1
|
Panszczyk D, Dale C, Kurth F, Luders E. Hemispheric asymmetry in language-related brain regions. Brain Res 2025; 1857:149606. [PMID: 40157414 DOI: 10.1016/j.brainres.2025.149606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/12/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Structural asymmetries of the human brain have been widely studied in previous research. However, there is a lack of consistency across studies in terms of whether brain regions are larger in the left hemisphere than the right (leftward asymmetry), larger in the right hemisphere than the left (rightward asymmetry), or similar in both hemispheres (no asymmetry). Moreover, some of the existing studies exploring brain asymmetry were based on only small sample sizes and/or restricted to younger participants. Thus, here we analysed brain asymmetry in a well-powered sample (n = 532) later in life (mean age: 67 years). Given that language is known to be strongly lateralized in the brain, the current study focused on regions related to language. When assessing cortical volumes and surface areas, we observed significant leftward asymmetries for the superior temporal gyrus, superior temporal sulcus, supramarginal gyrus, pars opercularis, transverse gyrus, and temporal gyrus, whereas the pars triangularis showed a significant rightward asymmetry. In contrast, when assessing cortical thickness, we detected a significant leftward asymmetry for the pars triangularis and a significant rightward asymmetry for the superior temporal sulcus. The present observations on asymmetry in language-related brain regions in a large sample of older but neurologically healthy participants may serve as a normative framework against which data from clinical samples can be compared.
Collapse
Affiliation(s)
- Daniel Panszczyk
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Caitlin Dale
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Florian Kurth
- School of Psychology, University of Auckland, Auckland, New Zealand; Department of Diagnostic and Interventional Radiology, University Hospital Jena, Jena, Germany
| | - Eileen Luders
- School of Psychology, University of Auckland, Auckland, New Zealand; Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden; Swedish Collegium for Advanced Study (SCAS), Uppsala 75238, Sweden; Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
2
|
Eliot L. "Precision Medicine" and the Failed Search for Binary Brain Sex Differences to Address Gender Behavioral Health Disparities. Am J Hum Biol 2025; 37:e70041. [PMID: 40207611 PMCID: PMC11983668 DOI: 10.1002/ajhb.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Human brain imaging took off in the 1980s and has since flooded the zone in the analysis of gender differences in behavior and mental health. Couched in the aims of "precision medicine," the vast majority of this research has taken a binary approach, dividing participants according to the M/F box at intake and asserting that the sex differences found in neuroimaging will lead to important advances for treating neuropsychiatric disorders. However, the actual findings from this 40-year project have not lived up to its promise, in part because of the over-binarization of sex and general ignorance of gender as a complex variable influencing human behavior and brain function. This paper reviews the history of failed claims about male-female brain difference in the modern era, illuminates the deep-pocketed incentives driving such research, and examines the limitations of this binary approach for understanding gender-related behavior and health disparities. It then considers more recent efforts to "break the binary" by using measures of "gender" in addition to "sex" as an independent variable in brain imaging studies. Given the multidimensional nature of gender-as identity, expression, roles and relations-this is challenging to implement, with initial efforts producing little of substance. Better approaches to addressing male-female disparities in brain health will require focusing on specific behaviors (e.g., anxiety, risk-taking, verbal memory, spatial navigation) and specific components of sex and gender (e.g., body size, hormone levels, gene expression, caregiver role, financial independence, discrimination) when seeking brain-behavior correlates in a diverse population.
Collapse
Affiliation(s)
- Lise Eliot
- Chicago Medical School, Stanson Toshok Center for Brain Function and RepairRosalind Franklin University of Medicine & ScienceNorth ChicagoIllinoisUSA
| |
Collapse
|
3
|
Liu Y, Choi JY, Perrachione TK. Systematic bias in surface area asymmetry measurements from automatic cortical parcellations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645109. [PMID: 40196603 PMCID: PMC11974827 DOI: 10.1101/2025.03.25.645109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Anatomical asymmetry is a hallmark of the human brain and may reflect hemispheric differences in its functional organization. Widely used software like FreeSurfer can automate neuroanatomical measurements and facilitate studies of hemispheric asymmetry. However, patterns of surface area lateralization measured using FreeSurfer are curiously consistent across diverse samples. Here, we demonstrate systematic biases in these measurements obtained from the default processing pipeline. We compared surface area asymmetry measured from reconstructions of original brains vs. the same scans after flipping their left-right orientation. The default pipeline returned implausible asymmetry patterns between the original and flipped brains: Many structures were always left- or right-lateralized. Notably, these biases occur prominently in key speech and language regions. In contrast, manual labeling and curvature-based parcellations of key structures both yielded the expected reversals of left/right lateralization in flipped brains. We determined that these biases result from discrepancies in how regional labels are defined in the left vs. right hemisphere in the default cortical parcellation atlases. These biases are carried into individual parcellations because the FreeSurfer parcellation algorithm prioritizes vertex correspondence to the template atlas relative to individual neuroanatomical variation. We further demonstrate several straightforward, bias-free approaches to measuring surface area asymmetry, including using symmetric registration templates and parcellation atlases, vertex-wise analyses, and within-subject curvature-based parcellations. These results highlight theoretical concerns about using only the default processing stream to make inferences about population-level brain asymmetry and underscore the need for validating bias-free neuroanatomical measurements, particularly when studying regions where structural lateralization may underlie functional lateralization.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, Massachusetts, USA
| | - Ja Young Choi
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
| | - Tyler K Perrachione
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Bruner E. Hemispheric asymmetries, paleoneurology, and the evolution of the human genus. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:231-240. [PMID: 40074399 DOI: 10.1016/b978-0-443-15646-5.00026-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Brain asymmetries are a distinctive feature of Homo sapiens and are associated with key evolutionary functions including language and handedness. Nonetheless, differences between humans and apes could be just a matter of degree and size and not the expression of unique traits of our species. In this chapter, I introduce paleoneurology and the study of brain morphology in fossil hominids, reviewing the anatomic factors that can influence the main asymmetries of the endocranial cavity (cortical volumes, sulcal patterns, and craniovascular features). The paleoneurological evidence suggests that most extinct human species displayed a pattern of gross endocranial asymmetries similar to modern humans. In addition, the behavioral information on handedness also points to a similar degree of laterality in archaic species of the human genus and in Neandertals. At present, there is therefore no evidence suggesting that the brain asymmetries in H. sapiens are part of a derived set of features. Of course, even a simple proportional change due to brain size increase can anyway prompt crucial cognitive changes, mostly if threshold effects are considered. Nonetheless, we still lack much information in basic anatomy to support consistent hypotheses on the biologic factors involved in endocranial asymmetries in fossil hominids. This missing information concerns endocranial morphogenesis and topology, spatial conflicts and constraints, the biomechanical balance between cerebral tissues, and the actual histologic changes associated with encephalization.
Collapse
Affiliation(s)
- Emiliano Bruner
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain; Reina Sofia Alzheimer Center, CIEN Foundation, ISCIII, Madrid, Spain.
| |
Collapse
|
5
|
Qin P, Bi Q, Guo Z, Yang L, Li H, Li P, Liang X, Luo J, Kong X, Xiong Y, Sun B, Ocklenburg S, Gong G. Microstructural asymmetries of the planum temporale predict functional lateralization of auditory-language processing. eLife 2024; 13:RP95547. [PMID: 39679659 DOI: 10.7554/elife.95547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Structural hemispheric asymmetry has long been assumed to guide functional lateralization of the human brain, but empirical evidence for this compelling hypothesis remains scarce. Recently, it has been suggested that microstructural asymmetries may be more relevant to functional lateralization than macrostructural asymmetries. To investigate the link between microstructure and function, we analyzed multimodal MRI data in 907 right-handed participants. We quantified structural asymmetry and functional lateralization of the planum temporale (PT), a cortical area crucial for auditory-language processing. We found associations between PT functional lateralization and several structural asymmetries, such as surface area, intracortical myelin content, neurite density, and neurite orientation dispersion. The PT structure also showed hemispheric-specific coupling with its functional activity. All these functional-structural associations are highly specific to within-PT functional activity during auditory-language processing. These results suggest that structural asymmetry underlies functional lateralization of the same brain area and highlights a critical role of microstructural PT asymmetries in auditory-language processing.
Collapse
Affiliation(s)
- Peipei Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Qiuhui Bi
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Zeya Guo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Liyuan Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Haokun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Peng Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xinyu Liang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Junhao Luo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiangyu Kong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yirong Xiong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Bo Sun
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Sebastian Ocklenburg
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
- ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Hamburg, Germany
- Institute of Cognitive Neuroscience, Biopsychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
6
|
Postic PY, Leprince Y, Brosset S, Drutel L, Peyric E, Ben Abdallah I, Bekha D, Neumane S, Duchesnay E, Dinomais M, Chevignard M, Hertz-Pannier L. Brain growth until adolescence after a neonatal focal injury: sex related differences beyond lesion effect. Front Neurosci 2024; 18:1405381. [PMID: 39247049 PMCID: PMC11378422 DOI: 10.3389/fnins.2024.1405381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/26/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Early focal brain injuries lead to long-term disabilities with frequent cognitive impairments, suggesting global dysfunction beyond the lesion. While plasticity of the immature brain promotes better learning, outcome variability across individuals is multifactorial. Males are more vulnerable to early injuries and neurodevelopmental disorders than females, but long-term sex differences in brain growth after an early focal lesion have not been described yet. With this MRI longitudinal morphometry study of brain development after a Neonatal Arterial Ischemic Stroke (NAIS), we searched for differences between males and females in the trajectories of ipsi- and contralesional gray matter growth in childhood and adolescence, while accounting for lesion characteristics. Methods We relied on a longitudinal cohort (AVCnn) of patients with unilateral NAIS who underwent clinical and MRI assessments at ages 7 and 16 were compared to age-matched controls. Non-lesioned volumes of gray matter (hemispheres, lobes, regions, deep structures, cerebellum) were extracted from segmented T1 MRI images at 7 (Patients: 23 M, 16 F; Controls: 17 M, 18 F) and 16 (Patients: 18 M, 11 F; Controls: 16 M, 15 F). These volumes were analyzed using a Linear Mixed Model accounting for age, sex, and lesion characteristics. Results Whole hemisphere volumes were reduced at both ages in patients compared to controls (gray matter volume: -16% in males, -10% in females). In ipsilesional hemisphere, cortical gray matter and thalamic volume losses (average -13%) mostly depended on lesion severity, suggesting diaschisis, with minimal effect of patient sex. In the contralesional hemisphere however, we consistently found sex differences in gray matter volumes, as only male volumes were smaller than in male controls (average -7.5%), mostly in territories mirroring the contralateral lesion. Females did not significantly deviate from the typical trajectories of female controls. Similar sex differences were found in both cerebellar hemispheres. Discussion These results suggest sex-dependent growth trajectories after an early brain lesion with a contralesional growth deficit in males only. The similarity of patterns at ages 7 and 16 suggests that puberty has little effect on these trajectories, and that most of the deviation in males occurs in early childhood, in line with the well-described perinatal vulnerability of the male brain, and with no compensation thereafter.
Collapse
Affiliation(s)
- Pierre-Yves Postic
- CEA Paris-Saclay, Frederic Joliot Institute, NeuroSpin, UNIACT, Gif-sur-Yvette, France
- INSERM, Université Paris Cité, UMR 1141 NeuroDiderot, InDEV, Paris, France
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale (LIB), Paris, France
| | - Yann Leprince
- CEA Paris-Saclay, Frederic Joliot Institute, NeuroSpin, UNIACT, Gif-sur-Yvette, France
| | - Soraya Brosset
- CEA Paris-Saclay, Frederic Joliot Institute, NeuroSpin, UNIACT, Gif-sur-Yvette, France
- INSERM, Université Paris Cité, UMR 1141 NeuroDiderot, InDEV, Paris, France
| | - Laure Drutel
- LP3C, Rennes 2 University, Rennes, France
- French National Reference Center for Pediatric Stroke, CHU de Saint-Etienne, Saint-Etienne, France
| | - Emeline Peyric
- Pediatric Neurology Department, HFME, Hospices Civils de Lyon, Lyon, France
| | - Ines Ben Abdallah
- CEA Paris-Saclay, Frederic Joliot Institute, NeuroSpin, UNIACT, Gif-sur-Yvette, France
- INSERM, Université Paris Cité, UMR 1141 NeuroDiderot, InDEV, Paris, France
| | - Dhaif Bekha
- CEA Paris-Saclay, Frederic Joliot Institute, NeuroSpin, UNIACT, Gif-sur-Yvette, France
- INSERM, Université Paris Cité, UMR 1141 NeuroDiderot, InDEV, Paris, France
| | - Sara Neumane
- CEA Paris-Saclay, Frederic Joliot Institute, NeuroSpin, UNIACT, Gif-sur-Yvette, France
- INSERM, Université Paris Cité, UMR 1141 NeuroDiderot, InDEV, Paris, France
- Université Paris-Saclay, UVSQ - APHP, Pediatric Physical Medicine and Rehabilitation Department, Raymond Poincaré University Hospital, Garches, France
| | - Edouard Duchesnay
- CEA Paris-Saclay, Frederic Joliot Institute, NeuroSpin, BAOBAB/GAIA/SIGNATURE, Gif-sur-Yvette, France
| | - Mickael Dinomais
- Department of Physical Medicine and Rehabilitation, Angers University Hospital Centre, Angers, France
| | - Mathilde Chevignard
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale (LIB), Paris, France
- Rehabilitation Department for Children with Acquired Brain Injury, Saint Maurice Hospitals, Saint Maurice, France
- Sorbonne University, GRC 24 Handicap Moteur Cognitif et Réadaptation (HaMCRe), Paris, France
| | - Lucie Hertz-Pannier
- CEA Paris-Saclay, Frederic Joliot Institute, NeuroSpin, UNIACT, Gif-sur-Yvette, France
- INSERM, Université Paris Cité, UMR 1141 NeuroDiderot, InDEV, Paris, France
| |
Collapse
|
7
|
Quintana GR, Pfaus JG. Do Sex and Gender Have Separate Identities? ARCHIVES OF SEXUAL BEHAVIOR 2024; 53:2957-2975. [PMID: 39105983 PMCID: PMC11335805 DOI: 10.1007/s10508-024-02933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 08/07/2024]
Abstract
The largely binary nature of biological sex and its conflation with the socially constructed concept of gender has created much strife in the last few years. The notion of gender identity and its differences and similarities with sex have fostered much scientific and legal confusion and disagreement. Settling the debate can have significant repercussions for science, medicine, legislation, and people's lives. The present review addresses this debate though different levels of analysis (i.e., genetic, anatomical, physiological, behavioral, and sociocultural), and their implications and interactions. We propose a rationale where both perspectives coexist, where diversity is the default, establishing a delimitation to the conflation between sex and gender, while acknowledging their interaction. Whereas sex in humans and other mammals is a biological reality that is largely binary and based on genes, chromosomes, anatomy, and physiology, gender is a sociocultural construct that is often, but not always, concordant with a person' sex, and can span a multitude of expressions.
Collapse
Affiliation(s)
- Gonzalo R Quintana
- Departamento de Psicología y Filosofía, Facultad de Ciencias Sociales, Universidad de Tarapacá, Arica, Arica y Parinacota, Chile
| | - James G Pfaus
- Department of Psychology and Life Sciences, Charles University, Prague, 18200, Czech Republic.
- Center for Sexual Health and Intervention, Czech National Institute of Mental Health, Klecany, Czech Republic.
| |
Collapse
|
8
|
Fırat Z, Er F, Noyan H, Ekinci G, Üçok A, Uluğ AM, Aktekin B. Discriminant analysis using MRI asymmetry indices and cognitive scores of women with temporal lobe epilepsy or schizophrenia. Neuroradiology 2024; 66:1083-1092. [PMID: 38416211 DOI: 10.1007/s00234-024-03317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
PURPOSE This study aims to assess the diagnostic power of brain asymmetry indices and neuropsychological tests for differentiating mesial temporal lobe epilepsy (MTLE) and schizophrenia (SCZ). METHODS We studied a total of 39 women including 13 MTLE, 13 SCZ, and 13 healthy individuals (HC). A neuropsychological test battery (NPT) was administered and scored by an experienced neuropsychologist, and NeuroQuant (CorTechs Labs Inc., San Diego, California) software was used to calculate brain asymmetry indices (ASI) for 71 different anatomical regions of all participants based on their 3D T1 MR imaging scans. RESULTS Asymmetry indices measured from 10 regions showed statistically significant differences between the three groups. In this study, a multi-class linear discriminant analysis (LDA) model was built based on a total of fifteen variables composed of the most five significantly informative NPT scores and ten significant asymmetry indices, and the model achieved an accuracy of 87.2%. In pairwise classification, the accuracy for distinguishing MTLE from either SCZ or HC was 94.8%, while the accuracy for distinguishing SCZ from either MTLE or HC was 92.3%. CONCLUSION The ability to differentiate MTLE from SCZ using neuroradiological and neuropsychological biomarkers, even within a limited patient cohort, could make a substantial contribution to research in larger patient groups using different machine learning techniques.
Collapse
Affiliation(s)
- Zeynep Fırat
- Department of Radiology, Yeditepe University Hospitals, Kosuyolu, 34718, Istanbul, Turkey.
| | - Füsun Er
- Department of Information Systems Engineering, Piri Reis University, Istanbul, Turkey
| | - Handan Noyan
- Faculty of Social Sciences, Department of Psychology, Beykoz University, 34810, Istanbul, Turkey
| | - Gazanfer Ekinci
- Department of Radiology, Yeditepe University Hospitals, Kosuyolu, 34718, Istanbul, Turkey
| | - Alp Üçok
- Istanbul Faculty of Medicine, Department of Psychiatry, Istanbul University, 34134, Istanbul, Turkey
| | - Aziz M Uluğ
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
- CorTechs Labs Inc, San Diego, CA, USA
| | - Berrin Aktekin
- Department of Neurology, Yeditepe University Hospitals, Kosuyolu, 34718, Istanbul, Turkey
| |
Collapse
|
9
|
Korbmacher M, van der Meer D, Beck D, de Lange AMG, Eikefjord E, Lundervold A, Andreassen OA, Westlye LT, Maximov II. Brain asymmetries from mid- to late life and hemispheric brain age. Nat Commun 2024; 15:956. [PMID: 38302499 PMCID: PMC10834516 DOI: 10.1038/s41467-024-45282-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
The human brain demonstrates structural and functional asymmetries which have implications for ageing and mental and neurological disease development. We used a set of magnetic resonance imaging (MRI) metrics derived from structural and diffusion MRI data in N=48,040 UK Biobank participants to evaluate age-related differences in brain asymmetry. Most regional grey and white matter metrics presented asymmetry, which were higher later in life. Informed by these results, we conducted hemispheric brain age (HBA) predictions from left/right multimodal MRI metrics. HBA was concordant to conventional brain age predictions, using metrics from both hemispheres, but offers a supplemental general marker of brain asymmetry when setting left/right HBA into relationship with each other. In contrast to WM brain asymmetries, left/right discrepancies in HBA are lower at higher ages. Our findings outline various sex-specific differences, particularly important for brain age estimates, and the value of further investigating the role of brain asymmetries in brain ageing and disease development.
Collapse
Affiliation(s)
- Max Korbmacher
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway.
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway.
- Mohn Medical Imaging and Visualization Centre (MMIV), Bergen, Norway.
| | - Dennis van der Meer
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Dani Beck
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ann-Marie G de Lange
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Eli Eikefjord
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre (MMIV), Bergen, Norway
| | - Arvid Lundervold
- Mohn Medical Imaging and Visualization Centre (MMIV), Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ole A Andreassen
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ivan I Maximov
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway.
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
10
|
Zeng C, Li Y, Deng H, Luo X, Xiao R, Zhang C, Yang H. Asymmetry of brain development in adolescent rats studied by 3.0 T magnetic resonance imaging. Neuroreport 2023; 34:741-747. [PMID: 37556595 DOI: 10.1097/wnr.0000000000001943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
To study the developmental patterns of brain structure in adolescent rats based on the registration with the SIGMA template by 3.0T MRI. Forty male Sprague-Dawley rats (180-220 g) were randomly divided into four groups. Rats in the four groups underwent 3.0 T MRI head scans at 7, 11, 15, and 19 weeks of age, respectively. The voxel-based morphological analysis of the rat brain was performed by coregistration with the SIGMA rat brain template. 3.0 T MRI can be used to study the anatomical structure of the rat brain by registration with the SIGMA template The gray matter volume of the bilateral hippocampus and bilateral entorhinal cortex increased significantly in the development of the rat from 7 to 19 weeks of age. In this period, the subtle structure of the rat brain is asymmetrically developed. The rat aged 7-19 weeks has asymmetrical gray matter volume development in the bilateral entorhinal cortex and hippocampus.
Collapse
Affiliation(s)
- Chen Zeng
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong
- Department of Radiology, West China Hospital, Sichuan University, Chengdu
| | - Yehan Li
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong
- Department of Radiology, Chongqing Cancer Hospital, Chongqing, China
| | - Hao Deng
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong
| | - Xing Luo
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong
| | - Ruhui Xiao
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong
| | - Chuan Zhang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong
| | - Hanfeng Yang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong
| |
Collapse
|
11
|
Omont-Lescieux S, Menu I, Salvia E, Poirel N, Oppenheim C, Houdé O, Cachia A, Borst G. Lateralization of the cerebral network of inhibition in children before and after cognitive training. Dev Cogn Neurosci 2023; 63:101293. [PMID: 37683326 PMCID: PMC10498008 DOI: 10.1016/j.dcn.2023.101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Inhibitory control (IC) plays a critical role in cognitive and socio-emotional development. IC relies on a lateralized cortico-subcortical brain network including the inferior frontal cortex, anterior parts of insula, anterior cingulate cortex, caudate nucleus and putamen. Brain asymmetries play a critical role for IC efficiency. In parallel to age-related changes, IC can be improved following training. The aim of this study was to (1) assess the lateralization of IC network in children (N = 60, 9-10 y.o.) and (2) examine possible changes in neural asymmetry of this network from anatomical (structural MRI) and functional (resting-state fMRI) levels after 5-week computerized IC vs. active control (AC) training. We observed that IC training, but not AC training, led to a leftward lateralization of the putamen anatomy, similarly to what is observed in adults, supporting that training could accelerate the maturation of this structure.
Collapse
Affiliation(s)
- Sixtine Omont-Lescieux
- Université Paris Cité, LaPsyDÉ, CNRS, F-75005, Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Imaging biomarkers for brain development and disorders, 75014 Paris, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France
| | - Iris Menu
- Université Paris Cité, LaPsyDÉ, CNRS, F-75005, Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Imaging biomarkers for brain development and disorders, 75014 Paris, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France
| | - Emilie Salvia
- Université Paris Cité, LaPsyDÉ, CNRS, F-75005, Paris, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France
| | - Nicolas Poirel
- Université Paris Cité, LaPsyDÉ, CNRS, F-75005, Paris, France; GIP Cyceron, Caen, France
| | - Catherine Oppenheim
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Imaging biomarkers for brain development and disorders, 75014 Paris, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France
| | - Olivier Houdé
- Université Paris Cité, LaPsyDÉ, CNRS, F-75005, Paris, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France; Institut Universitaire de France, Paris, France
| | - Arnaud Cachia
- Université Paris Cité, LaPsyDÉ, CNRS, F-75005, Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Imaging biomarkers for brain development and disorders, 75014 Paris, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France
| | - Grégoire Borst
- Université Paris Cité, LaPsyDÉ, CNRS, F-75005, Paris, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France; Institut Universitaire de France, Paris, France.
| |
Collapse
|
12
|
Roe JM, Vidal-Pineiro D, Amlien IK, Pan M, Sneve MH, Thiebaut de Schotten M, Friedrich P, Sha Z, Francks C, Eilertsen EM, Wang Y, Walhovd KB, Fjell AM, Westerhausen R. Tracing the development and lifespan change of population-level structural asymmetry in the cerebral cortex. eLife 2023; 12:e84685. [PMID: 37335613 PMCID: PMC10368427 DOI: 10.7554/elife.84685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/16/2023] [Indexed: 06/21/2023] Open
Abstract
Cortical asymmetry is a ubiquitous feature of brain organization that is subtly altered in some neurodevelopmental disorders, yet we lack knowledge of how its development proceeds across life in health. Achieving consensus on the precise cortical asymmetries in humans is necessary to uncover the developmental timing of asymmetry and the extent to which it arises through genetic and later influences in childhood. Here, we delineate population-level asymmetry in cortical thickness and surface area vertex-wise in seven datasets and chart asymmetry trajectories longitudinally across life (4-89 years; observations = 3937; 70% longitudinal). We find replicable asymmetry interrelationships, heritability maps, and test asymmetry associations in large-scale data. Cortical asymmetry was robust across datasets. Whereas areal asymmetry is predominantly stable across life, thickness asymmetry grows in childhood and peaks in early adulthood. Areal asymmetry is low-moderately heritable (max h2SNP ~19%) and correlates phenotypically and genetically in specific regions, indicating coordinated development of asymmetries partly through genes. In contrast, thickness asymmetry is globally interrelated across the cortex in a pattern suggesting highly left-lateralized individuals tend towards left-lateralization also in population-level right-asymmetric regions (and vice versa), and exhibits low or absent heritability. We find less areal asymmetry in the most consistently lateralized region in humans associates with subtly lower cognitive ability, and confirm small handedness and sex effects. Results suggest areal asymmetry is developmentally stable and arises early in life through genetic but mainly subject-specific stochastic effects, whereas childhood developmental growth shapes thickness asymmetry and may lead to directional variability of global thickness lateralization in the population.
Collapse
Affiliation(s)
- James M Roe
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
| | - Didac Vidal-Pineiro
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
| | - Inge K Amlien
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
| | - Mengyu Pan
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of BordeauxBordeauxFrance
- Brian Connectivity and Behaviour Laboratory, Sorbonne UniversityParisFrance
| | - Patrick Friedrich
- Institute of Neuroscience and Medicine, Research Centre JülichJülichGermany
| | - Zhiqiang Sha
- Language and Genetics Department, Max Planck Institute for PsycholinguisticsNijmegenNetherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for PsycholinguisticsNijmegenNetherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud UniversityNijmegenNetherlands
- Department of Human Genetics, Radboud University Medical CenterNijmegenNetherlands
| | - Espen M Eilertsen
- PROMENTA Research Center, Department of Psychology, University of OsloOsloNorway
| | - Yunpeng Wang
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
- Department of Radiology and Nuclear Medicine, Oslo University HospitalOsloNorway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
- Department of Radiology and Nuclear Medicine, Oslo University HospitalOsloNorway
| | - René Westerhausen
- Section for Cognitive and Clinical Neuroscience, Department of Psychology, University of OsloOsloNorway
| |
Collapse
|
13
|
Williams LZJ, Fitzgibbon SP, Bozek J, Winkler AM, Dimitrova R, Poppe T, Schuh A, Makropoulos A, Cupitt J, O'Muircheartaigh J, Duff EP, Cordero-Grande L, Price AN, Hajnal JV, Rueckert D, Smith SM, Edwards AD, Robinson EC. Structural and functional asymmetry of the neonatal cerebral cortex. Nat Hum Behav 2023; 7:942-955. [PMID: 36928781 DOI: 10.1038/s41562-023-01542-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/31/2023] [Indexed: 03/18/2023]
Abstract
Features of brain asymmetry have been implicated in a broad range of cognitive processes; however, their origins are still poorly understood. Here we investigated cortical asymmetries in 442 healthy term-born neonates using structural and functional magnetic resonance images from the Developing Human Connectome Project. Our results demonstrate that the neonatal cortex is markedly asymmetric in both structure and function. Cortical asymmetries observed in the term cohort were contextualized in two ways: by comparing them against cortical asymmetries observed in 103 preterm neonates scanned at term-equivalent age, and by comparing structural asymmetries against those observed in 1,110 healthy young adults from the Human Connectome Project. While associations with preterm birth and biological sex were minimal, significant differences exist between birth and adulthood.
Collapse
Affiliation(s)
- Logan Z J Williams
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK.
| | - Sean P Fitzgibbon
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jelena Bozek
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Anderson M Winkler
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Ralica Dimitrova
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Tanya Poppe
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Andreas Schuh
- Department of Computing, Imperial College London, London, UK
| | - Antonios Makropoulos
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - John Cupitt
- Department of Computing, Imperial College London, London, UK
| | - Jonathan O'Muircheartaigh
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department for Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Eugene P Duff
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, London, UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid and CIBER-BBN, ISCIII, Madrid, Spain
| | - Anthony N Price
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Daniel Rueckert
- Department of Computing, Imperial College London, London, UK
- Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephen M Smith
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Neonatal Intensive Care Unit, Evelina London Children's Hospital, London, UK
| | - Emma C Robinson
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK.
| |
Collapse
|