1
|
Gkanias E, Webb B. Spatiotemporal computations in the insect celestial compass. Nat Commun 2025; 16:2832. [PMID: 40121239 PMCID: PMC11929787 DOI: 10.1038/s41467-025-57937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/28/2025] [Indexed: 03/25/2025] Open
Abstract
Obtaining a geocentric directional reference from a celestial compass requires compensation for the sun's movement during the day (relative to the observer), which depends on the earth's rotation, time of year and the observer's latitude. We examine how insects could solve this problem, assuming they have clock neurons that represent time as a sinusoidal oscillation, and taking into account the neuroanatomy of their celestial compass pathway. We show how this circuit could exploit trigonometric identities to perform the required spatiotemporal calculations. Our basic model assumes a constant change in sun azimuth (the 'hour angle'), which is recentred on solar noon for changing day lengths. In a more complete model, the time of year is represented by an oscillation with an annual period, and the latitude is estimated from the inclination of the geomagnetic field. Evaluating these models in simulated migration and foraging behaviours shows the hour angle may be sufficient.
Collapse
Affiliation(s)
- Evripidis Gkanias
- School of Informatics, University of Edinburgh, EH8 9AB, Edinburgh, UK.
| | - Barbara Webb
- School of Informatics, University of Edinburgh, EH8 9AB, Edinburgh, UK
| |
Collapse
|
2
|
Qu X, Huang Q, Li H, Lou F. Comparative transcriptomics revealed the ecological trap effect of linearly polarized light on Oratosquilla oratoria. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101234. [PMID: 38631126 DOI: 10.1016/j.cbd.2024.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
Although polarized light can assist many animals in performing special visual tasks, current polarized light pollution (PLP) caused by urban construction has been shown to induce maladaptive behaviors of PL-sensitive animals and change ecological interactions. However, the underlying mechanisms remain unclear. Our previous work hypothesized that linearly polarized light (LPL) is an ecological trap for Oratosquilla oratoria, a common Stomatopoda species in the China Sea. Here we explored the underlying negative effects of artificially LPL on O. oratoria based on comparative transcriptomics. We identified 3616 differentially expressed genes (DEGs) in O. oratoria compound eyes continuous exposed to natural light (NL) and LPL scenarios. In comparison with the NL scenario, a total of 1972 up- and 1644 down- regulated genes were obtained from the O. oratoria compound eyes under LPL scenario, respectively. Furthermore, we performed functional annotation of those DEGs described above and identified 65 DEGs related to phototransduction, reproduction, immunity, and synapse. Based on the functional information, we suspected that continuous LPL exposure could block the light transmission, disrupt the reproductive process, and lead to the progressive failure of the immune response of O. oratoria. In conclusion, this study is the first to systematically describe the negative effects of artificial LPL exposure on O. oratoria at the genetic level, and it can improve the biological conservation theory behind PLP.
Collapse
Affiliation(s)
- Xiuyu Qu
- School of Ocean, Yantai University, Yantai 264003, Shandong, China
| | - Qi Huang
- School of Food Science and Bioengineering, Yantai Institute of Technology, Yantai 264003, Shandong, China
| | - Huanjun Li
- Shandong Marine Resource and Environment Research Institute, Yantai 264003, Shandong, China
| | - Fangrui Lou
- School of Ocean, Yantai University, Yantai 264003, Shandong, China.
| |
Collapse
|
3
|
Huang X, Zhou T, Ullah H, Zhu D, Tang Y, Xu H, Wang H, Tan J. Investigating the Influence of Varied Light-Emitting Diode (LED) Wavelengths on Phototactic Behavior and Opsin Genes in Vespinae. Animals (Basel) 2024; 14:1543. [PMID: 38891590 PMCID: PMC11171232 DOI: 10.3390/ani14111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The phototactic behavior of insects is commonly used to manage pest populations in practical production. However, this elusive behavior is not yet fully understood. Investigating whether the opsin genes play a crucial role in phototaxis is an intriguing topic. Vespinae (Hymenoptera: Vespidae) are a common group of social wasps that are closely associated with human activities. Efficiently controlling wasp populations while maintaining ecological balance is a pressing global challenge that still has to be resolved. This research aims to explore the phototactic behavior and key opsin genes associated with Vespinae. We found significant differences in the photophilic rates of Vespula germanica and Vespa analis under 14 different light conditions, indicating that their phototactic behavior is rhythmic. The results also showed that the two species exhibited varying photophilic rates under different wavelengths of light, suggesting that light wavelength significantly affects their phototactic behavior. Additionally, the opsin genes of the most aggressive hornet, Vespa basalis, have been sequenced. There are only two opsin genes, one for UV light and the other for blue light, and Vespa basalis lacks long-wavelength visual proteins. However, they exhibit peak phototaxis for long-wavelength light and instead have the lowest phototaxis for UV light. This suggests that the visual protein genes have a complex regulatory mechanism for phototactic behavior in Vespinae. Additionally, visual protein sequences have a high degree of homology among Hymenoptera. Despite the hypotheses put forward by some scholars regarding phototaxis, a clear and complete explanation of insect phototaxis is still lacking to date. Our findings provide a strong theoretical basis for further investigation of visual expression patterns and phototactic mechanisms in Vespinae.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiangli Tan
- Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (X.H.); (T.Z.); (H.U.); (D.Z.); (Y.T.); (H.X.); (H.W.)
| |
Collapse
|
4
|
Green DA, Polidori S, Stratton SM. Modular switches shift monarch butterfly migratory flight behavior at their Mexican overwintering sites. iScience 2024; 27:109063. [PMID: 38420583 PMCID: PMC10901092 DOI: 10.1016/j.isci.2024.109063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/05/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Eastern North American migratory monarch butterflies exhibit migratory behavioral states in fall and spring characterized by sun-dependent oriented flight. However, it is unclear how monarchs transition between these behavioral states at their overwintering site. Using a modified Mouritsen-Frost flight simulator, we confirm individual directionality and compass-based orientation (leading to group orientation) in fall migrants, and also uncover sustained flight propensity and direction-based flight reinforcement as distinctly migratory behavioral traits. By testing monarchs at their Mexican overwintering sites, we show that overwintering monarchs show reduced propensity for sustained flight and lose individual directionality, leading to the loss of group-level orientation. Overwintering fliers orient axially in a time-of-day dependent manner, which may indicate local versus long-distance directional heading. These results support a model of migratory flight behavior in which modular, state-dependent switches for flight propensity and orientation control are highly dynamic and are controlled in season- and location-dependent manners.
Collapse
Affiliation(s)
- Delbert A. Green
- Department of Ecology and Evolutionary Biology, University of Michigan—Ann Arbor, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Sean Polidori
- Department of Ecology and Evolutionary Biology, University of Michigan—Ann Arbor, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Samuel M. Stratton
- Department of Ecology and Evolutionary Biology, University of Michigan—Ann Arbor, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Lucas RJ, Allen AE, Brainard GC, Brown TM, Dauchy RT, Didikoglu A, Do MTH, Gaskill BN, Hattar S, Hawkins P, Hut RA, McDowell RJ, Nelson RJ, Prins JB, Schmidt TM, Takahashi JS, Verma V, Voikar V, Wells S, Peirson SN. Recommendations for measuring and standardizing light for laboratory mammals to improve welfare and reproducibility in animal research. PLoS Biol 2024; 22:e3002535. [PMID: 38470868 PMCID: PMC10931507 DOI: 10.1371/journal.pbio.3002535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Light enables vision and exerts widespread effects on physiology and behavior, including regulating circadian rhythms, sleep, hormone synthesis, affective state, and cognitive processes. Appropriate lighting in animal facilities may support welfare and ensure that animals enter experiments in an appropriate physiological and behavioral state. Furthermore, proper consideration of light during experimentation is important both when it is explicitly employed as an independent variable and as a general feature of the environment. This Consensus View discusses metrics to use for the quantification of light appropriate for nonhuman mammals and their application to improve animal welfare and the quality of animal research. It provides methods for measuring these metrics, practical guidance for their implementation in husbandry and experimentation, and quantitative guidance on appropriate light exposure for laboratory mammals. The guidance provided has the potential to improve data quality and contribute to reduction and refinement, helping to ensure more ethical animal use.
Collapse
Affiliation(s)
- Robert J. Lucas
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Annette E. Allen
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - George C. Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Timothy M. Brown
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Robert T. Dauchy
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana, United States of America
| | - Altug Didikoglu
- Department of Neuroscience, Izmir Institute of Technology, Gülbahçe, Urla, Izmir, Turkey
| | - Michael Tri H. Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Center for Life Science, Boston, Massachusetts, United States of America
| | - Brianna N. Gaskill
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Samer Hattar
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, John Edward Porter Neuroscience Research Center, Bethesda, Maryland, United States of America
| | | | - Roelof A. Hut
- Chronobiology Unit, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Richard J. McDowell
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Randy J. Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, United States of America
| | - Jan-Bas Prins
- The Francis Crick Institute, London, United Kingdom
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Tiffany M. Schmidt
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Joseph S. Takahashi
- Department of Neuroscience, Peter O’Donnell Jr Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Vandana Verma
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, California, United States of America
| | - Vootele Voikar
- Laboratory Animal Center and Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sara Wells
- The Mary Lyon Centre, MRC Harwell, Harwell Campus, Oxfordshire, United Kingdom
| | - Stuart N. Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Wainwright JB, Schofield C, Conway M, Phillips D, Martin-Silverstone E, Brodrick EA, Cicconardi F, How MJ, Roberts NW, Montgomery SH. Multiple axes of visual system diversity in Ithomiini, an ecologically diverse tribe of mimetic butterflies. J Exp Biol 2023; 226:jeb246423. [PMID: 37921078 PMCID: PMC10714147 DOI: 10.1242/jeb.246423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
The striking structural variation seen in arthropod visual systems can be explained by the overall quantity and spatio-temporal structure of light within habitats coupled with developmental and physiological constraints. However, little is currently known about how fine-scale variation in visual structures arises across shorter evolutionary and ecological scales. In this study, we characterise patterns of interspecific (between species), intraspecific (between sexes) and intraindividual (between eye regions) variation in the visual system of four ithomiine butterfly species. These species are part of a diverse 26-million-year-old Neotropical radiation where changes in mimetic colouration are associated with fine-scale shifts in ecology, such as microhabitat preference. Using a combination of selection analyses on visual opsin sequences, in vivo ophthalmoscopy, micro-computed tomography (micro-CT), immunohistochemistry, confocal microscopy and neural tracing, we quantify and describe physiological, anatomical and molecular traits involved in visual processing. Using these data, we provide evidence of substantial variation within the visual systems of Ithomiini, including: (i) relaxed selection on visual opsins, perhaps mediated by habitat preference, (ii) interspecific shifts in visual system physiology and anatomy, and (iii) extensive sexual dimorphism, including the complete absence of a butterfly-specific optic neuropil in the males of some species. We conclude that considerable visual system variation can exist within diverse insect radiations, hinting at the evolutionary lability of these systems to rapidly develop specialisations to distinct visual ecologies, with selection acting at the perceptual, processing and molecular level.
Collapse
Affiliation(s)
- J. Benito Wainwright
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Corin Schofield
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Max Conway
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Daniel Phillips
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Elizabeth Martin-Silverstone
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Emelie A. Brodrick
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Francesco Cicconardi
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Martin J. How
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Nicholas W. Roberts
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Stephen H. Montgomery
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
7
|
Beetz MJ, El Jundi B. The neurobiology of the Monarch butterfly compass. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101109. [PMID: 37660836 DOI: 10.1016/j.cois.2023.101109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Monarch butterflies (Danaus plexippus) have become a superb model system to unravel how the tiny insect brain controls an impressive navigation behavior, such as long-distance migration. Moreover, the ability to compare the neural substrate between migratory and nonmigratory Monarch butterflies provides us with an attractive model to specifically study how the insect brain is adapted for migration. We here review our current progress on the neural substrate of spatial orientation in Monarch butterflies and how their spectacular annual migration might be controlled by their brain. We also discuss open research questions, the answers to which will provide important missing pieces to obtain a full picture of insect migration - from the perception of orientation cues to the neural control of migration.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany
| | - Basil El Jundi
- Animal Physiology, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
8
|
Freas CA, Spetch ML. Varieties of visual navigation in insects. Anim Cogn 2023; 26:319-342. [PMID: 36441435 PMCID: PMC9877076 DOI: 10.1007/s10071-022-01720-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
The behaviours and cognitive mechanisms animals use to orient, navigate, and remember spatial locations exemplify how cognitive abilities have evolved to suit a number of different mobile lifestyles and habitats. While spatial cognition observed in vertebrates has been well characterised in recent decades, of no less interest are the great strides that have also been made in characterizing and understanding the behavioural and cognitive basis of orientation and navigation in invertebrate models and in particular insects. Insects are known to exhibit remarkable spatial cognitive abilities and are able to successfully migrate over long distances or pinpoint known locations relying on multiple navigational strategies similar to those found in vertebrate models-all while operating under the constraint of relatively limited neural architectures. Insect orientation and navigation systems are often tailored to each species' ecology, yet common mechanistic principles can be observed repeatedly. Of these, reliance on visual cues is observed across a wide number of insect groups. In this review, we characterise some of the behavioural strategies used by insects to solve navigational problems, including orientation over short-distances, migratory heading maintenance over long distances, and homing behaviours to known locations. We describe behavioural research using examples from a few well-studied insect species to illustrate how visual cues are used in navigation and how they interact with non-visual cues and strategies.
Collapse
Affiliation(s)
- Cody A. Freas
- Department of Psychology, University of Alberta, Edmonton, AB Canada ,School of Natural Sciences, Macquarie University, Sydney, NSW Australia
| | - Marcia L. Spetch
- Department of Psychology, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
9
|
McCulloch KJ, Macias-Muñoz A, Briscoe AD. Insect opsins and evo-devo: what have we learned in 25 years? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210288. [PMID: 36058243 PMCID: PMC9441233 DOI: 10.1098/rstb.2021.0288] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/16/2022] [Indexed: 12/16/2022] Open
Abstract
The visual pigments known as opsins are the primary molecular basis for colour vision in animals. Insects are among the most diverse of animal groups and their visual systems reflect a variety of life histories. The study of insect opsins in the fruit fly Drosophila melanogaster has led to major advances in the fields of neuroscience, development and evolution. In the last 25 years, research in D. melanogaster has improved our understanding of opsin genotype-phenotype relationships while comparative work in other insects has expanded our understanding of the evolution of insect eyes via gene duplication, coexpression and homologue switching. Even so, until recently, technology and sampling have limited our understanding of the fundamental mechanisms that evolution uses to shape the diversity of insect eyes. With the advent of genome editing and in vitro expression assays, the study of insect opsins is poised to reveal new frontiers in evolutionary biology, visual neuroscience, and animal behaviour. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Kyle J. McCulloch
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - Aide Macias-Muñoz
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Adriana D. Briscoe
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA 92697, USA
| |
Collapse
|
10
|
Pirih P, Ilić M, Meglič A, Belušič G. Opponent processing in the retinal mosaic of nymphalid butterflies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210275. [PMID: 36058238 PMCID: PMC9441239 DOI: 10.1098/rstb.2021.0275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/21/2022] [Indexed: 11/29/2022] Open
Abstract
The eyes of nymphalid butterflies, investigated with incident illumination, show colourful facet reflection patterns-the eye shine-which is uniform or heterogeneous, dependent on the species. Facet colours suggest that the ommatidia contain different sets of photoreceptors and screening pigments, but how the colours and the cell characteristics are associated has not been clearly established. Here, we analyse the retinae of two nymphalids, Apatura ilia, which has a uniform eyeshine, and Charaxes jasius, a species with a heterogeneous eye shine, using single-cell recordings, spectroscopy and optical pupillometry. Apatura has UV-, blue- and green-sensitive photoreceptors, allocated into three ommatidial types. The UV- and blue-sensitive cells are long visual fibres (LVFs), receiving opponent input from the green-sensitive short visual fibres (SVFs). Charaxes has an expanded set of photoreceptors, allocated into three additional, red-reflecting ommatidial types. All red ommatidia contain green-sensitive LVFs, receiving opponent input from red receptors. In both species, the SVFs do not receive any opponent input. The simple retina of Apatura with three ommatidial types and two colour-opponent channels can support trichromatic vision. Charaxes has six ommatidial types and three colour-opponent channels. Its expanded receptor set can support tetrachromatic vision. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Primož Pirih
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Marko Ilić
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Andrej Meglič
- Eye Hospital, University Medical Centre, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Gregor Belušič
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Levitt BB, Lai HC, Manville AM. Effects of non-ionizing electromagnetic fields on flora and fauna, Part 2 impacts: how species interact with natural and man-made EMF. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:327-406. [PMID: 34243228 DOI: 10.1515/reveh-2021-0050] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Ambient levels of nonionizing electromagnetic fields (EMF) have risen sharply in the last five decades to become a ubiquitous, continuous, biologically active environmental pollutant, even in rural and remote areas. Many species of flora and fauna, because of unique physiologies and habitats, are sensitive to exogenous EMF in ways that surpass human reactivity. This can lead to complex endogenous reactions that are highly variable, largely unseen, and a possible contributing factor in species extinctions, sometimes localized. Non-human magnetoreception mechanisms are explored. Numerous studies across all frequencies and taxa indicate that current low-level anthropogenic EMF can have myriad adverse and synergistic effects, including on orientation and migration, food finding, reproduction, mating, nest and den building, territorial maintenance and defense, and on vitality, longevity and survivorship itself. Effects have been observed in mammals such as bats, cervids, cetaceans, and pinnipeds among others, and on birds, insects, amphibians, reptiles, microbes and many species of flora. Cyto- and geno-toxic effects have long been observed in laboratory research on animal models that can be extrapolated to wildlife. Unusual multi-system mechanisms can come into play with non-human species - including in aquatic environments - that rely on the Earth's natural geomagnetic fields for critical life-sustaining information. Part 2 of this 3-part series includes four online supplement tables of effects seen in animals from both ELF and RFR at vanishingly low intensities. Taken as a whole, this indicates enough information to raise concerns about ambient exposures to nonionizing radiation at ecosystem levels. Wildlife loss is often unseen and undocumented until tipping points are reached. It is time to recognize ambient EMF as a novel form of pollution and develop rules at regulatory agencies that designate air as 'habitat' so EMF can be regulated like other pollutants. Long-term chronic low-level EMF exposure standards, which do not now exist, should be set accordingly for wildlife, and environmental laws should be strictly enforced - a subject explored in Part 3.
Collapse
Affiliation(s)
| | - Henry C Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Albert M Manville
- Advanced Academic Programs, Krieger School of Arts and Sciences, Environmental Sciences and Policy, Johns Hopkins University, Washington DC Campus, USA
| |
Collapse
|
12
|
Doyle T, Jimenez‐Guri E, Hawkes WLS, Massy R, Mantica F, Permanyer J, Cozzuto L, Hermoso Pulido T, Baril T, Hayward A, Irimia M, Chapman JW, Bass C, Wotton KR. Genome-wide transcriptomic changes reveal the genetic pathways involved in insect migration. Mol Ecol 2022; 31:4332-4350. [PMID: 35801824 PMCID: PMC9546057 DOI: 10.1111/mec.16588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022]
Abstract
Insects are capable of extraordinary feats of long-distance movement that have profound impacts on the function of terrestrial ecosystems. The ability to undertake these movements arose multiple times through the evolution of a suite of traits that make up the migratory syndrome, however the underlying genetic pathways involved remain poorly understood. Migratory hoverflies (Diptera: Syrphidae) are an emerging model group for studies of migration. They undertake seasonal movements in huge numbers across large parts of the globe and are important pollinators, biological control agents and decomposers. Here, we assembled a high-quality draft genome of the marmalade hoverfly (Episyrphus balteatus). We leveraged this genomic resource to undertake a genome-wide transcriptomic comparison of actively migrating Episyrphus, captured from a high mountain pass as they flew south to overwinter, with the transcriptomes of summer forms which were non-migratory. We identified 1543 genes with very strong evidence for differential expression. Interrogation of this gene set reveals a remarkable range of roles in metabolism, muscle structure and function, hormonal regulation, immunity, stress resistance, flight and feeding behaviour, longevity, reproductive diapause and sensory perception. These features of the migrant phenotype have arisen by the integration and modification of pathways such as insulin signalling for diapause and longevity, JAK/SAT for immunity, and those leading to octopamine production and fuelling to boost flight capabilities. Our results provide a powerful genomic resource for future research, and paint a comprehensive picture of global expression changes in an actively migrating insect, identifying key genomic components involved in this important life-history strategy.
Collapse
Affiliation(s)
- Toby Doyle
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Eva Jimenez‐Guri
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Will L. S. Hawkes
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Richard Massy
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Federica Mantica
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
| | - Jon Permanyer
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
| | - Luca Cozzuto
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
| | - Toni Hermoso Pulido
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
| | - Tobias Baril
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Alex Hayward
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Manuel Irimia
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- ICREABarcelonaSpain
| | - Jason W. Chapman
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
- Environment and Sustainability InstituteUniversity of Exeter, Cornwall CampusPenrynUK
- Department of Entomology, College of Plant ProtectionNanjing Agricultural UniversityNanjingPeople's Republic of China
| | - Chris Bass
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Karl R. Wotton
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| |
Collapse
|
13
|
Nguyen TAT, Beetz MJ, Merlin C, Pfeiffer K, el Jundi B. Weighting of Celestial and Terrestrial Cues in the Monarch Butterfly Central Complex. Front Neural Circuits 2022; 16:862279. [PMID: 35847485 PMCID: PMC9285895 DOI: 10.3389/fncir.2022.862279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/10/2022] [Indexed: 12/02/2022] Open
Abstract
Monarch butterflies rely on external cues for orientation during their annual long-distance migration from Northern US and Canada to Central Mexico. These external cues can be celestial cues, such as the sun or polarized light, which are processed in a brain region termed the central complex (CX). Previous research typically focused on how individual simulated celestial cues are encoded in the butterfly's CX. However, in nature, the butterflies perceive several celestial cues at the same time and need to integrate them to effectively use the compound of all cues for orientation. In addition, a recent behavioral study revealed that monarch butterflies can rely on terrestrial cues, such as the panoramic skyline, for orientation and use them in combination with the sun to maintain a directed flight course. How the CX encodes a combination of celestial and terrestrial cues and how they are weighted in the butterfly's CX is still unknown. Here, we examined how input neurons of the CX, termed TL neurons, combine celestial and terrestrial information. While recording intracellularly from the neurons, we presented a sun stimulus and polarized light to the butterflies as well as a simulated sun and a panoramic scene simultaneously. Our results show that celestial cues are integrated linearly in these cells, while the combination of the sun and a panoramic skyline did not always follow a linear integration of action potential rates. Interestingly, while the sun and polarized light were invariantly weighted between individual neurons, the sun stimulus and panoramic skyline were dynamically weighted when both stimuli were simultaneously presented. Taken together, this dynamic weighting between celestial and terrestrial cues may allow the butterflies to flexibly set their cue preference during navigation.
Collapse
Affiliation(s)
| | - M. Jerome Beetz
- Biocenter, Zoology II, University of Wuerzburg, Würzburg, Germany
| | - Christine Merlin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, United States
| | - Keram Pfeiffer
- Biocenter, Zoology II, University of Wuerzburg, Würzburg, Germany
| | - Basil el Jundi
- Biocenter, Zoology II, University of Wuerzburg, Würzburg, Germany
- Department of Biology, Animal Physiology, Norwegian University of Science and Technology, Trondheim, Norway
- *Correspondence: Basil el Jundi
| |
Collapse
|
14
|
Parlin AF, Stratton SM, Guerra PA. Oriented migratory flight at night: Consequences of nighttime light pollution for monarch butterflies. iScience 2022; 25:104310. [PMID: 35573206 PMCID: PMC9097705 DOI: 10.1016/j.isci.2022.104310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/23/2022] [Accepted: 04/22/2022] [Indexed: 11/19/2022] Open
Abstract
We show that light trespass—a form of nighttime light pollution (NLP)—elicits normal daytime clock-mediated migratory behavior in fall monarch butterflies during their night-cycle. In controlled indoor flight simulator studies isolating the role of NLP on the expression of oriented migratory flight using a time-compensated sun compass,a full-spectrum light source consistent with lights used outdoors at night by the public,triggered proper fall directional flight at night in monarchs. Monarchs remained quiescent when initially placed in the flight simulator in the dark, but flight was immediately triggered when our light source was turned on. This nighttime behavior was identical to that seen in outdoor free-flying fall conspecifics during the day. The light source provided directional cues equivalent to those provided by the sun and could either phase-advance or phase-delay monarchs. Our study highlights the negative consequences of NLP on diurnal animals, especially those that rely on clock-mediated behavior. Nighttime light pollution can disturb diurnal migratory monarch butterflies Exposure to this pollution induces abnormal activity in normally quiescent monarchs This pollution acts as sensory noise that perturbs the circadian clock of monarchs Conservation should consider susceptibility of habitat to nighttime light pollution
Collapse
Affiliation(s)
- Adam F. Parlin
- Department of Biological Sciences, University of Cincinnati, Rieveschl Hall, 318 College Drive, Cincinnati, OH 45221, USA
| | - Samuel M. Stratton
- Department of Biological Sciences, University of Cincinnati, Rieveschl Hall, 318 College Drive, Cincinnati, OH 45221, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Biological Sciences Building, 1105 N University Avenue, Ann Arbor, MI 48109, USA
| | - Patrick A. Guerra
- Department of Biological Sciences, University of Cincinnati, Rieveschl Hall, 318 College Drive, Cincinnati, OH 45221, USA
- Corresponding author
| |
Collapse
|
15
|
McCulloch KJ, Macias-Muñoz A, Mortazavi A, Briscoe AD. Multiple mechanisms of photoreceptor spectral tuning in Heliconius butterflies. Mol Biol Evol 2022; 39:6555095. [PMID: 35348742 PMCID: PMC9048915 DOI: 10.1093/molbev/msac067] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The evolution of color vision is often studied through the lens of receptor gain relative to an ancestor with fewer spectral classes of photoreceptor. For instance, in Heliconius butterflies, a genus-specific UVRh opsin duplication led to the evolution of UV color discrimination in Heliconius erato females, a rare trait among butterflies. However, color vision evolution is not well understood in the context of loss. In Heliconius melpomene and Heliconius ismenius lineages, the UV2 receptor subtype has been lost, which limits female color vision in shorter wavelengths. Here, we compare the visual systems of butterflies that have either retained or lost the UV2 photoreceptor using intracellular recordings, ATAC-seq, and antibody staining. We identify several ways these butterflies modulate their color vision. In H. melpomene, chromatin reorganization has downregulated an otherwise intact UVRh2 gene, whereas in H. ismenius, pseudogenization has led to the truncation of UVRh2. In species that lack the UV2 receptor, the peak sensitivity of the remaining UV1 photoreceptor cell is shifted to longer wavelengths. Across Heliconius, we identify the widespread use of filtering pigments and co-expression of two opsins in the same photoreceptor cells. Multiple mechanisms of spectral tuning, including the molecular evolution of blue opsins, have led to the divergence of receptor sensitivities between species. The diversity of photoreceptor and ommatidial subtypes between species suggests that Heliconius visual systems are under varying selection pressures for color discrimination. Modulating the wavelengths of peak sensitivities of both the blue- and remaining UV-sensitive photoreceptor cells suggests that Heliconius species may have compensated for UV receptor loss.
Collapse
Affiliation(s)
- Kyle J McCulloch
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA.,Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Aide Macias-Muñoz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA.,Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara CA 93106, USA.,Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| |
Collapse
|
16
|
Liu X, Tian Z, Cai L, Shen Z, Michaud JP, Zhu L, Yan S, Ros VID, Hoover K, Li Z, Zhang S, Liu X. Baculoviruses hijack the visual perception of their caterpillar hosts to induce climbing behavior, thus promoting virus dispersal. Mol Ecol 2022; 31:2752-2765. [PMID: 35258140 DOI: 10.1111/mec.16425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022]
Abstract
Baculoviruses can induce climbing behavior in their caterpillar hosts to ensure they die at elevated positions to enhance virus transmission, providing an excellent model to study parasitic manipulation of host behavior. Here, we demonstrate that climbing behavior occurred mostly during daylight hours, and that the height at death of Helicoverpa armigera single nucleopolyhedrovirus (HearNPV)-infected larvae increases with the height of the light source. Phototaxic and electroretinogram (ERG) responses were enhanced after HearNPV-infection in host larvae, and ablation of stemmata in infected larvae prevented both phototaxis and climbing behavior. Through transcriptome and quantitative PCR, we confirmed that two opsin genes (a blue light-sensitive gene, HaBL; and a long wave-sensitive gene, HaLW) as well as the TRPL (transient receptor potential-like channel protein) gene, all integral to the host's visual perception pathway, were significantly up-regulated after HearNPV infection. Knockout of HaBL, HaLW, or TRPL genes using the CRISPR/Cas9 system resulted in significantly reduced ERG responses, phototaxis, and climbing behavior in HearNPV-infected larvae. These results reveal that HearNPV alters the expression of specific genes to hijack host visual perception at fundamental levels - photoreception and phototransduction - in order to induce climbing behavior in host larvae.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China.,College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Zhiqiang Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Limei Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Zhongjian Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Station-Hays, Hays, KS, 67601, USA
| | - Lin Zhu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Shuo Yan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Kelli Hoover
- Department of Entomology, Pennsylvania State University, University Park, PA16802, USA
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| |
Collapse
|
17
|
Stella D, Kleisner K. Visible beyond Violet: How Butterflies Manage Ultraviolet. INSECTS 2022; 13:insects13030242. [PMID: 35323542 PMCID: PMC8955501 DOI: 10.3390/insects13030242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/12/2022] [Accepted: 02/23/2022] [Indexed: 12/04/2022]
Abstract
Ultraviolet (UV) means ‘beyond violet’ (from Latin ‘ultra’, meaning ‘beyond’), whereby violet is the colour with the highest frequencies in the ‘visible’ light spectrum. By ‘visible’ we mean human vision, but, in comparison to many other organisms, human visual perception is rather limited in terms of the wavelengths it can perceive. Still, this is why communication in the UV spectrum is often called hidden, although it most likely plays an important role in communicating various kinds of information among a wide variety of organisms. Since Silberglied’s revolutionary Communication in the Ultraviolet, comprehensive studies on UV signals in a wide list of genera are lacking. This review investigates the significance of UV reflectance (and UV absorption)—a feature often neglected in intra- and interspecific communication studies—mainly in Lepidoptera. Although the text focuses on various butterfly families, links and connections to other animal groups, such as birds, are also discussed in the context of ecology and the evolution of species. The basic mechanisms of UV colouration and factors shaping the characteristics of UV patterns are also discussed in a broad context of lepidopteran communication.
Collapse
Affiliation(s)
- David Stella
- Global Change Research Institute, The Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
- Department of Philosophy and History of Science, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Karel Kleisner
- Department of Philosophy and History of Science, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| |
Collapse
|
18
|
Franzke M, Kraus C, Gayler M, Dreyer D, Pfeiffer K, el Jundi B. Stimulus-dependent orientation strategies in monarch butterflies. J Exp Biol 2022; 225:274064. [PMID: 35048981 PMCID: PMC8918799 DOI: 10.1242/jeb.243687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/12/2022] [Indexed: 11/20/2022]
Abstract
Insects are well-known for their ability to keep track of their heading direction based on a combination of skylight cues and visual landmarks. This allows them to navigate back to their nest, disperse throughout unfamiliar environments, as well as migrate over large distances between their breeding and non-breeding habitats. The monarch butterfly (Danaus plexippus) for instance is known for its annual southward migration from North America to certain trees in Central Mexico. To maintain a constant flight route, these butterflies use a time-compensated sun compass for orientation which is processed in a region in the brain, termed the central complex. However, to successfully complete their journey, the butterflies’ brain must generate a multitude of orientation strategies, allowing them to dynamically switch from sun-compass orientation to a tactic behavior toward a certain target. To study if monarch butterflies exhibit different orientation modes and if they can switch between them, we observed the orientation behavior of tethered flying butterflies in a flight simulator while presenting different visual cues to them. We found that the butterflies’ behavior depended on the presented visual stimulus. Thus, while a dark stripe was used for flight stabilization, a bright stripe was fixated by the butterflies in their frontal visual field. If we replaced a bright stripe by a simulated sun stimulus, the butterflies switched their behavior and exhibited compass orientation. Taken together, our data show that monarch butterflies rely on and switch between different orientation modes, allowing the animal to adjust orientation to its actual behavioral demands.
Collapse
Affiliation(s)
- Myriam Franzke
- University of Wuerzburg, Biocenter, Zoology II, Würzburg, Germany
| | - Christian Kraus
- University of Wuerzburg, Biocenter, Zoology II, Würzburg, Germany
| | - Maria Gayler
- University of Wuerzburg, Biocenter, Zoology II, Würzburg, Germany
| | - David Dreyer
- Lund University, Department of Biology, Lund Vision Group, Lund, Sweden
| | - Keram Pfeiffer
- University of Wuerzburg, Biocenter, Zoology II, Würzburg, Germany
| | - Basil el Jundi
- University of Wuerzburg, Biocenter, Zoology II, Würzburg, Germany
| |
Collapse
|
19
|
Brady D, Saviane A, Cappellozza S, Sandrelli F. The Circadian Clock in Lepidoptera. Front Physiol 2021; 12:776826. [PMID: 34867483 PMCID: PMC8635995 DOI: 10.3389/fphys.2021.776826] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
With approximately 160,000 identified species of butterflies and moths, Lepidoptera are among the most species-rich and diverse insect orders. Lepidopteran insects have fundamental ecosystem functions as pollinators and valuable food sources for countless animals. Furthermore, Lepidoptera have a significant impact on the economy and global food security because many species in their larval stage are harmful pests of staple food crops. Moreover, domesticated species such as the silkworm Bombyx mori produce silk and silk byproducts that are utilized by the luxury textile, biomedical, and cosmetics sectors. Several Lepidoptera have been fundamental as model organisms for basic biological research, from formal genetics to evolutionary studies. Regarding chronobiology, in the 1970s, Truman's seminal transplantation experiments on different lepidopteran species were the first to show that the circadian clock resides in the brain. With the implementation of molecular genetics, subsequent studies identified key differences in core components of the molecular circadian clock of Lepidoptera compared to the dipteran Drosophila melanogaster, the dominant insect species in chronobiological research. More recently, studies on the butterfly Danaus plexippus have been fundamental in characterizing the interplay between the circadian clock and navigation during the seasonal migration of this species. Moreover, the advent of Next Generation Omic technologies has resulted in the production of many publicly available datasets regarding circadian clocks in pest and beneficial Lepidoptera. This review presents an updated overview of the molecular and anatomical organization of the circadian clock in Lepidoptera. We report different behavioral circadian rhythms currently identified, focusing on the importance of the circadian clock in controlling developmental, mating and migration phenotypes. We then describe the ecological importance of circadian clocks detailing the complex interplay between the feeding behavior of these organisms and plants. Finally, we discuss how the characterization of these features could be useful in both pest control, and in optimizing rearing of beneficial Lepidoptera.
Collapse
Affiliation(s)
- Daniel Brady
- Department of Biology, Università di Padova, Padova, Italy
| | - Alessio Saviane
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Padova, Italy
| | - Silvia Cappellozza
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Padova, Italy
| | | |
Collapse
|
20
|
Beetz MJ, Kraus C, Franzke M, Dreyer D, Strube-Bloss MF, Rössler W, Warrant EJ, Merlin C, El Jundi B. Flight-induced compass representation in the monarch butterfly heading network. Curr Biol 2021; 32:338-349.e5. [PMID: 34822766 DOI: 10.1016/j.cub.2021.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/27/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
For navigation, animals use a robust internal compass. Compass navigation is crucial for long-distance migrating animals like monarch butterflies, which use the sun to navigate over 4,000 km to their overwintering sites every fall. Sun-compass neurons of the central complex have only been recorded in immobile butterflies, and experimental evidence for encoding the animal's heading in these neurons is still missing. Although the activity of central-complex neurons exhibits a locomotor-dependent modulation in many insects, the function of such modulations remains unexplored. Here, we developed tetrode recordings from tethered flying monarch butterflies to reveal how flight modulates heading representation. We found that, during flight, heading-direction neurons change their tuning, transforming the central-complex network to function as a global compass. This compass is characterized by the dominance of processing steering feedback and allows for robust heading representation even under unreliable visual scenarios, an ideal strategy for maintaining a migratory heading over enormous distances.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, Am Hubland 1, 97074 Würzburg, Germany.
| | - Christian Kraus
- Zoology II, Biocenter, University of Würzburg, Am Hubland 1, 97074 Würzburg, Germany
| | - Myriam Franzke
- Zoology II, Biocenter, University of Würzburg, Am Hubland 1, 97074 Würzburg, Germany
| | - David Dreyer
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Martin F Strube-Bloss
- Department of Biological Cybernetics, University of Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Wolfgang Rössler
- Zoology II, Biocenter, University of Würzburg, Am Hubland 1, 97074 Würzburg, Germany
| | - Eric J Warrant
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Christine Merlin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| | - Basil El Jundi
- Zoology II, Biocenter, University of Würzburg, Am Hubland 1, 97074 Würzburg, Germany.
| |
Collapse
|
21
|
Hulse BK, Haberkern H, Franconville R, Turner-Evans D, Takemura SY, Wolff T, Noorman M, Dreher M, Dan C, Parekh R, Hermundstad AM, Rubin GM, Jayaraman V. A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection. eLife 2021; 10:e66039. [PMID: 34696823 PMCID: PMC9477501 DOI: 10.7554/elife.66039] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Flexible behaviors over long timescales are thought to engage recurrent neural networks in deep brain regions, which are experimentally challenging to study. In insects, recurrent circuit dynamics in a brain region called the central complex (CX) enable directed locomotion, sleep, and context- and experience-dependent spatial navigation. We describe the first complete electron microscopy-based connectome of the Drosophila CX, including all its neurons and circuits at synaptic resolution. We identified new CX neuron types, novel sensory and motor pathways, and network motifs that likely enable the CX to extract the fly's head direction, maintain it with attractor dynamics, and combine it with other sensorimotor information to perform vector-based navigational computations. We also identified numerous pathways that may facilitate the selection of CX-driven behavioral patterns by context and internal state. The CX connectome provides a comprehensive blueprint necessary for a detailed understanding of network dynamics underlying sleep, flexible navigation, and state-dependent action selection.
Collapse
Affiliation(s)
- Brad K Hulse
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hannah Haberkern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Romain Franconville
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Daniel Turner-Evans
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Shin-ya Takemura
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tanya Wolff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marcella Noorman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marisa Dreher
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Chuntao Dan
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ann M Hermundstad
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Vivek Jayaraman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
22
|
Bauer CM, Watts HE. Corticosterone's roles in avian migration: Assessment of three hypotheses. Horm Behav 2021; 135:105033. [PMID: 34273707 DOI: 10.1016/j.yhbeh.2021.105033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 12/30/2022]
Abstract
While corticosterone (CORT) is often suggested to be an important hormone regulating processes necessary for avian migration, there has been no systematic assessment of CORT's role in migration. Prior to migration, birds increase fat stores and flight muscle size to prepare for the high energetic costs associated with long-distance flight. After attaining sufficient energetic stores, birds then make the actual decision to depart from their origin site. Once en route birds alternate between periods of flight and stopovers, during which they rest and refuel for their next bouts of endurance flight. Here, we evaluate three non-mutually exclusive hypotheses that have been proposed in the literature for CORT's role in migration. (1) CORT facilitates physiological preparations for migration [e.g. hyperphagia, fattening, and flight muscle hypertrophy]. (2) CORT stimulates departure from origin or stopover sites. (3) CORT supports sustained migratory travel. After examining the literature to test predictions stemming from each of these three hypotheses, we found weak support for a role of CORT in physiological preparation for migration. However, we found moderate support for a role of CORT in stimulating departures, as CORT increases immediately prior to departure and is higher when migratory restlessness is displayed. We also found moderate support for the hypothesis that CORT helps maintain sustained travel, as CORT is generally higher during periods of flight, though few studies have tested this hypothesis. We provide recommendations for future studies that would help to further resolve the role of CORT in migration.
Collapse
Affiliation(s)
- Carolyn M Bauer
- Department of Biology, Swarthmore College, Swarthmore, PA, USA.
| | - Heather E Watts
- School of Biological Sciences, Washington State University, Pullman, WA, USA; Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| |
Collapse
|
23
|
Oviposition-promoting pars intercerebralis neurons show period-dependent photoperiodic changes in their firing activity in the bean bug. Proc Natl Acad Sci U S A 2021; 118:2018823118. [PMID: 33622784 DOI: 10.1073/pnas.2018823118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Animals show photoperiodic responses in physiology and behavior to adapt to seasonal changes. Recent genetic analyses have demonstrated the significance of circadian clock genes in these responses. However, the importance of clock genes in photoperiodic responses at the cellular level and the physiological roles of the cellular responses are poorly understood. The bean bug Riptortus pedestris shows a clear photoperiodic response in its reproduction. In the bug, the pars intercerebralis (PI) is an important brain region for promoting oviposition. Here, we analyzed the role of the photoperiodic neuronal response and its relationship with clock genes, focusing on PI neurons. Large PI neurons exhibited photoperiodic firing changes, and high firing activities were primarily found under photoperiodic conditions suitable for oviposition. RNA interference-mediated knockdown of the clock gene period abolished the photoperiodic response in PI neurons, as well as the response in ovarian development. To clarify whether the photoperiodic response in the PI was dependent on ovarian development, we performed an ovariectomy experiment. Ovariectomy did not have significant effects on the firing activity of PI neurons. Finally, we identified the output molecules of the PI neurons and analyzed the relevance of the output signals in oviposition. PI neurons express multiple neuropeptides-insulin-like peptides and diuretic hormone 44-and RNA interference of these neuropeptides reduced oviposition. Our results suggest that oviposition-promoting peptidergic neurons in the PI exhibit a circadian clock-dependent photoperiodic firing response, which contributes to the photoperiodic promotion of oviposition.
Collapse
|
24
|
Li Y, Chen PJ, Lin TY, Ting CY, Muthuirulan P, Pursley R, Ilić M, Pirih P, Drews MS, Menon KP, Zinn KG, Pohida T, Borst A, Lee CH. Neural mechanism of spatio-chromatic opponency in the Drosophila amacrine neurons. Curr Biol 2021; 31:3040-3052.e9. [PMID: 34033749 DOI: 10.1016/j.cub.2021.04.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/18/2022]
Abstract
Visual animals detect spatial variations of light intensity and wavelength composition. Opponent coding is a common strategy for reducing information redundancy. Neurons equipped with both spatial and spectral opponency have been identified in vertebrates but not yet in insects. The Drosophila amacrine neuron Dm8 was recently reported to show color opponency. Here, we demonstrate Dm8 exhibits spatio-chromatic opponency. Antagonistic convergence of the direct input from the UV-sensing R7s and indirect input from the broadband receptors R1-R6 through Tm3 and Mi1 is sufficient to confer Dm8's UV/Vis (ultraviolet/visible light) opponency. Using high resolution monochromatic stimuli, we show the pale and yellow subtypes of Dm8s, inheriting retinal mosaic characteristics, have distinct spectral tuning properties. Using 2D white-noise stimulus and reverse correlation analysis, we found that the UV receptive field (RF) of Dm8 has a center-inhibition/surround-excitation structure. In the absence of UV-sensing R7 inputs, the polarity of the RF is inverted owing to the excitatory input from the broadband photoreceptors R1-R6. Using a new synGRASP method based on endogenous neurotransmitter receptors, we show that neighboring Dm8s form mutual inhibitory connections mediated by the glutamate-gated chloride channel GluClα, which is essential for both Dm8's spatial opponency and animals' phototactic behavior. Our study shows spatio-chromatic opponency could arise in the early visual stage, suggesting a common information processing strategy in both invertebrates and vertebrates.
Collapse
Affiliation(s)
- Yan Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Pei-Ju Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Tzu-Yang Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chun-Yuan Ting
- Section on Neuronal Connectivity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pushpanathan Muthuirulan
- Section on Neuronal Connectivity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Randall Pursley
- Signal Processing and Instrumentation Section, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marko Ilić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Primož Pirih
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Michael S Drews
- Department Circuits-Computation-Models, Max-Planck-Institute of Neurobiology, 82152 Martinsried, Germany
| | - Kaushiki P Menon
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kai G Zinn
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Thomas Pohida
- Signal Processing and Instrumentation Section, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander Borst
- Department Circuits-Computation-Models, Max-Planck-Institute of Neurobiology, 82152 Martinsried, Germany
| | - Chi-Hon Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China.
| |
Collapse
|
25
|
Colizzi FS, Beer K, Cuti P, Deppisch P, Martínez Torres D, Yoshii T, Helfrich-Förster C. Antibodies Against the Clock Proteins Period and Cryptochrome Reveal the Neuronal Organization of the Circadian Clock in the Pea Aphid. Front Physiol 2021; 12:705048. [PMID: 34366893 PMCID: PMC8336691 DOI: 10.3389/fphys.2021.705048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
Circadian clocks prepare the organism to cyclic environmental changes in light, temperature, or food availability. Here, we characterized the master clock in the brain of a strongly photoperiodic insect, the aphid Acyrthosiphon pisum, immunohistochemically with antibodies against A. pisum Period (PER), Drosophila melanogaster Cryptochrome (CRY1), and crab Pigment-Dispersing Hormone (PDH). The latter antibody detects all so far known PDHs and PDFs (Pigment-Dispersing Factors), which play a dominant role in the circadian system of many arthropods. We found that, under long days, PER and CRY are expressed in a rhythmic manner in three regions of the brain: the dorsal and lateral protocerebrum and the lamina. No staining was detected with anti-PDH, suggesting that aphids lack PDF. All the CRY1-positive cells co-expressed PER and showed daily PER/CRY1 oscillations of high amplitude, while the PER oscillations of the CRY1-negative PER neurons were of considerable lower amplitude. The CRY1 oscillations were highly synchronous in all neurons, suggesting that aphid CRY1, similarly to Drosophila CRY1, is light sensitive and its oscillations are synchronized by light-dark cycles. Nevertheless, in contrast to Drosophila CRY1, aphid CRY1 was not degraded by light, but steadily increased during the day and decreased during the night. PER was always located in the nuclei of the clock neurons, while CRY was predominantly cytoplasmic and revealed the projections of the PER/CRY1-positive neurons. We traced the PER/CRY1-positive neurons through the aphid protocerebrum discovering striking similarities with the circadian clock of D. melanogaster: The CRY1 fibers innervate the dorsal and lateral protocerebrum and putatively connect the different PER-positive neurons with each other. They also run toward the pars intercerebralis, which controls hormone release via the neurohemal organ, the corpora cardiaca. In contrast to Drosophila, the CRY1-positive fibers additionally travel directly toward the corpora cardiaca and the close-by endocrine gland, corpora allata. This suggests a direct link between the circadian clock and the photoperiodic control of hormone release that can be studied in the future.
Collapse
Affiliation(s)
- Francesca Sara Colizzi
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Paolo Cuti
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain
| | - Peter Deppisch
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - David Martínez Torres
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
26
|
Hiermes M, Reher S, Rick IP, Bakker TCM. Influence of lighting environment on social preferences in sticklebacks from two different photic habitats. I. mate preferences of wild-caught females. Curr Zool 2021; 67:299-308. [PMID: 34616922 PMCID: PMC8488994 DOI: 10.1093/cz/zoab008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
Ultraviolet (UV) A signals (320-400 nm) are important in mate choice in numerous species. The sensitivity for UV signals is not only assumed to be costly, but also expected to be a function of the prevailing ecological conditions. Generally, those signals are favored by selection that efficiently reach the receiver. A decisive factor for color signaling is the lighting environment, especially in aquatic habitats, as the visibility of signals, and thus costs and benefits, are instantaneously influenced by it. Although ecological aspects of color signal evolution are relatively well-studied, there is little data on specific effects of environmental UV-light conditions on signaling at these shorter wavelengths. We studied wild-caught gravid female 3-spined sticklebacks Gasterosteus aculeatus of 2 photic habitat types (tea-stained and clear-water lakes), possessing great variation in their UV transmission. In 2 treatments, tea-stained and clear-water, preferences for males viewed under UV-present (UV+) and UV-absent (UV-) conditions were tested. A preference for males under UV+ conditions was found for females from both habitat types, thus stressing the significance of UV signals in stickleback's mate choice decisions. However, females from both habitat types showed the most pronounced preferences for males under UV+ conditions under clear-water test conditions. Moreover, reflectance measurements revealed that the carotenoid-based orange-red breeding coloration in wild-caught males of both habitat types differed significantly in color intensity (higher in clear-water males) and hue (more red shifted in clear-water males) while no significant differences in UV coloration were found. The differential reflection patterns in longer wavelengths suggest that sticklebacks of both habitat types have adapted to the respective water conditions. Adaptations of UV signals in a sexual context to ambient light conditions in both behavior and coloration seem less evident.
Collapse
Affiliation(s)
- Meike Hiermes
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, Bonn, 53121, Germany
| | - Stephanie Reher
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, Bonn, 53121, Germany
- Institute of Zoology, Functional Ecology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Ingolf P Rick
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, Bonn, 53121, Germany
- Institute of Zoology, University of Bonn, Meckenheimer Allee 169, Bonn, 53115, Germany
| | - Theo C M Bakker
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, Bonn, 53121, Germany
| |
Collapse
|
27
|
Grob R, el Jundi B, Fleischmann PN. Towards a common terminology for arthropod spatial orientation. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2021.1905075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Robin Grob
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Basil el Jundi
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Pauline N. Fleischmann
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg 97074, Germany
| |
Collapse
|
28
|
Chowdhury S, Fuller RA, Dingle H, Chapman JW, Zalucki MP. Migration in butterflies: a global overview. Biol Rev Camb Philos Soc 2021; 96:1462-1483. [PMID: 33783119 DOI: 10.1111/brv.12714] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/13/2023]
Abstract
Insect populations including butterflies are declining worldwide, and they are becoming an urgent conservation priority in many regions. Understanding which butterfly species migrate is critical to planning for their conservation, because management actions for migrants need to be coordinated across time and space. Yet, while migration appears to be widespread among butterflies, its prevalence, as well as its taxonomic and geographic distribution are poorly understood. The study of insect migration is hampered by their small size and the difficulty of tracking individuals over long distances. Here we review the literature on migration in butterflies, one of the best-known insect groups. We find that nearly 600 butterfly species show evidence of migratory movements. Indeed, the rate of 'discovery' of migratory movements in butterflies suggests that many more species might in fact be migratory. Butterfly migration occurs across all families, in tropical as well as temperate taxa; Nymphalidae has more migratory species than any other family (275 species), and Pieridae has the highest proportion of migrants (13%; 133 species). Some 13 lines of evidence have been used to ascribe migration status in the literature, but only a single line of evidence is available for 92% of the migratory species identified, with four or more lines of evidence available for only 10 species - all from the Pieridae and Nymphalidae. Migratory butterflies occur worldwide, although the geographic distribution of migration in butterflies is poorly resolved, with most data so far coming from Europe, USA, and Australia. Migration is much more widespread in butterflies than previously realised - extending far beyond the well-known examples of the monarch Danaus plexippus and the painted lady Vanessa cardui - and actions to conserve butterflies and insects in general must account for the spatial dependencies introduced by migratory movements.
Collapse
Affiliation(s)
- Shawan Chowdhury
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| | - Richard A Fuller
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| | - Hugh Dingle
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Jason W Chapman
- Biosciences, Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK.,College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Myron P Zalucki
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| |
Collapse
|
29
|
Nguyen TAT, Beetz MJ, Merlin C, el Jundi B. Sun compass neurons are tuned to migratory orientation in monarch butterflies. Proc Biol Sci 2021; 288:20202988. [PMID: 33622121 PMCID: PMC7935079 DOI: 10.1098/rspb.2020.2988] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Every autumn, monarch butterflies migrate from North America to their overwintering sites in Central Mexico. To maintain their southward direction, these butterflies rely on celestial cues as orientation references. The position of the sun combined with additional skylight cues are integrated in the central complex, a region in the butterfly's brain that acts as an internal compass. However, the central complex does not solely guide the butterflies on their migration but also helps monarchs in their non-migratory form manoeuvre on foraging trips through their habitat. By comparing the activity of input neurons of the central complex between migratory and non-migratory butterflies, we investigated how a different lifestyle affects the coding of orientation information in the brain. During recording, we presented the animals with different simulated celestial cues and found that the encoding of the sun was narrower in migratory compared to non-migratory butterflies. This feature might reflect the need of the migratory monarchs to rely on a precise sun compass to keep their direction during their journey. Taken together, our study sheds light on the neural coding of celestial cues and provides insights into how a compass is adapted in migratory animals to successfully steer them to their destination.
Collapse
Affiliation(s)
| | - M. Jerome Beetz
- University of Wuerzburg, Biocenter, Zoology II, Würzburg, Germany
| | - Christine Merlin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, USA
| | - Basil el Jundi
- University of Wuerzburg, Biocenter, Zoology II, Würzburg, Germany
| |
Collapse
|
30
|
Merlin C, Iiams SE, Lugena AB. Monarch Butterfly Migration Moving into the Genetic Era. Trends Genet 2020; 36:689-701. [DOI: 10.1016/j.tig.2020.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
|
31
|
Franzke M, Kraus C, Dreyer D, Pfeiffer K, Beetz MJ, Stöckl AL, Foster JJ, Warrant EJ, El Jundi B. Spatial orientation based on multiple visual cues in non-migratory monarch butterflies. J Exp Biol 2020; 223:jeb223800. [PMID: 32341174 DOI: 10.1242/jeb.223800] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/22/2020] [Indexed: 12/24/2022]
Abstract
Monarch butterflies (Danaus plexippus) are prominent for their annual long-distance migration from North America to their overwintering area in Central Mexico. To find their way on this long journey, they use a sun compass as their main orientation reference but will also adjust their migratory direction with respect to mountain ranges. This indicates that the migratory butterflies also attend to the panorama to guide their travels. Although the compass has been studied in detail in migrating butterflies, little is known about the orientation abilities of non-migrating butterflies. Here, we investigated whether non-migrating butterflies - which stay in a more restricted area to feed and breed - also use a similar compass system to guide their flights. Performing behavioral experiments on tethered flying butterflies in an indoor LED flight simulator, we found that the monarchs fly along straight tracks with respect to a simulated sun. When a panoramic skyline was presented as the only orientation cue, the butterflies maintained their flight direction only during short sequences, suggesting that they potentially use it for flight stabilization. We further found that when we presented the two cues together, the butterflies incorporate both cues in their compass. Taken together, we show here that non-migrating monarch butterflies can combine multiple visual cues for robust orientation, an ability that may also aid them during their migration.
Collapse
Affiliation(s)
- Myriam Franzke
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - Christian Kraus
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - David Dreyer
- Lund University, Department of Biology, Lund Vision Group, 22362 Lund, Sweden
| | - Keram Pfeiffer
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - M Jerome Beetz
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - Anna L Stöckl
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - James J Foster
- Lund University, Department of Biology, Lund Vision Group, 22362 Lund, Sweden
| | - Eric J Warrant
- Lund University, Department of Biology, Lund Vision Group, 22362 Lund, Sweden
| | - Basil El Jundi
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| |
Collapse
|
32
|
Nagloo N, Kinoshita M, Arikawa K. Spectral organization of the compound eye of a migrating nymphalid, the chestnut tiger butterfly Parantica sita. J Exp Biol 2020; 223:jeb217703. [PMID: 31900350 DOI: 10.1242/jeb.217703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/30/2019] [Indexed: 11/20/2022]
Abstract
Several butterflies of family Nymphalidae perform long-distance migration. Extensive studies of migration in the iconic monarch butterfly Danaus plexippus have revealed that vision plays a crucial role in migratory orientation. Differences in the migratory patterns of butterflies suggest that not all species are exposed to the same visual conditions and yet, little is known about how the visual system varies across migratory species. Here, we used intracellular electrophysiology, dye injection and electron microscopy to assess the spectral and polarization properties of the photoreceptors of a migrating nymphalid, Parantica sita Our findings reveal three spectral classes of photoreceptors including ultraviolet, blue and green receptors. The green receptor class contains three subclasses, which are broad, narrow and double-peaking green receptors. Ultraviolet and blue receptors are sensitive to polarized light parallel to the dorso-ventral axis of the animal, while the variety of green receptors are sensitive to light polarized at 45 deg, 90 deg and 135 deg away from the dorso-ventral axis. The polarization sensitivity ratio is constant across spectral receptor classes at around 1.8. Although P. sita has a typical nymphalid eye with three classes of spectral receptors, subtle differences exist among the eyes of migratory nymphalids, which may be genus specific.
Collapse
Affiliation(s)
- Nicolas Nagloo
- Laboratory of Neuroethology, SOKENDAI (The Graduate University for Advanced studies), Hayama 240-0193, Japan
| | - Michiyo Kinoshita
- Laboratory of Neuroethology, SOKENDAI (The Graduate University for Advanced studies), Hayama 240-0193, Japan
| | - Kentaro Arikawa
- Laboratory of Neuroethology, SOKENDAI (The Graduate University for Advanced studies), Hayama 240-0193, Japan
| |
Collapse
|
33
|
Heading choices of flying Drosophila under changing angles of polarized light. Sci Rep 2019; 9:16773. [PMID: 31727972 PMCID: PMC6856357 DOI: 10.1038/s41598-019-53330-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/30/2019] [Indexed: 11/14/2022] Open
Abstract
Many navigating insects include the celestial polarization pattern as an additional visual cue to orient their travels. Spontaneous orientation responses of both walking and flying fruit flies (Drosophila melanogaster) to linearly polarized light have previously been demonstrated. Using newly designed modular flight arenas consisting entirely of off-the-shelf parts and 3D-printed components we present individual flying flies with a slow and continuous rotational change in the incident angle of linear polarization. Under such open-loop conditions, single flies choose arbitrary headings with respect to the angle of polarized light and show a clear tendency to maintain those chosen headings for several minutes, thereby adjusting their course to the slow rotation of the incident stimulus. Importantly, flies show the tendency to maintain a chosen heading even when two individual test periods under a linearly polarized stimulus are interrupted by an epoch of unpolarized light lasting several minutes. Finally, we show that these behavioral responses are wavelength-specific, existing under polarized UV stimulus while being absent under polarized green light. Taken together, these findings provide further evidence supporting Drosophila’s abilities to use celestial cues for visually guided navigation and course correction.
Collapse
|
34
|
Abstract
Every fall, millions of North American monarch butterflies undergo a stunning long-distance migration to reach their overwintering grounds in Mexico. Migration allows the butterflies to escape freezing temperatures and dying host plants, and reduces infections with a virulent parasite. We discuss the multigenerational migration journey and its evolutionary history, and highlight the navigational mechanisms of migratory monarchs. Monarchs use a bidirectional time-compensated sun compass for orientation, which is based on a time-compensating circadian clock that resides in the antennae, and which has a distinctive molecular mechanism. Migrants can also use a light-dependent inclination magnetic compass for orientation under overcast conditions. Additional environmental features, e.g., atmospheric conditions, geologic barriers, and social interactions, likely augment navigation. The publication of the monarch genome and the development of gene-editing strategies have enabled the dissection of the genetic and neurobiological basis of the migration. The monarch butterfly has emerged as an excellent system to study the ecological, neural, and genetic basis of long-distance animal migration.
Collapse
Affiliation(s)
- Steven M Reppert
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|
35
|
Lugena AB, Zhang Y, Menet JS, Merlin C. Genome-wide discovery of the daily transcriptome, DNA regulatory elements and transcription factor occupancy in the monarch butterfly brain. PLoS Genet 2019; 15:e1008265. [PMID: 31335862 PMCID: PMC6677324 DOI: 10.1371/journal.pgen.1008265] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 08/02/2019] [Accepted: 06/21/2019] [Indexed: 12/20/2022] Open
Abstract
The Eastern North American monarch butterfly, Danaus plexippus, is famous for its spectacular seasonal long-distance migration. In recent years, it has also emerged as a novel system to study how animal circadian clocks keep track of time and regulate ecologically relevant daily rhythmic activities and seasonal behavioral outputs. However, unlike in Drosophila and the mouse, little work has been undertaken in the monarch to identify rhythmic genes at the genome-wide level and elucidate the regulation of their diurnal expression. Here, we used RNA-sequencing and Assay for Transposase-Accessible Chromatin (ATAC)-sequencing to profile the diurnal transcriptome, open chromatin regions, and transcription factor (TF) footprints in the brain of wild-type monarchs and of monarchs with impaired clock function, including Cryptochrome 2 (Cry2), Clock (Clk), and Cycle-like loss-of-function mutants. We identified 217 rhythmically expressed genes in the monarch brain; many of them were involved in the regulation of biological processes key to brain function, such as glucose metabolism and neurotransmission. Surprisingly, we found no significant time-of-day and genotype-dependent changes in chromatin accessibility in the brain. Instead, we found the existence of a temporal regulation of TF occupancy within open chromatin regions in the vicinity of rhythmic genes in the brains of wild-type monarchs, which is disrupted in clock deficient mutants. Together, this work identifies for the first time the rhythmic genes and modes of regulation by which diurnal transcription rhythms are regulated in the monarch brain. It also illustrates the power of ATAC-sequencing to profile genome-wide regulatory elements and TF binding in a non-model organism for which TF-specific antibodies are not yet available. With a rich biology that includes a clock-regulated migratory behavior and a circadian clock possessing mammalian clock orthologues, the monarch butterfly is an unconventional system with broad appeal to study circadian and seasonal rhythms. While clockwork mechanisms and rhythmic behavioral outputs have been studied in this species, the rhythmic genes that regulate rhythmic daily and seasonal activities remain largely unknown. Likewise, the mechanisms regulating rhythmic gene expression have not been explored in the monarch. Here, we applied genome-wide sequencing approaches to identify genes with rhythmic diurnal expression in the monarch brain, revealing the coordination of key pathways for brain function. We also identified the monarch brain open chromatin regions and provide evidence that regulation of rhythmic gene expression does not occur through temporal regulation of chromatin opening but rather by the time-of-day dependent binding of transcription factors in cis-regulatory elements. Together, our data extend our knowledge of the molecular rhythmic pathways, which may prove important in understanding the mechanisms underlying the daily and seasonal biology of the migratory monarch butterflies.
Collapse
Affiliation(s)
- Aldrin B. Lugena
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
| | - Ying Zhang
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
| | - Jerome S. Menet
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
| | - Christine Merlin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
36
|
Nitta Y, Matsui S, Kato Y, Kaga Y, Sugimoto K, Sugie A. Analysing the evolutional and functional differentiation of four types of Daphnia magna cryptochrome in Drosophila circadian clock. Sci Rep 2019; 9:8857. [PMID: 31222139 PMCID: PMC6586792 DOI: 10.1038/s41598-019-45410-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 06/06/2019] [Indexed: 12/02/2022] Open
Abstract
Cryptochrome (CRY) plays an important role in the input of circadian clocks in various species, but gene copies in each species are evolutionarily divergent. Type I CRYs function as a photoreceptor molecule in the central clock, whereas type II CRYs directly regulate the transcriptional activity of clock proteins. Functions of other types of animal CRYs in the molecular clock remain unknown. The water flea Daphnia magna contains four Cry genes. However, it is still difficult to analyse these four genes. In this study, we took advantage of powerful genetic resources available from Drosophila to investigate evolutionary and functional differentiation of CRY proteins between the two species. We report differences in subcellular localisation of each D. magna CRY protein when expressed in the Drosophila clock neuron. Circadian rhythm behavioural experiments revealed that D. magna CRYs are not functionally conserved in the Drosophila molecular clock. These findings provide a new perspective on the evolutionary conservation of CRY, as functions of the four D. magna CRY proteins have diverse subcellular localisation levels. Furthermore, molecular clocks of D. magna have been evolutionarily differentiated from those of Drosophila. This study highlights the extensive functional diversity existing among species in their complement of Cry genes.
Collapse
Affiliation(s)
- Yohei Nitta
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Sayaka Matsui
- Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Yukine Kato
- Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Yosuke Kaga
- School of Medicine, Niigata University, Niigata, Japan
| | - Kenkichi Sugimoto
- Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University, Niigata, Japan.
| | - Atsushi Sugie
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan.
- Brain Research Institute, Niigata University, Niigata, Japan.
| |
Collapse
|
37
|
Chatterjee A, George EA, M V P, Basu P, Brockmann A. Honey bees flexibly use two navigational memories when updating dance distance information. ACTA ACUST UNITED AC 2019; 222:jeb.195099. [PMID: 31097604 DOI: 10.1242/jeb.195099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/10/2019] [Indexed: 12/16/2022]
Abstract
Honey bees can communicate navigational information which makes them unique amongst all prominent insect navigators. Returning foragers recruit nest mates to a food source by communicating flight distance and direction using a small scale walking pattern: the waggle dance. It is still unclear how bees transpose flight information to generate corresponding dance information. In single feeder shift experiments, we monitored for the first time how individual bees update dance duration after a shift of feeder distance. Interestingly, the majority of bees (86%) needed two or more foraging trips to update dance duration. This finding demonstrates that transposing flight navigation information to dance information is not a reflexive behavior. Furthermore, many bees showed intermediate dance durations during the update process, indicating that honey bees highly likely use two memories: (i) a recently acquired navigation experience and (ii) a previously stored flight experience. Double-shift experiments, in which the feeder was moved forward and backward, created an experimental condition in which honey bee foragers did not update dance duration; suggesting the involvement of more complex memory processes. Our behavioral paradigm allows the dissociation of foraging and dance activity and opens the possibility of studying the molecular and neural processes underlying the waggle dance behavior.
Collapse
Affiliation(s)
- Arumoy Chatterjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.,School of Chemical & Biotechnology, SASTRA University, Thanjavur 613401, India
| | - Ebi A George
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Prabhudev M V
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.,Department of Biosciences, University of Mysore, Mysore 570006, India
| | - Pallab Basu
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560 089, India
| | - Axel Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| |
Collapse
|
38
|
Ikeda K, Daimon T, Sezutsu H, Udaka H, Numata H. Involvement of the Clock Gene period in the Circadian Rhythm of the Silkmoth Bombyx mori. J Biol Rhythms 2019; 34:283-292. [DOI: 10.1177/0748730419841185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In Lepidoptera, the roles of period ( per) and the negative feedback involving this gene in circadian rhythm are controversial. In the present study, we established a per knockout strain using TALEN in Bombyx mori, and compared eclosion and hatching rhythms between the per-knockout and wild-type strains to examine whether per is actually involved in these rhythms. The generated per knockout allele was considered null, because it encoded an extensively truncated form of PERIOD (198 aa due to a 64-bp deletion in exon 7, in contrast to 1113 aa in the wild-type protein). In this per knockout strain, circadian rhythms in eclosion and hatching were disrupted. Under LD cycles, however, a steep peak existed at 1 h after lights-on in both eclosion and hatching, and was considered to be produced by a masking effect—a direct response to light. In the per-knockout strain, temporal expression changes of per and timeless ( tim) were also lost. The expression levels of tim were continuously high, probably due to the loss of negative feedback by per and tim. In contrast, the expression levels of per were much lower in the per knockout strain than in the wild type at every time point. From these results, we concluded that per is indispensable for circadian rhythms, and we suggest that the negative feedback loop of the circadian rhythm involving per functions for the production of behavioral rhythms in B. mori.
Collapse
Affiliation(s)
- Kento Ikeda
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takaaki Daimon
- Graduate School of Agriculture, Kyoto University, Kyoto Japan
| | - Hideki Sezutsu
- National Agriculture Food Research Organization (NARO), Tsukuba, Japan
| | - Hiroko Udaka
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
39
|
Mahato S, Nie J, Plachetzki DC, Zelhof AC. A mosaic of independent innovations involving eyes shut are critical for the evolutionary transition from fused to open rhabdoms. Dev Biol 2018; 443:188-202. [PMID: 30243673 DOI: 10.1016/j.ydbio.2018.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
A fundamental question in evolutionary biology is how developmental processes are modified to produce morphological innovations while abiding by functional constraints. Here we address this question by investigating the cellular mechanism responsible for the transition between fused and open rhabdoms in ommatidia of apposition compound eyes; a critical step required for the development of visual systems based on neural superposition. Utilizing Drosophila and Tribolium as representatives of fused and open rhabdom morphology in holometabolous insects respectively, we identified three changes required for this innovation to occur. First, the expression pattern of the extracellular matrix protein Eyes Shut (EYS) was co-opted and expanded from mechanosensory neurons to photoreceptor cells in taxa with open rhabdoms. Second, EYS homologs obtained a novel extension of the amino terminus leading to the internalization of a cleaved signal sequence. This amino terminus extension does not interfere with cleavage or function in mechanosensory neurons, but it does permit specific targeting of the EYS protein to the apical photoreceptor membrane. Finally, a specific interaction evolved between EYS and a subset of Prominin homologs that is required for the development of open, but not fused, rhabdoms. Together, our findings portray a case study wherein the evolution of a set of molecular novelties has precipitated the origin of an adaptive photoreceptor cell arrangement.
Collapse
Affiliation(s)
- Simpla Mahato
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jing Nie
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - David C Plachetzki
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | - Andrew C Zelhof
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
40
|
Duback VE, Sabrina Pankey M, Thomas RI, Huyck TL, Mbarani IM, Bernier KR, Cook GM, O'Dowd CA, Newcomb JM, Watson WH. Localization and expression of putative circadian clock transcripts in the brain of the nudibranch Melibe leonina. Comp Biochem Physiol A Mol Integr Physiol 2018; 223:52-59. [PMID: 29753034 PMCID: PMC5995673 DOI: 10.1016/j.cbpa.2018.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 10/16/2022]
Abstract
The nudibranch, Melibe leonina, expresses a circadian rhythm of locomotion, and we recently determined the sequences of multiple circadian clock transcripts that may play a role in controlling these daily patterns of behavior. In this study, we used these genomic data to help us: 1) identify putative clock neurons using fluorescent in situ hybridization (FISH); and 2) determine if there is a daily rhythm of expression of clock transcripts in the M. leonina brain, using quantitative PCR. FISH indicated the presence of the clock-related transcripts clock, period, and photoreceptive and non-photoreceptive cryptochrome (pcry and npcry, respectively) in two bilateral neurons in each cerebropleural ganglion and a group of <10 neurons in the anterolateral region of each pedal ganglion. Double-label experiments confirmed colocalization of all four clock transcripts with each other. Quantitative PCR demonstrated that the genes clock, period, pcry and npcry exhibited significant differences in expression levels over 24 h. These data suggest that the putative circadian clock network in M. leonina consists of a small number of identifiable neurons that express circadian genes with a daily rhythm.
Collapse
|
41
|
Li CJ, Yun XP, Yu XJ, Li B. Functional analysis of the circadian clock gene timeless in Tribolium castaneum. INSECT SCIENCE 2018; 25:418-428. [PMID: 28101904 DOI: 10.1111/1744-7917.12441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/18/2016] [Accepted: 12/24/2016] [Indexed: 06/06/2023]
Abstract
Circadian rhythms are endogenous oscillations with a period of about 24 h driven by a circadian clock. So far, variable oscillators have been found in insects. To explore the circadian clock of Tribolium castaneum, we cloned the clock gene timeless (Tctimeless). Its open reading frame is 3240 bp in length and consists of 10 exons. Tctimeless is highly expressed in the late pupal stage. Tissue-specific expression analysis in late adult stages revealed high expression of Tctimeless in the head, epidermis, fat body and accessory glands. Silencing of Tctimeless by RNA interference (RNAi) at the late larval stages caused a failure to initiate eclosion. Tctimeless knockdown in late pupal stages led to a gender-independent decline in egg production and progeny survival. As a core clock gene, Tctimeless exhibited one expression peak in the middle of the circadian day. Knockdown of Tctimeless disrupted daily expression patterns of Tccycle, Tcclock, Tcperiod and itself, while Tctimeless and Tcperiod expression patterns over the circadian day were also perturbed when Tccycle or Tcclock is suppressed by RNAi. This study identified a complex transcriptional relationship among circadian clock genes in T. castaneum.
Collapse
Affiliation(s)
- Cheng-Jun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xiao-Pei Yun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiao-Juan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
42
|
Liu YJ, Yan S, Shen ZJ, Li Z, Zhang XF, Liu XM, Zhang QW, Liu XX. The expression of three opsin genes and phototactic behavior of Spodoptera exigua (Lepidoptera: Noctuidae): Evidence for visual function of opsin in phototaxis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 96:27-35. [PMID: 29625217 DOI: 10.1016/j.ibmb.2018.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Phototaxis in nocturnal moths is widely utilized to control pest populations in practical production. However, as an elusive behavior, phototactic behavior is still not well understood. Determination of whether the opsin gene plays a key role in phototaxis is an interesting topic. This study was conducted to analyze expression levels and biological importance of three opsin genes (Se-uv, Se-bl, and Se-lw) and phototactic behavior of Spodoptera exigua. The three opsin genes exhibited higher expression levels during daytime, excluding Se-bl in females, whose expression tended to increase at night. And cycling of opsin gene levels tended to be upregulated at night, although the magnitude of increase in females was lower than that in males exposed to constant darkness. The results of western blotting were consistent with those of qRT-PCR. Furthermore, opsin gene expression was not influenced by light exposure during the scotophase, excluding Se-uv in males, and tended to be downregulated by starvation in females and copulation in both female and male moths. To determine the relationship between opsin gene expression and phototactic behavior, Se-lw was knocked down by RNA interference. Moths with one opsin gene knocked down showed enhanced expression of the other two opsin genes, which may play important roles in compensation in vision. The Se-lw-knockdown moths exhibited reduced phototactic efficiency to green light, suggesting that Se-LW contributes to phototaxis, and increases phototactic efficiency to green light. Our finding provides a sound theoretical basis for further investigation of visual expression pattern and phototactic mechanisms in nocturnal moths.
Collapse
Affiliation(s)
- Yan-Jun Liu
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Shuo Yan
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Zhong-Jian Shen
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Zhen Li
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Xin-Fang Zhang
- Changli Institute of Pomology, Academy of Agriculture and Forestry Sciences, Hebei, 066600, China
| | - Xiao-Ming Liu
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Qing-Wen Zhang
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Xiao-Xia Liu
- Department of Entomology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
43
|
Seymoure BM. Enlightening Butterfly Conservation Efforts: The Importance of Natural Lighting for Butterfly Behavioral Ecology and Conservation. INSECTS 2018; 9:E22. [PMID: 29439549 PMCID: PMC5872287 DOI: 10.3390/insects9010022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 01/29/2018] [Accepted: 02/06/2018] [Indexed: 11/16/2022]
Abstract
Light is arguably the most important abiotic factor for living organisms. Organisms evolved under specific lighting conditions and their behavior, physiology, and ecology are inexorably linked to light. Understanding light effects on biology could not be more important as present anthropogenic effects are greatly changing the light environments in which animals exist. The two biggest anthropogenic contributors changing light environments are: (1) anthropogenic lighting at night (i.e., light pollution); and (2) deforestation and the built environment. I highlight light importance for butterfly behavior, physiology, and ecology and stress the importance of including light as a conservation factor for conserving butterfly biodiversity. This review focuses on four parts: (1) Introducing the nature and extent of light. (2) Visual and non-visual light reception in butterflies. (3) Implications of unnatural lighting for butterflies across several different behavioral and ecological contexts. (4). Future directions for quantifying the threat of unnatural lighting on butterflies and simple approaches to mitigate unnatural light impacts on butterflies. I urge future research to include light as a factor and end with the hopeful thought that controlling many unnatural light conditions is simply done by flipping a switch.
Collapse
Affiliation(s)
- Brett M Seymoure
- Department of Biology and Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
44
|
Sackey J, Dompreh KA, Mothudi B, Maaza M. Theoretical study of electromagnetic transport in Lepidoptera Danaus plexippus wing scales. Heliyon 2018; 4:e00502. [PMID: 29560422 PMCID: PMC5857514 DOI: 10.1016/j.heliyon.2017.e00502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/06/2017] [Accepted: 12/28/2017] [Indexed: 11/30/2022] Open
Abstract
This paper examines the electromagnetic energies developed in the scales of the Lepidoptera Danaus plexippus. The Green tensor method was used to calculate and simulate the energies at specific wavelengths. Scattering of electromagnetic waves within the scales was simulated at different wavelengths (λ) with the corresponding maximum energy occurred at λ = 0.45 μm. The study shows that the design of wing’s cross-ribs maximizes the eigenmode of electromagnetic energy. This shows promising applications in bio-sensors of Solar light and likewise in waveguide for photonic transmission.
Collapse
Affiliation(s)
- J Sackey
- Nanosciences African Network (NANOAFNET), iThemba LABS Somerset West, Western Cape Province, South Africa.,University of South Africa (UNISA), Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa
| | - K A Dompreh
- Department of Physics, University of Cape Coast, Ghana.,Nanosciences African Network (NANOAFNET), iThemba LABS Somerset West, Western Cape Province, South Africa
| | - B Mothudi
- University of South Africa (UNISA), Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa
| | - M Maaza
- Nanosciences African Network (NANOAFNET), iThemba LABS Somerset West, Western Cape Province, South Africa.,University of South Africa (UNISA), Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa
| |
Collapse
|
45
|
Freedman MG, Dingle H, Tabuloc CA, Chiu JC, Yang LH, Zalucki MP. Non-migratory monarch butterflies, Danaus plexippus (L.), retain developmental plasticity and a navigational mechanism associated with migration. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx148] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
Bian HX, Ma HF, Zheng XX, Peng MH, Li YP, Su JF, Wang H, Li Q, Xia RX, Liu YQ, Jiang XF. Characterization of the Adult Head Transcriptome and Identification of Migration and Olfaction Genes in the Oriental Armyworm Mythimna separate. Sci Rep 2017; 7:2324. [PMID: 28539591 PMCID: PMC5443819 DOI: 10.1038/s41598-017-02513-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/12/2017] [Indexed: 01/20/2023] Open
Abstract
The oriental armyworm Mythimna separate is an economically important insect with a wide distribution and strong migratory activity. However, knowledge about the molecular mechanisms regulating the physiological and behavioural responses of the oriental armyworm is scarce. In the present study, we took a transcriptomic approach to characterize the gene network in the adult head of M. separate. The sequencing and de novo assembly yielded 63,499 transcripts, which were further assembled into 46,459 unigenes with an N50 of 1,153 bp. In the head transcriptome data, unigenes involved in the 'signal transduction mechanism' are the most abundant. In total, 937 signal transduction unigenes were assigned to 22 signalling pathways. The circadian clock, melanin synthesis, and non-receptor protein of olfactory gene families were then identified, and phylogenetic analyses were performed with these M. separate genes, the model insect Bombyx mori and other insects. Furthermore, 1,372 simple sequence repeats of 2-6 bp in unit length were identified. The transcriptome data represent a comprehensive molecular resource for the adult head of M. separate, and these identified genes can be valid targets for further gene function research to address the molecular mechanisms regulating the migratory and olfaction genes of the oriental armyworm.
Collapse
Affiliation(s)
- Hai-Xu Bian
- Insect Resource Center for Engineering and Technology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hong-Fang Ma
- Insect Resource Center for Engineering and Technology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xi-Xi Zheng
- Insect Resource Center for Engineering and Technology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ming-Hui Peng
- Insect Resource Center for Engineering and Technology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yu-Ping Li
- Insect Resource Center for Engineering and Technology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jun-Fang Su
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huan Wang
- Insect Resource Center for Engineering and Technology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qun Li
- Insect Resource Center for Engineering and Technology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Run-Xi Xia
- Insect Resource Center for Engineering and Technology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yan-Qun Liu
- Insect Resource Center for Engineering and Technology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Xing-Fu Jiang
- State Key laboratory for Biology of Plant Diseases and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
47
|
McCulloch KJ, Yuan F, Zhen Y, Aardema ML, Smith G, Llorente-Bousquets J, Andolfatto P, Briscoe AD. Sexual Dimorphism and Retinal Mosaic Diversification following the Evolution of a Violet Receptor in Butterflies. Mol Biol Evol 2017; 34:2271-2284. [DOI: 10.1093/molbev/msx163] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
48
|
O'Grady JF, Hoelters LS, Swain MT, Wilcockson DC. Identification and temporal expression of putative circadian clock transcripts in the amphipod crustacean Talitrus saltator. PeerJ 2016; 4:e2555. [PMID: 27761341 PMCID: PMC5068443 DOI: 10.7717/peerj.2555] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/11/2016] [Indexed: 11/20/2022] Open
Abstract
Background Talitrus saltator is an amphipod crustacean that inhabits the supralittoral zone on sandy beaches in the Northeast Atlantic and Mediterranean. T. saltator exhibits endogenous locomotor activity rhythms and time-compensated sun and moon orientation, both of which necessitate at least one chronometric mechanism. Whilst their behaviour is well studied, currently there are no descriptions of the underlying molecular components of a biological clock in this animal, and very few in other crustacean species. Methods We harvested brain tissue from animals expressing robust circadian activity rhythms and used homology cloning and Illumina RNAseq approaches to sequence and identify the core circadian clock and clock-related genes in these samples. We assessed the temporal expression of these genes in time-course samples from rhythmic animals using RNAseq. Results We identified a comprehensive suite of circadian clock gene homologues in T. saltator including the ‘core’ clock genes period (Talper), cryptochrome 2 (Talcry2), timeless (Taltim), clock (Talclk), and bmal1 (Talbmal1). In addition we describe the sequence and putative structures of 23 clock-associated genes including two unusual, extended isoforms of pigment dispersing hormone (Talpdh). We examined time-course RNAseq expression data, derived from tissues harvested from behaviourally rhythmic animals, to reveal rhythmic expression of these genes with approximately circadian period in Talper and Talbmal1. Of the clock-related genes, casein kinase IIβ (TalckIIβ), ebony (Talebony), jetlag (Taljetlag), pigment dispensing hormone (Talpdh), protein phosphatase 1 (Talpp1), shaggy (Talshaggy), sirt1 (Talsirt1), sirt7 (Talsirt7) and supernumerary limbs (Talslimb) show temporal changes in expression. Discussion We report the sequences of principle genes that comprise the circadian clock of T. saltator and highlight the conserved structural and functional domains of their deduced cognate proteins. Our sequencing data contribute to the growing inventory of described comparative clocks. Expression profiling of the identified clock genes illuminates tantalising targets for experimental manipulation to elucidate the molecular and cellular control of clock-driven phenotypes in this crustacean.
Collapse
Affiliation(s)
- Joseph F O'Grady
- Institute of Biological, Environmental and Rural Sciences, University of Wales , Aberystwyth , Ceredigion , United Kingdom
| | - Laura S Hoelters
- Institute of Biological, Environmental and Rural Sciences, University of Wales , Aberystwyth , Ceredigion , United Kingdom
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, University of Wales , Aberystwyth , Ceredigion , United Kingdom
| | - David C Wilcockson
- Institute of Biological, Environmental and Rural Sciences, University of Wales , Aberystwyth , Ceredigion , United Kingdom
| |
Collapse
|
49
|
Lennox RJ, Chapman JM, Souliere CM, Tudorache C, Wikelski M, Metcalfe JD, Cooke SJ. Conservation physiology of animal migration. CONSERVATION PHYSIOLOGY 2016; 4:cov072. [PMID: 27293751 PMCID: PMC4772791 DOI: 10.1093/conphys/cov072] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 12/09/2015] [Accepted: 12/24/2015] [Indexed: 05/21/2023]
Abstract
Migration is a widespread phenomenon among many taxa. This complex behaviour enables animals to exploit many temporally productive and spatially discrete habitats to accrue various fitness benefits (e.g. growth, reproduction, predator avoidance). Human activities and global environmental change represent potential threats to migrating animals (from individuals to species), and research is underway to understand mechanisms that control migration and how migration responds to modern challenges. Focusing on behavioural and physiological aspects of migration can help to provide better understanding, management and conservation of migratory populations. Here, we highlight different physiological, behavioural and biomechanical aspects of animal migration that will help us to understand how migratory animals interact with current and future anthropogenic threats. We are in the early stages of a changing planet, and our understanding of how physiology is linked to the persistence of migratory animals is still developing; therefore, we regard the following questions as being central to the conservation physiology of animal migrations. Will climate change influence the energetic costs of migration? Will shifting temperatures change the annual clocks of migrating animals? Will anthropogenic influences have an effect on orientation during migration? Will increased anthropogenic alteration of migration stopover sites/migration corridors affect the stress physiology of migrating animals? Can physiological knowledge be used to identify strategies for facilitating the movement of animals? Our synthesis reveals that given the inherent challenges of migration, additional stressors derived from altered environments (e.g. climate change, physical habitat alteration, light pollution) or interaction with human infrastructure (e.g. wind or hydrokinetic turbines, dams) or activities (e.g. fisheries) could lead to long-term changes to migratory phenotypes. However, uncertainty remains because of the complexity of biological systems, the inherently dynamic nature of the environment and the scale at which many migrations occur and associated threats operate, necessitating improved integration of physiological approaches to the conservation of migratory animals.
Collapse
Affiliation(s)
- Robert J. Lennox
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Jacqueline M. Chapman
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Christopher M. Souliere
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Christian Tudorache
- The Sylvius Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands
| | - Martin Wikelski
- Department of Migration and Immuno-ecology, Max-Planck Institute for Ornithology, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Julian D. Metcalfe
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft Laboratory, Suffolk NR33 0HT, UK
| | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
- Institute of Environmental Science, Carleton University, Ottawa, ON, Canada K1S 5B6
| |
Collapse
|
50
|
Abstract
The ability to perceive geomagnetic fields (GMFs) represents a fascinating biological phenomenon. Studies on transgenic flies have provided evidence that photosensitive Cryptochromes (Cry) are involved in the response to magnetic fields (MFs). However, none of the studies tackled the problem of whether the Cry-dependent magnetosensitivity is coupled to the sole MF presence or to the direction of MF vector. In this study, we used gene silencing and a directional MF to show that mammalian-like Cry2 is necessary for a genuine directional response to periodic rotations of the GMF vector in two insect species. Longer wavelengths of light required higher photon fluxes for a detectable behavioral response, and a sharp detection border was present in the cyan/green spectral region. Both observations are consistent with involvement of the FADox, FAD(•-) and FADH(-) redox forms of flavin. The response was lost upon covering the eyes, demonstrating that the signal is perceived in the eye region. Immunohistochemical staining detected Cry2 in the hemispherical layer of laminal glia cells underneath the retina. Together, these findings identified the eye-localized Cry2 as an indispensable component and a likely photoreceptor of the directional GMF response. Our study is thus a clear step forward in deciphering the in vivo effects of GMF and supports the interaction of underlying mechanism with the visual system.
Collapse
|