1
|
Anderson MC, Crespo-Garcia M, Subbulakshmi S. Brain mechanisms underlying the inhibitory control of thought. Nat Rev Neurosci 2025:10.1038/s41583-025-00929-y. [PMID: 40379896 DOI: 10.1038/s41583-025-00929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2025] [Indexed: 05/19/2025]
Abstract
Controlling action and thought requires the capacity to stop mental processes. Over the past two decades, evidence has grown that a domain-general inhibitory control mechanism supported by the right lateral prefrontal cortex achieves these functions. However, current views of the neural mechanisms of inhibitory control derive largely from research into the stopping of action. Whereas action stopping is a convenient empirical model, it does not invoke thought inhibition and cannot be used to identify the unique features of this process. Here, we review research that addresses how organisms stop a key process that drives thoughts: memory retrieval. This work has shown that retrieval stopping shares right dorsolateral and ventrolateral prefrontal mechanisms with action stopping, consistent with a domain-general inhibitory control mechanism, but also recruits a distinct fronto-temporal pathway that determines the success of mental control. As part of this pathway, GABAergic inhibition within the hippocampus influences the efficacy of prefrontal control over thought. These unique elements of mental control suggest that hippocampal disinhibition is a transdiagnostic factor underlying intrusive thinking, linking the fronto-temporal control pathway to preclinical models of psychiatric disorders and fear extinction. We suggest that retrieval-stopping deficits may underlie the intrusive thinking that is common across many psychiatric disorders.
Collapse
Affiliation(s)
- Michael C Anderson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
- Behavioural and Clinical Neurosciences Unit, University of Cambridge, Cambridge, UK.
| | - Maite Crespo-Garcia
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - S Subbulakshmi
- Department of Psychology, Stanford University, Stanford, CA, USA
| |
Collapse
|
2
|
Henke K, Ruch S. Unconscious processing effects manifest only if conscious processing is excluded. Cogn Neurosci 2024; 15:73-74. [PMID: 38666549 DOI: 10.1080/17588928.2024.2343658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Indexed: 05/31/2024]
Abstract
In their discussion paper Steinkrauss and Slotnick argue against a role for the hippocampus in unconscious memory formation and retrieval. Unfortunately, they omitted highly relevant evidence that supports a role for the hippocampus in unconscious memory. They criticize four articles, two from our laboratory, pointing out long-known confounds like residual consciousness. We uncover these reproaches as untrue allegations. In our own interest, we prevented conscious mnemonic processing because reliable unconscious memory effects manifest only if consciousness is completely excluded, and because we always knew that residual consciousness would be our Achilles heel for the proponents of the 'explicit memory dogma.'
Collapse
Affiliation(s)
- Katharina Henke
- Institute of Psychology, University of Bern, Bern, Switzerland
| | - Simon Ruch
- Faculty of Psychology, UniDistance Suisse, Brig, Switzerland
| |
Collapse
|
3
|
Thakral PP, Cutting ER, Lawless KE. The dead salmon strikes again: Reports of unconscious processing in the hippocampus may reflect Type-I error. Cogn Neurosci 2024; 15:79-82. [PMID: 38647209 DOI: 10.1080/17588928.2024.2343667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Steinkrauss and Slotnick (2024) reviewed neuroimaging studies linking the hippocampus with implicit memory. They conclude that there is no convincing evidence that the hippocampus is associated with implicit memory because prior studies are confounded by explicit memory (among other factors). Here, we ask a different yet equally important question: do reports of unconscious hippocampal activity reflect a Type-I error (i.e. a false positive)? We find that 39% of studies linking the hippocampus with implicit memory (7 of 18) do not report correcting for multiple comparisons. These results indicate that many unconscious hippocampal effects may reflect a Type-I error.
Collapse
Affiliation(s)
- Preston P Thakral
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA
- Department of Psychology, Smith College, Northampton, MA, USA
| | - Elizabeth R Cutting
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA
| | - Kiera E Lawless
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
4
|
Anderson MC, Subbulakshmi S. Amnesia in healthy people via hippocampal inhibition: A new forgetting mechanism. Q J Exp Psychol (Hove) 2024; 77:1-13. [PMID: 37691157 DOI: 10.1177/17470218231202728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Structural damage to the hippocampus gives rise to a severe memory deficit for personal experiences known as organic amnesia. Remarkably, such structural damage may not be the only way of creating amnesia; windows of amnesia can also arise when people deliberately disengage from memory via a process known as retrieval suppression. In this review, we discuss how retrieval suppression induces systemic inhibition of the hippocampus, creating "amnesic shadow" intervals in people's memory for their personal experiences. When new memories are encoded or older memories are reactivated during this amnesic shadow, these memories are disrupted, and such disruption even arises when older memories are subliminally cued. Evidence suggests that the systemic inhibition of the hippocampus during retrieval suppression that gives rise to the amnesic shadow may be mediated by engagement of hippocampal GABAergic inhibitory interneurons. Similar amnesic shadow effects are observed during working memory tasks like the n-back, which also induce notable hippocampal downregulation. We discuss our recent proposal that cognitive operations that require the disengagement of memory retrieval, such as retrieval suppression, are capable of mnemonic process inhibition (the inhibition of mnemonic processes such as encoding, consolidation, and retrieval and not simply individual memories). We suggest that people engage mnemonic process inhibition whenever they shift attention from internal processes to demanding perceptual-motor tasks that may otherwise be disrupted by distraction from our inner world. This hitherto unstudied model of inhibition is a missing step in understanding what happens when attentional shifts occur between internally and externally oriented processes to facilitate goal-directed behaviour. This process constitutes an important novel mechanism underlying the forgetting of life events.
Collapse
Affiliation(s)
- Michael C Anderson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - S Subbulakshmi
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Psychology, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Addante RJ, Lopez-Calderon J, Allen N, Luck C, Muller A, Sirianni L, Inman CS, Drane DL. An ERP measure of non-conscious memory reveals dissociable implicit processes in human recognition using an open-source automated analytic pipeline. Psychophysiology 2023; 60:e14334. [PMID: 37287106 PMCID: PMC10524783 DOI: 10.1111/psyp.14334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/07/2023] [Accepted: 05/01/2023] [Indexed: 06/09/2023]
Abstract
Non-conscious processing of human memory has traditionally been difficult to objectively measure and thus understand. A prior study on a group of hippocampal amnesia (N = 3) patients and healthy controls (N = 6) used a novel procedure for capturing neural correlates of implicit memory using event-related potentials (ERPs): old and new items were equated for varying levels of memory awareness, with ERP differences observed from 400 to 800 ms in bilateral parietal regions that were hippocampal-dependent. The current investigation sought to address the limitations of that study by increasing the sample of healthy subjects (N = 54), applying new controls for construct validity, and developing an improved, open-source tool for automated analysis of the procedure used for equating levels of memory awareness. Results faithfully reproduced prior ERP findings of parietal effects that a series of systematic control analyses validated were not contributed to nor contaminated by explicit memory. Implicit memory effects extended from 600 to 1000 ms, localized to right parietal sites. These ERP effects were found to be behaviorally relevant and specific in predicting implicit memory response times, and were topographically dissociable from other traditional ERP measures of implicit memory (miss vs. correct rejections) that instead occurred in left parietal regions. Results suggest first that equating for reported awareness of memory strength is a valid, powerful new method for revealing neural correlates of non-conscious human memory, and second, behavioral correlations suggest that these implicit effects reflect a pure form of priming, whereas misses represent fluency leading to the subjective experience of familiarity.
Collapse
Affiliation(s)
- Richard J Addante
- School of Psychology, Florida Institute of Technology, Melbourne, Florida, USA
| | - Javier Lopez-Calderon
- Instituto de Matemáticas, Universidad de Talca, Talca, Chile
- Newencode Analytics, Talca, Chile
| | - Nathaniel Allen
- School of Psychology, Florida Institute of Technology, Melbourne, Florida, USA
| | - Carter Luck
- Department of Computer Science, Reed College, Portland, Oregon, USA
| | - Alana Muller
- Department of Psychology, University of Arizona, Tucson, Arizona, USA
| | - Lindsey Sirianni
- School of Health Sciences, University of California - San Diego Moores Cancer Center, San Diego, CA, USA
| | - Cory S Inman
- Department of Psychology, University of Utah, Salt Lake City, Utah, USA
| | - Daniel L Drane
- Departments of Neurology and Pediatrics, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Wang Y, Luo L, Chen G, Luan G, Wang X, Wang Q, Fang F. Rapid Processing of Invisible Fearful Faces in the Human Amygdala. J Neurosci 2023; 43:1405-1413. [PMID: 36690451 PMCID: PMC9987569 DOI: 10.1523/jneurosci.1294-22.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/04/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023] Open
Abstract
Rapid detection of a threat or its symbol (e.g., fearful face), whether visible or invisible, is critical for human survival. This function is suggested to be enabled by a subcortical pathway to the amygdala independent of the cortex. However, conclusive electrophysiological evidence in humans is scarce. Here, we explored whether the amygdala can rapidly encode invisible fearful faces. We recorded intracranial electroencephalogram (iEEG) responses in the human (both sexes) amygdala to faces with fearful, happy, and neutral emotions rendered invisible by backward masking. We found that a short-latency intracranial event-related potential (iERP) in the amygdala, beginning 88 ms poststimulus onset, was preferentially evoked by invisible fearful faces relative to invisible happy or neutral faces. The rapid iERP exhibited selectivity to the low spatial frequency (LSF) component of the fearful faces. Time-frequency iEEG analyses further identified a rapid amygdala response preferentially for LSF fearful faces at the low gamma frequency band, beginning 45 ms poststimulus onset. In contrast, these rapid responses to invisible fearful faces were absent in cortical regions, including early visual areas, the fusiform gyrus, and the parahippocampal gyrus. These findings provide direct evidence for the existence of a subcortical pathway specific for rapid fear detection in the amygdala and demonstrate that the subcortical pathway can function without conscious awareness and under minimal influence from cortical areas.SIGNIFICANCE STATEMENT Automatic detection of biologically relevant stimuli, such as threats or dangers, has remarkable survival value. Here, we provide direct intracranial electrophysiological evidence that the human amygdala preferentially responds to fearful faces at a rapid speed, despite the faces being invisible. This rapid, fear-selective response is restricted to faces containing low spatial frequency information transmitted by magnocellular neurons and does not appear in cortical regions. These results support the existence of a rapid subcortical pathway independent of cortical pathways to the human amygdala.
Collapse
Affiliation(s)
- Yingying Wang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310028, Zhejiang, China
| | - Lu Luo
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Guanpeng Chen
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Guoming Luan
- Department of Functional Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 1000932, China
- Beijing Key Laboratory of Epilepsy, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
- Beijing Institute for Brain Disorders, Beijing 100069, China
| | - Xiongfei Wang
- Department of Functional Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 1000932, China
| | - Qian Wang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Zher-Wen, Yu R. Unconscious integration: Current evidence for integrative processing under subliminal conditions. Br J Psychol 2023; 114:430-456. [PMID: 36689339 DOI: 10.1111/bjop.12631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023]
Abstract
Integrative processing is traditionally believed to be dependent on consciousness. While earlier studies within the last decade reported many types of integration under subliminal conditions (i.e. without perceptual awareness), these findings are widely challenged recently. This review evaluates the current evidence for 10 types of subliminal integration that are widely studied: arithmetic processing, object-context integration, multi-word processing, same-different processing, multisensory integration and 5 different types of associative learning. Potential methodological issues concerning awareness measures are also taken into account. It is concluded that while there is currently no reliable evidence for subliminal integration, this does not necessarily refute 'unconscious' integration defined through non-subliminal (e.g. implicit) approaches.
Collapse
Affiliation(s)
- Zher-Wen
- Department of Management, Hong Kong Baptist University, Hong Kong, China.,Department of Psychology, National University of Singapore, Singapore City, Singapore
| | - Rongjun Yu
- Department of Management, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
8
|
Pacozzi L, Knüsel L, Ruch S, Henke K. Inverse forgetting in unconscious episodic memory. Sci Rep 2022; 12:20595. [PMID: 36446829 PMCID: PMC9709067 DOI: 10.1038/s41598-022-25100-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Forming memories of experienced episodes calls upon the episodic memory system. Episodic encoding may proceed with and without awareness of episodes. While up to 60% of consciously encoded episodes are forgotten after 10 h, the fate of unconsciously encoded episodes is unknown. Here we track over 10 h, which are filled with sleep or daytime activities, the retention of unconsciously and consciously experienced episodes. The episodes were displayed in cartoon clips that were presented weakly and strongly masked for conscious and unconscious encoding, respectively. Clip retention was tested for distinct clips directly after encoding, 3 min and 10 h after encoding using a forced-choice test that demands deliberate responses in both consciousness conditions. When encoding was conscious, retrieval accuracy decreased by 25% from 3 min to 10 h, irrespective of sleep or wakefulness. When encoding was unconscious, retrieval accuracy increased from 3 min to 10 h and depended on sleep. Hence, opposite to the classic forgetting curve, unconsciously acquired episodic memories strengthen over time and hinge on sleep on the day of learning to gain influence over human behavior.
Collapse
Affiliation(s)
- Luca Pacozzi
- Institute of Psychology, University of Bern, 3012, Bern, Switzerland.
| | - Leona Knüsel
- Institute of Psychology, University of Bern, 3012, Bern, Switzerland
| | - Simon Ruch
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tuebingen, 72076, Tübingen, Germany
| | - Katharina Henke
- Institute of Psychology, University of Bern, 3012, Bern, Switzerland
| |
Collapse
|
9
|
Inducing forgetting of unwanted memories through subliminal reactivation. Nat Commun 2022; 13:6496. [PMID: 36310181 PMCID: PMC9618560 DOI: 10.1038/s41467-022-34091-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 10/13/2022] [Indexed: 12/25/2022] Open
Abstract
Processes that might facilitate the forgetting of unwanted experiences typically require the actual or imagined re-exposure to reminders of the event, which is aversive and carries risks to people. But it is unclear whether awareness of aversive content is necessary for effective voluntary forgetting. Disrupting hippocampal function through retrieval suppression induces an amnesic shadow that impairs the encoding and stabilization of unrelated memories that are activated near in time to people's effort to suppress retrieval. Building on this mechanism, here we successfully disrupt retention of unpleasant memories by subliminally reactivating them within this amnesic shadow. Critically, whereas unconscious forgetting occurs on these affective memories, the amnesic shadow itself is induced by conscious suppression of unrelated and benign neutral memories, avoiding conscious re-exposure of unwelcome content. Combining the amnesic shadow with subliminal reactivation may offer a new approach to voluntary forgetting that bypasses the unpleasantness in conscious exposure to unwanted memories.
Collapse
|
10
|
Abstract
The extent to which we are affected by perceptual input of which we are unaware is widely debated. By measuring neural responses to sensory stimulation, neuroscientific data could complement behavioral results with valuable evidence. Here we review neuroscientific findings of processing of high-level information, as well as interactions with attention and memory. Although the results are mixed, we find initial support for processing object categories and words, possibly to the semantic level, as well as emotional expressions. Robust neural evidence for face individuation and integration of sentences or scenes is lacking. Attention affects the processing of stimuli that are not consciously perceived, and such stimuli may exogenously but not endogenously capture attention when relevant, and be maintained in memory over time. Sources of inconsistency in the literature include variability in control for awareness as well as individual differences, calling for future studies that adopt stricter measures of awareness and probe multiple processes within subjects.
Collapse
Affiliation(s)
- Liad Mudrik
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel;
| | - Leon Y Deouell
- Department of Psychology and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel;
| |
Collapse
|
11
|
Liang XY, Guo ZH, Wang XD, Guo XT, Sun JW, Wang M, Li HW, Chen L. Event-Related Potential Evidence for Involuntary Consciousness During Implicit Memory Retrieval. Front Behav Neurosci 2022; 16:902175. [PMID: 35832295 PMCID: PMC9272755 DOI: 10.3389/fnbeh.2022.902175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022] Open
Abstract
Classical notion claims that a memory is implicit if has nothing to do with consciousness during the information retrieval from storage, or is otherwise explicit. Here, we demonstrate event-related potential evidence for involuntary consciousness during implicit memory retrieval. We designed a passive oddball paradigm for retrieval of implicit memory in which an auditory stream of Shepard tones with musical pitch interval contrasts were delivered to the subjects. These contrasts evoked a mismatch negativity response, which is an event-related potential and a neural marker of implicit memory, in the subjects with long-term musical training, but not in the subjects without. Notably, this response was followed by a salient P3 component which implies involvement of involuntary consciousness in the implicit memory retrieval. Finally, source analysis of the P3 revealed moving dipoles from the frontal lobe to the insula, a brain region closely related to conscious attention. Our study presents a case of involvement of involuntary consciousness in the implicit memory retrieval and suggests a potential challenge to the classical definition of implicit memory.
Collapse
Affiliation(s)
- Xiu-Yuan Liang
- Auditory Research Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zi-Hao Guo
- Auditory Research Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiao-Dong Wang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xiao-Tao Guo
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Jing-Wu Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Ming Wang
- Auditory Research Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hua-Wei Li
- Affiliated Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Lin Chen
- Auditory Research Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Affiliated Eye and ENT Hospital of Fudan University, Shanghai, China
| |
Collapse
|
12
|
Chang H, Chen L, Zhang Y, Xie Y, de Los Angeles C, Adair E, Zanitti G, Wassermann D, Rosenberg-Lee M, Menon V. Foundational Number Sense Training Gains Are Predicted by Hippocampal-Parietal Circuits. J Neurosci 2022; 42:4000-4015. [PMID: 35410879 PMCID: PMC9097592 DOI: 10.1523/jneurosci.1005-21.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 11/21/2022] Open
Abstract
The development of mathematical skills in early childhood relies on number sense, the foundational ability to discriminate among quantities. Number sense in early childhood is predictive of academic and professional success, and deficits in number sense are thought to underlie lifelong impairments in mathematical abilities. Despite its importance, the brain circuit mechanisms that support number sense learning remain poorly understood. Here, we designed a theoretically motivated training program to determine brain circuit mechanisms underlying foundational number sense learning in female and male elementary school-age children (7-10 years). Our 4 week integrative number sense training program gradually strengthened the understanding of the relations between symbolic (Arabic numerals) and nonsymbolic (sets of items) representations of quantity. We found that our number sense training program improved symbolic quantity discrimination ability in children across a wide range of math abilities including children with learning difficulties. Crucially, the strength of pretraining functional connectivity between the hippocampus and intraparietal sulcus, brain regions implicated in associative learning and quantity discrimination, respectively, predicted individual differences in number sense learning across typically developing children and children with learning difficulties. Reverse meta-analysis of interregional coactivations across 14,371 fMRI studies and 89 cognitive functions confirmed a reliable role for hippocampal-intraparietal sulcus circuits in learning. Our study identifies a canonical hippocampal-parietal circuit for learning that plays a foundational role in children's cognitive skill acquisition. Findings provide important insights into neurobiological circuit markers of individual differences in children's learning and delineate a robust target for effective cognitive interventions.SIGNIFICANCE STATEMENT Mathematical skill development relies on number sense, the ability to discriminate among quantities. Here, we develop a theoretically motivated training program and investigate brain circuits that predict number sense learning in children during a period important for acquisition of foundational cognitive skills. Our integrated number sense training program was effective in children across a wide a range of math abilities, including children with learning difficulties. We identify hippocampal-parietal circuits that predict individual differences in learning gains. Our study identifies a brain circuit critical for the acquisition of foundational cognitive skills, which will be useful for developing effective interventions to remediate learning disabilities.
Collapse
Affiliation(s)
- Hyesang Chang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305
| | - Lang Chen
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305
- Department of Psychology, Santa Clara University, Santa Clara, California 95053
| | - Yuan Zhang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305
| | - Ye Xie
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305
- Department of Physics, Zhejiang University, Hangzhou 310027, China
- Department of Psychology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Carlo de Los Angeles
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305
| | - Emma Adair
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305
| | - Gaston Zanitti
- Parietal, Inria Saclay Île-de-France, Campus de l'École Polytechnique, Université Paris-Sud, Palaiseau 91120, France
| | - Demian Wassermann
- Parietal, Inria Saclay Île-de-France, Campus de l'École Polytechnique, Université Paris-Sud, Palaiseau 91120, France
| | - Miriam Rosenberg-Lee
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305
- Department of Psychology, Rutgers University, Newark, New Jersey 07102
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, California 94305
- Stanford Neurosciences Institute, Stanford University, Stanford, California 94305
| |
Collapse
|
13
|
Shin DD, Kim SI, Lee MJ, Jiang Y, Bong M. Role of Perceived Competence and Task Interest in Learning From Negative Feedback. Front Psychol 2022; 13:830462. [PMID: 35250773 PMCID: PMC8896853 DOI: 10.3389/fpsyg.2022.830462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Abstract
We used functional magnetic resonance imaging to examine the interactive effects of perceived competence and task interest on the cognitive and affective responses to negative feedback. Twenty-four undergraduates performed both interesting and uninteresting tasks and received failure feedback. The participants’ perceived competence in the task was manipulated between subjects prior to scanning with bogus feedback. The results showed that negative feedback processing was contingent upon both perceived competence and task interest. The most adaptive coping mechanism, indicated by activation in the cognitive control network and attenuation in the negative affect region, was identified for the high-competence and high-interest combination. When either competence or interest was low, signals in the cognitive control network were weaker. The most detrimental activation patterns were observed for the combination of low-competence and high interest. Our results reveal the combination of task and learner characteristics that best harnesses the potential benefits of negative feedback and illustrate the neuroscientific mechanisms underlying this observation.
Collapse
Affiliation(s)
- Dajung Daine Shin
- Department of Education, Brain and Motivation Research Institute (bMRI), Korea University, Seoul, South Korea
| | - Sung-il Kim
- Department of Education, Brain and Motivation Research Institute (bMRI), Korea University, Seoul, South Korea
- *Correspondence: Sung-il Kim,
| | - Myung-Jin Lee
- Division of Educational Evaluation, Korea Institute for Curriculum and Evaluation, Jincheon-gun, South Korea
| | - Yi Jiang
- Department of Educational Psychology, Faculty of Education, East China Normal University, Shanghai, China
| | - Mimi Bong
- Department of Education, Brain and Motivation Research Institute (bMRI), Korea University, Seoul, South Korea
| |
Collapse
|
14
|
Merenstein JL, Petok JR, Bennett IJ. Age group differences in learning-related activity reflect task stage, not learning stage. Behav Brain Res 2022; 416:113570. [PMID: 34499941 DOI: 10.1016/j.bbr.2021.113570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/09/2021] [Accepted: 08/31/2021] [Indexed: 11/02/2022]
Abstract
Healthy aging is accompanied by declines in the ability to learn associations between events, even when their relationship cannot be described. Previous functional magnetic resonance imaging (fMRI) studies have attributed these implicit associative learning (IAL) deficits to differential engagement of the hippocampus and basal ganglia in older relative to younger adults in early and late stages of the task, respectively. However, these task stages have been confounded with age group differences in learning performance that emerge later and to a lesser degree in older adults. To disentangle the effects of task stage from learning stage (i.e., when there is significant evidence of learning) on age group differences in the neural substrates of IAL, we acquired fMRI data while 28 younger (20.8 ± 2.3 years) and 22 older (73.6 ± 6.8 years) healthy adults completed the Triplets Learning Task, in which the location of two cues predicted the location of a target with high (HF) or low (LF) frequency. When matched for task stage, results revealed worse learning performance and increased IAL-related activity in the hippocampus during the early stage and in the globus pallidum during the late stage in older relative to younger adults. However, when matched for learning stage, there were no significant age group differences in learning performance or IAL-related activity. Thus, although learning emerges later for older adults, they are engaging similar brain regions as younger adults when learning the associations, suggesting that previous reports of age group differences reflect effects of age on task stage, but not learning stage.
Collapse
Affiliation(s)
- Jenna L Merenstein
- Department of Psychology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521 United States of America.
| | - Jessica R Petok
- Department of Psychology, St. Olaf College, 1520 St. Olaf Avenue, Northfield, MN 55057 United States of America.
| | - Ilana J Bennett
- Department of Psychology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521 United States of America.
| |
Collapse
|
15
|
Johnson EG, Mooney L, Graf Estes K, Nordahl CW, Ghetti S. Activation for newly learned words in left medial-temporal lobe during toddlers' sleep is associated with memory for words. Curr Biol 2021; 31:5429-5438.e5. [PMID: 34670113 DOI: 10.1016/j.cub.2021.09.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/26/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Little is known about the neural substrates underlying early memory functioning. To gain more insight, we examined how toddlers remember newly learned words. Hippocampal and anterior medial-temporal lobe (MTL) processes have been hypothesized to support forming and retaining the association between novel words and their referents, but direct evidence of this connection in early childhood is lacking. We assessed 2-year-olds (n = 38) for their memory of newly learned pseudowords associated with novel objects and puppets. We tested memory for these associations during the same session as learning and after a 1-week delay. We then played these pseudowords, previously known words, and completely novel pseudowords during natural nocturnal sleep, while collecting functional magnetic resonance imaging data. Activation in the left hippocampus and the left anterior MTL for newly learned compared to novel words was associated with same-session memory for these newly learned words only when they were learned as puppet names. Activation for known words was associated with memory for puppet names at the 1-week delay. Activation for newly learned words was also associated with overall productive vocabulary. These results underscore an early developing link between memory mechanisms and word learning in the medial temporal lobe.
Collapse
Affiliation(s)
- Elliott Gray Johnson
- Human Development Graduate Group, University of California, Davis, Davis, CA 95616, USA; Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA.
| | - Lindsey Mooney
- Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA; Department of Psychology, University of California, Davis, Davis, CA 95616, USA
| | - Katharine Graf Estes
- Human Development Graduate Group, University of California, Davis, Davis, CA 95616, USA; Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA; Department of Psychology, University of California, Davis, Davis, CA 95616, USA
| | - Christine Wu Nordahl
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA 95817, USA; MIND Institute, University of California, Davis, Sacramento, CA 95817, USA
| | - Simona Ghetti
- Human Development Graduate Group, University of California, Davis, Davis, CA 95616, USA; Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA; Department of Psychology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
16
|
Guo J, Shubeck K, Hu X. Relationship Between Item and Source Memory: Explanation of Connection-Strength Model. Front Psychol 2021; 12:691577. [PMID: 34659007 PMCID: PMC8511408 DOI: 10.3389/fpsyg.2021.691577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
The controversy in the relationship between item memory and source memory is a focus of episodic memory. Some studies show the trade-off between item memory and source memory, some show the consistency between them, and others show the independence between them. This review attempts to point out the connection-strength model, implying the different types and strengths of the important role of the item-source connections in the relationship between item memory and source memory, which is based on the same essence in the unified framework. The logic of the model is that when item memory and source memory share the same or relevant connection between item and source, they positively connect, or they are independently or negatively connected. This review integrates empirical evidence from the domains of cognition, cognitive neuroscience, and mathematical modeling to validate our hypothesis.
Collapse
Affiliation(s)
- Junjun Guo
- School of Psychology, Central China Normal University, Wuhan, China
| | - Keith Shubeck
- Department of Psychology, The University of Memphis, Memphis, TN, United States
- Institute for Intelligent Systems, The University of Memphis, Memphis, TN, United States
| | - Xiangen Hu
- School of Psychology, Central China Normal University, Wuhan, China
- Department of Psychology, The University of Memphis, Memphis, TN, United States
- Institute for Intelligent Systems, The University of Memphis, Memphis, TN, United States
| |
Collapse
|
17
|
Schneider E, Züst MA, Wuethrich S, Schmidig F, Klöppel S, Wiest R, Ruch S, Henke K. Larger capacity for unconscious versus conscious episodic memory. Curr Biol 2021; 31:3551-3563.e9. [PMID: 34256016 DOI: 10.1016/j.cub.2021.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/29/2021] [Accepted: 06/03/2021] [Indexed: 11/28/2022]
Abstract
Episodic memory is the memory for experienced events. A peak competence of episodic memory is the mental combination of events to infer commonalities. Inferring commonalities may proceed with and without consciousness of events. Yet what distinguishes conscious from unconscious inference? This question inspired nine experiments that featured strongly and weakly masked cartoon clips presented for unconscious and conscious inference. Each clip featured a scene with a visually impenetrable hiding place. Five animals crossed the scene one-by-one consecutively. One animal trajectory represented one event. The animals moved through the hiding place, where they might linger or not. The participants' task was to observe the animals' entrances and exits to maintain a mental record of which animals hid simultaneously. We manipulated information load to explore capacity limits. Memory of inferences was tested immediately, 3.5 or 6 min following encoding. The participants retrieved inferences well when encoding was conscious. When encoding was unconscious, the participants needed to respond intuitively. Only habitually intuitive decision makers exhibited a significant delayed retrieval of inferences drawn unconsciously. Their unconscious retrieval performance did not drop significantly with increasing information load, while conscious retrieval performance dropped significantly. A working memory network, including hippocampus, was activated during both conscious and unconscious inference and correlated with retrieval success. An episodic retrieval network, including hippocampus, was activated during both conscious and unconscious retrieval of inferences and correlated with retrieval success. Only conscious encoding/retrieval recruited additional brain regions outside these networks. Hence, levels of consciousness influenced the memories' behavioral impact, memory capacity, and the neural representational code.
Collapse
Affiliation(s)
- Else Schneider
- Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| | - Marc Alain Züst
- Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland; University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bolligenstraße 111, 3000 Bern, Switzerland
| | - Sergej Wuethrich
- Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| | - Flavio Schmidig
- Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bolligenstraße 111, 3000 Bern, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
| | - Simon Ruch
- Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| | - Katharina Henke
- Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland.
| |
Collapse
|
18
|
Pang DKF, Elntib S. Strongly masked content retained in memory made accessible through repetition. Sci Rep 2021; 11:10284. [PMID: 33986370 PMCID: PMC8119432 DOI: 10.1038/s41598-021-89512-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/21/2021] [Indexed: 02/03/2023] Open
Abstract
A growing body of evidence indicates that information can be stored even in the absence of conscious awareness. Despite these findings, unconscious memory is still poorly understood with limited evidence for unconscious iconic memory storage. Here we show that strongly masked visual data can be stored and accumulate to elicit clear perception. We used a repetition method across a wide range of conditions (Experiment 1) and a more focused follow-up experiment with enhanced masking conditions (Experiment 2). Information was stored despite being masked, demonstrating that masking did not erase or overwrite memory traces but limited perception. We examined the temporal properties and found that stored information followed a gradual but rapid decay. Extraction of meaningful information was severely impaired after 300 ms, and most data was lost after 700 ms. Our findings are congruent with theories of consciousness that are based on an integration of subliminal information and support theoretical predictions based on the global workspace theory of consciousness, especially the existence of an implicit iconic memory buffer store.
Collapse
Affiliation(s)
- Damian K. F. Pang
- grid.10025.360000 0004 1936 8470Department of Psychological Sciences, Institute of Psychology, Health and Society, University of Liverpool, Liverpool, L69 3BX UK ,grid.25879.310000 0004 1936 8972School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Stamatis Elntib
- grid.10025.360000 0004 1936 8470Department of Psychological Sciences, Institute of Psychology, Health and Society, University of Liverpool, Liverpool, L69 3BX UK
| |
Collapse
|
19
|
Maksimenko V, Kuc A, Frolov N, Kurkin S, Hramov A. Effect of repetition on the behavioral and neuronal responses to ambiguous Necker cube images. Sci Rep 2021; 11:3454. [PMID: 33568692 PMCID: PMC7876129 DOI: 10.1038/s41598-021-82688-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/20/2021] [Indexed: 01/30/2023] Open
Abstract
A repeated presentation of an item facilitates its subsequent detection or identification, a phenomenon of priming. Priming may involve different types of memory and attention and affects neural activity in various brain regions. Here we instructed participants to report on the orientation of repeatedly presented Necker cubes with high (HA) and low (LA) ambiguity. Manipulating the contrast of internal edges, we varied the ambiguity and orientation of the cube. We tested how both the repeated orientation (referred to as a stimulus factor) and the repeated ambiguity (referred to as a top-down factor) modulated neuronal and behavioral response. On the behavioral level, we observed higher speed and correctness of the response to the HA stimulus following the HA stimulus and a faster response to the right-oriented LA stimulus following the right-oriented stimulus. On the neuronal level, the prestimulus theta-band power grew for the repeated HA stimulus, indicating activation of the neural networks related to attention and uncertainty processing. The repeated HA stimulus enhanced hippocampal activation after stimulus onset. The right-oriented LA stimulus following the right-oriented stimulus enhanced activity in the precuneus and the left frontal gyri before the behavioral response. During the repeated HA stimulus processing, enhanced hippocampal activation may evidence retrieving information to disambiguate the stimulus and define its orientation. Increased activation of the precuneus and the left prefrontal cortex before responding to the right-oriented LA stimulus following the right-oriented stimulus may indicate a match between their orientations. Finally, we observed increased hippocampal activation after responding to the stimuli, reflecting the encoding stimulus features in memory. In line with the large body of works relating the hippocampal activity with episodic memory, we suppose that this type of memory may subserve the priming effect during the repeated presentation of ambiguous images.
Collapse
Affiliation(s)
- Vladimir Maksimenko
- grid.465471.50000 0004 4910 8311Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Component, Innopolis University, 1 Universitetskaya str., Innopolis, Republic of Tatarstan Russia 420500 ,grid.412420.10000 0000 8546 8761Saratov State Medical University, 112 Bolshaya Kazachia str., Saratov, Russia 410012
| | - Alexander Kuc
- grid.465471.50000 0004 4910 8311Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Component, Innopolis University, 1 Universitetskaya str., Innopolis, Republic of Tatarstan Russia 420500
| | - Nikita Frolov
- grid.465471.50000 0004 4910 8311Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Component, Innopolis University, 1 Universitetskaya str., Innopolis, Republic of Tatarstan Russia 420500
| | - Semen Kurkin
- grid.465471.50000 0004 4910 8311Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Component, Innopolis University, 1 Universitetskaya str., Innopolis, Republic of Tatarstan Russia 420500
| | - Alexander Hramov
- grid.465471.50000 0004 4910 8311Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Component, Innopolis University, 1 Universitetskaya str., Innopolis, Republic of Tatarstan Russia 420500 ,grid.412420.10000 0000 8546 8761Saratov State Medical University, 112 Bolshaya Kazachia str., Saratov, Russia 410012
| |
Collapse
|
20
|
Seok JW, Cheong C. Functional dissociation of hippocampal subregions corresponding to memory types and stages. J Physiol Anthropol 2020; 39:15. [PMID: 32616078 PMCID: PMC7331241 DOI: 10.1186/s40101-020-00225-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/11/2020] [Indexed: 12/04/2022] Open
Abstract
Background The hippocampus reportedly plays a crucial role in memory. However, examining individual human hippocampal-subfield function remains challenging because of their small sizes and convoluted structures. Here, we identified hippocampal subregions involved in memory types (implicit and explicit memory) and stages (encoding and retrieval). Methods We modified the serial reaction time task to examine four memory types, i.e. implicit encoding, explicit encoding, implicit retrieval, and explicit retrieval. During this task, 7-T functional magnetic resonance imaging was used to compare brain activity evoked by these memory types. Results We found hippocampal activation according to all memory types and stages and identified that the hippocampus subserves both implicit and explicit memory processing. Moreover, we confirmed that cornu ammonis (CA) regions 1–3 were implicated in both memory encoding and retrieval, whereas the subiculum was implicated only in memory retrieval. We also found that CA 1–3 was activated more for explicit than implicit memory. Conclusions These results elucidate human hippocampal-subfield functioning underlying memory and may support future investigations into hippocampal-subfield functioning in health and neurodegenerative disease.
Collapse
Affiliation(s)
- Ji-Woo Seok
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Rehabilitation Counseling Psychology, Seoul Hanyoung University, Seoul, Republic of Korea
| | - Chaejoon Cheong
- Center for Research Equipment, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang, Cheongju, 28119, Chungbook, Republic of Korea.
| |
Collapse
|
21
|
Cowell RA, Barense MD, Sadil PS. A Roadmap for Understanding Memory: Decomposing Cognitive Processes into Operations and Representations. eNeuro 2019; 6:ENEURO.0122-19.2019. [PMID: 31189554 PMCID: PMC6620388 DOI: 10.1523/eneuro.0122-19.2019] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 11/21/2022] Open
Abstract
Thanks to patients Phineas Gage and Henry Molaison, we have long known that behavioral control depends on the frontal lobes, whereas declarative memory depends on the medial temporal lobes (MTL). For decades, cognitive functions-behavioral control, declarative memory-have served as labels for characterizing the division of labor in cortex. This approach has made enormous contributions to understanding how the brain enables the mind, providing a systems-level explanation of brain function that constrains lower-level investigations of neural mechanism. Today, the approach has evolved such that functional labels are often applied to brain networks rather than focal brain regions. Furthermore, the labels have diversified to include both broadly-defined cognitive functions (declarative memory, visual perception) and more circumscribed mental processes (recollection, familiarity, priming). We ask whether a process-a high-level mental phenomenon corresponding to an introspectively-identifiable cognitive event-is the most productive label for dissecting memory. For example, recollection conflates a neurocomputational operation (pattern completion-based retrieval) with a class of representational content (associative, high-dimensional memories). Because a full theory of memory must identify operations and representations separately, and specify how they interact, we argue that processes like recollection constitute inadequate labels for characterizing neural mechanisms. Instead, we advocate considering the component operations and representations of processes like recollection in isolation. For the organization of memory, the evidence suggests that pattern completion is recapitulated widely across the ventral visual stream and MTL, but the division of labor between sites within this pathway can be explained by representational content.
Collapse
Affiliation(s)
- Rosemary A Cowell
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Morgan D Barense
- Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada
| | - Patrick S Sadil
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
22
|
Sadil P, Potter KW, Huber DE, Cowell RA. Connecting the dots without top-down knowledge: Evidence for rapidly-learned low-level associations that are independent of object identity. J Exp Psychol Gen 2019; 148:1058-1070. [PMID: 31070394 PMCID: PMC6759832 DOI: 10.1037/xge0000607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Knowing the identity of an object can powerfully alter perception. Visual demonstrations of this-such as Gregory's (1970) hidden Dalmatian-affirm the existence of both top-down and bottom-up processing. We consider a third processing pathway: lateral connections between the parts of an object. Lateral associations are assumed by theories of object processing and hierarchical theories of memory, but little evidence attests to them. If they exist, their effects should be observable even in the absence of object identity knowledge. We employed Continuous Flash Suppression (CFS) while participants studied object images, such that visual details were learned without explicit object identification. At test, lateral associations were probed using a part-to-part matching task. We also tested whether part-whole links were facilitated by prior study using a part-naming task, and included another study condition (Word), in which participants saw only an object's written name. The key question was whether CFS study (which provided visual information without identity) would better support part-to-part matching (via lateral associations) whereas Word study (which provided identity without the correct visual form) would better support part-naming (via top-down processing). The predicted dissociation was found and confirmed by state-trace analyses. Thus, lateral part-to-part associations were learned and retrieved independently of object identity representations. This establishes novel links between perception and memory, demonstrating that (a) lateral associations at lower levels of the object identification hierarchy exist and contribute to object processing and (b) these associations are learned via rapid, episodic-like mechanisms previously observed for the high-level, arbitrary relations comprising episodic memories. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
- Patrick Sadil
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Kevin W. Potter
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - David E. Huber
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Rosemary A. Cowell
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
23
|
Jablonowski J, Taesler P, Fu Q, Rose M. Implicit acoustic sequence learning recruits the hippocampus. PLoS One 2018; 13:e0209590. [PMID: 30576383 PMCID: PMC6303117 DOI: 10.1371/journal.pone.0209590] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/07/2018] [Indexed: 12/02/2022] Open
Abstract
The exclusive role of the medial temporal lobe in explicit memory has been questioned by several studies reporting medial temporal lobe involvement during implicit learning. Prior studies have demonstrated that hippocampal engagement is present during the implicit learning of perceptual associations, however, it is absent during learning response-related associations. Therefore, it was hypothesized that the function of the medial temporal lobe during implicit learning is related to the extraction of perceptual associations in general. While in most implicit learning tasks visual stimuli were used, the aim of the current functional magnetic resonance imaging (fMRI) study was to detect whether activations within medial temporal lobe structures are also found during implicit learning of auditory associations. In a modified version of the classical serial reaction time task, participants reacted to the presentation of five different tones. Unbeknownst to the participants, the tones were presented with an underlying sequential regularity that could be learned. To avoid an influence of response learning on acoustic associative learning, response buttons were remapped in every trial. After learning, two different tests were used to measure participants' conscious knowledge about the underlying sequence in order to assess the amount of implicit memory and to exclude participants with explicit knowledge acquired during learning. fMRI results revealed hippocampal activations for implicit learning of the acoustic sequence. When detecting a relation between implicit learning of acoustic associations and hippocampal activations, this study indicated a relation between hippocampal activations and memory formation of perceptual-based relational representation regardless of explicit knowledge. Thus, present findings suggest a general functional role for the formation of sequenced perceptual associations independent of the involvement of awareness.
Collapse
Affiliation(s)
- Julia Jablonowski
- NeuroImage Nord, Department for Systems Neuroscience, University Medical Center Hamburg Eppendorf, Martinistrasse, Hamburg, Germany
| | - Philipp Taesler
- NeuroImage Nord, Department for Systems Neuroscience, University Medical Center Hamburg Eppendorf, Martinistrasse, Hamburg, Germany
| | - Qiufang Fu
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Michael Rose
- NeuroImage Nord, Department for Systems Neuroscience, University Medical Center Hamburg Eppendorf, Martinistrasse, Hamburg, Germany
| |
Collapse
|
24
|
Race E, Burke K, Verfaellie M. Repetition priming in amnesia: Distinguishing associative learning at different levels of abstraction. Neuropsychologia 2018; 122:98-104. [PMID: 30485796 DOI: 10.1016/j.neuropsychologia.2018.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 11/17/2022]
Abstract
Learned associations between stimuli and responses make important contributions to priming. The current study aimed to determine whether medial temporal lobe (MTL) binding mechanisms mediate this learning. Prior studies implicating the MTL in stimulus-response (S-R) learning have not isolated associative learning at the response level from associative learning at other levels of representation (e.g., task sets or decisions). The current study investigated whether the MTL is specifically involved in associative learning at the response level by testing a group of amnesic patients with MTL damage on a priming paradigm that isolates associative learning at the response level. Patients demonstrated intact priming when associative learning was isolated to the stimulus-response level. In contrast, their priming was reduced when associations between stimuli and more abstract representations (e.g., stimulus-task or stimulus-decision associations) could contribute to performance. These results provide novel neuropsychological evidence that S-R contributions to priming can be supported by regions outside the MTL, and suggest that the MTL may play a critical role in linking stimuli to more abstract tasks or decisions during priming.
Collapse
Affiliation(s)
- Elizabeth Race
- Department of Psychology, Tufts University, Medford, MA 02150, United States; Memory Disorders Research Center, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA 02130, United States.
| | - Keely Burke
- Memory Disorders Research Center, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA 02130, United States
| | - Mieke Verfaellie
- Memory Disorders Research Center, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA 02130, United States
| |
Collapse
|
25
|
Shishmanova-Doseva M, Peychev L, Koeva Y, Terzieva D, Georgieva K, Peychev Z. Chronic treatment with the new anticonvulsant drug lacosamide impairs learning and memory processes in rats: A possible role of BDNF/TrkB ligand receptor system. Pharmacol Biochem Behav 2018; 169:1-9. [PMID: 29605232 DOI: 10.1016/j.pbb.2018.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/11/2023]
Abstract
Cognitive impairment is considered a frequent side effect in the drug treatment of epilepsy. The objective of the present study was to investigate the effects of lacosamide (LCM) on learning and memory processes in rats, on the serum level of brain-derived neurotrophic factor (BDNF) and BDNF/TrkB ligand receptor system expression in the hippocampal formation. Male Wistar rats underwent long-term treatment with three different doses of lacosamide - 3 mg/kg (LCM 3), 10 mg/kg (LCM 10) and 30 mg/kg (LCM 30). All rats were subjected to one active and one passive avoidance tests. The BDNF/TrkB immunohistochemical expression in the hippocampus was measured and serum BDNF was determined. The LCM-treated rats made fewer avoidance responses than controls during acquisition training and in the memory retention test. The number of escapes in the LCM 10 and LCM 30 groups decreased throughout the test, while the rats in the LCM 3 group showed fewer escapes only in the memory test in the active avoidance task. In the step-down test, the latency time of the LCM-30 treated rats was reduced as compared with the controls during the learning session and the short- and long-term memory retention tests. Lacosamide induced a dose-dependent reduction of the hippocampal expression of BDNF and its receptor TrkB. We found no significant difference between BDNF serum levels in the test animals and controls. The results of the study suggest that LCM suppresses the learning and memory processes in rats, with the inhibition of hippocampal BDNF/TrkB ligand receptor system being one of the possible mechanisms causing this effect.
Collapse
Affiliation(s)
- Michaela Shishmanova-Doseva
- Department of Pharmacology and Drug Toxicology, Faculty of Pharmacy, Medical University - Plovdiv, "Vassil Aprilov" Blvd. 15A, Plovdiv 4002, Bulgaria.
| | - Lyudmil Peychev
- Department of Pharmacology and Drug Toxicology, Faculty of Pharmacy, Medical University - Plovdiv, "Vassil Aprilov" Blvd. 15A, Plovdiv 4002, Bulgaria.
| | - Yvetta Koeva
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical University - Plovdiv, "Vassil Aprilov" Blvd. 15A, Plovdiv 4002, Bulgaria.
| | - Dora Terzieva
- Department of Clinical Laboratory, Faculty of Pharmacy, Medical University - Plovdiv, "Vassil Aprilov" Blvd. 15A, Plovdiv 4002, Bulgaria.
| | - Katerina Georgieva
- Department of Physiology, Faculty of Medicine, Medical University - Plovdiv, "Vassil Aprilov" Blvd. 15A, Plovdiv 4002, Bulgaria.
| | - Zhivko Peychev
- Department of Medical Informatics, Biostatistics and E-learning, Faculty of Public Health, Medical University-Plovdiv, "Vassil Aprilov" Blvd. 15A, Plovdiv 4002, Bulgaria.
| |
Collapse
|
26
|
From altered synaptic plasticity to atypical learning: A computational model of Down syndrome. Cognition 2018; 171:15-24. [DOI: 10.1016/j.cognition.2017.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 01/09/2023]
|
27
|
Chen D, Hutchinson JB. What Is Memory-Guided Attention? How Past Experiences Shape Selective Visuospatial Attention in the Present. Curr Top Behav Neurosci 2018; 41:185-212. [PMID: 30584646 DOI: 10.1007/7854_2018_76] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
What controls our attention? It is historically thought that there are two primary factors that determine selective attention: the perceptual salience of the stimuli and the goals based on the task at hand. However, this distinction doesn't neatly capture the varied ways our past experience can influence our ongoing mental processing. In this chapter, we aim to describe how past experience can be systematically characterized by different types of memory, and we outline experimental evidence suggesting how attention can then be guided by each of these different memory types. We highlight findings from human behavioral, neuroimaging, and neuropsychological work from the perspective of two related frameworks of human memory: the multiple memory systems (MMS) framework and the neural processing (NP) framework. The MMS framework underscores how memory can be separated based on consciousness (declarative and non-declarative memory), while the NP framework emphasizes different forms of memory as reflective of different brain processing modes (rapid encoding of flexible associations, slow encoding of rigid associations, and rapid encoding of single or unitized items). We describe how memory defined by these frameworks can guide our attention, even when they do not directly relate to perceptual salience or the goals concerning the current task. We close by briefly discussing theoretical implications as well as some interesting avenues for future research.
Collapse
|
28
|
Ruch S, Herbert E, Henke K. Subliminally and Supraliminally Acquired Long-Term Memories Jointly Bias Delayed Decisions. Front Psychol 2017; 8:1542. [PMID: 28955268 PMCID: PMC5600932 DOI: 10.3389/fpsyg.2017.01542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 08/24/2017] [Indexed: 11/13/2022] Open
Abstract
Common wisdom and scientific evidence suggest that good decisions require conscious deliberation. But growing evidence demonstrates that not only conscious but also unconscious thoughts influence decision-making. Here, we hypothesize that both consciously and unconsciously acquired memories guide decisions. Our experiment measured the influence of subliminally and supraliminally presented information on delayed (30-40 min) decision-making. Participants were presented with subliminal pairs of faces and written occupations for unconscious encoding. Following a delay of 20 min, participants consciously (re-)encoded the same faces now presented supraliminally along with either the same written occupations, occupations congruous to the subliminally presented occupations (same wage-category), or incongruous occupations (opposite wage-category). To measure decision-making, participants viewed the same faces again (with occupations absent) and decided on the putative income of each person: low, low-average, high-average, or high. Participants were encouraged to decide spontaneously and intuitively. Hence, the decision task was an implicit or indirect test of relational memory. If conscious thought alone guided decisions (= H0), supraliminal information should determine decision outcomes independently of the encoded subliminal information. This was, however, not the case. Instead, both unconsciously and consciously encoded memories influenced decisions: identical unconscious and conscious memories exerted the strongest bias on income decisions, while both incongruous and congruous (i.e., non-identical) subliminally and supraliminally formed memories canceled each other out leaving no bias on decisions. Importantly, the increased decision bias following the formation of identical unconscious and conscious memories and the reduced decision bias following to the formation of non-identical memories were determined relative to a control condition, where conscious memory formation alone could influence decisions. In view of the much weaker representational strength of subliminally vs. supraliminally formed memories, their long-lasting impact on decision-making is noteworthy.
Collapse
Affiliation(s)
- Simon Ruch
- Department of Psychology, University of BernBern, Switzerland.,Center for Cognition, Learning and Memory, University of BernBern, Switzerland
| | - Elizabeth Herbert
- School of Physiology, Pharmacology and Neuroscience, University of BristolBristol, United Kingdom
| | - Katharina Henke
- Department of Psychology, University of BernBern, Switzerland.,Center for Cognition, Learning and Memory, University of BernBern, Switzerland
| |
Collapse
|
29
|
Bergström F, Eriksson J. Neural Evidence for Non-conscious Working Memory. Cereb Cortex 2017; 28:3217-3228. [DOI: 10.1093/cercor/bhx193] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Indexed: 12/24/2022] Open
Affiliation(s)
- Fredrik Bergström
- Umeå center for Functional Brain Imaging (UFBI), Umeå University, Sweden
- Department of Integrative Medical Biology, Physiology Section, Umeå University, Sweden
- Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
| | - Johan Eriksson
- Umeå center for Functional Brain Imaging (UFBI), Umeå University, Sweden
- Department of Integrative Medical Biology, Physiology Section, Umeå University, Sweden
| |
Collapse
|
30
|
Evidence of trace conditioning in comatose patients revealed by the reactivation of EEG responses to alerting sounds. Neuroimage 2016; 141:530-541. [DOI: 10.1016/j.neuroimage.2016.07.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/08/2016] [Accepted: 07/17/2016] [Indexed: 11/20/2022] Open
|
31
|
Giammarco M, Paoletti A, Guild EB, Al-Aidroos N. Attentional capture by items that match episodic long-term memory representations. VISUAL COGNITION 2016. [DOI: 10.1080/13506285.2016.1195470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Gomes CA, Figueiredo P, Mayes A. Priming for novel object associations: Neural differences from object item priming and equivalent forms of recognition. Hippocampus 2015; 26:472-91. [DOI: 10.1002/hipo.22537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Carlos Alexandre Gomes
- Human Memory Laboratory, School of Psychological Sciences, University of Manchester; United Kingdom
- Department of Bioengineering; Instituto Superior Técnico, Technical University of Lisbon; Portugal
| | - Patrícia Figueiredo
- Department of Bioengineering; Instituto Superior Técnico, Technical University of Lisbon; Portugal
- Institute for Systems and Robotics (ISR/IST), LARSyS, Instituto Superior Técnico, Technical University of Lisbon; Portugal
| | - Andrew Mayes
- Human Memory Laboratory, School of Psychological Sciences, University of Manchester; United Kingdom
| |
Collapse
|
33
|
Relational Memory Is Evident in Eye Movement Behavior despite the Use of Subliminal Testing Methods. PLoS One 2015; 10:e0141677. [PMID: 26512726 PMCID: PMC4626025 DOI: 10.1371/journal.pone.0141677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 10/12/2015] [Indexed: 11/19/2022] Open
Abstract
While it is generally agreed that perception can occur without awareness, there continues to be debate about the type of representational content that is accessible when awareness is minimized or eliminated. Most investigations that have addressed this issue evaluate access to well-learned representations. Far fewer studies have evaluated whether or not associations encountered just once prior to testing might also be accessed and influence behavior. Here, eye movements were used to examine whether or not memory for studied relationships is evident following the presentation of subliminal cues. Participants assigned to experimental or control groups studied scene-face pairs and test trials evaluated implicit and explicit memory for these pairs. Each test trial began with a subliminal scene cue, followed by three visible studied faces. For experimental group participants, one face was the studied associate of the scene (implicit test); for controls none were a match. Subsequently, the display containing a match was presented to both groups, but now it was preceded by a visible scene cue (explicit test). Eye movements were recorded and recognition memory responses were made. Participants in the experimental group looked disproportionately at matching faces on implicit test trials and participants from both groups looked disproportionately at matching faces on explicit test trials, even when that face had not been successfully identified as the associate. Critically, implicit memory-based viewing effects seemed not to depend on residual awareness of subliminal scene cues, as subjective and objective measures indicated that scenes were successfully masked from view. The reported outcomes indicate that memory for studied relationships can be expressed in eye movement behavior without awareness.
Collapse
|
34
|
Chen PH, Chen YJ, Cook TS. Capricorn-A Web-Based Automatic Case Log and Volume Analytics for Diagnostic Radiology Residents. Acad Radiol 2015; 22:1242-51. [PMID: 26259547 DOI: 10.1016/j.acra.2015.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/26/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
RATIONALE AND OBJECTIVES On-service clinical learning is a mainstay of radiology education. However, an accurate and timely case log is difficult to keep, especially in the absence of software tools tailored to resident education. Furthermore, volume-related feedback from the residency program sometimes occurs months after a rotation ends, limiting the opportunity for meaningful intervention. MATERIALS AND METHODS We surveyed the residents of a single academic institution to evaluate the current state of and the existing need for tracking interpretation volume. Using the results of the survey, we created an open-source automated case log software. Finally, we evaluated the effect of the software tool on the residency in a 1-month, postimplementation survey. RESULTS Before implementation of the system, 89% of respondents stated that volume is an important component of training, but 71% stated that volume data was inconvenient to obtain. Although the residency program provides semiannual reviews, 90% preferred reviewing interpretation volumes at least once monthly. After implementation, 95% of the respondents stated that the software is convenient to access, 75% found it useful, and 88% stated they would use the software at least once a month. The included analytics module, which benchmarks the user using historical aggregate average volumes, is the most often used feature of the software. Server log demonstrates that, on average, residents use the system approximately twice a week. CONCLUSIONS An automated case log software system may fulfill a previously unmet need in diagnostic radiology training, making accurate and timely review of volume-related performance analytics a convenient process.
Collapse
|
35
|
Bergström F, Eriksson J. The conjunction of non-consciously perceived object identity and spatial position can be retained during a visual short-term memory task. Front Psychol 2015; 6:1470. [PMID: 26483726 PMCID: PMC4588213 DOI: 10.3389/fpsyg.2015.01470] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/14/2015] [Indexed: 11/13/2022] Open
Abstract
Although non-consciously perceived information has previously been assumed to be short-lived (< 500 ms), recent findings show that non-consciously perceived information can be maintained for at least 15 s. Such findings can be explained as working memory without a conscious experience of the information to be retained. However, whether or not working memory can operate on non-consciously perceived information remains controversial, and little is known about the nature of such non-conscious visual short-term memory (VSTM). Here we used continuous flash suppression to render stimuli non-conscious, to investigate the properties of non-consciously perceived representations in delayed match-to-sample (DMS) tasks. In Experiment I we used variable delays (5 or 15 s) and found that performance was significantly better than chance and was unaffected by delay duration, thereby replicating previous findings. In Experiment II the DMS task required participants to combine information of spatial position and object identity on a trial-by-trial basis to successfully solve the task. We found that the conjunction of spatial position and object identity was retained, thereby verifying that non-conscious, trial-specific information can be maintained for prospective use. We conclude that our results are consistent with a working memory interpretation, but that more research is needed to verify this interpretation.
Collapse
Affiliation(s)
- Fredrik Bergström
- Umeå Center for Functional Brain Imaging, Umeå University Umeå, Sweden ; Department of Integrative Medical Biology, Physiology Section, Umeå University Umeå, Sweden
| | - Johan Eriksson
- Umeå Center for Functional Brain Imaging, Umeå University Umeå, Sweden ; Department of Integrative Medical Biology, Physiology Section, Umeå University Umeå, Sweden
| |
Collapse
|
36
|
Erickson LC, Thiessen ED. Statistical learning of language: Theory, validity, and predictions of a statistical learning account of language acquisition. DEVELOPMENTAL REVIEW 2015. [DOI: 10.1016/j.dr.2015.05.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Classical conditioning of analgesic and hyperalgesic pain responses without conscious awareness. Proc Natl Acad Sci U S A 2015; 112:7863-7. [PMID: 25979940 DOI: 10.1073/pnas.1504567112] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pain reduction and enhancement can be produced by means of conditioning procedures, yet the role of awareness during the acquisition stage of classical conditioning is unknown. We used psychophysical measures to establish whether conditioned analgesic and hyperalgesic responses could be acquired by unseen (subliminally presented) stimuli. A 2 × 2 factorial design, including subliminal/supraliminal exposures of conditioning stimuli (CS) during acquisition/extinction, was used. Results showed significant analgesic and hyperalgesic responses (P < 0.001), and responses were independent of CS awareness, as subliminal/supraliminal cues during acquisition/extinction led to comparable outcomes. The effect was significantly larger for hyperalgesic than analgesic responses (P < 0.001). Results demonstrate that conscious awareness of the CS is not required during either acquisition or extinction of conditioned analgesia or hyperalgesia. Our results support the notion that nonconscious stimuli have a pervasive effect on human brain function and behavior and may affect learning of complex cognitive processes such as psychologically mediated analgesic and hyperalgesic responses.
Collapse
|
38
|
Züst MA, Colella P, Reber TP, Vuilleumier P, Hauf M, Ruch S, Henke K. Hippocampus is place of interaction between unconscious and conscious memories. PLoS One 2015; 10:e0122459. [PMID: 25826338 PMCID: PMC4380440 DOI: 10.1371/journal.pone.0122459] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/11/2015] [Indexed: 11/18/2022] Open
Abstract
Recent evidence suggests that humans can form and later retrieve new semantic relations unconsciously by way of hippocampus-the key structure also recruited for conscious relational (episodic) memory. If the hippocampus subserves both conscious and unconscious relational encoding/retrieval, one would expect the hippocampus to be place of unconscious-conscious interactions during memory retrieval. We tested this hypothesis in an fMRI experiment probing the interaction between the unconscious and conscious retrieval of face-associated information. For the establishment of unconscious relational memories, we presented subliminal (masked) combinations of unfamiliar faces and written occupations ("actor" or "politician"). At test, we presented the former subliminal faces, but now supraliminally, as cues for the reactivation of the unconsciously associated occupations. We hypothesized that unconscious reactivation of the associated occupation-actor or politician-would facilitate or inhibit the subsequent conscious retrieval of a celebrity's occupation, which was also actor or politician. Depending on whether the reactivated unconscious occupation was congruent or incongruent to the celebrity's occupation, we expected either quicker or delayed conscious retrieval process. Conscious retrieval was quicker in the congruent relative to a neutral baseline condition but not delayed in the incongruent condition. fMRI data collected during subliminal face-occupation encoding confirmed previous evidence that the hippocampus was interacting with neocortical storage sites of semantic knowledge to support relational encoding. fMRI data collected at test revealed that the facilitated conscious retrieval was paralleled by deactivations in the hippocampus and neocortical storage sites of semantic knowledge. We assume that the unconscious reactivation has pre-activated overlapping relational representations in the hippocampus reducing the neural effort for conscious retrieval. This finding supports the notion of synergistic interactions between conscious and unconscious relational memories in a common, cohesive hippocampal-neocortical memory space.
Collapse
Affiliation(s)
- Marc Alain Züst
- Department of Psychology, Division of Experimental Psychology and Neuropsychology, University of Bern, Bern, Switzerland
- Center for Cognition, Learning and Memory, University of Bern, Bern, Switzerland
- * E-mail:
| | - Patrizio Colella
- Department of Psychology, Division of Experimental Psychology and Neuropsychology, University of Bern, Bern, Switzerland
- Center for Cognition, Learning and Memory, University of Bern, Bern, Switzerland
| | - Thomas Peter Reber
- Department of Psychology, Division of Experimental Psychology and Neuropsychology, University of Bern, Bern, Switzerland
- Center for Cognition, Learning and Memory, University of Bern, Bern, Switzerland
| | - Patrik Vuilleumier
- Department of Neurosciences and Clinical Neurology, University of Geneva, Geneva, Switzerland
| | - Martinus Hauf
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - Simon Ruch
- Department of Psychology, Division of Experimental Psychology and Neuropsychology, University of Bern, Bern, Switzerland
- Center for Cognition, Learning and Memory, University of Bern, Bern, Switzerland
| | - Katharina Henke
- Department of Psychology, Division of Experimental Psychology and Neuropsychology, University of Bern, Bern, Switzerland
- Center for Cognition, Learning and Memory, University of Bern, Bern, Switzerland
| |
Collapse
|
39
|
Craig M, Dewar M, Della Sala S, Wolbers T. Rest boosts the long-term retention of spatial associative and temporal order information. Hippocampus 2015; 25:1017-27. [PMID: 25620400 DOI: 10.1002/hipo.22424] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2015] [Indexed: 11/12/2022]
Abstract
People retain more new verbal episodic information for at least 7 days if they rest for a few minutes after learning than if they attend to new information. It is hypothesized that rest allows for superior consolidation of new memories. In rodents, rest periods promote hippocampal replay of a recently travelled route, and this replay is thought to be critical for memory consolidation and subsequent spatial navigation. If rest boosts human memory by promoting hippocampal replay/consolidation, then the beneficial effect of rest should extend to complex (hippocampal) memory tasks, for example, tasks probing associations and sequences. We investigated this question via a virtual reality route memory task. Healthy young participants learned two routes to a 100% criterion. One route was followed by a 10-min rest and the other by a 10-min spot the difference game. For each learned route, participants performed four delayed spatial memory tests probing: (i) associative (landmark-direction) memory, (ii) cognitive map formation, (iii) temporal (landmark) order memory, and (iv) route memory. Tests were repeated after 7 days to determine any long-term effects. No effect of rest was detected in the route memory or cognitive map tests, most likely due to ceiling and floor effects, respectively. Rest did, however, boost retention in the associative memory and temporal order memory tests, and this boost remained for at least 7 days. We therefore demonstrate that the benefit of rest extends to (spatial) associative and temporal order memory in humans. We hypothesise that rest allows superior consolidation/hippocampal replay of novel information pertaining to a recently learned route, thus boosting new memories over the long term.
Collapse
Affiliation(s)
- Michael Craig
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom.,Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Michaela Dewar
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom.,Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom.,Department of Psychology, School of Life Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Sergio Della Sala
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom.,Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas Wolbers
- Aging & Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE) & Center for Behavioral and Brain Sciences (CBBS), Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
40
|
Ling X, Guo X, Zheng L, Li L, Chen M, Wang Q, Huang Q, Dienes Z. The neural basis of implicit learning of task-irrelevant Chinese tonal sequence. Exp Brain Res 2015; 233:1125-36. [PMID: 25567086 DOI: 10.1007/s00221-014-4184-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 12/15/2014] [Indexed: 11/30/2022]
Abstract
The present study sought to investigate the neural basis of implicit learning of task-irrelevant perceptual sequence. A novel SRT task, the serial syllable identification task (SSI task), was used in which the participants were asked to recognize which one of two Chinese syllables was presented. The tones of the syllables were irrelevant to the task but followed an underlying structured sequence. Participants were scanned while they performed the SSI task. Results showed that, at the behavioral level, faster RTs for the sequential material indicated that task-irrelevant sequence knowledge could be learned. In the subsequent prediction test of knowledge of the tonal cues using subjective measures, we found that the knowledge was obtained unconsciously. At the neural level, the left caudate, bilateral hippocampus and bilateral superior parietal lobule were engaged during the sequence condition relative to the random condition. Further analyses revealed that greater learning-related activation (relative to random) in the right caudate nucleus, bilateral hippocampus and left superior parietal lobule were found during the second half of the training phase compared with the first half. When people reported that they were guessing, the magnitude of the right hippocampus and left superior parietal lobule activations was positively related to the accuracy of prediction test, which was significantly better than chance. Together, the present results indicated that the caudate, hippocampus and superior parietal lobule played critical roles in the implicit perceptual sequence learning even when the perceptual features were task irrelevant.
Collapse
Affiliation(s)
- Xiaoli Ling
- School of Psychology and Cognitive Science, East China Normal University, North Zhongshan Road 3663, Shanghai, 200062, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Addante RJ. A critical role of the human hippocampus in an electrophysiological measure of implicit memory. Neuroimage 2015; 109:515-28. [PMID: 25562828 DOI: 10.1016/j.neuroimage.2014.12.069] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/17/2014] [Accepted: 12/25/2014] [Indexed: 02/05/2023] Open
Abstract
The hippocampus has traditionally been thought to be critical for conscious explicit memory but not necessary for unconscious implicit memory processing. In a recent study of a group of mild amnesia patients with evidence of MTL damage limited to the hippocampus, subjects were tested on a direct test of item recognition confidence while electroencephalogram (EEG) was acquired, and revealed intact measures of explicit memory from 400 to 600 ms (mid-frontal old-new effect, FN400). The current investigation re-analyzed this data to study event-related potentials (ERPs) of implicit memory, using a recently developed procedure that eliminated declarative memory differences. Prior ERP findings from this technique were first replicated in two independent matched control groups, which exhibited reliable implicit memory effects in posterior scalp regions from 400 to 600 ms, which were topographically dissociated from the explicit memory effects of familiarity. However, patients were found to be dramatically impaired in implicit memory effects relative to control subjects, as quantified by a reliable condition × group interaction. Several control analyses were conducted to consider alternative factors that could account for the results, including outliers, sample size, age, or contamination by explicit memory, and each of these factors was systematically ruled out. Results suggest that the hippocampus plays a fundamental role in aspects of memory processing that are beyond conscious awareness. The current findings therefore indicate that both memory systems of implicit and explicit memory may rely upon the same neural structures - but function in different physiological ways.
Collapse
Affiliation(s)
- Richard James Addante
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, TX 75080, USA; University of California, Davis, Center for Neuroscience, Davis, CA 95616, USA.
| |
Collapse
|
42
|
Duss SB, Reber TP, Hänggi J, Schwab S, Wiest R, Müri RM, Brugger P, Gutbrod K, Henke K. Unconscious relational encoding depends on hippocampus. ACTA ACUST UNITED AC 2014; 137:3355-70. [PMID: 25273998 PMCID: PMC4240286 DOI: 10.1093/brain/awu270] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
See Mayes (doi:10.1093/brain/awu284) for a scientific commentary on this article. The hippocampus is thought to support only conscious memory, while neocortex supports both conscious and unconscious memory. Duss et al. show that amnesic patients with damage to the hippocampal–anterior thalamic axis exhibit a diminished form of unconscious encoding and retrieval, suggesting that certain forms of unconscious memory are hippocampus-dependent. Textbooks divide between human memory systems based on consciousness. Hippocampus is thought to support only conscious encoding, while neocortex supports both conscious and unconscious encoding. We tested whether processing modes, not consciousness, divide between memory systems in three neuroimaging experiments with 11 amnesic patients (mean age = 45.55 years, standard deviation = 8.74, range = 23–60) and 11 matched healthy control subjects. Examined processing modes were single item versus relational encoding with only relational encoding hypothesized to depend on hippocampus. Participants encoded and later retrieved either single words or new relations between words. Consciousness of encoding was excluded by subliminal (invisible) word presentation. Amnesic patients and controls performed equally well on the single item task activating prefrontal cortex. But only the controls succeeded on the relational task activating the hippocampus, while amnesic patients failed as a group. Hence, unconscious relational encoding, but not unconscious single item encoding, depended on hippocampus. Yet, three patients performed normally on unconscious relational encoding in spite of amnesia capitalizing on spared hippocampal tissue and connections to language cortex. This pattern of results suggests that processing modes divide between memory systems, while consciousness divides between levels of function within a memory system.
Collapse
Affiliation(s)
- Simone B Duss
- 1 Division of Experimental Psychology and Neuropsychology, Department of Psychology, University of Bern, Bern, Switzerland 2 Centre for Cognition, Learning and Memory, University of Bern, Bern, Switzerland
| | - Thomas P Reber
- 1 Division of Experimental Psychology and Neuropsychology, Department of Psychology, University of Bern, Bern, Switzerland 2 Centre for Cognition, Learning and Memory, University of Bern, Bern, Switzerland
| | - Jürgen Hänggi
- 3 Division Neuropsychology, Institute of Psychology, University of Zurich, Zurich, Switzerland
| | - Simon Schwab
- 2 Centre for Cognition, Learning and Memory, University of Bern, Bern, Switzerland 4 Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern, Switzerland
| | - Roland Wiest
- 5 Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - René M Müri
- 2 Centre for Cognition, Learning and Memory, University of Bern, Bern, Switzerland 6 Division of Cognitive and Restorative Neurology, Department of Neurology, University Hospital Bern, Bern, Switzerland
| | - Peter Brugger
- 7 Neuropsychology Unit, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Klemens Gutbrod
- 2 Centre for Cognition, Learning and Memory, University of Bern, Bern, Switzerland 6 Division of Cognitive and Restorative Neurology, Department of Neurology, University Hospital Bern, Bern, Switzerland
| | - Katharina Henke
- 1 Division of Experimental Psychology and Neuropsychology, Department of Psychology, University of Bern, Bern, Switzerland 2 Centre for Cognition, Learning and Memory, University of Bern, Bern, Switzerland
| |
Collapse
|
43
|
Kremers NA, Deuker L, Kranz TA, Oehrn C, Fell J, Axmacher N. Hippocampal control of repetition effects for associative stimuli. Hippocampus 2014; 24:892-902. [DOI: 10.1002/hipo.22278] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2014] [Indexed: 11/06/2022]
Affiliation(s)
| | - Lorena Deuker
- Department of Epileptology; University of Bonn; Bonn Germany
| | | | - Carina Oehrn
- Department of Epileptology; University of Bonn; Bonn Germany
| | - Juergen Fell
- Department of Epileptology; University of Bonn; Bonn Germany
| | - Nikolai Axmacher
- Department of Epileptology; University of Bonn; Bonn Germany
- German Center for Neurodegenerative Diseases; Bonn Germany
| |
Collapse
|
44
|
Reber TP, Luechinger R, Boesiger P, Henke K. Detecting analogies unconsciously. Front Behav Neurosci 2014; 8:9. [PMID: 24478656 PMCID: PMC3898596 DOI: 10.3389/fnbeh.2014.00009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/07/2014] [Indexed: 11/13/2022] Open
Abstract
Analogies may arise from the conscious detection of similarities between a present and a past situation. In this functional magnetic resonance imaging study, we tested whether young volunteers would detect analogies unconsciously between a current supraliminal (visible) and a past subliminal (invisible) situation. The subliminal encoding of the past situation precludes awareness of analogy detection in the current situation. First, participants encoded subliminal pairs of unrelated words in either one or nine encoding trials. Later, they judged the semantic fit of supraliminally presented new words that either retained a previously encoded semantic relation (“analog”) or not (“broken analog”). Words in analogs versus broken analogs were judged closer semantically, which indicates unconscious analogy detection. Hippocampal activity associated with subliminal encoding correlated with the behavioral measure of unconscious analogy detection. Analogs versus broken analogs were processed with reduced prefrontal but enhanced medial temporal activity. We conclude that analogous episodes can be detected even unconsciously drawing on the episodic memory network.
Collapse
Affiliation(s)
- Thomas P Reber
- Department of Psychology, University of Bern , Bern , Switzerland ; Center for Cognition, Learning and Memory, University of Bern , Bern , Switzerland
| | - Roger Luechinger
- Institute for Biomedical Engineering, ETH Zurich , Zurich , Switzerland
| | - Peter Boesiger
- Institute for Biomedical Engineering, ETH Zurich , Zurich , Switzerland
| | - Katharina Henke
- Department of Psychology, University of Bern , Bern , Switzerland ; Center for Cognition, Learning and Memory, University of Bern , Bern , Switzerland
| |
Collapse
|
45
|
Albouy G, King BR, Maquet P, Doyon J. Hippocampus and striatum: Dynamics and interaction during acquisition and sleep-related motor sequence memory consolidation. Hippocampus 2013; 23:985-1004. [DOI: 10.1002/hipo.22183] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2013] [Indexed: 02/05/2023]
Affiliation(s)
- Geneviève Albouy
- Functional Neuroimaging Unit, C.R.I.U.G.M.; Montreal Quebec Canada
- Department of Psychology; University of Montreal; Montreal Quebec Canada
| | - Bradley R. King
- Functional Neuroimaging Unit, C.R.I.U.G.M.; Montreal Quebec Canada
- Department of Psychology; University of Montreal; Montreal Quebec Canada
| | - Pierre Maquet
- Cyclotron Research Centre, University of Liège; Liège Belgium
| | - Julien Doyon
- Functional Neuroimaging Unit, C.R.I.U.G.M.; Montreal Quebec Canada
- Department of Psychology; University of Montreal; Montreal Quebec Canada
| |
Collapse
|
46
|
Henke K, Reber TP, Duss SB. Integrating events across levels of consciousness. Front Behav Neurosci 2013; 7:68. [PMID: 23785318 PMCID: PMC3682125 DOI: 10.3389/fnbeh.2013.00068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/30/2013] [Indexed: 11/30/2022] Open
Abstract
Our knowledge grows as we integrate events experienced at different points in time. We may or may not become aware of events, their integration, and their impact on our knowledge and decisions. But can we mentally integrate two events, if they are experienced at different time points and at different levels of consciousness? In this study, an event consisted of the presentation of two unrelated words. In the stream of events, half of events shared one component (“tree desk” … “desk fish”) to facilitate event integration. We manipulated the amount of time and trials that separated two corresponding events. The contents of one event were presented subliminally (invisible) and the contents of the corresponding overlapping event supraliminally (visible). Hence, event integration required the binding of contents between consciousness levels and between time points. At the final test of integration, participants judged whether two supraliminal test words (“tree fish”) fit together semantically or not. Unbeknown to participants, half of test words were episodically related through an overlap (“desk”; experimental condition) and half were not (control condition). Participants judged episodically related test words to be closer semantically than unrelated test words. This subjective decrease in the semantic distance between test words was both independent of whether the invisible event was encoded first or second in order and independent of the number of trials and the time that separated two corresponding events. Hence, conscious and unconscious memories were mentally integrated into a linked mnemonic representation.
Collapse
Affiliation(s)
- Katharina Henke
- Division of Experimental Psychology and Neuropsychology, Department of Psychology, University of Bern , Bern , Switzerland ; Center for Cognition, Learning and Memory, University of Bern , Bern , Switzerland
| | | | | |
Collapse
|
47
|
Tracy JI, Osipowicz K, Godofsky S, Shah A, Khan W, Sharan A, Sperling MR. An investigation of implicit memory through left temporal lobectomy for epilepsy. Neurobiol Learn Mem 2012; 98:272-83. [PMID: 22981890 DOI: 10.1016/j.nlm.2012.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/16/2012] [Accepted: 08/24/2012] [Indexed: 01/21/2023]
Abstract
Temporal lobe epilepsy patients have demonstrated a relative preservation in the integrity of implicit memory procedures. We examined performance in a verbal implicit and explicit memory task in left anterior temporal lobectomy patients (LATL) and healthy normal controls (NCs) while undergoing fMRI. We hypothesized that despite the relative integrity of implicit memory in both the LATL patients and normal controls, the two groups would show distinct functional neuroanatomic profiles during implicit memory. LATLs and NCs performed Jacoby's Process Dissociation Process (PDP) procedure during fMRI, requiring completion of word stems based on the previously studied words or new/unseen words. Measures of automaticity and recollection provided uncontaminated indices of implicit and explicit memory, respectively. The behavioral data showed that in the face of temporal lobe pathology implicit memory can be carried out, suggesting implicit verbal memory retrieval is non-mesial temporal in nature. Compared to NCs, the LATL patients showed reliable activation, not deactivation, during implicit (automatic) responding. The regions mediating this response were cortical (left medial frontal and precuneus) and striatal. The active regions in LATL patients have the capacity to implement associative, conditioned responses that might otherwise be carried out by a healthy temporal lobe, suggesting this represented a compensatory activity. Because the precuneus has also been implicated in explicit memory, the data suggests this structure may have a highly flexible functionality, capable of supporting implementation of either explicit memory, or automatic processes such as implicit memory retrieval. Our data suggest that a healthy mesial/anterior temporal lobe may be needed for generating the posterior deactivation perceptual priming response seen in normals.
Collapse
Affiliation(s)
- Joseph I Tracy
- Department of Neurology, Thomas Jefferson University, Jefferson Medical College, United States.
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Relational inference denotes the capacity to encode, flexibly retrieve, and integrate multiple memories to combine past experiences to update knowledge and improve decision-making in new situations. Although relational inference is thought to depend on the hippocampus and consciousness, we now show in young, healthy men that it may occur outside consciousness but still recruits the hippocampus. In temporally distinct and unique subliminal episodes, we presented word pairs that either overlapped ("winter-red", "red-computer") or not. Effects of unconscious relational inference emerged in reaction times recorded during unconscious encoding and in the outcome of decisions made 1 min later at test, when participants judged the semantic relatedness of two supraliminal words. These words were either episodically related through a common word ("winter-computer" related through "red") or unrelated. Hippocampal activity increased during the unconscious encoding of overlapping versus nonoverlapping word pairs and during the unconscious retrieval of episodically related versus unrelated words. Furthermore, hippocampal activity during unconscious encoding predicted the outcome of decisions made at test. Hence, unconscious inference may influence decision-making in new situations.
Collapse
|
49
|
Reber TP, Henke K. Integrating unseen events over time. Conscious Cogn 2012; 21:953-60. [DOI: 10.1016/j.concog.2012.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 02/21/2012] [Accepted: 02/23/2012] [Indexed: 11/16/2022]
|
50
|
Hannula DE, Greene AJ. The hippocampus reevaluated in unconscious learning and memory: at a tipping point? Front Hum Neurosci 2012; 6:80. [PMID: 22518102 PMCID: PMC3324888 DOI: 10.3389/fnhum.2012.00080] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 03/21/2012] [Indexed: 11/13/2022] Open
Abstract
Classic findings from the neuropsychological literature invariably indicated that performances on tests of memory that can be accomplished without conscious awareness were largely spared in amnesia, while those that required conscious retrieval (e.g., via recognition or recall) of information learned in the very same sessions was devastatingly impaired. Based on reports of such dissociations, it was proposed that one of the fundamental distinctions between memory systems is whether or not they support conscious access to remembered content. Only recently have we come to realize that the putative systemic division of labor between conscious and unconscious memory is not so clean. A primary goal of this review is to examine recent evidence that has been advanced against the view that the hippocampus is selectively critical for conscious memory. Along the way, consideration is given to criticisms that have been levied against these findings, potential explanations for differences in the reported results are proposed, and methodological pitfalls in investigations of unconscious memory are discussed. Ultimately, it is concluded that a tipping point has been reached, and that while conscious recollection depends critically on hippocampal integrity, the reach of the hippocampus extends to unconscious aspects of memory performance when relational memory processing and representation are required.
Collapse
|