1
|
Alexander RPD, Bender KJ. Delta opioid receptors engage multiple signaling cascades to differentially modulate prefrontal GABA release with input and target specificity. Cell Rep 2025; 44:115293. [PMID: 39923239 PMCID: PMC11938346 DOI: 10.1016/j.celrep.2025.115293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/22/2024] [Accepted: 01/20/2025] [Indexed: 02/11/2025] Open
Abstract
Opioids regulate circuits associated with motivation and reward across the brain. Of the opioid receptor types, delta opioid receptors (DORs) appear to have a unique role in regulating the activity of circuits related to reward without liability for abuse. In neocortex, DORs are expressed primarily in interneurons, including parvalbumin- and somatostatin-expressing interneurons that inhibit somatic and dendritic compartments of excitatory pyramidal cells, respectively. But how DORs regulate transmission from these key interneuron classes is unclear. We found that DORs regulate inhibition from these interneuron classes using different G-protein signaling pathways that both converge on presynaptic calcium channels but regulate distinct aspects of calcium channel function. This imposes different temporal filtering effects, via short-term plasticity, that depend on how calcium channels are regulated. Thus, DORs engage differential signaling cascades to regulate inhibition depending on the postsynaptic target compartment, with different effects on synaptic information transfer in somatic and dendritic domains.
Collapse
Affiliation(s)
- Ryan P D Alexander
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Kevin J Bender
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
2
|
Alexander RPD, Bender KJ. Delta opioid receptors engage multiple signaling cascades to differentially modulate prefrontal GABA release with input and target specificity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607246. [PMID: 39149233 PMCID: PMC11326311 DOI: 10.1101/2024.08.08.607246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Opioids regulate circuits associated with motivation and reward across the brain. Of the opioid receptor types, delta opioid receptors (DORs) appear to have a unique role in regulating the activity of circuits related to reward without a liability for abuse. In neocortex, DORs are expressed primarily in interneurons, including parvalbumin- and somatostatin-expressing interneurons that inhibit somatic and dendritic compartments of excitatory pyramidal cells, respectively. But how DORs regulate transmission from these key interneuron classes is unclear. We found that DORs regulate inhibition from these interneuron classes using different G-protein signaling pathways that both converge on presynaptic calcium channels, but regulate distinct aspects of calcium channel function. This imposes different temporal filtering effects, via short-term plasticity, that depend on how calcium channels are regulated. Thus, DORs engage differential signaling cascades to regulate inhibition depending on the postsynaptic target compartment, with different effects on synaptic information transfer in somatic and dendritic domains.
Collapse
Affiliation(s)
- Ryan P. D. Alexander
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin J. Bender
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Tabaka O, Lawal S, Del Rio Triana R, Hou M, Fraser A, Gallagher A, San Agustin Ruiz K, Marmarcz M, Dickinson M, Oliveira MM, Klann E, Shrestha P. Aberrant TSC-Rheb axis in Oxytocin receptor+ cells mediate stress-induced anxiety. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600464. [PMID: 38979197 PMCID: PMC11230205 DOI: 10.1101/2024.06.25.600464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Stress is a major risk for the onset of several maladaptive processes including pathological anxiety, a diffuse state of heightened apprehension over anticipated threats1. Pathological anxiety is prevalent in up to 59% of patients with Tuberous Sclerosis complex (TSC)2, a neurodevelopmental disorder (NDD) caused by loss-of-function mutations in genes for Tuberin (Tsc2) and/or Hamartin (Tsc1) that together comprise the eponymous protein complex. Here, we generated cell type-specific heterozygous knockout of Tsc2 in cells expressing oxytocin receptor (OTRCs) to model pathological anxiety-like behaviors observed in TSC patient population. The stress of prolonged social isolation induces a sustained negative affective state that precipitates behavioral avoidance, often by aberrant oxytocin signaling in the limbic forebrain3,4. In response to social isolation, there were striking sex differences in stress susceptibility in conditional heterozygote mice when encountering situations of approach-avoidance conflict. Socially isolated male mutants exhibited behavioral avoidance in anxiogenic environments and sought more social interaction for buffering of stress. In contrast, female mutants developed resilience during social isolation and approached anxiogenic environments, while devaluing social interaction. Systemic and medial prefrontal cortex (mPFC)-specific inhibition of downstream effector of TSC, the integrated stress response (ISR), rescued behavioral approach toward anxiogenic environments and conspecifics in male and female mutant mice respectively. Further, we found that Tsc2 deletion in OTRCs leads to OTR-signaling elicited network suppression, i.e., hypofrontality, in male mPFC, which is relieved by inhibiting the ISR. Our findings present evidence in support of a sexually dimorphic role of prefrontal OTRCs in regulating emotional responses in anxiogenic environments, which goes awry in TSC. Our work has broader implications for developing effective treatments for subtypes of anxiety disorders that are characterized by cell-autonomous ISR and prefrontal network suppression.
Collapse
Affiliation(s)
- Olivia Tabaka
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794
| | - Saheed Lawal
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794
| | | | - Mian Hou
- Center for Neural Science, New York University, New York, NY 10003
| | - Alexandra Fraser
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794
| | - Andrew Gallagher
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794
| | | | - Maggie Marmarcz
- Center for Neural Science, New York University, New York, NY 10003
| | - Matthew Dickinson
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794
| | | | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10003
| | - Prerana Shrestha
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
4
|
Jedrasiak-Cape I, Rybicki-Kler C, Brooks I, Ghosh M, Brennan EK, Kailasa S, Ekins TG, Rupp A, Ahmed OJ. Cell-type-specific cholinergic control of granular retrosplenial cortex with implications for angular velocity coding across brain states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597341. [PMID: 38895393 PMCID: PMC11185600 DOI: 10.1101/2024.06.04.597341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Cholinergic receptor activation enables the persistent firing of cortical pyramidal neurons, providing a key cellular basis for theories of spatial navigation involving working memory, path integration, and head direction encoding. The granular retrosplenial cortex (RSG) is important for spatially-guided behaviors, but how acetylcholine impacts RSG neurons is unknown. Here, we show that a transcriptomically, morphologically, and biophysically distinct RSG cell-type - the low-rheobase (LR) neuron - has a very distinct expression profile of cholinergic muscarinic receptors compared to all other neighboring excitatory neuronal subtypes. LR neurons do not fire persistently in response to cholinergic agonists, in stark contrast to all other principal neuronal subtypes examined within the RSG and across midline cortex. This lack of persistence allows LR neuron models to rapidly compute angular head velocity (AHV), independent of cholinergic changes seen during navigation. Thus, LR neurons can consistently compute AHV across brain states, highlighting the specialized RSG neural codes supporting navigation.
Collapse
Affiliation(s)
| | - Chloe Rybicki-Kler
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
| | - Isla Brooks
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
| | - Megha Ghosh
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
| | - Ellen K.W. Brennan
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
| | - Sameer Kailasa
- Dept. of Mathematics, University of Michigan, Ann Arbor, MI 48109
| | - Tyler G. Ekins
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
| | - Alan Rupp
- Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Omar J. Ahmed
- Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
5
|
Gulledge AT. Cholinergic Activation of Corticofugal Circuits in the Adult Mouse Prefrontal Cortex. J Neurosci 2024; 44:e1388232023. [PMID: 38050146 PMCID: PMC10860659 DOI: 10.1523/jneurosci.1388-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 12/06/2023] Open
Abstract
Acetylcholine (ACh) promotes neocortical output to the thalamus and brainstem by preferentially enhancing the postsynaptic excitability of layer 5 pyramidal tract (PT) neurons relative to neighboring intratelencephalic (IT) neurons. Less is known about how ACh regulates the excitatory synaptic drive of IT and PT neurons. To address this question, spontaneous excitatory postsynaptic potentials (sEPSPs) were recorded in dual recordings of IT and PT neurons in slices of prelimbic cortex from adult female and male mice. ACh (20 µM) enhanced sEPSP amplitudes, frequencies, rise-times, and half-widths preferentially in PT neurons. These effects were blocked by the muscarinic receptor antagonist atropine (1 µM). When challenged with pirenzepine (1 µM), an antagonist selective for M1-type muscarinic receptors, ACh instead reduced sEPSP frequencies, suggesting that ACh may generally suppress synaptic transmission in the cortex via non-M1 receptors. Cholinergic enhancement of sEPSPs in PT neurons was not sensitive to antagonism of GABA receptors with gabazine (10 µM) and CGP52432 (2.5 µM) but was blocked by tetrodotoxin (1 µM), suggesting that ACh enhances action-potential-dependent excitatory synaptic transmission in PT neurons. ACh also preferentially promoted the occurrence of synchronous sEPSPs in dual recordings of PT neurons relative to IT-PT and IT-IT parings. Finally, selective chemogenetic silencing of hM4Di-expressing PT, but not commissural IT, neurons blocked cholinergic enhancement of sEPSP amplitudes and frequencies in PT neurons. These data suggest that, in addition to selectively enhancing the postsynaptic excitability of PT neurons, M1 receptor activation promotes corticofugal output by amplifying recurrent excitation within networks of PT neurons.
Collapse
Affiliation(s)
- Allan T Gulledge
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover 03755, New Hampshire
| |
Collapse
|
6
|
Trofimova I. Anticipatory attractors, functional neurochemistry and "Throw & Catch" mechanisms as illustrations of constructivism. Rev Neurosci 2023; 34:737-762. [PMID: 36584323 DOI: 10.1515/revneuro-2022-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022]
Abstract
This review explores several rarely discussed examples illustrating constructivism principles, generative and selective features of neuronal regulation of behaviour. First, the review highlights Walter Freeman's experiments and mathematical analysis that uncovered the existence of anticipatory attractors, i.e. non-random dynamical patterns in neurodynamics. Since Freeman's work did not extend to neurochemistry, this paper then points to the proposed earlier neurochemical framework summarizing the managerial roles of monoaminergic, cholinergic and opioid receptor systems likely contributing to anticipatory attractors in line with functional constructivism. As a third example, neurochemistry's evidence points to the "Throw & Catch" (T&C) principle in neurodynamics. This principle refers to the pro-active, neurochemically expensive, massive but topical increase of potentials ("Throw") within electrodynamics and neurotransmission in the brain whenever there is an uncertainty in selection of degrees of freedom (DFs). The T&C also underlines the relay-like processes during the selection of DFs. The "Throw" works as an internally generated "flashlight" that, contrarily to the expectations of entropy reduction, increases entropy and variance observed in processes related to orientation and action-formation. The discussed examples highlight the deficiency of structures-oriented projects and excitation-inhibition concepts in neuroscience. The neural regulation of behaviour appears to be a fluid, constructive process, constantly upgrading the choice of behavioural DFs, to ensure the compatibility between the environmental and individual's individuals' needs and capacities.
Collapse
Affiliation(s)
- Irina Trofimova
- Laboratory of Collective Intelligence, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton L8S 2T6, ON, Canada
| |
Collapse
|
7
|
Dai J, Sun QQ. Learning induced neuronal identity switch in the superficial layers of the primary somatosensory cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555603. [PMID: 37693620 PMCID: PMC10491147 DOI: 10.1101/2023.08.30.555603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
During learning, multi-dimensional inputs are integrated within the sensory cortices. However, the strategies by which the sensory cortex employs to achieve learning remains poorly understood. We studied the sensory cortical neuronal coding of trace eyeblink conditioning (TEC) in head-fixed, freely running mice, where whisker deflection was used as a conditioned stimulus (CS) and an air puff to the cornea delivered after an interval was used as unconditioned stimulus (US). After training, mice learned the task with a set of stereotypical behavioral changes, most prominent ones include prolonged closure of eyelids, and increased reverse running between CS and US onset. The local blockade of the primary somatosensory cortex (S1) activities with muscimol abolished the behavior learning suggesting that S1 is required for the TEC. In naive animals, based on the response properties to the CS and US, identities of the small proportion (~20%) of responsive primary neurons (PNs) were divided into two subtypes: CR (i.e. CS-responsive) and UR neurons (i.e. US-responsive). After animals learned the task, identity of CR and UR neurons changed: while the CR neurons are less responsive to CS, UR neurons gain responsiveness to CS, a new phenomenon we defined as 'learning induced neuronal identity switch (LINIS)'. To explore the potential mechanisms underlying LINIS, we found that systemic and local (i.e. in S1) administration of the nicotinic receptor antagonist during TEC training blocked the LINIS, and concomitantly disrupted the behavior learning. Additionally, we monitored responses of two types of cortical interneurons (INs) and observed that the responses of the somatostatin-expressing (SST), but not parvalbumin-expressing (PV) INs are negatively correlated with the learning performance, suggesting that SST-INs contribute to the LINIS. Thus, we conclude that L2/3 PNs in S1 encode perceptual learning by LINIS like mechanisms, and cholinergic pathways and cortical SST interneurons are involved in the formation of LINIS.
Collapse
Affiliation(s)
- Jiaman Dai
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY82071, USA
- Wyoming Sensory Biology Center of Biomedical Research Excellence, University of Wyoming, Laramie, WY82071, USA
| | - Qian-Quan Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY82071, USA
- Wyoming Sensory Biology Center of Biomedical Research Excellence, University of Wyoming, Laramie, WY82071, USA
| |
Collapse
|
8
|
Gulledge AT. Cholinergic activation of corticofugal circuits in the adult mouse prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538437. [PMID: 37163128 PMCID: PMC10168390 DOI: 10.1101/2023.04.28.538437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In layer 5 of the neocortex, ACh promotes cortical output to the thalamus and brainstem by preferentially enhancing the postsynaptic excitability of pyramidal tract (PT) neurons relative to neighboring intratelencephalic (IT) neurons. Less is known about how ACh regulates the excitatory synaptic drive of IT and PT neurons. To address this question, spontaneous excitatory postsynaptic potentials (sEPSPs) were recorded in pairs of IT and PT neurons in slices of prelimbic cortex from adult female and male mice. ACh (20 µM) enhanced sEPSP amplitudes, frequencies, rise-times, and half-widths preferentially in PT neurons. These effects were blocked by the muscarinic acetylcholine receptor antagonist atropine (1 µM). When challenged with pirenzepine (1 µM), an antagonist selective for M1-type muscarinic receptors, ACh instead reduced sEPSP frequencies. The cholinergic increase in sEPSP amplitudes and frequencies in PT neurons was not sensitive to blockade of GABAergic receptors with gabazine (10 µM) and CGP52432 (2.5 µM), but was blocked by tetrodotoxin (1 µM), suggesting that ACh enhances action-potential-dependent excitatory synaptic transmission in PT neurons. ACh also preferentially promoted the occurrence of synchronous sEPSPs in pairs of PT neurons relative to IT-PT and IT-IT pairs. Finally, selective chemogenetic silencing of hM4Di-expressing PT, but not IT, neurons with clozapine-N-oxide (5 µM) blocked cholinergic enhancement of sEPSP amplitudes and frequencies in PT neurons. These data suggest that, in addition to enhancing the postsynaptic excitability of PT neurons, M1 receptor activation promotes corticofugal output by preferentially amplifying recurrent excitation within networks of PT neurons.
Collapse
Affiliation(s)
- Allan T Gulledge
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College 74 College Street, Vail 601, Hanover, New Hampshire 03755, USA
| |
Collapse
|
9
|
Soplata AE, Adam E, Brown EN, Purdon PL, McCarthy MM, Kopell N. Rapid thalamocortical network switching mediated by cortical synchronization underlies propofol-induced EEG signatures: a biophysical model. J Neurophysiol 2023; 130:86-103. [PMID: 37314079 PMCID: PMC10312318 DOI: 10.1152/jn.00068.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
Propofol-mediated unconsciousness elicits strong alpha/low-beta and slow oscillations in the electroencephalogram (EEG) of patients. As anesthetic dose increases, the EEG signal changes in ways that give clues to the level of unconsciousness; the network mechanisms of these changes are only partially understood. Here, we construct a biophysical thalamocortical network involving brain stem influences that reproduces transitions in dynamics seen in the EEG involving the evolution of the power and frequency of alpha/low-beta and slow rhythm, as well as their interactions. Our model suggests that propofol engages thalamic spindle and cortical sleep mechanisms to elicit persistent alpha/low-beta and slow rhythms, respectively. The thalamocortical network fluctuates between two mutually exclusive states on the timescale of seconds. One state is characterized by continuous alpha/low-beta-frequency spiking in thalamus (C-state), whereas in the other, thalamic alpha spiking is interrupted by periods of co-occurring thalamic and cortical silence (I-state). In the I-state, alpha colocalizes to the peak of the slow oscillation; in the C-state, there is a variable relationship between an alpha/beta rhythm and the slow oscillation. The C-state predominates near loss of consciousness; with increasing dose, the proportion of time spent in the I-state increases, recapitulating EEG phenomenology. Cortical synchrony drives the switch to the I-state by changing the nature of the thalamocortical feedback. Brain stem influence on the strength of thalamocortical feedback mediates the amount of cortical synchrony. Our model implicates loss of low-beta, cortical synchrony, and coordinated thalamocortical silent periods as contributing to the unconscious state.NEW & NOTEWORTHY GABAergic anesthetics induce alpha/low-beta and slow oscillations in the EEG, which interact in dose-dependent ways. We constructed a thalamocortical model to investigate how these interdependent oscillations change with propofol dose. We find two dynamic states of thalamocortical coordination, which change on the timescale of seconds and dose-dependently mirror known changes in EEG. Thalamocortical feedback determines the oscillatory coupling and power seen in each state, and this is primarily driven by cortical synchrony and brain stem neuromodulation.
Collapse
Affiliation(s)
- Austin E Soplata
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States
| | - Elie Adam
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Emery N Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Patrick L Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Michelle M McCarthy
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States
| | - Nancy Kopell
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
10
|
Kanigowski D, Bogaj K, Barth AL, Urban-Ciecko J. Somatostatin-expressing interneurons modulate neocortical network through GABAb receptors in a synapse-specific manner. Sci Rep 2023; 13:8780. [PMID: 37258641 DOI: 10.1038/s41598-023-35890-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023] Open
Abstract
The firing activity of somatostatin-expressing inhibitory neurons (SST-INs) can suppress network activity via both GABAa and GABAb receptors (Rs). Although SST-INs do not receive GABAaR input from other SST-INs, it is possible that SST-IN-released GABA could suppress the activity of SST-INs themselves via GABAbRs, providing a negative feedback loop. Here we characterized the influence of GABAbR modulation on SST-IN activity in layer 2/3 of the somatosensory cortex in mice. We compared this to the effects of GABAbR activation on parvalbumin-expressing interneurons (PV-INs). Using in vitro whole-cell patch clamp recordings, pharmacological and optogenetic manipulations, we found that the firing activity of SST-INs suppresses excitatory drive to themselves via presynaptic GABAbRs. Postsynaptic GABAbRs did not influence SST-IN spontaneous activity or intrinsic excitability. Although GABAbRs at pre- and postsynaptic inputs to PV-INs are modestly activated during cortical network activity in vitro, the spontaneous firing of SST-INs was not the source of GABA driving this GABAbR activation. Thus, SST-IN firing regulates excitatory synaptic strength through presynaptic GABAbRs at connections between pyramidal neurons (Pyr-Pyr) and synapses between pyramidal neurons and SST-INs (Pyr-SST), but not Pyr-PV and PV-Pyr synapses. Our study indicates that two main types of neocortical inhibitory interneurons are differentially modulated by SST-IN-mediated GABA release.
Collapse
Affiliation(s)
- Dominik Kanigowski
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, Warsaw, 02-093, Poland
| | - Karolina Bogaj
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, Warsaw, 02-093, Poland
| | - Alison L Barth
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Joanna Urban-Ciecko
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, Warsaw, 02-093, Poland.
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
11
|
Zong F, Min X, Zhang Y, Li Y, Zhang X, Liu Y, He K. Circadian time- and sleep-dependent modulation of cortical parvalbumin-positive inhibitory neurons. EMBO J 2023; 42:e111304. [PMID: 36477886 PMCID: PMC9890233 DOI: 10.15252/embj.2022111304] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/13/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
Parvalbumin-positive neurons (PVs) are the main class of inhibitory neurons in the mammalian central nervous system. By examining diurnal changes in synaptic and neuronal activity of PVs in the supragranular layer of the mouse primary visual cortex (V1), we found that both PV input and output are modulated in a time- and sleep-dependent manner throughout the 24-h day. We first show that PV-evoked inhibition is stronger by the end of the light cycle (ZT12) relative to the end of the dark cycle (ZT0), which is in line with the lower inhibitory input of PV neurons at ZT12 than at ZT0. Interestingly, PV inhibitory and excitatory synaptic transmission slowly oscillate in opposite directions during the light/dark cycle. Although excitatory synapses are predominantly regulated by experience, inhibitory synapses are regulated by sleep, via acetylcholine activating M1 receptors. Consistent with synaptic regulation of PVs, we further show in vivo that spontaneous PV activity displays daily rhythm mainly determined by visual experience, which negatively correlates with the activity cycle of surrounding pyramidal neurons and the dorsal lateral geniculate nucleus-evoked responses in V1. These findings underscore the physiological significance of PV's daily modulation.
Collapse
Affiliation(s)
- Fang‐Jiao Zong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Present address:
Qingdao University School of PharmacyQingdaoChina
| | - Xia Min
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yan Zhang
- Shanghai Open UniversityShanghaiChina
| | - Yu‐Ke Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xue‐Ting Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yang Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kai‐Wen He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
12
|
Mikulasch FA, Rudelt L, Wibral M, Priesemann V. Where is the error? Hierarchical predictive coding through dendritic error computation. Trends Neurosci 2023; 46:45-59. [PMID: 36577388 DOI: 10.1016/j.tins.2022.09.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022]
Abstract
Top-down feedback in cortex is critical for guiding sensory processing, which has prominently been formalized in the theory of hierarchical predictive coding (hPC). However, experimental evidence for error units, which are central to the theory, is inconclusive and it remains unclear how hPC can be implemented with spiking neurons. To address this, we connect hPC to existing work on efficient coding in balanced networks with lateral inhibition and predictive computation at apical dendrites. Together, this work points to an efficient implementation of hPC with spiking neurons, where prediction errors are computed not in separate units, but locally in dendritic compartments. We then discuss the correspondence of this model to experimentally observed connectivity patterns, plasticity, and dynamics in cortex.
Collapse
Affiliation(s)
- Fabian A Mikulasch
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany.
| | - Lucas Rudelt
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Michael Wibral
- Göttingen Campus Institute for Dynamics of Biological Networks, Georg-August University, Göttingen, Germany
| | - Viola Priesemann
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany; Bernstein Center for Computational Neuroscience (BCCN), Göttingen, Germany; Department of Physics, Georg-August University, Göttingen, Germany
| |
Collapse
|
13
|
Whole-brain modeling explains the context-dependent effects of cholinergic neuromodulation. Neuroimage 2023; 265:119782. [PMID: 36464098 DOI: 10.1016/j.neuroimage.2022.119782] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/08/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Integration and segregation are two fundamental principles of brain organization. The brain manages the transitions and balance between different functional segregated or integrated states through neuromodulatory systems. Recently, computational and experimental studies suggest a pro-segregation effect of cholinergic neuromodulation. Here, we studied the effects of the cholinergic system on brain functional connectivity using both empirical fMRI data and computational modeling. First, we analyzed the effects of nicotine on functional connectivity and network topology in healthy subjects during resting-state conditions and during an attentional task. Then, we employed a whole-brain neural mass model interconnected using a human connectome to simulate the effects of nicotine and investigate causal mechanisms for these changes. The drug effect was modeled decreasing both the global coupling and local feedback inhibition parameters, consistent with the known cellular effects of acetylcholine. We found that nicotine incremented functional segregation in both empirical and simulated data, and the effects are context-dependent: observed during the task, but not in the resting state. In-task performance correlates with functional segregation, establishing a link between functional network topology and behavior. Furthermore, we found in the empirical data that the regional density of the nicotinic acetylcholine α4β2 correlates with the decrease in functional nodal strength by nicotine during the task. Our results confirm that cholinergic neuromodulation promotes functional segregation in a context-dependent fashion, and suggest that this segregation is suited for simple visual-attentional tasks.
Collapse
|
14
|
Regimes and mechanisms of transient amplification in abstract and biological neural networks. PLoS Comput Biol 2022; 18:e1010365. [PMID: 35969604 PMCID: PMC9377633 DOI: 10.1371/journal.pcbi.1010365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
Neuronal networks encode information through patterns of activity that define the networks’ function. The neurons’ activity relies on specific connectivity structures, yet the link between structure and function is not fully understood. Here, we tackle this structure-function problem with a new conceptual approach. Instead of manipulating the connectivity directly, we focus on upper triangular matrices, which represent the network dynamics in a given orthonormal basis obtained by the Schur decomposition. This abstraction allows us to independently manipulate the eigenspectrum and feedforward structures of a connectivity matrix. Using this method, we describe a diverse repertoire of non-normal transient amplification, and to complement the analysis of the dynamical regimes, we quantify the geometry of output trajectories through the effective rank of both the eigenvector and the dynamics matrices. Counter-intuitively, we find that shrinking the eigenspectrum’s imaginary distribution leads to highly amplifying regimes in linear and long-lasting dynamics in nonlinear networks. We also find a trade-off between amplification and dimensionality of neuronal dynamics, i.e., trajectories in neuronal state-space. Networks that can amplify a large number of orthogonal initial conditions produce neuronal trajectories that lie in the same subspace of the neuronal state-space. Finally, we examine networks of excitatory and inhibitory neurons. We find that the strength of global inhibition is directly linked with the amplitude of amplification, such that weakening inhibitory weights also decreases amplification, and that the eigenspectrum’s imaginary distribution grows with an increase in the ratio between excitatory-to-inhibitory and excitatory-to-excitatory connectivity strengths. Consequently, the strength of global inhibition reveals itself as a strong signature for amplification and a potential control mechanism to switch dynamical regimes. Our results shed a light on how biological networks, i.e., networks constrained by Dale’s law, may be optimised for specific dynamical regimes. The architecture of neuronal networks lies at the heart of its dynamic behaviour, or in other words, the function of the system. However, the relationship between changes in the architecture and their effect on the dynamics, a structure-function problem, is still poorly understood. Here, we approach this problem by studying a rotated connectivity matrix that is easier to manipulate and interpret. We focus our analysis on a dynamical regime that arises from the biological property that neurons are usually not connected symmetrically, which may result in a non-normal connectivity matrix. Our techniques unveil distinct expressions of the dynamical regime of non-normal amplification. Moreover, we devise a way to analyse the geometry of the dynamics: we assign a single number to a network that quantifies how dissimilar its repertoire of behaviours can be. Finally, using our approach, we can close the loop back to the original neuronal architecture and find that biologically plausible networks use the strength of inhibition and excitatory-to-inhibitory connectivity strength to navigate the different dynamical regimes of non-normal amplification.
Collapse
|
15
|
Ren C, Peng K, Yang R, Liu W, Liu C, Komiyama T. Global and subtype-specific modulation of cortical inhibitory neurons regulated by acetylcholine during motor learning. Neuron 2022; 110:2334-2350.e8. [PMID: 35584693 PMCID: PMC9308684 DOI: 10.1016/j.neuron.2022.04.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 01/12/2022] [Accepted: 04/28/2022] [Indexed: 12/26/2022]
Abstract
Inhibitory neurons (INs) consist of distinct subtypes with unique functions. Previous studies on INs mainly focused on single brain regions, and thus it remains unclear whether the modulation of IN subtypes occurs globally across multiple regions. Here, we monitored the activity of different cortical IN subtypes at both macroscale and microscale in mice learning a lever-press task. Learning evoked a global modulation of IN subtypes throughout the cortex. The initial learning phase involved strong activation of vasoactive intestinal peptide-expressing INs (VIP-INs) and weak activation of somatostatin-expressing INs (SOM-INs). Inactivating VIP-INs increased SOM-IN activity and impaired initial learning. Concurrently, cortical cholinergic inputs from the basal forebrain were initially more active but became less engaged over learning. Manipulation of the cholinergic system impaired motor learning and differentially altered activity of IN subtypes. These results reveal that motor learning involves a global and subtype-specific modulation on cortical INs regulated by the cholinergic system.
Collapse
Affiliation(s)
- Chi Ren
- Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Kailong Peng
- Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Ruize Yang
- Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Weikang Liu
- Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Chang Liu
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Takaki Komiyama
- Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
16
|
Eleutheroside E supplementation prevents radiation-induced cognitive impairment and activates PKA signaling via gut microbiota. Commun Biol 2022; 5:680. [PMID: 35804021 PMCID: PMC9270490 DOI: 10.1038/s42003-022-03602-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/04/2022] [Indexed: 11/08/2022] Open
Abstract
Radiation affects not only cognitive function but also gut microbiota. Eleutheroside E (EE), a principal active compound of Acanthopanax senticosus, has a certain protective effect on the nervous system. Here, we find a four-week EE supplementation to the 60Co-γ ray irradiated mice improves the cognition and spatial memory impairments along with the protection of hippocampal neurons, remodels the gut microbiota, especially changes of Lactobacillus and Helicobacter, and altered the microbial metabolites including neurotransmitters (GABA, NE, ACH, 5-HT) as well as their precursors. Furthermore, the fecal transplantation of EE donors verifies that EE alleviated cognition and spatial memory impairments, and activates the PKA/CREB/BDNF signaling via gut microbiota. Our findings provide insight into the mechanism of EE effect on the gut-brain axis and underpin a proposed therapeutic value of EE in cognitive and memory impairments induced by radiation.
Collapse
|
17
|
Biggs LM, Hammock EAD. Oxytocin via oxytocin receptor excites neurons in the endopiriform nucleus of juvenile mice. Sci Rep 2022; 12:11401. [PMID: 35794163 PMCID: PMC9259672 DOI: 10.1038/s41598-022-15390-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
The neuropeptide oxytocin (OXT) modulates social behaviors across species and may play a developmental role for these behaviors and their mediating neural pathways. Despite having high, stable levels of OXT receptor (OXTR) ligand binding from birth, endopiriform nucleus (EPN) remains understudied. EPN integrates olfactory and gustatory input and has reciprocal connections with several limbic areas. Because the role of OXTR signaling in EPN is unknown, we sought to provide anatomical and electrophysiological information about OXTR signaling in mouse EPN neurons. Using in situ hybridization, we found that most EPN neurons co-express Oxtr mRNA and the marker for VGLUT1, a marker for glutamatergic cells. Based on high levels of OXTR ligand binding in EPN, we hypothesized that oxytocin application would modulate activity in these cells as measured by whole-cell patch-clamp electrophysiology. Bath application of OXT and an OXTR specific ligand (TGOT) increased the excitability of EPN neurons in wild-type, but not in OXTR-knockout (KO) tissue. These results show an effect of OXT on a mainly VGLUT1+ cell population within EPN. Given the robust, relatively stable OXTR expression in EPN throughout life, OXTR in this multi-sensory and limbic integration area may be important for modulating activity in response to an array of social or other salient stimuli throughout the lifespan and warrants further study.
Collapse
Affiliation(s)
- Lindsey M Biggs
- Program in Neuroscience, Department of Psychology, Florida State University, Tallahassee, FL, 32306, USA.
| | - Elizabeth A D Hammock
- Program in Neuroscience, Department of Psychology, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
18
|
Qi G, Feldmeyer D. Cell-Type Specific Neuromodulation of Excitatory and Inhibitory Neurons via Muscarinic Acetylcholine Receptors in Layer 4 of Rat Barrel Cortex. Front Neural Circuits 2022; 16:843025. [PMID: 35250496 PMCID: PMC8894850 DOI: 10.3389/fncir.2022.843025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
The neuromodulator acetylcholine (ACh) plays an important role in arousal, attention, vigilance, learning and memory. ACh is released during different behavioural states and affects the brain microcircuit by regulating neuronal and synaptic properties. Here, we investigated how a low concentration of ACh (30 μM) affects the intrinsic properties of electrophysiologically and morphologically identified excitatory and inhibitory neurons in layer 4 (L4) of rat barrel cortex. ACh altered the membrane potential of L4 neurons in a heterogeneous manner. Nearly all L4 regular spiking (RS) excitatory neurons responded to bath-application of ACh with a M4 muscarinic ACh receptor-mediated hyperpolarisation. In contrast, in the majority of L4 fast spiking (FS) and non-fast spiking (nFS) interneurons 30 μM ACh induced a depolarisation while the remainder showed a hyperpolarisation or no response. The ACh-induced depolarisation of L4 FS interneurons was much weaker than that in L4 nFS interneurons. There was no clear difference in the response to ACh for three morphological subtypes of L4 FS interneurons. However, in four morpho-electrophysiological subtypes of L4 nFS interneurons, VIP+-like interneurons showed the strongest ACh-induced depolarisation; occasionally, even action potential firing was elicited. The ACh-induced depolarisation in L4 FS interneurons was exclusively mediated by M1 muscarinic ACh receptors; in L4 nFS interneurons it was mainly mediated by M1 and/or M3/5 muscarinic ACh receptors. In a subset of L4 nFS interneurons, a co-operative activation of muscarinic and nicotinic ACh receptors was also observed. The present study demonstrates that low-concentrations of ACh affect different L4 neuron types in a cell-type specific way. These effects result from a specific expression of different muscarinic and/or nicotinic ACh receptors on the somatodendritic compartments of L4 neurons. This suggests that even at low concentrations ACh may tune the excitability of L4 excitatory and inhibitory neurons and their synaptic microcircuits differentially depending on the behavioural state during which ACh is released.
Collapse
Affiliation(s)
- Guanxiao Qi
- Institute of Neuroscience and Medicine, INM-10, Reseach Centre Jülich, Jülich, Germany
- *Correspondence: Guanxiao Qi,
| | - Dirk Feldmeyer
- Institute of Neuroscience and Medicine, INM-10, Reseach Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Jülich-Aachen Research Alliance-Brain, Translational Brain Medicine, Aachen, Germany
- Dirk Feldmeyer,
| |
Collapse
|
19
|
Ranieri F, Pellegrino G, Ciancio AL, Musumeci G, Noce E, Insola A, Diaz Balzani LA, Di Lazzaro V, Di Pino G. Sensorimotor integration within the primary motor cortex by selective nerve fascicle stimulation. J Physiol 2021; 600:1497-1514. [PMID: 34921406 PMCID: PMC9305922 DOI: 10.1113/jp282259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/13/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Cortical integration of sensory inputs is crucial for dexterous movement. Short-latency somatosensory afferent inhibition of motor cortical output is typically produced by peripheral whole-nerve stimulation. We exploited intraneural multichannel electrodes used to provide sensory feedback for prosthesis control to assess whether and how selective intraneural sensory stimulation affects sensorimotor cortical circuits in humans. The activation of the primary somatosensory cortex (S1) was explored by recording scalp somatosensory evoked potentials. Sensorimotor integration was tested by measuring the inhibitory effect of the afferent stimulation on the output of the primary motor cortex (M1) generated by transcranial magnetic stimulation. We demonstrate in humans that selective intraneural sensory stimulation elicits a measurable activation of S1 and that it inhibits the output of M1 at the same time range of whole-nerve superficial stimulation. ABSTRACT The integration of sensory inputs in the motor cortex is crucial for dexterous movement. We recently demonstrated that a closed-loop control based on the feedback provided through intraneural multi-channel electrodes implanted in the median and ulnar nerves of a participant with upper limb amputation improved manipulation skills and increased prosthesis embodiment. Here we assessed, in the same participant, whether and how selective intraneural sensory stimulation also elicits a measurable cortical activation and affects sensorimotor cortical circuits. After estimating the activation of the primary somatosensory cortex evoked by intraneural stimulation, sensorimotor integration was investigated by testing the inhibition of primary motor cortex (M1) output to transcranial magnetic stimulation, after both intraneural and perineural stimulation. Selective sensory intraneural stimulation evoked a low-amplitude, 16 ms-latency, parietal response in the same area of the earliest component evoked by whole-nerve stimulation, compatible with fast-conducting afferent fiber activation. For the first time, we show that the same intraneural stimulation was also capable of decreasing M1 output, at the same time range of the short-latency afferent inhibition effect of whole-nerve superficial stimulation. The inhibition generated by the stimulation of channels activating only sensory fibers was stronger than the one due to intraneural or perineural stimulation of channels activating mixed fibers. We demonstrate in a human subject that the cortical sensorimotor integration inhibiting M1 output previously described after the experimental whole-nerve stimulation is present also with a more ecological selective sensory fiber stimulation. Abstract Figure: Double-sided filament electrodes (ds-FILE), bearing 16 active sites, and perineural Cuff electrodes were implanted in the median and ulnar nerve of the arm in a hand amputee (upper left panel, single nerve represented). Selectivity of stimulation (1), evoked activity in the somatosensory cortex (2), and sensorimotor integration (3) were investigated. TMS: transcranial magnetic stimulation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Federico Ranieri
- Unit of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giovanni Pellegrino
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Anna Lisa Ciancio
- Research Unit of Biomedical Robotics and Biomicrosystems, Campus Bio-Medico University, Rome, Italy
| | - Gabriella Musumeci
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University, Rome, Italy.,Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Campus Bio-Medico University, Rome, Italy
| | - Emiliano Noce
- Research Unit of Biomedical Robotics and Biomicrosystems, Campus Bio-Medico University, Rome, Italy
| | - Angelo Insola
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University, Rome, Italy
| | | | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University, Rome, Italy
| | - Giovanni Di Pino
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Campus Bio-Medico University, Rome, Italy
| |
Collapse
|
20
|
Li Y, Hollis E. Basal Forebrain Cholinergic Neurons Selectively Drive Coordinated Motor Learning in Mice. J Neurosci 2021; 41:10148-10160. [PMID: 34750228 PMCID: PMC8660044 DOI: 10.1523/jneurosci.1152-21.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/21/2022] Open
Abstract
Motor control requires precise temporal and spatial encoding across distinct motor centers that is refined through the repetition of learning. The recruitment of motor regions requires modulatory input to shape circuit activity. Here, we identify a role for the baso-cortical cholinergic pathway in the acquisition of a coordinated motor skill in mice. Targeted depletion of basal forebrain cholinergic neurons results in significant impairments in training on the rotarod task of coordinated movement. Cholinergic neuromodulation is required during training sessions as chemogenetic inactivation of cholinergic neurons also impairs task acquisition. Rotarod learning is known to drive refinement of corticostriatal neurons arising in both medial prefrontal cortex (mPFC) and motor cortex, and we have found that cholinergic input to both motor regions is required for task acquisition. Critically, the effects of cholinergic neuromodulation are restricted to the acquisition stage, as depletion of basal forebrain cholinergic neurons after learning does not affect task execution. Our results indicate a critical role for cholinergic neuromodulation of distant cortical motor centers during coordinated motor learning.SIGNIFICANCE STATEMENT Acetylcholine release from basal forebrain cholinergic neuron terminals rapidly modulates neuronal excitability, circuit dynamics, and cortical coding; all processes required for processing complex sensory information, cognition, and attention. We found that depletion or transient silencing of cholinergic inputs to anatomically isolated motor areas, medial prefrontal cortex (mPFC) and motor cortex, selectively led to significant impairments on coordinated motor learning; disrupting this baso-cortical network after acquisition elicited no effect on task execution. Our results indicate a pivotal role for cholinergic neuromodulation of distant cortical motor centers during coordinated motor learning. These findings support the concept that cognitive components (such as attention) are indispensable in the adjustment of motor output and training-induced improvements in motor performance.
Collapse
Affiliation(s)
- Yue Li
- Burke Neurological Institute, White Plains, New York 10605
| | - Edmund Hollis
- Burke Neurological Institute, White Plains, New York 10605
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
21
|
Devienne G, Picaud S, Cohen I, Piquet J, Tricoire L, Testa D, Di Nardo AA, Rossier J, Cauli B, Lambolez B. Regulation of Perineuronal Nets in the Adult Cortex by the Activity of the Cortical Network. J Neurosci 2021; 41:5779-5790. [PMID: 34045309 PMCID: PMC8265812 DOI: 10.1523/jneurosci.0434-21.2021] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 11/21/2022] Open
Abstract
Perineuronal net (PNN) accumulation around parvalbumin-expressing (PV) inhibitory interneurons marks the closure of critical periods of high plasticity, whereas PNN removal reinstates juvenile plasticity in the adult cortex. Using targeted chemogenetic in vivo approaches in the adult mouse visual cortex, we found that transient inhibition of PV interneurons, through metabotropic or ionotropic chemogenetic tools, induced PNN regression. EEG recordings indicated that inhibition of PV interneurons did not elicit unbalanced network excitation. Likewise, inhibition of local excitatory neurons also induced PNN regression, whereas chemogenetic excitation of either PV or excitatory neurons did not reduce the PNN. We also observed that chemogenetically inhibited PV interneurons exhibited reduced PNN compared with their untransduced neighbors, and confirmed that single PV interneurons express multiple genes enabling individual regulation of their own PNN density. Our results indicate that PNN density is regulated in the adult cortex by local changes of network activity that can be triggered by modulation of PV interneurons. PNN regulation may provide adult cortical circuits with an activity-dependent mechanism to control their local remodeling.SIGNIFICANCE STATEMENT The perineuronal net is an extracellular matrix, which accumulates around individual parvalbumin-expressing inhibitory neurons during postnatal development, and is seen as a barrier that prevents plasticity of neuronal circuits in the adult cerebral cortex. We found that transiently inhibiting parvalbumin-expressing or excitatory cortical neurons triggers a local decrease of perineuronal net density. Our results indicate that perineuronal nets are regulated in the adult cortex depending on the activity of local microcircuits. These findings uncover an activity-dependent mechanism by which adult cortical circuits may locally control their plasticity.
Collapse
Affiliation(s)
- Gabrielle Devienne
- Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine-Institut de Biologie Paris Seine, Sorbonne Universités, Paris, 75005, France
| | - Sandrine Picaud
- Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine-Institut de Biologie Paris Seine, Sorbonne Universités, Paris, 75005, France
| | - Ivan Cohen
- Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine-Institut de Biologie Paris Seine, Sorbonne Universités, Paris, 75005, France
| | - Juliette Piquet
- Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine-Institut de Biologie Paris Seine, Sorbonne Universités, Paris, 75005, France
| | - Ludovic Tricoire
- Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine-Institut de Biologie Paris Seine, Sorbonne Universités, Paris, 75005, France
| | - Damien Testa
- Centre for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 7241, Institut National de la Santé et de la Recherche Médicale U1050, PSL Research University, Paris, 75005, France
| | - Ariel A Di Nardo
- Centre for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 7241, Institut National de la Santé et de la Recherche Médicale U1050, PSL Research University, Paris, 75005, France
| | - Jean Rossier
- Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine-Institut de Biologie Paris Seine, Sorbonne Universités, Paris, 75005, France
| | - Bruno Cauli
- Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine-Institut de Biologie Paris Seine, Sorbonne Universités, Paris, 75005, France
| | - Bertrand Lambolez
- Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine-Institut de Biologie Paris Seine, Sorbonne Universités, Paris, 75005, France
| |
Collapse
|
22
|
Modulation of Coordinated Activity across Cortical Layers by Plasticity of Inhibitory Synapses. Cell Rep 2021; 30:630-641.e5. [PMID: 31968242 PMCID: PMC6988114 DOI: 10.1016/j.celrep.2019.12.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/21/2019] [Accepted: 12/13/2019] [Indexed: 11/25/2022] Open
Abstract
In the neocortex, synaptic inhibition shapes all forms of spontaneous and sensory evoked activity. Importantly, inhibitory transmission is highly plastic, but the functional role of inhibitory synaptic plasticity is unknown. In the mouse barrel cortex, activation of layer (L) 2/3 pyramidal neurons (PNs) elicits strong feedforward inhibition (FFI) onto L5 PNs. We find that FFI involving parvalbumin (PV)-expressing cells is strongly potentiated by postsynaptic PN burst firing. FFI plasticity modifies the PN excitation-to-inhibition (E/I) ratio, strongly modulates PN gain, and alters information transfer across cortical layers. Moreover, our LTPi-inducing protocol modifies firing of L5 PNs and alters the temporal association of PN spikes to γ-oscillations both in vitro and in vivo. All of these effects are captured by unbalancing the E/I ratio in a feedforward inhibition circuit model. Altogether, our results indicate that activity-dependent modulation of perisomatic inhibitory strength effectively influences the participation of single principal cortical neurons to cognition-relevant network activity. Feedforward inhibition (FFI) of layer 5 pyramidal neurons (PNs) is highly plastic Long-term potentiation of FFI modulates spiking activity of layer 5 PNs LTPi affects information transfer across cortical layers The strength of LTPi determines the phase locking of PN firing to γ-oscillations
Collapse
|
23
|
Coronel-Oliveros C, Cofré R, Orio P. Cholinergic neuromodulation of inhibitory interneurons facilitates functional integration in whole-brain models. PLoS Comput Biol 2021; 17:e1008737. [PMID: 33600402 PMCID: PMC7924765 DOI: 10.1371/journal.pcbi.1008737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/02/2021] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Segregation and integration are two fundamental principles of brain structural and functional organization. Neuroimaging studies have shown that the brain transits between different functionally segregated and integrated states, and neuromodulatory systems have been proposed as key to facilitate these transitions. Although whole-brain computational models have reproduced this neuromodulatory effect, the role of local inhibitory circuits and their cholinergic modulation has not been studied. In this article, we consider a Jansen & Rit whole-brain model in a network interconnected using a human connectome, and study the influence of the cholinergic and noradrenergic neuromodulatory systems on the segregation/integration balance. In our model, we introduce a local inhibitory feedback as a plausible biophysical mechanism that enables the integration of whole-brain activity, and that interacts with the other neuromodulatory influences to facilitate the transition between different functional segregation/integration regimes in the brain.
Collapse
Affiliation(s)
- Carlos Coronel-Oliveros
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias, mención Biofísica y Biología Computacional, Universidad de Valparaíso, Valparaíso, Chile
| | - Rodrigo Cofré
- CIMFAV-Ingemat, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso, Chile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
24
|
Gasselin C, Hohl B, Vernet A, Crochet S, Petersen CCH. Cell-type-specific nicotinic input disinhibits mouse barrel cortex during active sensing. Neuron 2021; 109:778-787.e3. [PMID: 33472037 PMCID: PMC7927912 DOI: 10.1016/j.neuron.2020.12.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/24/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
Fast synaptic transmission relies upon the activation of ionotropic receptors by neurotransmitter release to evoke postsynaptic potentials. Glutamate and GABA play dominant roles in driving highly dynamic activity in synaptically connected neuronal circuits, but ionotropic receptors for other neurotransmitters are also expressed in the neocortex, including nicotinic receptors, which are non-selective cation channels gated by acetylcholine. To study the function of non-glutamatergic excitation in neocortex, we used two-photon microscopy to target whole-cell membrane potential recordings to different types of genetically defined neurons in layer 2/3 of primary somatosensory barrel cortex in awake head-restrained mice combined with pharmacological and optogenetic manipulations. Here, we report a prominent nicotinic input, which selectively depolarizes a subtype of GABAergic neuron expressing vasoactive intestinal peptide leading to disinhibition during active sensorimotor processing. Nicotinic disinhibition of somatosensory cortex during active sensing might contribute importantly to integration of top-down and motor-related signals necessary for tactile perception and learning. Acetylcholine is released in the mouse barrel cortex during active whisker sensing Acetylcholine depolarizes inhibitory cells expressing vasoactive intestinal peptide Excitation of vasoactive intestinal peptide-expressing neurons causes disinhibition Cholinergic-driven disinhibition could gate sensorimotor integration and plasticity
Collapse
Affiliation(s)
- Célia Gasselin
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Benoît Hohl
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Arthur Vernet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
25
|
Dienel SJ, Ciesielski AJ, Bazmi HH, Profozich EA, Fish KN, Lewis DA. Distinct Laminar and Cellular Patterns of GABA Neuron Transcript Expression in Monkey Prefrontal and Visual Cortices. Cereb Cortex 2020; 31:2345-2363. [PMID: 33338196 DOI: 10.1093/cercor/bhaa341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/25/2022] Open
Abstract
The functional output of a cortical region is shaped by its complement of GABA neuron subtypes. GABA-related transcript expression differs substantially between the primate dorsolateral prefrontal cortex (DLPFC) and primary visual (V1) cortices in gray matter homogenates, but the laminar and cellular bases for these differences are unknown. Quantification of levels of GABA-related transcripts in layers 2 and 4 of monkey DLPFC and V1 revealed three distinct expression patterns: 1) transcripts with higher levels in DLPFC and layer 2 [e.g., somatostatin (SST)]; 2) transcripts with higher levels in V1 and layer 4 [e.g., parvalbumin (PV)], and 3) transcripts with similar levels across layers and regions [e.g., glutamic acid decarboxylase (GAD67)]. At the cellular level, these patterns reflected transcript- and cell type-specific differences: the SST pattern primarily reflected differences in the relative proportions of SST mRNA-positive neurons, the PV pattern primarily reflected differences in PV mRNA expression per neuron, and the GAD67 pattern reflected opposed patterns in the relative proportions of GAD67 mRNA-positive neurons and in GAD67 mRNA expression per neuron. These findings suggest that differences in the complement of GABA neuron subtypes and in gene expression levels per neuron contribute to the specialization of inhibitory neurotransmission across cortical circuits.
Collapse
Affiliation(s)
- Samuel J Dienel
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Andrew J Ciesielski
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Holly H Bazmi
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Elizabeth A Profozich
- Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kenneth N Fish
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
26
|
Pons-Bennaceur A, Tsintsadze V, Bui TT, Tsintsadze T, Minlebaev M, Milh M, Scavarda D, Giniatullin R, Giniatullina R, Shityakov S, Wright M, Miller AD, Lozovaya N, Burnashev N. Diadenosine-Polyphosphate Analogue AppCH2ppA Suppresses Seizures by Enhancing Adenosine Signaling in the Cortex. Cereb Cortex 2020; 29:3778-3795. [PMID: 30295710 DOI: 10.1093/cercor/bhy257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 08/15/2018] [Accepted: 09/14/2018] [Indexed: 01/16/2023] Open
Abstract
Epilepsy is a multifactorial disorder associated with neuronal hyperexcitability that affects more than 1% of the human population. It has long been known that adenosine can reduce seizure generation in animal models of epilepsies. However, in addition to various side effects, the instability of adenosine has precluded its use as an anticonvulsant treatment. Here we report that a stable analogue of diadenosine-tetraphosphate: AppCH2ppA effectively suppresses spontaneous epileptiform activity in vitro and in vivo in a Tuberous Sclerosis Complex (TSC) mouse model (Tsc1+/-), and in postsurgery cortical samples from TSC human patients. These effects are mediated by enhanced adenosine signaling in the cortex post local neuronal adenosine release. The released adenosine induces A1 receptor-dependent activation of potassium channels thereby reducing neuronal excitability, temporal summation, and hypersynchronicity. AppCH2ppA does not cause any disturbances of the main vital autonomous functions of Tsc1+/- mice in vivo. Therefore, we propose this compound to be a potent new candidate for adenosine-related treatment strategies to suppress intractable epilepsies.
Collapse
Affiliation(s)
- Alexandre Pons-Bennaceur
- INSERM UMR1249, Mediterranean Institute of Neurobiology (INMED), Aix-Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Vera Tsintsadze
- INSERM UMR1249, Mediterranean Institute of Neurobiology (INMED), Aix-Marseille University, Parc Scientifique de Luminy, Marseille, France.,Knight Cardiovascular Institute, Oregon Health and Science University, OR, USA
| | - Thi-Thien Bui
- B&A Therapeutics, Ben-Ari Institute of Neuroarcheology, Batiment Beret-Delaage, Zone Luminy Biotech Entreprises, Marseille, Cedex 09, France
| | - Timur Tsintsadze
- INSERM UMR1249, Mediterranean Institute of Neurobiology (INMED), Aix-Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Marat Minlebaev
- INSERM UMR1249, Mediterranean Institute of Neurobiology (INMED), Aix-Marseille University, Parc Scientifique de Luminy, Marseille, France.,Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Mathieu Milh
- APHM, Department of Pediatric Neurosurgery and Neurology, CHU Timone, Marseille Cedex 5, France
| | - Didier Scavarda
- APHM, Department of Pediatric Neurosurgery and Neurology, CHU Timone, Marseille Cedex 5, France
| | - Rashid Giniatullin
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,A.I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Raisa Giniatullina
- A.I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Sergey Shityakov
- Department of Anaesthesia and Critical Care, University of Würzburg, Josef-Schneider-Street 2, Würzburg, Germany
| | - Michael Wright
- School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, Waterloo Campus, 150 Stamford Street, London, UK
| | - Andrew D Miller
- School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, Waterloo Campus, 150 Stamford Street, London, UK.,Veterinary Research Institute, Hudcova 296/70, Brno, Czech Republic.,KP Therapeutics Ltd, 86 Deansgate, Manchester, UK
| | - Natalia Lozovaya
- B&A Therapeutics, Ben-Ari Institute of Neuroarcheology, Batiment Beret-Delaage, Zone Luminy Biotech Entreprises, Marseille, Cedex 09, France
| | - Nail Burnashev
- INSERM UMR1249, Mediterranean Institute of Neurobiology (INMED), Aix-Marseille University, Parc Scientifique de Luminy, Marseille, France
| |
Collapse
|
27
|
Huang S, Kirkwood A. Endocannabinoid Signaling Contributes to Experience-Induced Increase of Synaptic Release Sites From Parvalbumin Interneurons in Mouse Visual Cortex. Front Cell Neurosci 2020; 14:571133. [PMID: 33192316 PMCID: PMC7556304 DOI: 10.3389/fncel.2020.571133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/28/2020] [Indexed: 11/13/2022] Open
Abstract
During postnatal development of the visual cortex between eye-opening to puberty, visual experience promotes a gradual increase in the strength of inhibitory synaptic connections from parvalbumin-positive interneurons (PV-INs) onto layer 2/3 pyramidal cells. However, the detailed connectivity properties and molecular mechanisms underlying these developmental changes are not well understood. Using dual-patch clamp in brain slices from G42 mice, we revealed that both connection probability and the number of synaptic release sites contributed to the enhancement of synaptic strength. The increase of release site number was hindered by dark rearing from eye-opening and rescued by 3-days re-exposure to the normal visual environment. The effect of light re-exposure on restoring synaptic release sites in dark reared mice was mimicked by the agonist of cannabinoid-1 (CB1) receptors and blocked by an antagonist of these receptors, suggesting a role for endocannabinoid signaling in light-induced maturation of inhibitory connectivity from PV-INs to pyramidal cells during postnatal development.
Collapse
Affiliation(s)
- Shiyong Huang
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, United States.,The Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Alfredo Kirkwood
- The Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States.,Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
28
|
Anastasiades PG, Boada C, Carter AG. Cell-Type-Specific D1 Dopamine Receptor Modulation of Projection Neurons and Interneurons in the Prefrontal Cortex. Cereb Cortex 2020; 29:3224-3242. [PMID: 30566584 DOI: 10.1093/cercor/bhy299] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/01/2018] [Accepted: 11/07/2018] [Indexed: 11/14/2022] Open
Abstract
Dopamine modulation in the prefrontal cortex (PFC) mediates diverse effects on neuronal physiology and function, but the expression of dopamine receptors at subpopulations of projection neurons and interneurons remains unresolved. Here, we examine D1 receptor expression and modulation at specific cell types and layers in the mouse prelimbic PFC. We first show that D1 receptors are enriched in pyramidal cells in both layers 5 and 6, and that these cells project to intratelencephalic targets including contralateral cortex, striatum, and claustrum rather than to extratelencephalic structures. We then find that D1 receptors are also present in interneurons and enriched in superficial layer VIP-positive (VIP+) interneurons that coexpresses calretinin but absent from parvalbumin-positive (PV+) and somatostatin-positive (SOM+) interneurons. Finally, we determine that D1 receptors strongly and selectively enhance action potential firing in only a subset of these corticocortical neurons and VIP+ interneurons. Our findings define several novel subpopulations of D1+ neurons, highlighting how modulation via D1 receptors can influence both excitatory and disinhibitory microcircuits in the PFC.
Collapse
Affiliation(s)
- Paul G Anastasiades
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, USA
| | - Christina Boada
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, USA
| | - Adam G Carter
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, USA
| |
Collapse
|
29
|
Apulei J, Kim N, Testa D, Ribot J, Morizet D, Bernard C, Jourdren L, Blugeon C, Di Nardo AA, Prochiantz A. Non-cell Autonomous OTX2 Homeoprotein Regulates Visual Cortex Plasticity Through Gadd45b/g. Cereb Cortex 2020; 29:2384-2395. [PMID: 29771284 DOI: 10.1093/cercor/bhy108] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/19/2018] [Indexed: 11/14/2022] Open
Abstract
The non-cell autonomous transfer of OTX2 homeoprotein transcription factor into juvenile mouse cerebral cortex regulates parvalbumin interneuron maturation and critical period timing. By analyzing gene expression in primary visual cortex of wild-type and Otx2+/GFP mice at plastic and nonplastic ages, we identified several putative genes implicated in Otx2-dependent visual cortex plasticity for ocular dominance. Cortical OTX2 infusion in juvenile mice induced Gadd45b/g expression through direct regulation of transcription. Intriguingly, a reverse effect was found in the adult, where reducing cortical OTX2 resulted in Gadd45b/g upregulation. Viral expression of Gadd45b in adult visual cortex directly induced ocular dominance plasticity with concomitant changes in MeCP2 foci within parvalbumin interneurons and in methylation states of several plasticity gene promoters, suggesting epigenetic regulation. This interaction provides a molecular mechanism for OTX2 to trigger critical period plasticity yet suppress adult plasticity.
Collapse
Affiliation(s)
- Jessica Apulei
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - Namsuk Kim
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - Damien Testa
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - Jérôme Ribot
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - David Morizet
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - Clémence Bernard
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - Laurent Jourdren
- Genomic Core Facility, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, Paris, France
| | - Corinne Blugeon
- Genomic Core Facility, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, Paris, France
| | - Ariel A Di Nardo
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, Paris, France
| |
Collapse
|
30
|
Azimi H, Klaassen AL, Thomas K, Harvey MA, Rainer G. Role of the Thalamus in Basal Forebrain Regulation of Neural Activity in the Primary Auditory Cortex. Cereb Cortex 2020; 30:4481-4495. [PMID: 32244254 DOI: 10.1093/cercor/bhaa045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many studies have implicated the basal forebrain (BF) as a potent regulator of sensory encoding even at the earliest stages of or cortical processing. The source of this regulation involves the well-documented corticopetal cholinergic projections from BF to primary cortical areas. However, the BF also projects to subcortical structures, including the thalamic reticular nucleus (TRN), which has abundant reciprocal connections with sensory thalamus. Here we present naturalistic auditory stimuli to the anesthetized rat while making simultaneous single-unit recordings from the ventral medial geniculate nucleus (MGN) and primary auditory cortex (A1) during electrical stimulation of the BF. Like primary visual cortex, we find that BF stimulation increases the trial-to-trial reliability of A1 neurons, and we relate these results to change in the response properties of MGN neurons. We discuss several lines of evidence that implicate the BF to thalamus pathway in the manifestation of BF-induced changes to cortical sensory processing and support our conclusions with supplementary TRN recordings, as well as studies in awake animals showing a strong relationship between endogenous BF activity and A1 reliability. Our findings suggest that the BF subcortical projections that modulate MGN play an important role in auditory processing.
Collapse
Affiliation(s)
- H Azimi
- Department of Medicine, University of Fribourg, Fribourg CH-1700, Switzerland
| | - A-L Klaassen
- Department of Medicine, University of Fribourg, Fribourg CH-1700, Switzerland.,Department of Psychology, University of Fribourg, Fribourg CH-1700, Switzerland
| | - K Thomas
- Department of Medicine, University of Fribourg, Fribourg CH-1700, Switzerland
| | - M A Harvey
- Department of Medicine, University of Fribourg, Fribourg CH-1700, Switzerland
| | - G Rainer
- Department of Medicine, University of Fribourg, Fribourg CH-1700, Switzerland
| |
Collapse
|
31
|
Yang D, Ding C, Qi G, Feldmeyer D. Cholinergic and Adenosinergic Modulation of Synaptic Release. Neuroscience 2020; 456:114-130. [PMID: 32540364 DOI: 10.1016/j.neuroscience.2020.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/14/2023]
Abstract
In this review we will discuss the effect of two neuromodulatory transmitters, acetylcholine (ACh) and adenosine, on the synaptic release probability and short-term synaptic plasticity. ACh and adenosine differ fundamentally in the way they are released into the extracellular space. ACh is released mostly from synaptic terminals and axonal bouton of cholinergic neurons in the basal forebrain (BF). Its mode of action on synaptic release probability is complex because it activate both ligand-gated ion channels, so-called nicotinic ACh receptors and G-protein coupled muscarinic ACh receptors. In contrast, adenosine is released from both neurons and glia via nucleoside transporters or diffusion over the cell membrane in a non-vesicular, non-synaptic fashion; its receptors are exclusively G-protein coupled receptors. We show that ACh and adenosine effects are highly specific for an identified synaptic connection and depend mostly on the presynaptic but also on the postsynaptic receptor type and discuss the functional implications of these differences.
Collapse
Affiliation(s)
- Danqing Yang
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Chao Ding
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Guanxiao Qi
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Dirk Feldmeyer
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany; RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen, Germany; Jülich-Aachen Research Alliance Brain - JARA Brain, Germany.
| |
Collapse
|
32
|
Gu F, Parada I, Yang T, Longo FM, Prince DA. Partial Activation of TrkB Receptors Corrects Interneuronal Calcium Channel Dysfunction and Reduces Epileptogenic Activity in Neocortex following Injury. Cereb Cortex 2020; 30:5180-5189. [PMID: 32488246 PMCID: PMC7391412 DOI: 10.1093/cercor/bhz254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 11/13/2022] Open
Abstract
Decreased GABAergic inhibition due to dysfunction of inhibitory interneurons plays an important role in post-traumatic epileptogenesis. Reduced N-current Ca2+ channel function in GABAergic terminals contributes to interneuronal abnormalities and neural circuit hyperexcitability in the partial neocortical isolation (undercut, UC) model of post-traumatic epileptogenesis. Because brain-derived neurotrophic factor (BDNF) supports the development and maintenance of interneurons, we hypothesized that the activation of BDNF tropomyosin kinase B (TrkB) receptors by a small molecule, TrkB partial agonist, PTX BD4-3 (BD), would correct N channel abnormalities and enhance inhibitory synaptic transmission in UC cortex. Immunocytochemistry (ICC) and western blots were used to quantify N- and P/Q-type channels. We recorded evoked (e)IPSCs and responses to N and P/Q channel blockers to determine the effects of BD on channel function. Field potential recordings were used to determine the effects of BD on circuit hyperexcitability. Chronic BD treatment 1) upregulated N and P/Q channel immunoreactivity in GABAergic terminals; 2) increased the effects of N or P/Q channel blockade on evoked inhibitory postsynaptic currents (eIPSCs); 3) increased GABA release probability and the frequency of sIPSCs; and 4) reduced the incidence of epileptiform discharges in UC cortex. The results suggest that chronic TrkB activation is a promising approach for rescuing injury-induced calcium channel abnormalities in inhibitory terminals, thereby improving interneuronal function and suppressing circuit hyperexcitability.
Collapse
Affiliation(s)
- Feng Gu
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5122, USA
| | - Isabel Parada
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5122, USA
| | - Tao Yang
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5122, USA
| | - Frank M Longo
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5122, USA
| | - David A Prince
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5122, USA
| |
Collapse
|
33
|
Lee J, Choi JH, Rah JC. Frequency-dependent gating of feedforward inhibition in thalamofrontal synapses. Mol Brain 2020; 13:68. [PMID: 32375833 PMCID: PMC7201790 DOI: 10.1186/s13041-020-00608-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/22/2020] [Indexed: 11/10/2022] Open
Abstract
Thalamic recruitment of feedforward inhibition is known to enhance the fidelity of the receptive field by limiting the temporal window during which cortical neurons integrate excitatory inputs. Feedforward inhibition driven by the mediodorsal nucleus of the thalamus (MD) has been previously observed, but its physiological function and regulation remain unknown. Accumulating evidence suggests that elevated neuronal activity in the prefrontal cortex is required for the short-term storage of information. Furthermore, the elevated neuronal activity is supported by the reciprocal connectivity between the MD and the medial prefrontal cortex (mPFC). Therefore, detailed knowledge about the synaptic connections during high-frequency activity is critical for understanding the mechanism of short-term memory. In this study, we examined how feedforward inhibition of thalamofrontal connectivity is modulated by activity frequency. We observed greater short-term synaptic depression during disynaptic inhibition than in thalamic excitatory synapses during high-frequency activities. The strength of feedforward inhibition became weaker as the stimulation continued, which, in turn, enhanced the range of firing jitter in a frequency-dependent manner. We postulated that this phenomenon was primarily due to the increased failure rate of evoking action potentials in parvalbumin-expressing inhibitory neurons. These findings suggest that the MD-mPFC pathway is dynamically regulated by an excitatory-inhibitory balance in an activity-dependent manner. During low-frequency activities, excessive excitations are inhibited, and firing is restricted to a limited temporal range by the strong feedforward inhibition. However, during high-frequency activities, such as during short-term memory, the activity can be transferred in a broader temporal range due to the decreased feedforward inhibition.
Collapse
Affiliation(s)
- Jungmin Lee
- Korea Brain Research Institute, 61 Cheomdan-ro, Daegu, 41062, Republic of Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Republic of Korea
| | - Joon Ho Choi
- Korea Brain Research Institute, 61 Cheomdan-ro, Daegu, 41062, Republic of Korea
| | - Jong-Cheol Rah
- Korea Brain Research Institute, 61 Cheomdan-ro, Daegu, 41062, Republic of Korea. .,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Republic of Korea.
| |
Collapse
|
34
|
Γ-Aminobutyric acid in adult brain: an update. Behav Brain Res 2019; 376:112224. [DOI: 10.1016/j.bbr.2019.112224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 01/21/2023]
|
35
|
Kanamaru T, Aihara K. Acetylcholine-mediated top-down attention improves the response to bottom-up inputs by deformation of the attractor landscape. PLoS One 2019; 14:e0223592. [PMID: 31589648 PMCID: PMC6779248 DOI: 10.1371/journal.pone.0223592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/24/2019] [Indexed: 12/04/2022] Open
Abstract
To understand the effect of attention on neuronal dynamics, we propose a multi-module network, with each module consisting of fully interconnected groups of excitatory and inhibitory neurons. This network shows transitive dynamics among quasi-attractors as its typical dynamics. When the release of acetylcholine onto the network is simulated by attention, the transitive dynamics change into stable dynamics in which the system converges to an attractor. We found that this network can reproduce three experimentally observed properties of attention-dependent response modulation, namely an increase in the firing rate, a decrease in the Fano factor of the firing rate, and a decrease in the correlation coefficients between the firing rates of pairs of neurons. Moreover, we also showed theoretically that the release of acetylcholine increases the sensitivity to bottom-up inputs by changing the response function.
Collapse
Affiliation(s)
- Takashi Kanamaru
- Department of Mechanical Science and Engineering, Kogakuin University, Tokyo, Japan
- * E-mail:
| | - Kazuyuki Aihara
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, Japan
| |
Collapse
|
36
|
Jiang X, Lupien-Meilleur A, Tazerart S, Lachance M, Samarova E, Araya R, Lacaille JC, Rossignol E. Remodeled cortical inhibition prevents motor seizures in generalized epilepsy. Ann Neurol 2019; 84:436-451. [PMID: 30048010 DOI: 10.1002/ana.25301] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/12/2018] [Accepted: 07/21/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Deletions of CACNA1A, encoding the α1 subunit of CaV 2.1 channels, cause epilepsy with ataxia in humans. Whereas the deletion of Cacna1a in γ-aminobutyric acidergic (GABAergic) interneurons (INs) derived from the medial ganglionic eminence (MGE) impairs cortical inhibition and causes generalized seizures in Nkx2.1Cre ;Cacna1ac/c mice, the targeted deletion of Cacna1a in somatostatin-expressing INs (SOM-INs), a subset of MGE-derived INs, does not result in seizures, indicating a crucial role of parvalbumin-expressing (PV) INs. Here we identify the cellular and network consequences of Cacna1a deletion specifically in PV-INs. METHODS We generated PVCre ;Cacna1ac/c mutant mice carrying a conditional Cacna1a deletion in PV neurons and evaluated the cortical cellular and network outcomes of this mutation by combining immunohistochemical assays, in vitro electrophysiology, 2-photon imaging, and in vivo video-electroencephalographic recordings. RESULTS PVCre ;Cacna1ac/c mice display reduced cortical perisomatic inhibition and frequent absences but only rare motor seizures. Compared to Nkx2.1Cre ;Cacna1ac/c mice, PVCre ;Cacna1ac/c mice have a net increase in cortical inhibition, with a gain of dendritic inhibition through sprouting of SOM-IN axons, largely preventing motor seizures. This beneficial compensatory remodeling of cortical GABAergic innervation is mTORC1-dependent and its inhibition with rapamycin leads to a striking increase in motor seizures. Furthermore, we show that a direct chemogenic activation of cortical SOM-INs prevents motor seizures in a model of kainate-induced seizures. INTERPRETATION Our findings provide novel evidence suggesting that the remodeling of cortical inhibition, with an mTOR-dependent gain of dendritic inhibition, determines the seizure phenotype in generalized epilepsy and that mTOR inhibition can be detrimental in epilepsies not primarily due to mTOR hyperactivation. Ann Neurol 2018;84:436-451.
Collapse
Affiliation(s)
- Xiao Jiang
- Sainte-Justine University Hospital Research Center.,Department of Neurosciences and the Central Nervous System Research Group, University of Montreal, Montreal, Quebec, Canada
| | | | - Sabrina Tazerart
- Department of Neurosciences and the Central Nervous System Research Group, University of Montreal, Montreal, Quebec, Canada
| | | | - Elena Samarova
- Sainte-Justine University Hospital Research Center.,Department of Neurosciences and the Central Nervous System Research Group, University of Montreal, Montreal, Quebec, Canada
| | - Roberto Araya
- Department of Neurosciences and the Central Nervous System Research Group, University of Montreal, Montreal, Quebec, Canada
| | - Jean-Claude Lacaille
- Department of Neurosciences and the Central Nervous System Research Group, University of Montreal, Montreal, Quebec, Canada
| | - Elsa Rossignol
- Sainte-Justine University Hospital Research Center.,Department of Neurosciences and the Central Nervous System Research Group, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
37
|
Sargin D, Jeoung HS, Goodfellow NM, Lambe EK. Serotonin Regulation of the Prefrontal Cortex: Cognitive Relevance and the Impact of Developmental Perturbation. ACS Chem Neurosci 2019; 10:3078-3093. [PMID: 31259523 DOI: 10.1021/acschemneuro.9b00073] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The prefrontal cortex is essential for both executive function and emotional regulation. The interrelationships among these behavioral domains are increasingly recognized, as well as their sensitivity to serotonin (5-hydroxytryptamine, 5-HT). Prefrontal cortex receives serotonergic inputs from the dorsal and median raphe nuclei and is modulated by multiple subtypes of 5-HT receptor across its layers and cell types. Extremes of serotonergic modulation alter mood regulation in vulnerable individuals, yet the impact of serotonin under more typical physiological parameters remains unclear. In this regard, new tools are permitting a closer examination of the behavioral impact of the serotonin system. Optogenetic and chemogenetic manipulations of dorsal raphe 5-HT neurons reveal that serotonin has a greater impact on executive function than previously appreciated. Domains that appear sensitive to fluctuations in 5-HT neuronal excitability include patience and cognitive flexibility. This work is broadly consistent with ex vivo research investigating how 5-HT regulates prefrontal cortex and its output projections. A growing literature suggests 5-HT modulation of these prefrontal circuits is unexpectedly flexible to alteration during development by genetic, behavioral, environmental or pharmacological manipulations, with lasting repercussions for cognition and emotional regulation. Here, we review the cellular and circuit mechanisms of prefrontal serotonergic modulation, investigate recent research into the cognitive consequences of the serotonergic system, and probe the lasting consequences of developmental perturbations. Understanding both the complexity of the prefrontal serotonin system and its sensitivity during development are essential to learn more about the vulnerabilities of this system in mood and anxiety disorders and the underappreciated cognitive consequences of these disorders and their treatment.
Collapse
Affiliation(s)
- Derya Sargin
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary AB T2N 1N4, Canada
| | - Ha-Seul Jeoung
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Evelyn K. Lambe
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of OBGYN, University of Toronto, Toronto, ON M5G 1E2, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
38
|
Chiu CQ, Martenson JS, Yamazaki M, Natsume R, Sakimura K, Tomita S, Tavalin SJ, Higley MJ. Input-Specific NMDAR-Dependent Potentiation of Dendritic GABAergic Inhibition. Neuron 2019; 97:368-377.e3. [PMID: 29346754 DOI: 10.1016/j.neuron.2017.12.032] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/16/2017] [Accepted: 12/21/2017] [Indexed: 01/21/2023]
Abstract
Preservation of a balance between synaptic excitation and inhibition is critical for normal brain function. A number of homeostatic cellular mechanisms have been suggested to play a role in maintaining this balance, including long-term plasticity of GABAergic inhibitory synapses. Many previous studies have demonstrated a coupling of postsynaptic spiking with modification of perisomatic inhibition. Here, we demonstrate that activation of NMDA-type glutamate receptors leads to input-specific long-term potentiation of dendritic inhibition mediated by somatostatin-expressing interneurons. This form of plasticity is expressed postsynaptically and requires both CaMKIIα and the β2 subunit of the GABA-A receptor. Importantly, this process may function to preserve dendritic inhibition, as genetic deletion of NMDAR signaling results in a selective weakening of dendritic inhibition. Overall, our results reveal a new mechanism for linking excitatory and inhibitory input in neuronal dendrites and provide novel insight into the homeostatic regulation of synaptic transmission in cortical circuits.
Collapse
Affiliation(s)
- Chiayu Q Chiu
- Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - James S Martenson
- Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Rie Natsume
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Susumu Tomita
- Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Steven J Tavalin
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Michael J Higley
- Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
39
|
Colangelo C, Shichkova P, Keller D, Markram H, Ramaswamy S. Cellular, Synaptic and Network Effects of Acetylcholine in the Neocortex. Front Neural Circuits 2019; 13:24. [PMID: 31031601 PMCID: PMC6473068 DOI: 10.3389/fncir.2019.00024] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022] Open
Abstract
The neocortex is densely innervated by basal forebrain (BF) cholinergic neurons. Long-range axons of cholinergic neurons regulate higher-order cognitive function and dysfunction in the neocortex by releasing acetylcholine (ACh). ACh release dynamically reconfigures neocortical microcircuitry through differential spatiotemporal actions on cell-types and their synaptic connections. At the cellular level, ACh release controls neuronal excitability and firing rate, by hyperpolarizing or depolarizing target neurons. At the synaptic level, ACh impacts transmission dynamics not only by altering the presynaptic probability of release, but also the magnitude of the postsynaptic response. Despite the crucial role of ACh release in physiology and pathophysiology, a comprehensive understanding of the way it regulates the activity of diverse neocortical cell-types and synaptic connections has remained elusive. This review aims to summarize the state-of-the-art anatomical and physiological data to develop a functional map of the cellular, synaptic and microcircuit effects of ACh in the neocortex of rodents and non-human primates, and to serve as a quantitative reference for those intending to build data-driven computational models on the role of ACh in governing brain states.
Collapse
Affiliation(s)
- Cristina Colangelo
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | | | | | | | - Srikanth Ramaswamy
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| |
Collapse
|
40
|
Abstract
Background: The roles of neuromodulation in a neural network, such as in a cortical microcolumn, are still incompletely understood. Neuromodulation influences neural processing by presynaptic and postsynaptic regulation of synaptic efficacy. Neuromodulation also affects ion channels and intrinsic excitability. Methods: Synaptic efficacy modulation is an effective way to rapidly alter network density and topology. We alter network topology and density to measure the effect on spike synchronization. We also operate with differently parameterized neuron models which alter the neuron's intrinsic excitability, i.e., activation function. Results: We find that (a) fast synaptic efficacy modulation influences the amount of correlated spiking in a network. Also, (b) synchronization in a network influences the read-out of intrinsic properties. Highly synchronous input drives neurons, such that differences in intrinsic properties disappear, while asynchronous input lets intrinsic properties determine output behavior. Thus, altering network topology can alter the balance between intrinsically vs. synaptically driven network activity. Conclusion: We conclude that neuromodulation may allow a network to shift between a more synchronized transmission mode and a more asynchronous intrinsic read-out mode. This has significant implications for our understanding of the flexibility of cortical computations.
Collapse
Affiliation(s)
- Gabriele Scheler
- Carl Correns Foundation for Mathematical Biology, Mountain View, CA, 94040, USA
| |
Collapse
|
41
|
Poulet JFA, Crochet S. The Cortical States of Wakefulness. Front Syst Neurosci 2019; 12:64. [PMID: 30670952 PMCID: PMC6331430 DOI: 10.3389/fnsys.2018.00064] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/11/2018] [Indexed: 11/15/2022] Open
Abstract
Cortical neurons process information on a background of spontaneous, ongoing activity with distinct spatiotemporal profiles defining different cortical states. During wakefulness, cortical states alter constantly in relation to behavioral context, attentional level or general motor activity. In this review article, we will discuss our current understanding of cortical states in awake rodents, how they are controlled, their impact on sensory processing, and highlight areas for future research. A common observation in awake rodents is the rapid change in spontaneous cortical activity from high-amplitude, low-frequency (LF) fluctuations, when animals are quiet, to faster and smaller fluctuations when animals are active. This transition is typically thought of as a change in global brain state but recent work has shown variation in cortical states across regions, indicating the presence of a fine spatial scale control system. In sensory areas, the cortical state change is mediated by at least two convergent inputs, one from the thalamus and the other from cholinergic inputs in the basal forebrain. Cortical states have a major impact on the balance of activity between specific subtypes of neurons, on the synchronization between nearby neurons, as well as the functional coupling between distant cortical areas. This reorganization of the activity of cortical networks strongly affects sensory processing. Thus cortical states provide a dynamic control system for the moment-by-moment regulation of cortical processing.
Collapse
Affiliation(s)
- James F. A. Poulet
- Neural Circuits and Behaviour, Department of Neuroscience, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Neuroscience Research Center and Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR5292, University Lyon 1, Lyon, France
| |
Collapse
|
42
|
Negahbani E, Schmidt SL, Mishal N, Fröhlich F. Neuromodulation-dependent effect of gated high-frequency, LFMS-like electric field stimulation in mouse cortical slices. Eur J Neurosci 2018; 49:1288-1297. [PMID: 30450622 DOI: 10.1111/ejn.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 11/27/2022]
Abstract
Low-field magnetic stimulation (LFMS) is a gated high-frequency non-invasive brain stimulation method (500 Hz gated at 2 Hz) with a proposed antidepressant effect. However, it has remained unknown how such stimulation paradigms modulate neuronal network activity and how the induced changes depend on network state. Here we examined the immediate and outlasting effects of the gated high-frequency electric field associated with LFMS on the cortical activity as a function of neuromodulatory tone that defines network state. We used a sham-controlled study design to investigate effects of stimulation (20 min of 0.5 s trains of 500 Hz charge-balanced pulse stimulation patterned at 0.5 Hz) on neural activity in mouse medial prefrontal cortex in vitro. Bath application of cholinergic and noradrenergic agents enabled us to examine the stimulation effects as a function of neuromodulatory tone. The stimulation attenuated the increase in firing rate of layer V cortical neurons during the post-stimulation period in the presence of cholinergic activation. The same stimulation had no significant immediate or outlasting effect in the absence of exogenous neuromodulators or in the presence of noradrenergic activation. These results provide electrophysiological insights into the neuromodulatory-dependent effects of gated high-frequency stimulation. More broadly, our results are the first to provide a mechanistic demonstration of how behavioral states and arousal levels may modify the effects of non-invasive brain stimulation.
Collapse
Affiliation(s)
- Ehsan Negahbani
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina.,Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, North Carolina
| | - Stephen L Schmidt
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina.,Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina
| | - Nadia Mishal
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina.,Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, North Carolina.,Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina.,Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
43
|
Záborszky L, Gombkoto P, Varsanyi P, Gielow MR, Poe G, Role LW, Ananth M, Rajebhosale P, Talmage DA, Hasselmo ME, Dannenberg H, Minces VH, Chiba AA. Specific Basal Forebrain-Cortical Cholinergic Circuits Coordinate Cognitive Operations. J Neurosci 2018; 38:9446-9458. [PMID: 30381436 PMCID: PMC6209837 DOI: 10.1523/jneurosci.1676-18.2018] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/21/2022] Open
Abstract
Based on recent molecular genetics, as well as functional and quantitative anatomical studies, the basal forebrain (BF) cholinergic projections, once viewed as a diffuse system, are emerging as being remarkably specific in connectivity. Acetylcholine (ACh) can rapidly and selectively modulate activity of specific circuits and ACh release can be coordinated in multiple areas that are related to particular aspects of cognitive processing. This review discusses how a combination of multiple new approaches with more established techniques are being used to finally reveal how cholinergic neurons, together with other BF neurons, provide temporal structure for behavior, contribute to local cortical state regulation, and coordinate activity between different functionally related cortical circuits. ACh selectively modulates dynamics for encoding and attention within individual cortical circuits, allows for important transitions during sleep, and shapes the fidelity of sensory processing by changing the correlation structure of neural firing. The importance of this system for integrated and fluid behavioral function is underscored by its disease-modifying role; the demise of BF cholinergic neurons has long been established in Alzheimer's disease and recent studies have revealed the involvement of the cholinergic system in modulation of anxiety-related circuits. Therefore, the BF cholinergic system plays a pivotal role in modulating the dynamics of the brain during sleep and behavior, as foretold by the intricacies of its anatomical map.
Collapse
Affiliation(s)
- Laszlo Záborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102,
| | - Peter Gombkoto
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102
| | - Peter Varsanyi
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102
| | - Matthew R Gielow
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102
| | - Gina Poe
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095
| | - Lorna W Role
- Department of Neurobiology and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - Mala Ananth
- Program in Neuroscience and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - Prithviraj Rajebhosale
- Program in Neuroscience and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - David A Talmage
- Department of Pharmacological Sciences and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - Michael E Hasselmo
- Center for Systems Neuroscience and Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, and
| | - Holger Dannenberg
- Center for Systems Neuroscience and Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, and
| | - Victor H Minces
- Department of Cognitive Science, University of California, San Diego 92093
| | - Andrea A Chiba
- Department of Cognitive Science, University of California, San Diego 92093
| |
Collapse
|
44
|
James NM, Gritton HJ, Kopell N, Sen K, Han X. Muscarinic receptors regulate auditory and prefrontal cortical communication during auditory processing. Neuropharmacology 2018; 144:155-171. [PMID: 30352212 DOI: 10.1016/j.neuropharm.2018.10.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/26/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
Abstract
Much of our understanding about how acetylcholine modulates prefrontal cortical (PFC) networks comes from behavioral experiments that examine cortical dynamics during highly attentive states. However, much less is known about how PFC is recruited during passive sensory processing and how acetylcholine may regulate connectivity between cortical areas outside of task performance. To investigate the involvement of PFC and cholinergic neuromodulation in passive auditory processing, we performed simultaneous recordings in the auditory cortex (AC) and PFC in awake head fixed mice presented with a white noise auditory stimulus in the presence or absence of local cholinergic antagonists in AC. We found that a subset of PFC neurons were strongly driven by auditory stimuli even when the stimulus had no associative meaning, suggesting PFC monitors stimuli under passive conditions. We also found that cholinergic signaling in AC shapes the strength of auditory driven responses in PFC, by modulating the intra-cortical sensory response through muscarinic interactions in AC. Taken together, these findings provide novel evidence that cholinergic mechanisms have a continuous role in cortical gating through muscarinic receptors during passive processing and expand traditional views of prefrontal cortical function and the contributions of cholinergic modulation in cortical communication.
Collapse
Affiliation(s)
- Nicholas M James
- Boston University, Department of Biomedical Engineering, Boston, MA, 02215, USA.
| | - Howard J Gritton
- Boston University, Department of Biomedical Engineering, Boston, MA, 02215, USA.
| | - Nancy Kopell
- Boston University, Department of Mathematics & Statistics, Boston, MA, 02215, USA.
| | - Kamal Sen
- Boston University, Department of Biomedical Engineering, Boston, MA, 02215, USA.
| | - Xue Han
- Boston University, Department of Biomedical Engineering, Boston, MA, 02215, USA.
| |
Collapse
|
45
|
Ramaswamy S, Colangelo C, Markram H. Data-Driven Modeling of Cholinergic Modulation of Neural Microcircuits: Bridging Neurons, Synapses and Network Activity. Front Neural Circuits 2018; 12:77. [PMID: 30356701 PMCID: PMC6189313 DOI: 10.3389/fncir.2018.00077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/10/2018] [Indexed: 01/26/2023] Open
Abstract
Neuromodulators, such as acetylcholine (ACh), control information processing in neural microcircuits by regulating neuronal and synaptic physiology. Computational models and simulations enable predictions on the potential role of ACh in reconfiguring network activity. As a prelude into investigating how the cellular and synaptic effects of ACh collectively influence emergent network dynamics, we developed a data-driven framework incorporating phenomenological models of the physiology of cholinergic modulation of neocortical cells and synapses. The first-draft models were integrated into a biologically detailed tissue model of neocortical microcircuitry to investigate the effects of levels of ACh on diverse neuron types and synapses, and consequently on emergent network activity. Preliminary simulations from the framework, which was not tuned to reproduce any specific ACh-induced network effects, not only corroborate the long-standing notion that ACh desynchronizes spontaneous network activity, but also predict that a dose-dependent activation of ACh gives rise to a spectrum of neocortical network activity. We show that low levels of ACh, such as during non-rapid eye movement (nREM) sleep, drive microcircuit activity into slow oscillations and network synchrony, whereas high ACh concentrations, such as during wakefulness and REM sleep, govern fast oscillations and network asynchrony. In addition, spontaneous network activity modulated by ACh levels shape spike-time cross-correlations across distinct neuronal populations in strikingly different ways. These effects are likely due to the regulation of neurons and synapses caused by increasing levels of ACh, which enhances cellular excitability and decreases the efficacy of local synaptic transmission. We conclude by discussing future directions to refine the biological accuracy of the framework, which will extend its utility and foster the development of hypotheses to investigate the role of neuromodulators in neural information processing.
Collapse
Affiliation(s)
- Srikanth Ramaswamy
- Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus, Geneva, Switzerland
| | - Cristina Colangelo
- Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus, Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus, Geneva, Switzerland
| |
Collapse
|
46
|
Fleming E, Hull C. Serotonin regulates dynamics of cerebellar granule cell activity by modulating tonic inhibition. J Neurophysiol 2018; 121:105-114. [PMID: 30281395 DOI: 10.1152/jn.00492.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Understanding how afferent information is integrated by cortical structures requires identifying the factors shaping excitation and inhibition within their input layers. The input layer of the cerebellar cortex integrates diverse sensorimotor information to enable learned associations that refine the dynamics of movement. Specifically, mossy fiber afferents relay sensorimotor input into the cerebellum to excite granule cells, whose activity is regulated by inhibitory Golgi cells. To test how this integration can be modulated, we have used an acute brain slice preparation from young adult rats and found that encoding of mossy fiber input in the cerebellar granule cell layer can be regulated by serotonin (5-hydroxytryptamine, 5-HT) via a specific action on Golgi cells. We find that 5-HT depolarizes Golgi cells, likely by activating 5-HT2A receptors, but does not directly act on either granule cells or mossy fibers. As a result of Golgi cell depolarization, 5-HT significantly increases tonic inhibition onto both granule cells and Golgi cells. 5-HT-mediated Golgi cell depolarization is not sufficient, however, to alter the probability or timing of mossy fiber-evoked feed-forward inhibition onto granule cells. Together, increased granule cell tonic inhibition paired with normal feed-forward inhibition acts to reduce granule cell spike probability without altering spike timing. Hence, these data provide a circuit mechanism by which 5-HT can reduce granule cell activity without altering temporal representations of mossy fiber input. Such changes in network integration could enable flexible, state-specific suppression of cerebellar sensorimotor input that should not be learned or enable reversal learning for unwanted associations. NEW & NOTEWORTHY Serotonin (5-hydroxytryptamine, 5-HT) regulates synaptic integration at the input stage of cerebellar processing by increasing tonic inhibition of granule cells. This circuit mechanism reduces the probability of granule cell spiking without altering spike timing, thus suppressing cerebellar input without altering its temporal representation in the granule cell layer.
Collapse
Affiliation(s)
- Elizabeth Fleming
- Department of Neurobiology, Duke University Medical School , Durham, North Carolina
| | - Court Hull
- Department of Neurobiology, Duke University Medical School , Durham, North Carolina
| |
Collapse
|
47
|
Pafundo DE, Miyamae T, Lewis DA, Gonzalez-Burgos G. Presynaptic Effects of N-Methyl-D-Aspartate Receptors Enhance Parvalbumin Cell-Mediated Inhibition of Pyramidal Cells in Mouse Prefrontal Cortex. Biol Psychiatry 2018; 84:460-470. [PMID: 29523414 PMCID: PMC6068001 DOI: 10.1016/j.biopsych.2018.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Testing hypotheses regarding the role of N-methyl-D-aspartate receptor (NMDAR) hypofunction in schizophrenia requires understanding the mechanisms of NMDAR regulation of prefrontal cortex (PFC) circuit function. NMDAR antagonists are thought to produce pyramidal cell (PC) disinhibition. However, inhibitory parvalbumin-positive basket cells (PVBCs) have modest NMDAR-mediated excitatory drive and thus are unlikely to participate in NMDAR antagonist-mediated disinhibition. Interestingly, recent studies demonstrated that presynaptic NMDARs enhance transmitter release at central synapses. Thus, if presynaptic NMDARs enhance gamma-aminobutyric acid release at PVBC-to-PC synapses, they could participate in NMDAR-dependent PC disinhibition. Here, we examined whether presynaptic NMDAR effects could modulate gamma-aminobutyric acid release at PVBC-to-PC synapses in mouse PFC. METHODS Using whole-cell recordings from synaptically connected pairs in mouse PFC, we determined whether NMDA or NMDAR antagonist application affects PVBC-to-PC inhibition in a manner consistent with a presynaptic mechanism. RESULTS NMDAR activation enhanced by ∼40% the synaptic current at PVBC-to-PC pairs. This effect was consistent with a presynaptic mechanism given that it was 1) observed with postsynaptic NMDARs blocked by intracellular MK801, 2) associated with a lower rate of transmission failures and a higher transmitter release probability, and 3) blocked by intracellular MK801 in the PVBC. NMDAR antagonist application did not affect the synaptic currents in PVBC-to-PC pairs, but it reduced the inhibitory currents elicited in PCs with simultaneous glutamate release by extracellular stimulation. CONCLUSIONS We demonstrate that NMDAR activation enhances PVBC-to-PC inhibition in a manner consistent with presynaptic mechanisms, and we suggest that the functional impact of this presynaptic effect depends on the activity state of the PFC network.
Collapse
Affiliation(s)
- Diego E Pafundo
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Takeaki Miyamae
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Guillermo Gonzalez-Burgos
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
48
|
Abstract
Background: The roles of neuromodulation in a neural network, such as in a cortical microcolumn, are still incompletely understood. Neuromodulation influences neural processing by presynaptic and postsynaptic regulation of synaptic efficacy. Neuromodulation also affects ion channels and intrinsic excitability. Methods: Synaptic efficacy modulation is an effective way to rapidly alter network density and topology. We alter network topology and density to measure the effect on spike synchronization. We also operate with differently parameterized neuron models which alter the neuron's intrinsic excitability, i.e., activation function. Results: We find that (a) fast synaptic efficacy modulation influences the amount of correlated spiking in a network. Also, (b) synchronization in a network influences the read-out of intrinsic properties. Highly synchronous input drives neurons, such that differences in intrinsic properties disappear, while asynchronous input lets intrinsic properties determine output behavior. Thus, altering network topology can alter the balance between intrinsically vs. synaptically driven network activity. Conclusion: We conclude that neuromodulation may allow a network to shift between a more synchronized transmission mode and a more asynchronous intrinsic read-out mode. This has significant implications for our understanding of the flexibility of cortical computations.
Collapse
Affiliation(s)
- Gabriele Scheler
- Carl Correns Foundation for Mathematical Biology, Mountain View, CA, 94040, USA
| |
Collapse
|
49
|
Molecular Mechanisms of Oxytocin Signaling at the Synaptic Connection. Neural Plast 2018; 2018:4864107. [PMID: 30057594 PMCID: PMC6051047 DOI: 10.1155/2018/4864107] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/27/2018] [Indexed: 12/12/2022] Open
Abstract
Aberrant regulation of oxytocin signaling is associated with the etiology of neurodevelopmental disorders. Synaptic dysfunctions in neurodevelopmental disorders are becoming increasingly known, and their pathogenic mechanisms could be a target of potential therapeutic intervention. Therefore, it is important to pay attention to the role of oxytocin and its receptor in synapse structure, function, and neuron connectivity. An early alteration in oxytocin signaling may disturb neuronal maturation and may have short-term and long-term pathological consequences. At the molecular level, neurodevelopmental disorders include alterations in cytoskeletal rearrangement and neuritogenesis resulting in a diversity of synaptopathies. The presence of oxytocin receptors in the presynaptic and postsynaptic membranes and the direct effects of oxytocin on neuronal excitability by regulating the activity of ion channels in the cell membrane implicate that alterations in oxytocin signaling could be involved in synaptopathies. The ability of oxytocin to modulate neurogenesis, synaptic plasticity, and certain parameters of cytoskeletal arrangement is discussed in the present review.
Collapse
|
50
|
Rho HJ, Kim JH, Lee SH. Function of Selective Neuromodulatory Projections in the Mammalian Cerebral Cortex: Comparison Between Cholinergic and Noradrenergic Systems. Front Neural Circuits 2018; 12:47. [PMID: 29988373 PMCID: PMC6023998 DOI: 10.3389/fncir.2018.00047] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/01/2018] [Indexed: 12/15/2022] Open
Abstract
Cortical processing is dynamically modulated by different neuromodulators. Neuromodulation of the cerebral cortex is crucial for maintaining cognitive brain functions such as perception, attention and learning. However, we do not fully understand how neuromodulatory projections are organized in the cerebral cortex to exert various functions. The basal forebrain (BF) cholinergic projection and the locus coeruleus (LC) noradrenergic projection are well-known neuromodulatory projections to the cortex. Decades of studies have identified anatomical and physiological characteristics of these circuits. While both cholinergic and noradrenergic neurons widely project to the cortex, they exhibit different levels of selectivity. Here, we summarize their anatomical and physiological features, highlighting selectivity and specificity of these circuits to different cortical regions. We discuss the importance of selective modulation by comparing their functions in the cortex. We highlight key features in the input-output circuits and target selectivity of these neuromodulatory projections and their roles in controlling four major brain functions: attention, reinforcement, learning and memory, sleep and wakefulness.
Collapse
Affiliation(s)
- Hee-Jun Rho
- Sensory Processing Laboratory, Department of Biological Sciences, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, South Korea
| | - Jae-Hyun Kim
- Sensory Processing Laboratory, Department of Biological Sciences, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, South Korea
| | - Seung-Hee Lee
- Sensory Processing Laboratory, Department of Biological Sciences, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, South Korea
| |
Collapse
|