1
|
Chater TE, Eggl MF, Goda Y, Tchumatchenko T. Competitive processes shape multi-synapse plasticity along dendritic segments. Nat Commun 2024; 15:7572. [PMID: 39217140 PMCID: PMC11365941 DOI: 10.1038/s41467-024-51919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Neurons receive thousands of inputs onto their dendritic arbour, where individual synapses undergo activity-dependent plasticity. Long-lasting changes in postsynaptic strengths correlate with changes in spine head volume. The magnitude and direction of such structural plasticity - potentiation (sLTP) and depression (sLTD) - depend upon the number and spatial distribution of stimulated synapses. However, how neurons allocate resources to implement synaptic strength changes across space and time amongst neighbouring synapses remains unclear. Here we combined experimental and modelling approaches to explore the elementary processes underlying multi-spine plasticity. We used glutamate uncaging to induce sLTP at varying number of synapses sharing the same dendritic branch, and we built a model incorporating a dual role Ca2+-dependent component that induces spine growth or shrinkage. Our results suggest that competition among spines for molecular resources is a key driver of multi-spine plasticity and that spatial distance between simultaneously stimulated spines impacts the resulting spine dynamics.
Collapse
Affiliation(s)
- Thomas E Chater
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Maximilian F Eggl
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Venusberg-Campus 1, 53127, Bonn, Germany
- Institute of Neuroscience, CSIC-UMH, Alicante, Spain
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan.
- Synapse Biology Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa, Japan.
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
2
|
Kastellakis G, Tasciotti S, Pandi I, Poirazi P. The dendritic engram. Front Behav Neurosci 2023; 17:1212139. [PMID: 37576932 PMCID: PMC10412934 DOI: 10.3389/fnbeh.2023.1212139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Accumulating evidence from a wide range of studies, including behavioral, cellular, molecular and computational findings, support a key role of dendrites in the encoding and recall of new memories. Dendrites can integrate synaptic inputs in non-linear ways, provide the substrate for local protein synthesis and facilitate the orchestration of signaling pathways that regulate local synaptic plasticity. These capabilities allow them to act as a second layer of computation within the neuron and serve as the fundamental unit of plasticity. As such, dendrites are integral parts of the memory engram, namely the physical representation of memories in the brain and are increasingly studied during learning tasks. Here, we review experimental and computational studies that support a novel, dendritic view of the memory engram that is centered on non-linear dendritic branches as elementary memory units. We highlight the potential implications of dendritic engrams for the learning and memory field and discuss future research directions.
Collapse
Affiliation(s)
- George Kastellakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
| | - Simone Tasciotti
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Ioanna Pandi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
| |
Collapse
|
3
|
Wang Y, Minami Y, Ode KL, Ueda HR. The role of calcium and CaMKII in sleep. Front Syst Neurosci 2022; 16:1059421. [PMID: 36618010 PMCID: PMC9815122 DOI: 10.3389/fnsys.2022.1059421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Sleep is an evolutionarily conserved phenotype shared by most of the animals on the planet. Prolonged wakefulness will result in increased sleep need or sleep pressure. However, its mechanisms remain elusive. Recent findings indicate that Ca2+ signaling, known to control diverse physiological functions, also regulates sleep. This review intends to summarize research advances in Ca2+ and Ca2+/calmodulin-dependent protein kinase II (CaMKII) in sleep regulation. Significant changes in sleep phenotype have been observed through calcium-related channels, receptors, and pumps. Mathematical modeling for neuronal firing patterns during NREM sleep suggests that these molecules compose a Ca2+-dependent hyperpolarization mechanism. The intracellular Ca2+ may then trigger sleep induction and maintenance through the activation of CaMKII, one of the sleep-promoting kinases. CaMKII and its multisite phosphorylation status may provide a link between transient calcium dynamics typically observed in neurons and sleep-wake dynamics observed on the long-time scale.
Collapse
Affiliation(s)
- Yuyang Wang
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoichi Minami
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji L. Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroki R. Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Japan,*Correspondence: Hiroki R. Ueda,
| |
Collapse
|
4
|
Ding C, Wu Y, Dabas H, Hammarlund M. Activation of the CaMKII-Sarm1-ASK1-p38 MAP kinase pathway protects against axon degeneration caused by loss of mitochondria. eLife 2022; 11:73557. [PMID: 35285800 PMCID: PMC8920508 DOI: 10.7554/elife.73557] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/25/2022] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial defects are tightly linked to axon degeneration, yet the underlying cellular mechanisms remain poorly understood. In Caenorhabditis elegans, PVQ axons that lack mitochondria degenerate spontaneously with age. Using an unbiased genetic screen, we found that cell-specific activation of CaMKII/UNC-43 suppresses axon degeneration due to loss of mitochondria. Unexpectedly, CaMKII/UNC-43 activates the conserved Sarm1/TIR-1-ASK1/NSY-1-p38 MAPK pathway and eventually the transcription factor CEBP-1 to protect against degeneration. In addition, we show that disrupting a trafficking complex composed of calsyntenin/CASY-1, Mint/LIN-10, and kinesin suppresses axon degeneration. Further analysis indicates that disruption of this trafficking complex activates the CaMKII-Sarm1-MAPK pathway through L-type voltage-gated calcium channels. Our findings identify CaMKII as a pivot point between mitochondrial defects and axon degeneration, describe how it is regulated, and uncover a surprising neuroprotective role for the Sarm1-p38 MAPK pathway in this context.
Collapse
Affiliation(s)
- Chen Ding
- Department of Neuroscience, Yale University School of MedicineNew HavenUnited States
| | - Youjun Wu
- Department of Genetics, Yale University School of MedicineNew HavenUnited States
| | - Hadas Dabas
- Department of Genetics, Yale University School of MedicineNew HavenUnited States
| | - Marc Hammarlund
- Department of Neuroscience, Yale University School of MedicineNew HavenUnited States,Department of Genetics, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
5
|
Jenks KR, Tsimring K, Ip JPK, Zepeda JC, Sur M. Heterosynaptic Plasticity and the Experience-Dependent Refinement of Developing Neuronal Circuits. Front Neural Circuits 2021; 15:803401. [PMID: 34949992 PMCID: PMC8689143 DOI: 10.3389/fncir.2021.803401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 01/01/2023] Open
Abstract
Neurons remodel the structure and strength of their synapses during critical periods of development in order to optimize both perception and cognition. Many of these developmental synaptic changes are thought to occur through synapse-specific homosynaptic forms of experience-dependent plasticity. However, homosynaptic plasticity can also induce or contribute to the plasticity of neighboring synapses through heterosynaptic interactions. Decades of research in vitro have uncovered many of the molecular mechanisms of heterosynaptic plasticity that mediate local compensation for homosynaptic plasticity, facilitation of further bouts of plasticity in nearby synapses, and cooperative induction of plasticity by neighboring synapses acting in concert. These discoveries greatly benefited from new tools and technologies that permitted single synapse imaging and manipulation of structure, function, and protein dynamics in living neurons. With the recent advent and application of similar tools for in vivo research, it is now feasible to explore how heterosynaptic plasticity contribute to critical periods and the development of neuronal circuits. In this review, we will first define the forms heterosynaptic plasticity can take and describe our current understanding of their molecular mechanisms. Then, we will outline how heterosynaptic plasticity may lead to meaningful refinement of neuronal responses and observations that suggest such mechanisms are indeed at work in vivo. Finally, we will use a well-studied model of cortical plasticity—ocular dominance plasticity during a critical period of visual cortex development—to highlight the molecular overlap between heterosynaptic and developmental forms of plasticity, and suggest potential avenues of future research.
Collapse
Affiliation(s)
- Kyle R Jenks
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Katya Tsimring
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jacque Pak Kan Ip
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jose C Zepeda
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
6
|
Distance-dependent regulation of NMDAR nanoscale organization along hippocampal neuron dendrites. Proc Natl Acad Sci U S A 2020; 117:24526-24533. [PMID: 32929031 PMCID: PMC7533699 DOI: 10.1073/pnas.1922477117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hippocampal pyramidal neurons are characterized by a unique arborization subdivided in segregated dendritic domains receiving distinct excitatory synaptic inputs with specific properties and plasticity rules that shape their respective contributions to synaptic integration and action potential firing. Although the basal regulation and plastic range of proximal and distal synapses are known to be different, the composition and nanoscale organization of key synaptic proteins at these inputs remains largely elusive. Here we used superresolution imaging and single nanoparticle tracking in rat hippocampal neurons to unveil the nanoscale topography of native GluN2A- and GluN2B-NMDA receptors (NMDARs)-which play key roles in the use-dependent adaptation of glutamatergic synapses-along the dendritic arbor. We report significant changes in the nanoscale organization of GluN2B-NMDARs between proximal and distal dendritic segments, whereas the topography of GluN2A-NMDARs remains similar along the dendritic tree. Remarkably, the nanoscale organization of GluN2B-NMDARs at proximal segments depends on their interaction with calcium/calmodulin-dependent protein kinase II (CaMKII), which is not the case at distal segments. Collectively, our data reveal that the nanoscale organization of NMDARs changes along dendritic segments in a subtype-specific manner and is shaped by the interplay with CaMKII at proximal dendritic segments, shedding light on our understanding of the functional diversity of hippocampal glutamatergic synapses.
Collapse
|
7
|
Pinho J, Marcut C, Fonseca R. Actin remodeling, the synaptic tag and the maintenance of synaptic plasticity. IUBMB Life 2020; 72:577-589. [DOI: 10.1002/iub.2261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/06/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Júlia Pinho
- Cellular and Systems Neurobiology, Chronic Disease Research CenterNOVA Medical School Lisbon Portugal
| | - Cristina Marcut
- Cellular and Systems Neurobiology, Chronic Disease Research CenterNOVA Medical School Lisbon Portugal
| | - Rosalina Fonseca
- Cellular and Systems Neurobiology, Chronic Disease Research CenterNOVA Medical School Lisbon Portugal
| |
Collapse
|
8
|
Fitzgerald ZT, Rose JK. Locally-Induced CaMKII Translocation Requires Nucleotide Binding. Front Synaptic Neurosci 2020; 12:4. [PMID: 32116640 PMCID: PMC7019030 DOI: 10.3389/fnsyn.2020.00004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/17/2020] [Indexed: 11/16/2022] Open
Abstract
Calcium-calmodulin-dependent protein kinase (CaMKII) is a molecule involved in several cell processes including plasticity related to learning and memory. Activation of NMDA-type glutamate receptors results in translocation of CaMKII to synapses. However, there are at least two distinct mechanisms by which glutamate-dependent CaMKII translocation occurs: one well-studied process resulting from whole-cell glutamate stimulation and one resulting from brief, local glutamate application. Unlike the relatively fast CaMKII translocation seen following whole-cell glutamate delivery (seconds), local application results in CaMKII translocation that occurs gradually within 6-10 min. This locally-induced translocation of CaMKII requires L-type Ca2+ channel co-activation but does not rely on GluN2B receptor subunit expression, unlike translocation following whole-cell application of glutamate. The current study examined if nucleotide binding is necessary for locally-induced CaMKII translocation, similar to CaMKII translocation resulting from whole-cell glutamate application. Three different mechanisms of inhibition were employed: staurosporine (ATP inhibitor), CaMKII(281-302) peptide inhibitor and expression of the K42M mutation. Locally-induced CaMKII translocation was moderately suppressed in the presence of either the broad-spectrum kinase inhibitor staurosporine (100 nm) or the CaMKII(281-302) peptide inhibitor. However, expression of the catalytically dead K42M mutation that prevents ATP-binding to CaMKII, significantly inhibited locally-induced translocation. Thus, CaMKII translocation following brief, local glutamate application requires nucleotide binding, providing support for future research into the molecular mechanisms of this distinct form of CaMKII translocation.
Collapse
Affiliation(s)
| | - Jacqueline K. Rose
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, United States
| |
Collapse
|
9
|
Letellier M, Levet F, Thoumine O, Goda Y. Differential role of pre- and postsynaptic neurons in the activity-dependent control of synaptic strengths across dendrites. PLoS Biol 2019; 17:e2006223. [PMID: 31166943 PMCID: PMC6576792 DOI: 10.1371/journal.pbio.2006223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/17/2019] [Accepted: 05/17/2019] [Indexed: 01/07/2023] Open
Abstract
Neurons receive a large number of active synaptic inputs from their many presynaptic partners across their dendritic tree. However, little is known about how the strengths of individual synapses are controlled in balance with other synapses to effectively encode information while maintaining network homeostasis. This is in part due to the difficulty in assessing the activity of individual synapses with identified afferent and efferent connections for a synapse population in the brain. Here, to gain insights into the basic cellular rules that drive the activity-dependent spatial distribution of pre- and postsynaptic strengths across incoming axons and dendrites, we combine patch-clamp recordings with live-cell imaging of hippocampal pyramidal neurons in dissociated cultures and organotypic slices. Under basal conditions, both pre- and postsynaptic strengths cluster on single dendritic branches according to the identity of the presynaptic neurons, thus highlighting the ability of single dendritic branches to exhibit input specificity. Stimulating a single presynaptic neuron induces input-specific and dendritic branchwise spatial clustering of presynaptic strengths, which accompanies a widespread multiplicative scaling of postsynaptic strengths in dissociated cultures and heterosynaptic plasticity at distant synapses in organotypic slices. Our study provides evidence for a potential homeostatic mechanism by which the rapid changes in global or distant postsynaptic strengths compensate for input-specific presynaptic plasticity.
Collapse
Affiliation(s)
- Mathieu Letellier
- RIKEN Brain Science Institute, Wako, Saitama, Japan
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique (CNRS) UMR 5297, Bordeaux, France
- * E-mail: (ML); (YG)
| | - Florian Levet
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique (CNRS) UMR 5297, Bordeaux, France
- Bordeaux Imaging Center, University of Bordeaux, Bordeaux, France
- Bordeaux Imaging Center, CNRS UMS 3420, Bordeaux, France
- Bordeaux Imaging Center, INSERM US04, Bordeaux, France
| | - Olivier Thoumine
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique (CNRS) UMR 5297, Bordeaux, France
| | - Yukiko Goda
- RIKEN Center for Brain Science, Wako, Saitama, Japan
- * E-mail: (ML); (YG)
| |
Collapse
|
10
|
Patriarchi T, Buonarati OR, Hell JW. Postsynaptic localization and regulation of AMPA receptors and Cav1.2 by β2 adrenergic receptor/PKA and Ca 2+/CaMKII signaling. EMBO J 2018; 37:e99771. [PMID: 30249603 PMCID: PMC6187224 DOI: 10.15252/embj.201899771] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/25/2018] [Accepted: 08/17/2018] [Indexed: 11/09/2022] Open
Abstract
The synapse transmits, processes, and stores data within its tiny space. Effective and specific signaling requires precise alignment of the relevant components. This review examines current insights into mechanisms of AMPAR and NMDAR localization by PSD-95 and their spatial distribution at postsynaptic sites to illuminate the structural and functional framework of postsynaptic signaling. It subsequently delineates how β2 adrenergic receptor (β2 AR) signaling via adenylyl cyclase and the cAMP-dependent protein kinase PKA is organized within nanodomains. Here, we discuss targeting of β2 AR, adenylyl cyclase, and PKA to defined signaling complexes at postsynaptic sites, i.e., AMPARs and the L-type Ca2+ channel Cav1.2, and other subcellular surface localizations, the role of A kinase anchor proteins, the physiological relevance of the spatial restriction of corresponding signaling, and their interplay with signal transduction by the Ca2+- and calmodulin-dependent kinase CaMKII How localized and specific signaling by cAMP occurs is a central cellular question. The dendritic spine constitutes an ideal paradigm for elucidating the dimensions of spatially restricted signaling because of their small size and defined protein composition.
Collapse
MESH Headings
- Animals
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Signaling/physiology
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Humans
- Receptors, AMPA/genetics
- Receptors, AMPA/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Synapses/genetics
- Synapses/metabolism
Collapse
Affiliation(s)
- Tommaso Patriarchi
- Department of Pharmacology, University of California, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
| | | | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, CA, USA
| |
Collapse
|
11
|
Daghsni M, Rima M, Fajloun Z, Ronjat M, Brusés JL, M'rad R, De Waard M. Autism throughout genetics: Perusal of the implication of ion channels. Brain Behav 2018; 8:e00978. [PMID: 29934975 PMCID: PMC6085908 DOI: 10.1002/brb3.978] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/01/2018] [Accepted: 03/18/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) comprises a group of neurodevelopmental psychiatric disorders characterized by deficits in social interactions, interpersonal communication, repetitive and stereotyped behaviors and may be associated with intellectual disabilities. The description of ASD as a synaptopathology highlights the importance of the synapse and the implication of ion channels in the etiology of these disorders. METHODS A narrative and critical review of the relevant papers from 1982 to 2017 known by the authors was conducted. RESULTS Genome-wide linkages, association studies, and genetic analyses of patients with ASD have led to the identification of several candidate genes and mutations linked to ASD. Many of the candidate genes encode for proteins involved in neuronal development and regulation of synaptic function including ion channels and actors implicated in synapse formation. The involvement of ion channels in ASD is of great interest as they represent attractive therapeutic targets. In agreement with this view, recent findings have shown that drugs modulating ion channel function are effective for the treatment of certain types of patients with ASD. CONCLUSION This review describes the genetic aspects of ASD with a focus on genes encoding ion channels and highlights the therapeutic implications of ion channels in the treatment of ASD.
Collapse
Affiliation(s)
- Marwa Daghsni
- L'institut du Thorax, INSERM UMR1087/CNRS UMR6291, Université de Nantes, Nantes, France.,Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES10 Laboratoire de Génétique Humaine, 1007, Tunis, Tunisie
| | - Mohamad Rima
- Department of Neuroscience, Institute of Biology Paris-Seine, CNRS UMR 8246, INSERM U1130, Sorbonne Universités, Paris, France
| | - Ziad Fajloun
- Azm Center for Research in Biotechnology and Its Application, Lebanese University, Tripoli, Lebanon
| | - Michel Ronjat
- L'institut du Thorax, INSERM UMR1087/CNRS UMR6291, Université de Nantes, Nantes, France.,LabEx Ion Channels Science and Therapeutics, Nice, France
| | - Juan L Brusés
- Department of Natural Sciences, Mercy College, Dobbs Ferry, NY, USA
| | - Ridha M'rad
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES10 Laboratoire de Génétique Humaine, 1007, Tunis, Tunisie.,Service des Maladies Congénitales et Héréditaires, Hôpital Charles Nicolle, Tunis, Tunisie
| | - Michel De Waard
- L'institut du Thorax, INSERM UMR1087/CNRS UMR6291, Université de Nantes, Nantes, France.,LabEx Ion Channels Science and Therapeutics, Nice, France
| |
Collapse
|
12
|
Extinction of Contextual Cocaine Memories Requires Ca v1.2 within D1R-Expressing Cells and Recruits Hippocampal Ca v1.2-Dependent Signaling Mechanisms. J Neurosci 2017; 37:11894-11911. [PMID: 29089442 DOI: 10.1523/jneurosci.2397-17.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/03/2017] [Accepted: 10/25/2017] [Indexed: 11/21/2022] Open
Abstract
Exposure to cocaine-associated contextual cues contributes significantly to relapse. Extinction of these contextual associations, which involves a new form of learning, reduces cocaine-seeking behavior; however, the molecular mechanisms underlying this process remain largely unknown. We report that extinction, but not acquisition, of cocaine conditioned place preference (CPP) in male mice increased Cav1.2 L-type Ca2+ channel mRNA and protein in postsynaptic density (PSD) fractions of the hippocampus, a brain region involved in drug-context associations. Moreover, viral-mediated deletion of Cav1.2 in the dorsal hippocampus attenuated extinction of cocaine CPP. Molecular studies examining downstream Cav1.2 targets revealed that extinction recruited calcium/calmodulin (Ca2+/CaMK)-dependent protein kinase II (CaMKII) to the hippocampal PSD. This occurred in parallel with an increase in phosphorylation of the AMPA GluA1 receptor subunit at serine 831 (S831), a CaMKII site, along with an increase in total PSD GluA1. The necessity of S831 GluA1 was further demonstrated by the lack of extinction in S831A GluA1 phosphomutant mice. Of note hippocampal GluA1 levels remained unaltered at the PSD, but were reduced near the PSD and at perisynaptic sites of dendritic spines in extinction-resistant S831A mutant mice. Finally, conditional knock-out of Cav1.2 in dopamine D1 receptor (D1R)-expressing cells resulted in attenuation of cocaine CPP extinction and lack of extinction-dependent changes in hippocampal PSD CaMKII expression and S831 GluA1 phosphorylation. In summary, we demonstrate an essential role for the hippocampal Cav1.2/CaMKII/S831 GluA1 pathway in cocaine CPP extinction, with data supporting contribution of hippocampal D1R-expressing cells in this process. These findings demonstrate a novel role for Cav1.2 channels in extinction of contextual cocaine-associated memories.SIGNIFICANCE STATEMENT Continued drug-seeking behavior, a defining characteristic of cocaine addiction, can be precipitated by contextual cues, yet the molecular mechanisms required for extinction of these context-specific memories remain poorly understood. Here, we have uncovered a novel and selective role of the Cav1.2 L-type Ca2+ channel and its downstream signaling pathway in the hippocampus that mediate extinction of cocaine conditioned place preference (CPP). We additionally provide evidence that supports a role of Cav1.2 within dopamine D1 receptor-expressing cells of the hippocampus for extinction of cocaine CPP. Therefore, these findings reveal a previously unknown role of Cav1.2 channels within the hippocampus and in D1 receptor-expressing cells in extinction of cocaine-associated memories, providing a framework for further exploration of mechanisms underlying extinction of cocaine-seeking behavior.
Collapse
|
13
|
Dent EW. Of microtubules and memory: implications for microtubule dynamics in dendrites and spines. Mol Biol Cell 2017; 28:1-8. [PMID: 28035040 PMCID: PMC5221613 DOI: 10.1091/mbc.e15-11-0769] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/20/2016] [Accepted: 10/26/2016] [Indexed: 12/25/2022] Open
Abstract
Microtubules (MTs) are cytoskeletal polymers composed of repeating subunits of tubulin that are ubiquitously expressed in eukaryotic cells. They undergo a stochastic process of polymerization and depolymerization from their plus ends termed dynamic instability. MT dynamics is an ongoing process in all cell types and has been the target for the development of several useful anticancer drugs, which compromise rapidly dividing cells. Recent studies also suggest that MT dynamics may be particularly important in neurons, which develop a highly polarized morphology, consisting of a single axon and multiple dendrites that persist throughout adulthood. MTs are especially dynamic in dendrites and have recently been shown to polymerize directly into dendritic spines, the postsynaptic compartment of excitatory neurons in the CNS. These transient polymerization events into dendritic spines have been demonstrated to play important roles in synaptic plasticity in cultured neurons. Recent studies also suggest that MT dynamics in the adult brain function in the essential process of learning and memory and may be compromised in degenerative diseases, such as Alzheimer's disease. This raises the possibility of targeting MT dynamics in the design of new therapeutic agents.
Collapse
Affiliation(s)
- Erik W Dent
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
14
|
Tatsuki F, Ode KL, Ueda HR. Ca 2+-dependent hyperpolarization hypothesis for mammalian sleep. Neurosci Res 2017; 118:48-55. [PMID: 28433628 DOI: 10.1016/j.neures.2017.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 11/15/2022]
Abstract
The detailed molecular mechanisms underlying the regulation of sleep/wake cycles in mammals are elusive. In this regulation, at least two mechanisms with fast and slow time scales are involved. In the faster time scale, a state of non-rapid-eye-movement (NREM) sleep can be microscopically characterized by the millisecond-to-second-order electrical behavior of neurons, namely slow-wave oscillations described by electrophysiology. In the slower time scale, the total duration of NREM sleep is homeostatically regulated by sleep pressure (the need for sleep), which is usually sustained for hours or even days and can be macroscopically described by electroencephalogram (EEG). The longer dynamics of sleep regulation are often explained by the accumulation of sleep-inducing substances (SISs). However, we still do not have a concrete model to connect fast, microscopic dynamics and slow, macroscopic dynamics. In this review, we introduce a recent Ca2+-dependent hyperpolarization hypothesis, in which the Ca2+-dependent hyperpolarization of cortical-membrane potential induces slow-wave oscillation. Slow dynamics of the Ca2+-dependent hyperpolarization pathway might be regulated by recently identified sleep-promoting kinases as well as classical SISs. Therefore, cortical Ca2+-dependent hyperpolarization may be a fundamental mechanism connecting fast neural activity to the slow dynamics of sleep pressure.
Collapse
Affiliation(s)
- Fumiya Tatsuki
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8865, Japan
| | - Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
15
|
NMDA receptors in mouse anterior piriform cortex initialize early odor preference learning and L-type calcium channels engage for long-term memory. Sci Rep 2016; 6:35256. [PMID: 27739540 PMCID: PMC5064360 DOI: 10.1038/srep35256] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/27/2016] [Indexed: 01/10/2023] Open
Abstract
The interactions of L-type calcium channels (LTCCs) and NMDA receptors (NMDARs) in memories are poorly understood. Here we investigated the specific roles of anterior piriform cortex (aPC) LTCCs and NMDARs in early odor preference memory in mice. Using calcium imaging in aPC slices, LTCC activation was shown to be dependent on NMDAR activation. Either D-APV (NMDAR antagonist) or nifedipine (LTCC antagonist) reduced somatic calcium transients in pyramidal cells evoked by lateral olfactory tract stimulation. However, nifedipine did not further reduce calcium in the presence of D-APV. In mice that underwent early odor preference training, blocking NMDARs in the aPC prevented short-term (3 hr) and long-term (24 hr) odor preference memory, and both memories were rescued when BayK-8644 (LTCC agonist) was co-infused. However, activating LTCCs in the absence of NMDARs resulted in loss of discrimination between the conditioned odor and a similar odor mixture at 3 hr. Elevated synaptic AMPAR expression at 3 hr was prevented by D-APV infusion but restored when LTCCs were directly activated, mirroring the behavioral outcomes. Blocking LTCCs prevented 24 hr memory and spared 3 hr memory. These results suggest that NMDARs mediate stimulus-specific encoding of odor memory while LTCCs mediate intracellular signaling leading to long-term memory.
Collapse
|
16
|
Stanika RI, Flucher BE, Obermair GJ. Regulation of Postsynaptic Stability by the L-type Calcium Channel CaV1.3 and its Interaction with PDZ Proteins. Curr Mol Pharmacol 2016; 8:95-101. [PMID: 25966696 PMCID: PMC5384370 DOI: 10.2174/1874467208666150507103716] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/29/2015] [Accepted: 04/20/2015] [Indexed: 01/24/2023]
Abstract
Alterations in dendritic spine morphology and postsynaptic structure are a hallmark of neurological disorders. Particularly spine pruning of striatal medium spiny neurons and aberrant rewiring of corticostriatal synapses have been associated with the pathology of Parkinson’s disease and L-DOPA induced dyskinesia, respectively. Owing to its low activation threshold the neuronal L-type calcium channel CaV1.3 is particularly critical in the control of neuronal excitability and thus in the calcium-dependent regulation of neuronal functions. CaV1.3 channels are located in dendritic spines and contain a C-terminal class 1 PDZ domain-binding sequence. Until today the postsynaptic PDZ domain proteins shank, densin-180, and erbin have been shown to interact with CaV1.3 channels and to modulate their current properties. Interestingly experimental evidence suggests an involvement of all three PDZ proteins as well as CaV1.3 itself in regulating dendritic and postsynaptic morphology. Here we briefly review the importance of CaV1.3 and its proposed interactions with PDZ proteins for the stability of dendritic spines. With a special focus on the pathology associated with Parkinson’s disease, we discuss the hypothesis that CaV1.3 L-type calcium channels may be critical modulators of dendritic spine stability.
Collapse
Affiliation(s)
| | | | - Gerald J Obermair
- Division of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, Fritz-Pregl-Str. 3, 6020 Innsbruck, Austria.
| |
Collapse
|
17
|
Tatsuki F, Sunagawa GA, Shi S, Susaki EA, Yukinaga H, Perrin D, Sumiyama K, Ukai-Tadenuma M, Fujishima H, Ohno RI, Tone D, Ode KL, Matsumoto K, Ueda HR. Involvement of Ca(2+)-Dependent Hyperpolarization in Sleep Duration in Mammals. Neuron 2016; 90:70-85. [PMID: 26996081 DOI: 10.1016/j.neuron.2016.02.032] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 12/03/2015] [Accepted: 02/16/2016] [Indexed: 10/22/2022]
Abstract
The detailed molecular mechanisms underlying the regulation of sleep duration in mammals are still elusive. To address this challenge, we constructed a simple computational model, which recapitulates the electrophysiological characteristics of the slow-wave sleep and awake states. Comprehensive bifurcation analysis predicted that a Ca(2+)-dependent hyperpolarization pathway may play a role in slow-wave sleep and hence in the regulation of sleep duration. To experimentally validate the prediction, we generate and analyze 21 KO mice. Here we found that impaired Ca(2+)-dependent K(+) channels (Kcnn2 and Kcnn3), voltage-gated Ca(2+) channels (Cacna1g and Cacna1h), or Ca(2+)/calmodulin-dependent kinases (Camk2a and Camk2b) decrease sleep duration, while impaired plasma membrane Ca(2+) ATPase (Atp2b3) increases sleep duration. Pharmacological intervention and whole-brain imaging validated that impaired NMDA receptors reduce sleep duration and directly increase the excitability of cells. Based on these results, we propose a hypothesis that a Ca(2+)-dependent hyperpolarization pathway underlies the regulation of sleep duration in mammals.
Collapse
Affiliation(s)
- Fumiya Tatsuki
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Genshiro A Sunagawa
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shoi Shi
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Etsuo A Susaki
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hiroko Yukinaga
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Dimitri Perrin
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; School of Electrical Engineering and Computer Science, Queensland University of Technology, GPO Box 2434, Brisbane QLD 4001, Australia
| | - Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, RIKEN Quantitative Biology Center, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Maki Ukai-Tadenuma
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hiroshi Fujishima
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Rei-ichiro Ohno
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daisuke Tone
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Katsuhiko Matsumoto
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
18
|
Gold nanoparticle-assisted all optical localized stimulation and monitoring of Ca²⁺ signaling in neurons. Sci Rep 2016; 6:20619. [PMID: 26857748 PMCID: PMC4746645 DOI: 10.1038/srep20619] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/08/2016] [Indexed: 11/21/2022] Open
Abstract
Light-assisted manipulation of cells to control membrane activity or intracellular signaling has become a major avenue in life sciences. However, the ability to perform subcellular light stimulation to investigate localized signaling has been limited. Here, we introduce an all optical method for the stimulation and the monitoring of localized Ca2+ signaling in neurons that takes advantage of plasmonic excitation of gold nanoparticles (AuNPs). We show with confocal microscopy that 800 nm laser pulse application onto a neuron decorated with a few AuNPs triggers a transient increase in free Ca2+, measured optically with GCaMP6s. We show that action potentials, measured electrophysiologically, can be induced with this approach. We demonstrate activation of local Ca2+ transients and Ca2+ signaling via CaMKII in dendritic domains, by illuminating a single or few functionalized AuNPs specifically targeting genetically-modified neurons. This NP-Assisted Localized Optical Stimulation (NALOS) provides a new complement to light-dependent methods for controlling neuronal activity and cell signaling.
Collapse
|
19
|
Bal’ NV, Balaban PM. Ubiquitin-dependent protein degradation is necessary for long-term plasticity and memory. NEUROCHEM J+ 2015. [DOI: 10.1134/s1819712415040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Barcomb K, Goodell DJ, Arnold DB, Bayer KU. Live imaging of endogenous Ca²⁺/calmodulin-dependent protein kinase II in neurons reveals that ischemia-related aggregation does not require kinase activity. J Neurochem 2015. [PMID: 26212614 DOI: 10.1111/jnc.13263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Ca(2+) /calmodulin-dependent protein kinase II (CaMKII) forms 12meric holoenzymes. These holoenzymes cluster into larger aggregates within neurons under ischemic conditions and in vitro when ischemic conditions are mimicked. This aggregation is thought to be mediated by interaction between the regulatory domain of one kinase subunit with the T-site of another kinase subunit in a different holoenzyme, an interaction that requires stimulation by Ca(2+) /CaM and nucleotide for its induction. This model makes several predictions that were verified here: Aggregation in vitro was reduced by the CaMKII inhibitors tatCN21 and tatCN19o (which block the T-site) as well as by KN93 (which is CaM-competitive). Notably, these and previously tested manipulations that block CaMKII activation all reduced aggregation, suggesting an alternative mechanism that instead requires kinase activity. However, experiments with the nucleotide-competitive broad-spectrum kinase inhibitors staurosporin and H7 showed that this is not the case. In vitro, staurosporine and H7 enabled CaMKII aggregation even in the absence of nucleotide. Within rat hippocampal neurons, an intra-body enabled live monitoring of endogenous CaMKII aggregation. This aggregation was blocked by tatCN21, but not by staurosporine, even though both effectively inhibit CaMKII activity. These results support the mechanistic model for CaMKII aggregation and show that kinase activity is not required. CaMKII aggregation is prevented by inhibiting kinase activity with mutations (red italics; shown previously) or inhibitors (red bold; shown here), indicating requirement of kinase activity. However, we show here that nucleotide-competitive inhibitors (green) allow CaMKII aggregation (including endogenous CaMKII within neurons), demonstrating that kinase activity is not required and supporting the current mechanistic model for CaMKII aggregation.
Collapse
Affiliation(s)
- Kelsey Barcomb
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dayton J Goodell
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Don B Arnold
- Department of Biology, University of Southern California, Los Angeles, California, USA
| | - K Ulrich Bayer
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
21
|
In vitro reconstitution of a CaMKII memory switch by an NMDA receptor-derived peptide. Biophys J 2014; 106:1414-20. [PMID: 24655517 DOI: 10.1016/j.bpj.2014.01.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/16/2014] [Accepted: 01/23/2014] [Indexed: 11/23/2022] Open
Abstract
Ca(2+)/Calmodulin-dependent protein kinase II (CaMKII) has been shown to play a major role in establishing memories through complex molecular interactions including phosphorylation of multiple synaptic targets. However, it is still controversial whether CaMKII itself serves as a molecular memory because of a lack of direct evidence. Here, we show that a single holoenzyme of CaMKII per se serves as an erasable molecular memory switch. We reconstituted Ca(2+)/Calmodulin-dependent CaMKII autophosphorylation in the presence of protein phosphatase 1 in vitro, and found that CaMKII phosphorylation shows a switch-like response with history dependence (hysteresis) only in the presence of an N-methyl-D-aspartate receptor-derived peptide. This hysteresis is Ca(2+) and protein phosphatase 1 concentration-dependent, indicating that the CaMKII memory switch is not simply caused by an N-methyl-D-aspartate receptor-derived peptide lock of CaMKII in an active conformation. Mutation of a phosphorylation site of the peptide shifted the Ca(2+) range of hysteresis. These functions may be crucial for induction and maintenance of long-term synaptic plasticity at hippocampal synapses.
Collapse
|
22
|
Villers A, Giese KP, Ris L. Long-term potentiation can be induced in the CA1 region of hippocampus in the absence of αCaMKII T286-autophosphorylation. ACTA ACUST UNITED AC 2014; 21:616-26. [PMID: 25322797 PMCID: PMC4201817 DOI: 10.1101/lm.035972.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
α-calcium/calmodulin-dependent protein kinase (αCaMKII) T286-autophosphorylation provides a short-term molecular memory that was thought to be required for LTP and for learning and memory. However, it has been shown that learning can occur in αCaMKII-T286A mutant mice after a massed training protocol. This raises the question of whether there might be a form of LTP in these mice that can occur without T286 autophosphorylation. In this study, we confirmed that in CA1 pyramidal cells, LTP induced in acute hippocampal slices, after a recovery period in an interface chamber, is strictly dependent on postsynaptic αCaMKII autophosphorylation. However, we demonstrated that αCaMKII-autophosphorylation-independent plasticity can occur in the hippocampus but at the expense of synaptic specificity. This nonspecific LTP was observed in mutant and wild-type mice after a recovery period in a submersion chamber and was independent of NMDA receptors. Moreover, when slices prepared from mutant mice were preincubated during 2 h with rapamycin, high-frequency trains induced a synapse-specific LTP which was added to the nonspecific LTP. This specific LTP was related to an increase in the duration and the amplitude of NMDA receptor-mediated response induced by rapamycin.
Collapse
Affiliation(s)
- Agnès Villers
- Department of Neuroscience, Research Institute for Biosciences, University of Mons, B-7000 Mons, Belgium
| | - Karl Peter Giese
- MRC Centre for Neurodegeneration, Institute of Psychiatry, King's College London, SE5 9NU, London, United Kingdom
| | - Laurence Ris
- Department of Neuroscience, Research Institute for Biosciences, University of Mons, B-7000 Mons, Belgium
| |
Collapse
|
23
|
McVicker DP, Millette MM, Dent EW. Signaling to the microtubule cytoskeleton: an unconventional role for CaMKII. Dev Neurobiol 2014; 75:423-34. [PMID: 25156276 DOI: 10.1002/dneu.22227] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/20/2014] [Indexed: 12/29/2022]
Abstract
Synaptic plasticity is a hallmark of the nervous system and is thought to be integral to higher brain functions such as learning and memory. Calcium, acting as a second messenger, and the calcium/calmodulin dependent kinase CaMKII are key regulators of neuronal plasticity. Given the importance of the actin and microtubule (MT) cytoskeleton in dendritic spine morphology, composition and plasticity, it is not surprising that many regulators of these cytoskeletal elements are downstream of the CaMKII pathway. In this review, we discuss the emerging role of calcium and CaMKII in the regulation of MTs and cargo unloading during synaptic plasticity.
Collapse
Affiliation(s)
- Derrick P McVicker
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, 53705
| | | | | |
Collapse
|
24
|
Belzil C, Ramos T, Sanada K, Colicos MA, Nguyen MD. p600 stabilizes microtubules to prevent the aggregation of CaMKIIα during photoconductive stimulation. Cell Mol Biol Lett 2014; 19:381-92. [PMID: 25034033 PMCID: PMC6275876 DOI: 10.2478/s11658-014-0201-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 07/07/2014] [Indexed: 11/21/2022] Open
Abstract
The large microtubule-associated/Ca(2+)-signalling protein p600 (also known as UBR4) is required for hippocampal neuronal survival upon Ca(2+) dyshomeostasis induced by glutamate treatment. During this process, p600 prevents aggregation of the Ca(2+)/calmodulin-dependent kinase IIα (CaMKIIα), a proxy of neuronal death, via direct binding to calmodulin in a microtubuleindependent manner. Using photoconductive stimulation coupled with live imaging of single neurons, we identified a distinct mechanism of prevention of CaMKIIα aggregation by p600. Upon direct depolarization, CaMKIIα translocates to microtubules. In the absence of p600, this translocation is interrupted in favour of a sustained self-aggregation that is prevented by the microtubule-stabilizing drug paclitaxel. Thus, during photoconductive stimulation, p600 prevents the aggregation of CaMKIIα by stabilizing microtubules. The effectiveness of this stabilization for preventing CaMKIIα aggregation during direct depolarization but not during glutamate treatment suggests a model wherein p600 has two modes of action depending on the source of cytosolic Ca(2+).
Collapse
Affiliation(s)
- Camille Belzil
- Hotchkiss Brain Institute, University of Calgary, Departments of Clinical Neurosciences, Cell Biology & Anatomy, Biochemistry & Molecular Biology, 3330 Hospital Drive NW, Calgary, Alberta Canada T2N 4N1
| | - Tim Ramos
- Hotchkiss Brain Institute, University of Calgary, Departments of Clinical Neurosciences, Cell Biology & Anatomy, Biochemistry & Molecular Biology, 3330 Hospital Drive NW, Calgary, Alberta Canada T2N 4N1
| | - Kamon Sanada
- Molecular Genetics Research Laboratory, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Michael A. Colicos
- Hotchkiss Brain Institute, University of Calgary, Departments of Clinical Neurosciences, Cell Biology & Anatomy, Biochemistry & Molecular Biology, 3330 Hospital Drive NW, Calgary, Alberta Canada T2N 4N1
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, University of Calgary, Departments of Clinical Neurosciences, Cell Biology & Anatomy, Biochemistry & Molecular Biology, 3330 Hospital Drive NW, Calgary, Alberta Canada T2N 4N1
| |
Collapse
|
25
|
Stein IS, Donaldson MS, Hell JW. CaMKII binding to GluN2B is important for massed spatial learning in the Morris water maze. F1000Res 2014; 3:193. [PMID: 25187880 PMCID: PMC4149248 DOI: 10.12688/f1000research.4660.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2014] [Indexed: 12/17/2022] Open
Abstract
Learning and memory as well as long-term potentiation (LTP) depend on Ca
2+ influx through the NMDA-type glutamate receptor (NMDAR) and the resulting activation of the Ca
2+ and calmodulin-dependent protein kinase (CaMKII). Ca
2+ influx via the NMDAR triggers CaMKII binding to the NMDAR for enhanced CaMKII accumulation at post-synaptic sites that experience heightened activity as occurring during LTP. Previously, we generated knock-in (KI) mice in which we replaced two residues in the NMDAR GluN2B subunit to impair CaMKII binding to GluN2B. Various forms of LTP at the Schaffer collateral synapses in CA1 are reduced by 50%. Nevertheless, working memory in the win-shift 8 arm maze and learning of the Morris water maze (MWM) task was normal in the KI mice although recall of the task was impaired in these mice during the period of early memory consolidation. We now show that massed training in the MWM task within a single day resulted in impaired learning. However, learning and recall of the Barnes maze task and contextual fear conditioning over one or multiple days were surprisingly unaffected. The differences observed in the MWM compared to the Barnes maze and contextual fear conditioning suggest a differential involvement of CaMKII and the specific interaction with GluN2B, probably depending on varying degrees of stress, cognitive demand or even potentially different plasticity mechanisms associated with the diverse tasks.
Collapse
Affiliation(s)
- Ivar S Stein
- Department of Pharmacology, School of Medicine, University of California, Davis, 95616-8636, USA
| | - Michaela S Donaldson
- Department of Pharmacology, School of Medicine, University of California, Davis, 95616-8636, USA
| | - Johannes W Hell
- Department of Pharmacology, School of Medicine, University of California, Davis, 95616-8636, USA
| |
Collapse
|
26
|
Abstract
Recent work showed that unsupervised learning of a complex environment activates synaptic proteins essential for the stabilization of long-term potentiation (LTP). The present study used automated methods to construct maps of excitatory synapses associated with high concentrations of one of these LTP-related proteins [CaMKII phosphorylated at T286/287, (pCaMKII)]. Labeling patterns across 42 sampling zones covering entire cross sections through rostral hippocampus were assessed for two groups of rats that explored a novel two-room arena for 30 min, with or without a response contingency involving mildly aversive cues. The number of pCaMKII-immunopositive (+) synapses was highly correlated between the two groups for the 21 sampling zones covering the dentate gyrus, CA3c/hilus, and apical dendrites of field CA1, but not for the remainder of the cross section. The distribution of pCaMKII+ synapses in the large uncorrelated segment differed markedly between the groups. Subtracting home-cage values removed high scores (i.e., sampling zones with a high percentage of pCaMKII+ contacts) in the negative contingency group, but not in the free-exploration animals. Three sites in the latter had values that were markedly elevated above other fields. These mapping results suggest that encoding of a form of memory that is dependent upon rostral hippocampus reliably occurs at high levels in discrete anatomical zones, and that this regionally differentiated response is blocked when animals are inhibited from freely exploring the environment by the introduction of a mildly aversive stimulus.
Collapse
|
27
|
Hell JW. CaMKII: claiming center stage in postsynaptic function and organization. Neuron 2014; 81:249-65. [PMID: 24462093 DOI: 10.1016/j.neuron.2013.12.024] [Citation(s) in RCA: 268] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2013] [Indexed: 11/16/2022]
Abstract
While CaMKII has long been known to be essential for synaptic plasticity and learning, recent work points to new dimensions of CaMKII function in the nervous system, revealing that CaMKII also plays an important role in synaptic organization. Ca(2+)-triggered autophosphorylation of CaMKII not only provides molecular memory by prolonging CaMKII activity during long-term plasticity (LTP) and learning but also represents a mechanism for autoactivation of CaMKII's multifaceted protein-docking functions. New details are also emerging about the distinct roles of CaMKIIα and CaMKIIβ in synaptic homeostasis, further illustrating the multilayered and complex nature of CaMKII's involvement in synaptic regulation. Here, I review novel molecular and functional insight into how CaMKII supports synaptic function.
Collapse
Affiliation(s)
- Johannes W Hell
- Department of Pharmacology, University of California, Davis, Davis, CA 95615, USA.
| |
Collapse
|
28
|
Stratton M, Lee IH, Bhattacharyya M, Christensen SM, Chao LH, Schulman H, Groves JT, Kuriyan J. Activation-triggered subunit exchange between CaMKII holoenzymes facilitates the spread of kinase activity. eLife 2014; 3:e01610. [PMID: 24473075 PMCID: PMC3901001 DOI: 10.7554/elife.01610] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The activation of the dodecameric Ca(2+)/calmodulin dependent kinase II (CaMKII) holoenzyme is critical for memory formation. We now report that CaMKII has a remarkable property, which is that activation of the holoenzyme triggers the exchange of subunits between holoenzymes, including unactivated ones, enabling the calcium-independent phosphorylation of new subunits. We show, using a single-molecule TIRF microscopy technique, that the exchange process is triggered by the activation of CaMKII, and that exchange is modulated by phosphorylation of two residues in the calmodulin-binding segment, Thr 305 and Thr 306. Based on these results, and on the analysis of molecular dynamics simulations, we suggest that the phosphorylated regulatory segment of CaMKII interacts with the central hub of the holoenzyme and weakens its integrity, thereby promoting exchange. Our results have implications for an earlier idea that subunit exchange in CaMKII may have relevance for information storage resulting from brief coincident stimuli during neuronal signaling. DOI: http://dx.doi.org/10.7554/eLife.01610.001.
Collapse
Affiliation(s)
- Margaret Stratton
- Department of Molecular and Cell Biology, Berkeley, Berkeley, United States
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Recombinant probes reveal dynamic localization of CaMKIIα within somata of cortical neurons. J Neurosci 2013; 33:14579-90. [PMID: 24005308 DOI: 10.1523/jneurosci.2108-13.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In response to NMDA receptor stimulation, CaMKIIα moves rapidly from a diffuse distribution within the shafts of neuronal dendrites to a clustered postsynaptic distribution. However, less is known about CaMKIIα localization and trafficking within neuronal somata. Here we use a novel recombinant probe capable of labeling endogenous CaMKIIα in living rat neurons to examine its localization and trafficking within the somata of cortical neurons. This probe, which was generated using an mRNA display selection, binds to endogenous CaMKIIα at high affinity and specificity following expression in rat cortical neurons in culture. In ∼45% of quiescent cortical neurons, labeled clusters of CaMKIIα 1-4 μm in diameter were present. Upon exposure to glutamate and glycine, CaMKIIα clusters disappeared in a Ca(2+)-dependent manner within seconds. Moreover, minutes after the removal of glutamate and glycine, the clusters returned to their original configuration. The clusters, which also appear in cortical neurons in sections taken from mouse brains, contain actin and disperse upon exposure to cytochalasin D, an actin depolymerizer. In conclusion, within the soma, CaMKII localizes and traffics in a manner that is distinct from its localization and trafficking within the dendrites.
Collapse
|
30
|
Local Signalization in Dendrites and Mechanisms of Short-Term Memory. NEUROPHYSIOLOGY+ 2013. [DOI: 10.1007/s11062-013-9381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Suo ZW, Fan QQ, Yang X, Hu XD. Ca2+/calmodulin-dependent protein kinase II in spinal dorsal horn contributes to the pain hypersensitivity induced by γ-aminobutyric acid type a receptor inhibition. J Neurosci Res 2013; 91:1473-82. [DOI: 10.1002/jnr.23270] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 05/03/2013] [Accepted: 06/01/2013] [Indexed: 02/01/2023]
Affiliation(s)
- Zhan-Wei Suo
- Department of Molecular Pharmacology, School of Pharmacy; Lanzhou University; Lanzhou Gansu People's Republic of China
| | - Qing-Qing Fan
- Department of Molecular Pharmacology, School of Pharmacy; Lanzhou University; Lanzhou Gansu People's Republic of China
| | - Xian Yang
- Department of Molecular Pharmacology, School of Pharmacy; Lanzhou University; Lanzhou Gansu People's Republic of China
| | - Xiao-Dong Hu
- Department of Molecular Pharmacology, School of Pharmacy; Lanzhou University; Lanzhou Gansu People's Republic of China
| |
Collapse
|
32
|
Belzil C, Neumayer G, Vassilev AP, Yap KL, Konishi H, Rivest S, Sanada K, Ikura M, Nakatani Y, Nguyen MD. A Ca2+-dependent mechanism of neuronal survival mediated by the microtubule-associated protein p600. J Biol Chem 2013; 288:24452-64. [PMID: 23861403 DOI: 10.1074/jbc.m113.483107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In acute and chronic neurodegeneration, Ca(2+) mishandling and disruption of the cytoskeleton compromise neuronal integrity, yet abnormalities in the signaling roles of cytoskeletal proteins remain largely unexplored. We now report that the microtubule-associated protein p600 (also known as UBR4) promotes neuronal survival. Following depletion of p600, glutamate-induced Ca(2+) influx through NMDA receptors, but not AMPA receptors, initiates a degenerative process characterized by endoplasmic reticulum fragmentation and endoplasmic reticulum Ca(2+) release via inositol 1,4,5-trisphosphate receptors. Downstream of NMDA receptors, p600 associates with the calmodulin·calmodulin-dependent protein kinase IIα complex. A direct and atypical p600/calmodulin interaction is required for neuronal survival. Thus, p600 counteracts specific Ca(2+)-induced death pathways through regulation of Ca(2+) homeostasis and signaling.
Collapse
Affiliation(s)
- Camille Belzil
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Iomin A, Méndez V. Reaction-subdiffusion front propagation in a comblike model of spiny dendrites. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:012706. [PMID: 23944491 DOI: 10.1103/physreve.88.012706] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/07/2013] [Indexed: 06/02/2023]
Abstract
Fractional reaction-diffusion equations are derived by exploiting the geometrical similarities between a comb structure and a spiny dendrite. In the framework of the obtained equations, two scenarios of reaction transport in spiny dendrites are explored, where both a linear reaction in spines and nonlinear Fisher-Kolmogorov-Petrovskii-Piskunov reactions along dendrites are considered. In the framework of fractional subdiffusive comb model, we develop a Hamilton-Jacobi approach to estimate the overall velocity of the reaction front propagation. One of the main effects observed is the failure of the front propagation for both scenarios due to either the reaction inside the spines or the interaction of the reaction with the spines. In the first case the spines are the source of reactions, while in the latter case, the spines are a source of a damping mechanism.
Collapse
Affiliation(s)
- A Iomin
- Department of Physics, Technion, Haifa 32000, Israel
| | | |
Collapse
|
34
|
Kang JJ, Wei XY, Liu JP, Wong-Riley MTT, Ju G, Liu YY. Expression of phospho-Ca(2+) /calmodulin-dependent protein kinase II in the pre-Bötzinger complex of rats. J Neurochem 2013; 126:349-59. [PMID: 23651084 DOI: 10.1111/jnc.12297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 05/06/2013] [Indexed: 11/28/2022]
Abstract
The pre-Bötzinger complex (pre-BötC) in the ventrolateral medulla oblongata is a presumed kernel of respiratory rhythmogenesis. Ca(2+) -activated non-selective cationic current is an essential cellular mechanism for shaping inspiratory drive potentials. Ca(2+) /calmodulin-dependent protein kinase II (CaMKII), an ideal 'interpreter' of diverse Ca(2+) signals, is highly expressed in neurons in mediating various physiological processes. Yet, less is known about CaMKII activity in the pre-BötC. Using neurokinin-1 receptor as a marker of the pre-BötC, we examined phospho (P)-CaMKII subcellular distribution, and found that P-CaMKII was extensively expressed in the region. P-CaMKII-ir neurons were usually oval, fusiform, or pyramidal in shape. P-CaMKII immunoreactivity was distributed within somas and dendrites, and specifically in association with the post-synaptic density. In dendrites, most synapses (93.1%) examined with P-CaMKII expression were of asymmetric type, occasionally with symmetric type (6.9%), whereas in somas, 38.1% were of symmetric type. P-CaMKII asymmetric synaptic identification implicates that CaMKII may sense and monitor Ca(2+) activity, and phosphorylate post-synaptic proteins to modulate excitatory synaptic transmission, which may contribute to respiratory modulation and plasticity. In somas, CaMKII acts on both symmetric and asymmetric synapses, mediating excitatory and inhibitory synaptic transmission. P-CaMKII was also localized to the perisynaptic and extrasynaptic regions in the pre-BötC.
Collapse
Affiliation(s)
- Jun-Jun Kang
- Institute of Neurosciences, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | |
Collapse
|
35
|
Potential opposite roles of the extracellular signal-regulated kinase (ERK) pathway in autism spectrum and bipolar disorders. Neurosci Biobehav Rev 2012; 36:2206-13. [DOI: 10.1016/j.neubiorev.2012.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/20/2012] [Accepted: 07/28/2012] [Indexed: 11/22/2022]
|
36
|
Lemieux M, Labrecque S, Tardif C, Labrie-Dion É, Lebel É, De Koninck P. Translocation of CaMKII to dendritic microtubules supports the plasticity of local synapses. ACTA ACUST UNITED AC 2012; 198:1055-73. [PMID: 22965911 PMCID: PMC3444784 DOI: 10.1083/jcb.201202058] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Synaptic plasticity correlates with the local dendritic translocation of CaMKII in a Ca2+- and microtubule-dependent manner. The processing of excitatory synaptic inputs involves compartmentalized dendritic Ca2+ oscillations. The downstream signaling evoked by these local Ca2+ transients and their impact on local synaptic development and remodeling are unknown. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is an important decoder of Ca2+ signals and mediator of synaptic plasticity. In addition to its known accumulation at spines, we observed with live imaging the dynamic recruitment of CaMKII to dendritic subdomains adjacent to activated synapses in cultured hippocampal neurons. This localized and transient enrichment of CaMKII to dendritic sites coincided spatially and temporally with dendritic Ca2+ transients. We show that it involved an interaction with microtubular elements, required activation of the kinase, and led to localized dendritic CaMKII autophosphorylation. This process was accompanied by the adjacent remodeling of spines and synaptic AMPA receptor insertion. Replacement of endogenous CaMKII with a mutant that cannot translocate within dendrites lessened this activity-dependent synaptic plasticity. Thus, CaMKII could decode compartmental dendritic Ca2+ transients to support remodeling of local synapses.
Collapse
Affiliation(s)
- Mado Lemieux
- Institut universitaire en santé mentale de Québec, Québec G1J 2G3, Canada
| | | | | | | | | | | |
Collapse
|
37
|
She K, Rose JK, Craig AM. Differential stimulus-dependent synaptic recruitment of CaMKIIα by intracellular determinants of GluN2B. Mol Cell Neurosci 2012; 51:68-78. [PMID: 22902837 DOI: 10.1016/j.mcn.2012.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/02/2012] [Accepted: 08/02/2012] [Indexed: 11/28/2022] Open
Abstract
The calcium-calmodulin activated kinase CaMKII mediates many forms of learning and memory. Activity-regulated translocation of CaMKII to synapses is important for its functions in synaptic plasticity. Here, we tested the role of the NMDA receptor subunit GluN2B in recruiting CaMKIIα to synapses with different paradigms: global bath stimulation of NMDA receptors, a chemical long term potentiation (cLTP) protocol that selectively activates synaptic NMDA receptors, or local stimulation of NMDA receptors at a contiguous set of ~10-30 synapses that triggers a propagating synaptic accumulation of CaMKII. Global or cLTP-induced synaptic accumulation of CaMKIIα occurred in wild-type but not sister GluN2B -/- cultured mouse hippocampal neurons. Expression of YFP-GluN2B, but not a similar level of YFP-GluN2A, rescued global and cLTP-induced CaMKIIα translocation. Using chimeric constructs, the pore-forming extracellular and membrane domains of GluN2A combined with the cytoplasmic tail of GluN2B were sufficient to rescue CaMKIIα translocation, whereas the reverse chimera was ineffective. Furthermore, the dual point mutation R1300Q,S1303D in GluN2B that blocks interaction of this high affinity site with CaMKII abolished rescue. Thus, CaMKII binding to GluN2B is required for global and cLTP-induced synaptic accumulation of CaMKIIα. However, surprisingly, locally induced propagating synaptic accumulation of CaMKIIα occurred normally in GluN2B -/- neurons, indistinguishably from wild-type. Thus, synaptic trapping of CaMKII during locally induced propagating translocation occurs by different mechanisms and molecular partners compared with global stimulation and cLTP paradigms. These findings underscore the complex regulatory properties and molecular interactions of CaMKIIα, a key player in synaptic plasticity.
Collapse
Affiliation(s)
- Kevin She
- Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada, V6T 2B5
| | | | | |
Collapse
|
38
|
Dendritic spines: from structure to in vivo function. EMBO Rep 2012; 13:699-708. [PMID: 22791026 DOI: 10.1038/embor.2012.102] [Citation(s) in RCA: 226] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/22/2012] [Indexed: 12/19/2022] Open
Abstract
Dendritic spines arise as small protrusions from the dendritic shaft of various types of neuron and receive inputs from excitatory axons. Ever since dendritic spines were first described in the nineteenth century, questions about their function have spawned many hypotheses. In this review, we introduce understanding of the structural and biochemical properties of dendritic spines with emphasis on components studied with imaging methods. We then explore advances in in vivo imaging methods that are allowing spine activity to be studied in living tissue, from super-resolution techniques to calcium imaging. Finally, we review studies on spine structure and function in vivo. These new results shed light on the development, integration properties and plasticity of spines.
Collapse
|
39
|
Coultrap SJ, Bayer KU. CaMKII regulation in information processing and storage. Trends Neurosci 2012; 35:607-18. [PMID: 22717267 DOI: 10.1016/j.tins.2012.05.003] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/07/2012] [Accepted: 05/11/2012] [Indexed: 11/29/2022]
Abstract
The Ca(2+)/Calmodulin(CaM)-dependent protein kinase II (CaMKII) is activated by Ca(2+)/CaM, but becomes partially autonomous (Ca(2+)-independent) upon autophosphorylation at T286. This hallmark feature of CaMKII regulation provides a form of molecular memory and is indeed important in long-term potentiation (LTP) of excitatory synapse strength and memory formation. However, emerging evidence supports a direct role in information processing, while storage of synaptic information may instead be mediated by regulated interaction of CaMKII with the NMDA receptor (NMDAR) complex. These and other CaMKII regulation mechanisms are discussed here in the context of the kinase structure and their impact on postsynaptic functions. Recent findings also implicate CaMKII in long-term depression (LTD), as well as functional roles at inhibitory synapses, lending renewed emphasis on better understanding the spatiotemporal control of CaMKII regulation.
Collapse
Affiliation(s)
- Steven J Coultrap
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | | |
Collapse
|
40
|
Propagation of CaMKII translocation waves in heterogeneous spiny dendrites. J Math Biol 2012; 66:1499-525. [PMID: 22588358 DOI: 10.1007/s00285-012-0542-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 04/18/2012] [Indexed: 10/28/2022]
Abstract
CaMKII (Ca²⁺-calmodulin-dependent protein kinase II) is a key regulator of glutamatergic synapses and plays an essential role in many forms of synaptic plasticity. It has recently been observed experimentally that stimulating a local region of dendrite not only induces the local translocation of CaMKII from the dendritic shaft to synaptic targets within spines, but also initiates a wave of CaMKII translocation that spreads distally through the dendrite with an average speed of order 1 μm/s. We have previously developed a simple reaction-diffusion model of CaMKII translocation waves that can account for the observed wavespeed and predicts wave propagation failure if the density of spines is too high. A major simplification of our previous model was to treat the distribution of spines as spatially uniform. However, there are at least two sources of heterogeneity in the spine distribution that occur on two different spatial scales. First, spines are discrete entities that are joined to a dendritic branch via a thin spine neck of submicron radius, resulting in spatial variations in spine density at the micron level. The second source of heterogeneity occurs on a much longer length scale and reflects the experimental observation that there is a slow proximal to distal variation in the density of spines. In this paper, we analyze how both sources of heterogeneity modulate the speed of CaMKII translocation waves along a spiny dendrite. We adapt methods from the study of the spread of biological invasions in heterogeneous environments, including homogenization theory of pulsating fronts and Hamilton-Jacobi dynamics of sharp interfaces.
Collapse
|
41
|
Kawamoto EM, Vivar C, Camandola S. Physiology and pathology of calcium signaling in the brain. Front Pharmacol 2012; 3:61. [PMID: 22518105 PMCID: PMC3325487 DOI: 10.3389/fphar.2012.00061] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/26/2012] [Indexed: 12/31/2022] Open
Abstract
Calcium (Ca(2+)) plays fundamental and diversified roles in neuronal plasticity. As second messenger of many signaling pathways, Ca(2+) as been shown to regulate neuronal gene expression, energy production, membrane excitability, synaptogenesis, synaptic transmission, and other processes underlying learning and memory and cell survival. The flexibility of Ca(2+) signaling is achieved by modifying cytosolic Ca(2+) concentrations via regulated opening of plasma membrane and subcellular Ca(2+) sensitive channels. The spatiotemporal patterns of intracellular Ca(2+) signals, and the ultimate cellular biological outcome, are also dependent upon termination mechanism, such as Ca(2+) buffering, extracellular extrusion, and intra-organelle sequestration. Because of the central role played by Ca(2+) in neuronal physiology, it is not surprising that even modest impairments of Ca(2+) homeostasis result in profound functional alterations. Despite their heterogeneous etiology neurodegenerative disorders, as well as the healthy aging process, are all characterized by disruption of Ca(2+) homeostasis and signaling. In this review we provide an overview of the main types of neuronal Ca(2+) channels and their role in neuronal plasticity. We will also discuss the participation of Ca(2+) signaling in neuronal aging and degeneration.
Collapse
Affiliation(s)
- Elisa Mitiko Kawamoto
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research ProgramBaltimore, MD, USA
| | - Carmen Vivar
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research ProgramBaltimore, MD, USA
| | - Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research ProgramBaltimore, MD, USA
| |
Collapse
|
42
|
The role of metaplasticity mechanisms in regulating memory destabilization and reconsolidation. Neurosci Biobehav Rev 2012; 36:1667-707. [PMID: 22484475 DOI: 10.1016/j.neubiorev.2012.03.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 03/09/2012] [Accepted: 03/21/2012] [Indexed: 12/13/2022]
Abstract
Memory allows organisms to predict future events based on prior experiences. This requires encoded information to persist once important predictors are extracted, while also being modifiable in response to changes within the environment. Memory reconsolidation may allow stored information to be modified in response to related experience. However, there are many boundary conditions beyond which reconsolidation may not occur. One interpretation of these findings is that the event triggering memory retrieval must contain new information about a familiar stimulus in order to induce reconsolidation. Presently, the mechanisms that affect the likelihood of reconsolidation occurring under these conditions are not well understood. Here we speculate on a number of systems that may play a role in protecting memory from being destabilized during retrieval. We conclude that few memories may enter a state in which they cannot be modified. Rather, metaplasticity mechanisms may serve to alter the specific reactivation cues necessary to destabilize a memory. This might imply that destabilization mechanisms can differ depending on learning conditions.
Collapse
|
43
|
Signaling in dendritic spines and spine microdomains. Curr Opin Neurobiol 2012; 22:389-96. [PMID: 22459689 DOI: 10.1016/j.conb.2012.03.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/05/2012] [Accepted: 03/05/2012] [Indexed: 11/20/2022]
Abstract
The specialized morphology of dendritic spines creates an isolated compartment that allows for localized biochemical signaling. Recent studies have revealed complexity in the function of the spine head as a signaling domain and indicate that (1) the spine is functionally subdivided into multiple independent microdomains and (2) not all biochemical signals are equally compartmentalized within the spine. Here we review these findings as well as the developments in fluorescence microscopy that are making possible direct monitoring of signaling within spines and, in the future, within sub-spine microdomains.
Collapse
|
44
|
Craddock TJA, Tuszynski JA, Hameroff S. Cytoskeletal signaling: is memory encoded in microtubule lattices by CaMKII phosphorylation? PLoS Comput Biol 2012; 8:e1002421. [PMID: 22412364 PMCID: PMC3297561 DOI: 10.1371/journal.pcbi.1002421] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 01/24/2012] [Indexed: 11/18/2022] Open
Abstract
Memory is attributed to strengthened synaptic connections among particular brain neurons, yet synaptic membrane components are transient, whereas memories can endure. This suggests synaptic information is encoded and 'hard-wired' elsewhere, e.g. at molecular levels within the post-synaptic neuron. In long-term potentiation (LTP), a cellular and molecular model for memory, post-synaptic calcium ion (Ca²⁺) flux activates the hexagonal Ca²⁺-calmodulin dependent kinase II (CaMKII), a dodacameric holoenzyme containing 2 hexagonal sets of 6 kinase domains. Each kinase domain can either phosphorylate substrate proteins, or not (i.e. encoding one bit). Thus each set of extended CaMKII kinases can potentially encode synaptic Ca²⁺ information via phosphorylation as ordered arrays of binary 'bits'. Candidate sites for CaMKII phosphorylation-encoded molecular memory include microtubules (MTs), cylindrical organelles whose surfaces represent a regular lattice with a pattern of hexagonal polymers of the protein tubulin. Using molecular mechanics modeling and electrostatic profiling, we find that spatial dimensions and geometry of the extended CaMKII kinase domains precisely match those of MT hexagonal lattices. This suggests sets of six CaMKII kinase domains phosphorylate hexagonal MT lattice neighborhoods collectively, e.g. conveying synaptic information as ordered arrays of six "bits", and thus "bytes", with 64 to 5,281 possible bit states per CaMKII-MT byte. Signaling and encoding in MTs and other cytoskeletal structures offer rapid, robust solid-state information processing which may reflect a general code for MT-based memory and information processing within neurons and other eukaryotic cells.
Collapse
|
45
|
Fu M, Yu X, Lu J, Zuo Y. Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo. Nature 2012; 483:92-5. [PMID: 22343892 PMCID: PMC3292711 DOI: 10.1038/nature10844] [Citation(s) in RCA: 359] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 01/09/2012] [Indexed: 11/27/2022]
Abstract
Many lines of evidence suggest that memory in the mammalian brain is stored with distinct spatiotemporal patterns1,2. Despite recent progresses in identifying neuronal populations involved in memory coding3–5, the synapse-level mechanism is still poorly understood. Computational models and electrophysiological data have shown that functional clustering of synapses along dendritic branches leads to nonlinear summation of synaptic inputs and greatly expands the computing power of a neural network6–10. However, whether neighboring synapses are involved in encoding similar memory and how task-specific cortical networks develop during learning remain elusive. Using transcranial two-photon microscopy11, we followed apical dendrites of layer 5 (L5) pyramidal neurons in the motor cortex while mice practiced novel forelimb skills. Here we show that a third of new dendritic spines (postsynaptic structures of most excitatory synapses) formed during the acquisition phase of learning emerge in clusters, and the majority of such clusters are neighboring spine pairs. These clustered new spines are more likely to persist throughout prolonged learning sessions and even long after training stops, compared to non-clustered counterparts. Moreover, formation of new spine clusters requires repetition of the same motor task, and the emergence of succedent new spine(s) accompanies the strengthening of the first new spine in the cluster. We also show that under control conditions new spines appear to avoid existing stable spines, rather than being uniformly added along dendrites. However, succedent new spines in clusters overcome such a spatial constraint and form in close vicinity to neighboring stable spines. Our findings suggest that clustering of new synapses along dendrites is induced by repetitive activation of the cortical circuitry during learning, providing a structural basis for spatial coding of motor memory in the mammalian brain.
Collapse
Affiliation(s)
- Min Fu
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | | | | | | |
Collapse
|
46
|
Elliott T. Cross-Talk Induces Bifurcations in Nonlinear Models of Synaptic Plasticity. Neural Comput 2012; 24:455-522. [DOI: 10.1162/neco_a_00224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Linear models of synaptic plasticity provide a useful starting-point for examining the dynamics of neuronal development and learning, but their inherent problems are well known. Models of synaptic plasticity that embrace the demands of biological realism are therefore typically nonlinear. Viewed from a more abstract perspective, nonlinear models of synaptic plasticity are a subset of nonlinear dynamical systems. As such, they may therefore exhibit bifurcations under the variation of control parameters, including noise and errors in synaptic updates. One source of noise or error is the cross-talk that occurs during otherwise Hebbian plasticity. Under cross-talk, stimulation of a set of synapses can induce or modify plasticity in adjacent, unstimulated synapses. Here, we analyze two nonlinear models of developmental synaptic plasticity and a model of independent component analysis in the presence of a simple model of cross-talk. We show that cross-talk does indeed induce bifurcations in these models, entirely destroying their ability to acquire either developmentally or learning-related patterns of fixed points. Importantly, the critical level of cross-talk required to induce bifurcations in these models is very sensitive to the statistics of the afferents’ activities and the number of afferents synapsing on a postsynaptic cell. In particular, the critical level can be made arbitrarily small. Because bifurcations are inevitable in nonlinear models, our results likely apply to many nonlinear models of synaptic plasticity, although the precise details vary by model. Hence, many nonlinear models of synaptic plasticity are potentially fatally compromised by the toxic influence of cross-talk and other sources of noise and errors more generally. We conclude by arguing that biologically realistic models of synaptic plasticity must be robust against noise-induced bifurcations and that biological systems may have evolved strategies to circumvent their possible dangers.
Collapse
Affiliation(s)
- Terry Elliott
- Department of Electronics and Computer Science, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| |
Collapse
|
47
|
Withers GS, Wallace CS, Gibbs EM, Emery IR, Applegate ML. Synapses on demand require dendrites at the ready: how defining stages of dendritic development in vitro could inform studies of behaviorally driven information storage in the brain. Dev Psychobiol 2011; 53:443-55. [PMID: 21678392 DOI: 10.1002/dev.20560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bill Greenough's work provides a framework for thinking about synaptogenesis not only as a key step in the initial wiring of neural systems according to a species typical plan (i.e., experience-expectant development), but also as a mechanism for storing information based an individual's unique experience over its lifetime (i.e., experience-dependent plasticity). Analysis of synaptic development in vitro brings a new opportunity to test the limits of expectant-expectant development at the level of the individual neuron. We analyzed dendritic growth, synapse formation, and the development of specialized cytoplasmic microdomains during development in cultured hippocampal neurons, to determine if the timing of each of these events is correlated. Taken together, the findings reported here support the hypotheses that (1) dendritic development is rate limiting in synapse formation and (2) synaptic circuits are assembled in a step-wise fashion consistent with a stage-specific shift from genomically pre-programmed to activity-dependent mechanisms.
Collapse
Affiliation(s)
- Ginger S Withers
- Department of Biology, Whitman College, Walla Walla, WA 99362, USA.
| | | | | | | | | |
Collapse
|
48
|
Wolf C, Linden DEJ. Biological pathways to adaptability - interactions between genome, epigenome, nervous system and environment for adaptive behavior. GENES BRAIN AND BEHAVIOR 2011; 11:3-28. [DOI: 10.1111/j.1601-183x.2011.00752.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Abstract
In neurons L-type calcium currents function in gene regulation and synaptic plasticity, while excessive calcium influx leads to excitotoxicity and neurodegeneration. The major neuronal Ca(V)1.2 L-type channels are localized in clusters in dendritic shafts and spines. Whereas Ca(V)1.2 clusters remain stable during NMDA-induced synaptic depression, L-type calcium currents are rapidly downregulated during strong excitatory stimulation. Here we used fluorescence recovery after photobleaching (FRAP), live cell-labeling protocols, and single particle tracking (SPT) to analyze the turnover and surface traffic of Ca(V)1.2 in dendrites of mature cultured mouse and rat hippocampal neurons, respectively. FRAP analysis of channels extracellularly tagged with superecliptic pHluorin (Ca(V)1.2-SEP) demonstrated ∼20% recovery within 2 min without reappearance of clusters. Pulse-chase labeling showed that membrane-expressed Ca(V)1.2-HA is not internalized within1 h, while blocking dynamin-dependent endocytosis resulted in increased cluster density after 30 min. Together, these results suggest a turnover rate of clustered Ca(V)1.2s on the hour time scale. Direct recording of the lateral movement in the membrane using SPT demonstrated that dendritic Ca(V)1.2s show highly confined mobility with diffusion coefficients of ∼0.005 μm² s⁻¹. Consistent with the mobile Ca(V)1.2 fraction observed in FRAP, a ∼30% subpopulation of channels reversibly exchanged between confined and diffusive states. Remarkably, high potassium depolarization did not alter the recovery rates in FRAP or the diffusion coefficients in SPT analyses. Thus, an equilibrium of clustered and dynamic Ca(V)1.2s maintains stable calcium channel complexes involved in activity-dependent cell signaling, whereas the minor mobile channel pool in mature neurons allows limited capacity for short-term adaptations.
Collapse
|
50
|
Cav1.2 L-type Ca²⁺ channels mediate cocaine-induced GluA1 trafficking in the nucleus accumbens, a long-term adaptation dependent on ventral tegmental area Ca(v)1.3 channels. J Neurosci 2011; 31:13562-75. [PMID: 21940447 DOI: 10.1523/jneurosci.2315-11.2011] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AMPA receptor (AMPAR) plasticity at glutamatergic synapses in the mesoaccumbal dopaminergic pathway has been implicated in persistent cocaine-induced behavioral responses; however, the precise mechanism underlying these changes remains unknown. Utilizing cocaine psychomotor sensitization, we have examined phosphorylation of GluA1 at key residues serine 845 (S845) and S831, as well as GluA1 cell surface levels in the nucleus accumbens (NAc) of cocaine-preexposed mice and the role of brain-specific Ca(v)1.2 and Ca(v)1.3 L-type Ca²⁺ channels (LTCCs), therein. We found higher basal levels of S845 phospho-GluA1 (P-GluA1) and cell surface GluA1 in the NAc following protracted withdrawal from cocaine exposure, changes that occur independently of LTCCs. In contrast, we found that a cocaine challenge that elicits expression of the cocaine-sensitized response increases S831 P-GluA1 that further increases surface GluA1 beyond the higher basal levels. Intra-NAc pharmacological manipulations indicate that the Ca(v)1.2-activated CaM kinase II (CaMKII) mediates cocaine-induced increase in S831 P-GluA1 and that both Ca(v)1.2-activated CaMKII and extracellular signal-regulated kinase 2 (ERK2) mediate the increase in GluA1 cell surface levels specific to the sensitized response. Experiments using adenoassociated viral vectors expressing Ca(v)1.3 and ERK2 siRNA further indicate that recruitment of the Ca(v)1.2 pathway in the NAc is dependent on ventral tegmental area Ca(v)1.3 LTCCs and ERK2. Together, these results identify candidate pathways that mediate cocaine-induced AMPAR plasticity in the NAc and provide a mechanism linking LTCCs and GluA1 plasticity to cocaine-induced persistent behavioral changes.
Collapse
|