connectome Project, we identified two large supramodal systems comprising specific cortical regions and their connecting fibre tracts; a dorsal one for processing of sequences in time and space, and a ventral one for concepts and categories. We found that two hub regions exist in the executive front and the perceptive back of the brain where these two cognitive processes converge, constituting a dual-loop model. The hubs are located in the onto- and phylogenetically youngest regions of the cortex. We propose that this hub feature serves as the neural substrate for the more abstract sense of syntax in humans, i.e. for the system populating sequences with content in all cognitive domains. The hubs bring together two separate systems (dorsal and ventral) at the front and the back of the brain and create a closed-loop. The closed-loop facilitates recursivity and forethought, which we use twice; namely, for communication with others about things that are not there and for covert thought.
Collapse
Affiliation(s)
- Cornelius Weiller
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg; Breisacher Street 64, Freiburg D- 79104, Germany.
| | - Marco Reisert
- Department of Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg; Breisacher Street 64, Freiburg D- 79104, Germany; Department of Stereotactic and Functional Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg; Breisacher Street 64, Freiburg D- 79104, Germany
| | - Volkmar Glauche
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg; Breisacher Street 64, Freiburg D- 79104, Germany
| | - Mariachristina Musso
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg; Breisacher Street 64, Freiburg D- 79104, Germany
| | - Michel Rijntjes
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg; Breisacher Street 64, Freiburg D- 79104, Germany
| |
Collapse
|
29
|
Yendiki A, Aggarwal M, Axer M, Howard AF, van Cappellen van Walsum AM, Haber SN. Post mortem mapping of connectional anatomy for the validation of diffusion MRI. Neuroimage 2022; 256:119146. [PMID: 35346838 PMCID: PMC9832921 DOI: 10.1016/j.neuroimage.2022.119146] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 01/13/2023] Open
Abstract
Diffusion MRI (dMRI) is a unique tool for the study of brain circuitry, as it allows us to image both the macroscopic trajectories and the microstructural properties of axon bundles in vivo. The Human Connectome Project ushered in an era of impressive advances in dMRI acquisition and analysis. As a result of these efforts, the quality of dMRI data that could be acquired in vivo improved substantially, and large collections of such data became widely available. Despite this progress, the main limitation of dMRI remains: it does not image axons directly, but only provides indirect measurements based on the diffusion of water molecules. Thus, it must be validated by methods that allow direct visualization of axons but that can only be performed in post mortem brain tissue. In this review, we discuss methods for validating the various features of connectional anatomy that are extracted from dMRI, both at the macro-scale (trajectories of axon bundles), and at micro-scale (axonal orientations and other microstructural properties). We present a range of validation tools, including anatomic tracer studies, Klingler's dissection, myelin stains, label-free optical imaging techniques, and others. We provide an overview of the basic principles of each technique, its limitations, and what it has taught us so far about the accuracy of different dMRI acquisition and analysis approaches.
Collapse
Affiliation(s)
- Anastasia Yendiki
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States,Corresponding author (A. Yendiki)
| | - Manisha Aggarwal
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Markus Axer
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine, Jülich, Germany,Department of Physics, University of Wuppertal Germany
| | - Amy F.D. Howard
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Anne-Marie van Cappellen van Walsum
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Nijmegen, the Netherland,Cognition and Behaviour, Donders Institute for Brain, Nijmegen, the Netherland
| | - Suzanne N. Haber
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States,McLean Hospital, Belmont, MA, United States
| |
Collapse
|
30
|
Johansson C, Folgerø PO. Is Reduced Visual Processing the Price of Language? Brain Sci 2022; 12:brainsci12060771. [PMID: 35741656 PMCID: PMC9221435 DOI: 10.3390/brainsci12060771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
We suggest a later timeline for full language capabilities in Homo sapiens, placing the emergence of language over 200,000 years after the emergence of our species. The late Paleolithic period saw several significant changes. Homo sapiens became more gracile and gradually lost significant brain volumes. Detailed realistic cave paintings disappeared completely, and iconic/symbolic ones appeared at other sites. This may indicate a shift in perceptual abilities, away from an accurate perception of the present. Language in modern humans interact with vision. One example is the McGurk effect. Studies show that artistic abilities may improve when language-related brain areas are damaged or temporarily knocked out. Language relies on many pre-existing non-linguistic functions. We suggest that an overwhelming flow of perceptual information, vision, in particular, was an obstacle to language, as is sometimes implied in autism with relative language impairment. We systematically review the recent research literature investigating the relationship between language and perception. We see homologues of language-relevant brain functions predating language. Recent findings show brain lateralization for communicative gestures in other primates without language, supporting the idea that a language-ready brain may be overwhelmed by raw perception, thus blocking overt language from evolving. We find support in converging evidence for a change in neural organization away from raw perception, thus pushing the emergence of language closer in time. A recent origin of language makes it possible to investigate the genetic origins of language.
Collapse
|
31
|
Weiller C, Glauche V, Rijntjes M. The ventral pathway and the extreme capsule: Pierre Marie was right. Brain 2022; 145:e57-e58. [PMID: 35298592 DOI: 10.1093/brain/awac099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cornelius Weiller
- Department of Neurology and Clinical Neuroscience, Medical Faculty, University Hospital, University of Freiburg i.Br., Germany
| | - Volkmar Glauche
- Department of Neurology and Clinical Neuroscience, Medical Faculty, University Hospital, University of Freiburg i.Br., Germany
| | - Michel Rijntjes
- Department of Neurology and Clinical Neuroscience, Medical Faculty, University Hospital, University of Freiburg i.Br., Germany
| |
Collapse
|
32
|
Giampiccolo D, Duffau H. Controversy over the temporal cortical terminations of the left arcuate fasciculus: a reappraisal. Brain 2022; 145:1242-1256. [PMID: 35142842 DOI: 10.1093/brain/awac057] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/19/2021] [Accepted: 01/20/2022] [Indexed: 11/12/2022] Open
Abstract
The arcuate fasciculus has been considered a major dorsal fronto-temporal white matter pathway linking frontal language production regions with auditory perception in the superior temporal gyrus, the so-called Wernicke's area. In line with this tradition, both historical and contemporary models of language function have assigned primacy to superior temporal projections of the arcuate fasciculus. However, classical anatomical descriptions and emerging behavioural data are at odds with this assumption. On one hand, fronto-temporal projections to Wernicke's area may not be unique to the arcuate fasciculus. On the other hand, dorsal stream language deficits have been reported also for damage to middle, inferior and basal temporal gyri which may be linked to arcuate disconnection. These findings point to a reappraisal of arcuate projections in the temporal lobe. Here, we review anatomical and functional evidence regarding the temporal cortical terminations of the left arcuate fasciculus by incorporating dissection and tractography findings with stimulation data using cortico-cortical evoked potentials and direct electrical stimulation mapping in awake patients. Firstly, we discuss the fibers of the arcuate fasciculus projecting to the superior temporal gyrus and the functional rostro-caudal gradient in this region where both phonological encoding and auditory-motor transformation may be performed. Caudal regions within the temporoparietal junction may be involved in articulation and associated with temporoparietal projections of the third branch of the superior longitudinal fasciculus, while more rostral regions may support encoding of acoustic phonetic features, supported by arcuate fibres. We then move to examine clinical data showing that multimodal phonological encoding is facilitated by projections of the arcuate fasciculus to superior, but also middle, inferior and basal temporal regions. Hence, we discuss how projections of the arcuate fasciculus may contribute to acoustic (middle-posterior superior and middle temporal gyri), visual (posterior inferior temporal/fusiform gyri comprising the visual word form area) and lexical (anterior-middle inferior temporal/fusiform gyri in the basal temporal language area) information in the temporal lobe to be processed, encoded and translated into a dorsal phonological route to the frontal lobe. Finally, we point out surgical implications for this model in terms of the prediction and avoidance of neurological deficit.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy.,Institute of Neuroscience, Cleveland Clinic London, Grosvenor Place, London, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK.,Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Neuroplasticity, Stem Cells and Low-grade Gliomas," INSERM U1191, Institute of Genomics of Montpellier, University of Montpellier, Montpellier, France
| |
Collapse
|
33
|
Blazquez Freches G, Haak KV, Beckmann CF, Mars RB. Connectivity gradients on tractography data: Pipeline and example applications. Hum Brain Mapp 2021; 42:5827-5845. [PMID: 34559432 PMCID: PMC8596970 DOI: 10.1002/hbm.25623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 07/03/2021] [Accepted: 07/30/2021] [Indexed: 11/08/2022] Open
Abstract
Gray matter connectivity can be described in terms of its topographical organization, but the differential role of white matter connections underlying that organization is often unknown. In this study, we propose a method for unveiling principles of organization of both gray and white matter based on white matter connectivity as assessed using diffusion magnetic ressonance imaging (MRI) tractography with spectral embedding gradient mapping. A key feature of the proposed approach is its capacity to project the individual connectivity gradients it reveals back onto its input data in the form of projection images, allowing one to assess the contributions of specific white matter tracts to the observed gradients. We demonstrate the ability of our proposed pipeline to identify connectivity gradients in prefrontal and occipital gray matter. Finally, leveraging the use of tractography, we demonstrate that it is possible to observe gradients within the white matter bundles themselves. Together, the proposed framework presents a generalized way to assess both the topographical organization of structural brain connectivity and the anatomical features driving it.
Collapse
Affiliation(s)
- Guilherme Blazquez Freches
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud UniversityNijmegenThe Netherlands
| | - Koen V. Haak
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
| | - Christian F. Beckmann
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nufeld Department of Clinical NeurosciencesJohn Radclife Hospital, University of OxfordOxfordUK
| | - Rogier B. Mars
- Donders Institute for Brain, Cognition and Behaviour, Radboud UniversityNijmegenThe Netherlands
| |
Collapse
|
34
|
Jabbi M. Hyper connective pathways inter-linking transmodal cortical systems. Neuroimage 2021; 237:118185. [PMID: 34015485 DOI: 10.1016/j.neuroimage.2021.118185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 11/15/2022] Open
Affiliation(s)
- Mbemba Jabbi
- Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin (UT Austin) Dell Medical School; Mulva Clinics for the Neurosciences, UT Austin Dell Medical School; Institute for Neuroscience, UT Austin; Department of Psychology, UT Austin; Center for Learning and Memory, UT Austin, United States.
| |
Collapse
|
35
|
Dressing A, Kaller CP, Martin M, Nitschke K, Kuemmerer D, Beume LA, Schmidt CSM, Musso M, Urbach H, Rijntjes M, Weiller C. Anatomical correlates of recovery in apraxia: A longitudinal lesion-mapping study in stroke patients. Cortex 2021; 142:104-121. [PMID: 34265734 DOI: 10.1016/j.cortex.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/07/2021] [Accepted: 06/01/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE This study investigates the clinical course of recovery of apraxia after left-hemisphere stroke and the underlying neuroanatomical correlates for persisting or recovering deficits in relation to the major processing streams in the network for motor cognition. METHODS 90 patients were examined during the acute (4.74 ± 2.73 days) and chronic (14.3 ± 15.39 months) stage after left-hemisphere stroke for deficits in meaningless imitation, as well as production and conceptual errors in tool use pantomime. Lesion correlates for persisting or recovering deficits were analyzed with an extension of the non-parametric Brunner-Munzel rank-order test for multi-factorial designs (two-way repeated-measures ANOVA) using acute images. RESULTS Meaningless imitation and tool use production deficits persisted into the chronic stage. Conceptual errors in tool use pantomime showed an almost complete recovery. Imitation errors persisted after occipitotemporal and superior temporal lesions in the dorso-dorsal stream. Chronic pantomime production errors were related to the supramarginal gyrus, the key structure of the ventro-dorsal stream. More anterior lesions in the ventro-dorsal stream (ventral premotor cortex) were additionally associated with poor recovery of production errors in pantomime. Conceptual errors in pantomime after temporal and supramarginal gyrus lesions persisted into the chronic stage. However, they resolved completely when related to angular gyrus or insular lesions. CONCLUSION The diverging courses of recovery in different apraxia tasks can be related to different mechanisms. Critical lesions to key structures of the network or entrance areas of the processing streams lead to persisting deficits in the corresponding tasks. Contrary, lesions located outside the core network but inducing a temporary network dysfunction allow good recovery e.g., of conceptual errors in pantomime. The identification of lesion correlates for different long-term recovery patterns in apraxia might also allow early clinical prediction of the course of recovery.
Collapse
Affiliation(s)
- Andrea Dressing
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany.
| | - Christoph P Kaller
- Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany; Dept. of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Martin
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | - Kai Nitschke
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dorothee Kuemmerer
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lena-A Beume
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte S M Schmidt
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mariacristina Musso
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Dept. of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michel Rijntjes
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelius Weiller
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| |
Collapse
|