1
|
Ham AS, Lin S, Tse A, Thürkauf M, McGowan TJ, Jörin L, Oliveri F, Rüegg MA. Single-nuclei sequencing of skeletal muscle reveals subsynaptic-specific transcripts involved in neuromuscular junction maintenance. Nat Commun 2025; 16:2220. [PMID: 40044687 PMCID: PMC11882927 DOI: 10.1038/s41467-025-57487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/13/2025] [Indexed: 03/09/2025] Open
Abstract
The neuromuscular junction (NMJ) is the synapse formed between motor neurons and skeletal muscle fibers. Its stability relies on the continued expression of genes in a subset of myonuclei, called NMJ myonuclei. Here, we use single-nuclei RNA-sequencing (snRNA-seq) to identify numerous NMJ-specific transcripts. To elucidate how the NMJ transcriptome is regulated, we also performed snRNA-seq on sciatic nerve transected, botulinum toxin injected, and Musk knockout muscles. The data show that NMJ gene expression is not only driven by agrin-Lrp4/MuSK signaling but is also affected by electrical activity and trophic factors other than agrin. By selecting the three NMJ genes Etv4, Lrtm1, and Pdzrn4, we further characterize novel contributors to NMJ stability and function. AAV-mediated overexpression shows that Etv4 is sufficient to upregulate the expression of -50% of the NMJ genes in non-synaptic myonuclei, while AAV-CRISPR/Cas9-mediated muscle-specific knockout of Pdzrn4 induces NMJ fragmentation. Further investigation of Pdzrn4 revealed that it localizes to the Golgi apparatus and interacts with MuSK protein. Collectively, our data provide a rich resource of NMJ transcripts, highlight the importance of ETS transcription factors at the NMJ, and suggest a novel pathway for NMJ post-translational modifications.
Collapse
Affiliation(s)
| | - Shuo Lin
- Biozentrum, University of Basel, Basel, Switzerland
| | - Alice Tse
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Lena Jörin
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
2
|
Korb A, Tajbakhsh S, Comai GE. Functional specialisation and coordination of myonuclei. Biol Rev Camb Philos Soc 2024; 99:1164-1195. [PMID: 38477382 DOI: 10.1111/brv.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Myofibres serve as the functional unit for locomotion, with the sarcomere as fundamental subunit. Running the entire length of this structure are hundreds of myonuclei, located at the periphery of the myofibre, juxtaposed to the plasma membrane. Myonuclear specialisation and clustering at the centre and ends of the fibre are known to be essential for muscle contraction, yet the molecular basis of this regionalisation has remained unclear. While the 'myonuclear domain hypothesis' helped explain how myonuclei can independently govern large cytoplasmic territories, novel technologies have provided granularity on the diverse transcriptional programs running simultaneously within the syncytia and added a new perspective on how myonuclei communicate. Building upon this, we explore the critical cellular and molecular sources of transcriptional and functional heterogeneity within myofibres, discussing the impact of intrinsic and extrinsic factors on myonuclear programs. This knowledge provides new insights for understanding muscle development, repair, and disease, but also opens avenues for the development of novel and precise therapeutic approaches.
Collapse
Affiliation(s)
- Amaury Korb
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Glenda E Comai
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| |
Collapse
|
3
|
Kaplan MM, Zeidler M, Knapp A, Hölzl M, Kress M, Fritsch H, Krogsdam A, Flucher BE. Spatial transcriptomics in embryonic mouse diaphragm muscle reveals regional gradients and subdomains of developmental gene expression. iScience 2024; 27:110018. [PMID: 38883818 PMCID: PMC11177202 DOI: 10.1016/j.isci.2024.110018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
The murine embryonic diaphragm is a primary model for studying myogenesis and neuro-muscular synaptogenesis, both representing processes regulated by spatially organized genetic programs of myonuclei located in distinct myodomains. However, a spatial gene expression pattern of embryonic mouse diaphragm has not been reported. Here, we provide spatially resolved gene expression data for horizontally sectioned embryonic mouse diaphragms at embryonic days E14.5 and E18.5. These data reveal gene signatures for specific muscle regions with distinct maturity and fiber type composition, as well as for a central neuromuscular junction (NMJ) and a peripheral myotendinous junction (MTJ) compartment. Comparing spatial expression patterns of wild-type mice with those of transgenic mice lacking either the skeletal muscle calcium channel CaV1.1 or β-catenin, reveals curtailed muscle development and dysregulated expression of genes potentially involved in NMJ formation. Altogether, these datasets provide a powerful resource for further studies of muscle development and NMJ formation in the mouse.
Collapse
Affiliation(s)
| | - Maximilian Zeidler
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Annabella Knapp
- Institute of Clinical and Functional Anatomy, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Martina Hölzl
- Deep Sequencing Core and Institute for Bioinformatics Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Helga Fritsch
- Institute of Clinical and Functional Anatomy, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Anne Krogsdam
- Deep Sequencing Core and Institute for Bioinformatics Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Bernhard E Flucher
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Herbst R, Huijbers MG, Oury J, Burden SJ. Building, Breaking, and Repairing Neuromuscular Synapses. Cold Spring Harb Perspect Biol 2024; 16:a041490. [PMID: 38697654 PMCID: PMC11065174 DOI: 10.1101/cshperspect.a041490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A coordinated and complex interplay of signals between motor neurons, skeletal muscle cells, and Schwann cells controls the formation and maintenance of neuromuscular synapses. Deficits in the signaling pathway for building synapses, caused by mutations in critical genes or autoantibodies against key proteins, are responsible for several neuromuscular diseases, which cause muscle weakness and fatigue. Here, we describe the role that four key genes, Agrin, Lrp4, MuSK, and Dok7, play in this signaling pathway, how an understanding of their mechanisms of action has led to an understanding of several neuromuscular diseases, and how this knowledge has contributed to emerging therapies for treating neuromuscular diseases.
Collapse
Affiliation(s)
- Ruth Herbst
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Maartje G Huijbers
- Department of Human Genetics, Leiden University Medical Centre LUMC, 2300 RC Leiden, the Netherlands
- Department of Neurology, Leiden University Medical Centre LUMC, 2333 ZA Leiden, the Netherlands
| | - Julien Oury
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, New York 10016, USA
| | - Steven J Burden
- Neurology Department, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
5
|
Kedlian VR, Wang Y, Liu T, Chen X, Bolt L, Tudor C, Shen Z, Fasouli ES, Prigmore E, Kleshchevnikov V, Pett JP, Li T, Lawrence JEG, Perera S, Prete M, Huang N, Guo Q, Zeng X, Yang L, Polański K, Chipampe NJ, Dabrowska M, Li X, Bayraktar OA, Patel M, Kumasaka N, Mahbubani KT, Xiang AP, Meyer KB, Saeb-Parsy K, Teichmann SA, Zhang H. Human skeletal muscle aging atlas. NATURE AGING 2024; 4:727-744. [PMID: 38622407 PMCID: PMC11108788 DOI: 10.1038/s43587-024-00613-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Skeletal muscle aging is a key contributor to age-related frailty and sarcopenia with substantial implications for global health. Here we profiled 90,902 single cells and 92,259 single nuclei from 17 donors to map the aging process in the adult human intercostal muscle, identifying cellular changes in each muscle compartment. We found that distinct subsets of muscle stem cells exhibit decreased ribosome biogenesis genes and increased CCL2 expression, causing different aging phenotypes. Our atlas also highlights an expansion of nuclei associated with the neuromuscular junction, which may reflect re-innervation, and outlines how the loss of fast-twitch myofibers is mitigated through regeneration and upregulation of fast-type markers in slow-twitch myofibers with age. Furthermore, we document the function of aging muscle microenvironment in immune cell attraction. Overall, we present a comprehensive human skeletal muscle aging resource ( https://www.muscleageingcellatlas.org/ ) together with an in-house mouse muscle atlas to study common features of muscle aging across species.
Collapse
Affiliation(s)
- Veronika R Kedlian
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tianliang Liu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoping Chen
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Catherine Tudor
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Zhuojian Shen
- Department of Thoracic Surgery, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Eirini S Fasouli
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Jan Patrick Pett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Tong Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - John E G Lawrence
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Shani Perera
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ni Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Qin Guo
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xinrui Zeng
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lu Yang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Krzysztof Polański
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Nana-Jane Chipampe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Monika Dabrowska
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Xiaobo Li
- Core Facilities for Medical Science, Sun Yat-sen University, Guangzhou, China
| | - Omer Ali Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Minal Patel
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Natsuhiko Kumasaka
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Krishnaa T Mahbubani
- Department of Surgery, University of Cambridge, Cambridge, UK
- Collaborative Biorepository for Translational Medicine (CBTM), NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Andy Peng Xiang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK.
- Collaborative Biorepository for Translational Medicine (CBTM), NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
Cisterna B, Malatesta M. Molecular and Structural Alterations of Skeletal Muscle Tissue Nuclei during Aging. Int J Mol Sci 2024; 25:1833. [PMID: 38339110 PMCID: PMC10855217 DOI: 10.3390/ijms25031833] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Aging is accompanied by a progressive loss of skeletal muscle mass and strength. The mechanisms underlying this phenomenon are certainly multifactorial and still remain to be fully elucidated. Changes in the cell nucleus structure and function have been considered among the possible contributing causes. This review offers an overview of the current knowledge on skeletal muscle nuclei in aging, focusing on the impairment of nuclear pathways potentially involved in age-related muscle decline. In skeletal muscle two types of cells are present: fiber cells, constituting the contractile muscle mass and containing hundreds of myonuclei, and the satellite cells, i.e., the myogenic mononuclear stem cells occurring at the periphery of the fibers and responsible for muscle growth and repair. Research conducted on different experimental models and with different methodological approaches demonstrated that both the myonuclei and satellite cell nuclei of aged skeletal muscles undergo several structural and molecular alterations, affecting chromatin organization, gene expression, and transcriptional and post-transcriptional activities. These alterations play a key role in the impairment of muscle fiber homeostasis and regeneration, thus contributing to the age-related decrease in skeletal muscle mass and function.
Collapse
Affiliation(s)
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy;
| |
Collapse
|
7
|
Liu Y, Lin W. Morphological and functional alterations of neuromuscular synapses in a mouse model of ACTA1 congenital myopathy. Hum Mol Genet 2024; 33:233-244. [PMID: 37883471 PMCID: PMC10800017 DOI: 10.1093/hmg/ddad183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Mutations in skeletal muscle α-actin (Acta1) cause myopathies. In a mouse model of congenital myopathy, heterozygous Acta1 (H40Y) knock-in (Acta1+/Ki) mice exhibit features of human nemaline myopathy, including premature lethality, severe muscle weakness, reduced mobility, and the presence of nemaline rods in muscle fibers. In this study, we investigated the impact of Acta1 (H40Y) mutation on the neuromuscular junction (NMJ). We found that the NMJs were markedly fragmented in Acta1+/Ki mice. Electrophysiological analysis revealed a decrease in amplitude but increase in frequency of miniature end-plate potential (mEPP) at the NMJs in Acta1+/Ki mice, compared with those in wild type (Acta1+/+) mice. Evoked end-plate potential (EPP) remained similar at the NMJs in Acta1+/Ki and Acta1+/+ mice, but quantal content was increased at the NMJs in Acta1+/Ki, compared with Acta1+/+ mice, suggesting a homeostatic compensation at the NMJs in Acta1+/Ki mice to maintain normal levels of neurotransmitter release. Furthermore, short-term synaptic plasticity of the NMJs was compromised in Acta1+/Ki mice. Together, these results demonstrate that skeletal Acta1 H40Y mutation, albeit muscle-origin, leads to both morphological and functional defects at the NMJ.
Collapse
Affiliation(s)
- Yun Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390-9111, United States
| | - Weichun Lin
- Department of Neuroscience, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390-9111, United States
| |
Collapse
|
8
|
Díaz‐López YE, Pérez‐Figueroa GE, Cázares‐Domínguez V, Frigolet ME, Gutiérrez‐Aguilar R. ETV5 regulates proliferation and cell cycle genes in the INS-1 (832/13) cell line independently of the concentration of secreted insulin. FEBS Open Bio 2023; 13:2263-2272. [PMID: 37876309 PMCID: PMC10699097 DOI: 10.1002/2211-5463.13724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/22/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023] Open
Abstract
The transcription factor E-twenty-six variant 5 (ETV5) regulates acute insulin secretion. Adequate insulin secretion is dependent on pancreatic β-cell size and cell proliferation, but the effects of ETV5 on proliferation, cell number, and viability, as well as its relationship with insulin secretion, have not been established yet. Here, we partially silenced ETV5 in the INS-1 (832/13) cell line by siRNA transfection and then measured secreted insulin concentration at different time points, observing similar levels to control cells. After 72 h of ETV5 silencing, we observed decreased cell number and proliferation, without any change in viability or apoptosis. Thus, partial silencing of ETV5 modulates cell proliferation in INS-1 (832/13) independently of secreted insulin levels via upregulation of E2F1 and of inhibitors of the cyclin/CDKs complexes (p21Cdkn1a , p27Cdkn1b , and p57Cdkn1c ) and downregulation of cell cycle activators (PAK3 and FOS).
Collapse
Affiliation(s)
- Yael E. Díaz‐López
- División de Investigación, Facultad de MedicinaUniversidad Nacional Autónoma de México (UNAM)México
- Laboratorio de Investigación en Enfermedades Metabólicas: Obesidad y DiabetesHospital Infantil de México “Federico Gómez”México
| | | | - Vicenta Cázares‐Domínguez
- Laboratorio de Investigación en Enfermedades Metabólicas: Obesidad y DiabetesHospital Infantil de México “Federico Gómez”México
| | - María E. Frigolet
- Laboratorio de Investigación en Enfermedades Metabólicas: Obesidad y DiabetesHospital Infantil de México “Federico Gómez”México
| | - Ruth Gutiérrez‐Aguilar
- División de Investigación, Facultad de MedicinaUniversidad Nacional Autónoma de México (UNAM)México
- Laboratorio de Investigación en Enfermedades Metabólicas: Obesidad y DiabetesHospital Infantil de México “Federico Gómez”México
| |
Collapse
|
9
|
Ledderose JMT, Zolnik TA, Toumazou M, Trimbuch T, Rosenmund C, Eickholt BJ, Jaeger D, Larkum ME, Sachdev RNS. Layer 1 of somatosensory cortex: an important site for input to a tiny cortical compartment. Cereb Cortex 2023; 33:11354-11372. [PMID: 37851709 PMCID: PMC10690867 DOI: 10.1093/cercor/bhad371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/17/2023] [Indexed: 10/20/2023] Open
Abstract
Neocortical layer 1 has been proposed to be at the center for top-down and bottom-up integration. It is a locus for interactions between long-range inputs, layer 1 interneurons, and apical tuft dendrites of pyramidal neurons. While input to layer 1 has been studied intensively, the level and effect of input to this layer has still not been completely characterized. Here we examined the input to layer 1 of mouse somatosensory cortex with retrograde tracing and optogenetics. Our assays reveal that local input to layer 1 is predominantly from layers 2/3 and 5 pyramidal neurons and interneurons, and that subtypes of local layers 5 and 6b neurons project to layer 1 with different probabilities. Long-range input from sensory-motor cortices to layer 1 of somatosensory cortex arose predominantly from layers 2/3 neurons. Our optogenetic experiments showed that intra-telencephalic layer 5 pyramidal neurons drive layer 1 interneurons but have no effect locally on layer 5 apical tuft dendrites. Dual retrograde tracing revealed that a fraction of local and long-range neurons was both presynaptic to layer 5 neurons and projected to layer 1. Our work highlights the prominent role of local inputs to layer 1 and shows the potential for complex interactions between long-range and local inputs, which are both in position to modify the output of somatosensory cortex.
Collapse
Affiliation(s)
- Julia M T Ledderose
- Institute of Biology, Humboldt Universität zu Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
- Institute of Molecular Biology and Biochemistry, Charité—Universitätsmedizin Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| | - Timothy A Zolnik
- Institute of Biology, Humboldt Universität zu Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
- Institute of Molecular Biology and Biochemistry, Charité—Universitätsmedizin Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| | - Maria Toumazou
- Institute of Biology, Humboldt Universität zu Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| | - Thorsten Trimbuch
- Institute of Neurophysiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| | - Christian Rosenmund
- Institute of Neurophysiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
- Neurocure Centre for Excellence Charité—Universitätsmedizin Berlin Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| | | | - Dieter Jaeger
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Matthew E Larkum
- Institute of Biology, Humboldt Universität zu Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
- Neurocure Centre for Excellence Charité—Universitätsmedizin Berlin Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| | - Robert N S Sachdev
- Institute of Biology, Humboldt Universität zu Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| |
Collapse
|
10
|
Dos Santos M, Shah AM, Zhang Y, Bezprozvannaya S, Chen K, Xu L, Lin W, McAnally JR, Bassel-Duby R, Liu N, Olson EN. Opposing gene regulatory programs governing myofiber development and maturation revealed at single nucleus resolution. Nat Commun 2023; 14:4333. [PMID: 37468485 DOI: 10.1038/s41467-023-40073-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
Skeletal muscle fibers express distinct gene programs during development and maturation, but the underlying gene regulatory networks that confer stage-specific myofiber properties remain unknown. To decipher these distinctive gene programs and how they respond to neural activity, we generated a combined multi-omic single-nucleus RNA-seq and ATAC-seq atlas of mouse skeletal muscle development at multiple stages of embryonic, fetal, and postnatal life. We found that Myogenin, Klf5, and Tead4 form a transcriptional complex that synergistically activates the expression of muscle genes in developing myofibers. During myofiber maturation, the transcription factor Maf acts as a transcriptional switch to activate the mature fast muscle gene program. In skeletal muscles of mutant mice lacking voltage-gated L-type Ca2+ channels (Cav1.1), Maf expression and myofiber maturation are impaired. These findings provide a transcriptional atlas of muscle development and reveal genetic links between myofiber formation, maturation, and contraction.
Collapse
Affiliation(s)
- Matthieu Dos Santos
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Akansha M Shah
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Yichi Zhang
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Svetlana Bezprozvannaya
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, 5323 Harry Hines Boulevard, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, 5323 Harry Hines Boulevard, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Weichun Lin
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - John R McAnally
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Ning Liu
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
11
|
Greguske EA, Maroto AF, Borrajo M, Palou A, Gut M, Esteve-Codina A, Barrallo-Gimeno A, Llorens J. Decreased expression of synaptic genes in the vestibular ganglion of rodents following subchronic ototoxic stress. Neurobiol Dis 2023; 182:106134. [PMID: 37100209 DOI: 10.1016/j.nbd.2023.106134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/14/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023] Open
Abstract
The vestibular ganglion contains primary sensory neurons that are postsynaptic to the transducing hair cells (HC) and project to the central nervous system. Understanding the response of these neurons to HC stress or loss is of great interest as their survival and functional competence will determine the functional outcome of any intervention aiming at repair or regeneration of the HCs. We have shown that subchronic exposure to the ototoxicant 3,3'-iminodipropionitrile (IDPN) in rats and mice causes a reversible detachment and synaptic uncoupling between the HCs and the ganglion neurons. Here, we used this paradigm to study the global changes in gene expression in vestibular ganglia using RNA-seq. Comparative gene ontology and pathway analyses of the data from both model species indicated a robust downregulation of terms related to synapses, including presynaptic and postsynaptic functions. Manual analyses of the most significantly downregulated transcripts identified genes with expressions related to neuronal activity, modulators of neuronal excitability, and transcription factors and receptors that promote neurite growth and differentiation. For choice selected genes, the mRNA expression results were replicated by qRT-PCR, validated spatially by RNA-scope, or were demonstrated to be associated with decreased expression of the corresponding protein. We conjectured that decreased synaptic input or trophic support on the ganglion neurons from the HC was triggering these expression changes. To support this hypothesis, we demonstrated decreased expression of BDNF mRNA in the vestibular epithelium after subchronic ototoxicity and also downregulated expression of similarly identified genes (e.g Etv5, Camk1g, Slc17a6, Nptx2, Spp1) after HC ablation with another ototoxic compound, allylnitrile. We conclude that vestibular ganglion neurons respond to decreased input from HCs by decreasing the strength of all their synaptic contacts, both as postsynaptic and presynaptic players.
Collapse
Affiliation(s)
- Erin A Greguske
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Feixa Llarga s/n, 08907 l'Hospitalet de Llobregat, Catalunya, Spain; Institut de Neurociènces, Universitat de Barcelona, Barcelona, Catalunya, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 l'Hospitalet de Llobregat, Catalunya, Spain
| | - Alberto F Maroto
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Feixa Llarga s/n, 08907 l'Hospitalet de Llobregat, Catalunya, Spain; Institut de Neurociènces, Universitat de Barcelona, Barcelona, Catalunya, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 l'Hospitalet de Llobregat, Catalunya, Spain
| | - Mireia Borrajo
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Feixa Llarga s/n, 08907 l'Hospitalet de Llobregat, Catalunya, Spain; Institut de Neurociènces, Universitat de Barcelona, Barcelona, Catalunya, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 l'Hospitalet de Llobregat, Catalunya, Spain.
| | - Aïda Palou
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Feixa Llarga s/n, 08907 l'Hospitalet de Llobregat, Catalunya, Spain; Institut de Neurociènces, Universitat de Barcelona, Barcelona, Catalunya, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 l'Hospitalet de Llobregat, Catalunya, Spain.
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain.
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain.
| | - Alejandro Barrallo-Gimeno
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Feixa Llarga s/n, 08907 l'Hospitalet de Llobregat, Catalunya, Spain; Institut de Neurociènces, Universitat de Barcelona, Barcelona, Catalunya, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 l'Hospitalet de Llobregat, Catalunya, Spain.
| | - Jordi Llorens
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Feixa Llarga s/n, 08907 l'Hospitalet de Llobregat, Catalunya, Spain; Institut de Neurociènces, Universitat de Barcelona, Barcelona, Catalunya, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 l'Hospitalet de Llobregat, Catalunya, Spain.
| |
Collapse
|
12
|
Piol D, Robberechts T, Da Cruz S. Lost in local translation: TDP-43 and FUS in axonal/neuromuscular junction maintenance and dysregulation in amyotrophic lateral sclerosis. Neuron 2023; 111:1355-1380. [PMID: 36963381 DOI: 10.1016/j.neuron.2023.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 03/26/2023]
Abstract
Key early features of amyotrophic lateral sclerosis (ALS) are denervation of neuromuscular junctions and axonal degeneration. Motor neuron homeostasis relies on local translation through controlled regulation of axonal mRNA localization, transport, and stability. Yet the composition of the local transcriptome, translatome (mRNAs locally translated), and proteome during health and disease remains largely unexplored. This review covers recent discoveries on axonal translation as a critical mechanism for neuronal maintenance/survival. We focus on two RNA binding proteins, transactive response DNA binding protein-43 (TDP-43) and fused in sarcoma (FUS), whose mutations cause ALS and frontotemporal dementia (FTD). Emerging evidence points to their essential role in the maintenance of axons and synapses, including mRNA localization, transport, and local translation, and whose dysfunction may contribute to ALS. Finally, we describe recent advances in omics-based approaches mapping compartment-specific local RNA and protein compositions, which will be invaluable to elucidate fundamental local processes and identify key targets for therapy development.
Collapse
Affiliation(s)
- Diana Piol
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Tessa Robberechts
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Sandrine Da Cruz
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
13
|
Dietrich S, Company C, Song K, Lowenstein ED, Riedel L, Birchmeier C, Gargiulo G, Zampieri N. Molecular identity of proprioceptor subtypes innervating different muscle groups in mice. Nat Commun 2022; 13:6867. [PMID: 36369193 PMCID: PMC9652284 DOI: 10.1038/s41467-022-34589-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
The precise execution of coordinated movements depends on proprioception, the sense of body position in space. However, the molecular underpinnings of proprioceptive neuron subtype identities are not fully understood. Here we used a single-cell transcriptomic approach to define mouse proprioceptor subtypes according to the identity of the muscle they innervate. We identified and validated molecular signatures associated with proprioceptors innervating back (Tox, Epha3), abdominal (C1ql2), and hindlimb (Gabrg1, Efna5) muscles. We also found that proprioceptor muscle identity precedes acquisition of receptor character and comprise programs controlling wiring specificity. These findings indicate that muscle-type identity is a fundamental aspect of proprioceptor subtype differentiation that is acquired during early development and includes molecular programs involved in the control of muscle target specificity.
Collapse
Affiliation(s)
- Stephan Dietrich
- grid.419491.00000 0001 1014 0849Laboratory of Development and Function of Neural Circuits, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Carlos Company
- grid.419491.00000 0001 1014 0849Laboratory of Molecular Oncology, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Kun Song
- grid.263817.90000 0004 1773 1790Brain Research Center and Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Elijah David Lowenstein
- grid.419491.00000 0001 1014 0849Laboratory of Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany ,grid.418832.40000 0001 0610 524XNeurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité; Charitéplatz 1, 10117 Berlin, Germany
| | - Levin Riedel
- grid.419491.00000 0001 1014 0849Laboratory of Development and Function of Neural Circuits, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Carmen Birchmeier
- grid.419491.00000 0001 1014 0849Laboratory of Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany ,grid.418832.40000 0001 0610 524XNeurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité; Charitéplatz 1, 10117 Berlin, Germany
| | - Gaetano Gargiulo
- grid.419491.00000 0001 1014 0849Laboratory of Molecular Oncology, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Niccolò Zampieri
- grid.419491.00000 0001 1014 0849Laboratory of Development and Function of Neural Circuits, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| |
Collapse
|
14
|
Budayeva HG, Sengupta-Ghosh A, Phu L, Moffat JG, Ayalon G, Kirkpatrick DS. Phosphoproteome Profiling of the Receptor Tyrosine Kinase MuSK Identifies Tyrosine Phosphorylation of Rab GTPases. Mol Cell Proteomics 2022; 21:100221. [PMID: 35227894 PMCID: PMC8972003 DOI: 10.1016/j.mcpro.2022.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Muscle-specific receptor tyrosine kinase (MuSK) agonist antibodies were developed 2 decades ago to explore the benefits of receptor activation at the neuromuscular junction. Unlike agrin, the endogenous agonist of MuSK, agonist antibodies function independently of its coreceptor low-density lipoprotein receptor–related protein 4 to delay the onset of muscle denervation in mouse models of ALS. Here, we performed dose–response and time-course experiments on myotubes to systematically compare site-specific phosphorylation downstream of each agonist. Remarkably, both agonists elicited similar intracellular responses at known and newly identified MuSK signaling components. Among these was inducible tyrosine phosphorylation of multiple Rab GTPases that was blocked by MuSK inhibition. Importantly, mutation of this site in Rab10 disrupts association with its effector proteins, molecule interacting with CasL 1/3. Together, these data provide in-depth characterization of MuSK signaling, describe two novel MuSK inhibitors, and expose phosphorylation of Rab GTPases downstream of receptor tyrosine kinase activation in myotubes. Different agonists of muscle-specific kinase (MuSK) elicit similar phosphoprofiles. MuSK activation induces tyrosine phosphorylation of several Rab GTPases. MuSK inhibitors diminish receptor signaling, including phosphorylation on Rab10 Y6. Mutation of Rab10 Y6 disrupts its association with Mical adaptor proteins.
Collapse
Affiliation(s)
- Hanna G Budayeva
- Microchemistry, Proteomics, and Lipidomics Department, Genentech, Inc, South San Francisco, California, USA.
| | | | - Lilian Phu
- Microchemistry, Proteomics, and Lipidomics Department, Genentech, Inc, South San Francisco, California, USA
| | - John G Moffat
- Biochemical and Cellular Pharmacology and Computational Drug Design, Genentech, Inc, South San Francisco, California, USA
| | - Gai Ayalon
- Neuroscience Department, Genentech, Inc, South San Francisco, California, USA
| | - Donald S Kirkpatrick
- Microchemistry, Proteomics, and Lipidomics Department, Genentech, Inc, South San Francisco, California, USA.
| |
Collapse
|
15
|
Verma S, Khurana S, Vats A, Sahu B, Ganguly NK, Chakraborti P, Gourie-Devi M, Taneja V. Neuromuscular Junction Dysfunction in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2022; 59:1502-1527. [PMID: 34997540 DOI: 10.1007/s12035-021-02658-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder characterized by progressive degeneration of motor neurons leading to skeletal muscle denervation. Earlier studies have shown that motor neuron degeneration begins in motor cortex and descends to the neuromuscular junction (NMJ) in a dying forward fashion. However, accumulating evidences support that ALS is a distal axonopathy where early pathological changes occur at the NMJ, prior to onset of clinical symptoms and propagates towards the motor neuron cell body supporting "dying back" hypothesis. Despite several evidences, series of events triggering NMJ disassembly in ALS are still obscure. Neuromuscular junction is a specialized tripartite chemical synapse which involves a well-coordinated communication among the presynaptic motor neuron, postsynaptic skeletal muscle, and terminal Schwann cells. This review provides comprehensive insight into the role of NMJ in ALS pathogenesis. We have emphasized the molecular alterations in cellular components of NMJ leading to loss of effective neuromuscular transmission in ALS. Further, we provide a preview into research involved in exploring NMJ as potential target for designing effective therapies for ALS.
Collapse
Affiliation(s)
- Sagar Verma
- Department of Research, Sir Ganga Ram Hospital, Delhi, India
- Department of Biotechnology, Jamia Hamdard, Delhi, India
| | - Shiffali Khurana
- Department of Research, Sir Ganga Ram Hospital, Delhi, India
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Abhishek Vats
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bandana Sahu
- Department of Research, Sir Ganga Ram Hospital, Delhi, India
| | | | | | | | - Vibha Taneja
- Department of Research, Sir Ganga Ram Hospital, Delhi, India.
| |
Collapse
|
16
|
Rabies anterograde monosynaptic tracing allows identification of postsynaptic circuits receiving distinct somatosensory input. Neuroscience 2022; 491:75-86. [DOI: 10.1016/j.neuroscience.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/13/2023]
|
17
|
Microtubule-based transport is essential to distribute RNA and nascent protein in skeletal muscle. Nat Commun 2021; 12:6079. [PMID: 34707124 PMCID: PMC8551216 DOI: 10.1038/s41467-021-26383-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
While the importance of RNA localization in highly differentiated cells is well appreciated, basic principles of RNA localization in skeletal muscle remain poorly characterized. Here, we develop a method to detect and quantify single molecule RNA localization patterns in skeletal myofibers, and uncover a critical role for directed transport of RNPs in muscle. We find that RNAs localize and are translated along sarcomere Z-disks, dispersing tens of microns from progenitor nuclei, regardless of encoded protein function. We find that directed transport along the lattice-like microtubule network of myofibers becomes essential to achieve this localization pattern as muscle development progresses; disruption of this network leads to extreme accumulation of RNPs and nascent protein around myonuclei. Our observations suggest that global active RNP transport may be required to distribute RNAs in highly differentiated cells and reveal fundamental mechanisms of gene regulation, with consequences for myopathies caused by perturbations to RNPs or microtubules.
Collapse
|
18
|
Karmouch J, Delers P, Semprez F, Soyed N, Areias J, Bélanger G, Ravel-Chapuis A, Dobbertin A, Jasmin BJ, Legay C. AChR β-Subunit mRNAs Are Stabilized by HuR in a Mouse Model of Congenital Myasthenic Syndrome With Acetylcholinesterase Deficiency. Front Mol Neurosci 2020; 13:568171. [PMID: 33362463 PMCID: PMC7757417 DOI: 10.3389/fnmol.2020.568171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
Collagen Q (COLQ) is a specific collagen that anchors acetylcholinesterase (AChE) in the synaptic cleft of the neuromuscular junction. So far, no mutation has been identified in the ACHE human gene but over 50 different mutations in the COLQ gene are causative for a congenital myasthenic syndrome (CMS) with AChE deficiency. Mice deficient for COLQ mimic most of the functional deficit observed in CMS patients. At the molecular level, a striking consequence of the absence of COLQ is an increase in the levels of acetylcholine receptor (AChR) mRNAs and proteins in vivo and in vitro in murine skeletal muscle cells. Here, we decipher the mechanisms that drive AChR mRNA upregulation in cultured muscle cells deficient for COLQ. We show that the levels of AChR β-subunit mRNAs are post-transcriptionally regulated by an increase in their stability. We demonstrate that this process results from an activation of p38 MAPK and the cytoplasmic translocation of the nuclear RNA-binding protein human antigen R (HuR) that interacts with the AU-rich element located within AChR β-subunit transcripts. This HuR/AChR transcript interaction induces AChR β-subunit mRNA stabilization and occurs at a specific stage of myogenic differentiation. In addition, pharmacological drugs that modulate p38 activity cause parallel modifications of HuR protein and AChR β-subunit levels. Thus, our study provides new insights into the signaling pathways that are regulated by ColQ-deficiency and highlights for the first time a role for HuR and p38 in mRNA stability in a model of congenital myasthenic syndrome.
Collapse
Affiliation(s)
- Jennifer Karmouch
- CNRS UMR 8003, Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Perrine Delers
- CNRS UMR 8003, Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Fannie Semprez
- CNRS UMR 8003, Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Nouha Soyed
- CNRS UMR 8003, Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Julie Areias
- CNRS UMR 8003, Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Guy Bélanger
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Claire Legay
- CNRS UMR 8003, Université de Paris, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
19
|
Kim M, Franke V, Brandt B, Lowenstein ED, Schöwel V, Spuler S, Akalin A, Birchmeier C. Single-nucleus transcriptomics reveals functional compartmentalization in syncytial skeletal muscle cells. Nat Commun 2020; 11:6375. [PMID: 33311457 PMCID: PMC7732842 DOI: 10.1038/s41467-020-20064-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/09/2020] [Indexed: 11/25/2022] Open
Abstract
Syncytial skeletal muscle cells contain hundreds of nuclei in a shared cytoplasm. We investigated nuclear heterogeneity and transcriptional dynamics in the uninjured and regenerating muscle using single-nucleus RNA-sequencing (snRNAseq) of isolated nuclei from muscle fibers. This revealed distinct nuclear subtypes unrelated to fiber type diversity, previously unknown subtypes as well as the expected ones at the neuromuscular and myotendinous junctions. In fibers of the Mdx dystrophy mouse model, distinct subtypes emerged, among them nuclei expressing a repair signature that were also abundant in the muscle of dystrophy patients, and a nuclear population associated with necrotic fibers. Finally, modifications of our approach revealed the compartmentalization in the rare and specialized muscle spindle. Our data identifies nuclear compartments of the myofiber and defines a molecular roadmap for their functional analyses; the data can be freely explored on the MyoExplorer server ( https://shiny.mdc-berlin.de/MyoExplorer/ ).
Collapse
Affiliation(s)
- Minchul Kim
- Developmental Biology/Signal Transduction, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Vedran Franke
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Bettina Brandt
- Developmental Biology/Signal Transduction, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Elijah D Lowenstein
- Developmental Biology/Signal Transduction, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Verena Schöwel
- Muscle Research Unit, Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Altuna Akalin
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center for Molecular Medicine, Berlin, Germany.
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction, Max Delbrueck Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
20
|
Petrany MJ, Swoboda CO, Sun C, Chetal K, Chen X, Weirauch MT, Salomonis N, Millay DP. Single-nucleus RNA-seq identifies transcriptional heterogeneity in multinucleated skeletal myofibers. Nat Commun 2020; 11:6374. [PMID: 33311464 PMCID: PMC7733460 DOI: 10.1038/s41467-020-20063-w] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
While the majority of cells contain a single nucleus, cell types such as trophoblasts, osteoclasts, and skeletal myofibers require multinucleation. One advantage of multinucleation can be the assignment of distinct functions to different nuclei, but comprehensive interrogation of transcriptional heterogeneity within multinucleated tissues has been challenging due to the presence of a shared cytoplasm. Here, we utilized single-nucleus RNA-sequencing (snRNA-seq) to determine the extent of transcriptional diversity within multinucleated skeletal myofibers. Nuclei from mouse skeletal muscle were profiled across the lifespan, which revealed the presence of distinct myonuclear populations emerging in postnatal development as well as aging muscle. Our datasets also provided a platform for discovery of genes associated with rare specialized regions of the muscle cell, including markers of the myotendinous junction and functionally validated factors expressed at the neuromuscular junction. These findings reveal that myonuclei within syncytial muscle fibers possess distinct transcriptional profiles that regulate muscle biology.
Collapse
Affiliation(s)
- Michael J Petrany
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Casey O Swoboda
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chengyi Sun
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
21
|
Rodríguez Cruz PM, Cossins J, Beeson D, Vincent A. The Neuromuscular Junction in Health and Disease: Molecular Mechanisms Governing Synaptic Formation and Homeostasis. Front Mol Neurosci 2020; 13:610964. [PMID: 33343299 PMCID: PMC7744297 DOI: 10.3389/fnmol.2020.610964] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022] Open
Abstract
The neuromuscular junction (NMJ) is a highly specialized synapse between a motor neuron nerve terminal and its muscle fiber that are responsible for converting electrical impulses generated by the motor neuron into electrical activity in the muscle fibers. On arrival of the motor nerve action potential, calcium enters the presynaptic terminal, which leads to the release of the neurotransmitter acetylcholine (ACh). ACh crosses the synaptic gap and binds to ACh receptors (AChRs) tightly clustered on the surface of the muscle fiber; this leads to the endplate potential which initiates the muscle action potential that results in muscle contraction. This is a simplified version of the events in neuromuscular transmission that take place within milliseconds, and are dependent on a tiny but highly structured NMJ. Much of this review is devoted to describing in more detail the development, maturation, maintenance and regeneration of the NMJ, but first we describe briefly the most important molecules involved and the conditions that affect their numbers and function. Most important clinically worldwide, are myasthenia gravis (MG), the Lambert-Eaton myasthenic syndrome (LEMS) and congenital myasthenic syndromes (CMS), each of which causes specific molecular defects. In addition, we mention the neurotoxins from bacteria, snakes and many other species that interfere with neuromuscular transmission and cause potentially fatal diseases, but have also provided useful probes for investigating neuromuscular transmission. There are also changes in NMJ structure and function in motor neuron disease, spinal muscle atrophy and sarcopenia that are likely to be secondary but might provide treatment targets. The NMJ is one of the best studied and most disease-prone synapses in the nervous system and it is amenable to in vivo and ex vivo investigation and to systemic therapies that can help restore normal function.
Collapse
Affiliation(s)
- Pedro M. Rodríguez Cruz
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Judith Cossins
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - David Beeson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
22
|
Ng SY, Ljubicic V. Recent insights into neuromuscular junction biology in Duchenne muscular dystrophy: Impacts, challenges, and opportunities. EBioMedicine 2020; 61:103032. [PMID: 33039707 PMCID: PMC7648118 DOI: 10.1016/j.ebiom.2020.103032] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/28/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common and relentless form of muscular dystrophy. The pleiotropic effects of dystrophin deficiency include remarkable impacts on neuromuscular junction (NMJ) structure and function. Some of these alterations contribute to the severe muscle wasting and weakness that distinguish DMD, while others attempt to compensate for them. Experimental approaches that correct NMJ biology in pre-clinical models of DMD attenuate disease progression and improve functional outcomes, which suggests that targeting the NMJ may be an effective therapeutic strategy for DMD patients. The objectives of this review are to 1) survey the distinctions in NMJ structure, function, and gene expression in the dystrophic context as compared to the healthy condition, and 2) summarize the efforts, opportunities and challenges to correct NMJ biology in DMD. This information will expand our basic understanding of neuromuscular biology and may be useful for designing novel NMJ-targeted drug or behavioural strategies to mitigate the dystrophic pathology and other disorders of the neuromuscular system.
Collapse
Affiliation(s)
- Sean Y Ng
- Department of Kinesiology, McMaster University, Hamilton L8S 4L8, Ontario, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton L8S 4L8, Ontario, Canada.
| |
Collapse
|
23
|
Abstract
Cortical interneurons display striking differences in shape, physiology, and other attributes, challenging us to appropriately classify them. We previously suggested that interneuron types should be defined by their role in cortical processing. Here, we revisit the question of how to codify their diversity based upon their division of labor and function as controllers of cortical information flow. We suggest that developmental trajectories provide a guide for appreciating interneuron diversity and argue that subtype identity is generated using a configurational (rather than combinatorial) code of transcription factors that produce attractor states in the underlying gene regulatory network. We present our updated three-stage model for interneuron specification: an initial cardinal step, allocating interneurons into a few major classes, followed by definitive refinement, creating subclasses upon settling within the cortex, and lastly, state determination, reflecting the incorporation of interneurons into functional circuit ensembles. We close by discussing findings indicating that major interneuron classes are both evolutionarily ancient and conserved. We propose that the complexity of cortical circuits is generated by phylogenetically old interneuron types, complemented by an evolutionary increase in principal neuron diversity. This suggests that a natural neurobiological definition of interneuron types might be derived from a match between their developmental origin and computational function.
Collapse
Affiliation(s)
- Gord Fishell
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA;
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02142, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Adam Kepecs
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri 63130, USA;
| |
Collapse
|
24
|
Belotti E, Schaeffer L. Regulation of Gene expression at the neuromuscular Junction. Neurosci Lett 2020; 735:135163. [PMID: 32553805 DOI: 10.1016/j.neulet.2020.135163] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 01/08/2023]
Abstract
Gene expression in skeletal muscle is profoundly changed upon innervation. 50 years of research on the neuromuscular system have greatly increased our understanding of the mechanisms underlying these changes. By controlling the expression and the activity of key transcription factors, nerve-evoked electrical activity in the muscle fiber positively and negatively regulates the expression of hundreds of genes. Innervation also compartmentalizes gene expression into synaptic and extra-synaptic regions of muscle fibers. In addition, electrically-evoked, release of several factors (e.g. Agrin, Neuregulin, Wnt ligands) induce the clustering of synaptic proteins and of a few muscle nuclei. The sub-synaptic nuclei acquire a particular chromatin organization and develop a specific gene expression program dedicated to building and maintaining a functional neuromuscular synapse. Deciphering synapse-specific, transcriptional regulation started with the identification of the N-box, a six base pair element present in the promoters of the acetylcholine δ and ε subunits. Most genes with synapse-specific expression turned out to contain at least one N-box in their promoters. The N-box is a response element for the synaptic signals Agrin and Neuregulins as well as a binding site for transcription factors of the Ets family. The Ets transcription factors GABP and Erm are implicated in the activation of post-synaptic genes via the N-box. In muscle fibers, Erm expression is restricted to the NMJ whereas GABP is expressed in all muscle nuclei but phosphorylated and activated by the JNK and ERK signaling pathways in response to Agrin and Neuregulins. Post-synaptic gene expression also correlates with chromatin modifications at the genomic level as evidenced by the strong enrichment of decondensed chromatin and acetylated histones in sub-synaptic nuclei. Here we discuss these transcriptional pathways for synaptic specialization at NMJs.
Collapse
Affiliation(s)
- Edwige Belotti
- INMG, Inserm U1217, CNRS UMR5310, Université Lyon 1, Université De Lyon, Lyon, France
| | - Laurent Schaeffer
- INMG, Inserm U1217, CNRS UMR5310, Université Lyon 1, Université De Lyon, Lyon, France; Centre De Biotechnologie Cellulaire, Hospices Civils De Lyon, Lyon, France.
| |
Collapse
|
25
|
Rimer M. Extracellular signal-regulated kinases 1 and 2 regulate neuromuscular junction and myofiber phenotypes in mammalian skeletal muscle. Neurosci Lett 2019; 715:134671. [PMID: 31805372 DOI: 10.1016/j.neulet.2019.134671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 02/06/2023]
Abstract
The neuromuscular junction is the synapse between a motor neuron of the spinal cord and a skeletal muscle fiber in the periphery. Reciprocal interactions between these excitable cells, and between them and others cell types present within the muscle tissue, shape the development, homeostasis and plasticity of skeletal muscle. An important aim in the field is to understand the molecular mechanisms underlying these cellular interactions, which include identifying the nature of the signals and receptors involved but also of the downstream intracellular signaling cascades elicited by them. This review focuses on work that shows that skeletal muscle fiber-derived extracellular signal-regulated kinases 1 and 2 (ERK1/2), ubiquitous and prototypical intracellular mitogen-activated protein kinases, have modulatory roles in the maintenance of the neuromuscular synapse and in the acquisition and preservation of fiber type identity in skeletal muscle.
Collapse
Affiliation(s)
- Mendell Rimer
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center and Texas A&M Institute for Neuroscience, Bryan, TX 77807 USA.
| |
Collapse
|
26
|
Picchiarelli G, Demestre M, Zuko A, Been M, Higelin J, Dieterlé S, Goy MA, Mallik M, Sellier C, Scekic-Zahirovic J, Zhang L, Rosenbohm A, Sijlmans C, Aly A, Mersmann S, Sanjuan-Ruiz I, Hübers A, Messaddeq N, Wagner M, van Bakel N, Boutillier AL, Ludolph A, Lagier-Tourenne C, Boeckers TM, Dupuis L, Storkebaum E. FUS-mediated regulation of acetylcholine receptor transcription at neuromuscular junctions is compromised in amyotrophic lateral sclerosis. Nat Neurosci 2019; 22:1793-1805. [PMID: 31591561 PMCID: PMC6858880 DOI: 10.1038/s41593-019-0498-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022]
Abstract
Neuromuscular junction (NMJ) disruption is an early pathogenic event in amyotrophic lateral sclerosis (ALS). Yet, direct links between NMJ pathways and ALS-associated genes such as FUS, whose heterozygous mutations cause aggressive forms of ALS, remain elusive. In a knock-in Fus-ALS mouse model, we identified postsynaptic NMJ defects in newborn homozygous mutants, attributable to mutant FUS toxicity in skeletal muscle. Adult heterozygous knock-in mice displayed smaller neuromuscular endplates that denervated before motor neuron loss, consistent with ‘dying-back’ neuronopathy. FUS was enriched in subsynaptic myonuclei, and this innervation-dependent enrichment was distorted in FUS-ALS. Mechanistically, FUS collaborates with the ETS-transcription factor ERM to stimulate transcription of acetylcholine receptor (AchR) genes. FUS-ALS patient iPSC-derived motor neuron-myotube co-cultures revealed endplate maturation defects due to intrinsic FUS toxicity in both motor neurons and myotubes. Thus, FUS regulates AChR gene expression in subsynaptic myonuclei and muscle-intrinsic toxicity of ALS-mutant FUS may contribute to dying-back motor neuronopathy.
Collapse
Affiliation(s)
| | - Maria Demestre
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Amila Zuko
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Marije Been
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Julia Higelin
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | | | | | - Moushami Mallik
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany.,Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Chantal Sellier
- IGBMC, INSERM U964, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | | | - Li Zhang
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany.,Faculty of Medicine, University of Muenster, Muenster, Germany
| | | | - Céline Sijlmans
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Amr Aly
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Sina Mersmann
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany.,Faculty of Medicine, University of Muenster, Muenster, Germany
| | | | | | - Nadia Messaddeq
- IGBMC, INSERM U964, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | - Marina Wagner
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany.,Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Nick van Bakel
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Anne-Laurence Boutillier
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Centre National de la Recherche Scientifique, UMR 7364, Strasbourg, France
| | - Albert Ludolph
- Department of Neurology, Oberer Eselsberg 45, Ulm, Germany
| | - Clotilde Lagier-Tourenne
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| | - Tobias M Boeckers
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany. .,DZNE, Ulm site, Ulm, Germany.
| | - Luc Dupuis
- Université de Strasbourg, INSERM, UMR-S1118, Strasbourg, France.
| | - Erik Storkebaum
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands. .,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany. .,Faculty of Medicine, University of Muenster, Muenster, Germany.
| |
Collapse
|
27
|
Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol Rev 2019; 99:427-511. [PMID: 30427277 PMCID: PMC6442923 DOI: 10.1152/physrev.00061.2017] [Citation(s) in RCA: 956] [Impact Index Per Article: 159.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/14/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is a loss of muscle mass and function in the elderly that reduces mobility, diminishes quality of life, and can lead to fall-related injuries, which require costly hospitalization and extended rehabilitation. This review focuses on the aging-related structural changes and mechanisms at cellular and subcellular levels underlying changes in the individual motor unit: specifically, the perikaryon of the α-motoneuron, its neuromuscular junction(s), and the muscle fibers that it innervates. Loss of muscle mass with aging, which is largely due to the progressive loss of motoneurons, is associated with reduced muscle fiber number and size. Muscle function progressively declines because motoneuron loss is not adequately compensated by reinnervation of muscle fibers by the remaining motoneurons. At the intracellular level, key factors are qualitative changes in posttranslational modifications of muscle proteins and the loss of coordinated control between contractile, mitochondrial, and sarcoplasmic reticulum protein expression. Quantitative and qualitative changes in skeletal muscle during the process of aging also have been implicated in the pathogenesis of acquired and hereditary neuromuscular disorders. In experimental models, specific intervention strategies have shown encouraging results on limiting deterioration of motor unit structure and function under conditions of impaired innervation. Translated to the clinic, if these or similar interventions, by saving muscle and improving mobility, could help alleviate sarcopenia in the elderly, there would be both great humanitarian benefits and large cost savings for health care systems.
Collapse
Affiliation(s)
- Lars Larsson
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Hans Degens
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Meishan Li
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Leonardo Salviati
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Young Il Lee
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Wesley Thompson
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - James L Kirkland
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Marco Sandri
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| |
Collapse
|
28
|
Tripathi RB, Jackiewicz M, McKenzie IA, Kougioumtzidou E, Grist M, Richardson WD. Remarkable Stability of Myelinating Oligodendrocytes in Mice. Cell Rep 2018; 21:316-323. [PMID: 29020619 PMCID: PMC5643547 DOI: 10.1016/j.celrep.2017.09.050] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/24/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022] Open
Abstract
New myelin-forming oligodendrocytes (OLs) are generated in the mouse central nervous system during adulthood. These adult-born OLs might augment the existing population, contributing to neural plasticity, or else replace OLs that die in use (turnover). To distinguish between these alternatives, we induced genetic labeling of mature myelinating OLs in young adult mice and tracked their subsequent survival. OL survival rates were region dependent, being higher in corpus callosum (∼90% survival over 20 months) and motor cortex (∼70% survival) than in corticospinal tract or optic nerve (50%-60% survival). Survival rates over the first 8 months were 90%-100% in all regions except the optic nerve. In the corpus callosum, new OLs accumulate during young adulthood and are therefore likely to participate in adaptive myelination. We also found that the number of myelin internodes maintained by individual cortical OLs is stable for at least 8 months but declines ∼12% in the following year.
Collapse
Affiliation(s)
- Richa B Tripathi
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Martyna Jackiewicz
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Ian A McKenzie
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Eleni Kougioumtzidou
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Matthew Grist
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
29
|
Liu W, Klose A, Forman S, Paris ND, Wei-LaPierre L, Cortés-Lopéz M, Tan A, Flaherty M, Miura P, Dirksen RT, Chakkalakal JV. Loss of adult skeletal muscle stem cells drives age-related neuromuscular junction degeneration. eLife 2017; 6. [PMID: 28583253 PMCID: PMC5462534 DOI: 10.7554/elife.26464] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/20/2017] [Indexed: 01/04/2023] Open
Abstract
Neuromuscular junction degeneration is a prominent aspect of sarcopenia, the age-associated loss of skeletal muscle integrity. Previously, we showed that muscle stem cells activate and contribute to mouse neuromuscular junction regeneration in response to denervation (Liu et al., 2015). Here, we examined gene expression profiles and neuromuscular junction integrity in aged mouse muscles, and unexpectedly found limited denervation despite a high level of degenerated neuromuscular junctions. Instead, degenerated neuromuscular junctions were associated with reduced contribution from muscle stem cells. Indeed, muscle stem cell depletion was sufficient to induce neuromuscular junction degeneration at a younger age. Conversely, prevention of muscle stem cell and derived myonuclei loss was associated with attenuation of age-related neuromuscular junction degeneration, muscle atrophy, and the promotion of aged muscle force generation. Our observations demonstrate that deficiencies in muscle stem cell fate and post-synaptic myogenesis provide a cellular basis for age-related neuromuscular junction degeneration and associated skeletal muscle decline. DOI:http://dx.doi.org/10.7554/eLife.26464.001
Collapse
Affiliation(s)
- Wenxuan Liu
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, United States.,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, United States
| | - Alanna Klose
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, United States
| | - Sophie Forman
- Department of Biology, University of Rochester, Rochester, United States
| | - Nicole D Paris
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, United States
| | - Lan Wei-LaPierre
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, United States
| | | | - Aidi Tan
- Bioinformatics Division and Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.,TNLIST/Department of Automation, Tsinghua University, Beijing, China
| | - Morgan Flaherty
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, United States
| | - Pedro Miura
- Department of Biology, University of Nevada, Reno, United States
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, United States
| | - Joe V Chakkalakal
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, United States.,Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, United States.,The Rochester Aging Research Center, University of Rochester Medical Center, Rochester, United States
| |
Collapse
|
30
|
Kaminski HJ, Himuro K, Alshaikh J, Gong B, Cheng G, Kusner LL. Differential RNA Expression Profile of Skeletal Muscle Induced by Experimental Autoimmune Myasthenia Gravis in Rats. Front Physiol 2016; 7:524. [PMID: 27891095 PMCID: PMC5102901 DOI: 10.3389/fphys.2016.00524] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/24/2016] [Indexed: 01/14/2023] Open
Abstract
The differential susceptibility of skeletal muscle by myasthenia gravis (MG) is not well understood. We utilized RNA expression profiling of extraocular muscle (EOM), diaphragm (DIA), and extensor digitorum (EDL) of rats with experimental autoimmune MG (EAMG) to evaluate the hypothesis that muscles respond differentially to injury produced by EAMG. EAMG was induced in female Lewis rats by immunization with acetylcholine receptor purified from the electric organ of the Torpedo. Six weeks later after rats had developed weakness and serum antibodies directed against the AChR, animals underwent euthanasia and RNA profiling performed on DIA, EDL, and EOM. Profiling results were validated by qPCR. Across the three muscles between the experiment and control groups, 359 probes (1.16%) with greater than 2-fold changes in expression in 7 of 9 series pairwise comparisons from 31,090 probes were identified with approximately two-thirds being increased. The three muscles shared 16 genes with increased expression and 6 reduced expression. Functional annotation demonstrated that these common expression changes fell predominantly into categories of metabolism, stress response, and signaling. Evaluation of specific gene function indicated that EAMG led to a change to oxidative metabolism. Genes related to muscle regeneration and suppression of immune response were activated. Evidence of a differential immune response among muscles was not evident. Each muscle had a distinct RNA profile but with commonality in gene categories expressed that are focused on muscle repair, moderation of inflammation, and oxidative metabolism.
Collapse
Affiliation(s)
- Henry J Kaminski
- Department of Neurology, George Washington University Washington, DC, USA
| | - Keiichi Himuro
- Department of Neurology, Graduate School of Medicine, Chiba University Chiba, Japan
| | - Jumana Alshaikh
- Department of Neurology, George Washington University Washington, DC, USA
| | - Bendi Gong
- Department of Pediatrics, Washington University St. Louis, MO, USA
| | - Georgiana Cheng
- Department of Pathobiology, Cleveland Clinic Cleveland, OH, USA
| | - Linda L Kusner
- Pharmacology and Physiology, George Washington University Washington, DC, USA
| |
Collapse
|
31
|
Saller MM, Huettl RE, Hanuschick P, Amend AL, Alberton P, Aszodi A, Huber AB. The role of Sema3-Npn-1 signaling during diaphragm innervation and muscle development. J Cell Sci 2016; 129:3295-308. [PMID: 27466379 PMCID: PMC5047703 DOI: 10.1242/jcs.186015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/20/2016] [Indexed: 11/20/2022] Open
Abstract
Correct innervation of the main respiratory muscle in mammals, namely the thoracic diaphragm, is a crucial pre-requisite for the functionality of this muscle and the viability of the entire organism. Systemic impairment of Sema3A-Npn-1 (Npn-1 is also known as NRP1) signaling causes excessive branching of phrenic nerves in the diaphragm and into the central tendon region, where the majority of misguided axons innervate ectopic musculature. To elucidate whether these ectopic muscles are a result of misguidance of myoblast precursors due to the loss of Sema3A-Npn-1 signaling, we conditionally ablated Npn-1 in somatic motor neurons, which led to a similar phenotype of phrenic nerve defasciculation and, intriguingly, also formation of innervated ectopic muscles. We therefore hypothesize that ectopic myocyte fusion is caused by additional factors released by misprojecting growth cones. Slit2 and its Robo receptors are expressed by phrenic motor axons and migrating myoblasts, respectively, during innervation of the diaphragm. In vitro analyses revealed a chemoattractant effect of Slit2 on primary diaphragm myoblasts. Thus, we postulate that factors released by motor neuron growth cones have an influence on the migration properties of myoblasts during establishment of the diaphragm.
Collapse
Affiliation(s)
- Maximilian Michael Saller
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Nußbaumstraße 20, Munich 80336, Germany Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg 85764, Germany
| | - Rosa-Eva Huettl
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg 85764, Germany Institute of Physiology, Department of Physiological Genomics, Ludwig-Maximilians-University (LMU), Schillerstraße 46, Munich 80336, Germany
| | - Philipp Hanuschick
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg 85764, Germany
| | - Anna-Lena Amend
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg 85764, Germany
| | - Paolo Alberton
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Nußbaumstraße 20, Munich 80336, Germany
| | - Attila Aszodi
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Nußbaumstraße 20, Munich 80336, Germany
| | - Andrea B Huber
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg 85764, Germany Bernstein Network for Computational Neuroscience, Albert-Ludwigs-University, Freiburg, Germany
| |
Collapse
|
32
|
Fuccillo MV, Földy C, Gökce Ö, Rothwell PE, Sun GL, Malenka RC, Südhof TC. Single-Cell mRNA Profiling Reveals Cell-Type-Specific Expression of Neurexin Isoforms. Neuron 2015; 87:326-40. [PMID: 26182417 DOI: 10.1016/j.neuron.2015.06.028] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 06/10/2015] [Accepted: 06/17/2015] [Indexed: 12/23/2022]
Abstract
Neurexins are considered central organizers of synapse architecture that are implicated in neuropsychiatric disorders. Expression of neurexins in hundreds of alternatively spliced isoforms suggested that individual neurons might exhibit a cell-type-specific neurexin expression pattern (a neurexin code). To test this hypothesis, we quantified the single-cell levels of neurexin isoforms and other trans-synaptic cell-adhesion molecules by microfluidics-based RT-PCR. We show that the neurexin repertoire displays pronounced cell-type specificity that is remarkably consistent within each type of neuron. Furthermore, we uncovered region-specific regulation of neurexin transcription and splice-site usage. Finally, we demonstrate that the transcriptional profiles of neurexins can be altered in an experience-dependent fashion by exposure to a drug of abuse. Our data provide evidence of cell-type-specific expression patterns of multiple neurexins at the single-cell level and suggest that expression of synaptic cell-adhesion molecules overlaps with other key features of cellular identity and diversity.
Collapse
Affiliation(s)
- Marc V Fuccillo
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Csaba Földy
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Özgün Gökce
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Patrick E Rothwell
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Gordon L Sun
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
33
|
Liu W, Wei-LaPierre L, Klose A, Dirksen RT, Chakkalakal JV. Inducible depletion of adult skeletal muscle stem cells impairs the regeneration of neuromuscular junctions. eLife 2015; 4. [PMID: 26312504 PMCID: PMC4579298 DOI: 10.7554/elife.09221] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/26/2015] [Indexed: 01/01/2023] Open
Abstract
Skeletal muscle maintenance depends on motor innervation at neuromuscular junctions (NMJs). Multiple mechanisms contribute to NMJ repair and maintenance; however muscle stem cells (satellite cells, SCs), are deemed to have little impact on these processes. Therefore, the applicability of SC studies to attenuate muscle loss due to NMJ deterioration as observed in neuromuscular diseases and aging is ambiguous. We employed mice with an inducible Cre, and conditionally expressed DTA to deplete or GFP to track SCs. We found SC depletion exacerbated muscle atrophy and type transitions connected to neuromuscular disruption. Also, elevated fibrosis and further declines in force generation were specific to SC depletion and neuromuscular disruption. Fate analysis revealed SC activity near regenerating NMJs. Moreover, SC depletion aggravated deficits in reinnervation and post-synaptic morphology at regenerating NMJs. Therefore, our results propose a mechanism whereby further NMJ and skeletal muscle decline ensues upon SC depletion and neuromuscular disruption. DOI:http://dx.doi.org/10.7554/eLife.09221.001 New muscle fibers are made throughout our lives to replace those that have been damaged by normal wear and tear, and to meet new physical demands. These new muscle fibers develop from a pool of muscle stem cells. To create and maintain fully working muscles, nerve cells called motor neurons must also properly attach to the muscle fibers. These nerve cells transmit messages from the brain that tell the muscles what to do. If the muscle-nerve connections do not form correctly, or are severed, muscles can waste away. This may occur as part of a neuromuscular disease, and also happens to some extent as a normal part of aging. It was thought that muscle stem cells do not affect how the muscle-nerve connections form. By studying genetically engineered mice, Liu et al. now show that this is not the case. These mice had modifications to their muscle stem cells that allowed the number of these cells to be artificially reduced, and some cells also produced a fluorescent protein that allowed them to be tracked. Surgically severing some of the muscle-nerve connections in the mice triggered the rebuilding of the connections, but also weakened the muscles and caused some disease-related changes in the muscle tissue. During the healing process, the muscle stem cells are active near the regenerating connections. Reducing the number of muscle stem cells in the mice while these broken connections were healing further weakened the muscles. Closer inspection of the muscle-nerve connections also revealed poorer quality connections were formed in the stem-cell deficient mice. Further study of how stem cells help to form strong nerve-muscle connections may allow scientists to develop new treatments for age- or disease-related muscle loss. DOI:http://dx.doi.org/10.7554/eLife.09221.002
Collapse
Affiliation(s)
- Wenxuan Liu
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, United States
| | - Lan Wei-LaPierre
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, United States
| | - Alanna Klose
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, United States
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, United States
| | - Joe V Chakkalakal
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, United States
| |
Collapse
|
34
|
Tintignac LA, Brenner HR, Rüegg MA. Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting. Physiol Rev 2015; 95:809-52. [DOI: 10.1152/physrev.00033.2014] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The neuromuscular junction is the chemical synapse between motor neurons and skeletal muscle fibers. It is designed to reliably convert the action potential from the presynaptic motor neuron into the contraction of the postsynaptic muscle fiber. Diseases that affect the neuromuscular junction may cause failure of this conversion and result in loss of ambulation and respiration. The loss of motor input also causes muscle wasting as muscle mass is constantly adapted to contractile needs by the balancing of protein synthesis and protein degradation. Finally, neuromuscular activity and muscle mass have a major impact on metabolic properties of the organisms. This review discusses the mechanisms involved in the development and maintenance of the neuromuscular junction, the consequences of and the mechanisms involved in its dysfunction, and its role in maintaining muscle mass during aging. As life expectancy is increasing, loss of muscle mass during aging, called sarcopenia, has emerged as a field of high medical need. Interestingly, aging is also accompanied by structural changes at the neuromuscular junction, suggesting that the mechanisms involved in neuromuscular junction maintenance might be disturbed during aging. In addition, there is now evidence that behavioral paradigms and signaling pathways that are involved in longevity also affect neuromuscular junction stability and sarcopenia.
Collapse
Affiliation(s)
- Lionel A. Tintignac
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Hans-Rudolf Brenner
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Markus A. Rüegg
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| |
Collapse
|
35
|
Gutierrez-Aguilar R, Kim DH, Casimir M, Dai XQ, Pfluger PT, Park J, Haller A, Donelan E, Park J, D’Alessio D, Woods SC, MacDonald PE, Seeley RJ. The role of the transcription factor ETV5 in insulin exocytosis. Diabetologia 2014; 57:383-91. [PMID: 24190582 PMCID: PMC3947344 DOI: 10.1007/s00125-013-3096-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/09/2013] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS Genome-wide association studies have revealed an association of the transcription factor ETS variant gene 5 (ETV5) with human obesity. However, its role in glucose homeostasis and energy balance is unknown. METHODS Etv5 knockout (KO) mice were monitored weekly for body weight (BW) and food intake. Body composition was measured at 8 and 16 weeks of age. Glucose metabolism was studied, and glucose-stimulated insulin secretion was measured in vivo and in vitro. RESULTS Etv5 KO mice are smaller and leaner, and have a reduced BW and lower fat mass than their wild-type controls on a chow diet. When exposed to a high-fat diet, KO mice are resistant to diet-induced BW gain. Despite a greater insulin sensitivity, KO mice have profoundly impaired glucose tolerance associated with impaired insulin secretion. Morphometric analysis revealed smaller islets and a reduced beta cell size in the pancreatic islets of Etv5 KO mice. Knockdown of ETV5 in an insulin-secreting cell line or beta cells from human donors revealed intact mitochondrial and Ca(2+) channel activity, but reduced insulin exocytosis. CONCLUSION/INTERPRETATION This work reveals a critical role for ETV5 in specifically regulating insulin secretion both in vitro and in vivo.
Collapse
Affiliation(s)
- Ruth Gutierrez-Aguilar
- Department of Internal Medicine, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH 45237, USA
| | - Dong-Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul, South Korea
| | - Marina Casimir
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Xiao-Qing Dai
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Paul T. Pfluger
- Institute for Diabetes and Obesity, Helmholtz Centre Munich, Neuherberg, Germany
| | - Jongsun Park
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - April Haller
- Department of Internal Medicine, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH 45237, USA
| | - Elizabeth Donelan
- Department of Internal Medicine, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH 45237, USA
| | - Jisoo Park
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - David D’Alessio
- Department of Internal Medicine, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH 45237, USA
| | - Stephen C. Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Patrick E. MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Randy J. Seeley
- Department of Internal Medicine, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH 45237, USA
| |
Collapse
|
36
|
Zampieri N, Jessell TM, Murray AJ. Mapping sensory circuits by anterograde transsynaptic transfer of recombinant rabies virus. Neuron 2014; 81:766-78. [PMID: 24486087 DOI: 10.1016/j.neuron.2013.12.033] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2013] [Indexed: 01/14/2023]
Abstract
Primary sensory neurons convey information from the external world to relay circuits within the CNS, but the identity and organization of the neurons that process incoming sensory information remains sketchy. Within the CNS, viral tracing techniques that rely on retrograde transsynaptic transfer provide a powerful tool for delineating circuit organization. Viral tracing of the circuits engaged by primary sensory neurons has, however, been hampered by the absence of a genetically tractable anterograde transfer system. In this study, we demonstrate that rabies virus can infect sensory neurons in the somatosensory system, is subject to anterograde transsynaptic transfer from primary sensory to spinal target neurons, and can delineate output connectivity with third-order neurons. Anterograde transsynaptic transfer is a feature shared by other classes of primary sensory neurons, permitting the identification and potentially the manipulation of neural circuits processing sensory feedback within the mammalian CNS.
Collapse
Affiliation(s)
- Niccolò Zampieri
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Kavli Institute for Brain Science, Columbia University, New York, NY 10032 USA
| | - Thomas M Jessell
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Kavli Institute for Brain Science, Columbia University, New York, NY 10032 USA.
| | - Andrew J Murray
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Kavli Institute for Brain Science, Columbia University, New York, NY 10032 USA
| |
Collapse
|
37
|
Abstract
Muscle-specific kinase (MuSK) is essential for each step in neuromuscular synapse formation. Before innervation, MuSK initiates postsynaptic differentiation, priming the muscle for synapse formation. Approaching motor axons recognize the primed, or prepatterned, region of muscle, causing motor axons to stop growing and differentiate into specialized nerve terminals. MuSK controls presynaptic differentiation by causing the clustering of Lrp4, which functions as a direct retrograde signal for presynaptic differentiation. Developing synapses are stabilized by neuronal Agrin, which is released by motor nerve terminals and binds to Lrp4, a member of the low-density lipoprotein receptor family, stimulating further association between Lrp4 and MuSK and increasing MuSK kinase activity. In addition, MuSK phosphorylation is stimulated by an inside-out ligand, docking protein-7 (Dok-7), which is recruited to tyrosine-phosphorylated MuSK and increases MuSK kinase activity. Mutations in MuSK and in genes that function in the MuSK signaling pathway, including Dok-7, cause congenital myasthenia, and autoantibodies to MuSK, Lrp4, and acetylcholine receptors are responsible for myasthenia gravis.
Collapse
|
38
|
Molecular mechanisms underlying maturation and maintenance of the vertebrate neuromuscular junction. Trends Neurosci 2012; 35:441-53. [PMID: 22633140 DOI: 10.1016/j.tins.2012.04.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/09/2012] [Accepted: 04/15/2012] [Indexed: 01/22/2023]
Abstract
The vertebrate neuromuscular junction (NMJ), a peripheral synapse formed between motoneuron and skeletal muscle, is characterized by a protracted postnatal period of maturation and life-long maintenance. In neuromuscular disorders such as congenital myasthenic syndromes (CMSs), disruptions of NMJ maturation and/or maintenance are frequently observed. In particular, defective neuromuscular transmission associated with structural and molecular abnormalities at the pre- and postsynaptic membranes, as well as at the synaptic cleft, has been reported in these patients. Here, we review recent advances in the understanding of molecular and cellular events that mediate NMJ maturation and maintenance. The underlying regulatory mechanisms, including key molecular regulators at the presynaptic nerve terminal, synaptic cleft, and postsynaptic muscle membrane, are discussed.
Collapse
|
39
|
Schachterle W, Rojas A, Xu SM, Black BL. ETS-dependent regulation of a distal Gata4 cardiac enhancer. Dev Biol 2011; 361:439-49. [PMID: 22056786 DOI: 10.1016/j.ydbio.2011.10.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/30/2011] [Accepted: 10/08/2011] [Indexed: 01/10/2023]
Abstract
The developing heart contains an inner tube of specialized endothelium known as endocardium, which performs multiple essential functions. In spite of the essential role of the endocardium in heart development and function, the transcriptional pathways that regulate its development remain largely undefined. GATA4 is a zinc finger transcription factor that is expressed in multiple cardiovascular lineages and is required for endocardial cushion development and embryonic viability, but the transcriptional pathways upstream of Gata4 in the endocardium and its derivatives in the endocardial cushions are unknown. Here, we describe a distal enhancer from the mouse Gata4 gene that is briefly active in multiple cardiac lineages early in cardiac development but restricts to the endocardium where it remains active through cardiogenesis. The activity of this Gata4 cardiac enhancer in transgenic embryos and in cultured aortic endothelial cells is dependent on four ETS sites. To identify which ETS transcription factors might be involved in Gata4 regulation via the ETS sites in the enhancer, we determined the expression profile of 24 distinct ETS factors in embryonic mouse hearts. Among multiple ETS transcripts present, ETS1, FLI1, ETV1, ETV5, ERG, and ETV6 were the most abundant in the early embryonic heart. We found that ETS1, FLI1, and ERG were strongly expressed in the heart at embryonic day 8.5 and that ETS1 and ERG bound to the endogenous Gata4 enhancer in cultured endothelial cells. Thus, these studies define the ETS expression profile in the early embryonic heart and identify an ETS-dependent enhancer from the Gata4 locus.
Collapse
Affiliation(s)
- William Schachterle
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
| | | | | | | |
Collapse
|
40
|
Daws LC, Gould GG. Ontogeny and regulation of the serotonin transporter: providing insights into human disorders. Pharmacol Ther 2011; 131:61-79. [PMID: 21447358 DOI: 10.1016/j.pharmthera.2011.03.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 12/17/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) was one of the first neurotransmitters for which a role in development was identified. Pharmacological and gene knockout studies have revealed a critical role for 5-HT in numerous processes, including cell division, neuronal migration, differentiation and synaptogenesis. An excess in brain 5-HT appears to be mechanistically linked to abnormal brain development, which in turn is associated with neurological disorders. Ambient levels of 5-HT are controlled by a vast orchestra of proteins, including a multiplicity of pre- and post-synaptic 5-HT receptors, heteroreceptors, enzymes and transporters. The 5-HT transporter (SERT, 5-HTT) is arguably the most powerful regulator of ambient extracellular 5-HT. SERT is the high-affinity uptake mechanism for 5-HT and exerts tight control over the strength and duration of serotonergic neurotransmission. Perturbation of its expression level or function has been implicated in many diseases, prominent among them are psychiatric disorders. This review synthesizes existing information on the ontogeny of SERT during embryonic and early postnatal development though adolescence, along with factors that influence its expression and function during these critical developmental windows. We integrate this knowledge to emphasize how inappropriate SERT expression or its dysregulation may be linked to the pathophysiology of psychiatric, cardiovascular and gastrointestinal diseases.
Collapse
Affiliation(s)
- Lynette C Daws
- Department of Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7756, San Antonio, TX 78229-3900, USA.
| | | |
Collapse
|
41
|
Expression of dopamine pathway genes in the midbrain is independent of known ETS transcription factor activity. J Neurosci 2010; 30:9224-7. [PMID: 20610757 DOI: 10.1523/jneurosci.1977-10.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In nematodes, the ETS-family transcription factor ast-1 regulates multiple genes comprising the dopamine (DA) neuron phenotype, including biosynthetic enzymes and transporters. ETS transcription factors are hypothesized to play a similar role in vertebrates, and based on its expression in the adult mouse midbrain, Etv5/ERM has been proposed as a regulator of DA gene expression in the substantia nigra (SN) and ventral tegmental area (VTA). Here we show that Etv5 expression is not detectable until postnatal stages in the midbrain, well after development of the DA system, and that Etv5 knock-out and control mice show comparable tyrosine hydroxylase and dopamine transporter expression in the embryonic and adult midbrain. Other known members of the ETS family do not have expression patterns that are consistent with a role in DA gene regulation in the SN/VTA. These findings suggest that the ETS factors, while required for the generation of the DA phenotype in nematodes, do not play such a role in the mouse midbrain.
Collapse
|
42
|
Chipman PH, Franz CK, Nelson A, Schachner M, Rafuse VF. Neural cell adhesion molecule is required for stability of reinnervated neuromuscular junctions. Eur J Neurosci 2010; 31:238-49. [PMID: 20074227 DOI: 10.1111/j.1460-9568.2009.07049.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies examining the etiology of motoneuron diseases usually focus on motoneuron death as the defining pathophysiology of the disease. However, impaired neuromuscular transmission and synapse withdrawal often precede cell death, raising the possibility that abnormalities in synaptic function contribute to disease onset. Although little is known about the mechanisms maintaining the synaptic integrity of neuromuscular junctions (NMJs), Drosophila studies suggest that Fasciclin II plays an important role. Inspired by these studies we used a reinnervation model of synaptogenesis to analyze neuromuscular function in mice lacking neural cell adhesion molecule (NCAM), the Fasciclin II vertebrate homolog. Our results showed that the recovery of contractile force was the same in wild-type and NCAM-/- mice at 1 month after nerve injury, indicating that endplates were appropriately reformed. This normality was only transient because the contractile force and myofiber number decreased at 3 months after injury in NCAM-/- mice. Both declined further 3 months later. Myofibers degenerated, not because motoneurons died but because synapses were withdrawn. Although neurotransmission was initially normal at reinnervated NCAM-/- NMJs, it was significantly compromised 3 months later. Interestingly, the selective ablation of NCAM from motoneurons, or muscle fibers, did not mimic the deficits observed in reinnervated NCAM-/- mice. Taken together, these results indicate that NCAM is required to maintain normal synaptic function at reinnervated NMJs, although its loss pre-synaptically or post-synaptically is not sufficient to induce synaptic destabilization. Consideration is given to the role of NCAM in terminal Schwann cells for maintaining synaptic integrity and how NCAM dysfunction may contribute to motoneuron disorders.
Collapse
Affiliation(s)
- Peter H Chipman
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | |
Collapse
|
43
|
Tyagi G, Carnes K, Morrow C, Kostereva NV, Ekman GC, Meling DD, Hostetler C, Griswold M, Murphy KM, Hess RA, Hofmann MC, Cooke PS. Loss of Etv5 decreases proliferation and RET levels in neonatal mouse testicular germ cells and causes an abnormal first wave of spermatogenesis. Biol Reprod 2009; 81:258-66. [PMID: 19369650 DOI: 10.1095/biolreprod.108.075200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mice that are ets variant gene 5 (ETV5) null (Etv5(-/-)) undergo the first wave of spermatogenesis but lose all spermatogonial stem cells (SSCs) during this time. The SSC loss in Etv5(-/-) mice begins during the neonatal period, suggesting a role for ETV5 in SSC self-renewal during this period. Herein, we show that Etv5 mRNA was present in perinatal mouse testis and that ETV5 was expressed in fetal Sertoli cells and by germ cells and Sertoli cells during the neonatal period. Transplantation of Etv5(-/-) germ cells failed to establish spermatogenesis in W/W(v) mice testes, indicating that germ cell ETV5 has a key role in establishment or self-renewal of transplanted SSCs. The SSC self-renewal is stimulated by glial cell-derived neurotrophic factor (GDNF) acting through the RET/GDNF family receptor alpha 1 (GFRA1) receptor complex in SSCs. Immunohistochemistry, quantitative PCR, and laser capture microdissection revealed decreased RET mRNA and protein expression in spermatogonia of neonatal Etv5(-/-) mice by Postnatal Days 4-8, indicating that disrupted GDNF/RET/GFRA1 signaling may occur before initial spermatogonial stem/progenitor cell decrease. Etv5(-/-) spermatogonia had reduced proliferation in vivo and in vitro. Decreased cell proliferation may cause the observed decreases in the number of type A spermatogonia (Postnatal Day 17) and daily sperm production (Postnatal Day 30) in Etv5(-/-) mice, indicating quantitative impairments in the first wave of spermatogenesis. In conclusion, ETV5 is expressed beginning in fetal Sertoli cells and can potentially have effects on neonatal Sertoli cells and germ cells. In addition, ETV5 has critical effects on neonatal spermatogonial proliferation, which may involve impaired signaling through the RET receptor.
Collapse
Affiliation(s)
- Gaurav Tyagi
- Department of Veterinary Biosciences and Pathobiology, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jedlicka P, Sui X, Sussel L, Gutierrez-Hartmann A. Ets transcription factors control epithelial maturation and transit and crypt-villus morphogenesis in the mammalian intestine. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1280-90. [PMID: 19264912 DOI: 10.2353/ajpath.2009.080409] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Members of the Ets transcription factor family are widely expressed in both the developing and mature mammalian intestine, but their biological functions remain primarily uncharacterized. We used a dominant repressor transgene approach to probe the function of epithelial Ets factors in the homeostasis of the crypt-villus unit, the functional unit of the small intestine. We show that targeted expression in small intestinal epithelium of a fusion protein composed of the Engrailed repressor domain and the Erm DNA-binding domain (En/Erm) results in marked disruption of normal crypt-villus homeostasis, including a cell-autonomous disturbance of epithelial maturation, increased epithelial transit, severe villus dysmorphogenesis, and crypt dysmorphogenesis. The epithelial maturation disturbance is independent of the regulation of TGFbetaRII levels, in contrast to Ets-mediated epithelial differentiation during development; rather, regulation of Cdx2 expression may play a role. The villus dysmorphogenesis is independent of alterations in the crypt-villus boundary and inappropriate beta-catenin activation, and thus appears to represent a new mechanism controlling villus architectural organization. An Analysis of animals mosaic for En/Erm expression suggests that crypt nonautonomous mechanisms underlie the crypt dysmorphogenesis phenotype. Our studies thus uncover novel Ets-regulated pathways of intestinal homeostasis in vivo. Interestingly, the overall En/Erm phenotype of disturbed crypt-villus homeostasis is consistent with recently identified Ets function(s) in the restriction of intestinal epithelial tumorigenesis.
Collapse
Affiliation(s)
- Paul Jedlicka
- Department of Pathology, University of Colorado Denver, Anschutz Medical Center, PO Box 6511, MS 8104, Aurora CO 80045, USA.
| | | | | | | |
Collapse
|
45
|
Jedlicka P, Gutierrez-Hartmann A. Ets transcription factors in intestinal morphogenesis, homeostasis and disease. Histol Histopathol 2008; 23:1417-24. [PMID: 18785124 DOI: 10.14670/hh-23.1417] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ets transcription factors comprise a large family of sequence-specific regulators of gene expression with important and diverse roles in development and disease. Most Ets family members are expressed in the developing and/or mature intestine, frequently in a compartment-specific and temporally dynamic manner. However, with the exception of the highly expressed Elf3, involved in embryonic epithelial differentiation, little is known about Ets functions in intestinal development and homeostasis. Ets factors show altered expression in colon cancer, where they regulate pathways relevant to tumor progression. Ets factors also likely act as important modifiers of non-neoplastic intestinal disease by regulating pathways relevant to tissue injury and repair. Despite a large body of published work on Ets biology, much remains to be learned about the precise functions of this large and diverse gene family in intestinal morphogenesis, homeostasis, and both neoplastic and non-neoplastic pathology.
Collapse
Affiliation(s)
- Paul Jedlicka
- Department of Pathology, University of Colorado Denver, Aurora CO 80045, USA.
| | | |
Collapse
|
46
|
Narboux-Nême N, Pavone LM, Avallone L, Zhuang X, Gaspar P. Serotonin transporter transgenic (SERTcre) mouse line reveals developmental targets of serotonin specific reuptake inhibitors (SSRIs). Neuropharmacology 2008; 55:994-1005. [PMID: 18789954 DOI: 10.1016/j.neuropharm.2008.08.020] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 08/08/2008] [Accepted: 08/11/2008] [Indexed: 12/18/2022]
Abstract
The serotonin transporter gene (SLC6A4; synonyms, SERT, 5-HTT) is expressed much more broadly during development than in adulthood. To obtain a full picture of all sites of SERT expression during development we used a new mouse model where Cre recombinase was inserted into the gene encoding the serotonin transporter. Two reporter mouse lines, ROSA26R and the Tau(mGFP), allowed to map all the cells that express SERT at any point during development. Combined LacZ histochemistry and GFP immunolabelling showed neuronal cell bodies and axon fiber tracts. Earliest recombination in embryos was visible in the periphery in the heart and liver by E10.5 followed by recombination in the brain in raphe serotonergic neurons by E12.5. Further, recombination in non-serotonin neurons was visible in the choroid plexus, roof plate, and neural crest derivatives; by E15.5, recombination was found in the dorsal thalamus, cingulate cortex, CA3 field of the hippocampus, retinal ganglion cells, superior olivary nucleus and cochlear nucleus. Postnatally, SERT mediated recombination was visible in the medial prefrontal cortex and layer VI neurons in the isocortex. Recombined cells were co-labelled with Neu-N, but not with GAD67, and were characterized by long range projections (corpus callosum, fornix, thalamocortical). This fate map of serotonin transporter expressing cells emphasizes the broad expression of SERT in non-serotonin neurons during development and clarifies the localization of SERT expression in the hippocampus and limbic cortex. The identification of targets of SSRIs and serotonin releasers during embryonic and early postnatal life helps understanding the very diverse physiological consequences of administration of these drugs during development.
Collapse
|
47
|
Chevessier F, Girard E, Molgo J, Bartling S, Koenig J, Hantai D, Witzemann V. A mouse model for congenital myasthenic syndrome due to MuSK mutations reveals defects in structure and function of neuromuscular junctions. Hum Mol Genet 2008; 17:3577-95. [DOI: 10.1093/hmg/ddn251] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
48
|
Wang J, Ruan NJ, Qian L, Lei WL, Chen F, Luo ZG. Wnt/beta-catenin signaling suppresses Rapsyn expression and inhibits acetylcholine receptor clustering at the neuromuscular junction. J Biol Chem 2008; 283:21668-75. [PMID: 18541538 DOI: 10.1074/jbc.m709939200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The dynamic interaction between positive and negative signals is necessary for remodeling of postsynaptic structures at the neuromuscular junction. Here we report that Wnt3a negatively regulates acetylcholine receptor (AChR) clustering by repressing the expression of Rapsyn, an AChR-associated protein essential for AChR clustering. In cultured myotubes, treatment with Wnt3a or overexpression of beta-catenin, the condition mimicking the activation of the Wnt canonical pathway, inhibited Agrin-induced formation of AChR clusters. Moreover, Wnt3a treatment promoted dispersion of AChR clusters, and this effect was prevented by DKK1, an antagonist of the Wnt canonical pathway. Next, we investigated possible mechanisms underlying Wnt3a regulation of AChR clustering in cultured muscle cells. Interestingly, we found that Wnt3a treatment caused a decrease in the protein level of Rapsyn. In addition, Rapsyn promoter activity in cultured muscle cells was inhibited by the treatment with Wnt3a or beta-catenin overexpression. Forced expression of Rapsyn driven by a promoter that is not responsive to Wnt3a prevented the dispersing effect of Wnt3a on AChR clusters, suggesting that Wnt3a indeed acts to disperse AChR clusters by down-regulating the expression of Rapsyn. The role of Wnt/beta-catenin signaling in dispersing AChR clusters was also investigated in vivo by electroporation of Wnt3a or beta-catenin into mouse limb muscles, where ectopic Wnt3a or beta-catenin caused disassembly of postsynaptic apparatus. Together, these results suggest that Wnt/beta-catenin signaling plays a negative role for postsynaptic differentiation at the neuromuscular junction, probably by regulating the expression of synaptic proteins, such as Rapsyn.
Collapse
Affiliation(s)
- Jia Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, China
| | | | | | | | | | | |
Collapse
|
49
|
Wang Z, Li L, Goulding M, Frank E. Early postnatal development of reciprocal Ia inhibition in the murine spinal cord. J Neurophysiol 2008; 100:185-96. [PMID: 18463181 DOI: 10.1152/jn.90354.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pathway mediating reciprocal inhibition from muscle spindle afferents (Ia axons) to motoneurons (MNs) supplying antagonist muscles has been well studied in adult cats, but little is known about how this disynaptic pathway develops. As a basis for studying its development, we characterized this pathway in mice during the first postnatal week, focusing on the projection of quadriceps (Q) Ia axons to posterior biceps-semitendinosis (PBSt) MNs via Ia inhibitory interneurons. Synaptic potentials in PBSt MNs evoked by Q nerve stimulation are mediated disynaptically and are blocked by strychnine, implying that glycine is the major inhibitory transmitter as in adult cats. The specificity of neuronal connections in this reflex pathway is already high at birth; Q afferents evoke inhibitory synaptic potentials in PBSt MNs, but afferents supplying the adductor muscle do not. Similar to this disynaptic pathway in cats, Renshaw cells inhibit the interposed Ia interneurons, as they reduce the disynaptic input from Q axons but do not inhibit PBSt MNs directly. Reciprocal inhibition functionally inhibits the monosynaptic excitatory reflex in PBSt MNs by P3, but this functional inhibition is weak at P1. Finally, deletion of the transcription factor Pax6, which is required for the development of V1-derived Renshaw cells, does not block development of this pathway. This suggests either that Pax6 is not required for the phenotypic development of all V1-derived spinal interneurons or that these inhibitory interneurons are not derived from V1 precursors.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | | | | | |
Collapse
|