1
|
Chen Z, Liu Y, Yang Y, Wang L, Qin M, Jiang Z, Xu M, Zhang S. Whole-brain mapping of basal forebrain cholinergic neurons reveals a long-range reciprocal input-output loop between distinct subtypes. SCIENCE ADVANCES 2025; 11:eadt1617. [PMID: 40446047 PMCID: PMC12124396 DOI: 10.1126/sciadv.adt1617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 04/24/2025] [Indexed: 06/02/2025]
Abstract
Basal forebrain cholinergic neurons (BFCNs) influence cognition and emotion through specific acetylcholine release in various brain regions, including the prefrontal cortices and basolateral amygdala (BLA). Acetylcholine release is controlled by distinct BFCN subtypes, modulated by excitatory and inhibitory inputs. However, the organization of the whole-brain input-output networks of these subtypes remains unclear. Here, we identified two distinct BFCN subtypes-BFCN→ACA and BFCN→BLA-innervating the anterior cingulate cortex (ACA) and BLA, each with unique distributions, electrophysiological properties, and projection patterns. Combining rabies-virus-assisted mapping and triple-plex RNAscope hybridization, we characterized their whole-brain input networks, identifying unique excitatory and shared inhibitory inputs for these subtypes. Moreover, our results reveal a long-range reciprocal input-output loop: BFCN→ACA neurons target the isocortex, their shared excitatory-input source, whereas BFCN→BLA neurons target shared inhibitory-input sources such as the striatum and pallidum, thus enabling dynamic interactions among these BFCN subtypes. Our study deepens understanding of cholinergic modulation in cognition and emotion and provides insights into their functional interactions.
Collapse
Affiliation(s)
- Zhaonan Chen
- Department of Ophthalmology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanmei Liu
- Department of Ophthalmology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yunqi Yang
- Department of Ophthalmology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lizhao Wang
- Department of Ophthalmology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Meiling Qin
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhishan Jiang
- Department of Ophthalmology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Xu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Siyu Zhang
- Department of Ophthalmology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
2
|
Fernandes-Henriques C, Guetta Y, Sclar MG, Zhang R, Miura Y, Surrence KR, Friedman AK, Likhtik E. Infralimbic Projections to the Substantia Innominata-Ventral Pallidum Constrain Defensive Behavior during Extinction Learning. J Neurosci 2025; 45:e1001242025. [PMID: 40262898 PMCID: PMC12121716 DOI: 10.1523/jneurosci.1001-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
Fear extinction is critical for decreasing fear responses to a stimulus that is no longer threatening. While it is known that the infralimbic (IL) region of the medial prefrontal cortex mediates retrieval of an extinction memory through projections to the basolateral amygdala (BLA), IL pathways contributing to extinction learning are not well understood. Given the dense projection from the IL to the substantia innominata-ventral pallidum (SI/VP), an area that processes aversive and appetitive cues, we compared how the IL→SI/VP functions in extinction compared with the IL→BLA pathway in male mice. Using retrograde tracing, we demonstrate that IL projections to the SI/VP originate from superficial [Layer (L)2/3] and deep cortical layers (L5) and that they are denser than IL projections to the BLA. Next, combining retrograde tracing with labeling for the immediate early gene cFos, we show increased activity of L5 IL→SI/VP output during extinction learning and increased activity of L2/3 IL→BLA output during extinction retrieval. Then, using in vitro recordings, we demonstrate that neurons in the IL→SI/VP pathway are more excitable during extinction learning than retrieval. Finally, using optogenetics, we inactivate the IL→SI/VP pathway and show that this increases defensive freezing during extinction learning and re-extinction, without affecting memory. Taken together, we demonstrate that the IL→SI/VP pathway is active during extinction learning, when it constrains the defensive freezing response. We propose that the IL acts as a switchboard operator, increasing IL L5 communication with the SI/VP during extinction learning and IL L2/3 communication with the BLA during extinction retrieval.
Collapse
Affiliation(s)
- Carolina Fernandes-Henriques
- Biology Program, The Graduate Center, CUNY, New York 10016
- Departments of Biological Sciences, Hunter College, CUNY, New York 10065
| | - Yuval Guetta
- Psychology, Hunter College, CUNY, New York 10065
| | - Mia G Sclar
- Departments of Biological Sciences, Hunter College, CUNY, New York 10065
| | - Rebecca Zhang
- Departments of Biological Sciences, Hunter College, CUNY, New York 10065
| | - Yuka Miura
- Biology Program, The Graduate Center, CUNY, New York 10016
- Departments of Biological Sciences, Hunter College, CUNY, New York 10065
| | | | - Allyson K Friedman
- Biology Program, The Graduate Center, CUNY, New York 10016
- Departments of Biological Sciences, Hunter College, CUNY, New York 10065
| | - Ekaterina Likhtik
- Biology Program, The Graduate Center, CUNY, New York 10016
- Departments of Biological Sciences, Hunter College, CUNY, New York 10065
| |
Collapse
|
3
|
Wang H, Ortega HK, Kelly EB, Indajang J, Savalia NK, Glaeser-Khan S, Feng J, Li Y, Kaye AP, Kwan AC. Frontal noradrenergic and cholinergic transients exhibit distinct spatiotemporal dynamics during competitive decision-making. SCIENCE ADVANCES 2025; 11:eadr9916. [PMID: 40138407 PMCID: PMC11939063 DOI: 10.1126/sciadv.adr9916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/20/2025] [Indexed: 03/29/2025]
Abstract
Norepinephrine (NE) and acetylcholine (ACh) are crucial for learning and decision-making. In the cortex, NE and ACh are released transiently at specific sites along neuromodulatory axons, but how the spatiotemporal patterns of NE and ACh signaling link to behavioral events is unknown. Here, we use two-photon microscopy to visualize neuromodulatory signals in the premotor cortex (medial M2) as mice engage in a competitive matching pennies game. Spatially, NE signals are more segregated with choice and outcome encoded at distinct locations, whereas ACh signals can multiplex and reflect different behavioral correlates at the same site. Temporally, task-driven NE transients were more synchronized and peaked earlier than ACh transients. To test functional relevance, we stimulated neuromodulatory signals using optogenetics to find that NE, but not ACh, increases the animals' propensity to explore alternate options. Together, the results reveal distinct subcellular spatiotemporal patterns of ACh and NE transients during decision-making in mice.
Collapse
Affiliation(s)
- Hongli Wang
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Heather K. Ortega
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Emma B. Kelly
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jonathan Indajang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Neil K. Savalia
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Samira Glaeser-Khan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Alfred P. Kaye
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- VA National Center for PTSD Clinical Neuroscience Division, West Haven, CT 06477, USA
- Wu Tsai Institute, New Haven, CT 06511, USA
| | - Alex C. Kwan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
4
|
Moss EH, Tantry EK, Le E, Chin PS, Ambrosi P, Brandel-Ankrapp KL, Arenkiel BR. Distinct Patterns of PV and SST GABAergic Neuronal Activity in the Basal Forebrain during Olfactory-Guided Behavior in Mice. J Neurosci 2025; 45:e0200242025. [PMID: 39965928 PMCID: PMC11949486 DOI: 10.1523/jneurosci.0200-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/20/2025] Open
Abstract
Sensory perception relies on the flexible detection and interpretation of stimuli across variable contexts, conditions, and behavioral states. The basal forebrain (BF) is a hub for behavioral state regulation, supplying dense cholinergic and GABAergic projections to various brain regions involved in sensory processing. Of GABAergic neurons in the BF, parvalbumin (PV) and somatostatin (SST) subtypes serve opposing roles toward regulating behavioral states. To elucidate the role of BF circuits in sensory-guided behavior, we investigated GABAergic signaling dynamics during odor-guided decision-making in male and female mice. We used fiber photometry to record cell type-specific BF activity during an odor discrimination task and correlated temporal patterns of PV and SST neuronal activity with olfactory task performance. We found that while both PV-expressing and SST-expressing GABAergic neurons were excited during trial initiation, PV neurons were selectively suppressed by reward, whereas SST neurons were excited. Notably, chemogenetic inhibition of BF SST neurons modestly altered decision bias to favor reward seeking, while optogenetic inhibition of BF PV neurons during odor presentations improved discrimination accuracy. Together, these results suggest that the bidirectional activity of GABAergic BF neuron subtypes distinctly influence perception and decision-making during olfactory-guided behavior.
Collapse
Affiliation(s)
- Elizabeth H Moss
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 97030
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon 97239
| | - Evelyne K Tantry
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 97030
| | - Elaine Le
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 97030
| | - Pey-Shyuan Chin
- Neuroscience Graduate Program, Baylor College of Medicine, Houston, Texas 97030
| | - Priscilla Ambrosi
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon 97239
| | | | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 97030
| |
Collapse
|
5
|
Varsanyi P, Alloway K, Chavez C, Gielow MR, Gombkoto P, Kondo H, Nadasdy Z, Zaborszky L. Hierarchical organization of the forebrain cholinergic system in rats. iScience 2025; 28:112001. [PMID: 40124521 PMCID: PMC11926714 DOI: 10.1016/j.isci.2025.112001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/11/2024] [Accepted: 02/07/2025] [Indexed: 03/25/2025] Open
Abstract
The basal forebrain (BF) cholinergic system (BFCS) participates in functions that are global across the brain, such as sleep-wake cycles, but also participates in capacities that are more behaviorally and anatomically specific, including sensory perception. However, how it orchestrates all the diverse local and global functions remains to be understood. To uncover the underlying organization principles, we combined data from rat brains by tracing projections from the BF to cortical areas and analyzed spatial-numerical relations of neurons to their cortical targets. The combined dataset revealed algorithmically identified and hierarchically organized three principal networks: somatosensory-motor, auditory, and visual, as defined by the sensory modality most predominant within them. These clusters of cholinergic neurons could enable the BFCS to coordinate spatially selective signaling, including the parallel modulation of multiple functionally interconnected yet diverse groups of cortical areas. This previously unseen blueprint of the hierarchy of cholinergic clusters is ready for functional testing.
Collapse
Affiliation(s)
- Peter Varsanyi
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Kevin Alloway
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Candice Chavez
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Matthew R. Gielow
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Peter Gombkoto
- Institute of Neuroinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Hideki Kondo
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Zoltan Nadasdy
- Institute of Psychology, Eötvös Loránd University, 1064 Budapest, Hungary
- Department of Neurology, University of Texas at Austin, Austin, TX 78712, USA
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| |
Collapse
|
6
|
Avila C, Sarter M. Cortico-striatal action control inherent of opponent cognitive-motivational styles. eLife 2025; 13:RP100988. [PMID: 39968969 PMCID: PMC11839163 DOI: 10.7554/elife.100988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Turning on cue or stopping at a red light requires attending to such cues to select action sequences, or suppress action, in accordance with learned cue-associated action rules. Cortico-striatal projections are an essential part of the brain's attention-motor interface. Glutamate-sensing microelectrode arrays were used to measure glutamate transients in the dorsomedial striatum (DMS) of male and female rats walking a treadmill and executing cued turns and stops. Prelimbic-DMS projections were chemogenetically inhibited to determine their behavioral necessity and the cortico-striatal origin of cue-evoked glutamate transients. Furthermore, we investigated rats exhibiting preferably goal-directed (goal trackers, GTs) versus cue-driven attention (sign-trackers, STs), to determine the impact of such cognitive-motivational biases on cortico-striatal control. GTs executed more cued turns and initiated such turns more slowly than STs. During turns, but not missed turns or cued stops, cue-evoked glutamate concentrations were higher in GTs than in STs. In STs, turn cue-locked glutamate concentrations frequently peaked twice or three times, contrasting with predominately single peaks in GTs. In GTs, but not STs, inhibition of prelimbic-DMS projections attenuated turn rates and turn cue-evoked glutamate concentrations and increased the number of turn cue-locked glutamate peaks. These findings indicate that turn cue-evoked glutamate release in GTs is tightly controlled by cortico-striatal neuronal activity. In contrast, in STs, glutamate release from DMS glutamatergic terminals may be regulated by other striatal circuitry, preferably mediating cued suppression of action and reward tracking. As cortico-striatal dysfunction has been hypothesized to contribute to a wide range of disorders, including complex movement control deficits in Parkinson's disease and compulsive drug taking, the demonstration of phenotypic contrasts in cortico-striatal control implies the presence of individual vulnerabilities for such disorders.
Collapse
Affiliation(s)
- Cassandra Avila
- Department of Psychology, University of MichiganAnn ArborUnited States
| | - Martin Sarter
- Department of Psychology, University of MichiganAnn ArborUnited States
- Department of Psychology & Neuroscience Program, University of MichiganAnn ArborUnited States
| |
Collapse
|
7
|
Thiele A, Milner AM, Hall C, Mayhew L, Carter A, Sanjeev S. Effect of muscarinic blockade on the speed of attention shifting, read-out delays and learning. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06757-3. [PMID: 39953295 DOI: 10.1007/s00213-025-06757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
The study aimed to investigate to what extent blockade of muscarinic receptors affects the speed of endogenous versus exogenous attentional shift times, and how it affects learning of attention shifting, cue detection and signal readout. Subjects viewed an array of 10 moving clocks and reported the time a clock indicated when cued. Target clocks were indicated by peripheral or central cues, including conditions of pre-cuing. For peripheral and central cuing, it yielded a compound measure of how long it took to detect the cue, shift attention to the relevant clock and read the time on the clock. For the pre-cue condition it yielded a measure of how long it took to detect the cue and read the time on the clock when attention could have been pre-allocated to the target clock. In study 1, each subject participated in 2 sessions (scopolamine/placebo), whereby the order of drug intake was counterbalanced across subjects, and subjects were blinded to conditions. Scopolamine/placebo was administered before a psychophysical experiment was conducted. In study 2, the effect of muscarinic blockade on learning induced improvements of cue detection, attention shift times (for exogenous and endogenous conditions), and signal readout was investigated. Here scopolamine/placebo was administered immediately after the first (of two) psychophysical sessions, whereby a given subject either received scopolamine or placebo pills. Confirming previous results, we show that pre-cuing resulted in the shortest read-out delays, followed by exogenous cuing, with endogenous read-out delays being slowest. Scopolamine application increased readout-delays in a dose dependent manner. This was mainly driven by increased readout-delays for pre-cue conditions, and to some extent for exogenous cue conditions. It suggests that muscarinic blockade affected the ability to pre-allocated attention to a cued location, as well as to react to peripheral cues. Additionally, blockade of muscarinic receptors immediately after the first session reduced learning dependent improvement of read-out delays. These results demonstrate that muscarinic receptors play an important in detecting cues, and fast read-out of cued information, and they contribute to the learning thereof.
Collapse
Affiliation(s)
- Alexander Thiele
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | - Agnes McDonald Milner
- School of Psychology, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Corwyn Hall
- School of Psychology, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Lucy Mayhew
- School of Psychology, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Anthony Carter
- School of Psychology, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Sidharth Sanjeev
- School of Psychology, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
8
|
Ignatavicius A, Matar E, Lewis SJG. Visual hallucinations in Parkinson's disease: spotlight on central cholinergic dysfunction. Brain 2025; 148:376-393. [PMID: 39252645 PMCID: PMC11788216 DOI: 10.1093/brain/awae289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Visual hallucinations are a common non-motor feature of Parkinson's disease and have been associated with accelerated cognitive decline, increased mortality and early institutionalization. Despite their prevalence and negative impact on patient outcomes, the repertoire of treatments aimed at addressing this troubling symptom is limited. Over the past two decades, significant contributions have been made in uncovering the pathological and functional mechanisms of visual hallucinations, bringing us closer to the development of a comprehensive neurobiological framework. Convergent evidence now suggests that degeneration within the central cholinergic system may play a significant role in the genesis and progression of visual hallucinations. Here, we outline how cholinergic dysfunction may serve as a potential unifying neurobiological substrate underlying the multifactorial and dynamic nature of visual hallucinations. Drawing upon previous theoretical models, we explore the impact that alterations in cholinergic neurotransmission has on the core cognitive processes pertinent to abnormal perceptual experiences. We conclude by highlighting that a deeper understanding of cholinergic neurobiology and individual pathophysiology may help to improve established and emerging treatment strategies for the management of visual hallucinations and psychotic symptoms in Parkinson's disease.
Collapse
Affiliation(s)
- Anna Ignatavicius
- Faculty of Medicine and Health, Central Clinical School, University of Sydney, Sydney, NSW 2050, Australia
| | - Elie Matar
- Faculty of Medicine and Health, Central Clinical School, University of Sydney, Sydney, NSW 2050, Australia
- Centre for Integrated Research and Understanding of Sleep (CIRUS), Woolcock Institute of Medical Research, Sydney, NSW 2113, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Simon J G Lewis
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University Centre for Parkinson’s Disease Research, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
9
|
Yang D, Qi G, Delev D, Maskos U, Feldmeyer D. Linking altered neuronal and synaptic properties to nicotinic receptor Alpha5 subunit gene dysfunction: a translational investigation in rat mPFC and human cortical layer 6. Transl Psychiatry 2025; 15:12. [PMID: 39824806 PMCID: PMC11748723 DOI: 10.1038/s41398-025-03230-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/09/2024] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
Genetic variation in the α5 nicotinic acetylcholine receptor (nAChR) subunit of mice results in behavioral deficits linked to the prefrontal cortex (PFC). rs16969968 is the primary Single Nucleotide Polymorphism (SNP) in CHRNA5 strongly associated with nicotine dependence and schizophrenia in humans. We performed single cell-electrophysiology combined with morphological reconstructions on layer 6 (L6) excitatory neurons in the medial PFC (mPFC) of wild type (WT) rats, rats carrying the human coding polymorphism rs16969968 in Chrna5 and α5 knockout (KO) rats. Neuronal and synaptic properties were determined for the three rat genotypes. Compared with neurons in WT rats, L6 regular spiking (RS) neurons in the α5KO group exhibited altered electrophysiological properties, while those in α5SNP rats remained unchanged. L6 RS neurons in mPFC of α5SNP and α5KO rats differed from WT rats in dendritic morphology, spine density and spontaneous synaptic activity. Galantamine was applied to identified L6 neuron populations to specifically boost the nicotinic responses mediated by α5*nAChRs. Remarkably, it restored nicotinic modulation in neurons of α5SNP rats, while no such effect was observed in α5KO rats. Additionally, galantamine functioned as a positive allosteric modulator of α5*nAChRs in RS neurons, both in rat and human cortical L6, but did not affect burst spiking (BS) neurons. Our findings suggest that dysfunction in the α5 subunit gene leads to aberrant neuronal and synaptic properties, shedding light on the underlying mechanisms of cognitive deficits observed in human populations carrying α5SNPs. They highlight a potential pharmacological target for restoring the relevant behavioral output.
Collapse
Affiliation(s)
- Danqing Yang
- Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, Juelich, Germany.
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University Hospital, Aachen, Germany.
| | - Guanxiao Qi
- Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, Juelich, Germany
| | - Daniel Delev
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Uwe Maskos
- Institut Pasteur, Université de Paris Cité, Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Paris, Cedex 15, France
| | - Dirk Feldmeyer
- Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, Juelich, Germany.
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University Hospital, Aachen, Germany.
- Jülich-Aachen Research Alliance, Translational Brain Medicine (JARA Brain), Aachen, Germany.
| |
Collapse
|
10
|
Song Y, Gordon PC, Roy O, Metsomaa J, Belardinelli P, Rostami M, Ziemann U. Involvement of muscarinic acetylcholine receptor-mediated cholinergic neurotransmission in TMS-EEG responses. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111167. [PMID: 39383933 DOI: 10.1016/j.pnpbp.2024.111167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
The combination of transcranial magnetic stimulation and electroencephalography (TMS-EEG) is emerging as a valuable tool for investigating brain functions in health and disease. However, the detailed neural mechanisms underlying TMS-EEG responses, including TMS-evoked EEG potentials (TEPs) and TMS-induced EEG oscillations (TIOs), remain largely unknown. Combining TMS-EEG with pharmacological interventions provides a unique opportunity to elucidate the roles of specific receptor-mediated neurotransmissions in these responses. Here, we investigated the involvement of muscarinic acetylcholine receptor (mAChR)-mediated cholinergic neurotransmission in TMS-EEG responses by evaluating the effects of mAChR antagonists on TEPs and TIOs in twenty-four healthy participants using a randomized, placebo-controlled crossover design. TEPs and TIOs were measured before and after administering a single oral dose of scopolamine (a non-selective mAChR antagonist), biperiden (an M1 mAChR antagonist), or placebo, with TMS targeting the left medial prefrontal cortex (mPFC), angular gyrus (AG), and supplementary motor area (SMA). The results indicated that mAChR-mediated cholinergic neurotransmission played a role in TEPs, but not TIOs, in a target-specific manner. Specifically, scopolamine significantly increased the amplitude of a local TEP component between approximately 40 and 63 ms post-stimulus when TMS was applied to the SMA, but not the mPFC or AG. Biperiden produced a similar but less pronounced effect. Importantly, the effects of these mAChR antagonists on TEPs were independent of those on sensory-evoked EEG potentials caused by TMS-associated sensory stimulation. These findings expand our understanding of TMS-EEG physiology, providing insights for its application in physiological and clinical research.
Collapse
Affiliation(s)
- Yufei Song
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Pedro C Gordon
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Olivier Roy
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; CERVO Brain Research Centre, Quebec, Canada; Department of Psychiatry and Neurosciences, Université Laval, Quebec, Canada
| | - Johanna Metsomaa
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Finland
| | - Paolo Belardinelli
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; CIMeC, Center for Mind/Brain Sciences, University of Trento, Italy
| | - Maryam Rostami
- Faculty of Electrical and Computer Engineering, University of Tehran, Iran
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| |
Collapse
|
11
|
Russell JK, Conley AC, Wilson JE, Newhouse PA. Cholinergic System Structure and Function Changes in Individuals with Down Syndrome During the Development of Alzheimer's Disease. Curr Top Behav Neurosci 2025; 69:49-78. [PMID: 39485646 PMCID: PMC12042956 DOI: 10.1007/7854_2024_523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Adults with Down syndrome represent the population with the highest risk of developing Alzheimer's disease worldwide. The cholinergic system is known to decline in Alzheimer's disease, with this decline responsible for many of the cognitive deficits that develop. The integrity of the cholinergic system across the lifespan in individuals with Down syndrome is not well characterized. Small fetal and infant post-mortem studies suggest an intact cholinergic projection system with a potential reduction in cholinergic receptors, while post-mortem studies in adults with Down syndrome reveal an age-related decrease in cholinergic integrity. Advances in magnetic resonance imaging (MRI) and positron emission tomography (PET) over the last 20 years have allowed for studies investigating the changes in cholinergic integrity across aging and during the development of Alzheimer's disease. One large cross-sectional study demonstrated reduced cholinergic basal forebrain volume measured by MRI associated with increasing Alzheimer's disease pathology. In a small cohort of adults with Down syndrome, we have recently reported that PET measures of cholinergic integrity negatively correlated with amyloid accumulation. New disease-modifying treatments for Alzheimer's disease and treatments under development for Alzheimer's disease in Down syndrome have the potential to preserve the cholinergic system, while treatments targeting the cholinergic system directly may be used in conjunction with disease-modifying therapies to improve cognitive function further. A greater understanding of cholinergic neuronal and receptor integrity across the lifespan in individuals with Down syndrome will provide insights as to when targeting the cholinergic system is an appropriate therapeutic option and, in the future, maybe a valuable screening tool to identify individuals that would most benefit from cholinergic interventions.
Collapse
Affiliation(s)
- Jason K Russell
- Department of Psychiatry and Behavioral Sciences, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander C Conley
- Department of Psychiatry and Behavioral Sciences, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jo Ellen Wilson
- Department of Psychiatry and Behavioral Sciences, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN, USA
| | - Paul A Newhouse
- Department of Psychiatry and Behavioral Sciences, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN, USA.
| |
Collapse
|
12
|
Snyder PJ, Maruff PT. Cognition and modulation of the cholinergic system. HANDBOOK OF CLINICAL NEUROLOGY 2025; 211:55-61. [PMID: 40340067 DOI: 10.1016/b978-0-443-19088-9.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The role of the cholinergic system in the mediation of an entire complex hierarchy of interdependent cognitive functions, from the maintenance of arousal, to directed attention, to decision-making and problem-solving, and to new learning and memory, has been exceptionally well-studied over the past four decades. Disruption of cholinergic transmission has been implicated in the emergence of cognitive deficits for a range of neurodegenerative diseases, with disruption of cholinergic tone and neural circuitry in Alzheimer disease being the most common and most exhaustively explored of these diseases. Moreover, the use of pharmacologic probes in human studies to either upregulate or downregulate cholinergic tone in real time, and paired with appropriate and sensitive cognitive tasks, has led to a robust body of evidence. This evidence shows improvements vs impairments, respectively (e.g., enhanced vs degraded decision-making speed and efficiency), which confirm the complex and varied roles of cholinergic activity on cognitive functions in both health and disease states.
Collapse
Affiliation(s)
- Peter J Snyder
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States; Department of Neurology, Alpert Medical School of Brown University, Providence, RI, United States.
| | - Paul T Maruff
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Sieu LA, Singla S, Liu J, Zheng X, Sharafeldin A, Chandrasekaran G, Valcarce-Aspegren M, Niknahad A, Fu I, Doilicho N, Gummadavelli A, McCafferty C, Crouse RB, Perrenoud Q, Picciotto MR, Cardin JA, Blumenfeld H. Slow and fast cortical cholinergic arousal is reduced in a mouse model of focal seizures with impaired consciousness. Cell Rep 2024; 43:115012. [PMID: 39643969 PMCID: PMC11817788 DOI: 10.1016/j.celrep.2024.115012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/19/2024] [Accepted: 11/08/2024] [Indexed: 12/09/2024] Open
Abstract
Patients with focal temporal lobe seizures often experience loss of consciousness associated with cortical slow waves, like those in deep sleep. Previous work in rat models suggests that decreased subcortical arousal causes depressed cortical function during focal seizures. However, these studies were performed under light anesthesia, making it impossible to correlate conscious behavior with physiology. We show in an awake mouse model that electrically induced focal seizures in the hippocampus cause impaired behavioral responses to auditory stimuli, cortical slow waves, and reduced mean cortical high-frequency activity. Behavioral responses are related to cortical cholinergic release at two different timescales. Slow state-related decreases in acetylcholine correlate with overall impaired behavior during seizures. Fast phasic acetylcholine release is related to variable spared or impaired behavioral responses with each auditory stimulus. These findings establish a strong relationship between decreased cortical arousal and impaired consciousness in focal seizures, which may help guide future treatment.
Collapse
Affiliation(s)
- Lim-Anna Sieu
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shobhit Singla
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jiayang Liu
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xinyuan Zheng
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Ganesh Chandrasekaran
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Ava Niknahad
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ivory Fu
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Natnael Doilicho
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Abhijeet Gummadavelli
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Cian McCafferty
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anatomy and Neuroscience Program, University College Cork, Cork, Ireland
| | - Richard B Crouse
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Quentin Perrenoud
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marina R Picciotto
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jessica A Cardin
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hal Blumenfeld
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
14
|
Avila C, Sarter M. Cortico-striatal action control inherent of opponent cognitive-motivational styles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584623. [PMID: 38559086 PMCID: PMC10979997 DOI: 10.1101/2024.03.12.584623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Turning on cue or stopping at a red light requires attending to such cues to select action sequences, or suppress action, in accordance with learned cue-associated action rules. Cortico-striatal projections are an essential part of the brain's attention-motor interface. Glutamate-sensing microelectrode arrays were used to measure glutamate transients in the dorsomedial striatum (DMS) of male and female rats walking a treadmill and executing cued turns and stops. Prelimbic-DMS projections were chemogenetically inhibited to determine their behavioral necessity and the cortico-striatal origin of cue-evoked glutamate transients. Furthermore, we investigated rats exhibiting preferably goal-directed (goal trackers, GTs) versus cue-driven attention (sign trackers, STs), to determine the impact of such cognitive-motivational biases on cortico-striatal control. GTs executed more cued turns and initiated such turns more slowly than STs. During turns, but not missed turns or cued stops, cue-evoked glutamate concentrations were higher in GTs than in STs. In STs, turn cue-locked glutamate concentrations frequently peaked twice or three times, contrasting with predominately single peaks in GTs. In GTs, but not STs, inhibition of prelimbic-DMS projections attenuated turn rates and turn cue-evoked glutamate concentrations and increased the number of turn cue-locked glutamate peaks. These findings indicate that turn cue-evoked glutamate release in GTs is tightly controlled by cortico-striatal neuronal activity. In contrast, in STs, glutamate release from DMS glutamatergic terminals may be regulated by other striatal circuitry, preferably mediating cued suppression of action and reward tracking. As cortico-striatal dysfunction has been hypothesized to contribute to a wide range of disorders, including complex movement control deficits in Parkinson's disease and compulsive drug taking, the demonstration of phenotypic contrasts in cortico-striatal control implies the presence of individual vulnerabilities for such disorders. Significance Statement Adaptive behavior involves the selection of behaviorally significant cues and the capacity of selected cues to control behavioral action. Neuronal projections from cortex to striatum are essential for such an integration of attentional with motor functions. Here we demonstrated that glutamate release from cortico-striatal projections primarily influences cued turns but not cued suppression of actions (cued stops). Cortico-striatal control of cued turning was especially powerful in rats which, as a psychological trait, preferably deploy goal-directed attention. Together, our findings demonstrate the role of cortico-striatal input in cued action selection, and they emphasize the experimental and biopsychological significance of investigating the brain's attentional-motor interface in the context of broader individual differences in cognitive-motivational styles.
Collapse
Affiliation(s)
- Cassandra Avila
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Martin Sarter
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Power SK, Venkatesan S, Qu S, McLaurin J, Lambe EK. Enhanced prefrontal nicotinic signaling as evidence of active compensation in Alzheimer's disease models. Transl Neurodegener 2024; 13:58. [PMID: 39623428 PMCID: PMC11613856 DOI: 10.1186/s40035-024-00452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/22/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Cognitive reserve allows for resilience to neuropathology, potentially through active compensation. Here, we examine ex vivo electrophysiological evidence for active compensation in Alzheimer's disease (AD) focusing on the cholinergic innervation of layer 6 in prefrontal cortex. Cholinergic pathways are vulnerable to neuropathology in AD and its preclinical models, and their modulation of deep layer prefrontal cortex is essential for attention and executive function. METHODS We functionally interrogated cholinergic modulation of prefrontal layer 6 pyramidal neurons in two preclinical models: a compound transgenic AD mouse model that permits optogenetically-triggered release of endogenous acetylcholine and a transgenic AD rat model that closely recapitulates the human trajectory of AD. We then tested the impact of therapeutic interventions to further amplify the compensated responses and preserve the typical kinetic profile of cholinergic signaling. RESULTS In two AD models, we found potentially compensatory upregulation of functional cholinergic responses above non-transgenic controls after onset of pathology. To identify the locus of this enhanced cholinergic signal, we dissected key pre- and post-synaptic components with pharmacological strategies. We identified a significant and selective increase in post-synaptic nicotinic receptor signalling on prefrontal cortical neurons. To probe the additional impact of therapeutic intervention on the adapted circuit, we tested cholinergic and nicotinic-selective pro-cognitive treatments. Inhibition of acetylcholinesterase further enhanced endogenous cholinergic responses but greatly distorted their kinetics. Positive allosteric modulation of nicotinic receptors, by contrast, enhanced endogenous cholinergic responses and retained their rapid kinetics. CONCLUSIONS We demonstrate that functional nicotinic upregulation occurs within the prefrontal cortex in two AD models. Promisingly, this nicotinic signal can be further enhanced while preserving its rapid kinetic signature. Taken together, our work suggests that compensatory mechanisms are active within the prefrontal cortex that can be harnessed by nicotinic receptor positive allosteric modulation, highlighting a new direction for cognitive treatment in AD neuropathology.
Collapse
Affiliation(s)
- Saige K Power
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Sridevi Venkatesan
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Sarah Qu
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - JoAnne McLaurin
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Evelyn K Lambe
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1E2, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5T 1R8, Canada.
| |
Collapse
|
16
|
Keijser J, Hertäg L, Sprekeler H. Transcriptomic Correlates of State Modulation in GABAergic Interneurons: A Cross-Species Analysis. J Neurosci 2024; 44:e2371232024. [PMID: 39299800 PMCID: PMC11529809 DOI: 10.1523/jneurosci.2371-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/06/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024] Open
Abstract
GABAergic inhibitory interneurons comprise many subtypes that differ in their molecular, anatomical, and functional properties. In mouse visual cortex, they also differ in their modulation with an animal's behavioral state, and this state modulation can be predicted from the first principal component (PC) of the gene expression matrix. Here, we ask whether this link between transcriptome and state-dependent processing generalizes across species. To this end, we analysed seven single-cell and single-nucleus RNA sequencing datasets from mouse, human, songbird, and turtle forebrains. Despite homology at the level of cell types, we found clear differences between transcriptomic PCs, with greater dissimilarities between evolutionarily distant species. These dissimilarities arise from two factors: divergence in gene expression within homologous cell types and divergence in cell-type abundance. We also compare the expression of cholinergic receptors, which are thought to causally link transcriptome and state modulation. Several cholinergic receptors predictive of state modulation in mouse interneurons are differentially expressed between species. Circuit modelling and mathematical analyses suggest conditions under which these expression differences could translate into functional differences.
Collapse
Affiliation(s)
- Joram Keijser
- Modelling of Cognitive Processes, Technical University of Berlin, 10587 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
| | - Loreen Hertäg
- Modelling of Cognitive Processes, Technical University of Berlin, 10587 Berlin, Germany
| | - Henning Sprekeler
- Modelling of Cognitive Processes, Technical University of Berlin, 10587 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| |
Collapse
|
17
|
Neyhart E, Zhou N, Munn BR, Law RG, Smith C, Mridha ZH, Blanco FA, Li G, Li Y, Hu M, McGinley MJ, Shine JM, Reimer J. Cortical acetylcholine dynamics are predicted by cholinergic axon activity and behavior state. Cell Rep 2024; 43:114808. [PMID: 39383037 PMCID: PMC11755675 DOI: 10.1016/j.celrep.2024.114808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/18/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024] Open
Abstract
Acetylcholine (ACh) is thought to play a role in driving the rapid, spontaneous brain-state transitions that occur during wakefulness; however, the spatiotemporal properties of cortical ACh activity during these state changes are still unclear. We perform simultaneous imaging of GRAB-ACh sensors, GCaMP-expressing basal forebrain axons, and behavior to address this question. We observed a high correlation between axon and GRAB-ACh activity around periods of locomotion and pupil dilation. GRAB-ACh fluorescence could be accurately predicted from axonal activity alone, and local ACh activity decreased at farther distances from an axon. Deconvolution of GRAB-ACh traces allowed us to account for sensor kinetics and emphasized rapid clearance of small ACh transients. We trained a model to predict ACh from pupil size and running speed, which generalized well to unseen data. These results contribute to a growing understanding of the precise timing and spatial characteristics of cortical ACh during fast brain-state transitions.
Collapse
Affiliation(s)
- Erin Neyhart
- Neuroscience Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Na Zhou
- Neuroscience Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brandon R Munn
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Complex Systems Group, School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Robert G Law
- Neuroscience Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cameron Smith
- Neuroscience Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zakir H Mridha
- Neuroscience Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Francisco A Blanco
- Neuroscience Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ming Hu
- Neuroscience Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew J McGinley
- Neuroscience Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - James M Shine
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Complex Systems Group, School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jacob Reimer
- Neuroscience Department, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Miyake T, Tanaka K, Inoue Y, Nagai Y, Nishimura R, Seta T, Nakagawa S, Inoue KI, Hasegawa E, Minamimoto T, Doi M. Size-reduced DREADD derivatives for AAV-assisted multimodal chemogenetic control of neuronal activity and behavior. CELL REPORTS METHODS 2024; 4:100881. [PMID: 39437713 PMCID: PMC11573748 DOI: 10.1016/j.crmeth.2024.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Designer receptors exclusively activated by designer drugs (DREADDs) are engineered G-protein-coupled receptors that afford reversible manipulation of neuronal activity in vivo. Here, we introduce size-reduced DREADD derivatives miniDq and miniDi, which inherit the basic receptor properties from the Gq-coupled excitatory receptor hM3Dq and the Gi-coupled inhibitory receptor hM4Di, respectively, while being approximately 30% smaller in size. Taking advantage of the compact size of the receptors, we generated an adeno-associated virus (AAV) vector carrying both miniDq and the other DREADD family receptor (κ-opioid receptor-based inhibitory DREADD [KORD]) within the maximum AAV capacity (4.7 kb), allowing us to modulate neuronal activity and animal behavior in both excitatory and inhibitory directions using a single viral vector. We confirmed that expressing miniDq, but not miniDi, allowed activation of striatum activity in the cynomolgus monkey (Macaca fascicularis). The compact DREADDs may thus widen the opportunity for multiplexed interrogation and/or intervention in neuronal regulation in mice and non-human primates.
Collapse
Affiliation(s)
- Takahito Miyake
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan.
| | - Kaho Tanaka
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Yutsuki Inoue
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Yuji Nagai
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Reo Nishimura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Takehito Seta
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Shumpei Nakagawa
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama 484-8506, Japan
| | - Emi Hasegawa
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Takafumi Minamimoto
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
19
|
Yohn SE, Harvey PD, Brannan SK, Horan WP. The potential of muscarinic M 1 and M 4 receptor activators for the treatment of cognitive impairment associated with schizophrenia. Front Psychiatry 2024; 15:1421554. [PMID: 39483736 PMCID: PMC11525114 DOI: 10.3389/fpsyt.2024.1421554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/03/2024] [Indexed: 11/03/2024] Open
Abstract
Cognitive impairment is a core symptom of schizophrenia and a major determinant of poor long-term functional outcomes. Despite considerable efforts, we do not yet have any approved pharmacological treatments for cognitive impairment associated with schizophrenia (CIAS). A combination of advances in pre-clinical research and recent clinical trial findings have led to a resurgence of interest in the cognition-enhancing potential of novel muscarinic acetylcholine receptor (mAChR) agonists in schizophrenia. This article provides an overview of the scientific rationale for targeting M1 and M4 mAChRs. We describe the evolution of neuroscience research on these receptors since early drug discovery efforts focused on the mAChR agonist xanomeline. This work has revealed that M1 and M4 mAChRs are highly expressed in brain regions that are implicated in cognition. The functional significance of M1 and M4 mAChRs has been extensively characterized in animal models via use of selective receptor subtype compounds through neuronal and non-neuronal mechanisms. Recent clinical trials of a dual M1/M4 mAChR agonist show promising, replicable evidence of potential pro-cognitive effects in schizophrenia, with several other mAChR agonists in clinical development.
Collapse
Affiliation(s)
| | - Phillip D. Harvey
- Division of Psychology, University of Miami, Miami, FL, United States
| | | | - William P. Horan
- Bristol Myers Squibb, Princeton, NJ, United States
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
20
|
Runyon K, Bui T, Mazanek S, Hartle A, Marschalko K, Howe WM. Distinct cholinergic circuits underlie discrete effects of reward on attention. Front Mol Neurosci 2024; 17:1429316. [PMID: 39268248 PMCID: PMC11390659 DOI: 10.3389/fnmol.2024.1429316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Attention and reward are functions that are critical for the control of behavior, and massive multi-region neural systems have evolved to support the discrete computations associated with each. Previous research has also identified that attention and reward interact, though our understanding of the neural mechanisms that mediate this interplay is incomplete. Here, we review the basic neuroanatomy of attention, reward, and cholinergic systems. We then examine specific contexts in which attention and reward computations interact. Building on this work, we propose two discrete neural circuits whereby acetylcholine, released from cell groups located in different parts of the brain, mediates the impact of stimulus-reward associations as well as motivation on attentional control. We conclude by examining these circuits as a potential shared loci of dysfunction across diseases states associated with deficits in attention and reward.
Collapse
Affiliation(s)
- Kelly Runyon
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Tung Bui
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Sarah Mazanek
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Alec Hartle
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Katie Marschalko
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | | |
Collapse
|
21
|
Mei F, Zhao C, Li S, Xue Z, Zhao Y, Xu Y, Ye R, You H, Yu P, Han X, Carr GV, Weinberger DR, Yang F, Lu B. Ngfr + cholinergic projection from SI/nBM to mPFC selectively regulates temporal order recognition memory. Nat Commun 2024; 15:7342. [PMID: 39187496 PMCID: PMC11347598 DOI: 10.1038/s41467-024-51707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
Acetylcholine regulates various cognitive functions through broad cholinergic innervation. However, specific cholinergic subpopulations, circuits and molecular mechanisms underlying recognition memory remain largely unknown. Here we show that Ngfr+ cholinergic neurons in the substantia innominate (SI)/nucleus basalis of Meynert (nBM)-medial prefrontal cortex (mPFC) circuit selectively underlies recency judgements. Loss of nerve growth factor receptor (Ngfr-/- mice) reduced the excitability of cholinergic neurons in the SI/nBM-mPFC circuit but not in the medial septum (MS)-hippocampus pathway, and impaired temporal order memory but not novel object and object location recognition. Expression of Ngfr in Ngfr-/- SI/nBM restored defected temporal order memory. Fiber photometry revealed that acetylcholine release in mPFC not only predicted object encounters but also mediated recency judgments of objects, and such acetylcholine release was absent in Ngfr-/- mPFC. Chemogenetic and optogenetic inhibition of SI/nBM projection to mPFC in ChAT-Cre mice diminished mPFC acetylcholine release and deteriorated temporal order recognition. Impaired cholinergic activity led to a depolarizing shift of GABAergic inputs to mPFC pyramidal neurons, due to disturbed KCC2-mediated chloride gradients. Finally, potentiation of acetylcholine signaling upregulated KCC2 levels, restored GABAergic driving force and rescued temporal order recognition deficits in Ngfr-/- mice. Thus, NGFR-dependent SI/nBM-mPFC cholinergic circuit underlies temporal order recognition memory.
Collapse
Affiliation(s)
- Fan Mei
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Chen Zhao
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Shangjin Li
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Zeping Xue
- Basic and Translational Medicine Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- School of Basic Medicine, Capital Medical University, Beijing, China
- Laboratory of Cognitive and Behavioral Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Yueyang Zhao
- Basic and Translational Medicine Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yihua Xu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Rongrong Ye
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - He You
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Peng Yu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Xinyu Han
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Gregory V Carr
- Department of Pharmacology and Molecular Sciences, Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel R Weinberger
- Department of Pharmacology and Molecular Sciences, Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Feng Yang
- Basic and Translational Medicine Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
- Laboratory of Cognitive and Behavioral Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
22
|
Lustig C, Bohnen NI. The Middle Managers: Thalamic and Cholinergic Contributions To Coordinating Top-Down And Bottom-Up Processing. Curr Opin Behav Sci 2024; 58:101406. [PMID: 39220566 PMCID: PMC11361277 DOI: 10.1016/j.cobeha.2024.101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Methodological advances have facilitated extensive revision of traditional views of thalamic and cholinergic contributions to cognition and behavior. Increasing attention to the integrative capabilities of the thalamus highlights its role beyond a simple sensory relay, recognizing its complex connectivity and role in orchestrating different phases of attention. Correspondingly, modern conceptualizations position the cholinergic system as key in integrating sensory information with attention and goals. These theoretical developments have occurred largely in parallel, but have large conceptual overlap. We review this overlap, including evidence from animal, patient, neuroimaging, and computational studies, and suggest thalamo-cholinergic cognition plays a key role in coordinating stable and flexible attention.
Collapse
|
23
|
Fulton KA, Zimmerman D, Samuel A, Vogt K, Datta SR. Common principles for odour coding across vertebrates and invertebrates. Nat Rev Neurosci 2024; 25:453-472. [PMID: 38806946 DOI: 10.1038/s41583-024-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The olfactory system is an ideal and tractable system for exploring how the brain transforms sensory inputs into behaviour. The basic tasks of any olfactory system include odour detection, discrimination and categorization. The challenge for the olfactory system is to transform the high-dimensional space of olfactory stimuli into the much smaller space of perceived objects and valence that endows odours with meaning. Our current understanding of how neural circuits address this challenge has come primarily from observations of the mechanisms of the brain for processing other sensory modalities, such as vision and hearing, in which optimized deep hierarchical circuits are used to extract sensory features that vary along continuous physical dimensions. The olfactory system, by contrast, contends with an ill-defined, high-dimensional stimulus space and discrete stimuli using a circuit architecture that is shallow and parallelized. Here, we present recent observations in vertebrate and invertebrate systems that relate the statistical structure and state-dependent modulation of olfactory codes to mechanisms of perception and odour-guided behaviour.
Collapse
Affiliation(s)
- Kara A Fulton
- Department of Neuroscience, Harvard Medical School, Boston, MA, USA
| | - David Zimmerman
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Aravi Samuel
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Katrin Vogt
- Department of Physics, Harvard University, Cambridge, MA, USA.
- Department of Biology, University of Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
| | | |
Collapse
|
24
|
Zaborszky L, Varsanyi P, Alloway K, Chavez C, Gielow M, Gombkoto P, Kondo H, Nadasdy Z. Functional architecture of the forebrain cholinergic system in rodents. RESEARCH SQUARE 2024:rs.3.rs-4504727. [PMID: 38947053 PMCID: PMC11213185 DOI: 10.21203/rs.3.rs-4504727/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The basal forebrain cholinergic system (BFCS) participates in functions that are global across the brain, such as sleep-wake cycles, but also participates in capacities that are more behaviorally and anatomically specific, including sensory perception. To better understand the underlying organization principles of the BFCS, more and higher quality anatomical data and analysis is needed. Here, we created a "virtual Basal Forebrain", combining data from numerous rats with cortical retrograde tracer injections into a common 3D reference coordinate space and developed a "spatial density correlation" methodology to analyze patterns in BFCS cortical projection targets, revealing that the BFCS is organized into three principal networks: somatosensory-motor, auditory, and visual. Within each network, clusters of cholinergic cells with increasing complexity innervate cortical targets. These networks represent hierarchically organized building blocks that may enable the BFCS to coordinate spatially selective signaling, including parallel modulation of multiple functionally interconnected yet diverse groups of cortical areas.
Collapse
Affiliation(s)
| | | | | | | | | | - Peter Gombkoto
- Swiss Federal Institute of Technology in Zurich (ETH Zurich)
| | | | | |
Collapse
|
25
|
Tsolias A, Zhou Y, Mojica CA, Sakharkar M, Tsolias MZ, Moore TL, Rosene DL, Medalla M. Neuroanatomical Substrates of Circuit-Specific Cholinergic Modulation across the Primate Anterior Cingulate Cortex. J Neurosci 2024; 44:e0953232024. [PMID: 38719447 PMCID: PMC11170673 DOI: 10.1523/jneurosci.0953-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024] Open
Abstract
Acetylcholine is a robust neuromodulator of the limbic system and a critical regulator of arousal and emotions. The anterior cingulate cortex (ACC) and the amygdala (AMY) are key limbic structures that are both densely innervated by cholinergic afferents and interact with each other for emotional regulation. The ACC is composed of functionally distinct dorsal (A24), rostral (A32), and ventral (A25) areas that differ in their connections with the AMY. The structural substrates of cholinergic modulation of distinct ACC microcircuits and outputs to AMY are thought to depend on the laminar and subcellular localization of cholinergic receptors. The present study examines the distribution of muscarinic acetylcholine receptors, m1 and m2, on distinct excitatory and inhibitory neurons and on AMY-targeting projection neurons within ACC areas, via immunohistochemistry and injections of neural tracers into the basolateral AMY in adult rhesus monkeys of both sexes. We found that laminar densities of m1+ and m2+ expressing excitatory and inhibitory neurons depended on area and cell type. Among the ACC areas, ventral subgenual ACC A25 exhibited greater m2+ localization on presynaptic inhibitory axon terminals and greater density of m1+ and m2+ expressing AMY-targeting (tracer+) pyramidal neurons. These patterns suggest robust cholinergic disinhibition and potentiation of amygdalar outputs from the limbic ventral ACC, which may be linked to the hyperexcitability of this subgenual ACC area in depression. These findings reveal the anatomical substrate of diverse cholinergic modulation of specific ACC microcircuits and amygdalar outputs that mediate cognitive-emotional integration and dysfunctions underlying stress and affective disorders.
Collapse
Affiliation(s)
- Alexandra Tsolias
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Yuxin Zhou
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Chromewell A Mojica
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Mitali Sakharkar
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Marianna Z Tsolias
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
| | - Tara L Moore
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215
| | - Douglas L Rosene
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
26
|
Jedrasiak-Cape I, Rybicki-Kler C, Brooks I, Ghosh M, Brennan EK, Kailasa S, Ekins TG, Rupp A, Ahmed OJ. Cell-type-specific cholinergic control of granular retrosplenial cortex with implications for angular velocity coding across brain states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597341. [PMID: 38895393 PMCID: PMC11185600 DOI: 10.1101/2024.06.04.597341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Cholinergic receptor activation enables the persistent firing of cortical pyramidal neurons, providing a key cellular basis for theories of spatial navigation involving working memory, path integration, and head direction encoding. The granular retrosplenial cortex (RSG) is important for spatially-guided behaviors, but how acetylcholine impacts RSG neurons is unknown. Here, we show that a transcriptomically, morphologically, and biophysically distinct RSG cell-type - the low-rheobase (LR) neuron - has a very distinct expression profile of cholinergic muscarinic receptors compared to all other neighboring excitatory neuronal subtypes. LR neurons do not fire persistently in response to cholinergic agonists, in stark contrast to all other principal neuronal subtypes examined within the RSG and across midline cortex. This lack of persistence allows LR neuron models to rapidly compute angular head velocity (AHV), independent of cholinergic changes seen during navigation. Thus, LR neurons can consistently compute AHV across brain states, highlighting the specialized RSG neural codes supporting navigation.
Collapse
Affiliation(s)
| | - Chloe Rybicki-Kler
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
| | - Isla Brooks
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
| | - Megha Ghosh
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
| | - Ellen K.W. Brennan
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
| | - Sameer Kailasa
- Dept. of Mathematics, University of Michigan, Ann Arbor, MI 48109
| | - Tyler G. Ekins
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
| | - Alan Rupp
- Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Omar J. Ahmed
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
27
|
Abbondanza A, Urushadze A, Alves-Barboza AR, Janickova H. Expression and function of nicotinic acetylcholine receptors in specific neuronal populations: Focus on striatal and prefrontal circuits. Pharmacol Res 2024; 204:107190. [PMID: 38704107 DOI: 10.1016/j.phrs.2024.107190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/06/2024]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widely expressed in the central nervous system and play an important role in the control of neural functions including neuronal activity, transmitter release and synaptic plasticity. Although the common subtypes of nAChRs are abundantly expressed throughout the brain, their expression in different brain regions and by individual neuronal types is not homogeneous or incidental. In recent years, several studies have emerged showing that particular subtypes of nAChRs are expressed by specific neuronal populations in which they have major influence on the activity of local circuits and behavior. It has been demonstrated that even nAChRs expressed by relatively rare neuronal types can induce significant changes in behavior and contribute to pathological processes. Depending on the identity and connectivity of the particular nAChRs-expressing neuronal populations, the activation of nAChRs can have distinct or even opposing effects on local neuronal signaling. In this review, we will summarize the available literature describing the expression of individual nicotinic subunits by different neuronal types in two crucial brain regions, the striatum and the prefrontal cortex. The review will also briefly discuss nicotinic expression in non-neuronal, glial cells, as they cannot be ignored as potential targets of nAChRs-modulating drugs. The final section will discuss options that could allow us to target nAChRs in a neuronal-type-specific manner, not only in the experimental field, but also eventually in clinical practice.
Collapse
Affiliation(s)
- Alice Abbondanza
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic
| | - Anna Urushadze
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic
| | - Amanda Rosanna Alves-Barboza
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic
| | - Helena Janickova
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic.
| |
Collapse
|
28
|
Nodal FR, Leach ND, Keating P, Dahmen JC, Zhao D, King AJ, Bajo VM. Neural processing in the primary auditory cortex following cholinergic lesions of the basal forebrain in ferrets. Hear Res 2024; 447:109025. [PMID: 38733712 PMCID: PMC11265294 DOI: 10.1016/j.heares.2024.109025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Cortical acetylcholine (ACh) release has been linked to various cognitive functions, including perceptual learning. We have previously shown that cortical cholinergic innervation is necessary for accurate sound localization in ferrets, as well as for their ability to adapt with training to altered spatial cues. To explore whether these behavioral deficits are associated with changes in the response properties of cortical neurons, we recorded neural activity in the primary auditory cortex (A1) of anesthetized ferrets in which cholinergic inputs had been reduced by making bilateral injections of the immunotoxin ME20.4-SAP in the nucleus basalis (NB) prior to training the animals. The pattern of spontaneous activity of A1 units recorded in the ferrets with cholinergic lesions (NB ACh-) was similar to that in controls, although the proportion of burst-type units was significantly lower. Depletion of ACh also resulted in more synchronous activity in A1. No changes in thresholds, frequency tuning or in the distribution of characteristic frequencies were found in these animals. When tested with normal acoustic inputs, the spatial sensitivity of A1 neurons in the NB ACh- ferrets and the distribution of their preferred interaural level differences also closely resembled those found in control animals, indicating that these properties had not been altered by sound localization training with one ear occluded. Simulating the animals' previous experience with a virtual earplug in one ear reduced the contralateral preference of A1 units in both groups, but caused azimuth sensitivity to change in slightly different ways, which may reflect the modest adaptation observed in the NB ACh- group. These results show that while ACh is required for behavioral adaptation to altered spatial cues, it is not required for maintenance of the spectral and spatial response properties of A1 neurons.
Collapse
Affiliation(s)
- Fernando R Nodal
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom.
| | | | - Peter Keating
- UCL Ear Institute, 332 Gray's Inn Road, London WC1X 8EE, United Kingdom
| | - Johannes C Dahmen
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Dylan Zhao
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Andrew J King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Victoria M Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
29
|
Sarkar S, Martinez Reyes C, Jensen CM, Gavornik JP. M2 receptors are required for spatiotemporal sequence learning in mouse primary visual cortex. J Neurophysiol 2024; 131:1213-1225. [PMID: 38629848 PMCID: PMC11381118 DOI: 10.1152/jn.00016.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/08/2024] [Accepted: 04/16/2024] [Indexed: 06/09/2024] Open
Abstract
Acetylcholine is a neurotransmitter that plays a variety of roles in the central nervous system. It was previously shown that blocking muscarinic receptors with a nonselective antagonist prevents a form of experience-dependent plasticity termed "spatiotemporal sequence learning" in the mouse primary visual cortex (V1). Muscarinic signaling is a complex process involving the combined activities of five different G protein-coupled receptors, M1-M5, all of which are expressed in the murine brain but differ from each other functionally and in anatomical localization. Here we present electrophysiological evidence that M2, but not M1, receptors are required for spatiotemporal sequence learning in mouse V1. We show in male mice that M2 is highly expressed in the neuropil in V1, especially in thalamorecipient layer 4, and colocalizes with the soma in a subset of somatostatin-expressing neurons in deep layers. We also show that expression of M2 receptors is higher in the monocular region of V1 than it is in the binocular region but that the amount of experience-dependent sequence potentiation is similar in both regions and that blocking muscarinic signaling after visual stimulation does not prevent plasticity. This work establishes a new functional role for M2-type receptors in processing temporal information and demonstrates that monocular circuits are modified by experience in a manner similar to binocular circuits.NEW & NOTEWORTHY Muscarinic acetylcholine receptors are required for multiple forms of plasticity in the brain and support perceptual functions, but the precise role of the five subtypes (M1-M5) are unclear. Here we show that the M2 receptor is specifically required to encode experience-dependent representations of spatiotemporal relationships in both monocular and binocular regions of mouse V1. This work identifies a novel functional role for M2 receptors in coding temporal information into cortical circuits.
Collapse
Affiliation(s)
- Susrita Sarkar
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, Massachusetts, United States
| | - Catalina Martinez Reyes
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, Massachusetts, United States
| | - Cambria M Jensen
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, Massachusetts, United States
| | - Jeffrey P Gavornik
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
30
|
Kipp BT, Savage LM. Modulation of the p75NTR during Adolescent Alcohol Exposure Prevents Cholinergic Neuronal Atrophy and Associated Acetylcholine Activity and Behavioral Dysfunction. Int J Mol Sci 2024; 25:5792. [PMID: 38891978 PMCID: PMC11172149 DOI: 10.3390/ijms25115792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Binge alcohol consumption during adolescence can produce lasting deficits in learning and memory while also increasing the susceptibility to substance use disorders. The adolescent intermittent ethanol (AIE) rodent model mimics human adolescent binge drinking and has identified the nucleus basalis magnocellularis (NbM) as a key site of pathology. The NbM is a critical regulator of prefrontal cortical (PFC) cholinergic function and attention. The cholinergic phenotype is controlled pro/mature neurotrophin receptor activation. We sought to determine if p75NTR activity contributes to the loss of cholinergic phenotype in AIE by using a p75NTR modulator (LM11A-31) to inhibit prodegenerative signaling during ethanol exposure. Male and female rats underwent 5 g/kg ethanol (AIE) or water (CON) exposure following 2-day-on 2-day-off cycles from postnatal day 25-57. A subset of these groups also received a protective dose of LM11A-31 (50 mg/kg) during adolescence. Rats were trained on a sustained attention task (SAT) and behaviorally relevant acetylcholine (ACh) activity was recorded in the PFC with a fluorescent indicator (AChGRAB 3.0). AIE produced learning deficits on the SAT, which were spared with LM11A-31. In addition, PFC ACh activity was blunted by AIE, which LM11A-31 corrected. Investigation of NbM ChAT+ and TrkA+ neuronal expression found that AIE led to a reduction of ChAT+TrkA+ neurons, which again LM11A-31 protected. Taken together, these findings demonstrate the p75NTR activity during AIE treatment is a key regulator of cholinergic degeneration.
Collapse
Affiliation(s)
| | - Lisa M. Savage
- Department of Psychology, Binghamton University-State University of New York, Binghamton, NY 13902, USA;
| |
Collapse
|
31
|
Sampaio Moura N, Schledwitz A, Alizadeh M, Kodan A, Njei LP, Raufman JP. Cholinergic Mechanisms in Gastrointestinal Neoplasia. Int J Mol Sci 2024; 25:5316. [PMID: 38791353 PMCID: PMC11120676 DOI: 10.3390/ijms25105316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Acetylcholine-activated receptors are divided broadly into two major structurally distinct classes: ligand-gated ion channel nicotinic and G-protein-coupled muscarinic receptors. Each class encompasses several structurally related receptor subtypes with distinct patterns of tissue expression and post-receptor signal transduction mechanisms. The activation of both nicotinic and muscarinic cholinergic receptors has been associated with the induction and progression of gastrointestinal neoplasia. Herein, after briefly reviewing the classification of acetylcholine-activated receptors and the role that nicotinic and muscarinic cholinergic signaling plays in normal digestive function, we consider the mechanics of acetylcholine synthesis and release by neuronal and non-neuronal cells in the gastrointestinal microenvironment, and current methodology and challenges in measuring serum and tissue acetylcholine levels accurately. Then, we critically evaluate the evidence that constitutive and ligand-induced activation of acetylcholine-activated receptors plays a role in promoting gastrointestinal neoplasia. We focus primarily on adenocarcinomas of the stomach, pancreas, and colon, because these cancers are particularly common worldwide and, when diagnosed at an advanced stage, are associated with very high rates of morbidity and mortality. Throughout this comprehensive review, we concentrate on identifying novel ways to leverage these observations for prognostic and therapeutic purposes.
Collapse
Affiliation(s)
- Natalia Sampaio Moura
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.S.M.); (A.S.); (A.K.)
| | - Alyssa Schledwitz
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.S.M.); (A.S.); (A.K.)
| | - Madeline Alizadeh
- The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Asha Kodan
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.S.M.); (A.S.); (A.K.)
| | - Lea-Pearl Njei
- Department of Biological Science, University of Maryland, Baltimore County, Baltimore, MD 21250, USA;
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.S.M.); (A.S.); (A.K.)
- Veterans Affairs Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
32
|
Kniffin A, Bangasser DA, Parikh V. Septohippocampal cholinergic system at the intersection of stress and cognition: Current trends and translational implications. Eur J Neurosci 2024; 59:2155-2180. [PMID: 37118907 PMCID: PMC10875782 DOI: 10.1111/ejn.15999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 04/30/2023]
Abstract
Deficits in hippocampus-dependent memory processes are common across psychiatric and neurodegenerative disorders such as depression, anxiety and Alzheimer's disease. Moreover, stress is a major environmental risk factor for these pathologies and it exerts detrimental effects on hippocampal functioning via the activation of hypothalamic-pituitary-adrenal (HPA) axis. The medial septum cholinergic neurons extensively innervate the hippocampus. Although, the cholinergic septohippocampal pathway (SHP) has long been implicated in learning and memory, its involvement in mediating the adaptive and maladaptive impact of stress on mnemonic processes remains less clear. Here, we discuss current research highlighting the contributions of cholinergic SHP in modulating memory encoding, consolidation and retrieval. Then, we present evidence supporting the view that neurobiological interactions between HPA axis stress response and cholinergic signalling impact hippocampal computations. Finally, we critically discuss potential challenges and opportunities to target cholinergic SHP as a therapeutic strategy to improve cognitive impairments in stress-related disorders. We argue that such efforts should consider recent conceptualisations on the dynamic nature of cholinergic signalling in modulating distinct subcomponents of memory and its interactions with cellular substrates that regulate the adaptive stress response.
Collapse
Affiliation(s)
- Alyssa Kniffin
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| | - Debra A. Bangasser
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA
| | - Vinay Parikh
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| |
Collapse
|
33
|
Crombie D, Spacek MA, Leibold C, Busse L. Spiking activity in the visual thalamus is coupled to pupil dynamics across temporal scales. PLoS Biol 2024; 22:e3002614. [PMID: 38743775 PMCID: PMC11093384 DOI: 10.1371/journal.pbio.3002614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
The processing of sensory information, even at early stages, is influenced by the internal state of the animal. Internal states, such as arousal, are often characterized by relating neural activity to a single "level" of arousal, defined by a behavioral indicator such as pupil size. In this study, we expand the understanding of arousal-related modulations in sensory systems by uncovering multiple timescales of pupil dynamics and their relationship to neural activity. Specifically, we observed a robust coupling between spiking activity in the mouse dorsolateral geniculate nucleus (dLGN) of the thalamus and pupil dynamics across timescales spanning a few seconds to several minutes. Throughout all these timescales, 2 distinct spiking modes-individual tonic spikes and tightly clustered bursts of spikes-preferred opposite phases of pupil dynamics. This multi-scale coupling reveals modulations distinct from those captured by pupil size per se, locomotion, and eye movements. Furthermore, coupling persisted even during viewing of a naturalistic movie, where it contributed to differences in the encoding of visual information. We conclude that dLGN spiking activity is under the simultaneous influence of multiple arousal-related processes associated with pupil dynamics occurring over a broad range of timescales.
Collapse
Affiliation(s)
- Davide Crombie
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
| | - Martin A. Spacek
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany
| | - Christian Leibold
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany
- Fakultät für Biologie & Bernstein Center Freiburg, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Laura Busse
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany
- Bernstein Center for Computational Neuroscience, Munich, Germany
| |
Collapse
|
34
|
Gritton HJ, Booth V, Howe WM. Special issue on cholinergic signalling. Eur J Neurosci 2024; 59:2131-2137. [PMID: 38679811 DOI: 10.1111/ejn.16369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024]
Affiliation(s)
- Howard J Gritton
- Department of Comparative Biosciences, Bioengineering, and Psychology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Victoria Booth
- Departments of Mathematics and Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - William M Howe
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
35
|
Pastor V, Medina JH. α7 nicotinic acetylcholine receptor in memory processing. Eur J Neurosci 2024; 59:2138-2154. [PMID: 36634032 DOI: 10.1111/ejn.15913] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Information storage in the brain involves different memory types and stages that are processed by several brain regions. Cholinergic pathways through acetylcholine receptors actively participate on memory modulation, and their disfunction is associated with cognitive decline in several neurological disorders. During the last decade, the role of α7 subtype of nicotinic acetylcholine receptors in different memory stages has been studied. However, the information about their role in memory processing is still scarce. In this review, we attempt to identify brain areas where α7 nicotinic receptors have an essential role in different memory types and stages. In addition, we discuss recent work implicating-or not-α7 nicotinic receptors as promising pharmacological targets for memory impairment associated with neurological disorders.
Collapse
Affiliation(s)
- Verónica Pastor
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Medicina, Departamento de Ciencias Fisiológicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge H Medina
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| |
Collapse
|
36
|
Kipp BT, Lisa MS. Modulation of the p75NTR during adolescent alcohol exposure prevents cholinergic neuronal atrophy and associated acetylcholine activity and behavioral dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587970. [PMID: 38617368 PMCID: PMC11014512 DOI: 10.1101/2024.04.03.587970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Binge alcohol consumption during adolescence produces lasting deficits in learning and memory, while also increasing the susceptibility to substance use disorders. The adolescent intermittent ethanol (AIE) rodent model mimics human adolescent binge drinking and has identified the Nucleus Basalis Magnocellularis (NbM) as a key site of pathology. The NbM is a critical regulator of prefrontal cortical (PFC) cholinergic function and attention. The cholinergic phenotype is controlled pro/mature neurotrophin receptor activation. We sought to determine if p75NTR activity contributes to the loss of cholinergic phenotype in AIE by using a p75NTR modulator (LM11A-31) to inhibit prodegenerative signaling during ethanol exposure. Male and female rats underwent 5g/kg ethanol (AIE) or water (CON) exposure following 2-day-on 2-day-off cycles from PND 25-57. A subset of these groups also received a protective dose of LM11A-31 (50mg/kg) during adolescence. Rats were trained on a sustained attention task (SAT) while recording activity with a fluorescent acetylcholine indicator (AChGRAB 3.0). AIE produced learning deficits on the SAT, which were spared with LM11A-31. In addition, mPFC ACh activity was blunted by AIE, which LM11A-31 corrected. Investigation of NbM ChAT+ and TrkA+ neuronal expression found that AIE led to a reduction of ChAT+TrkA+ neurons, which again LM11A-31 protected. Taken together these findings demonstrate the p75NTR activity during AIE treatment is a key regulator of cholinergic degeneration.
Collapse
|
37
|
Lindeman S, Fu X, Reinert JK, Fukunaga I. Value-related learning in the olfactory bulb occurs through pathway-dependent perisomatic inhibition of mitral cells. PLoS Biol 2024; 22:e3002536. [PMID: 38427708 PMCID: PMC10936853 DOI: 10.1371/journal.pbio.3002536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/13/2024] [Accepted: 02/05/2024] [Indexed: 03/03/2024] Open
Abstract
Associating values to environmental cues is a critical aspect of learning from experiences, allowing animals to predict and maximise future rewards. Value-related signals in the brain were once considered a property of higher sensory regions, but their wide distribution across many brain regions is increasingly recognised. Here, we investigate how reward-related signals begin to be incorporated, mechanistically, at the earliest stage of olfactory processing, namely, in the olfactory bulb. In head-fixed mice performing Go/No-Go discrimination of closely related olfactory mixtures, rewarded odours evoke widespread inhibition in one class of output neurons, that is, in mitral cells but not tufted cells. The temporal characteristics of this reward-related inhibition suggest it is odour-driven, but it is also context-dependent since it is absent during pseudo-conditioning and pharmacological silencing of the piriform cortex. Further, the reward-related modulation is present in the somata but not in the apical dendritic tuft of mitral cells, suggesting an involvement of circuit components located deep in the olfactory bulb. Depth-resolved imaging from granule cell dendritic gemmules suggests that granule cells that target mitral cells receive a reward-related extrinsic drive. Thus, our study supports the notion that value-related modulation of olfactory signals is a characteristic of olfactory processing in the primary olfactory area and narrows down the possible underlying mechanisms to deeper circuit components that contact mitral cells perisomatically.
Collapse
Affiliation(s)
- Sander Lindeman
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Xiaochen Fu
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Janine Kristin Reinert
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Izumi Fukunaga
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
38
|
Ma P, Chen P, Tilden EI, Aggarwal S, Oldenborg A, Chen Y. Fast and slow: Recording neuromodulator dynamics across both transient and chronic time scales. SCIENCE ADVANCES 2024; 10:eadi0643. [PMID: 38381826 PMCID: PMC10881037 DOI: 10.1126/sciadv.adi0643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
Neuromodulators transform animal behaviors. Recent research has demonstrated the importance of both sustained and transient change in neuromodulators, likely due to tonic and phasic neuromodulator release. However, no method could simultaneously record both types of dynamics. Fluorescence lifetime of optical reporters could offer a solution because it allows high temporal resolution and is impervious to sensor expression differences across chronic periods. Nevertheless, no fluorescence lifetime change across the entire classes of neuromodulator sensors was previously known. Unexpectedly, we find that several intensity-based neuromodulator sensors also exhibit fluorescence lifetime responses. Furthermore, we show that lifetime measures in vivo neuromodulator dynamics both with high temporal resolution and with consistency across animals and time. Thus, we report a method that can simultaneously measure neuromodulator change over transient and chronic time scales, promising to reveal the roles of multi-time scale neuromodulator dynamics in diseases, in response to therapies, and across development and aging.
Collapse
Affiliation(s)
- Pingchuan Ma
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
- Ph.D. Program in Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Peter Chen
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
- Master’s Program in Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
| | - Elizabeth I. Tilden
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
- Ph.D. Program in Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Samarth Aggarwal
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Anna Oldenborg
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Yao Chen
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
39
|
Kimchi EY, Burgos-Robles A, Matthews GA, Chakoma T, Patarino M, Weddington JC, Siciliano C, Yang W, Foutch S, Simons R, Fong MF, Jing M, Li Y, Polley DB, Tye KM. Reward contingency gates selective cholinergic suppression of amygdala neurons. eLife 2024; 12:RP89093. [PMID: 38376907 PMCID: PMC10942609 DOI: 10.7554/elife.89093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Basal forebrain cholinergic neurons modulate how organisms process and respond to environmental stimuli through impacts on arousal, attention, and memory. It is unknown, however, whether basal forebrain cholinergic neurons are directly involved in conditioned behavior, independent of secondary roles in the processing of external stimuli. Using fluorescent imaging, we found that cholinergic neurons are active during behavioral responding for a reward - even prior to reward delivery and in the absence of discrete stimuli. Photostimulation of basal forebrain cholinergic neurons, or their terminals in the basolateral amygdala (BLA), selectively promoted conditioned responding (licking), but not unconditioned behavior nor innate motor outputs. In vivo electrophysiological recordings during cholinergic photostimulation revealed reward-contingency-dependent suppression of BLA neural activity, but not prefrontal cortex. Finally, ex vivo experiments demonstrated that photostimulation of cholinergic terminals suppressed BLA projection neuron activity via monosynaptic muscarinic receptor signaling, while also facilitating firing in BLA GABAergic interneurons. Taken together, we show that the neural and behavioral effects of basal forebrain cholinergic activation are modulated by reward contingency in a target-specific manner.
Collapse
Affiliation(s)
- Eyal Y Kimchi
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Neurology, Northwestern UniversityChicagoUnited States
| | - Anthony Burgos-Robles
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- The Department of Neuroscience, Developmental, and Regenerative Biology, Neuroscience Institute & Brain Health Consortium, University of Texas at San AntonioSan AntonioUnited States
| | - Gillian A Matthews
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Tatenda Chakoma
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Makenzie Patarino
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Javier C Weddington
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Cody Siciliano
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- Vanderbilt Center for Addiction Research, Department of Pharmacology, Vanderbilt UniversityNashvilleUnited States
| | - Wannan Yang
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Shaun Foutch
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Renee Simons
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Ming-fai Fong
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- Coulter Department of Biomedical Engineering, Georgia Tech & Emory UniversityAtlantaUnited States
| | - Miao Jing
- Chinese Institute for Brain ResearchBeijingChina
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences; PKUIDG/McGovern Institute for Brain Research; Peking-Tsinghua Center for Life SciencesBeijingChina
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and EarBostonUnited States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Kay M Tye
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- HHMI Investigator, Member of the Kavli Institute for Brain and Mind, and Wylie Vale Professor at the Salk Institute for Biological StudiesLa JollaUnited States
| |
Collapse
|
40
|
Wang H, Ortega HK, Kelly EB, Indajang J, Feng J, Li Y, Kwan AC. Frontal noradrenergic and cholinergic transients exhibit distinct spatiotemporal dynamics during competitive decision-making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576893. [PMID: 38328186 PMCID: PMC10849696 DOI: 10.1101/2024.01.23.576893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Norepinephrine (NE) and acetylcholine (ACh) are neuromodulators that are crucial for learning and decision-making. In the cortex, NE and ACh are released at specific sites along neuromodulatory axons, which would constrain their spatiotemporal dynamics at the subcellular scale. However, how the fluctuating patterns of NE and ACh signaling may be linked to behavioral events is unknown. Here, leveraging genetically encoded NE and ACh indicators, we use two-photon microscopy to visualize neuromodulatory signals in the superficial layer of the mouse medial frontal cortex during decision-making. Head-fixed mice engage in a competitive game called matching pennies against a computer opponent. We show that both NE and ACh transients carry information about decision-related variables including choice, outcome, and reinforcer. However, the two neuromodulators differ in their spatiotemporal pattern of task-related activation. Spatially, NE signals are more segregated with choice and outcome encoded at distinct locations, whereas ACh signals can multiplex and reflect different behavioral correlates at the same site. Temporally, task-driven NE transients were more synchronized and peaked earlier than ACh transients. To test functional relevance, using optogenetics we found that evoked elevation of NE, but not ACh, in the medial frontal cortex increases the propensity of the animals to switch and explore alternate options. Taken together, the results reveal distinct spatiotemporal patterns of rapid ACh and NE transients at the subcellular scale during decision-making in mice, which may endow these neuromodulators with different ways to impact neural plasticity to mediate learning and adaptive behavior.
Collapse
Affiliation(s)
- Hongli Wang
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Heather K. Ortega
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Emma B. Kelly
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Jonathan Indajang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Alex C. Kwan
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, New York, 10065, USA
| |
Collapse
|
41
|
Gulledge AT. Cholinergic Activation of Corticofugal Circuits in the Adult Mouse Prefrontal Cortex. J Neurosci 2024; 44:e1388232023. [PMID: 38050146 PMCID: PMC10860659 DOI: 10.1523/jneurosci.1388-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 12/06/2023] Open
Abstract
Acetylcholine (ACh) promotes neocortical output to the thalamus and brainstem by preferentially enhancing the postsynaptic excitability of layer 5 pyramidal tract (PT) neurons relative to neighboring intratelencephalic (IT) neurons. Less is known about how ACh regulates the excitatory synaptic drive of IT and PT neurons. To address this question, spontaneous excitatory postsynaptic potentials (sEPSPs) were recorded in dual recordings of IT and PT neurons in slices of prelimbic cortex from adult female and male mice. ACh (20 µM) enhanced sEPSP amplitudes, frequencies, rise-times, and half-widths preferentially in PT neurons. These effects were blocked by the muscarinic receptor antagonist atropine (1 µM). When challenged with pirenzepine (1 µM), an antagonist selective for M1-type muscarinic receptors, ACh instead reduced sEPSP frequencies, suggesting that ACh may generally suppress synaptic transmission in the cortex via non-M1 receptors. Cholinergic enhancement of sEPSPs in PT neurons was not sensitive to antagonism of GABA receptors with gabazine (10 µM) and CGP52432 (2.5 µM) but was blocked by tetrodotoxin (1 µM), suggesting that ACh enhances action-potential-dependent excitatory synaptic transmission in PT neurons. ACh also preferentially promoted the occurrence of synchronous sEPSPs in dual recordings of PT neurons relative to IT-PT and IT-IT parings. Finally, selective chemogenetic silencing of hM4Di-expressing PT, but not commissural IT, neurons blocked cholinergic enhancement of sEPSP amplitudes and frequencies in PT neurons. These data suggest that, in addition to selectively enhancing the postsynaptic excitability of PT neurons, M1 receptor activation promotes corticofugal output by amplifying recurrent excitation within networks of PT neurons.
Collapse
Affiliation(s)
- Allan T Gulledge
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover 03755, New Hampshire
| |
Collapse
|
42
|
Suzuki M, Pennartz CMA, Aru J. How deep is the brain? The shallow brain hypothesis. Nat Rev Neurosci 2023; 24:778-791. [PMID: 37891398 DOI: 10.1038/s41583-023-00756-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/29/2023]
Abstract
Deep learning and predictive coding architectures commonly assume that inference in neural networks is hierarchical. However, largely neglected in deep learning and predictive coding architectures is the neurobiological evidence that all hierarchical cortical areas, higher or lower, project to and receive signals directly from subcortical areas. Given these neuroanatomical facts, today's dominance of cortico-centric, hierarchical architectures in deep learning and predictive coding networks is highly questionable; such architectures are likely to be missing essential computational principles the brain uses. In this Perspective, we present the shallow brain hypothesis: hierarchical cortical processing is integrated with a massively parallel process to which subcortical areas substantially contribute. This shallow architecture exploits the computational capacity of cortical microcircuits and thalamo-cortical loops that are not included in typical hierarchical deep learning and predictive coding networks. We argue that the shallow brain architecture provides several critical benefits over deep hierarchical structures and a more complete depiction of how mammalian brains achieve fast and flexible computational capabilities.
Collapse
Affiliation(s)
- Mototaka Suzuki
- Department of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - Cyriel M A Pennartz
- Department of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaan Aru
- Institute of Computer Science, University of Tartu, Tartu, Estonia.
| |
Collapse
|
43
|
Andalib S, Divani AA, Ayata C, Baig S, Arsava EM, Topcuoglu MA, Cáceres EL, Parikh V, Desai MJ, Majid A, Girolami S, Di Napoli M. Vagus Nerve Stimulation in Ischemic Stroke. Curr Neurol Neurosci Rep 2023; 23:947-962. [PMID: 38008851 PMCID: PMC10841711 DOI: 10.1007/s11910-023-01323-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/28/2023]
Abstract
PURPOSE OF REVIEW Vagus nerve stimulation (VNS) has emerged as a potential therapeutic approach for neurological and psychiatric disorders. In recent years, there has been increasing interest in VNS for treating ischemic stroke. This review discusses the evidence supporting VNS as a treatment option for ischemic stroke and elucidates its underlying mechanisms. RECENT FINDINGS Preclinical studies investigating VNS in stroke models have shown reduced infarct volumes and improved neurological deficits. Additionally, VNS has been found to reduce reperfusion injury. VNS may promote neuroprotection by reducing inflammation, enhancing cerebral blood flow, and modulating the release of neurotransmitters. Additionally, VNS may stimulate neuroplasticity, thereby facilitating post-stroke recovery. The Food and Drug Administration has approved invasive VNS (iVNS) combined with rehabilitation for ischemic stroke patients with moderate to severe upper limb deficits. However, iVNS is not feasible in acute stroke due to its time-sensitive nature. Non-invasive VNS (nVNS) may be an alternative approach for treating ischemic stroke. While the evidence from preclinical studies and clinical trials of nVNS is promising, the mechanisms through which VNS exerts its beneficial effects on ischemic stroke are still being elucidated. Therefore, further research is needed to better understand the efficacy and underlying mechanisms of nVNS in ischemic stroke. Moreover, large-scale randomized clinical trials are necessary to determine the optimal nVNS protocols, assess its long-term effects on stroke recovery and outcomes, and identify the potential benefits of combining nVNS with other rehabilitation strategies.
Collapse
Affiliation(s)
- Sasan Andalib
- Research Unit of Neurology, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Afshin A Divani
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology and Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sheharyar Baig
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Ethem Murat Arsava
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | | | - Vinay Parikh
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Masoom J Desai
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Arshad Majid
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Sara Girolami
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| |
Collapse
|
44
|
Nuiten SA, de Gee JW, Zantvoord JB, Fahrenfort JJ, van Gaal S. Catecholaminergic neuromodulation and selective attention jointly shape perceptual decision-making. eLife 2023; 12:RP87022. [PMID: 38038722 PMCID: PMC10691802 DOI: 10.7554/elife.87022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Perceptual decisions about sensory input are influenced by fluctuations in ongoing neural activity, most prominently driven by attention and neuromodulator systems. It is currently unknown if neuromodulator activity and attention differentially modulate perceptual decision-making and/or whether neuromodulatory systems in fact control attentional processes. To investigate the effects of two distinct neuromodulatory systems and spatial attention on perceptual decisions, we pharmacologically elevated cholinergic (through donepezil) and catecholaminergic (through atomoxetine) levels in humans performing a visuo-spatial attention task, while we measured electroencephalography (EEG). Both attention and catecholaminergic enhancement improved decision-making at the behavioral and algorithmic level, as reflected in increased perceptual sensitivity and the modulation of the drift rate parameter derived from drift diffusion modeling. Univariate analyses of EEG data time-locked to the attentional cue, the target stimulus, and the motor response further revealed that attention and catecholaminergic enhancement both modulated pre-stimulus cortical excitability, cue- and stimulus-evoked sensory activity, as well as parietal evidence accumulation signals. Interestingly, we observed both similar, unique, and interactive effects of attention and catecholaminergic neuromodulation on these behavioral, algorithmic, and neural markers of the decision-making process. Thereby, this study reveals an intricate relationship between attentional and catecholaminergic systems and advances our understanding about how these systems jointly shape various stages of perceptual decision-making.
Collapse
Affiliation(s)
- Stijn A Nuiten
- Department of Psychology, University of AmsterdamAmsterdamNetherlands
- Amsterdam Brain & Cognition, University of AmsterdamAmsterdamNetherlands
- Department of Psychiatry (UPK), University of BaselBaselSwitzerland
| | - Jan Willem de Gee
- Amsterdam Brain & Cognition, University of AmsterdamAmsterdamNetherlands
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdamNetherlands
| | - Jasper B Zantvoord
- Department of Psychiatry, Amsterdam UMC location University of AmsterdamAmsterdamNetherlands
- Amsterdam NeuroscienceAmsterdamNetherlands
| | - Johannes J Fahrenfort
- Department of Psychology, University of AmsterdamAmsterdamNetherlands
- Amsterdam Brain & Cognition, University of AmsterdamAmsterdamNetherlands
- Institute for Brain and Behavior Amsterdam, Vrije Universiteit AmsterdamAmsterdamNetherlands
- Department of Experimental and Applied Psychology - Cognitive Psychology, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Simon van Gaal
- Department of Psychology, University of AmsterdamAmsterdamNetherlands
- Amsterdam Brain & Cognition, University of AmsterdamAmsterdamNetherlands
| |
Collapse
|
45
|
Yang Y, Booth V, Zochowski M. Acetylcholine facilitates localized synaptic potentiation and location specific feature binding. Front Neural Circuits 2023; 17:1239096. [PMID: 38033788 PMCID: PMC10684311 DOI: 10.3389/fncir.2023.1239096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023] Open
Abstract
Forebrain acetylcholine (ACh) signaling has been shown to drive attention and learning. Recent experimental evidence of spatially and temporally constrained cholinergic signaling has sparked interest to investigate how it facilitates stimulus-induced learning. We use biophysical excitatory-inhibitory (E-I) multi-module neural network models to show that external stimuli and ACh signaling can mediate spatially constrained synaptic potentiation patterns. The effects of ACh on neural excitability are simulated by varying the conductance of a muscarinic receptor-regulated hyperpolarizing slow K+ current (m-current). Each network module consists of an E-I network with local excitatory connectivity and global inhibitory connectivity. The modules are interconnected with plastic excitatory synaptic connections, that change via a spike-timing-dependent plasticity (STDP) rule. Our results indicate that spatially constrained ACh release influences the information flow represented by network dynamics resulting in selective reorganization of inter-module interactions. Moreover the information flow depends on the level of synchrony in the network. For highly synchronous networks, the more excitable module leads firing in the less excitable one resulting in strengthening of the outgoing connections from the former and weakening of its incoming synapses. For networks with more noisy firing patterns, activity in high ACh regions is prone to induce feedback firing of synchronous volleys and thus strengthening of the incoming synapses to the more excitable region and weakening of outgoing synapses. Overall, these results suggest that spatially and directionally specific plasticity patterns, as are presumed necessary for feature binding, can be mediated by spatially constrained ACh release.
Collapse
Affiliation(s)
- Yihao Yang
- Department of Physics, University of Michigan, Ann Arbor, MI, United States
| | - Victoria Booth
- Departments of Mathematics and Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Michal Zochowski
- Department of Physics and Biophysics Program, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
46
|
Matsumoto A, Yonehara K. Emerging computational motifs: Lessons from the retina. Neurosci Res 2023; 196:11-22. [PMID: 37352934 DOI: 10.1016/j.neures.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023]
Abstract
The retinal neuronal circuit is the first stage of visual processing in the central nervous system. The efforts of scientists over the last few decades indicate that the retina is not merely an array of photosensitive cells, but also a processor that performs various computations. Within a thickness of only ∼200 µm, the retina consists of diverse forms of neuronal circuits, each of which encodes different visual features. Since the discovery of direction-selective cells by Horace Barlow and Richard Hill, the mechanisms that generate direction selectivity in the retina have remained a fascinating research topic. This review provides an overview of recent advances in our understanding of direction-selectivity circuits. Beyond the conventional wisdom of direction selectivity, emerging findings indicate that the retina utilizes complicated and sophisticated mechanisms in which excitatory and inhibitory pathways are involved in the efficient encoding of motion information. As will become evident, the discovery of computational motifs in the retina facilitates an understanding of how sensory systems establish feature selectivity.
Collapse
Affiliation(s)
- Akihiro Matsumoto
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan; Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan.
| | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan; Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| |
Collapse
|
47
|
Allard S, Hussain Shuler MG. Cholinergic Reinforcement Signaling Is Impaired by Amyloidosis Prior to Its Synaptic Loss. J Neurosci 2023; 43:6988-7005. [PMID: 37648452 PMCID: PMC10586537 DOI: 10.1523/jneurosci.0967-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/03/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023] Open
Abstract
Alzheimer's disease (AD) is associated with amyloidosis and dysfunction of the cholinergic system, which is crucial for learning and memory. However, the nature of acetylcholine signaling within regions of cholinergic-dependent plasticity and how it changes with experience is poorly understood, much less the impact of amyloidosis on this signaling. Therefore, we optically measure the release profile of acetylcholine to unexpected, predicted, and predictive events in visual cortex (VC)-a site of known cholinergic-dependent plasticity-in a preclinical mouse model of AD that develops amyloidosis. We find that acetylcholine exhibits reinforcement signaling qualities, reporting behaviorally relevant outcomes and displaying release profiles to predictive and predicted events that change as a consequence of experience. We identify three stages of amyloidosis occurring before the degeneration of cholinergic synapses within VC and observe that cholinergic responses in amyloid-bearing mice become impaired over these stages, diverging progressively from age- and sex-matched littermate controls. In particular, amyloidosis degrades the signaling of unexpected rewards and punishments, and attenuates the experience-dependent (1) increase of cholinergic responses to outcome predictive visual cues, and (2) decrease of cholinergic responses to predicted outcomes. Hyperactive spontaneous acetylcholine release occurring transiently at the onset of impaired cholinergic signaling is also observed, further implicating disrupted cholinergic activity as an early functional biomarker in AD. Our findings suggest that acetylcholine acts as a reinforcement signal that is impaired by amyloidosis before pathologic degeneration of the cholinergic system, providing a deeper understanding of the effects of amyloidosis on acetylcholine signaling and informing future interventions for AD.SIGNIFICANCE STATEMENT The cholinergic system is especially vulnerable to the neurotoxic effects of amyloidosis, a hallmark of Alzheimer's disease (AD). Though amyloid-induced cholinergic synaptic loss is thought in part to account for learning and memory impairments in AD, little is known regarding how amyloid impacts signaling of the cholinergic system before its anatomic degeneration. Optical measurement of acetylcholine (ACh) release in a mouse model of AD that develops amyloidosis reveals that ACh signals reinforcement and outcome prediction that is disrupted by amyloidosis before cholinergic degeneration. These observations have important scientific and clinical implications: they implicate ACh signaling as an early functional biomarker, provide a deeper understanding of the action of acetylcholine, and inform on when and how intervention may best ameliorate cognitive decline in AD.
Collapse
Affiliation(s)
- Simon Allard
- Kavli Neuroscience Discovery Institute, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Marshall G Hussain Shuler
- Kavli Neuroscience Discovery Institute, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
48
|
Mineur YS, Picciotto MR. How can I measure brain acetylcholine levels in vivo? Advantages and caveats of commonly used approaches. J Neurochem 2023; 167:3-15. [PMID: 37621094 PMCID: PMC10616967 DOI: 10.1111/jnc.15943] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
The neurotransmitter acetylcholine (ACh) plays a central role in the regulation of multiple cognitive and behavioral processes, including attention, learning, memory, motivation, anxiety, mood, appetite, and reward. As a result, understanding ACh dynamics in the brain is essential for elucidating the neural mechanisms underlying these processes. In vivo measurements of ACh in the brain have been challenging because of the low concentrations and rapid turnover of this neurotransmitter. Here, we review a number of techniques that have been developed to measure ACh levels in the brain in vivo. We follow this with a deeper focus on use of genetically encoded fluorescent sensors coupled with fiber photometry, an accessible technique that can be used to monitor neurotransmitter release with high temporal resolution and specificity. We conclude with a discussion of methods for analyzing fiber photometry data and their respective advantages and disadvantages. The development of genetically encoded fluorescent ACh sensors is revolutionizing the field of cholinergic signaling, allowing temporally precise measurement of ACh release in awake, behaving animals. Use of these sensors has already begun to contribute to a mechanistic understanding of cholinergic modulation of complex behaviors.
Collapse
Affiliation(s)
- Yann S. Mineur
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3 Floor Research, New Haven, CT 06508, USA
| | - Marina R. Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3 Floor Research, New Haven, CT 06508, USA
| |
Collapse
|
49
|
Gulledge AT. Cholinergic activation of corticofugal circuits in the adult mouse prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538437. [PMID: 37163128 PMCID: PMC10168390 DOI: 10.1101/2023.04.28.538437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In layer 5 of the neocortex, ACh promotes cortical output to the thalamus and brainstem by preferentially enhancing the postsynaptic excitability of pyramidal tract (PT) neurons relative to neighboring intratelencephalic (IT) neurons. Less is known about how ACh regulates the excitatory synaptic drive of IT and PT neurons. To address this question, spontaneous excitatory postsynaptic potentials (sEPSPs) were recorded in pairs of IT and PT neurons in slices of prelimbic cortex from adult female and male mice. ACh (20 µM) enhanced sEPSP amplitudes, frequencies, rise-times, and half-widths preferentially in PT neurons. These effects were blocked by the muscarinic acetylcholine receptor antagonist atropine (1 µM). When challenged with pirenzepine (1 µM), an antagonist selective for M1-type muscarinic receptors, ACh instead reduced sEPSP frequencies. The cholinergic increase in sEPSP amplitudes and frequencies in PT neurons was not sensitive to blockade of GABAergic receptors with gabazine (10 µM) and CGP52432 (2.5 µM), but was blocked by tetrodotoxin (1 µM), suggesting that ACh enhances action-potential-dependent excitatory synaptic transmission in PT neurons. ACh also preferentially promoted the occurrence of synchronous sEPSPs in pairs of PT neurons relative to IT-PT and IT-IT pairs. Finally, selective chemogenetic silencing of hM4Di-expressing PT, but not IT, neurons with clozapine-N-oxide (5 µM) blocked cholinergic enhancement of sEPSP amplitudes and frequencies in PT neurons. These data suggest that, in addition to enhancing the postsynaptic excitability of PT neurons, M1 receptor activation promotes corticofugal output by preferentially amplifying recurrent excitation within networks of PT neurons.
Collapse
Affiliation(s)
- Allan T Gulledge
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College 74 College Street, Vail 601, Hanover, New Hampshire 03755, USA
| |
Collapse
|
50
|
Berry AS, Harrison TM. New perspectives on the basal forebrain cholinergic system in Alzheimer's disease. Neurosci Biobehav Rev 2023; 150:105192. [PMID: 37086935 PMCID: PMC10249144 DOI: 10.1016/j.neubiorev.2023.105192] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 04/24/2023]
Abstract
The basal forebrain cholinergic system (BFCS) has long been implicated in age-related cognitive changes and the pathophysiology of Alzheimer's disease (AD). Limitations of cholinergic interventions helped to inspire a shift away from BFCS in AD research. A resurgence in interest in the BFCS following methodological and analytical advances has resulted in a call for the BFCS to be examined in novel frameworks. We outline the basic structure and function of the BFCS, its role in supporting cognitive and affective function, and its vulnerability to aging and AD. We consider the BFCS in the context of the amyloid hypothesis and evolving concepts in AD research: resilience and resistance to pathology, selective neuronal vulnerability, trans-synaptic pathology spread and sleep health. We highlight 1) the potential role of the BFCS in cognitive resilience, 2) recent work refining understanding about the selective vulnerability of BFCS to AD, 3) BFCS connectivity that suggests it is related to tau spreading and neurodegeneration and 4) the gap between BFCS involvement in AD and sleep-wake cycles.
Collapse
Affiliation(s)
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|