1
|
Liaci C, Camera M, Zamboni V, Sarò G, Ammoni A, Parmigiani E, Ponzoni L, Hidisoglu E, Chiantia G, Marcantoni A, Giustetto M, Tomagra G, Carabelli V, Torelli F, Sala M, Yanagawa Y, Obata K, Hirsch E, Merlo GR. Loss of ARHGAP15 affects the directional control of migrating interneurons in the embryonic cortex and increases susceptibility to epilepsy. Front Cell Dev Biol 2022; 10:875468. [PMID: 36568982 PMCID: PMC9774038 DOI: 10.3389/fcell.2022.875468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
GTPases of the Rho family are components of signaling pathways linking extracellular signals to the control of cytoskeleton dynamics. Among these, RAC1 plays key roles during brain development, ranging from neuronal migration to neuritogenesis, synaptogenesis, and plasticity. RAC1 activity is positively and negatively controlled by guanine nucleotide exchange factors (GEFs), guanosine nucleotide dissociation inhibitors (GDIs), and GTPase-activating proteins (GAPs), but the specific role of each regulator in vivo is poorly known. ARHGAP15 is a RAC1-specific GAP expressed during development in a fraction of migrating cortical interneurons (CINs) and in the majority of adult CINs. During development, loss of ARHGAP15 causes altered directionality of the leading process of tangentially migrating CINs, along with altered morphology in vitro. Likewise, time-lapse imaging of embryonic CINs revealed a poorly coordinated directional control during radial migration, possibly due to a hyper-exploratory behavior. In the adult cortex, the observed defects lead to subtle alteration in the distribution of CALB2-, SST-, and VIP-positive interneurons. Adult Arhgap15-knock-out mice also show reduced CINs intrinsic excitability, spontaneous subclinical seizures, and increased susceptibility to the pro-epileptic drug pilocarpine. These results indicate that ARHGAP15 imposes a fine negative regulation on RAC1 that is required for morphological maturation and directional control during CIN migration, with consequences on their laminar distribution and inhibitory function.
Collapse
Affiliation(s)
- Carla Liaci
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Mattia Camera
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Valentina Zamboni
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Gabriella Sarò
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Alessandra Ammoni
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | | | - Luisa Ponzoni
- Neuroscience Institute, Consiglio Nazionale Ricerche, Milan, Italy
| | - Enis Hidisoglu
- Department of Drug Science, NIS Center, University of Turin, Turin, Italy
| | - Giuseppe Chiantia
- Department of Neuroscience and National Institute of Neuroscience, University of Turin, Turin, Italy
| | - Andrea Marcantoni
- Department of Drug Science, NIS Center, University of Turin, Turin, Italy
| | - Maurizio Giustetto
- Department of Neuroscience and National Institute of Neuroscience, University of Turin, Turin, Italy
| | - Giulia Tomagra
- Department of Drug Science, NIS Center, University of Turin, Turin, Italy
| | | | - Federico Torelli
- Institute for Physiology I, Medical Faculty, Albert-Ludwigs-University Freiburg, Freiburg, Germany,Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Mariaelvina Sala
- Neuroscience Institute, Consiglio Nazionale Ricerche, Milan, Italy
| | - Yuchio Yanagawa
- Department of Genetic Behavioral Neuroscience, Gunma University, Maebashi, Japan
| | | | - Emilio Hirsch
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Giorgio R. Merlo
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy,*Correspondence: Giorgio R. Merlo,
| |
Collapse
|
2
|
GABA through the ages: regulation of cortical function and plasticity by inhibitory interneurons. Neural Plast 2012; 2012:892784. [PMID: 22792496 PMCID: PMC3390141 DOI: 10.1155/2012/892784] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/30/2012] [Accepted: 03/30/2012] [Indexed: 11/17/2022] Open
Abstract
Inhibitory interneurons comprise only about 20% of cortical neurons and thus constitute a clear minority compared to the vast number of excitatory projection neurons. They are, however, an influential minority with important roles in cortical maturation, function, and plasticity. In this paper, we will highlight the functional importance of cortical inhibition throughout brain development, starting with the embryonal formation of the cortex, proceeding by the regulation of sensory cortical plasticity in adulthood, and finishing with the GABA involvement in sensory information processing in old age.
Collapse
|
3
|
March JS, Fegert JM. Drug development in pediatric psychiatry: current status, future trends. Child Adolesc Psychiatry Ment Health 2012; 6:7. [PMID: 22313578 PMCID: PMC3296572 DOI: 10.1186/1753-2000-6-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/07/2012] [Indexed: 12/12/2022] Open
Affiliation(s)
- John S March
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina.
| | - Joerg M Fegert
- University Hospital Ulm, Department of Child and Adolescent Psychiatry/Psychotherapy, Steinhövelstr 5, 89075 Ulm, Germany
| |
Collapse
|
4
|
Kim J, Kwon N, Chang S, Kim KT, Lee D, Kim S, Yun SJ, Hwang D, Kim JW, Hwu Y, Margaritondo G, Je JH, Rhyu IJ. Altered branching patterns of Purkinje cells in mouse model for cortical development disorder. Sci Rep 2011; 1:122. [PMID: 22355639 PMCID: PMC3216603 DOI: 10.1038/srep00122] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/03/2011] [Indexed: 02/07/2023] Open
Abstract
Disrupted cortical cytoarchitecture in cerebellum is a typical pathology in reeler. Particularly interesting are structural problems at the cellular level: dendritic morphology has important functional implication in signal processing. Here we describe a combinatorial imaging method of synchrotron X-ray microtomography with Golgi staining, which can deliver 3-dimensional(3-D) micro-architectures of Purkinje cell(PC) dendrites, and give access to quantitative information in 3-D geometry. In reeler, we visualized in 3-D geometry the shape alterations of planar PC dendrites (i.e., abnormal 3-D arborization). Despite these alterations, the 3-D quantitative analysis of the branching patterns showed no significant changes of the 77 ± 8° branch angle, whereas the branch segment length strongly increased with large fluctuations, comparing to control. The 3-D fractal dimension of the PCs decreased from 1.723 to 1.254, indicating a significant reduction of dendritic complexity. This study provides insights into etiologies and further potential treatment options for lissencephaly and various neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jinkyung Kim
- X-ray Imaging Center, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Elston GN, Oga T, Okamoto T, Fujita I. Spinogenesis and Pruning in the Anterior Ventral Inferotemporal Cortex of the Macaque Monkey: An Intracellular Injection Study of Layer III Pyramidal Cells. Front Neuroanat 2011; 5:42. [PMID: 21811440 PMCID: PMC3143722 DOI: 10.3389/fnana.2011.00042] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 07/05/2011] [Indexed: 11/25/2022] Open
Abstract
Pyramidal cells grow and mature at different rates among different cortical areas in the macaque monkey. In particular, differences across the areas have been reported in both the timing and magnitude of growth, branching, spinogenesis, and pruning in the basal dendritic trees of cells in layer III. Presently available data suggest that these different growth profiles reflect the type of functions performed by these cells in the adult brain. However, to date, studies have focused on only a relatively few cortical areas. In the present investigation we quantified the growth of the dendritic trees of layer III pyramidal cells in the anterior ventral portion of cytoarchitectonic area TE (TEav) to better comprehend developmental trends in the cerebral cortex. We quantified the growth and branching of the dendrities, and spinogenesis and pruning of spines, from post-natal day 2 (PND2) to four and a half years of age. We found that the dendritic trees increase in size from PND2 to 7 months of age and thereafter became smaller. The dendritic trees became increasingly more branched from PND2 into adulthood. There was a two-fold increase in the number of spines in the basal dendritic trees of pyramidal cells from PND2 to 3.5 months of age and then a 10% net decrease in spine number into adulthood. Thus, the growth profile of layer III pyramidal cells in the anterior ventral portion of the inferotemporal cortex differs to that in other cortical areas associated with visual processing.
Collapse
Affiliation(s)
- Guy N Elston
- Centre for Cognitive Neuroscience, Sunshine Coast QLD, Australia
| | | | | | | |
Collapse
|
6
|
Hashimoto-Torii K, Kawasawa YI, Kuhn A, Rakic P. Combined transcriptome analysis of fetal human and mouse cerebral cortex exposed to alcohol. Proc Natl Acad Sci U S A 2011; 108:4212-7. [PMID: 21368140 PMCID: PMC3053997 DOI: 10.1073/pnas.1100903108] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fetal exposure to environmental insults increases the susceptibility to late-onset neuropsychiatric disorders. Alcohol is listed as one of such prenatal environmental risk factors and known to exert devastating teratogenetic effects on the developing brain, leading to complex neurological and psychiatric symptoms observed in fetal alcohol spectrum disorder (FASD). Here, we performed a coordinated transcriptome analysis of human and mouse fetal cerebral cortices exposed to ethanol in vitro and in vivo, respectively. Up- and down-regulated genes conserved in the human and mouse models and the biological annotation of their expression profiles included many genes/terms related to neural development, such as cell proliferation, neuronal migration and differentiation, providing a reliable connection between the two species. Our data indicate that use of the combined rodent and human model systems provides an effective strategy to reveal and analyze gene expression changes inflicted by various physical and chemical environmental exposures during prenatal development. It also can potentially provide insight into the pathogenesis of environmentally caused brain disorders in humans.
Collapse
Affiliation(s)
- Kazue Hashimoto-Torii
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510; and
| | - Yuka Imamura Kawasawa
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510; and
| | - Alexandre Kuhn
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3707
| | - Pasko Rakic
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510; and
| |
Collapse
|
7
|
Abstract
OBJECTIVE The rapid emergence of translational developmental neuroscience as the key driver in understanding the onset of mental illness, the restructuring of academic health science centers on the NIH Roadmap, and dramatic shifts in drug, biological, device, and psychosocial intervention development all have important consequences for pediatric anxiety disorders as a field. METHOD This article, which tracks the final presentation at a day-long symposium on pediatric anxiety disorders at the 2010 annual meeting of the Anxiety Disorders Association of America (ADAA), will try to outline where the field will head over the next decade as these forces combine to shape research and practice. RESULTS After 20 years of large comparative treatment trials that have defined the place of current generation treatments, the field is shifting toward interventions that will emerge from the revolution in translational developmental neuroscience and that herald the dawn of stratified and ultimately personalized medicine. With a much more efficient discovery to translational continuum, intervention development and dissemination will benefit from the concurrent transformation of the clinical and clinical research enterprise. CONCLUSION Dramatic advances in science and changes in the structure of medicine will condition the future of clinical research across every therapeutic area in medicine. For the field of pediatric anxiety disorders to thrive it will be important to embrace and actively participate in this revolution so that anxious youth are viewed as a key target population and, consequently, preemptive, preventive, and curative interventions will be developed for children by first intent.
Collapse
Affiliation(s)
- John S March
- Division of Neurosciences Medicine, Duke Clinical Research Institute, Duke University Medical Center, 2400 Pratt Street, Durham, NC 27705, USA.
| |
Collapse
|
8
|
Kostović I, Judaš M, Sedmak G. Developmental history of the subplate zone, subplate neurons and interstitial white matter neurons: relevance for schizophrenia. Int J Dev Neurosci 2010; 29:193-205. [PMID: 20883772 DOI: 10.1016/j.ijdevneu.2010.09.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 09/18/2010] [Accepted: 09/20/2010] [Indexed: 12/22/2022] Open
Abstract
The subplate zone is a transient cytoarchitectonic compartment of the fetal telencephalic wall and contains a population of subplate neurons which are the main neurons of the fetal neocortex and play a key role in normal development of cerebral cortical structure and connectivity. While the subplate zone disappears during the perinatal and early postnatal period, numerous subplate neurons survive and remain embedded in the superficial (gyral) white matter of adolescent and adult brain as so-called interstitial neurons. In both fetal and adult brain, subplate/interstitial neurons belong to two major classes of cortical cells: (a) projection (glutamatergic) neurons and (b) local circuit (GABAergic) interneurons. As interstitial neurons remain strategically positioned at the cortical/white matter interface through which various cortical afferent systems enter the deep cortical layers, they probably serve as auxiliary interneurons involved in differential "gating" of cortical input systems. It is widely accepted that prenatal lesions which alter the number of surviving subplate neurons (i.e., the number of interstitial neurons) and/or the nature of their involvement in cortical circuitry represent an important causal factor in pathogenesis of at least some types of schizophrenia--e.g., in the subgroup of patients with cognitive impairment and deficits of frontal lobe functions. The abnormal functioning of cortical circuitry in schizophrenia becomes manifest during the adolescence, when there is an increased demand for proper functioning of the prefrontal cortex. In this review, we describe developmental history of subplate zone, subplate neurons and surviving interstitial neurons, as well as presumed consequences of the increased number of GABAergic interstitial neurons in the prefrontal cortex. We propose that the increased number of GABAergic interstitial neurons leads to the increased inhibition of prefrontal cortical neurons. This inhibitory action of GABAergic interstitial neurons is facilitated by their strategic position at the cortical/white matter interface where limbic and modulatory afferent pathways enter the prefrontal cortex. Thus, enlarged population of inhibitory interstitial neurons (even if they represent a minor fraction of total neuron number, as in the cerebral cortex itself) may alter the differential "gating" of limbic and modulatory inputs (as well as other cortical and subcortical inputs) and cause a functional disconnectivity between the prefrontal and limbic cortex in the adolescent brain. In conclusion, fetal subplate neurons and surviving postnatal interstitial neurons are important modulators of cortical functions in both normal and schizophrenic cerebral cortex.
Collapse
Affiliation(s)
- Ivica Kostović
- Section of Developmental Neuroscience, Croatian Institute for Brain Research, Department of Neuroscience, University of Zagreb School of Medicine, Šalata 12, 10000 Zagreb, Croatia.
| | | | | |
Collapse
|
9
|
Abstract
The enlargement and species-specific elaboration of the cerebral neocortex during evolution holds the secret to the mental abilities of humans; however, the genetic origin and cellular mechanisms that generated the distinct evolutionary advancements are not well understood. This article describes how novelties that make us human may have been introduced during evolution, based on findings in the embryonic cerebral cortex in different mammalian species. The data on the differences in gene expression, new molecular pathways and novel cellular interactions that have led to these evolutionary advances may also provide insight into the pathogenesis and therapies for human-specific neuropsychiatric disorders.
Collapse
Affiliation(s)
- Pasko Rakic
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| |
Collapse
|
10
|
Moore AR, Filipovic R, Mo Z, Rasband MN, Zecevic N, Antic SD. Electrical excitability of early neurons in the human cerebral cortex during the second trimester of gestation. Cereb Cortex 2009; 19:1795-805. [PMID: 19015375 PMCID: PMC2705693 DOI: 10.1093/cercor/bhn206] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Information about development of the human cerebral cortex (proliferation, migration, and differentiation of neurons) is largely based on postmortem histology. Physiological properties of developing human cortical neurons are difficult to access experimentally and therefore remain largely unexplored. Animal studies have shown that information about the arousal of electrical activity in individual cells within fundamental cortical zones (subventricular zone [SVZ], intermediate zone, subplate [SP], and cortical plate [CP]) is necessary for understanding normal brain development. Here we ask where, in what cortical zone, and when, in what gestational week (gw), human neurons acquire the ability to generate nerve impulses (action potentials [APs]). We performed electrical recordings from individual cells in acute brain slices harvested postmortem from the human fetal cerebral cortex (16-22 gw). Tetrodotoxin-sensitive Na(+) current occurs more frequently among CP cells and with significantly greater peak amplitudes than in SVZ. As early as 16 gw, a relatively small population of CP neurons (27%) was able to generate sodium APs upon direct current injection. Neurons located in the SP exhibited the highest level of cellular differentiation, as judged by their ability to fire repetitive APs. At 19 gw, a fraction of human CP and SP neurons possess beta IV spectrin-positive axon initial segments populated with voltage-gated sodium channels (PanNav). These results yield the first physiological characterization of developing human fetal cortical neurons with preserved morphologies in intact surrounding brain tissue.
Collapse
Affiliation(s)
- Anna R. Moore
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Radmila Filipovic
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Zhicheng Mo
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Matthew N. Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nada Zecevic
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Srdjan D. Antic
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
11
|
Abstract
The reeler mouse is one of the most famous spontaneously occurring mutants in the research field of neuroscience, and this mutant has been used as a model animal to understand mammalian brain development. The classical observations emphasized that laminar structures of the reeler brain are highly disrupted. Molecular cloning of Reelin, the gene responsible for reeler mutant provided insights into biochemistry of Reelin signal, and some models had been proposed to explain the function of Reelin signal in brain development. However, recent reports of reeler found that non-laminated structures in the central nervous system are also affected by the mutation, making function of Reelin signal more controversial. In this review, we summarized reported morphological and histological abnormalities throughout the central nervous system of the reeler comparing to those of the normal mouse. Based on this overview of the reeler abnormalities, we discuss possible function of Reelin signal in the neuronal migration and other morphological events in mouse development.
Collapse
Affiliation(s)
- Yu Katsuyama
- Division of Anatomy and Developmental Neurobiology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 Japan.
| | | |
Collapse
|
12
|
Johnson MB, Kawasawa YI, Mason CE, Krsnik Ž, Coppola G, Bogdanović D, Geschwind DH, Mane SM, State MW, Šestan N. Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron 2009; 62:494-509. [PMID: 19477152 PMCID: PMC2739738 DOI: 10.1016/j.neuron.2009.03.027] [Citation(s) in RCA: 447] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 02/05/2009] [Accepted: 03/17/2009] [Indexed: 01/09/2023]
Abstract
Our understanding of the evolution, formation, and pathological disruption of human brain circuits is impeded by a lack of comprehensive data on the developing brain transcriptome. A whole-genome, exon-level expression analysis of 13 regions from left and right sides of the mid-fetal human brain revealed that 76% of genes are expressed, and 44% of these are differentially regulated. These data reveal a large number of specific gene expression and alternative splicing patterns, as well as coexpression networks, associated with distinct regions and neurodevelopmental processes. Of particular relevance to cognitive specializations, we have characterized the transcriptional landscapes of prefrontal cortex and perisylvian speech and language areas, which exhibit a population-level global expression symmetry. We show that differentially expressed genes are more frequently associated with human-specific evolution of putative cis-regulatory elements. These data provide a wealth of biological insights into the complex transcriptional and molecular underpinnings of human brain development and evolution.
Collapse
Affiliation(s)
- Matthew B. Johnson
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yuka Imamura Kawasawa
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Christopher E. Mason
- Child Study Center and Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Željka Krsnik
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Giovanni Coppola
- Program in Neurogenetics and Center for Neurobehavioral Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Darko Bogdanović
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Daniel H. Geschwind
- Program in Neurogenetics and Center for Neurobehavioral Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Shrikant M. Mane
- Keck Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT 06520,USA
| | - Matthew W. State
- Child Study Center and Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nenad Šestan
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
13
|
Abstract
In human most cortical gamma-aminobutyric acidergic (GABAergic) neurons are produced in the proliferative zones of the dorsal telencephalon in contrast to rodents. We report that in cynomolgus monkey fetuses cortical GABAergic neurons are generated in the proliferative zones of the dorsal telencephalon, in addition to the proliferative region of the ventral telencephalon, the ganglionic eminence (GE), however, with a temporal delay. GABAergic neuron progenitors labeled for Mash1 and GAD65 were present mainly in the GE at embryonic days (E) 47-55, and in the entire dorsal telencephalon at E64-75. These progenitors within the dorsal telencephalon are generated locally rather than in the GE. The ventral and dorsal lineages of cortical GABAergic neurons display different laminar distribution. Early generated GABAergic neurons from the GE mostly populate the marginal zone and subplate, whereas cortical plate GABAergic neurons originate from both ventral and dorsal telencephalon. A differential regulation of the two GABA synthesizing enzymes (GAD65 and GAD67) parallels GABAergic neuron differentiation. GAD65 is preferentially expressed in GABAergic progenitors and migrating neurons, GAD67 in morphologically differentiated neurons. Therefore, the dorsal telencephalic origin of cortical GABAergic neurons is not human-specific but appears as a former event in the ascent of evolution that could provide GABAergic neurons to an expending neocortex.
Collapse
Affiliation(s)
- Zdravko Petanjek
- Institut National de la Santé et de la Recherche Médicale U29, INMED, Marseille, F-13009 France
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Brigitte Berger
- CNRS, UMR8189, Université Paris Descartes, Laboratoire de Psychologie et Neurosciences Cognitives, Institut de Psychologie, Boulogne Billancourt F-92774, France
| | - Monique Esclapez
- Institut National de la Santé et de la Recherche Médicale U29, INMED, Marseille, F-13009 France
| |
Collapse
|
14
|
Abstract
OBJECTIVE Given striking advances in translational developmental neuroscience and its convergence with developmental psychopathology and developmental epidemiology, it is now clear that mental illnesses are best thought of as neurodevelopmental disorders. This simple fact has enormous implications for the nature and organization of psychotherapy for mentally ill children, adolescents and adults. METHOD This article reviews the 'trajectory' of psychosocial interventions in pediatric psychiatry, and makes some general predictions about where this field is heading over the next several decades. RESULTS Driven largely by scientific advances in molecular, cellular and systems neuroscience, psychotherapy in the future will focus less on personal narratives and more on the developing brain. In place of disorders as intervention targets, modularized psychosocial treatment components derived from current cognitive-behavior therapies will target corresponding central nervous system (CNS) information processes and their functional behavioral consequences. Either preventive or rehabilitative, the goal of psychotherapy will be to promote development along typical developmental trajectories. In place of guilds, psychotherapy will be organized professionally much as physical therapy is organized today. As with other forms of increasingly personalized health care, internet-based delivery of psychotherapy will become commonplace. CONCLUSION Informed by the new field of translational developmental neuroscience, psychotherapy in the future will take aim at the developing brain in a service delivery model that closely resembles the place and role of psychosocial interventions in the rest of medicine. Getting there will be, as they say, interesting.
Collapse
Affiliation(s)
- John S March
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27705, USA.
| |
Collapse
|
15
|
Branchi I. The mouse communal nest: investigating the epigenetic influences of the early social environment on brain and behavior development. Neurosci Biobehav Rev 2008; 33:551-9. [PMID: 18471879 DOI: 10.1016/j.neubiorev.2008.03.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 03/07/2008] [Accepted: 03/19/2008] [Indexed: 10/22/2022]
Abstract
Among the epigenetic factors shaping brain and behavior during early postnatal life, social experiences have a major impact. Early social experiences are mainly of two kinds: mother-offspring and peer interaction. In rodents, the latter has so far been rarely studied. The communal nest (CN) is an innovative experimental strategy that favors an exhaustive investigation of the long-term effects not only of mother-offspring but also of peer interaction. CN is a rearing condition employed by up to 90% of mouse females in naturalistic settings and consists of a single nest where two or more mothers keep their pups together and share care-giving. Mice reared in a communal nest display relevant changes in brain function and behavior, including high levels of neural plasticity markers, such as brain-derived neurotrophic factor (BDNF), and elaborate adult social competencies. Overall, CN appears as an experimental strategy different and complementary to the ones currently used for studying how the early environment determines developmental trajectories.
Collapse
Affiliation(s)
- Igor Branchi
- Section of Behavioural Neurosciences, Department of Cell Biology, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Roma, Italy.
| |
Collapse
|
16
|
Kieling C, Goncalves RRF, Tannock R, Castellanos FX. Neurobiology of attention deficit hyperactivity disorder. Child Adolesc Psychiatr Clin N Am 2008; 17:285-307, viii. [PMID: 18295147 DOI: 10.1016/j.chc.2007.11.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This article addresses the current understanding of the neurobiological bases of attention deficit hyperactivity disorder (ADHD), focusing on empiric research findings that connect genetic and environmental factors to structural and functional brain abnormalities, ultimately leading to a set of age-dependent behavioral manifestations. Section one presents evidence for genetic risk factors for ADHD and discusses the role of potential environmental factors in the etiology of the disorder. Section two focuses on brain imaging studies and how they have helped generate different hypotheses regarding the pathophysiology of ADHD. Finally, the article addresses the longitudinal course of symptoms in ADHD from infancy to adulthood in an attempt to place biological findings for this complex brain disorder in the context of maturation and development.
Collapse
Affiliation(s)
- Christian Kieling
- Department of Psychiatry, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2350 - 2201A 90035-903, Porto Alegre, RS, Brazil.
| | | | | | | |
Collapse
|
17
|
Badcock C, Crespi B. Imbalanced genomic imprinting in brain development: an evolutionary basis for the aetiology of autism. J Evol Biol 2006; 19:1007-1032. [PMID: 16780503 DOI: 10.1111/j.1420-9101.2006.01091.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We describe a new hypothesis for the development of autism, that it is driven by imbalances in brain development involving enhanced effects of paternally expressed imprinted genes, deficits of effects from maternally expressed genes, or both. This hypothesis is supported by: (1) the strong genomic-imprinting component to the genetic and developmental mechanisms of autism, Angelman syndrome, Rett syndrome and Turner syndrome; (2) the core behavioural features of autism, such as self-focused behaviour, altered social interactions and language, and enhanced spatial and mechanistic cognition and abilities, and (3) the degree to which relevant brain functions and structures are altered in autism and related disorders. The imprinted brain theory of autism has important implications for understanding the genetic, epigenetic, neurological and cognitive bases of autism, as ultimately due to imbalances in the outcomes of intragenomic conflict between effects of maternally vs. paternally expressed genes.
Collapse
Affiliation(s)
- C Badcock
- Department of Sociology, London School of Economics, London, UK
| | | |
Collapse
|