1
|
Karjalainen S, Kujala J, Parviainen T. Neural activity is modulated by spontaneous and volitionally controlled breathing. Biol Psychol 2025; 197:109026. [PMID: 40204086 DOI: 10.1016/j.biopsycho.2025.109026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Recent studies have provided evidence regarding respiration-brain coupling, but our understanding of how continuously varying dynamics of breathing modulate neural activity remains incomplete. We examined whether the neural state differs between spontaneous and volitionally controlled breathing and across the phases of breathing, inspiration and expiration. Magnetoencephalography (MEG) with a respiratory belt was used to record cortical oscillatory activity during spontaneous, deep, and square breathing (n = 33). Additionally, self-report measures of mood and arousal were applied to assess changes in the psychological state during the breathing techniques. Alpha power was suppressed during inspiration and increased during expiration (p < .01) indicating dynamically fluctuating neural states across the respiratory cycle. This effect was observed in the sensorimotor areas during both spontaneous and volitionally controlled deep breathing. Compared to spontaneous and volitionally controlled square breathing, alpha power increased during deep breathing (p < .01) within a cortical network extending to frontal and temporal areas. We also observed a steeper aperiodic slope and a broadband shift in the power spectrum in the left superior frontal gyrus during square breathing in comparison with spontaneous breathing suggesting that not only oscillatory activity but also the more general spectral characteristics of ongoing neural activity are modulated by the rate, depth, and pattern of breathing. Self-reported mood and arousal did not differ across the breathing techniques. Altogether, we demonstrate that neural activity is modulated by the phases of breathing and can also be volitionally influenced by varying the rate, depth, and pattern of breathing.
Collapse
Affiliation(s)
- Suvi Karjalainen
- Department of Psychology, University of Jyväskylä, PO Box 35, Jyväskylä FI-40014, Finland; Centre for Interdisciplinary Brain Research, University of Jyväskylä, PO Box 35, Jyväskylä FI-40014, Finland.
| | - Jan Kujala
- Department of Psychology, University of Jyväskylä, PO Box 35, Jyväskylä FI-40014, Finland
| | - Tiina Parviainen
- Department of Psychology, University of Jyväskylä, PO Box 35, Jyväskylä FI-40014, Finland; Centre for Interdisciplinary Brain Research, University of Jyväskylä, PO Box 35, Jyväskylä FI-40014, Finland
| |
Collapse
|
2
|
Zhou YJ, van Es MWJ, Haegens S. Distinct Alpha Networks Modulate Different Aspects of Perceptual Decision-Making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643170. [PMID: 40161801 PMCID: PMC11952549 DOI: 10.1101/2025.03.14.643170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Why do we sometimes perceive a faint stimulus but miss it at other times? One explanation is that conscious perception fluctuates with the brain's internal state, influencing how external stimuli are processed. Ongoing brain oscillations in the alpha band (8-13 Hz), thought to reflect neuronal excitability levels1-5 and play a role in functional inhibition6,7, have been shown as a key contributor to such perceptual variability8,9. Under high alpha conditions, faint stimuli are more likely to be missed8. Some studies suggested alpha oscillations modulate perceptual criterion ( c ) 10-14, shifting the threshold for interpreting sensory information; while others (including our prior work15) suggested alpha modulates sensitivityd ' 15-19, changing the precision of sensory encoding. Few studies observed modulations in both metrics, making these results appear mutually exclusive. Most studies have focused solely on overall alpha activity-whether within a region of interest or across the whole brain-and overlooked the coexistence of multiple distinct alpha networks20-26, which fluctuate in terms of predominance20,27,28 and adapt to behavioural demands29,30. Hence, it remained unclear whether different networks' contributions to perception vary with their momentary state. Here, aiming to characterize how different alpha networks influence perceptual decision-making, we analyzed magnetoencephalography (MEG) data recorded while participants performed a visual detection task with threshold-level stimuli. We found that while the visual alpha network modulates perceptual sensitivity, the sensorimotor alpha network modulates criterion in perceptual decision-making. These findings reconcile previous conflicting results and highlight the functional diversity of alpha networks in shaping perception.
Collapse
Affiliation(s)
- Ying Joey Zhou
- School of Psychology, Shenzhen University
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford
| | - Mats W J van Es
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford
| | - Saskia Haegens
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University
- Division of Systems Neuroscience, New York State Psychiatric Institute
| |
Collapse
|
3
|
Liu M, Ren‐Li R, Sun J, Yeo JSY, Ma J, Yan J, BuMaYiLaMu‐XueKeEr, Tu Z, Li Y. High-Frequency rTMS Improves Visual Working Memory in Patients With aMCI: A Cognitive Neural Mechanism Study. CNS Neurosci Ther 2025; 31:e70301. [PMID: 40125804 PMCID: PMC11931447 DOI: 10.1111/cns.70301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 12/17/2024] [Accepted: 02/16/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Visual working memory (VWM), which is an essential component of higher cognitive processes, declines with age and is associated with the progression from amnestic mild cognitive impairment (aMCI) to Alzheimer's disease (AD). Cognitive impairment, particularly in VWM, is prominent in aMCI and may indicate disease progression. This study investigates the cognitive neural mechanisms responsible for VWM impairment in aMCI, with a focus on identifying the VWM processing stages affected. The study targets the dorsolateral prefrontal cortex (DLPFC) for repetitive transcranial magnetic stimulation (rTMS) to investigate its influence on VWM in aMCI patients. The role of the DLPFC in the top-down control of VWM processing is central to understanding rTMS effects on the stages of information processing in aMCI-related VWM impairments. METHODS A 7-day rTMS intervention was performed in 25 aMCI patients and 15 healthy elderly controls to investigate its effects on VWM and cognitive functions. Tasks included VWM change detection, digital symbol transformation, and the Stroop task for attention and executive functions. EEG analyses consisting of ERP, ERSP, and functional connectivity (wPLI) were integrated. The first part of the study addressed the cognitive neural mechanism of VWM impairment in aMCI and differentiated the processing stages using EEG. The second part investigated the effects of rTMS on EEG processing at different VWM stages and revealed cognitive neural mechanisms that improve visual working memory in aMCI. RESULTS The results indicated a significant deterioration of VWM tasks in aMCI, especially in accuracy and memory capacity, with prolonged reaction time and increased duration of the Stroop task. In the VWM memory encoding phase, N2pc amplitude, α-oscillation in the parieto-occipital region, and θ-band synchronization in the frontoparietal connectivity decreased. Conversely, rTMS improved N2pc amplitude, α-oscillation, and θ-band synchronization, which correlated with improved frontoparietal connectivity, parieto-occipital α-oscillation, and attentional capacity. CONCLUSIONS Patients with aMCI experience significant deterioration in VWM function, particularly during the encoding phase. This deterioration manifests in reduced accuracy and capacity of memory performance, accompanied by a significant decrease in N2pc amplitude, alpha oscillations, and theta-band connectivity in frontoparietal and fronto-occipital brain regions. rTMS proves to be a promising intervention that improves VWM, attention, and executive functions. In particular, it supports attention during target selection by increasing N2pc amplitude during encoding, enhancing alpha oscillations for better suppression of irrelevant information, and increasing synchronization in frontoparietal and occipital functional connectivity, which ultimately improves visual working memory.
Collapse
Affiliation(s)
- Meng Liu
- Department of NeurologyShanghai Pudong Hospital, Fudan University Pudong Medical CenterShanghaiChina
- Department of NeurologyShanghai Changhai Hospital, the Second Military Medical University Shanghai, P.R.ShanghaiChina
- Department of NeurologyTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Ren Ren‐Li
- Department of NeurologyShanghai Pudong Hospital, Fudan University Pudong Medical CenterShanghaiChina
- Department of NeurologyTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Jingnan Sun
- Department of Biomedical EngineeringTsinghua UniversityChina
| | - Janelle S. Y. Yeo
- School of Medicine, University of SydneyCamperdownNew South WalesAustralia
| | - Jing Ma
- Department of NeurologyShanghai Pudong Hospital, Fudan University Pudong Medical CenterShanghaiChina
- Department of NeurologyTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Jia‐Xin Yan
- Department of NeurologyTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - BuMaYiLaMu‐XueKeEr
- Department of NeurologyTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Zhao‐Xi Tu
- Department of NeurologyTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Yun‐Xia Li
- Department of NeurologyShanghai Pudong Hospital, Fudan University Pudong Medical CenterShanghaiChina
- Department of NeurologyTongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
| |
Collapse
|
4
|
Vorobiova AN, Feurra M, Pavone EF, Stieglitz L, Imbach L, Moiseeva V, Sarnthein J, Fedele T. Functional segregation of rostral and caudal hippocampus in associative memory. Front Hum Neurosci 2025; 19:1509163. [PMID: 39996022 PMCID: PMC11848949 DOI: 10.3389/fnhum.2025.1509163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Introduction The hippocampus plays a crucial role in episodic memory. Given its complexity, the hippocampus participates in multiple aspects of higher cognitive functions, among which are semantics-based encoding and retrieval. However, the "where," "when" and "how" of distinct aspects of memory processing in the hippocampus are still under debate. Methods Here, we employed a visual associative memory task that involved encoding three levels of subjective congruence to delineate the differential involvement of the rostral and caudal portions (also referred as anterior/posterior portions) of the human hippocampus during memory encoding, recognition and associative recall. Results Through stereo-EEG recordings in epilepsy patients we show that associative memory is reflected by rostral hippocampal activity during encoding, and caudal hippocampal activity during retrieval. In contrast, recognition memory encoding selectively activates the rostral hippocampus. The temporal dynamics of memory processing are manifested by gamma power increase, which partially overlaps with low-frequency power decrease during encoding and retrieval. Congruence levels modulate low-frequency activity prominently in the caudal hippocampus. Discussion These findings highlight an anatomical segregation in the hippocampus in accordance with the contributions of its partitions to associative and recognition memory.
Collapse
Affiliation(s)
- Alicia Nunez Vorobiova
- Department of Psychology, National Research University Higher School of Economics, Moscow, Russia
| | - Matteo Feurra
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia
| | | | - Lennart Stieglitz
- University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Victoria Moiseeva
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia
| | | | - Tommaso Fedele
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia
- Swiss Epilepsy Center, Zurich, Switzerland
- Children's Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Gao T, Zhou Y, Pan X, Li W, Han S. Cognitive and neural underpinnings of friend-prioritization in a perceptual matching task. Soc Cogn Affect Neurosci 2025; 20:nsaf009. [PMID: 39831532 PMCID: PMC11792655 DOI: 10.1093/scan/nsaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/23/2024] [Accepted: 01/18/2025] [Indexed: 01/22/2025] Open
Abstract
Previous findings of better behavioral responses to self- over other-related stimuli suggest prioritized cognitive processes of self-related information. However, it is unclear whether the processing of information related to important others (e.g.friends) may be prioritized over that related to the self in certain subpopulations and, if yes, whether friend-prioritization and self-prioritization engage distinct cognitive and neural mechanisms. We collected behavioral and electroencephalography (EEG) data from a large sample (N = 1006) during learning associations between shapes and person labels (self or a friend). Analyses of response times and sensitivities revealed two subpopulations who performed better to friend-shape or self-shape associations, respectively (N = 216 for each group). Drift diffusion model (DDM) analyses unraveled faster information acquisition for friend-shape (vs. self-shape) associations in the friend-prioritization group but an opposite pattern in the self-prioritization group. Trial-by-trial regression analyses of EEG data showed that the greater amplitudes of a frontal/central activity at 180-240 ms poststimulus were correlated with faster information acquisition from friend-shape associations in the friend-prioritization group but from self-shape associations in the self-prioritization group. However, the frontal/central neural oscillations at 8-18 Hz during perceptual learning were specifically associated with speed of information acquisition from friend-shape associations in the friend-prioritization-group. Our findings provide evidence for friend-prioritization in perceptual learning in a subpopulation of adults and clarify the underlying cognitive and neural mechanisms.
Collapse
Affiliation(s)
- Tianyu Gao
- Department of Psychology, Faculty of Arts and Sciences, Beijing Normal University at Zhuhai, 18 Jinfeng Road, Zhuhai 519087, China
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Yuqing Zhou
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China
| | - Xinyue Pan
- School of Management, Economics and Shenzhen Finance Institute, The Chinese University of Hong Kong, 2001 Longxiang Boulevard, Longgang District, Shenzhen 518172, China
| | - Wenxin Li
- School of Psychological and Cognitive Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, 52 Haidian Road, Beijing 100080, China
| | - Shihui Han
- School of Psychological and Cognitive Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, 52 Haidian Road, Beijing 100080, China
| |
Collapse
|
6
|
Cruz G, Melcón M, Sutandi L, Matias Palva J, Palva S, Thut G. Oscillatory Brain Activity in the Canonical Alpha-Band Conceals Distinct Mechanisms in Attention. J Neurosci 2025; 45:e0918242024. [PMID: 39406514 PMCID: PMC11694399 DOI: 10.1523/jneurosci.0918-24.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 01/03/2025] Open
Abstract
Brain oscillations in the alpha-band (8-14 Hz) have been linked to specific processes in attention and perception. In particular, decreases in posterior alpha-amplitude are thought to reflect activation of perceptually relevant brain areas for target engagement, while alpha-amplitude increases have been associated with inhibition for distractor suppression. Traditionally, these alpha-changes have been viewed as two facets of the same process. However, recent evidence calls for revisiting this interpretation. Here, we recorded MEG/EEG in 32 participants (19 females) during covert visuospatial attention shifts (spatial cues) and two control conditions (neutral cue, no-attention cue), while tracking fixational eye movements. In disagreement with a single, perceptually relevant alpha-process, we found the typical alpha-modulations contra- and ipsilateral to the attention focus to be triple dissociated in their timing, topography, and spectral features: Ipsilateral alpha-increases occurred early, over occipital sensors, at a high alpha-frequency (10-14 Hz) and were expressed during spatial attention (alpha spatial cue > neutral cue). In contrast, contralateral alpha-decreases occurred later, over parietal sensors, at a lower alpha-frequency (7-10 Hz) and were associated with attention deployment in general (alpha spatial and neutral cue < no-attention cue). Additionally, the lateralized early alpha-increases but not alpha-decreases during spatial attention coincided in time with directionally biased microsaccades. Overall, this suggests that the attention-related early alpha-increases and late alpha-decreases reflect distinct, likely reflexive versus endogenously controlled attention mechanisms. We conclude that there is more than one perceptually relevant posterior alpha-oscillation, which need to be dissociated for a detailed account of their roles in perception and attention.
Collapse
Affiliation(s)
- Gabriela Cruz
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, United Kingdom
| | - María Melcón
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, United Kingdom
| | - Leonardo Sutandi
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, United Kingdom
| | - J Matias Palva
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, United Kingdom
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
- Department of Neuroscience and Biomedical engineering, Aalto University, Helsinki 02150, Finland
| | - Satu Palva
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, United Kingdom
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Gregor Thut
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, United Kingdom
- Centre de Recherche Cerveau et Cognition (Cerco), CNRS UMR5549 and Université de Toulouse, Toulouse 31059, France
| |
Collapse
|
7
|
Koenig L, He BJ. Spontaneous slow cortical potentials and brain oscillations independently influence conscious visual perception. PLoS Biol 2025; 23:e3002964. [PMID: 39820589 PMCID: PMC11737857 DOI: 10.1371/journal.pbio.3002964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025] Open
Abstract
Perceptual awareness results from an intricate interaction between external sensory input and the brain's spontaneous activity. Pre-stimulus ongoing activity influencing conscious perception includes both brain oscillations in the alpha (7 to 14 Hz) and beta (14 to 30 Hz) frequency ranges and aperiodic activity in the slow cortical potential (SCP, <5 Hz) range. However, whether brain oscillations and SCPs independently influence conscious perception or do so through shared mechanisms remains unknown. Here, we addressed this question in 2 independent magnetoencephalography (MEG) data sets involving near-threshold visual perception tasks in humans using low-level (Gabor patches) and high-level (objects, faces, houses, animals) stimuli, respectively. We found that oscillatory power and large-scale SCP activity influence conscious perception through independent mechanisms that do not have shared variance. In addition, through mediation analysis, we show that pre-stimulus oscillatory power and SCP activity have different relations to pupil size-an index of arousal-in their influences on conscious perception. Together, these findings suggest that oscillatory power and SCPs independently contribute to perceptual awareness, with distinct relations to pupil-linked arousal.
Collapse
Affiliation(s)
- Lua Koenig
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Biyu J. He
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Departments of Neurology, Neuroscience & Physiology, Radiology, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, New York, United States of America
| |
Collapse
|
8
|
Çatal Y, Keskin K, Wolman A, Klar P, Smith D, Northoff G. Flexibility of intrinsic neural timescales during distinct behavioral states. Commun Biol 2024; 7:1667. [PMID: 39702547 DOI: 10.1038/s42003-024-07349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
Recent neuroimaging studies demonstrate a heterogeneity of timescales prevalent in the brain's ongoing spontaneous activity, labeled intrinsic neural timescales (INT). At the same time, neural timescales also reflect stimulus- or task-related activity. The relationship of the INT during the brain's spontaneous activity with their involvement in task states including behavior remains unclear. To address this question, we combined calcium imaging data of spontaneously behaving mice and human electroencephalography (EEG) during rest and task states with computational modeling. We obtained four primary findings: (i) the distinct behavioral states can be accurately predicted from INT, (ii) INT become longer during behavioral states compared to rest, (iii) INT change from rest to task is correlated negatively with the variability of INT during rest, (iv) neural mass modeling shows a key role of recurrent connections in mediating the rest-task change of INT. Extending current findings, our results show the dynamic nature of the brain's INT in reflecting continuous behavior through their flexible rest-task modulation possibly mediated by recurrent connections.
Collapse
Affiliation(s)
- Yasir Çatal
- Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa, Ontario, ON, Canada.
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada.
| | - Kaan Keskin
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
- Department of Psychiatry, Ege University, Izmir, Turkey
- SoCAT Lab, Ege University, Izmir, Turkey
| | - Angelika Wolman
- Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa, Ontario, ON, Canada
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Philipp Klar
- Faculty of Mathematics and Natural Sciences, Institute of Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - David Smith
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa, Ontario, ON, Canada
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| |
Collapse
|
9
|
Srinivasan N, Mudumba R. Alpha suppression in the context of cross-frequency interactions between fast and intermediate timescales. Phys Life Rev 2024; 51:11-12. [PMID: 39217781 DOI: 10.1016/j.plrev.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Affiliation(s)
| | - Ramya Mudumba
- Department of Cognitive Science, Indian Institute of Technology Kanpur, India
| |
Collapse
|
10
|
Sihn D, Kim SP. Enhanced Correlation between Arousal and Infra-Slow Brain Activity in Experienced Meditators. Brain Sci 2024; 14:981. [PMID: 39451995 PMCID: PMC11506050 DOI: 10.3390/brainsci14100981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Meditation induces changes in the nervous system, which presumably underpin positive psychological and physiological effects. Such neural changes include alterations in the arousal fluctuation, as well as in infraslow brain activity (ISA, <0.1 Hz). Furthermore, it is known that fluctuations of arousal over time correlate with the oscillatory phase of ISA. However, whether this arousal-ISA correlation changes after meditation practices remains unanswered.; Methods: The present study aims to address this question by analyzing a publicly available electroencephalogram (EEG) dataset recorded during meditation sessions in the groups of experienced meditators and novices. The arousal fluctuation is measured by galvanic skin responses (GSR), and arousal-ISA correlations are measured by phase synchronization between GSR and EEG ISAs.; Results: While both groups exhibit arousal-ISA correlations, experienced meditators display higher correlations than novices. These increased arousal-ISA correlations in experienced meditators manifest more clearly when oscillatory phase differences between GSR and EEG ISAs are either 0 or π radians. As such, we further investigate the characteristics of these phase differences with respect to spatial distribution over the brain. We found that brain regions with the phase difference of either 0 or π radians form distinct spatial clusters, and that these clusters are spatially correlated with functional organization estimated by the principal gradient, based on functional connectivity.; Conclusions: Since increased arousal-ISA correlations reflect enhanced global organization of the central and autonomic nervous systems, our findings imply that the positive effects of meditation might be mediated by enhanced global organization of the nervous system.
Collapse
Affiliation(s)
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
11
|
Duecker K, Idiart M, van Gerven M, Jensen O. Oscillations in an artificial neural network convert competing inputs into a temporal code. PLoS Comput Biol 2024; 20:e1012429. [PMID: 39259769 PMCID: PMC11419396 DOI: 10.1371/journal.pcbi.1012429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/23/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024] Open
Abstract
The field of computer vision has long drawn inspiration from neuroscientific studies of the human and non-human primate visual system. The development of convolutional neural networks (CNNs), for example, was informed by the properties of simple and complex cells in early visual cortex. However, the computational relevance of oscillatory dynamics experimentally observed in the visual system are typically not considered in artificial neural networks (ANNs). Computational models of neocortical dynamics, on the other hand, rarely take inspiration from computer vision. Here, we combine methods from computational neuroscience and machine learning to implement multiplexing in a simple ANN using oscillatory dynamics. We first trained the network to classify individually presented letters. Post-training, we added temporal dynamics to the hidden layer, introducing refraction in the hidden units as well as pulsed inhibition mimicking neuronal alpha oscillations. Without these dynamics, the trained network correctly classified individual letters but produced a mixed output when presented with two letters simultaneously, indicating a bottleneck problem. When introducing refraction and oscillatory inhibition, the output nodes corresponding to the two stimuli activate sequentially, ordered along the phase of the inhibitory oscillations. Our model implements the idea that inhibitory oscillations segregate competing inputs in time. The results of our simulations pave the way for applications in deeper network architectures and more complicated machine learning problems.
Collapse
Affiliation(s)
- Katharina Duecker
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Department of Neuroscience, Brown University, Providence, Rhode Island, United States of America
| | - Marco Idiart
- Institute of Physics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcel van Gerven
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
12
|
MacLean J, Stirn J, Bidelman GM. Auditory-motor entrainment and listening experience shape the perceptual learning of concurrent speech. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604167. [PMID: 39071391 PMCID: PMC11275804 DOI: 10.1101/2024.07.18.604167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background Plasticity from auditory experience shapes the brain's encoding and perception of sound. Though prior research demonstrates that neural entrainment (i.e., brain-to-acoustic synchronization) aids speech perception, how long- and short-term plasticity influence entrainment to concurrent speech has not been investigated. Here, we explored neural entrainment mechanisms and the interplay between short- and long-term neuroplasticity for rapid auditory perceptual learning of concurrent speech sounds in young, normal-hearing musicians and nonmusicians. Method Participants learned to identify double-vowel mixtures during ∼45 min training sessions with concurrent high-density EEG recordings. We examined the degree to which brain responses entrained to the speech-stimulus train (∼9 Hz) to investigate whether entrainment to speech prior to behavioral decision predicted task performance. Source and directed functional connectivity analyses of the EEG probed whether behavior was driven by group differences auditory-motor coupling. Results Both musicians and nonmusicians showed rapid perceptual learning in accuracy with training. Interestingly, listeners' neural entrainment strength prior to target speech mixtures predicted behavioral identification performance; stronger neural synchronization was observed preceding incorrect compared to correct trial responses. We also found stark hemispheric biases in auditory-motor coupling during speech entrainment, with greater auditory-motor connectivity in the right compared to left hemisphere for musicians (R>L) but not in nonmusicians (R=L). Conclusions Our findings confirm stronger neuroacoustic synchronization and auditory-motor coupling during speech processing in musicians. Stronger neural entrainment to rapid stimulus trains preceding incorrect behavioral responses supports the notion that alpha-band (∼10 Hz) arousal/suppression in brain activity is an important modulator of trial-by-trial success in perceptual processing.
Collapse
|
13
|
Wei J, Alamia A, Yao Z, Huang G, Li L, Liang Z, Zhang L, Zhou C, Song Z, Zhang Z. State-Dependent tACS Effects Reveal the Potential Causal Role of Prestimulus Alpha Traveling Waves in Visual Contrast Detection. J Neurosci 2024; 44:e2023232024. [PMID: 38811165 PMCID: PMC11223459 DOI: 10.1523/jneurosci.2023-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
The intricate relationship between prestimulus alpha oscillations and visual contrast detection variability has been the focus of numerous studies. However, the causal impact of prestimulus alpha traveling waves on visual contrast detection remains largely unexplored. In our research, we sought to discern the causal link between prestimulus alpha traveling waves and visual contrast detection across different levels of mental fatigue. Using electroencephalography alongside a visual detection task with 30 healthy adults (13 females; 17 males), we identified a robust negative correlation between prestimulus alpha forward traveling waves (FTWs) and visual contrast threshold (VCT). Inspired by this correlation, we utilized 45/-45° phase-shifted transcranial alternating current stimulation (tACS) in a sham-controlled, double-blind, within-subject experiment with 33 healthy adults (23 females; 10 males) to directly modulate these alpha traveling waves. After the application of 45° phase-shifted tACS, we observed a substantial decrease in FTW and an increase in backward traveling waves, along with a concurrent increase in VCT, compared with the sham condition. These changes were particularly pronounced under a low fatigue state. The findings of state-dependent tACS effects reveal the potential causal role of prestimulus alpha traveling waves in visual contrast detection. Moreover, our study highlights the potential of 45/-45° phase-shifted tACS in cognitive modulation and therapeutic applications.
Collapse
Affiliation(s)
- Jinwen Wei
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Andrea Alamia
- CerCo, CNRS, Université de Toulouse, Toulouse, France
| | - Ziqing Yao
- Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Gan Huang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Linling Li
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Zhen Liang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Li Zhang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, and Life Science Imaging Centre, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Zhenxi Song
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhiguo Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen 518055, China
- Peng Cheng Laboratory, Shenzhen 518055, China
| |
Collapse
|
14
|
Northoff G, Zilio F, Zhang J. Beyond task response-Pre-stimulus activity modulates contents of consciousness. Phys Life Rev 2024; 49:19-37. [PMID: 38492473 DOI: 10.1016/j.plrev.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/18/2024]
Abstract
The current discussion on the neural correlates of the contents of consciousness (NCCc) focuses mainly on the post-stimulus period of task-related activity. This neglects the substantial impact of the spontaneous or ongoing activity of the brain as manifest in pre-stimulus activity. Does the interaction of pre- and post-stimulus activity shape the contents of consciousness? Addressing this gap in our knowledge, we review and converge two recent lines of findings, that is, pre-stimulus alpha power and pre- and post-stimulus alpha trial-to-trial variability (TTV). The data show that pre-stimulus alpha power modulates post-stimulus activity including specifically the subjective features of conscious contents like confidence and vividness. At the same time, alpha pre-stimulus variability shapes post-stimulus TTV reduction including the associated contents of consciousness. We propose that non-additive rather than merely additive interaction of the internal pre-stimulus activity with the external stimulus in the alpha band is key for contents to become conscious. This is mediated by mechanisms on different levels including neurophysiological, neurocomputational, neurodynamic, neuropsychological and neurophenomenal levels. Overall, considering the interplay of pre-stimulus intrinsic and post-stimulus extrinsic activity across wider timescales, not just evoked responses in the post-stimulus period, is critical for identifying neural correlates of consciousness. This is well in line with both processing and especially the Temporo-spatial theory of consciousness (TTC).
Collapse
Affiliation(s)
- Georg Northoff
- University of Ottawa, Institute of Mental Health Research at the Royal Ottawa Hospital, Ottawa, Canada.
| | - Federico Zilio
- Department of Philosophy, Sociology, Education and Applied Psychology, University of Padua, Padua, Italy
| | - Jianfeng Zhang
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, Shenzhen, China.
| |
Collapse
|
15
|
Sihn D, Kim J, Kim SP. Meditation-type specific reduction in infra-slow activity of electroencephalogram. Biomed Eng Lett 2024; 14:823-831. [PMID: 38946818 PMCID: PMC11208365 DOI: 10.1007/s13534-024-00377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/24/2024] [Accepted: 03/31/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose Meditation is renowned for its positive effects on cognitive abilities and stress reduction. It has been reported that the amplitude of electroencephalographic (EEG) infra-slow activity (ISA, < 0.1 Hz) is reduced as the stress level decreases. Consequently, we aimed to determine if EEG ISA amplitude decreases as a result of meditation practice across various traditions. Methods To this end, we analyzed an open dataset comprising EEG data acquired during meditation sessions from experienced practitioners in the Vipassana tradition-which integrates elements of focused attention and open monitoring, akin to mindfulness meditation-and in the Himalayan Yoga and Isha Shoonya traditions, which emphasize focused attention and open monitoring, respectively. Results A general trend was observed where EEG ISA amplitude tended to decrease in experienced meditators from these traditions compared to novices, particularly significant in the 0.03-0.08 Hz band for Vipassana meditators. Therefore, our analysis focused on this ISA frequency band. Specifically, a notable decrease in EEG ISA amplitude was observed in Vipassana meditators, predominantly in the left-frontal region. This reduction in EEG ISA amplitude was also accompanied by a decrease in phase-amplitude coupling (PAC) between the ISA phase and alpha band (8-12 Hz) amplitude, which implied decreased neural excitability fluctuations. Conclusion Our findings suggest that not only does EEG ISA amplitude decrease in experienced meditators from traditions that incorporate both focused attention and open monitoring, but this decrease may also signify a diminished influence of neural excitability fluctuations attributed to ISA.
Collapse
Affiliation(s)
- Duho Sihn
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919 Republic of Korea
| | - Junsuk Kim
- School of Information Convergence, Kwangwoon University, Seoul, 01897 Republic of Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919 Republic of Korea
| |
Collapse
|
16
|
Marcu GM, Băcilă CI, Zăgrean AM. Temporal-Posterior Alpha Power in Resting-State Electroencephalography as a Potential Marker of Complex Childhood Trauma in Institutionalized Adolescents. Brain Sci 2024; 14:584. [PMID: 38928584 PMCID: PMC11201643 DOI: 10.3390/brainsci14060584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
The present study explored whether, given the association of temporal alpha with fear circuitry (learning and conditioning), exposure to complex childhood trauma (CCT) is reflected in the temporal-posterior alpha power in resting-state electroencephalography (EEG) in complex trauma-exposed adolescents in a sample of 25 adolescents and similar controls aged 12-17 years. Both trauma and psychopathology were screened or assessed, and resting-state EEG was recorded following a preregistered protocol for data collection. Temporal-posterior alpha power, corresponding to the T5 and T6 electrode locations (international 10-20 system), was extracted from resting-state EEG in both eyes-open and eyes-closed conditions. We found that in the eyes-open condition, temporal-posterior alpha was significantly lower in adolescents exposed to CCT relative to healthy controls, suggesting that childhood trauma exposure may have a measurable impact on alpha oscillatory patterns. Our study highlights the importance of considering potential neural markers, such as temporal-posterior alpha power, to understanding the long-term consequences of CCT exposure in developmental samples, with possible important clinical implications in guiding neuroregulation interventions.
Collapse
Affiliation(s)
- Gabriela Mariana Marcu
- Division of Physiology and Neuroscience, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Psychology, Faculty of Social Sciences and Humanities, “Lucian Blaga” University of Sibiu, 550201 Sibiu, Romania
- Collective of Scientific Research in Neurosciences of the Clinical Psychiatry Hospital “Dr. Gheorghe Preda”, 550082 Sibiu, Romania
| | - Ciprian Ionuț Băcilă
- Collective of Scientific Research in Neurosciences of the Clinical Psychiatry Hospital “Dr. Gheorghe Preda”, 550082 Sibiu, Romania
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania
| | - Ana-Maria Zăgrean
- Division of Physiology and Neuroscience, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
17
|
Pilipenko A, Samaha J. Double Dissociation of Spontaneous Alpha-Band Activity and Pupil-Linked Arousal on Additive and Multiplicative Perceptual Gain. J Neurosci 2024; 44:e1944232024. [PMID: 38548339 PMCID: PMC11079969 DOI: 10.1523/jneurosci.1944-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 05/12/2024] Open
Abstract
Perception is a probabilistic process dependent on external stimulus properties and one's internal state. However, which internal states influence perception and via what mechanisms remain debated. We studied how spontaneous alpha-band activity (8-13 Hz) and pupil fluctuations impact visual detection and confidence across stimulus contrast levels (i.e., the contrast response function, CRF). In human subjects of both sexes, we found that low prestimulus alpha power induced an "additive" shift in the CRF, whereby stimuli were reported present more frequently at all contrast levels, including contrast of zero (i.e., false alarms). Conversely, prestimulus pupil size had a "multiplicative" effect on detection such that stimuli occurring during large pupil states (putatively corresponding to higher arousal) were perceived more frequently as contrast increased. Signal detection modeling reveals that alpha power changes detection criteria equally across the CRF but not detection sensitivity (d'), whereas pupil-linked arousal modulated sensitivity, particularly for higher contrasts. Interestingly, pupil size and alpha power were positively correlated, meaning that some of the effect of alpha on detection may be mediated by pupil fluctuations. However, pupil-independent alpha still induced an additive shift in the CRF corresponding to a criterion effect. Our data imply that low alpha boosts detection and confidence by an additive factor, rather than by a multiplicative scaling of contrast responses, a profile which captures the effect of pupil-linked arousal. We suggest that alpha power and arousal fluctuations have dissociable effects on behavior. Alpha reflects the baseline level of visual excitability, which can vary independent of arousal.
Collapse
Affiliation(s)
- April Pilipenko
- Department of Psychology, University of California, Santa Cruz, California 95064
| | - Jason Samaha
- Department of Psychology, University of California, Santa Cruz, California 95064
| |
Collapse
|
18
|
Jensen O. Distractor inhibition by alpha oscillations is controlled by an indirect mechanism governed by goal-relevant information. COMMUNICATIONS PSYCHOLOGY 2024; 2:36. [PMID: 38665356 PMCID: PMC11041682 DOI: 10.1038/s44271-024-00081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
The role of alpha oscillations (8-13 Hz) in cognition is intensively investigated. While intracranial animal recordings demonstrate that alpha oscillations are associated with decreased neuronal excitability, it is been questioned whether alpha oscillations are under direct control from frontoparietal areas to suppress visual distractors. We here point to a revised mechanism in which alpha oscillations are controlled by an indirect mechanism governed by the load of goal-relevant information - a view compatible with perceptual load theory. We will outline how this framework can be further tested and discuss the consequences for network dynamics and resource allocation in the working brain.
Collapse
Affiliation(s)
- Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B152TT UK
| |
Collapse
|
19
|
Yu S, Konjusha A, Ziemssen T, Beste C. Inhibitory control in WM gate-opening: Insights from alpha desynchronization and norepinephrine activity under atDCS stimulation. Neuroimage 2024; 289:120541. [PMID: 38360384 DOI: 10.1016/j.neuroimage.2024.120541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024] Open
Abstract
Our everyday activities require the maintenance and continuous updating of information in working memory (WM). To control this dynamic, WM gating mechanisms have been suggested to be in place, but the neurophysiological mechanisms behind these processes are far from being understood. This is especially the case when it comes to the role of oscillatory neural activity. In the current study we combined EEG recordings, and anodal transcranial direct current stimulation (atDCS) and pupil diameter recordings to triangulate neurophysiology, functional neuroanatomy and neurobiology. The results revealed that atDCS, compared to sham stimulation, affected the WM gate opening mechanism, but not the WM gate closing mechanism. The altered behavioral performance was associated with specific changes in alpha band activities (reflected by alpha desynchronization), indicating a role for inhibitory control during WM gate opening. Functionally, the left superior and inferior parietal cortices, were associated with these processes. The findings are the first to show a causal relevance of alpha desynchronization processes in WM gating processes. Notably, pupil diameter recordings as an indirect index of the norepinephrine (NE) system activity revealed that individuals with stronger inhibitory control (as indexed through alpha desynchronization) showed less pupil dilation, suggesting they needed less NE activity to support WM gate opening. However, when atDCS was applied, this connection disappeared. The study suggests a close link between inhibitory controlled WM gating in parietal cortices, alpha band dynamics and the NE system.
Collapse
Affiliation(s)
- Shijing Yu
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Cognitive Neurophysiology, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany.
| | - Anyla Konjusha
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Cognitive Neurophysiology, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | - Tjalf Ziemssen
- Department of Neurology, Faculty of Medicine, TU Dresden, Germany
| | - Christian Beste
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Cognitive Neurophysiology, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany; Faculty of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
20
|
Samaha J, Romei V. Alpha-band Brain Dynamics and Temporal Processing: An Introduction to the Special Focus. J Cogn Neurosci 2024; 36:567-571. [PMID: 38261401 DOI: 10.1162/jocn_a_02105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
For decades, the intriguing connection between the human alpha rhythm (an 8- to 13-Hz oscillation maximal over posterior cortex) and temporal processes in perception has furnished a rich landscape of proposals. The past decade, however, has seen a surge in interest in the topic, bringing new theoretical, analytic, and methodological developments alongside fresh controversies. This Special Focus on alpha-band dynamics and temporal processing provides an up-to-date snapshot of the playing field, with contributions from leading researchers in the field spanning original perspectives, new evidence, comprehensive reviews and meta-analyses, as well as discussion of ongoing controversies and paths forward. We hope that the perspectives captured here will help catalyze future research and shape the pathways toward a theoretically grounded and mechanistic account of the link between alpha dynamics and temporal properties of perception.
Collapse
Affiliation(s)
| | - Vincenzo Romei
- Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Centro Studi e Ricerche in Neuroscienze Cognitive, Cesena, Italy
- Facultad de Lenguas y Educación, Universidad Antonio de Nebrija, Madrid, Spain
| |
Collapse
|
21
|
Zioga I, Zhou YJ, Weissbart H, Martin AE, Haegens S. Alpha and Beta Oscillations Differentially Support Word Production in a Rule-Switching Task. eNeuro 2024; 11:ENEURO.0312-23.2024. [PMID: 38490743 PMCID: PMC10988358 DOI: 10.1523/eneuro.0312-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/26/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
Research into the role of brain oscillations in basic perceptual and cognitive functions has suggested that the alpha rhythm reflects functional inhibition while the beta rhythm reflects neural ensemble (re)activation. However, little is known regarding the generalization of these proposed fundamental operations to linguistic processes, such as speech comprehension and production. Here, we recorded magnetoencephalography in participants performing a novel rule-switching paradigm. Specifically, Dutch native speakers had to produce an alternative exemplar from the same category or a feature of a given target word embedded in spoken sentences (e.g., for the word "tuna", an exemplar from the same category-"seafood"-would be "shrimp", and a feature would be "pink"). A cue indicated the task rule-exemplar or feature-either before (pre-cue) or after (retro-cue) listening to the sentence. Alpha power during the working memory delay was lower for retro-cue compared with that for pre-cue in the left hemispheric language-related regions. Critically, alpha power negatively correlated with reaction times, suggestive of alpha facilitating task performance by regulating inhibition in regions linked to lexical retrieval. Furthermore, we observed a different spatiotemporal pattern of beta activity for exemplars versus features in the right temporoparietal regions, in line with the proposed role of beta in recruiting neural networks for the encoding of distinct categories. Overall, our study provides evidence for the generalizability of the role of alpha and beta oscillations from perceptual to more "complex, linguistic processes" and offers a novel task to investigate links between rule-switching, working memory, and word production.
Collapse
Affiliation(s)
- Ioanna Zioga
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 EN, The Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
| | - Ying Joey Zhou
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 EN, The Netherlands
- Department of Psychiatry, Oxford Centre for Human Brain Activity, Oxford, United Kingdom
| | - Hugo Weissbart
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 EN, The Netherlands
| | - Andrea E Martin
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 EN, The Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
| | - Saskia Haegens
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 EN, The Netherlands
- Department of Psychiatry, Columbia University, New York, New York 10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, New York 10032
| |
Collapse
|
22
|
De Luca R, Gangemi A, Bonanno M, Fabio RA, Cardile D, Maggio MG, Rifici C, Vermiglio G, Di Ciuccio D, Messina A, Quartarone A, Calabrò RS. Improving Neuroplasticity through Robotic Verticalization Training in Patients with Minimally Conscious State: A Retrospective Study. Brain Sci 2024; 14:319. [PMID: 38671971 PMCID: PMC11048571 DOI: 10.3390/brainsci14040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/17/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
In disorders of consciousness, verticalization is considered an effective type of treatment to improve motor and cognitive recovery. Our purpose is to investigate neurophysiological effects of robotic verticalization training (RVT) in patients with minimally conscious state (MCS). Thirty subjects affected by MCS due to traumatic or vascular brain injury, attending the intensive Neurorehabilitation Unit of the IRCCS Neurolesi (Messina, Italy), were included in this retrospective study. They were equally divided into two groups: the control group (CG) received traditional verticalization with a static bed and the experimental group (EG) received advanced robotic verticalization using the Erigo device. Each patient was evaluated using both clinical scales, including Levels of Cognitive Functioning (LCF) and Functional Independence Measure (FIM), and quantitative EEG pre (T0) and post each treatment (T1). The treatment lasted for eight consecutive weeks, and sessions were held three times a week, in addition to standard neurorehabilitation. In addition to a notable improvement in clinical parameters, such as functional (FIM) (p < 0.01) and cognitive (LCF) (p < 0.01) outcomes, our findings showed a significant modification in alpha and beta bands post-intervention, underscoring the promising effect of the Erigo device to influence neural plasticity and indicating a noteworthy difference between pre-post intervention. This was not observed in the CG. The observed changes in alpha and beta bands underscore the potential of the Erigo device to induce neural plasticity. The device's custom features and programming, tailored to individual patient needs, may contribute to its unique impact on brain responses.
Collapse
Affiliation(s)
- Rosaria De Luca
- IRCCS Centro Neurolesi Bonino-Pulejo, Cda Casazza, SS 113, 98124 Messina, Italy; (R.D.L.); (A.G.); (D.C.); (M.G.M.); (C.R.); (G.V.); (D.D.C.); (A.M.); (A.Q.); (R.S.C.)
| | - Antonio Gangemi
- IRCCS Centro Neurolesi Bonino-Pulejo, Cda Casazza, SS 113, 98124 Messina, Italy; (R.D.L.); (A.G.); (D.C.); (M.G.M.); (C.R.); (G.V.); (D.D.C.); (A.M.); (A.Q.); (R.S.C.)
| | - Mirjam Bonanno
- IRCCS Centro Neurolesi Bonino-Pulejo, Cda Casazza, SS 113, 98124 Messina, Italy; (R.D.L.); (A.G.); (D.C.); (M.G.M.); (C.R.); (G.V.); (D.D.C.); (A.M.); (A.Q.); (R.S.C.)
| | - Rosa Angela Fabio
- Department of Economics, University of Messina, 98100 Messina, Italy;
| | - Davide Cardile
- IRCCS Centro Neurolesi Bonino-Pulejo, Cda Casazza, SS 113, 98124 Messina, Italy; (R.D.L.); (A.G.); (D.C.); (M.G.M.); (C.R.); (G.V.); (D.D.C.); (A.M.); (A.Q.); (R.S.C.)
| | - Maria Grazia Maggio
- IRCCS Centro Neurolesi Bonino-Pulejo, Cda Casazza, SS 113, 98124 Messina, Italy; (R.D.L.); (A.G.); (D.C.); (M.G.M.); (C.R.); (G.V.); (D.D.C.); (A.M.); (A.Q.); (R.S.C.)
| | - Carmela Rifici
- IRCCS Centro Neurolesi Bonino-Pulejo, Cda Casazza, SS 113, 98124 Messina, Italy; (R.D.L.); (A.G.); (D.C.); (M.G.M.); (C.R.); (G.V.); (D.D.C.); (A.M.); (A.Q.); (R.S.C.)
| | - Giuliana Vermiglio
- IRCCS Centro Neurolesi Bonino-Pulejo, Cda Casazza, SS 113, 98124 Messina, Italy; (R.D.L.); (A.G.); (D.C.); (M.G.M.); (C.R.); (G.V.); (D.D.C.); (A.M.); (A.Q.); (R.S.C.)
| | - Daniela Di Ciuccio
- IRCCS Centro Neurolesi Bonino-Pulejo, Cda Casazza, SS 113, 98124 Messina, Italy; (R.D.L.); (A.G.); (D.C.); (M.G.M.); (C.R.); (G.V.); (D.D.C.); (A.M.); (A.Q.); (R.S.C.)
| | - Angela Messina
- IRCCS Centro Neurolesi Bonino-Pulejo, Cda Casazza, SS 113, 98124 Messina, Italy; (R.D.L.); (A.G.); (D.C.); (M.G.M.); (C.R.); (G.V.); (D.D.C.); (A.M.); (A.Q.); (R.S.C.)
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino-Pulejo, Cda Casazza, SS 113, 98124 Messina, Italy; (R.D.L.); (A.G.); (D.C.); (M.G.M.); (C.R.); (G.V.); (D.D.C.); (A.M.); (A.Q.); (R.S.C.)
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino-Pulejo, Cda Casazza, SS 113, 98124 Messina, Italy; (R.D.L.); (A.G.); (D.C.); (M.G.M.); (C.R.); (G.V.); (D.D.C.); (A.M.); (A.Q.); (R.S.C.)
| |
Collapse
|
23
|
Beerendonk L, Mejías JF, Nuiten SA, de Gee JW, Fahrenfort JJ, van Gaal S. A disinhibitory circuit mechanism explains a general principle of peak performance during mid-level arousal. Proc Natl Acad Sci U S A 2024; 121:e2312898121. [PMID: 38277436 PMCID: PMC10835062 DOI: 10.1073/pnas.2312898121] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/04/2023] [Indexed: 01/28/2024] Open
Abstract
Perceptual decision-making is highly dependent on the momentary arousal state of the brain, which fluctuates over time on a scale of hours, minutes, and even seconds. The textbook relationship between momentary arousal and task performance is captured by an inverted U-shape, as put forward in the Yerkes-Dodson law. This law suggests optimal performance at moderate levels of arousal and impaired performance at low or high arousal levels. However, despite its popularity, the evidence for this relationship in humans is mixed at best. Here, we use pupil-indexed arousal and performance data from various perceptual decision-making tasks to provide converging evidence for the inverted U-shaped relationship between spontaneous arousal fluctuations and performance across different decision types (discrimination, detection) and sensory modalities (visual, auditory). To further understand this relationship, we built a neurobiologically plausible mechanistic model and show that it is possible to reproduce our findings by incorporating two types of interneurons that are both modulated by an arousal signal. The model architecture produces two dynamical regimes under the influence of arousal: one regime in which performance increases with arousal and another regime in which performance decreases with arousal, together forming an inverted U-shaped arousal-performance relationship. We conclude that the inverted U-shaped arousal-performance relationship is a general and robust property of sensory processing. It might be brought about by the influence of arousal on two types of interneurons that together act as a disinhibitory pathway for the neural populations that encode the available sensory evidence used for the decision.
Collapse
Affiliation(s)
- Lola Beerendonk
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam1001NK, The Netherlands
| | - Jorge F. Mejías
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098XH, The Netherlands
| | - Stijn A. Nuiten
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Universitäre Psychiatrische Kliniken Basel, Wilhelm Klein-Strasse 27, Basel4002, Switzerland
| | - Jan Willem de Gee
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098XH, The Netherlands
| | - Johannes J. Fahrenfort
- Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam1081HV, The Netherlands
- Department of Applied and Experimental Psychology, Vrije Universiteit Amsterdam, Amsterdam1081HV, The Netherlands
| | - Simon van Gaal
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam1001NK, The Netherlands
| |
Collapse
|
24
|
Nuiten SA, de Gee JW, Zantvoord JB, Fahrenfort JJ, van Gaal S. Catecholaminergic neuromodulation and selective attention jointly shape perceptual decision-making. eLife 2023; 12:RP87022. [PMID: 38038722 PMCID: PMC10691802 DOI: 10.7554/elife.87022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Perceptual decisions about sensory input are influenced by fluctuations in ongoing neural activity, most prominently driven by attention and neuromodulator systems. It is currently unknown if neuromodulator activity and attention differentially modulate perceptual decision-making and/or whether neuromodulatory systems in fact control attentional processes. To investigate the effects of two distinct neuromodulatory systems and spatial attention on perceptual decisions, we pharmacologically elevated cholinergic (through donepezil) and catecholaminergic (through atomoxetine) levels in humans performing a visuo-spatial attention task, while we measured electroencephalography (EEG). Both attention and catecholaminergic enhancement improved decision-making at the behavioral and algorithmic level, as reflected in increased perceptual sensitivity and the modulation of the drift rate parameter derived from drift diffusion modeling. Univariate analyses of EEG data time-locked to the attentional cue, the target stimulus, and the motor response further revealed that attention and catecholaminergic enhancement both modulated pre-stimulus cortical excitability, cue- and stimulus-evoked sensory activity, as well as parietal evidence accumulation signals. Interestingly, we observed both similar, unique, and interactive effects of attention and catecholaminergic neuromodulation on these behavioral, algorithmic, and neural markers of the decision-making process. Thereby, this study reveals an intricate relationship between attentional and catecholaminergic systems and advances our understanding about how these systems jointly shape various stages of perceptual decision-making.
Collapse
Affiliation(s)
- Stijn A Nuiten
- Department of Psychology, University of AmsterdamAmsterdamNetherlands
- Amsterdam Brain & Cognition, University of AmsterdamAmsterdamNetherlands
- Department of Psychiatry (UPK), University of BaselBaselSwitzerland
| | - Jan Willem de Gee
- Amsterdam Brain & Cognition, University of AmsterdamAmsterdamNetherlands
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdamNetherlands
| | - Jasper B Zantvoord
- Department of Psychiatry, Amsterdam UMC location University of AmsterdamAmsterdamNetherlands
- Amsterdam NeuroscienceAmsterdamNetherlands
| | - Johannes J Fahrenfort
- Department of Psychology, University of AmsterdamAmsterdamNetherlands
- Amsterdam Brain & Cognition, University of AmsterdamAmsterdamNetherlands
- Institute for Brain and Behavior Amsterdam, Vrije Universiteit AmsterdamAmsterdamNetherlands
- Department of Experimental and Applied Psychology - Cognitive Psychology, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Simon van Gaal
- Department of Psychology, University of AmsterdamAmsterdamNetherlands
- Amsterdam Brain & Cognition, University of AmsterdamAmsterdamNetherlands
| |
Collapse
|
25
|
Zhou T, Kawasaki K, Suzuki T, Hasegawa I, Roe AW, Tanigawa H. Mapping information flow between the inferotemporal and prefrontal cortices via neural oscillations in memory retrieval and maintenance. Cell Rep 2023; 42:113169. [PMID: 37740917 DOI: 10.1016/j.celrep.2023.113169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023] Open
Abstract
Interaction between the inferotemporal (ITC) and prefrontal (PFC) cortices is critical for retrieving information from memory and maintaining it in working memory. Neural oscillations provide a mechanism for communication between brain regions. However, it remains unknown how information flow via neural oscillations is functionally organized in these cortices during these processes. In this study, we apply Granger causality analysis to electrocorticographic signals from both cortices of monkeys performing visual association tasks to map information flow. Our results reveal regions within the ITC where information flow to and from the PFC increases via specific frequency oscillations to form clusters during memory retrieval and maintenance. Theta-band information flow in both directions increases in similar regions in both cortices, suggesting reciprocal information exchange in those regions. These findings suggest that specific subregions function as nodes in the memory information-processing network between the ITC and the PFC.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Neurosurgery of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Keisuke Kawasaki
- Department of Physiology, Niigata University School of Medicine, Niigata, Niigata 951-8501, Japan
| | - Takafumi Suzuki
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Osaka 565-0871, Japan; Osaka University, Suita, Osaka 565-0871, Japan
| | - Isao Hasegawa
- Department of Physiology, Niigata University School of Medicine, Niigata, Niigata 951-8501, Japan
| | - Anna Wang Roe
- Department of Neurosurgery of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| | - Hisashi Tanigawa
- Department of Neurosurgery of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; Department of Physiology, Niigata University School of Medicine, Niigata, Niigata 951-8501, Japan.
| |
Collapse
|
26
|
Wagner M, Rusiniak M, Higby E, Nourski KV. Sensory processing of native and non-native phonotactic patterns in the alpha and beta frequency bands. Neuropsychologia 2023; 189:108659. [PMID: 37579990 PMCID: PMC10602391 DOI: 10.1016/j.neuropsychologia.2023.108659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
The phonotactic patterns of one's native language are established within cortical network processing during development. Sensory processing of native language phonotactic patterns established in memory may be modulated by top-down signals within the alpha and beta frequency bands. To explore sensory processing of phonotactic patterns in the alpha and beta frequency bands, electroencephalograms (EEGs) were recorded from native Polish and native English-speaking adults as they listened to spoken nonwords within same and different nonword pairs. The nonwords contained three phonological sequence onsets that occur in the Polish and English languages (/pət/, /st/, /sət/) and one onset sequence /pt/, which occurs in Polish but not in English onsets. Source localization modeling was used to transform 64-channel EEGs into brain source-level channels. Spectral power values in the low frequencies (2-29 Hz) were analyzed in response to the first nonword in nonword pairs within the context of counterbalanced listening-task conditions, which were presented on separate testing days. For the with-task listening condition, participants performed a behavioral task to the second nonword in the pairs. For the without-task condition participants were only instructed to listen to the stimuli. Thus, in the with-task condition, the first nonword served as a cue for the second nonword, the target stimulus. The results revealed decreased spectral power in the beta frequency band for the with-task condition compared to the without-task condition in response to native language phonotactic patterns. In contrast, the task-related suppression effects in response to the non-native phonotactic pattern /pt/ for the English listeners extended into the alpha frequency band. These effects were localized to source channels in left auditory cortex, the left anterior temporal cortex and the occipital pole. This exploratory study revealed a pattern of results that, if replicated, suggests that native language speech perception is supported by modulations in the alpha and beta frequency bands.
Collapse
Affiliation(s)
- Monica Wagner
- St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| | | | - Eve Higby
- California State University, East Bay, 25800 Carlos Bee Blvd, Hayward, CA, 94542, USA.
| | - Kirill V Nourski
- The University of Iowa, 200 Hawkins Dr., Iowa City, IA, 52242, USA.
| |
Collapse
|
27
|
Cunningham E, Zimnicki C, Beck DM. The Influence of Prestimulus 1/f-Like versus Alpha-Band Activity on Subjective Awareness of Auditory and Visual Stimuli. J Neurosci 2023; 43:6447-6459. [PMID: 37591739 PMCID: PMC10500988 DOI: 10.1523/jneurosci.0238-23.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
Alpha rhythmic activity is often suggested to exert an inhibitory influence on information processing. However, relatively little is known about how reported alpha-related effects are influenced by a potential confounding element of the neural signal, power-law scaling. In the current study, we systematically examine the effect of accounting for 1/f activity on the relation between prestimulus alpha power and human behavior during both auditory and visual detection (N = 27; 19 female, 6 male, 2 nonbinary). The results suggest that, at least in the scalp-recorded EEG signal, the difference in alpha power often reported before visual hits versus misses is probably best thought of as a combination of narrowband alpha and broadband shifts. That is, changes in broadband parameters (exponent and offset of 1/f-like activity) also appear to be strong predictors of the subsequent awareness of visual stimuli. Neither changes in posterior alpha power nor changes in 1/f-like activity reliably predicted detection of auditory stimuli. These results appear consistent with suggestions that broadband changes in the scalp-recorded EEG signal may account for a portion of prior results linking alpha band dynamics to visuospatial attention and behavior, and suggest that systematic re-examination of existing data may be warranted.Significance Statement Fluctuations in alpha band (∼8-12 Hz) activity systematically follow the allocation of attention across space and sensory modality. Increases in alpha amplitude, which often precede failures to report awareness of threshold visual stimuli, are suggested to exert an inhibitory influence on information processing. However, fluctuations in alpha activity are often confounded with changes in the broadband 1/f-like pattern of the neural signal. When both factors are considered, we find that changes in broadband activity are as effective as narrowband alpha activity as predictors of subsequent visual detection. These results are consistent with emerging understanding of the potential functional importance of broadband changes in the neural signal and may have significant consequences for our understanding of alpha rhythmic activity.
Collapse
Affiliation(s)
- Emily Cunningham
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, Illinois 61820
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Clementine Zimnicki
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, Illinois 61820
| | - Diane M Beck
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, Illinois 61820
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
28
|
Menétrey MQ, Herzog MH, Pascucci D. Pre-stimulus alpha activity modulates long-lasting unconscious feature integration. Neuroimage 2023; 278:120298. [PMID: 37517573 DOI: 10.1016/j.neuroimage.2023.120298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/28/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023] Open
Abstract
Pre-stimulus alpha (α) activity can influence perception of shortly presented, low-contrast stimuli. The underlying mechanisms are often thought to affect perception exactly at the time of presentation. In addition, it is suggested that α cycles determine temporal windows of integration. However, in everyday situations, stimuli are usually presented for periods longer than ∼100 ms and perception is often an integration of information across space and time. Moving objects are just one example. Hence, the question is whether α activity plays a role also in temporal integration, especially when stimuli are integrated over several α cycles. Using electroencephalography (EEG), we investigated the relationship between pre-stimulus brain activity and long-lasting integration in the sequential metacontrast paradigm (SQM), where two opposite vernier offsets, embedded in a stream of lines, are unconsciously integrated into a single percept. We show that increases in α power, even 300 ms before the stimulus, affected the probability of reporting the first offset, shown at the very beginning of the SQM. This effect was mediated by the systematic slowing of the α rhythm that followed the peak in α power. No phase effects were found. Together, our results demonstrate a cascade of neural changes, following spontaneous bursts of α activity and extending beyond a single moment, which influences the sensory representation of visual features for hundreds of milliseconds. Crucially, as feature integration in the SQM occurs before a conscious percept is elicited, this also provides evidence that α activity is linked to mechanisms regulating unconscious processing.
Collapse
Affiliation(s)
- Maëlan Q Menétrey
- Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Michael H Herzog
- Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David Pascucci
- Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
29
|
Kim B, Erickson BA, Fernandez-Nunez G, Rich R, Mentzelopoulos G, Vitale F, Medaglia JD. EEG Phase Can Be Predicted with Similar Accuracy across Cognitive States after Accounting for Power and Signal-to-Noise Ratio. eNeuro 2023; 10:ENEURO.0050-23.2023. [PMID: 37558464 PMCID: PMC10481640 DOI: 10.1523/eneuro.0050-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/25/2023] [Accepted: 06/15/2023] [Indexed: 08/11/2023] Open
Abstract
EEG phase is increasingly used in cognitive neuroscience, brain-computer interfaces, and closed-loop stimulation devices. However, it is unknown how accurate EEG phase prediction is across cognitive states. We determined the EEG phase prediction accuracy of parieto-occipital alpha waves across rest and task states in 484 participants over 11 public datasets. We were able to track EEG phase accurately across various cognitive conditions and datasets, especially during periods of high instantaneous alpha power and signal-to-noise ratio (SNR). Although resting states generally have higher accuracies than task states, absolute accuracy differences were small, with most of these differences attributable to EEG power and SNR. These results suggest that experiments and technologies using EEG phase should focus more on minimizing external noise and waiting for periods of high power rather than inducing a particular cognitive state.
Collapse
Affiliation(s)
- Brian Kim
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, Pennsylvania 19104
| | - Brian A Erickson
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, Pennsylvania 19104
| | | | - Ryan Rich
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, Pennsylvania 19104
| | - Georgios Mentzelopoulos
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania 19104
| | - Flavia Vitale
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania 19104
- Departments of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Physical Medicine and Rehabilitation, University of Pennsylvania, Philadelphia, Pennsylvania 19146
| | - John D Medaglia
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, Pennsylvania 19104
- Departments of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Neurology, Drexel University, Philadelphia, Pennsylvania 19104
| |
Collapse
|
30
|
Chae S, Sihn D, Kim SP. Bias in Prestimulus Motor Cortical Activity Determines Decision-making Error in Rodents. Exp Neurobiol 2023; 32:271-284. [PMID: 37749928 PMCID: PMC10569143 DOI: 10.5607/en23020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023] Open
Abstract
Decision-making is a complex process that involves the integration and interpretation of sensory information to guide actions. The rodent motor cortex, which is generally involved in motor planning and execution, also plays a critical role in decision-making processes. In perceptual delayed-response tasks, the rodent motor cortex can represent sensory cues, as well as the decision of where to move. However, it remains unclear whether erroneous decisions arise from incorrect encoding of sensory information or improper utilization of the collected sensory information in the motor cortex. In this study, we analyzed the rodent anterior lateral motor cortex (ALM) while the mice performed perceptual delayed-response tasks. We divided population activities into sensory and choice signals to separately examine the encoding and utilization of sensory information. We found that the encoding of sensory information in the error trials was similar to that in the hit trials, whereas choice signals evolved differently between the error and hit trials. In error trials, choice signals displayed an offset in the opposite direction of instructed licking even before stimulus presentation, and this tendency gradually increased after stimulus onset, leading to incorrect licking. These findings suggest that decision errors are caused by biases in choice-related activities rather than by incorrect sensory encoding. Our study elaborates on the understanding of decision-making processes by providing neural substrates for erroneous decisions.
Collapse
Affiliation(s)
- Soyoung Chae
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Duho Sihn
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| |
Collapse
|
31
|
Vigué-Guix I, Soto-Faraco S. Using occipital ⍺-bursts to modulate behavior in real-time. Cereb Cortex 2023; 33:9465-9477. [PMID: 37365814 DOI: 10.1093/cercor/bhad217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Pre-stimulus endogenous neural activity can influence the processing of upcoming sensory input and subsequent behavioral reactions. Despite it is known that spontaneous oscillatory activity mostly appears in stochastic bursts, typical approaches based on trial averaging fail to capture this. We aimed at relating spontaneous oscillatory bursts in the alpha band (8-13 Hz) to visual detection behavior, via an electroencephalography-based brain-computer interface (BCI) that allowed for burst-triggered stimulus presentation in real-time. According to alpha theories, we hypothesized that visual targets presented during alpha-bursts should lead to slower responses and higher miss rates, whereas targets presented in the absence of bursts (low alpha activity) should lead to faster responses and higher false alarm rates. Our findings support the role of bursts of alpha oscillations in visual perception and exemplify how real-time BCI systems can be used as a test bench for brain-behavioral theories.
Collapse
Affiliation(s)
- Irene Vigué-Guix
- Center for Brain and Cognition, Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra, Barcelona 08005, Spain
| | - Salvador Soto-Faraco
- Center for Brain and Cognition, Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra, Barcelona 08005, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
32
|
Vidaurre C, Gurunandan K, Idaji MJ, Nolte G, Gómez M, Villringer A, Müller KR, Nikulin VV. Novel multivariate methods to track frequency shifts of neural oscillations in EEG/MEG recordings. Neuroimage 2023; 276:120178. [PMID: 37236554 DOI: 10.1016/j.neuroimage.2023.120178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 03/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Instantaneous and peak frequency changes in neural oscillations have been linked to many perceptual, motor, and cognitive processes. Yet, the majority of such studies have been performed in sensor space and only occasionally in source space. Furthermore, both terms have been used interchangeably in the literature, although they do not reflect the same aspect of neural oscillations. In this paper, we discuss the relation between instantaneous frequency, peak frequency, and local frequency, the latter also known as spectral centroid. Furthermore, we propose and validate three different methods to extract source signals from multichannel data whose (instantaneous, local, or peak) frequency estimate is maximally correlated to an experimental variable of interest. Results show that the local frequency might be a better estimate of frequency variability than instantaneous frequency under conditions with low signal-to-noise ratio. Additionally, the source separation methods based on local and peak frequency estimates, called LFD and PFD respectively, provide more stable estimates than the decomposition based on instantaneous frequency. In particular, LFD and PFD are able to recover the sources of interest in simulations performed with a realistic head model, providing higher correlations with an experimental variable than multiple linear regression. Finally, we also tested all decomposition methods on real EEG data from a steady-state visual evoked potential paradigm and show that the recovered sources are located in areas similar to those previously reported in other studies, thus providing further validation of the proposed methods.
Collapse
Affiliation(s)
- C Vidaurre
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain; Tecnalia Research and Innovation, Neuroengineering Group, Health Unit, Donostia, Spain; Dept. of Statistics, Computer Science and Mathematics, Public University of Navarre, Pamplona, Spain.
| | - K Gurunandan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK; BCBL. Basque Center on Cognition, Brain and Language, Donostia-San Sebastián, Spain
| | - M Jamshidi Idaji
- Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany; BIFOLD-Berlin Institute for the Foundations of Learning and Data, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - G Nolte
- Dept. of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Gómez
- Dept. of Statistics, Computer Science and Mathematics, Public University of Navarre, Pamplona, Spain
| | - A Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - K-R Müller
- Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany; BIFOLD-Berlin Institute for the Foundations of Learning and Data, Germany; Department of Artificial Intelligence, Korea University, Anam-dong, Seongbuk-gu, Seoul 02841, South Korea; Max Planck Institute for Informatics, Stuhlsatzenhausweg, 66123 Saarbrücken, Germany
| | - V V Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
33
|
Wei J, Yao Z, Huang G, Li L, Liang Z, Zhang L, Zhang Z. Frontal-occipital phase synchronization predicts occipital alpha power in perceptual decision-making. Cogn Neurodyn 2023; 17:815-827. [PMID: 37522043 PMCID: PMC10374503 DOI: 10.1007/s11571-022-09862-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/19/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022] Open
Abstract
Numerous studies of perceptual decision-making have shown that lower prestimulus alpha power leads to a higher hit rate in visual detection, which is believed to correlate with the top-down control. However, whether frontal-occipital phase synchronization underlying the top-down control could impact the occipital alpha power that directly affects the perceptual performance remains unclear. In this study, we used analyses of the general linear mixed model (GLMM) and event-related potentials (ERPs) to show that the prestimulus alpha power over the occipital area directly affected visual perception. Using both the univariate and multivariate methods, we found that low-frequency (4-30 Hz) frontal-occipital phase synchronization predicted the prestimulus alpha power over the occipital area. Overall, our results suggested that frontal-occipital phase synchronization could predict occipital alpha power that directly affects perceptual decision-making. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09862-7.
Collapse
Affiliation(s)
- Jinwen Wei
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
| | - Ziqing Yao
- Department of Psychology, The University of Hong Kong, Hong Kong S.A.R, China
| | - Gan Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
| | - Linling Li
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
| | - Zhen Liang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
| | - Li Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
| | - Zhiguo Zhang
- Institute of Computing and Intelligence, Harbin Institute of Technology, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
34
|
Houshmand Chatroudi A, Yotsumoto Y. No evidence for the effect of entrainment's phase on duration reproduction and precision of regular intervals. Eur J Neurosci 2023; 58:3037-3057. [PMID: 37369629 DOI: 10.1111/ejn.16071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Perception of time is not always veridical; rather, it is subjected to distortions. One such compelling distortion is that the duration of regularly spaced intervals is often overestimated. One account suggests that excitatory phases of neural entrainment concomitant with such stimuli play a major role. However, assessing the correlation between the power of entrained oscillations and time dilation has yielded inconclusive results. In this study, we evaluated whether phase characteristics of neural oscillations impact time dilation. For this purpose, we entrained 10-Hz oscillations and experimentally manipulated the presentation of flickers so that they were presented either in-phase or out-of-phase relative to the established rhythm. Simultaneous electroencephalography (EEG) recordings confirmed that in-phase and out-of-phase flickers had landed on different inhibitory phases of high-amplitude alpha oscillations. Moreover, to control for confounding factors of expectancy and masking, we created two additional conditions. Results, supplemented by the Bayesian analysis, indicated that the phase of entrained visual alpha oscillation does not differentially affect flicker-induced time dilation. Repeating the same experiment with regularly spaced auditory stimuli replicated the null findings. Moreover, we found a robust enhancement of precision for the reproduction of flickers relative to static stimuli that were partially supported by entrainment models. We discussed our results within the framework of neural oscillations and time-perception models, suggesting that inhibitory cycles of visual alpha may have little relevance to the overestimation of regularly spaced intervals. Moreover, based on our findings, we proposed that temporal oscillators, assumed in entrainment models, may act independently of excitatory phases in the brain's lower level sensory areas.
Collapse
Affiliation(s)
| | - Yuko Yotsumoto
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
35
|
Rodriguez-Larios J, Haegens S. Genuine beta bursts in human working memory: controlling for the influence of lower-frequency rhythms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542448. [PMID: 37292960 PMCID: PMC10245977 DOI: 10.1101/2023.05.26.542448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Human working memory is associated with significant modulations in oscillatory brain activity. However, the functional role of brain rhythms at different frequencies is still debated. Modulations in the beta frequency range (15-40 Hz) are especially difficult to interpret because they could be artifactually produced by (more prominent) oscillations in lower frequencies that show non-sinusoidal properties. In this study, we investigate beta oscillations during working memory while controlling for the possible influence of lower frequency rhythms. We collected electroencephalography (EEG) data in 31 participants who performed a spatial working-memory task with two levels of cognitive load. In order to rule out the possibility that observed beta activity was affected by non-sinusoidalities of lower frequency rhythms, we developed an algorithm that detects transient beta oscillations that do not coincide with more prominent lower frequency rhythms in time and space. Using this algorithm, we show that the amplitude and duration of beta bursts decrease with memory load and during memory manipulation, while their peak frequency and rate increase. In addition, interindividual differences in performance were significantly associated with beta burst rates. Together, our results show that beta rhythms are functionally modulated during working memory and that these changes cannot be attributed to lower frequency rhythms with non-sinusoidal properties.
Collapse
Affiliation(s)
- Julio Rodriguez-Larios
- Dept. of Psychiatry, Columbia University, New York, USA, NY 10032
- Div. of Systems Neuroscience, New York State Psychiatric Institute, New York, USA, NY 10032
| | - Saskia Haegens
- Dept. of Psychiatry, Columbia University, New York, USA, NY 10032
- Div. of Systems Neuroscience, New York State Psychiatric Institute, New York, USA, NY 10032
- Donders Institute for Brain, Cognition & Behavior, Radboud University, Nijmegen, The Netherlands, 6525 EN
| |
Collapse
|
36
|
Kral A, Sharma A. Crossmodal plasticity in hearing loss. Trends Neurosci 2023; 46:377-393. [PMID: 36990952 PMCID: PMC10121905 DOI: 10.1016/j.tins.2023.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/27/2023] [Accepted: 02/21/2023] [Indexed: 03/29/2023]
Abstract
Crossmodal plasticity is a textbook example of the ability of the brain to reorganize based on use. We review evidence from the auditory system showing that such reorganization has significant limits, is dependent on pre-existing circuitry and top-down interactions, and that extensive reorganization is often absent. We argue that the evidence does not support the hypothesis that crossmodal reorganization is responsible for closing critical periods in deafness, and crossmodal plasticity instead represents a neuronal process that is dynamically adaptable. We evaluate the evidence for crossmodal changes in both developmental and adult-onset deafness, which start as early as mild-moderate hearing loss and show reversibility when hearing is restored. Finally, crossmodal plasticity does not appear to affect the neuronal preconditions for successful hearing restoration. Given its dynamic and versatile nature, we describe how this plasticity can be exploited for improving clinical outcomes after neurosensory restoration.
Collapse
Affiliation(s)
- Andrej Kral
- Institute of AudioNeuroTechnology and Department of Experimental Otology, Otolaryngology Clinics, Hannover Medical School, Hannover, Germany; Australian Hearing Hub, School of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Anu Sharma
- Department of Speech Language and Hearing Science, Center for Neuroscience, Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
37
|
McSweeney M, Morales S, Valadez EA, Buzzell GA, Yoder L, Fifer WP, Pini N, Shuffrey LC, Elliott AJ, Isler JR, Fox NA. Age-related trends in aperiodic EEG activity and alpha oscillations during early- to middle-childhood. Neuroimage 2023; 269:119925. [PMID: 36739102 DOI: 10.1016/j.neuroimage.2023.119925] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Age-related structural and functional changes that occur during brain development are critical for cortical development and functioning. Previous electroencephalography (EEG) and magnetoencephalography (MEG) studies have highlighted the utility of power spectra analyses and have uncovered age-related trends that reflect perceptual, cognitive, and behavioural states as well as their underlying neurophysiology. The aim of the current study was to investigate age-related change in aperiodic and periodic alpha activity across a large sample of pre- and school-aged children (N = 502, age range 4 -11-years-of-age). Power spectra were extracted from baseline EEG recordings (eyes closed, eyes open) for each participant and parameterized into aperiodic activity to derive the offset and exponent parameters and periodic alpha oscillatory activity to derive the alpha peak frequency and the associated power estimates. Multilevel models were run to investigate age-related trends and condition-dependent changes for each of these measures. We found quadratic age-related effects for both the aperiodic offset and exponent. In addition, we observed increases in periodic alpha peak frequency as a function of age. Aperiodic measures and periodic alpha power were larger in magnitude during eyes closed compared to the eyes open baseline condition. Taken together, these results advance our understanding of the maturational patterns/trajectories of brain development during early- to middle-childhood.
Collapse
Affiliation(s)
- Marco McSweeney
- Department of Human Development and Quantitative Methodology, University of Maryland, 3304 Benjamin Building, College Park, MD 20742, USA.
| | - Santiago Morales
- Department of Psychology, University of Southern California, USA
| | - Emilio A Valadez
- Department of Human Development and Quantitative Methodology, University of Maryland, 3304 Benjamin Building, College Park, MD 20742, USA
| | - George A Buzzell
- Department of Psychology and the Center for Children and Families, Florida International University, USA
| | - Lydia Yoder
- Department of Human Development and Quantitative Methodology, University of Maryland, 3304 Benjamin Building, College Park, MD 20742, USA
| | - William P Fifer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, USA; Department of Paediatrics, Columbia University Irving Medical Center, New York, USA; Division of Developmental Neuroscience, New York State Psychiatric Institute, USA
| | - Nicolò Pini
- Department of Psychiatry, Columbia University Irving Medical Center, New York, USA; Division of Developmental Neuroscience, New York State Psychiatric Institute, USA
| | - Lauren C Shuffrey
- Department of Psychiatry, Columbia University Irving Medical Center, New York, USA; Division of Developmental Neuroscience, New York State Psychiatric Institute, USA
| | - Amy J Elliott
- Avera Research Institute, USA; Department of Paediatrics, University of South Dakota School of Medicine, USA
| | - Joseph R Isler
- Department of Paediatrics, Columbia University Irving Medical Center, New York, USA
| | - Nathan A Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, 3304 Benjamin Building, College Park, MD 20742, USA
| |
Collapse
|
38
|
Studnicki A, Ferris DP. Parieto-Occipital Electrocortical Dynamics during Real-World Table Tennis. eNeuro 2023; 10:ENEURO.0463-22.2023. [PMID: 37037603 PMCID: PMC10158585 DOI: 10.1523/eneuro.0463-22.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 04/12/2023] Open
Abstract
Traditional human electroencephalography (EEG) experiments that study visuomotor processing use controlled laboratory conditions with limited ecological validity. In the real world, the brain integrates complex, dynamic, multimodal visuomotor cues to guide the execution of movement. The parietal and occipital cortices are especially important in the online control of goal-directed actions. Table tennis is a whole-body, responsive activity requiring rapid visuomotor integration that presents a myriad of unanswered neurocognitive questions about brain function during real-world movement. The aim of this study was to quantify the electrocortical dynamics of the parieto-occipital cortices while playing a sport with high-density electroencephalography. We included analysis of power spectral densities (PSDs), event-related spectral perturbations, intertrial phase coherences (ITPCs), event-related potentials (ERPs), and event-related phase coherences of parieto-occipital source-localized clusters while participants played table tennis with a ball machine and a human. We found significant spectral power fluctuations in the parieto-occipital cortices tied to hit events. Ball machine trials exhibited more fluctuations in θ power around hit events, an increase in intertrial phase coherence and deflection in the event-related potential, and higher event-related phase coherence between parieto-occipital clusters as compared with trials with a human. Our results suggest that sport training with a machine elicits fundamentally different brain dynamics than training with a human.
Collapse
Affiliation(s)
- Amanda Studnicki
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| | - Daniel P Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| |
Collapse
|
39
|
Mercier MR, Dubarry AS, Tadel F, Avanzini P, Axmacher N, Cellier D, Vecchio MD, Hamilton LS, Hermes D, Kahana MJ, Knight RT, Llorens A, Megevand P, Melloni L, Miller KJ, Piai V, Puce A, Ramsey NF, Schwiedrzik CM, Smith SE, Stolk A, Swann NC, Vansteensel MJ, Voytek B, Wang L, Lachaux JP, Oostenveld R. Advances in human intracranial electroencephalography research, guidelines and good practices. Neuroimage 2022; 260:119438. [PMID: 35792291 PMCID: PMC10190110 DOI: 10.1016/j.neuroimage.2022.119438] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/23/2022] [Accepted: 06/30/2022] [Indexed: 12/11/2022] Open
Abstract
Since the second-half of the twentieth century, intracranial electroencephalography (iEEG), including both electrocorticography (ECoG) and stereo-electroencephalography (sEEG), has provided an intimate view into the human brain. At the interface between fundamental research and the clinic, iEEG provides both high temporal resolution and high spatial specificity but comes with constraints, such as the individual's tailored sparsity of electrode sampling. Over the years, researchers in neuroscience developed their practices to make the most of the iEEG approach. Here we offer a critical review of iEEG research practices in a didactic framework for newcomers, as well addressing issues encountered by proficient researchers. The scope is threefold: (i) review common practices in iEEG research, (ii) suggest potential guidelines for working with iEEG data and answer frequently asked questions based on the most widespread practices, and (iii) based on current neurophysiological knowledge and methodologies, pave the way to good practice standards in iEEG research. The organization of this paper follows the steps of iEEG data processing. The first section contextualizes iEEG data collection. The second section focuses on localization of intracranial electrodes. The third section highlights the main pre-processing steps. The fourth section presents iEEG signal analysis methods. The fifth section discusses statistical approaches. The sixth section draws some unique perspectives on iEEG research. Finally, to ensure a consistent nomenclature throughout the manuscript and to align with other guidelines, e.g., Brain Imaging Data Structure (BIDS) and the OHBM Committee on Best Practices in Data Analysis and Sharing (COBIDAS), we provide a glossary to disambiguate terms related to iEEG research.
Collapse
Affiliation(s)
- Manuel R Mercier
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France.
| | | | - François Tadel
- Signal & Image Processing Institute, University of Southern California, Los Angeles, CA United States of America
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Nikolai Axmacher
- Department of Neuropsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Universitätsstraße 150, Bochum 44801, Germany; State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekou Outer St, Beijing 100875, China
| | - Dillan Cellier
- Department of Cognitive Science, University of California, La Jolla, San Diego, United States of America
| | - Maria Del Vecchio
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Liberty S Hamilton
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States of America; Department of Speech, Language, and Hearing Sciences, Moody College of Communication, The University of Texas at Austin, Austin, TX, United States of America
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Robert T Knight
- Department of Psychology and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States of America
| | - Anais Llorens
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
| | - Pierre Megevand
- Department of Clinical neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lucia Melloni
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, Frankfurt am Main 60322, Germany; Department of Neurology, NYU Grossman School of Medicine, 145 East 32nd Street, Room 828, New York, NY 10016, United States of America
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Vitória Piai
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Medical Psychology, Radboudumc, Donders Centre for Medical Neuroscience, Nijmegen, the Netherlands
| | - Aina Puce
- Department of Psychological & Brain Sciences, Programs in Neuroscience, Cognitive Science, Indiana University, Bloomington, IN, United States of America
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, UMC Utrecht, the Netherlands
| | - Caspar M Schwiedrzik
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Göttingen, Germany; Perception and Plasticity Group, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sydney E Smith
- Neurosciences Graduate Program, University of California, La Jolla, San Diego, United States of America
| | - Arjen Stolk
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States of America
| | - Nicole C Swann
- University of Oregon in the Department of Human Physiology, United States of America
| | - Mariska J Vansteensel
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, UMC Utrecht, the Netherlands
| | - Bradley Voytek
- Department of Cognitive Science, University of California, La Jolla, San Diego, United States of America; Neurosciences Graduate Program, University of California, La Jolla, San Diego, United States of America; Halıcıoğlu Data Science Institute, University of California, La Jolla, San Diego, United States of America; Kavli Institute for Brain and Mind, University of California, La Jolla, San Diego, United States of America
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jean-Philippe Lachaux
- Lyon Neuroscience Research Center, EDUWELL Team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; NatMEG, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
40
|
Rodriguez-Larios J, ElShafei A, Wiehe M, Haegens S. Visual working memory recruits two functionally distinct alpha rhythms in posterior cortex. eNeuro 2022; 9:ENEURO.0159-22.2022. [PMID: 36171059 PMCID: PMC9536853 DOI: 10.1523/eneuro.0159-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/20/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
Oscillatory activity in the human brain is dominated by posterior alpha oscillations (8-14 Hz), which have been shown to be functionally relevant in a wide variety of cognitive tasks. Although posterior alpha oscillations are commonly considered a single oscillator anchored at an individual alpha frequency (IAF; ∼10 Hz), previous work suggests that IAF reflects a spatial mixture of different brain rhythms. In this study, we assess whether Independent Component Analysis (ICA) can disentangle functionally distinct posterior alpha rhythms in the context of visual short-term memory retention. Magnetoencephalography (MEG) was recorded in 33 subjects while performing a visual working memory task. Group analysis at sensor level suggested the existence of a single posterior alpha oscillator that increases in power and decreases in frequency during memory retention. Conversely, single-subject analysis of independent components revealed the existence of two dissociable alpha rhythms: one that increases in power during memory retention (Alpha1) and another one that decreases in power (Alpha2). Alpha1 and Alpha2 rhythms were differentially modulated by the presence of visual distractors (Alpha1 increased in power while Alpha2 decreased) and had an opposite relationship with accuracy (positive for Alpha1 and negative for Alpha2). In addition, Alpha1 rhythms showed a lower peak frequency, a narrower peak width, a greater relative peak amplitude and a more central source than Alpha2 rhythms. Together, our results demonstrate that modulations in posterior alpha oscillations during short-term memory retention reflect the dynamics of at least two distinct brain rhythms with different functions and spatiospectral characteristics.Significance statementAlpha oscillations are the most prominent feature of the human brain's electrical activity, and consist of rhythmic neuronal activity in posterior parts of the cortex. Alpha is usually considered a single brain rhythm that changes in power and frequency to support cognitive operations. We here show that posterior alpha entails at least two dissociable rhythms with distinct functions and characteristics. These findings could solve previous inconsistencies in the literature regarding the direction of task-related alpha power/frequency modulations and their relation to cognitive performance. In addition, the existence of two distinct posterior alpha rhythms could have important consequences for the design of neurostimulation protocols aimed at modulating alpha oscillations and subsequently cognition.
Collapse
Affiliation(s)
- Julio Rodriguez-Larios
- Dept. of Psychiatry, Columbia University, New York, USA, NY 10032
- Div. of Systems Neuroscience, New York State Psychiatric Institute, New York, USA, NY 10032
| | - Alma ElShafei
- Donders Institute for Brain, Cognition & Behavior, Radboud University, Nijmegen, The Netherlands, 6525 EN
| | - Melanie Wiehe
- Donders Institute for Brain, Cognition & Behavior, Radboud University, Nijmegen, The Netherlands, 6525 EN
| | - Saskia Haegens
- Dept. of Psychiatry, Columbia University, New York, USA, NY 10032
- Div. of Systems Neuroscience, New York State Psychiatric Institute, New York, USA, NY 10032
- Donders Institute for Brain, Cognition & Behavior, Radboud University, Nijmegen, The Netherlands, 6525 EN
| |
Collapse
|
41
|
Ulanov M, Shtyrov Y. Oscillatory beta/alpha band modulations: A potential biomarker of functional language and motor recovery in chronic stroke? Front Hum Neurosci 2022; 16:940845. [PMID: 36226263 PMCID: PMC9549964 DOI: 10.3389/fnhum.2022.940845] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke remains one of the leading causes of various disabilities, including debilitating motor and language impairments. Though various treatments exist, post-stroke impairments frequently become chronic, dramatically reducing daily life quality, and requiring specific rehabilitation. A critical goal of chronic stroke rehabilitation is to induce, usually through behavioral training, experience-dependent plasticity processes in order to promote functional recovery. However, the efficiency of such interventions is typically modest, and very little is known regarding the neural dynamics underpinning recovery processes and possible biomarkers of their efficiency. Some studies have emphasized specific alterations of excitatory–inhibitory balance within distributed neural networks as an important recovery correlate. Neural processes sensitive to these alterations, such as task-dependent oscillatory activity in beta as well as alpha bands, may be candidate biomarkers of chronic stroke functional recovery. In this review, we discuss the results of studies on motor and language recovery with a focus on oscillatory processes centered around the beta band and their modulations during functional recovery in chronic stroke. The discussion is based on a framework where task-dependent modulations of beta and alpha oscillatory activity, generated by the deep cortical excitatory–inhibitory microcircuits, serve as a neural mechanism of domain-general top-down control processes. We discuss the findings, their limitations, and possible directions for future research.
Collapse
Affiliation(s)
- Maxim Ulanov
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia
- *Correspondence: Maxim Ulanov,
| | - Yury Shtyrov
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
42
|
Evertz R, Hicks DG, Liley DTJ. Alpha blocking and 1/fβ spectral scaling in resting EEG can be accounted for by a sum of damped alpha band oscillatory processes. PLoS Comput Biol 2022; 18:e1010012. [PMID: 35427355 PMCID: PMC9045666 DOI: 10.1371/journal.pcbi.1010012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/27/2022] [Accepted: 03/11/2022] [Indexed: 11/18/2022] Open
Abstract
The dynamical and physiological basis of alpha band activity and 1/fβ noise in the EEG are the subject of continued speculation. Here we conjecture, on the basis of empirical data analysis, that both of these features may be economically accounted for through a single process if the resting EEG is conceived of being the sum of multiple stochastically perturbed alpha band damped linear oscillators with a distribution of dampings (relaxation rates). The modulation of alpha-band and 1/fβ noise activity by changes in damping is explored in eyes closed (EC) and eyes open (EO) resting state EEG. We aim to estimate the distribution of dampings by solving an inverse problem applied to EEG power spectra. The characteristics of the damping distribution are examined across subjects, sensors and recording condition (EC/EO). We find that there are robust changes in the damping distribution between EC and EO recording conditions across participants. The estimated damping distributions are found to be predominantly bimodal, with the number and position of the modes related to the sharpness of the alpha resonance and the scaling (β) of the power spectrum (1/fβ). The results suggest that there exists an intimate relationship between resting state alpha activity and 1/fβ noise with changes in both governed by changes to the damping of the underlying alpha oscillatory processes. In particular, alpha-blocking is observed to be the result of the most weakly damped distribution mode becoming more heavily damped. The results suggest a novel way of characterizing resting EEG power spectra and provides new insight into the central role that damped alpha-band activity may play in characterising the spatio-temporal features of resting state EEG. The resting human electroencephalogram (EEG) exhibits two dominant spectral features: the alpha rhythm (8–13 Hz) and its associated attenuation between eyes-closed and eyes-open resting state (alpha blocking), and the 1/fβ scaling of the power spectrum. While these phenomena are well studied a thorough understanding of their respective generative processes remains elusive. By employing a theoretical approach that follows from neural population models of EEG we demonstrate that it is possible to economically account for both of these phenomena using a singular mechanistic framework: resting EEG is assumed to arise from the summed activity of multiple uncorrelated, stochastically driven, damped alpha band linear oscillatory processes having a distribution of relaxation rates or dampings. By numerically estimating these damping distributions from eyes-closed and eyes-open EEG data, in a total of 136 participants, it is found that such damping distributions are predominantly bimodal in shape. The most weakly damped mode is found to account for alpha band power, with alpha blocking being driven by an increase in the damping of this weakly damped mode, whereas the second, and more heavily damped mode, is able to explain 1/fβ scaling present in the resting state EEG spectra.
Collapse
Affiliation(s)
- Rick Evertz
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Department of Physics and Astronomy, Swinburne University of Technology, Hawthorn, Victoria, Australia
- * E-mail: (RE); (DGH); (DTJL)
| | - Damien G. Hicks
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Department of Physics and Astronomy, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Bioinformatics Division, Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- * E-mail: (RE); (DGH); (DTJL)
| | - David T. J. Liley
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (RE); (DGH); (DTJL)
| |
Collapse
|