1
|
Zhao S, Wang T, Xiong B. Neural correlates of conspiracy beliefs during information evaluation. Sci Rep 2025; 15:18375. [PMID: 40419620 DOI: 10.1038/s41598-025-03723-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 05/22/2025] [Indexed: 05/28/2025] Open
Abstract
Conspiracy theories, despite their widespread societal impact, remain poorly understood at the neural level. While previous research has examined general belief processing, the neural mechanisms underlying how conspiracy beliefs influence information evaluation remain unclear. This study examined how individual differences in conspiracy belief modulate neural responses to conspiracy-related versus factual information using functional magnetic resonance imaging (fMRI). Thirty-one participants, pre-screened for high versus low conspiracy beliefs using validated scales, evaluated the veracity of matched conspiracy-related and factual statements during scanning. Behaviorally, high conspiracy believers were more likely to endorse conspiracy statements, whereas both groups evaluated factual information similarly. Neurally, a double dissociation emerged: high conspiracy believers exhibited increased activation in the ventromedial and dorsomedial prefrontal cortices-regions implicated in value-based decision-making and belief uncertainty-when evaluating conspiracy-related content. In contrast, low conspiracy believers showed greater activation in the hippocampus and precuneus, areas associated with episodic and semantic memory retrieval. These findings indicate that conspiracy beliefs engage distinct neurocognitive pathways in a content-specific manner. Rather than reflecting a generalized bias, belief-related neural differences selectively emerge during the processing of conspiratorial information. This study offers novel insight into the neural basis of belief persistence and may inform strategies for promoting critical reasoning in the face of misinformation.
Collapse
Affiliation(s)
- Shuguang Zhao
- Research Center of Journalism and Social Development, School of Journalism and Communication, Renmin University of China, Beijing, 100872, China
| | - Ting Wang
- New Era International Communication Research Institute, Renmin University of China, Beijing, 100872, China.
| | - Bingsen Xiong
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, National Demonstration Center for Experimental Psychology Education, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
2
|
Bontkes OR, Palombo DJ, Rubínová E. Similarity is associated with where repeated-event memories fall on the semantic-episodic continuum. Mem Cognit 2025:10.3758/s13421-025-01729-6. [PMID: 40394414 DOI: 10.3758/s13421-025-01729-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2025] [Indexed: 05/22/2025]
Abstract
Memories of repeated events are one form of memory thought to be intermediate on a proposed semantic-episodic continuum. However, it is not yet understood where repeated-event memories fall on this continuum, and which factors may be associated with greater or lesser reliance on episodic and semantic memory during recall. We investigated similarity amongst instances of repeated events as one factor which may be associated with where repeated events fall on the semantic-episodic continuum. In two preregistered studies, we asked participants to recall three repeated-event memories from their own lives (N1 = 97 participants, 291 memories; N2 = 419 participants, 1,257 memories) and report on the similarity amongst instances as well as the degree to which they relied on semantic memory, a single episode, and a mix of episodes in their recall of each event. In line with our predictions, similarity was positively correlated with reliance on semantic memory in both studies. In Study 2, similarity was negatively correlated with reliance on a single episode. We also conducted exploratory latent profile analyses using our three memory reliance variables, revealing three types of repeated-event memories. In both studies, similarity of place and emotional arousal were each associated with different memory profiles. Our findings highlight the importance of considering similarity in basic and applied repeated-event memory research, as different conditions of similarity (e.g., low vs. high) can manifest in different patterns of reliance on episodic and semantic memory.
Collapse
Affiliation(s)
- Oliver R Bontkes
- Department of Psychology, The University of British Columbia, Douglas T. Kenny Building, 2136 West Mall, Vancouver, BC, V6 T 1Z4, Canada
| | - Daniela J Palombo
- Department of Psychology, The University of British Columbia, Douglas T. Kenny Building, 2136 West Mall, Vancouver, BC, V6 T 1Z4, Canada
| | - Eva Rubínová
- The School of Psychology, University of Aberdeen, William Guild Building, Old Aberdeen, AB24 3 FX, UK.
| |
Collapse
|
3
|
Campbell FC. Diet, dementia, and the hippocampus. Stem Cells Transl Med 2025; 14:szaf007. [PMID: 40387785 PMCID: PMC12087336 DOI: 10.1093/stcltm/szaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 01/19/2025] [Indexed: 05/20/2025] Open
|
4
|
Rastinpour Z, Fakhri S, Abbaszadeh F, Ranjbari M, Kiani A, Namiq Amin M, Echeverría J. Neuroprotective effects of astaxanthin in a scopolamine-induced rat model of Alzheimer's disease through antioxidant/anti-inflammatory pathways and opioid/benzodiazepine receptors: attenuation of Nrf2, NF-κB, and interconnected pathways. Front Pharmacol 2025; 16:1589751. [PMID: 40444055 PMCID: PMC12119477 DOI: 10.3389/fphar.2025.1589751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/28/2025] [Indexed: 06/02/2025] Open
Abstract
Background Given the complexity of pathological mechanisms behind Alzheimer's disease (AD), there is a pressing need for novel multi-targeting therapeutic agents. Astaxanthin, a natural compound with diverse biological effects, has emerged as a potential candidate in neuronal diseases. Purpose This study aimed to evaluate the neuroprotective effects of astaxanthin in a scopolamine-induced rat model of AD. Materials and methods In total, 36 male Wistar rats were divided into six groups, including a control group receiving normal saline, a negative control group treated with scopolamine (1 mg/kg), and two groups receiving astaxanthin at doses of 5 and 10 mg/kg. Additionally, two groups were pre-treated with naloxone (0.1 mg/kg) or flumazenil (0.5 mg/kg) to block opioid and benzodiazepine receptors, respectively, followed by receiving the most effective dose of astaxanthin (i.e., 10 mg/kg). Treatments were administered via intraperitoneal injection for 14 consecutive days and behavioral tests were done. Biochemical analyses, zymography, Western blotting, and histopathological examinations were also performed. Results and discussion Astaxanthin treatment significantly improved cognitive function, enhanced plasma antioxidant capacity by increasing catalase and glutathione levels, and reduced nitrite levels. It also increased serum activity of matrix metalloproteinase 2 (MMP-2), while decreasing MMP-9, increasing the expression of nuclear factor erythroid 2-related factor 2 (Nrf-2) and decreasing nuclear factor kappa B (NF-κB) in hippocampal tissue. Histopathological findings indicated reduced hippocampal damage after astaxanthin administration. The aforementioned protective effects of astaxanthin were reversed by naloxone and flumazenil. Conclusion Astaxanthin demonstrates protective effects against scopolamine-induced AD through its neuroprotective, antioxidant, and anti-inflammatory properties, potentially involving interactions with opioid and benzodiazepine receptors.
Collapse
Affiliation(s)
- Zeinab Rastinpour
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ranjbari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Regenerative Medicine Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammed Namiq Amin
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
5
|
Shen W, Li Z, Tao Y, Zhou H, Wu H, Shi H, Huang F, Wu X. Tauroursodeoxycholic acid mitigates depression-like behavior and hippocampal neuronal damage in a corticosterone model of female mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5785-5796. [PMID: 39611999 DOI: 10.1007/s00210-024-03637-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024]
Abstract
Depression, a complex mental disorder influenced by both psychological and physiological factors, predominantly affects females. Studies have indicated that elevated levels of cortisol/corticosterone (CORT) under stress conditions can lead to hippocampal neuronal damage, thereby contributing to depression. Tauroursodeoxycholic acid (TUDCA), a bile acid, possesses anti-apoptotic, antioxidant, and anti-inflammatory properties. This study aimed to investigate the protective mechanism of TUDCA against CORT-induced neuromolecular and behavioral phenotypes of depression in female mice, providing theoretical support for its use in treating female depression. The antidepressant effects of TUDCA were evaluated through a series of behavioral tests, measurement of serum neurotransmitter levels, Nissl staining of the hippocampal CA3 region, and assessment of hippocampal proteins. Behavioral results demonstrated that TUDCA exhibited antidepressant effects, as evidenced by increased sucrose preference and locomotor activity, as well as reduced immobility time in depressed mice. Furthermore, TUDCA ameliorated neurotransmitter imbalances. Nissl staining revealed that TUDCA reduced neuronal damage in depressed mice, while Western blotting results indicated that TUDCA activated the hippocampal BDNF/TrkB/CREB pathway and regulated the expression of GR-related proteins. These findings suggested that TUDCA exerted neuroprotective effects in CORT-induced neuronal damage in female depressed mice. The mechanism appeared to be related to the activation of the BDNF/TrkB/CREB signaling pathway and the modulation of GR-related protein expression.
Collapse
Affiliation(s)
- Wei Shen
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zikang Li
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Houyuan Zhou
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
6
|
Paulson AL, Zhang L, Prichard AM, Singer AC. 40 Hz sensory stimulation enhances CA3-CA1 coordination and prospective coding during navigation in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 2025; 122:e2419364122. [PMID: 40261930 PMCID: PMC12054803 DOI: 10.1073/pnas.2419364122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
40 Hz sensory stimulation ("flicker") has emerged as a new technique to potentially mitigate pathology and improve cognition in mouse models of Alzheimer's disease (AD) pathology. However, it remains unknown how 40 Hz flicker affects neural codes essential for memory. Accordingly, we investigate the effects of 40 Hz flicker on neural representations of experience in the hippocampus of the 5XFAD mouse model of AD by recording 1,000s of neurons during a goal-directed spatial navigation task. We find that an hour of daily exposure to 40 Hz audio-visual stimulation over 8 d leads to higher coordination between hippocampal subregions CA3 and CA1 during navigation. Consistent with CA3's role in generating sequential activity that represents future positions, 40 Hz flicker exposure increased prospective coding of future positions. In turn, prospective coding was more prominent during efficient navigation behavior. Our findings show how 40 Hz flicker enhances key hippocampal activity during behavior that is important for memory.
Collapse
Affiliation(s)
- Abigail L. Paulson
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA30332
| | - Lu Zhang
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA30332
- National Institute of Mental Health, NIH, Bethesda, MD20892
| | - Ashley M. Prichard
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA30332
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA30033
| | - Annabelle C. Singer
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA30332
| |
Collapse
|
7
|
Goncerzewicz A, Bonda-Ostaszewska E, Lipiec M, Knapska E, Konarzewski M. Evolution of cellular architecture and function of the hippocampus: insights from the artificial selection experiment. Biol Lett 2025; 21:20240617. [PMID: 40169017 PMCID: PMC11961263 DOI: 10.1098/rsbl.2024.0617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/02/2025] [Accepted: 02/13/2025] [Indexed: 04/03/2025] Open
Abstract
Inter-specifically, mammalian species with larger brains built of numerous neurons have higher cognitive abilities (CA) but at the expense of higher metabolic costs. It is unclear, however, how this pattern emerged since evolutionary mechanisms act intra-specifically, not inter-specifically. Here, we tested the existence of the above pattern at the species level in the hippocampus-the brain structure underlying CA. We used an artificial selection experiment consisting of lines of laboratory mice divergently selected for basal metabolic rate (BMR)-a trait implicated in brain size evolution, its metabolic costs and CA. Selection on BMR did not affect hippocampus size as a correlated response to this selection. However, the high BMR mice had superior CA and manifested increased neuronal density, higher cytochrome c oxidase density (indexing metabolic costs of neuronal activity) and dendritic spine density (indexing connectivity between neurons). Thus, our study calls into question the generality of patterns of the evolution of CA apparent interspecifically. At the species level, increased CA may arise through the rearrangement of the architecture and function of neurons without a conspicuous increase in their size but increase metabolism.
Collapse
Affiliation(s)
- Anna Goncerzewicz
- Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Poland
| | | | - Marcin Lipiec
- Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Poland
| | - Ewelina Knapska
- Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Poland
| | | |
Collapse
|
8
|
Liu D, Zhu Y, Hou Z, Wang H, Li Q. Polysaccharides from Astragalus membranaceus Bunge alleviate LPS-induced neuroinflammation in mice by modulating microbe-metabolite-brain axis and MAPK/NF-κB signaling pathway. Int J Biol Macromol 2025; 304:140885. [PMID: 39938846 DOI: 10.1016/j.ijbiomac.2025.140885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/27/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Neuroinflammation can lead to various neurodegenerative disorders, resulting in irreversible neurological dysfunction. Astragalus membranaceus Bunge polysaccharides (APS) present great potential in alleviating neuroinflammation; however, the specific mechanism underlying its neuroprotective effect remains unclear, leading to uncertain prospects for pharmaceutical applications. This study aims to elucidate the mechanism underlying APS-mediated inhibition of neuroinflammation in mice induced by lipopolysaccharide (LPS) through regulation of metabolic function, intestinal flora composition, and cell signaling transduction. Results indicated that APS pretreatment effectively mitigated LPS-induced brain damage. Metabolomics analysis revealed that APS pretreatment also regulated the metabolic disturbances induced by LPS through targeting five specific metabolic pathways. This regulation was supported by notable alterations in nine metabolite markers. Furthermore, APS pretreatment significantly modulated the abundance of four taxa of gut microbes (i.e., Romboutsia, Rikenella, Dubosiella, Odoribacter) closely associated with regulations in eleven metabolic and signaling pathways. Additionally, transcriptome analysis and Western blotting unveiled that APS pretreatment exerted a neuroprotective effect by modulating the MAPK/NF-κB signaling pathway. Our findings provide insights into the potential mechanisms underlying the neuroprotective effects of APS while establishing a solid foundation for future utilization of APS.
Collapse
Affiliation(s)
- Dongyuan Liu
- Department of Neurosurgery, Beijing Luhe Hospital Capital Medical University, Beijing 101149, China
| | - Yuying Zhu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Ziming Hou
- Department of Neurosurgery, Beijing Luhe Hospital Capital Medical University, Beijing 101149, China
| | - Hao Wang
- Department of Neurosurgery, Beijing Luhe Hospital Capital Medical University, Beijing 101149, China.
| | - Qiangqiang Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
9
|
Rai HP, Mishra DN. Effect of ashwagandha ( Withania somnifera) extract with Sominone (Somin-On™) to improve memory in adults with mild cognitive impairment: A randomized, double-blind, placebo-controlled study. J Psychopharmacol 2025; 39:350-363. [PMID: 40099725 DOI: 10.1177/02698811251324377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is a condition in which people have memory or thinking problems than other people of their age. This study evaluated the effectiveness and safety of ashwagandha extract standardized with Sominone (Somin-On™) in enhancing memory and cognitive functioning in adults with MCI. METHODS In this randomized double-blind, placebo-controlled pilot study, 40 subjects with MCI were randomized in a 1:1 ratio to receive either Somin-On™ (250 mg daily) or a placebo for 60 days. The outcome measures, improvement in memory and other cognitive functions after 30 and 60 days were assessed using Montreal Cognitive Assessment (MoCA); Mini-mental state examination (MMSE); Wechsler Memory Scale-III (WMS-III)); and Shepard mental rotation task. RESULTS Subjects treated with Somin-On™ showed significant improvements in immediate memory, general memory, working memory and visuospatial processing and the response assessed using WMS-III after 30 and 60 days outperforming the placebo group. Scores on the Shepard Mental Rotation test in Somin-On™ group showed a significant rise by 12.22% at 30 days and 31.67% at 60 days, from baseline. Significant improvement was observed with Somin-On™ in memory assessment scales viz. MoCA (7.83% at 30 days and 14.77% at 60 days, from baseline) and MMSE (9.26% at 30 days and 19.21% at 60 days, from baseline) compared to placebo group. CONCLUSIONS The supplementation of Somin-On™ is an effective therapy to improve the immediate, general and working memory, as well as cognitive functions like attention and information processing speed in adults with MCI.
Collapse
Affiliation(s)
- Hari Prakash Rai
- Department of Neuroscience, Hitech Hospital and Trauma Center, Jhansi, UP, India
| | - Deo Nidhi Mishra
- Department of Internal Medicine, Nirmal Hospital, Jhansi, UP, India
| |
Collapse
|
10
|
Golden RK, Dilger RN. Validating an updated protocol for the novel object recognition task in young pigs. Front Behav Neurosci 2025; 19:1480389. [PMID: 40231117 PMCID: PMC11994583 DOI: 10.3389/fnbeh.2025.1480389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/05/2025] [Indexed: 04/16/2025] Open
Abstract
The objective of this study was to validate equipment and procedures involved in implementing the novel object recognition (NOR) paradigm with young pigs. Two experiments were run with the intent of determining improvements to the original, high-throughput NOR paradigm design. The focus of these experiments was the impact of confounding factors on the main cognitive outcome, recognition index (RI). Experiment 1 utilized 13 pigs that all performed the NOR task following the original paradigm with the addition of 2 extra testing days. Results from this experiment indicated that one test day is sufficient for producing RI values that differ (p < 0.05) from chance performance, which was set at 0.50 given the use of two objects. Results also indicated that pigs may habituate to the task itself after 1 day of testing as RI values were not different (p > 0.05) from that of chance on test days 2 or 3. Experiment 2 utilized 13 male and 16 female pigs to determine sex differences in paradigm outcomes in addition to introducing home-cage enrichment. Results indicated sex differences in investigative behaviors despite both sexes producing RI values different from that of chance. The impact of home-cage enrichment was less discernable, but evidence suggests a lack of influence. Overall, the modifications to the NOR paradigm described herein reduced variability in the primary outcome, RI, and thereby improved sensitivity of the behavioral assay compared with the original paradigm.
Collapse
Affiliation(s)
- Rebecca K. Golden
- Neuroscience Program, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Ryan N. Dilger
- Neuroscience Program, University of Illinois Urbana-Champaign, Champaign, IL, United States
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Champaign, IL, United States
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
11
|
Lee WT, Hazeltine E, Jiang J. Decoding task representations that support generalization in hierarchical task. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.02.626403. [PMID: 40161836 PMCID: PMC11952342 DOI: 10.1101/2024.12.02.626403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Task knowledge can be encoded hierarchically such that complex tasks can be built by associating simpler tasks. This associative organization supports generalization to facilitate learning of related but novel complex tasks. To study how the brain implements generalization in hierarchical task learning, we trained human participants on two complex tasks that shared a simple task and tested them on novel complex tasks whose association could be inferred via the shared simple task. Behaviorally, we observed faster learning of the novel complex tasks than control tasks. Using electroencephalogram (EEG) data, we decoded constituent simple tasks when performing a complex task (i.e., EEG association effect). Crucially, the shared simple task, although not part of the novel complex task, could be reliably decoded from the novel complex task. This decoding strength was correlated with EEG association effect and behavioral generalization effect. The findings demonstrate how task learning can be accelerated by associative inference.
Collapse
Affiliation(s)
- Woo-Tek Lee
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242
- Cognitive Control Collaborative, University of Iowa, Iowa City, IA 52242
- Behavioral-biomedical Interface Training Program, University of Iowa, Iowa City, IA 52242
| | - Eliot Hazeltine
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242
- Cognitive Control Collaborative, University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242
| | - Jiefeng Jiang
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242
- Cognitive Control Collaborative, University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
12
|
Buonarati OR, Quillinan N, Bayer KU. Oxygen/glucose-deprivation causes long-term impairment of synaptic CaMKII movement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.01.640973. [PMID: 40093100 PMCID: PMC11908153 DOI: 10.1101/2025.03.01.640973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Learning and memory are thought to require hippocampal long-term potentiation (LTP), a form of synaptic plasticity that is persistently impaired after cerebral ischemia and that requires movement of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) to excitatory synapses. We show here that oxygen/glucose-deprivation (OGD) in cultures hippocampal neurons causes a long-lasting impairment of CaMKII movement. Notably, CaMKII inhibition at 30 min after onset of OGD prevented the impairment in CaMKII movement. Thus, CaMKII mediates both, LTP mechanisms and their ischemia-induced impairment. These findings provide a mechanism by which ischemic conditions can impair LTP and explain how CaMKII inhibition after cerebral ischemia can prevent these LTP impairments.
Collapse
Affiliation(s)
- Olivia R. Buonarati
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Current address: Neurexis Therapeutics Inc, Aurora, CO 80045, USA
| | - Nidia Quillinan
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - K. Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
13
|
Bein O, Niv Y. Schemas, reinforcement learning and the medial prefrontal cortex. Nat Rev Neurosci 2025; 26:141-157. [PMID: 39775183 DOI: 10.1038/s41583-024-00893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
Schemas are rich and complex knowledge structures about the typical unfolding of events in a context; for example, a schema of a dinner at a restaurant. In this Perspective, we suggest that reinforcement learning (RL), a computational theory of learning the structure of the world and relevant goal-oriented behaviour, underlies schema learning. We synthesize literature about schemas and RL to offer that three RL principles might govern the learning of schemas: learning via prediction errors, constructing hierarchical knowledge using hierarchical RL, and dimensionality reduction through learning a simplified and abstract representation of the world. We then suggest that the orbitomedial prefrontal cortex is involved in both schemas and RL due to its involvement in dimensionality reduction and in guiding memory reactivation through interactions with posterior brain regions. Last, we hypothesize that the amount of dimensionality reduction might underlie gradients of involvement along the ventral-dorsal and posterior-anterior axes of the orbitomedial prefrontal cortex. More specific and detailed representations might engage the ventral and posterior parts, whereas abstraction might shift representations towards the dorsal and anterior parts of the medial prefrontal cortex.
Collapse
Affiliation(s)
- Oded Bein
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Weill Cornell Institute of Geriatric Psychiatry, Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| | - Yael Niv
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Psychology Department, Princeton University, Princeton, NJ, USA
| |
Collapse
|
14
|
Rocha-Almeida F, Conde-Moro AR, Fernández-Ruiz A, Delgado-García JM, Gruart A. Cortical and subcortical activities during food rewards versus social interaction in rats. Sci Rep 2025; 15:4389. [PMID: 39910316 PMCID: PMC11799384 DOI: 10.1038/s41598-025-87880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025] Open
Abstract
Balancing food foraging with social interaction is crucial for survival and reproduction in many species of mammals. We wanted to investigate the reward preferences in adult male rats by allowing them to lever-press for both food and social rewards (interaction with another rat), while their performance and electrophysiological activities were recorded. Local field potentials (LFPs) were analyzed across five neuroanatomical regions involved in reward processing, decision-making, and social behavior. Despite ad libitum food availability, rats consistently prioritized food. LFP analysis revealed a decrease in nucleus accumbens (NAc) spectral power following social interaction, accompanied by specific alterations in delta and theta bands within the medial prefrontal cortex (mPFC). The spectral power of LFPs delta and/or theta bands were different for the five selected regions following food reward vs. social interactions. Cross-frequency coupling analysis provided further insights, demonstrating dynamic changes in theta-to-gamma coupling during both food and social rewards, with distinct roles for slow- and fast-gamma frequencies. These findings shed light on the intricate neural processes underlying reward preferences and/or decision-making choices, highlighting the NAc's potential role in social reward processing, and the mPFC's involvement in modulating theta-gamma rhythms during reward-related decision-making.
Collapse
Affiliation(s)
| | - Ana R Conde-Moro
- Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain
| | | | | | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain
| |
Collapse
|
15
|
Kaiser M, Wang Y, Ten Oever S, Duecker F, Sack AT, van de Ven V. Simultaneous tACS-fMRI reveals state- and frequency-specific modulation of hippocampal-cortical functional connectivity. COMMUNICATIONS PSYCHOLOGY 2025; 3:19. [PMID: 39900978 PMCID: PMC11791075 DOI: 10.1038/s44271-025-00202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025]
Abstract
Non-invasive indirect hippocampal-targeted stimulation is of broad scientific and clinical interest. Transcranial alternating current stimulation (tACS) is appealing because it allows oscillatory stimulation to study hippocampal theta (3-8 Hz) activity. We found that tACS administered during functional magnetic resonance imaging yielded a frequency-, mental state- and topologically-specific effect of theta stimulation (but not other frequencies) enhancing right (but not left) hippocampal-cortical connectivity during resting blocks but not during task blocks. Control analyses showed that this effect was not due to possible stimulation-induced changes in signal quality or head movement. Our findings are promising for targeted network modulations of deep brain structures for research and clinical intervention.
Collapse
Affiliation(s)
- Max Kaiser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, PO Box 616, 6200MD, The Netherlands
| | - Yuejuan Wang
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, PO Box 616, 6200MD, The Netherlands
| | - Sanne Ten Oever
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, PO Box 616, 6200MD, The Netherlands
| | - Felix Duecker
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, PO Box 616, 6200MD, The Netherlands
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, PO Box 616, 6200MD, The Netherlands
| | - Vincent van de Ven
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, PO Box 616, 6200MD, The Netherlands.
| |
Collapse
|
16
|
Gonzalez Alam TRJ, Krieger-Redwood K, Varga D, Gao Z, Horner AJ, Hartley T, Thiebaut de Schotten M, Sliwinska M, Pitcher D, Margulies DS, Smallwood J, Jefferies E. A double dissociation between semantic and spatial cognition in visual to default network pathways. eLife 2025; 13:RP94902. [PMID: 39841127 PMCID: PMC11753780 DOI: 10.7554/elife.94902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Processing pathways between sensory and default mode network (DMN) regions support recognition, navigation, and memory but their organisation is not well understood. We show that functional subdivisions of visual cortex and DMN sit at opposing ends of parallel streams of information processing that support visually mediated semantic and spatial cognition, providing convergent evidence from univariate and multivariate task responses, intrinsic functional and structural connectivity. Participants learned virtual environments consisting of buildings populated with objects, drawn from either a single semantic category or multiple categories. Later, they made semantic and spatial context decisions about these objects and buildings during functional magnetic resonance imaging. A lateral ventral occipital to fronto-temporal DMN pathway was primarily engaged by semantic judgements, while a medial visual to medial temporal DMN pathway supported spatial context judgements. These pathways had distinctive locations in functional connectivity space: the semantic pathway was both further from unimodal systems and more balanced between visual and auditory-motor regions compared with the spatial pathway. When semantic and spatial context information could be integrated (in buildings containing objects from a single category), regions at the intersection of these pathways responded, suggesting that parallel processing streams interact at multiple levels of the cortical hierarchy to produce coherent memory-guided cognition.
Collapse
Affiliation(s)
- Tirso RJ Gonzalez Alam
- Department of Psychology, University of YorkNorth YorkshireUnited Kingdom
- York Neuroimaging Centre, Innovation Way, HeslingtonNorth YorkshireUnited Kingdom
- School of Human and Behavioural Sciences, Bangor University, Gwynedd, Wales, UKYorkUnited Kingdom
| | - Katya Krieger-Redwood
- Department of Psychology, University of YorkNorth YorkshireUnited Kingdom
- York Neuroimaging Centre, Innovation Way, HeslingtonNorth YorkshireUnited Kingdom
| | - Dominika Varga
- Sussex Neuroscience, School of Psychology, University of SussexBrighton and HoveUnited States
| | - Zhiyao Gao
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine StanfordStanfordUnited Kingdom
| | - Aidan J Horner
- Department of Psychology, University of YorkNorth YorkshireUnited Kingdom
- York Neuroimaging Centre, Innovation Way, HeslingtonNorth YorkshireUnited Kingdom
| | - Tom Hartley
- Department of Psychology, University of YorkNorth YorkshireUnited Kingdom
- York Neuroimaging Centre, Innovation Way, HeslingtonNorth YorkshireUnited Kingdom
| | - Michel Thiebaut de Schotten
- University of Bordeaux, CNRS, CEA, IMNBordeauxFrance
- Brain Connectivity and Behaviour Laboratory, Sorbonne UniversitiesParisFrance
| | - Magdalena Sliwinska
- Department of Psychology, Liverpool John Moores UniversityLiverpoolUnited Kingdom
| | - David Pitcher
- Department of Psychology, University of YorkNorth YorkshireUnited Kingdom
- York Neuroimaging Centre, Innovation Way, HeslingtonNorth YorkshireUnited Kingdom
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche Scientifique (CNRS) and Université de ParisParisFrance
| | | | - Elizabeth Jefferies
- Department of Psychology, University of YorkNorth YorkshireUnited Kingdom
- York Neuroimaging Centre, Innovation Way, HeslingtonNorth YorkshireUnited Kingdom
| |
Collapse
|
17
|
Chen L, Zheng Z, Liang J, Lin Y, Miao Q. Understanding gender differences in reasoning and specific paradigm using meta-analysis of neuroimaging. Front Behav Neurosci 2025; 18:1457663. [PMID: 39839537 PMCID: PMC11747635 DOI: 10.3389/fnbeh.2024.1457663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
Reasoning is a fundamental cognitive process that allows individuals to make inferences, decisions, and solve problems. Understanding the neural mechanisms of reasoning and the gender differences in these mechanisms is crucial for comprehending the neural foundations of reasoning and promoting gender equality in cognitive processing. This study conducted an Activation Likelihood Estimation (ALE) meta-analysis of 275 studies, revealing that reasoning involves multiple brain regions, including the parts of frontal, parietal, occipital, temporal lobes, limbic system, and subcortical areas. These findings indicate that reasoning is a complex cognitive process requiring the coordinated activity of multiple brain regions. Additionally, 25 studies focusing on the Wisconsin Card Sorting Test (WCST) paradigm confirmed the importance of these regions in reasoning processes. The gender-specific activation results indicate that males and females utilize different neural networks during reasoning and WCST tasks. While significant differences exist in specific regions, the overall activation patterns do not show marked gender differences. Notably, females exhibit greater activation in the limbic system compared to males, suggesting that emotional states may play a more prominent role for females when engaging in reasoning tasks.
Collapse
Affiliation(s)
- Lina Chen
- School of Psychology, Capital Normal University, Beijing, China
- Department of Education, Hengshui University, Hengshui, China
| | - Zeqing Zheng
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Jin Liang
- China Institute of Marine Technology and Economy, Beijing, China
- National Key Laboratory of Human Factors Engineering, Beijing, China
| | - Yuerui Lin
- School of Psychology, Capital Normal University, Beijing, China
| | - Qingqing Miao
- College of Foreign Languages and Literature, Northwest Normal University, Lanzhou, China
| |
Collapse
|
18
|
Levi A, Pugsley A, Fernandes MA, Turner GR, Gilboa A. Drawing improves memory in patients with hippocampal damage. Mem Cognit 2025; 53:379-394. [PMID: 38180603 DOI: 10.3758/s13421-023-01505-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
The hippocampus plays a critical role in the formation of declarative memories, and hippocampal damage leads to significant impairments in new memory formation. Drawing can serve as a form of multi-modal encoding that improves declarative memory performance relative to other multimodal encoding strategies such as writing. We examined whether, and to what extent, patients with hippocampal damage could benefit from the mnemonic strategy of drawing. Three patients with focal hippocampal damage, and one patient with both hippocampal and cortical lesions, in addition to 22 age-, sex-, and education-matched controls, were shown a list of words one at a time during encoding and instructed to either draw a picture or repeatedly write each word for 40 s. Following a brief filled delay, free recall and recognition memory for words from both encoding trial types were assessed. Controls showed enhanced recall and recognition memory for words drawn versus those that were written, an effect that was even more pronounced in patients with focal hippocampal damage. By contrast, the patient with both hippocampal and cortical lesions showed no drawing-mediated boost in either recall or recognition memory. These findings demonstrate that drawing is an effective encoding strategy, likely accruing from the engagement of extra-hippocampal processes including the integration of cortical-based motor, visual, and semantic processing, enabling more elaborative encoding.
Collapse
Affiliation(s)
- A Levi
- Rotman Research Institute at Baycrest Hospital, 3560 Bathurst St., North York, Ontario, M6A 2E1, Canada.
- Department of Psychology, York University, Toronto, Ontario, Canada.
| | - A Pugsley
- Rotman Research Institute at Baycrest Hospital, 3560 Bathurst St., North York, Ontario, M6A 2E1, Canada
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - M A Fernandes
- Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada
| | - G R Turner
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - A Gilboa
- Rotman Research Institute at Baycrest Hospital, 3560 Bathurst St., North York, Ontario, M6A 2E1, Canada.
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.
- Toronto Rehabilitation Institute, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Wang C, Lee H, Rao G, Knierim JJ. Multiplexing of temporal and spatial information in the lateral entorhinal cortex. Nat Commun 2024; 15:10533. [PMID: 39627238 PMCID: PMC11615229 DOI: 10.1038/s41467-024-54932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Episodic memory involves the processing of spatial and temporal aspects of personal experiences. The lateral entorhinal cortex (LEC) plays an essential role in subserving memory. However, the mechanisms by which LEC integrates spatial and temporal information remain elusive. Here, we recorded LEC neurons while male rats performed one-dimensional tasks. Many LEC cells displayed spatial firing fields and demonstrated selectivity for traveling directions. Furthermore, some LEC neurons changed the firing rates of their spatial rate maps during a session (rate remapping). Importantly, this temporal modulation was consistent across sessions, even when the spatial environment was altered. Notably, the strength of temporal modulation was greater in LEC compared to other brain regions, such as the medial entorhinal cortex, CA1, and CA3. Thus, we demonstrate spatial rate mapping in LEC neurons, which may serve as a coding mechanism for temporal context, and allow for flexible multiplexing of spatial and temporal information.
Collapse
Affiliation(s)
- Cheng Wang
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA.
| | - Heekyung Lee
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Geeta Rao
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - James J Knierim
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
20
|
Wehrli JM, Xia Y, Meister L, Tursunova S, Kleim B, Bach DR, Quednow BB. Forget me not: The effect of doxycycline on human declarative memory. Eur Neuropsychopharmacol 2024; 89:1-9. [PMID: 39217739 DOI: 10.1016/j.euroneuro.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Investigations into neuroprotective drugs are in high demand for the treatment of neurodegenerative diseases, such as multiple sclerosis or Alzheimer's disease, but also psychiatric disorders, such as depression, trauma, and substance use. One potential drug class being investigated are tetracyclines impacting on a variety of neuroprotective mechanisms. At the same time, tetracyclines like doxycycline have been suggested to affect human fear and spatial memory as well as reducing declarative memory retention. Based on the assumed necessity for synaptic consolidation in hippocampus-dependent learning, we hypothesised declarative memory may be similarly impaired by doxycycline as fear and spatial memory. Therefore, in this study we investigate the potential diminishing effects of doxycycline on consolidation of declarative memory in healthy humans. Additionally, to test for effect specificity we assessed motor memory, sustained attention, and processing speed. We administered a neuropsychological test battery in three independent randomized placebo-controlled double-blind trials (RCTs), in which healthy young volunteers (total N = 252) either received a single oral dose doxycycline (200 mg, n = 126) or placebo (n = 126) in a between-subject design. We found no evidence for a detrimental effect of doxycycline on declarative memory; instead, doxycycline improved declarative learning (p-value=0.022, Cohen's d=0.15) and memory consolidation (p=0.040, d=0.26). Contrarily, doxycycline slightly reduced motor learning (p=0.001, d=0.10) but subtly strengthened long-term motor memory (p=0.001, d=0.10). These results suggest that doxycycline can improve declarative learning and memory without having long term negative effects on other cognitive domains in healthy humans. Our results give hope to further investigate doxycycline in neuroprotective treatment applications.
Collapse
Affiliation(s)
- Jelena M Wehrli
- Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Lenggstrasse 31, Zurich 8032, Switzerland.
| | - Yanfang Xia
- Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Lenggstrasse 31, Zurich 8032, Switzerland
| | - Laura Meister
- Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Lenggstrasse 31, Zurich 8032, Switzerland
| | - Sarrina Tursunova
- Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Lenggstrasse 31, Zurich 8032, Switzerland
| | - Birgit Kleim
- Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Lenggstrasse 31, Zurich 8032, Switzerland
| | - Dominik R Bach
- Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Lenggstrasse 31, Zurich 8032, Switzerland; University of Bonn, Transdisciplinary Research Area "Life and Health", Hertz Chair for Artificial Intelligence and Neuroscience, Bonn, Germany
| | - Boris B Quednow
- Experimental Pharmacopsychology and Psychological Addiction Research, Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Joint Center of University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Zheng X, Hu F, Chen X, Yang G, Li M, Peng Y, Li J, Yang S, Zhang L, Wan J, Wei N, Li R. Role of microglia polarization induced by glucose metabolism disorder in the cognitive impairment of mice from PM 2.5 exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176603. [PMID: 39349199 DOI: 10.1016/j.scitotenv.2024.176603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Studies have found that PM2.5 can damage the brain, accelerate cognitive impairment, and increase the risk of developing a variety of neurodegenerative diseases. However, the potential molecular mechanisms by which PM2.5 causes learning and memory problems are yet to be explored. In this study, we evaluated the neurotoxic effects in mice after 12 weeks of PM2.5 exposure, and found that this exposure resulted in learning and memory disorders, pathological brain damage, and M1 phenotype polarization on microglia, especially in the hippocampus. The severity of this damage increased with increasing PM2.5 concentration. Proteomic analysis, as well as validation results, suggested that PM2.5 exposure led to abnormal glucose metabolism in the mouse brain, which is mainly characterized by significant expression of hexokinase, phosphofructokinase, and lactate dehydrogenase. We therefore administered the glycolysis inhibitor 2-deoxy-d-glucose (2-DG) to the mice exposed to PM2.5, and showed that inhibition of glycolysis by 2-DG significantly alleviated PM2.5-induced hippocampal microglia M1 phenotype polarization, and reduced the release of inflammatory factors, improved synaptic structure and related protein expression, which alleviated the cognitive impairment induced by PM2.5 exposure. In summary, our study found that abnormal glucose metabolism-mediated inflammatory polarization of microglia played a role in learning and memory disorders in mice exposed to PM2.5. This study provides new insights into the neurotoxicity caused by PM2.5 exposure, and provides some theoretical references for the prevention and control of cognitive impairment induced by PM2.5 exposure.
Collapse
Affiliation(s)
- Xinyue Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Fei Hu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xinyue Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Ge Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Min Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yang Peng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Jinghan Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Shuiqing Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Ling Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jian Wan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Nianpeng Wei
- Wuhan Hongpeng Ecological Technology Co., Ltd., Wuhan 430070, China
| | - Rui Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
22
|
Wirtshafter HS, Solla SA, Disterhoft JF. A universal hippocampal memory code across animals and environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620127. [PMID: 39484538 PMCID: PMC11527332 DOI: 10.1101/2024.10.24.620127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
How learning is affected by context is a fundamental question of neuroscience, as the ability to generalize learning to different contexts is necessary for navigating the world. An example of swift contextual generalization is observed in conditioning tasks, where performance is quickly generalized from one context to another. A key question in identifying the neural substrate underlying this ability is how the hippocampus (HPC) represents task-related stimuli across different environments, given that HPC cells exhibit place-specific activity that changes across contexts (remapping). In this study, we used calcium imaging to monitor hippocampal neuron activity as rats performed a conditioning task across multiple spatial contexts. We investigated whether hippocampal cells, which encode both spatial locations (place cells) and task-related information, could maintain their task representation even when their spatial encoding remapped in a new spatial context. To assess the consistency of task representations, we used advanced dimensionality reduction techniques combined with machine learning to develop manifold representations of population level HPC activity. The results showed that task-related neural representations remained stable even as place cell representations of spatial context changed, thus demonstrating similar embedding geometries of neural representations of the task across different spatial contexts. Notably, these patterns were not only consistent within the same animal across different contexts but also significantly similar across different animals, suggesting a standardized neural encoding or 'neural syntax' in the hippocampus. These findings bridge a critical gap between memory and navigation research, revealing how the hippocampus maintains cognitive consistency across different spatial environments. These findings also suggest that hippocampal function is governed by a neural framework shared between animals, an observation that may have broad implications for understanding memory, learning, and related cognitive processes. Looking ahead, this work opens new avenues for exploring the fundamental principles underlying hippocampal encoding strategies.
Collapse
Affiliation(s)
- Hannah S Wirtshafter
- Department of Neuroscience, Northwestern University Feinberg
School of Medicine, Chicago, IL, USA
| | - Sara A Solla
- Department of Neuroscience, Northwestern University Feinberg
School of Medicine, Chicago, IL, USA
| | - John F Disterhoft
- Department of Neuroscience, Northwestern University Feinberg
School of Medicine, Chicago, IL, USA
| |
Collapse
|
23
|
Kim S, Park SG, Kim J, Hong S, Cho SM, Lim SY, Kim EK, Ju S, Lee SB, Kim SP, Jeong TY, Oh Y, Han S, Kim HR, Lee TC, Kim HC, Yoon WK, An TH, Oh KJ, Nam KH, Lee S, Kim K, Seong JK, Lee H. Comprehensive phenotypic assessment of nonsense mutations in mitochondrial ND5 in mice. Exp Mol Med 2024; 56:2395-2408. [PMID: 39482535 PMCID: PMC11612467 DOI: 10.1038/s12276-024-01333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/07/2024] [Accepted: 07/30/2024] [Indexed: 11/03/2024] Open
Abstract
Mitochondrial dysfunction induced by mitochondrial DNA (mtDNA) mutations has been implicated in various human diseases. A comprehensive analysis of mitochondrial genetic disorders requires suitable animal models for human disease studies. While gene knockout via premature stop codons is a powerful method for investigating the unique functions of target genes, achieving knockout of mtDNA has been rare. Here, we report the genotypes and phenotypes of heteroplasmic MT-ND5 gene-knockout mice. These mutant mice presented damaged mitochondrial cristae in the cerebral cortex, hippocampal atrophy, and asymmetry, leading to learning and memory abnormalities. Moreover, mutant mice are susceptible to obesity and thermogenetic disorders. We propose that these mtDNA gene-knockdown mice could serve as valuable animal models for studying the MT-ND5 gene and developing therapies for human mitochondrial disorders in the future.
Collapse
Affiliation(s)
- Sanghun Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Seul Gi Park
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Jieun Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Seongho Hong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- Korea Model animal Priority Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang-Mi Cho
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Soo-Yeon Lim
- Korea Model animal Priority Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun-Kyoung Kim
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Sungjin Ju
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Su Bin Lee
- Korea Model animal Priority Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sol Pin Kim
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- Korea Model animal Priority Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae Young Jeong
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Yeji Oh
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Seunghun Han
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Hae-Rim Kim
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Taek Chang Lee
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Hyoung-Chin Kim
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Won Kee Yoon
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
| | - Seonghyun Lee
- Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| | - Kyoungmi Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
- Korea Model animal Priority Center, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Hyunji Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
- Department of Convergence Medicine, Korea University College of Medicine, Seoul, 02708, Republic of Korea.
| |
Collapse
|
24
|
Kopsick JD, Kilgore JA, Adam GC, Ascoli GA. Formation and retrieval of cell assemblies in a biologically realistic spiking neural network model of area CA3 in the mouse hippocampus. J Comput Neurosci 2024; 52:303-321. [PMID: 39285088 PMCID: PMC11470887 DOI: 10.1007/s10827-024-00881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024]
Abstract
The hippocampal formation is critical for episodic memory, with area Cornu Ammonis 3 (CA3) a necessary substrate for auto-associative pattern completion. Recent theoretical and experimental evidence suggests that the formation and retrieval of cell assemblies enable these functions. Yet, how cell assemblies are formed and retrieved in a full-scale spiking neural network (SNN) of CA3 that incorporates the observed diversity of neurons and connections within this circuit is not well understood. Here, we demonstrate that a data-driven SNN model quantitatively reflecting the neuron type-specific population sizes, intrinsic electrophysiology, connectivity statistics, synaptic signaling, and long-term plasticity of the mouse CA3 is capable of robust auto-association and pattern completion via cell assemblies. Our results show that a broad range of assembly sizes could successfully and systematically retrieve patterns from heavily incomplete or corrupted cues after a limited number of presentations. Furthermore, performance was robust with respect to partial overlap of assemblies through shared cells, substantially enhancing memory capacity. These novel findings provide computational evidence that the specific biological properties of the CA3 circuit produce an effective neural substrate for associative learning in the mammalian brain.
Collapse
Affiliation(s)
- Jeffrey D Kopsick
- Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason University, Fairfax, VA, USA
- Interdisciplinary Program in Neuroscience, College of Science, George Mason University, Fairfax, VA, USA
| | - Joseph A Kilgore
- Department of Electrical and Computer Engineering, George Washington University, Washington, D.C., USA
| | - Gina C Adam
- Department of Electrical and Computer Engineering, George Washington University, Washington, D.C., USA
| | - Giorgio A Ascoli
- Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason University, Fairfax, VA, USA.
- Interdisciplinary Program in Neuroscience, College of Science, George Mason University, Fairfax, VA, USA.
- Bioengineering Department, College of Engineering and Computing, George Mason University, Fairfax, VA, USA.
| |
Collapse
|
25
|
Mohammadkhani R, Salehi I, Safari S, Ghahremani R, Komaki A, Karimi SA. Continuous exercise training rescues hippocampal long-term potentiation in the VPA rat model of Autism: Uncovering sex-specific effects. Neuroscience 2024; 559:105-112. [PMID: 39214164 DOI: 10.1016/j.neuroscience.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Long-term potentiation (LTP) impairment has been reported in many studies of autistic models. The aim of the present study was to investigate the effects of interval training (IT) and continuous training (CT) exercises on LTP in the hippocampal dentate gyrus (DG) neurons of valproic acid (VPA) rat model of autism. To induce an autism-like model, pregnant rats were injected 500 mg/kg NaVPA (intraperitoneal) on the embryonic day 12.5. IT and CT aerobic exercises started on postnatal day 56 in the offspring. Four weeks after IT and/or CT exercises, the offspring were urethane-anesthetized and placed into a stereotaxic apparatus for surgery, electrode implantation, and field potential recording. In the DG region, excitatory post synaptic potentials (EPSP) slope and population spike (PS) amplitude were measured. Sex differences in LTP were evident for control rats but not for VPA-exposed offspring. LTP was significantly smaller in VPA-exposed male offspring compared with control male rats. In contrast to males, there was no difference between VPA-exposed female offspring and control female rats. Interestingly, we observed a sex difference in the response to exercise between VPA-exposed male and female offspring. CT exercise training (but not IT) increased LTP in VPA-exposed male offspring. Both IT and CT exercise trainings had no effect on intact LTP in VPA-exposed female offspring. Our work suggests that there may be differences in the benefits of exercise interventions based on sex, and CT exercise training could be more beneficial for LTP improvements.
Collapse
Affiliation(s)
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Samaneh Safari
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Ghahremani
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
26
|
Kudrinskaya VM, Ivlev AP, Obukhova DA, Maystrenko VA, Tiutiunnik TV, Traktirov DS, Karpenko MN, Ivleva IS. Spatial memory impairment is associated with decreased dopamine-β-hydroxylase activity in the brains of rats exposed to manganese chloride. Toxicol Mech Methods 2024; 34:1035-1044. [PMID: 39021086 DOI: 10.1080/15376516.2024.2379012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024]
Abstract
Chronic exposure to manganese compounds leads to accumulation of the manganese in the basal ganglia and hippocampus. High levels of manganese in these structures lead to oxidative stress, neuroinflammation, imbalance of brain neurotransmitters, and hyperactivation of calpains mediating neurotoxicity and causing motor and cognitive impairment. The purpose of this work was to study the effect of excess manganese chloride intake on rats' spatial memory and on dopamine-β-hydroxylase (DβH) activity under conditions of calpain activity suppression. Rats were divided into 3 groups of 10 animals each. Group 1 received MnCl2 (30 days, 5 mg/kg/day, intranasally), group 2 received MnCl2 (30 days, 5 mg/kg/day, intranasally) and calpain inhibitor Cast (184-210) (30 days, 5 µg/kg/day, intranasally), and group 3 received sterile saline (30 days in a volume of 20 μl, intranasally). The spatial working memory was assessed using Morris water maze test. DβH activity was determined by HPLC. We have shown that in response to excessive intake of MnCl2, there was a development of cognitive impairments in rats, which was accompanied by a decrease in DβH activity in the hippocampus. The severity of cognitive impairment was reduced by inhibiting the activity of m-calpain. The protective effect of calpain inhibitors was achieved not through an effect on DβH activity. Thus, the development of therapeutic regimens for the treatment of manganism using dopaminomimetics and/or by inhibiting calpains, must be performed taking into account the manganese-induced decrease of DβH activity and the inability to influence this process with calpain inhibitors.
Collapse
Affiliation(s)
| | - Andrey Pavlovich Ivlev
- Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | | | | | | - Irina Sergeevna Ivleva
- Department of Physiology (Pavlov's), Institute of Experimental Medicine, St. Petersburg, Russia
| |
Collapse
|
27
|
Liu J, Hall AF, Wang DV. Emerging many-to-one weighted mapping in hippocampus-amygdala network underlies memory formation. Nat Commun 2024; 15:9248. [PMID: 39461946 PMCID: PMC11513146 DOI: 10.1038/s41467-024-53665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Memories are crucial for daily life, yet the network-level organizing principles governing neural representations of experiences remain unknown. Employing dual-site in vivo recording in freely behaving male mice, here we show that hippocampal dorsal CA1 (dCA1) and basolateral amygdala (BLA) utilize distinct coding strategies for novel experiences. A small assembly of BLA neurons emerged active during memory acquisition and persisted through consolidation, whereas most dCA1 neurons were engaged in both processes. Machine learning decoding revealed that dCA1 population spikes predicted BLA assembly firing rate, suggesting that most dCA1 neurons concurrently index an episodic event by rapidly establishing weighted communication with a specific BLA assembly - a process we term "many-to-one weighted mapping." We also found that dCA1 reactivations preceded BLA assembly activity preferably during elongated and enlarged dCA1 ripples. Using a closed-loop strategy, we demonstrated that suppressing BLA activity after large dCA1 ripples impaired memory. These findings highlight a many-to-one weighted mapping mechanism underlying both the acquisition and consolidation of new memories.
Collapse
Affiliation(s)
- Jun Liu
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Arron F Hall
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Dong V Wang
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
28
|
Paulson AL, Zhang L, Prichard AM, Singer AC. 40 Hz sensory stimulation enhances CA3-CA1 coordination and prospective coding during navigation in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619408. [PMID: 39484571 PMCID: PMC11526945 DOI: 10.1101/2024.10.23.619408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
40 Hz sensory stimulation ("flicker") has emerged as a new technique to potentially mitigate pathology and improve cognition in mouse models of Alzheimer's disease (AD) pathology. However, it remains unknown how 40 Hz flicker affects neural codes essential for memory. Accordingly, we investigate the effects of 40 Hz flicker on neural representations of experience in the hippocampus of the 5XFAD mouse model of AD by recording 1000s of neurons during a goal-directed spatial navigation task. We find that an hour of daily exposure to 40 Hz audio-visual stimulation over 8 days leads to higher coordination between hippocampal subregions CA3 and CA1 during navigation. Consistent with CA3's role in generating sequential activity that represents future positions, 40 Hz flicker exposure increased prospective coding of future positions. In turn, prospective coding was more prominent during efficient navigation behavior. Our findings show how 40 Hz flicker enhances key hippocampal activity during behavior that is important for memory.
Collapse
Affiliation(s)
- Abigail L Paulson
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Lu Zhang
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30332, USA
- National Institute of Mental Health, NIH, Bethesda, 20892, MD
| | - Ashley M Prichard
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Annabelle C Singer
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
29
|
Roseman-Shalem M, Dunbar RIM, Arzy S. Processing of social closeness in the human brain. Commun Biol 2024; 7:1293. [PMID: 39390210 PMCID: PMC11467261 DOI: 10.1038/s42003-024-06934-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/21/2024] [Indexed: 10/12/2024] Open
Abstract
Healthy social life requires relationships in different levels of personal closeness. Based on ethological, sociological, and psychological evidence, social networks have been divided into five layers, gradually increasing in size and decreasing in personal closeness. Is this division also reflected in brain processing of social networks? During functional MRI, 21 participants compared their personal closeness to different individuals. We examined the brain volume showing differential activation for varying layers of closeness and found that a disproportionately large portion of this volume (80%) exhibited preference for individuals closest to participants, while separate brain regions showed preference for all other layers. Moreover, this bipartition reflected cortical preference for different sizes of physical spaces, as well as distinct subsystems of the default mode network. Our results support a division of the neurocognitive processing of social networks into two patterns depending on personal closeness, reflecting the unique role intimately close individuals play in our social lives.
Collapse
Affiliation(s)
- Moshe Roseman-Shalem
- Computational Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Robin I M Dunbar
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Shahar Arzy
- Computational Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem, Israel
- Department of Brain and Cognitive Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
30
|
Xu J, Tan S, Wen J, Zhang M, Xu X. Progression of hippocampal subfield atrophy and asymmetry in Alzheimer's disease. Eur J Neurosci 2024; 60:6091-6106. [PMID: 39308012 DOI: 10.1111/ejn.16543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/25/2024] [Accepted: 08/29/2024] [Indexed: 10/17/2024]
Abstract
Alzheimer's disease (AD) affects the hippocampus during its progression, but the specific observable changes of hippocampal subfields during disease progression remain poorly understood. In this study, we employed an event-based model (EBM) to determine the sequence of occurrence of hippocampal subfield atrophy in mild cognitive impairment (MCI) and AD cohorts. Subjects (207) were included: 86 MCI, 53 AD, and 68 healthy controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Participants underwent structural magnetic resonance imaging (MRI) scans to analyse the hippocampal subfields. We assigned each patient to a specific EBM stage, based on the number of their abnormal subfields. A combination of 2-year follow-up MRI scans were applied to demonstrate the longitudinal consistency and utility of the model's staging system. The model estimated that the earliest atrophy occurs in the hippocampal fissure, then spreading to other subregions in both MCI and AD. We identified a marked divergence between the sequences of left and right hippocampal subfields atrophy, so inter-hemispheric asymmetry pattern was further analysed. The sequence of asymmetry index (AI) increases beginning in the molecular and granule cell layers of the dentate gyrus (GC-ML-DG), cornus ammonis (CA) 4, and the molecular layer (ML). Longitudinal analysis confirms the efficacy of the model. In addition, the model stages were significantly correlated with patients' memory scores (p < .05). Collectively, we used a data-driven method to provide new insight into AD hippocampal progression. The present model could aid in understanding of the disease stages, as well as tracking memory decline.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine. No.88 Jiefang Road, Hangzhou, China
| | - Sijia Tan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine. No.88 Jiefang Road, Hangzhou, China
| | - Jiaqi Wen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine. No.88 Jiefang Road, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine. No.88 Jiefang Road, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine. No.88 Jiefang Road, Hangzhou, China
| |
Collapse
|
31
|
Yatagan Sevim G, Alkan E, Taporoski TP, Krieger JE, Pereira AC, Evans SL. Effects of glycaemic control on memory performance, hippocampal volumes and depressive symptomology. Diabetol Metab Syndr 2024; 16:219. [PMID: 39261923 PMCID: PMC11389280 DOI: 10.1186/s13098-024-01429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Diabetes and poor glycaemic control have been shown to negatively impact cognitive abilities, while also raising risk of both mood disorders and brain structural atrophy. Sites of atrophy include the hippocampus, which has been implicated in both memory performance and depression. The current study set out to better characterise the associations between poor glycaemic control, memory performance, and depression symptoms, and investigate whether loss of hippocampal volume could represent a neuropathological mechanism underlying these. METHODS 1331 participants (60.9% female, age range 18-88 (Mean = 44.02), 6.5% with likely diabetes) provided HbA1c data (as an index of glycaemic control), completed a word list learning task, and a validated depression scale. A subsample of 392 participants underwent structural MRI; hippocampal volumes were extracted using FreeSurfer. RESULTS Partial correlation analyses (controlling for age, gender, and education) showed that, in the full sample, poorer glycaemic control was related to lower word list memory performance. In the MRI sub-sample, poorer glycaemic control was related to higher depressive symptoms, and lower hippocampal volumes. Total hippocampus volume partially mediated the association between HbA1c levels and depressive symptoms. CONCLUSIONS Results emphasise the impact of glycaemic control on memory, depression and hippocampal volume and suggest hippocampal volume loss could be a pathophysiological mechanism underlying the link between HbA1c and depression risk; inflammatory and stress-hormone related processes might have a role in this.
Collapse
Affiliation(s)
- Gulin Yatagan Sevim
- Faculty of Health and Medical Sciences, School of Psychology, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Erkan Alkan
- Faculty of Health, Science, Social Care and Education, Kingston University, London, UK
| | - Tamara P Taporoski
- Harvard Center for Population and Development Studies, Harvard University, Cambridge, Massachusetts, USA
| | - Jose E Krieger
- University of São Paulo School of Medicine, São Paulo, Brazil
| | - Alex C Pereira
- University of São Paulo School of Medicine, São Paulo, Brazil
| | - Simon L Evans
- Faculty of Health and Medical Sciences, School of Psychology, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| |
Collapse
|
32
|
Vicidomini C, Goode TD, McAvoy KM, Yu R, Beveridge CH, Iyer SN, Victor MB, Leary N, Evans L, Steinbaugh MJ, Lai ZW, Lyon MC, Silvestre MRFS, Bonilla G, Sadreyev RI, Walther TC, Sui SH, Saido T, Yamamoto K, Murakami M, Tsai LH, Chopra G, Sahay A. An aging-sensitive compensatory secretory phospholipase that confers neuroprotection and cognitive resilience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605338. [PMID: 39211220 PMCID: PMC11361190 DOI: 10.1101/2024.07.26.605338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Breakdown of lipid homeostasis is thought to contribute to pathological aging, the largest risk factor for neurodegenerative disorders such as Alzheimer's Disease (AD). Cognitive reserve theory posits a role for compensatory mechanisms in the aging brain in preserving neuronal circuit functions, staving off cognitive decline, and mitigating risk for AD. However, the identities of such mechanisms have remained elusive. A screen for hippocampal dentate granule cell (DGC) synapse loss-induced factors identified a secreted phospholipase, Pla2g2f, whose expression increases in DGCs during aging. Pla2g2f deletion in DGCs exacerbates aging-associated pathophysiological changes including synapse loss, inflammatory microglia, reactive astrogliosis, impaired neurogenesis, lipid dysregulation and hippocampal-dependent memory loss. Conversely, boosting Pla2g2f in DGCs during aging is sufficient to preserve synapses, reduce inflammatory microglia and reactive gliosis, prevent hippocampal-dependent memory impairment and modify trajectory of cognitive decline. Ex vivo, neuronal-PLA2G2F mediates intercellular signaling to decrease lipid droplet burden in microglia. Boosting Pla2g2f expression in DGCs of an aging-sensitive AD model reduces amyloid load and improves memory. Our findings implicate PLA2G2F as a compensatory neuroprotective factor that maintains lipid homeostasis to counteract aging-associated cognitive decline.
Collapse
Affiliation(s)
- Cinzia Vicidomini
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Travis D Goode
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kathleen M McAvoy
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Ruilin Yu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Conor H Beveridge
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sanjay N Iyer
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Matheus B Victor
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Noelle Leary
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Liam Evans
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Michael J Steinbaugh
- Harvard Chan Bioinformatics Core, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Zon Weng Lai
- Harvard Chan Advanced Multi-omics Platform, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marina C Lyon
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Manuel Rico F S Silvestre
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Gracia Bonilla
- Department of Molecular Biology. Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology. Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tobias C Walther
- Harvard Chan Advanced Multi-omics Platform, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Shannan Ho Sui
- Harvard Chan Bioinformatics Core, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198 Japan
| | - Kei Yamamoto
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-jyosanjima, Tokushima 770-8513, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Li-Huei Tsai
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
33
|
Chai GS, Gong J, Mao YM, Wu JJ, Bi SG, Wang F, Zhang YQ, Shen MT, Lei ZY, Nie YJ, Yu H. H3K4 Trimethylation Mediate Hyperhomocysteinemia Induced Neurodegeneration via Suppressing Histone Acetylation by ANP32A. Mol Neurobiol 2024; 61:6788-6804. [PMID: 38351418 DOI: 10.1007/s12035-024-03995-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/29/2024] [Indexed: 08/22/2024]
Abstract
Homocysteine (Hcy) is an independent and serious risk factor for dementia, including Alzheimer's disease (AD), but the precise mechanisms are still poorly understood. In the current study, we observed that the permissive histone mark trimethyl histone H3 lysine 4 (H3K4me3) and its methyltransferase KMT2B were significantly elevated in hyperhomocysteinemia (HHcy) rats, with impairment of synaptic plasticity and cognitive function. Further research found that histone methylation inhibited synapse-associated protein expression, by suppressing histone acetylation. Inhibiting H3K4me3 by downregulating KMT2B could effectively restore Hcy-inhibited H3K14ace in N2a cells. Moreover, chromatin immunoprecipitation revealed that Hcy-induced H3K4me3 resulted in ANP32A mRNA and protein overexpression in the hippocampus, which was regulated by increased transcription Factor c-fos and inhibited histone acetylation and synapse-associated protein expression, and downregulating ANP32A could reverse these changes in Hcy-treated N2a cells. Additionally, the knockdown of KMT2B restored histone acetylation and synapse-associated proteins in Hcy-treated primary hippocampal neurons. These data have revealed a novel crosstalk mechanism between KMT2B-H3K4me3-ANP32A-H3K14ace, shedding light on its role in Hcy-related neurogenerative disorders.
Collapse
Affiliation(s)
- Gao-Shang Chai
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| | - Juan Gong
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yu-Ming Mao
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Jia-Jun Wu
- Department of Electrophysiology, Wuhan Children's Hospital (Wuhan Maternal and Children's Healthcare Center), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430010, People's Republic of China
| | - Shu-Guang Bi
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Fangzhou Wang
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yu-Qi Zhang
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Meng-Ting Shen
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Zhuo-Ya Lei
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yun-Juan Nie
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Haitao Yu
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
34
|
Takahashi K, Glinski B, Salehinejad MA, Jamil A, Chang AYC, Kuo MF, Nitsche MA. Induction and stabilization of delta frequency brain oscillations by phase-synchronized rTMS and tACS. Brain Stimul 2024; 17:1086-1097. [PMID: 39270929 DOI: 10.1016/j.brs.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Brain oscillations in the delta frequency band have been linked with deep sleep and consolidation of declarative memory during sleep. However, the causal relationship of these associations remains not competely clarified, primarily due to constraints by technical limitations of brain stimulation approaches suited to induce and stabilize respective oscillatory activity in the human brain. The objective of this study was to establish a non-invasive brain stimulation protocol capable of reliably inducing, and stabilizing respective oscillatory activity in the delta frequency range. HYPOTHESIS We aimed to develop an efficient non-invasive brain stimulation (NIBS) protocol for delta frequency induction and stabilization via concurrent, phase-locked repetitive transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS). We hypothesized that rTMS induces oscillatory resting-state activity in the delta frequency and that tACS stabilizes this effect, as has been shown before for alpha and theta frequencies. METHODS 19 healthy participants took part in a repeated-measures experimental protocol. We applied rTMS pulses synchronized with the peak or trough phase of 0.75Hz tACS over the bilateral prefrontal cortex. Resting state EEG in eyes-open (EO) and eyes-closed (EC) conditions was recorded before, immediately after and every 10 min for up to 1 h after intervention. RESULTS rTMS phase-synchronized to the trough of the tACS waveform significantly increased delta frequency activity for up to 60 min in both EO and EC conditions after stimulation. The effects extended from frontal to temporal regions and this enhancement of oscillatory activity was shown to be specific for the delta frequency range. CONCLUSION Concurrent, trough-synchronized 0.75 Hz rTMS combined with tACS may be a reliable protocol to induce long-lasting oscillatory activity in the delta frequency range. The results of the current study might perspectively be relevant for clinical treatment of sleep disturbances which are accompanied by pathologically altered brain oscillations, and enhancement of memory consolidation.
Collapse
Affiliation(s)
- Kuri Takahashi
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Benedikt Glinski
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Mohammed Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran
| | - Asif Jamil
- Division of Neuropsychiatry & Neuromodulation, Department of Psychiatry, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA
| | | | - Min-Fang Kuo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, Bielefeld, Germany; German Centre for Mental Health (DZPG), Bochum, Germany.
| |
Collapse
|
35
|
Golden RK, Dilger RN. Determining underlying influences of data variability in the novel object recognition paradigm as used with young pigs. Front Behav Neurosci 2024; 18:1434489. [PMID: 39257566 PMCID: PMC11384571 DOI: 10.3389/fnbeh.2024.1434489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Abstract
The novel object recognition (NOR) paradigm is a cognitive test that has been used with many species to detect differences in ability. Various iterations of the paradigm have been implemented, making it difficult to compare results both within and across species. Interpretations of the results are equally diverse, threatening the integrity of the paradigm. These inconsistencies have prompted a deeper dive into the variability of the resultant data. For the purposes of this meta-analysis, data originated from 12 studies involving 367 pigs that were subjected to the same NOR paradigm beginning between postnatal days 21 and 24. The main cognitive measure from the NOR paradigm is recognition index (RI), which was the focus of most of the analyses in this meta-analysis. RI was chosen as the main outcome as it determines a pig's preference for novelty, an innate behavior of cognitively intact pigs. A histogram of RI values (range 0 to 1) showed a bimodal distribution skewed to the right, suggesting that the interpretation of positive performance on the task may need to be stricter. Correlational analyses proved that the number of investigations and investigation time with both the novel and familiar objects were the strongest predictors of resultant RI values. Objective data inclusion criteria were then considered to eliminate non-compliant pigs. Results indicated that requiring at least 5 s of investigation over a minimum of 3 investigations with the novel object reduced overall variability for RI with a concomitant increase in the mean. Further analyses showed that pigs preferred to spend more time with and interact more with the novel object across the entire testing trial, especially in the first minute. Together, these findings suggest that future interpretations of NOR should consider applying stricter statistical analyses as well as additional data processing, such as binning, with emphasis on novel object and familiar object investigation. Overall, modifications to the existing iterations of the NOR paradigm are necessary to improve paradigm reliability.
Collapse
Affiliation(s)
- Rebecca K Golden
- Neuroscience Program, University of Illinois, Urbana, IL, United States
| | - Ryan N Dilger
- Neuroscience Program, University of Illinois, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
36
|
Navakkode S, Kennedy BK. Neural ageing and synaptic plasticity: prioritizing brain health in healthy longevity. Front Aging Neurosci 2024; 16:1428244. [PMID: 39161341 PMCID: PMC11330810 DOI: 10.3389/fnagi.2024.1428244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Ageing is characterized by a gradual decline in the efficiency of physiological functions and increased vulnerability to diseases. Ageing affects the entire body, including physical, mental, and social well-being, but its impact on the brain and cognition can have a particularly significant effect on an individual's overall quality of life. Therefore, enhancing lifespan and physical health in longevity studies will be incomplete if cognitive ageing is over looked. Promoting successful cognitive ageing encompasses the objectives of mitigating cognitive decline, as well as simultaneously enhancing brain function and cognitive reserve. Studies in both humans and animal models indicate that cognitive decline related to normal ageing and age-associated brain disorders are more likely linked to changes in synaptic connections that form the basis of learning and memory. This activity-dependent synaptic plasticity reorganises the structure and function of neurons not only to adapt to new environments, but also to remain robust and stable over time. Therefore, understanding the neural mechanisms that are responsible for age-related cognitive decline becomes increasingly important. In this review, we explore the multifaceted aspects of healthy brain ageing with emphasis on synaptic plasticity, its adaptive mechanisms and the various factors affecting the decline in cognitive functions during ageing. We will also explore the dynamic brain and neuroplasticity, and the role of lifestyle in shaping neuronal plasticity.
Collapse
Affiliation(s)
- Sheeja Navakkode
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, Centre for Healthy Longevity, National University Health System, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - Brian K. Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, Centre for Healthy Longevity, National University Health System, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Buck Institute for Research on Ageing, Novato, CA, United States
| |
Collapse
|
37
|
Junco-Muñoz ML, Mejía-Rodríguez O, Cervantes-Alfaro JM, Téllez-Anguiano ADC, López-Vázquez MÁ, Olvera-Cortés ME. Correlates of Theta and Gamma Activity during Visuospatial Incidental/Intentional Encoding and Retrieval Indicate Differences in Processing in Young and Elderly Healthy Participants. Brain Sci 2024; 14:786. [PMID: 39199479 PMCID: PMC11352628 DOI: 10.3390/brainsci14080786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Incidental visuospatial learning acquired under incidental conditions is more vulnerable to aging than in the intentional case. The theta and gamma correlates of the coding and retrieval of episodic memory change during aging. Based on the vulnerability of incidental coding to aging, different theta and gamma correlates could occur under the incidental versus intentional coding and retrieval of visuospatial information. Theta and gamma EEG was recorded from the frontotemporal regions, and incidental/intentional visuospatial learning was evaluated in young (25-60 years old) and elderly (60-85 years old) participants. The EEG recorded during encoding and retrieval was compared between incidental low-demand, incidental high-demand, and intentional conditions through an ANCOVA considering the patient's gender, IQ, and years of schooling as covariates. Older adults exhibited worse performances, especially in place-object associations. After the intentional study, older participants showed a further increase in false-positive errors. Higher power at the theta and gamma bands was observed for frontotemporal derivations in older participants for both encoding and retrieval. Under retrieval, only young participants had lower power in terms of errors compared with correct responses. In conclusion, the different patterns of power and coherence support incidental and intentional visuospatial encoding and retrieval in young and elderly individuals. The correlates of power with behavior are sensitive to age and performance.
Collapse
Affiliation(s)
- Mariana Lizeth Junco-Muñoz
- Laboratorio de Neurofisiología Clínica y Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58060, Michoacán, Mexico;
- Facultad de Psicología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58194, Michoacán, Mexico
| | - Oliva Mejía-Rodríguez
- División de Investigación Clínica, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58060, Michoacán, Mexico;
| | - José Miguel Cervantes-Alfaro
- Laboratorio de Neurociencias, División de Estudios de Posgrado, Facultad de Ciencias Médicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58194, Michoacán, Mexico;
| | | | - Miguel Ángel López-Vázquez
- Laboratorio de Neuroplasticidad, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58060, Michoacán, Mexico;
| | - María Esther Olvera-Cortés
- Laboratorio de Neurofisiología Clínica y Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58060, Michoacán, Mexico;
| |
Collapse
|
38
|
Raju RV, Guntupalli JS, Zhou G, Wendelken C, Lázaro-Gredilla M, George D. Space is a latent sequence: A theory of the hippocampus. SCIENCE ADVANCES 2024; 10:eadm8470. [PMID: 39083616 PMCID: PMC11290523 DOI: 10.1126/sciadv.adm8470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
Fascinating phenomena such as landmark vector cells and splitter cells are frequently discovered in the hippocampus. Without a unifying principle, each experiment seemingly uncovers new anomalies or coding types. Here, we provide a unifying principle that the mental representation of space is an emergent property of latent higher-order sequence learning. Treating space as a sequence resolves numerous phenomena and suggests that the place field mapping methodology that interprets sequential neuronal responses in Euclidean terms might itself be a source of anomalies. Our model, clone-structured causal graph (CSCG), employs higher-order graph scaffolding to learn latent representations by mapping aliased egocentric sensory inputs to unique contexts. Learning to compress sequential and episodic experiences using CSCGs yields allocentric cognitive maps that are suitable for planning, introspection, consolidation, and abstraction. By explicating the role of Euclidean place field mapping and demonstrating how latent sequential representations unify myriad observed phenomena, our work positions the hippocampus in a sequence-centric paradigm, challenging the prevailing space-centric view.
Collapse
|
39
|
Patel R, Marrie RA, Bernstein CN, Bolton JM, Graff LA, Marriott JJ, Figley CR, Kornelsen J, Mazerolle EL, Helmick C, Uddin MN, Fisk JD. Vascular Disease Is Associated With Differences in Brain Structure and Lower Cognitive Functioning in Inflammatory Bowel Disease: A Cross-Sectional Study. Inflamm Bowel Dis 2024; 30:1309-1318. [PMID: 37740523 PMCID: PMC11291614 DOI: 10.1093/ibd/izad204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Vascular disease and cognitive impairment have been increasingly documented in inflammatory bowel disease (IBD), and both have been individually correlated with changes in brain structure. This study aimed to determine if both macro- and microstructural brain changes are prevalent in IBD and whether alterations in brain structure mediate the relationship between vascular disease and cognitive functioning. METHODS Eighty-four IBD participants underwent multimodal magnetic resonance imaging. Volumetric and mean diffusivity measures of the thalamus, hippocampus, normal-appearing white matter, and white matter lesions were converted to age- and sex-adjusted z scores. Vascular comorbidity was assessed using a modified Framingham Risk Score and cognition was assessed using a battery of neuropsychological tests. Test scores were standardized using local regression-based norms. We generated summary statistics for the magnetic resonance imaging metrics and cognitive tests, and these were examined using canonical correlation analysis and linear regression modeling. RESULTS Greater vascular comorbidity was negatively correlated with thalamic, normal-appearing white matter, and white matter lesion volumes. Higher Framingham Risk Score were also correlated with lower processing speed, learning and memory, and verbal fluency. Increased vascular comorbidity was predictive of poorer cognitive functioning, and this effect was almost entirely mediated (94.76%) by differences in brain structure. CONCLUSIONS Vascular comorbidity is associated with deleterious effects on brain structure and lower cognitive functioning in IBD. These findings suggest that proper identification and treatment of vascular disease is essential to the overall management of IBD, and that certain brain areas may serve as critical targets for predicting the response to therapeutic interventions.
Collapse
Affiliation(s)
- Ronak Patel
- Department of Clinical Health Psychology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ruth Ann Marrie
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Charles N Bernstein
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - James M Bolton
- Department of Psychiatry, Max Rady College of Medicine, Rady Faculty of Health Sciences University of Manitoba, Winnipeg, MB, Canada
| | - Lesley A Graff
- Department of Clinical Health Psychology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - James J Marriott
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chase R Figley
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Division of Diagnostic Imaging, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
- PrairieNeuro Research Centre, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
| | - Jennifer Kornelsen
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Division of Diagnostic Imaging, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
- PrairieNeuro Research Centre, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
| | - Erin L Mazerolle
- Department of Psychology, St. Francis Xavier University, Antigonish, NS, Canada
| | - Carl Helmick
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Md Nasir Uddin
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Neurology, University of Rochester, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - John D Fisk
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
- Department of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
40
|
Márquez LA, López Rubalcava C, Galván EJ. Postnatal hypofunction of N-methyl-D-aspartate receptors alters perforant path synaptic plasticity and filtering and impairs dentate gyrus-mediated spatial discrimination. Br J Pharmacol 2024; 181:2701-2724. [PMID: 38631821 DOI: 10.1111/bph.16375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND AND PURPOSE Transient hypofunction of the NMDA receptor represents a convergence point for the onset and further development of psychiatric disorders, including schizophrenia. Although the cumulative evidence indicates dysregulation of the hippocampal formation in schizophrenia, the integrity of the synaptic transmission and plasticity conveyed by the somatosensorial inputs to the dentate gyrus, the perforant pathway synapses, have barely been explored in this pathological condition. EXPERIMENTAL APPROACH We identified a series of synaptic alterations of the lateral and medial perforant paths in animals postnatally treated with the NMDA antagonist MK-801. This dysregulation suggests decreased cognitive performance, for which the dentate gyrus is critical. KEY RESULTS We identified alterations in the synaptic properties of the lateral and medial perforant paths to the dentate gyrus synapses in slices from MK-801-treated animals. Altered glutamate release and decreased synaptic strength precede an impairment in the induction and expression of long-term potentiation (LTP) and CB1 receptor-mediated long-term depression (LTD). Remarkably, by inhibiting the degradation of 2-arachidonoylglycerol (2-AG), an endogenous ligand of the CB1 receptor, we restored the LTD in animals treated with MK-801. Additionally, we showed for the first time, that spatial discrimination, a cognitive task that requires dentate gyrus integrity, is impaired in animals exposed to transient hypofunction of NMDA receptors. CONCLUSION AND IMPLICATIONS Dysregulation of glutamatergic transmission and synaptic plasticity from the entorhinal cortex to the dentate gyrus has been demonstrated, which may explain the cellular dysregulations underlying the altered cognitive processing in the dentate gyrus associated with schizophrenia.
Collapse
Affiliation(s)
- Luis A Márquez
- Departamento de Farmacobiología, CINVESTAV Unidad Sur, Ciudad de México, Mexico
| | | | - Emilio J Galván
- Departamento de Farmacobiología, CINVESTAV Unidad Sur, Ciudad de México, Mexico
- Centro de Investigaciones sobre el Envejecimiento, CIE-Cinvestav, Ciudad de México, Mexico
| |
Collapse
|
41
|
Wang Z, Cheng X, Shuang R, Gao T, Zhao T, Hou D, Zhang Y, Yang J, Tao W. Dandouchi Polypeptide Alleviates Depressive-like Behavior and Promotes Hippocampal Neurogenesis by Activating the TRIM67/NF-κB Pathway in CUMS-Induced Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16726-16738. [PMID: 39039032 DOI: 10.1021/acs.jafc.4c02183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Background: Dandouchi polypeptide (DDCP) is derived from Semen Sojae Praeparatum (Dandouchi in Chinese), a fermented product of Glycine max (L.) Merr. Semen Sojae Praeparatum is widely used in the food industry for its unique flavor and nutritional value, and DDCP, as its derivative, also shows potential health benefits in food applications. However, the specific active substances responsible for Semen Sojae Praeparatum and the underlying mechanisms involved have not been fully elucidated. Methods: DDCP was extracted from Semen Sojae Praeparatum using enzymes, and its antidepressant effects were tested in chronic unpredictable mild stress (CUMS)-induced mice. Immunohistochemistry, immunofluorescence, and western blotting were used to analyze neurogenesis and the nuclear factor κB (NF-κB) pathway. Moreover, an adeno-associated virus (AAV) shRNA was used to induce tripartite motif-containing 67 (TRIM67) deficiency to examine the function of TRIM67 in the neuroprotective effects of DDCP in depressive disorders. Results: DDCP reduced depressive behaviors in CUMS mice and the expression of proinflammatory markers in the hippocampus. DDCP promoted neurogenesis and modulated the TRIM67/NF-κB pathway, with TRIM67 deficiency impairing its antidepressant effect. Conclusions: This research revealed that DDCP has a protective effect on countering depression triggered by CUMS. Notably, TRIM67 plays a crucial role in mitigating depression through DDCP, positioning DDCP as a potential therapeutic option for treating depressive disorders.
Collapse
Affiliation(s)
- Zhongda Wang
- Department of Integrated Chinese and Western Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaolan Cheng
- Department of Integrated Chinese and Western Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruonan Shuang
- Department of Integrated Chinese and Western Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tiantian Gao
- Department of Integrated Chinese and Western Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tong Zhao
- Department of Integrated Chinese and Western Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dahai Hou
- Department of Integrated Chinese and Western Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yili Zhang
- Department of Integrated Chinese and Western Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiangsheng Yang
- Department of Neurology, Affiliated Jiangyin Hospital of Nantong University, Jiangyin 214400, China
| | - Weiwei Tao
- Department of Integrated Chinese and Western Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
42
|
Evans TM, Lipscomb DW, Earle FS, Del Tufo SN, Lum JAG, Cutting LE, Ullman MT. Declarative memory supports children's math skills: A longitudinal study. PLoS One 2024; 19:e0304211. [PMID: 39052693 PMCID: PMC11271893 DOI: 10.1371/journal.pone.0304211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 04/20/2024] [Indexed: 07/27/2024] Open
Abstract
Substantial progress has been made in understanding the neurocognitive underpinnings of learning math. Building on this work, it has been hypothesized that declarative and procedural memory, two domain-general learning and memory systems, play important roles in acquiring math skills. In a longitudinal study, we tested whether in fact declarative and procedural memory predict children's math skills during elementary school years. A sample of 109 children was tested across grades 2, 3 and 4. Linear mixed-effects regression and structural equation modeling revealed the following. First, learning in declarative but not procedural memory was associated with math skills within each grade. Second, declarative but not procedural memory in each grade was related to math skills in all later grades (e.g., declarative memory in grade 2 was related to math skills in grade 4). Sensitivity analyses showed that the pattern of results was robust, except for the longitudinal prediction of later math skills when accounting for stable inter-individual differences via the inclusion of random intercepts. Our findings highlight the foundational role of early domain-general learning and memory in children's acquisition of math.
Collapse
Affiliation(s)
- Tanya M. Evans
- School of Education and Human Development, University of Virginia, Charlottesville, VA, United States of America
| | - Daniel W. Lipscomb
- School of Education and Human Development, University of Virginia, Charlottesville, VA, United States of America
| | - F. Sayako Earle
- Department of Communication Sciences & Disorders, University of Delaware, Newark, DE, United States of America
| | - Stephanie N. Del Tufo
- Peabody College of Education and Human Development, Vanderbilt University, Nashville, TN, United States of America
- Department of Education and Human Development, University of Delaware, Newark, DE, United States of America
| | - Jarrad A. G. Lum
- School of Psychology, Deakin University, Burwood, Victoria, Australia
| | - Laurie E. Cutting
- Peabody College of Education and Human Development, Vanderbilt University, Nashville, TN, United States of America
| | - Michael T. Ullman
- Department of Neuroscience, Georgetown University, Washington, DC, United States of America
| |
Collapse
|
43
|
Wei N, Zhang LM, Xu JJ, Li SL, Xue R, Ma SL, Li C, Sun MM, Chen KS. Astaxanthin Rescues Memory Impairments in Rats with Vascular Dementia by Protecting Against Neuronal Death in the Hippocampus. Neuromolecular Med 2024; 26:29. [PMID: 39014255 DOI: 10.1007/s12017-024-08796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Vascular dementia (VaD) is a cognitive disorder characterized by a decline in cognitive function resulting from cerebrovascular disease. The hippocampus is particularly susceptible to ischemic insults, leading to memory deficits in VaD. Astaxanthin (AST) has shown potential therapeutic effects in neurodegenerative diseases. However, the mechanisms underlying its protective effects in VaD and against hippocampal neuronal death remain unclear. In this study, We used the bilateral common carotid artery occlusion (BCCAO) method to establish a chronic cerebral hypoperfusion (CCH) rat model of VaD and administered a gastric infusion of AST at 25 mg/kg per day for 4 weeks to explore its therapeutic effects. Memory impairments were assessed using Y-maze and Morris water maze tests. We also performed biochemical analyses to evaluate levels of hippocampal neuronal death and apoptosis-related proteins, as well as the impact of astaxanthin on the PI3K/Akt/mTOR pathway and oxidative stress. Our results demonstrated that AST significantly rescued memory impairments in VaD rats. Furthermore, astaxanthin treatment protected against hippocampal neuronal death and attenuated apoptosis. We also observed that AST modulated the PI3K/Akt/mTOR pathway, suggesting its involvement in promoting neuronal survival and synaptic plasticity. Additionally, AST exhibited antioxidant properties, mitigating oxidative stress in the hippocampus. These findings provide valuable insights into the potential therapeutic effects of AST in VaD. By elucidating the mechanisms underlying the actions of AST, this study highlights the importance of protecting hippocampal neurons and suggests potential targets for intervention in VaD. There are still some unanswered questions include long-term effects and optimal dosage of the use in human. Further research is warranted to fully understand the therapeutic potential of AST and its application in the clinical treatment of VaD.
Collapse
Affiliation(s)
- Na Wei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China.
- Henan Key Laboratory of Tumor Pathology, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China.
- Department of Pathology, School of Basic Medicine, Zhengzhou University, No.100 Ke Xue Avenue, Zhengzhou, 450002, People's Republic of China.
| | - Luo-Man Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Henan Key Laboratory of Tumor Pathology, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, No.100 Ke Xue Avenue, Zhengzhou, 450002, People's Republic of China
| | - Jing-Jing Xu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Henan Key Laboratory of Tumor Pathology, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, No.100 Ke Xue Avenue, Zhengzhou, 450002, People's Republic of China
| | - Sheng-Lei Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Henan Key Laboratory of Tumor Pathology, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, No.100 Ke Xue Avenue, Zhengzhou, 450002, People's Republic of China
| | - Rui Xue
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
| | - Sheng-Li Ma
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
| | - Cai Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, 450002, People's Republic of China
| | - Miao-Miao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Henan Key Laboratory of Tumor Pathology, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, No.100 Ke Xue Avenue, Zhengzhou, 450002, People's Republic of China
| | - Kui-Sheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Henan Key Laboratory of Tumor Pathology, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, No.100 Ke Xue Avenue, Zhengzhou, 450002, People's Republic of China
| |
Collapse
|
44
|
Wang Y, Men X, Huang X, Qiu X, Wang W, Zhou J, Zhou Z. Unraveling the signaling network between dysregulated microRNA and mRNA expression in sevoflurane-induced developmental neurotoxicity in rat. Heliyon 2024; 10:e33333. [PMID: 39027541 PMCID: PMC11255675 DOI: 10.1016/j.heliyon.2024.e33333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Research has indicated that general anesthesia may cause neuroapoptosis and long-term cognitive dysfunction in developing animals, however, the precise mechanisms orchestrating these outcomes remain inadequately elucidated within scholarly discourse. The purpose of this study was to investigate the impact of sevoflurane on the hippocampus of developing rats by analyzing the changes in microRNA and mRNA and their interactions. Rats were exposed to sevoflurane for 4 h on their seventh day after birth, and the hippocampus was collected for analysis of neuroapoptosis by Western blot and immunohistochemistry. High-throughput sequencing was conducted to analyze the variances in miRNA and mRNA expression levels, and the Morris water maze was employed to assess long-term memory in rats exposed to sevoflurane after 8 weeks. The results showed that sevoflurane exposure led to dysregulation of 5 miRNAs and 306 mRNAs in the hippocampus. Bioinformatic analysis revealed that these dysregulated miRNA-mRNA target pairs were associated with pathological neurodevelopment and developmental disorders, such as regulation of axonogenesis, regulation of neuron projection development, regulation of neuron differentiation, transmission of nerve impulse, and neuronal cell body. Further analysis showed that these miRNAs formed potential network interactions with 44 mRNAs, and two important nodes were identified, miR-130b-5p and miR-449c-5p. Overall, this study suggests that the dysregulation of the miRNA-mRNA signaling network induced by sevoflurane may contribute to neurodevelopmental toxicity in the hippocampus of rats and be associated with long-term cognitive dysfunction.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Endocrinology, Xixi Hospital of Hangzhou (Affiliated Hangzhou Xixi Hospital of Zhejiang Chinese Medical University), Hangzhou, China
| | - Xin Men
- Department of Anesthesiology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital, Hangzhou First People's Hospital Qianjiang New City Campus, Zhejiang Chinese Medical University), Hangzhou, China
| | - Xiaodong Huang
- Department of Anesthesiology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital, Hangzhou First People's Hospital Qianjiang New City Campus, Zhejiang Chinese Medical University), Hangzhou, China
| | - Xiaoxiao Qiu
- Department of Anesthesiology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital, Hangzhou First People's Hospital Qianjiang New City Campus, Zhejiang Chinese Medical University), Hangzhou, China
| | - Weilong Wang
- Department of Anesthesiology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital, Hangzhou First People's Hospital Qianjiang New City Campus, Zhejiang Chinese Medical University), Hangzhou, China
| | - Jin Zhou
- Department of Anesthesiology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital, Hangzhou First People's Hospital Qianjiang New City Campus, Zhejiang Chinese Medical University), Hangzhou, China
| | - Zhenfeng Zhou
- Department of Anesthesiology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital, Hangzhou First People's Hospital Qianjiang New City Campus, Zhejiang Chinese Medical University), Hangzhou, China
| |
Collapse
|
45
|
Farrokhi AM, Moshrefi F, Eskandari K, Azizbeigi R, Haghparast A. Hippocampal D1-like dopamine receptor as a novel target for the effect of cannabidiol on extinction and reinstatement of methamphetamine-induced CPP. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111025. [PMID: 38729234 DOI: 10.1016/j.pnpbp.2024.111025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Methamphetamine (METH) is a major health problem without effective pharmacological treatment. Cannabidiol (CBD), a component of the Cannabis sativa plant, is believed to have the potential to inhibit drug-related behavior. However, the neurobiological mechanisms responsible for the effects of CBD remain unclear. Several studies have proposed that the suppressing effects of CBD on drug-seeking behaviors could be through the modulation of the dopamine system. The hippocampus (HIP) D1-like dopamine receptor (D1R) is essential for forming and retrieving drug-associated memory. Therefore, the present study aimed to investigate the role of D1R in the hippocampal CA1 region on the effects of CBD on the extinction and reinstatement of METH-conditioned place preference (CPP). For this purpose, different groups of rats over a 10-day extinction period were administered different doses of intra-CA1 SCH23390 (0.25, 1, or 4 μg/0.5 μl, Saline) as a D1R antagonist before ICV injection of CBD (10 μg/5 μl, DMSO12%). In addition, a different set of animals received intra-CA1 SCH23390 (0.25, 1, or 4 μg/0.5 μl) before CBD injection (50 μg/5 μl) on the reinstatement day. The results revealed that the highest dose of SCH23390 (4 μg) significantly reduced the accelerating effects of CBD on the extinction of METH-CPP (P < 0.01). Furthermore, SCH23390 (1 and 4 μg) in the reinstatement phase notably reversed the preventive effects of CBD on the reinstatement of drug-seeking behavior (P < 0.05 and P < 0.001, respectively). In conclusion, the current study revealed that CBD made a shorter extinction period and suppressed METH reinstatement in part by interacting with D1-like dopamine receptors in the CA1 area of HIP.
Collapse
Affiliation(s)
- Amir Mohammad Farrokhi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Fazel Moshrefi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Kiarash Eskandari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Azizbeigi
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Kafkas A. Eyes on Memory: Pupillometry in Encoding and Retrieval. Vision (Basel) 2024; 8:37. [PMID: 38922182 PMCID: PMC11209248 DOI: 10.3390/vision8020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024] Open
Abstract
This review critically examines the contributions of pupillometry to memory research, primarily focusing on its enhancement of our understanding of memory encoding and retrieval mechanisms mainly investigated with the recognition memory paradigm. The evidence supports a close link between pupil response and memory formation, notably influenced by the type of novelty detected. This proposal reconciles inconsistencies in the literature regarding pupil response patterns that may predict successful memory formation, and highlights important implications for encoding mechanisms. The review also discusses the pupil old/new effect and its significance in the context of recollection and in reflecting brain signals related to familiarity or novelty detection. Additionally, the capacity of pupil response to serve as a true memory signal and to distinguish between true and false memories is evaluated. The evidence provides insights into the nature of false memories and offers a novel understanding of the cognitive mechanisms involved in memory distortions. When integrated with rigorous experimental design, pupillometry can significantly refine theoretical models of memory encoding and retrieval. Furthermore, combining pupillometry with neuroimaging and pharmacological interventions is identified as a promising direction for future research.
Collapse
Affiliation(s)
- Alex Kafkas
- School of Health Sciences, Division of Psychology, Communication and Human Neuroscience, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
47
|
Peshev B, Ivanova P, Krushovlieva D, Kortenska L, Atanasova D, Rashev P, Lazarov N, Tchekalarova J. Predatory Odor Exposure as a Potential Paradigm for Studying Emotional Modulation of Memory Consolidation-The Role of the Noradrenergic Transmission in the Basolateral Amygdala. Int J Mol Sci 2024; 25:6576. [PMID: 38928281 PMCID: PMC11204360 DOI: 10.3390/ijms25126576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The pivotal role of the basolateral amygdala (BLA) in the emotional modulation of hippocampal plasticity and memory consolidation is well-established. Specifically, multiple studies have demonstrated that the activation of the noradrenergic (NA) system within the BLA governs these modulatory effects. However, most current evidence has been obtained by direct infusion of synthetic NA or beta-adrenergic agonists. In the present study, we aimed to investigate the effect of endogenous NA release in the BLA, induced by a natural aversive stimulus (coyote urine), on memory consolidation for a low-arousing, hippocampal-dependent task. Our experiments combined a weak object location task (OLT) version with subsequent mild predator odor exposure (POE). To investigate the role of endogenous NA in the BLA in memory modulation, a subset of the animals (Wistar rats) was treated with the non-selective beta-blocker propranolol at the end of the behavioral procedures. Hippocampal tissue was collected 90 min after drug infusion or after the OLT test, which was performed 24 h later. We used the obtained samples to estimate the levels of phosphorylated CREB (pCREB) and activity-regulated cytoskeleton-associated protein (Arc)-two molecular markers of experience-dependent changes in neuronal activity. The result suggests that POE has the potential to become a valuable behavioral paradigm for studying the interaction between BLA and the hippocampus in memory prioritization and selectivity.
Collapse
Affiliation(s)
- Bogomil Peshev
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.P.); (P.I.); (D.K.); (L.K.); (D.A.)
| | - Petya Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.P.); (P.I.); (D.K.); (L.K.); (D.A.)
| | - Desislava Krushovlieva
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.P.); (P.I.); (D.K.); (L.K.); (D.A.)
| | - Lidia Kortenska
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.P.); (P.I.); (D.K.); (L.K.); (D.A.)
| | - Dimitrinka Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.P.); (P.I.); (D.K.); (L.K.); (D.A.)
- Department of Anatomy, Faculty of Medicine, Trakia University, 6003 Stara Zagora, Bulgaria
| | - Pavel Rashev
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Nikolai Lazarov
- Department of Anatomy and Histology, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.P.); (P.I.); (D.K.); (L.K.); (D.A.)
| |
Collapse
|
48
|
Fonseca LM, Finlay MG, Chaytor NS, Morimoto NG, Buchwald D, Van Dongen HPA, Quan SF, Suchy-Dicey A. Mid-life sleep is associated with cognitive performance later in life in aging American Indians: data from the Strong Heart Study. Front Aging Neurosci 2024; 16:1346807. [PMID: 38903901 PMCID: PMC11188442 DOI: 10.3389/fnagi.2024.1346807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/23/2024] [Indexed: 06/22/2024] Open
Abstract
Background Sleep-related disorders have been associated with cognitive decline and neurodegeneration. American Indians are at increased risk for dementia. Here, we aim to characterize, for the first time, the associations between sleep characteristics and subsequent cognitive performance in a sample of aging American Indians. Methods We performed analyses on data collected in two ancillary studies from the Strong Heart Study, which occurred approximately 10 years apart with an overlapping sample of 160 American Indians (mean age at follow-up 73.1, standard deviation 5.6; 69.3% female and 80% with high school completion). Sleep measures were derived by polysomnography and self-reported questionnaires, including sleep timing and duration, sleep latency, sleep stages, indices of sleep-disordered breathing, and self-report assessments of poor sleep and daytime sleepiness. Cognitive assessment included measures of general cognition, processing speed, episodic verbal learning, short and long-delay recall, recognition, and phonemic fluency. We performed correlation analyses between sleep and cognitive measures. For correlated variables, we conducted separate linear regressions. We analyzed the degree to which cognitive impairment, defined as more than 1.5 standard deviations below the average Modified Mini Mental State Test score, is predicted by sleep characteristics. All regression analyses were adjusted for age, sex, years of education, body mass index, study site, depressive symptoms score, difference in age from baseline to follow-up, alcohol use, and presence of APOE e4 allele. Results We found that objective sleep characteristics measured by polysomnography, but not subjective sleep characteristics, were associated with cognitive performance approximately 10 years later. Longer sleep latency was associated with worse phonemic fluency (β = -0.069, p = 0.019) and increased likelihood of being classified in the cognitive impairment group later in life (odds ratio 1.037, p = 0.004). Longer duration with oxygen saturation < 90% was associated with better immediate verbal memory, and higher oxygen saturation with worse total learning, short and long-delay recall, and processing speed. Conclusion In a sample of American Indians, sleep characteristics in midlife were correlated with cognitive performance a decade later. Sleep disorders may be modifiable risk factors for cognitive impairment and dementia later in life, and suitable candidates for interventions aimed at preventing neurodegenerative disease development and progression.
Collapse
Affiliation(s)
- Luciana Mascarenhas Fonseca
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Programa Terceira Idade (PROTER, Old Age Research Group), Department and Institute of Psychiatry, University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Research and Education to Advance Community Health, Elson S. Floyd College of Medicine, Washington State University, Pullman, WA, United States
| | - Myles G. Finlay
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Washington State University, Spokane, WA, United States
| | - Naomi S. Chaytor
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Natalie G. Morimoto
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Dedra Buchwald
- Institute for Research and Education to Advance Community Health, Elson S. Floyd College of Medicine, Washington State University, Pullman, WA, United States
| | - Hans P. A. Van Dongen
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Washington State University, Spokane, WA, United States
| | - Stuart F. Quan
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Astrid Suchy-Dicey
- Institute for Research and Education to Advance Community Health, Elson S. Floyd College of Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
49
|
Liu Y, Fan M, Yang J, Mihaljević L, Chen KH, Ye Y, Sun S, Qiu Z. KAT6A deficiency impairs cognitive functions through suppressing RSPO2/Wnt signaling in hippocampal CA3. SCIENCE ADVANCES 2024; 10:eadm9326. [PMID: 38758792 PMCID: PMC11100567 DOI: 10.1126/sciadv.adm9326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Intellectual disability (ID) affects ~2% of the population and ID-associated genes are enriched for epigenetic factors, including those encoding the largest family of histone lysine acetyltransferases (KAT5-KAT8). Among them is KAT6A, whose mutations cause KAT6A syndrome, with ID as a common clinical feature. However, the underlying molecular mechanism remains unknown. Here, we find that KAT6A deficiency impairs synaptic structure and plasticity in hippocampal CA3, but not in CA1 region, resulting in memory deficits in mice. We further identify a CA3-enriched gene Rspo2, encoding Wnt activator R-spondin 2, as a key transcriptional target of KAT6A. Deletion of Rspo2 in excitatory neurons impairs memory formation, and restoring RSPO2 expression in CA3 neurons rescues the deficits in Wnt signaling and learning-associated behaviors in Kat6a mutant mice. Collectively, our results demonstrate that KAT6A-RSPO2-Wnt signaling plays a critical role in regulating hippocampal CA3 synaptic plasticity and cognitive function, providing potential therapeutic targets for KAT6A syndrome and related neurodevelopmental diseases.
Collapse
Affiliation(s)
- Yongqing Liu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Minghua Fan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Junhua Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ljubica Mihaljević
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kevin Hong Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yingzhi Ye
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shuying Sun
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
50
|
Loetscher KB, Goldfarb EV. Integrating and fragmenting memories under stress and alcohol. Neurobiol Stress 2024; 30:100615. [PMID: 38375503 PMCID: PMC10874731 DOI: 10.1016/j.ynstr.2024.100615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
Stress can powerfully influence the way we form memories, particularly the extent to which they are integrated or situated within an underlying spatiotemporal and broader knowledge architecture. These different representations in turn have significant consequences for the way we use these memories to guide later behavior. Puzzlingly, although stress has historically been argued to promote fragmentation, leading to disjoint memory representations, more recent work suggests that stress can also facilitate memory binding and integration. Understanding the circumstances under which stress fosters integration will be key to resolving this discrepancy and unpacking the mechanisms by which stress can shape later behavior. Here, we examine memory integration at multiple levels: linking together the content of an individual experience, threading associations between related but distinct events, and binding an experience into a pre-existing schema or sense of causal structure. We discuss neural and cognitive mechanisms underlying each form of integration as well as findings regarding how stress, aversive learning, and negative affect can modulate each. In this analysis, we uncover that stress can indeed promote each level of integration. We also show how memory integration may apply to understanding effects of alcohol, highlighting extant clinical and preclinical findings and opportunities for further investigation. Finally, we consider the implications of integration and fragmentation for later memory-guided behavior, and the importance of understanding which type of memory representation is potentiated in order to design appropriate interventions.
Collapse
Affiliation(s)
| | - Elizabeth V. Goldfarb
- Department of Psychiatry, Yale University, USA
- Department of Psychology, Yale University, USA
- Wu Tsai Institute, Yale University, USA
- National Center for PTSD, West Haven VA, USA
| |
Collapse
|