1
|
Clayworth KV, Auld VJ. Dystroglycan mediates polarized deposition of laminin and axon ensheathment by wrapping glia. Development 2025; 152:dev204391. [PMID: 40309933 DOI: 10.1242/dev.204391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/22/2025] [Indexed: 05/02/2025]
Abstract
The Drosophila peripheral nerve contains multiple layers of glial cells and an overlying extracellular matrix, which together support neuronal survival and function. The innermost glial layer, the wrapping glia (WG), ensheathes axons and facilitates action potential conduction. Recent work has identified involvement of laminin, a heterotrimeric extracellular matrix protein complex in WG development. However, the localization and function of laminin in the WG remains poorly understood. Here, we found that the α subunit, Laminin A (LanA), is dynamically expressed by WG, and loss of LanA results in a reduction in WG-axon contact. The deposition of LanA by WG is concentrated between WG and axons and is deposited preferentially around motor axons versus sensory axons. We identified Crag, a GDP-GTP exchange protein, as a factor that controls LanA deposition. We found that Dystroglycan also controls LanA deposition by the WG, and that both Dystroglycan and Dystrophin are present and necessary for WG ensheathment of axons. Thus, WG contain the highly conserved Dystroglycan/Dystrophin complex, which not only associates with deposited laminin but is necessary for the polarized deposition of laminin and the correct ensheathment of peripheral nerve axons.
Collapse
Affiliation(s)
- Katherine V Clayworth
- Department of Zoology, Cell and Developmental Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Vanessa J Auld
- Department of Zoology, Cell and Developmental Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
2
|
Budelli G, Ferreiro MJ, Bolatto C. Taking flight, the use of Drosophila melanogaster for neuroscience research in Uruguay. Neuroscience 2025; 573:104-119. [PMID: 40058485 DOI: 10.1016/j.neuroscience.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
The Sociedad de Neurociencias del Uruguay is celebrating its 30th anniversary, sustained by more than a century of neuroscience research in the country. During this time, different approaches and experimental organisms have been incorporated to study diverse aspects of neurobiology. One of these experimental animals, successfully used in a variety of biological fields, is the fruit fly Drosophila melanogaster. Although Drosophila has been a model organism for neuroscience research worldwide for many decades, its use in Uruguay for that purpose is relatively new and just taking flight. In this special issue article, we will describe some of the research lines that are currently using Drosophila for neuroscience studies, questioning a wide range of issues including thermoreception, neurodegenerative diseases such as Parkinson's, screening of bioactive compounds with a neuroprotective effect, and gene/protein function during development of the nervous system. The consolidation of these research lines has been achieved due to unique features of D. melanogaster as an experimental model. We will review the advantages of using Drosophila to study neurobiology and describe some of its useful genetic tools. Advantages such as having powerful genetics, highly conserved disease pathways, a complete connectome, very low comparative costs, easy maintenance, and the support of a collaborative community allowing access to a vast toolkit, all make D. melanogaster an ideal model organism for neuroscientists in countries with low levels of investment in research and development. This review focuses on the strengths and description of useful techniques to study neurobiology using Drosophila, from the perspective of a Latin-American experience.
Collapse
Affiliation(s)
- Gonzalo Budelli
- Unidad Académica de Biofísica, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay.
| | - María José Ferreiro
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Ministerio de Educación y Cultura (MEC), Montevideo, Uruguay
| | - Carmen Bolatto
- Unidad Académica de Histología y Embriología, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay; Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Ministerio de Educación y Cultura (MEC), Montevideo, Uruguay
| |
Collapse
|
3
|
Ispizua JI, Rodríguez-Caron M, Tassara FJ, Kim KY, Insussarry Perkins C, Barzi M, Carpio-Romero C, Vasquez MF, Hansen CN, Gargiulo J, Rosato E, de la Iglesia H, Ellisman MH, Ceriani MF. Daily ultrastructural remodeling of clock neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.06.622332. [PMID: 39990321 PMCID: PMC11844358 DOI: 10.1101/2024.11.06.622332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
In Drosophila, about 250 clock neurons in the brain form a network that orchestrates circadian rhythmicity. Among them, eight small Lateral ventral Neurons (s-LNvs) play a critical role, synchronizing the circadian ensemble via the neuropeptide Pigment-Dispersing Factor (PDF). Moreover, their neurites show daily variations in morphology, PDF levels, synaptic markers and connectivity. This process, called circadian structural plasticity, is ill-defined at the subcellular level. Here, we present 3D volumes of the s-LNv terminals generated by Serial Block-face Scanning Electron Microscopy (SBEM) at three key time points, two hours before lights-ON, two hours after lights-ON, and two hours after lights-OFF. We report a reduction in the number of neuronal varicosities at night, which reflects (and probably regulates) the cycling of the components we found therein. Indeed, in the morning we observed more presynaptic sites and increased accumulation and release of dense core vesicles. These rhythms were paralleled by periodic changes in mitochondrial structure that suggest daily modulation of their activity. We propose that circadian plasticity of the functionally relevant structures within presynaptic varicosities cyclically modulates the influence of the s-LNvs on the clock network.
Collapse
|
4
|
Walker SR, Peña-Garcia M, Devineni AV. Connectomic analysis of taste circuits in Drosophila. Sci Rep 2025; 15:5278. [PMID: 39939650 PMCID: PMC11821855 DOI: 10.1038/s41598-025-89088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
Our sense of taste is critical for regulating food consumption. The fruit fly Drosophila represents a highly tractable model to investigate mechanisms of taste processing, but taste circuits beyond sensory neurons are largely unidentified. Here, we use a whole-brain connectome to investigate the organization of Drosophila taste circuits. We trace pathways from four populations of sensory neurons that detect different taste modalities and project to the subesophageal zone (SEZ), the primary taste region of the fly brain. We find that second-order taste neurons are primarily located within the SEZ and largely segregated by taste modality, whereas third-order neurons have more projections outside the SEZ and more overlap between modalities. Taste projections out of the SEZ innervate regions implicated in feeding, olfactory processing, and learning. We analyze interconnections within and between taste pathways, characterize modality-dependent differences in taste neuron properties, identify other types of inputs onto taste pathways, and use computational simulations to relate neuronal connectivity to predicted activity. These studies provide insight into the architecture of Drosophila taste circuits.
Collapse
Affiliation(s)
- Sydney R Walker
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Marco Peña-Garcia
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
| | - Anita V Devineni
- Department of Biology, Emory University, Atlanta, GA, 30322, USA.
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
5
|
Sengupta S, Kravitz EA. Decoding sex differences: how GABA shapes Drosophila behavior. CURRENT OPINION IN INSECT SCIENCE 2025; 67:101293. [PMID: 39471909 DOI: 10.1016/j.cois.2024.101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
Sexually dimorphic behaviors are fundamental to the biology of many species, including fruit flies and humans. These behaviors are regulated primarily by sex-specific neural circuits or sex-specific modulation of shared neuronal substrates. In fruit flies, GABAergic neurotransmission plays a critical role in governing sexually dimorphic behaviors, such as courtship, copulation, and aggression. This review explores the intricate roles of GABAergic neurons in these behaviors and focuses on how sex-specific differences in GABAergic circuits contribute to their modulation and execution. By examining these mechanisms in Drosophila, we reveal broader implications for understanding sexual dimorphism in more complex organisms.
Collapse
Affiliation(s)
- Saheli Sengupta
- Department of Biology, College of the Holy Cross, 1 College St, Worcester, MA 01610, USA.
| | - Edward A Kravitz
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
6
|
Gualtieri C, Vonhoff FJ. Visualization of Synapses in Larval Stages of Drosophila melanogaster Using the GRASP Technique. Methods Mol Biol 2025; 2910:253-262. [PMID: 40220104 DOI: 10.1007/978-1-0716-4446-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
The flow of information within the nervous system occurs via precise connections between synaptic partners. In recent years, the development of various methods to visualize synaptic contacts has helped elucidate the connectivity within complex neuronal networks. One such method is the GRASP (GFP Reconstitution Across Synaptic Partners) technique that consists of the expression of a portion of the green fluorescent protein (GFP) at each side of the synapse, allowing the reconstitution of green fluorescence depending on the proximity of the cells expressing such tools. In Drosophila, various studies have shown the successful application of GRASP in adult flies to identify synaptic partners, whereas its use at earlier stages such as in first instar larval stages remains less common. Therefore, we provide here a detailed protocol for the visualization of GRASP-based neuronal contacts within previously established synaptic partners in first and third instar larvae.
Collapse
Affiliation(s)
- Claudia Gualtieri
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, MD, USA
| | - Fernando J Vonhoff
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, MD, USA.
| |
Collapse
|
7
|
Qin J, Yang T, Li K, Liu T, Zhang W. Pharyngeal mechanosensory neurons control food swallow in Drosophila melanogaster. eLife 2024; 12:RP88614. [PMID: 39630079 PMCID: PMC11616994 DOI: 10.7554/elife.88614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
As the early step of food ingestion, the swallow is under rigorous sensorimotor control. Nevertheless, the mechanisms underlying swallow control at a molecular and circuitry level remain largely unknown. Here, we find that mutation of the mechanotransduction channel genes nompC, Tmc, or piezo impairs the regular pumping rhythm of the cibarium during feeding of the fruit fly Drosophila melanogaster. A group of multi-dendritic mechanosensory neurons, which co-express the three channels, wrap the cibarium and are crucial for coordinating the filling and emptying of the cibarium. Inhibition of them causes difficulty in food emptying in the cibarium, while their activation leads to difficulty in cibarium filling. Synaptic and functional connections are detected between the pharyngeal mechanosensory neurons and the motor circuit that controls swallow. This study elucidates the role of mechanosensation in swallow, and provides insights for a better understanding of the neural basis of food swallow.
Collapse
Affiliation(s)
- Jierui Qin
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life ScienceBeijingChina
| | - Tingting Yang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life ScienceBeijingChina
| | - Kexin Li
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life ScienceBeijingChina
| | - Ting Liu
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua UniversityBeijingChina
| | - Wei Zhang
- Tsinghua-Peking Center for Life ScienceBeijingChina
| |
Collapse
|
8
|
Mahishi D, Agrawal N, Jiang W, Yapici N. From Mammals to Insects: Exploring the Genetic and Neural Basis of Eating Behavior. Annu Rev Genet 2024; 58:455-485. [PMID: 39585905 DOI: 10.1146/annurev-genet-111523-102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Obesity and anorexia are life-threatening diseases that are still poorly understood at the genetic and neuronal levels. Patients suffering from these conditions experience disrupted regulation of food consumption, leading to extreme weight gain or loss and, in severe situations, death from metabolic dysfunction. Despite the development of various behavioral and pharmacological interventions, current treatments often yield limited and short-lived success. To address this, a deeper understanding of the genetic and neural mechanisms underlying food perception and appetite regulation is essential for identifying new drug targets and developing more effective treatment methods. This review summarizes the progress of past research in understanding the genetic and neural mechanisms controlling food consumption and appetite regulation, focusing on two key model organisms: the fruit fly Drosophila melanogaster and the mouse Mus musculus. These studies investigate how the brain senses energy and nutrient deficiency, how sensory signals trigger appetitive behaviors, and how food intake is regulated through interconnected neural circuits in the brain.
Collapse
Affiliation(s)
- Deepthi Mahishi
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| | - Naman Agrawal
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| | - Wenshuai Jiang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
9
|
Deng X, Zhu S. Ephrin-mediated dendrite-dendrite repulsion regulates compartment-specific targeting of dendrites in the central nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620860. [PMID: 39554189 PMCID: PMC11565762 DOI: 10.1101/2024.10.29.620860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Neurons often forms synaptic contacts at specific subcellular domains to differentially regulate the activity of target neurons. However, how dendrites are targeted to specific subcellular domains of axons is rarely studied. Here we use Drosophila mushroom body out neurons (MBONs) and local dopaminergic neurons (DANs) as a model system to study how dendrites and axons are targeted to specific subcellular domains (compartments) of mushroom body axonal lobes to form synaptic contacts. We found that Ephrin-mediated dendrite-dendrite repulsion between neighboring compartments restricts the projection of MBON dendrites to their specific compartments and prevents the formation of ectopic synaptic connections with DAN axons in neighboring compartments. Meanwhile, DAN neurons in a subset of compartments may also depend on their partner MBONs for projecting their axons to a specific compartment and cover the same territory as their partner MBON dendrites. Our work reveals that compartment-specific targeting of MBON dendrites and DAN axons is regulated in part by a combination of dendrite-dendrite repulsion between neighboring compartments and dendrite-axon interactions within the same compartment.
Collapse
|
10
|
Deng X, Sandoval IC, Zhu S. Slit regulates compartment-specific targeting of dendrites and axons in the Drosophila brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620851. [PMID: 39554193 PMCID: PMC11565903 DOI: 10.1101/2024.10.29.620851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Proper functioning of the nervous system requires precise neuronal connections at subcellular domains, which can be achieved by projection of axons or dendrites to subcellular domains of target neurons. Here we studied subcellular-specific targeting of dendrites and axons in the Drosophila mushroom body (MB), where mushroom body output neurons (MBONs) and local dopaminergic neurons (DAN) project their dendrites and axons, respectively, to specific compartments of MB axons. Through genetic ablation, we demonstrate that compartment-specific targeting of MBON dendrites and DAN axons involves mutual repulsion of MBON dendrites and/or DAN axons between neighboring compartments. We further show that Slit expressed in subset of DANs mediates such repulsion by acting through different Robo receptors in different neurons. Loss of Slit-mediated repulsion leads to projection of MBON dendrites and DAN axons into neighboring compartments, resulting formation of ectopic synaptic contacts between MBONs and DANs and changes in olfactory-associative learning. Together, our findings suggest that Slit-mediated repulsion controls compartment-specific targeting of MBON dendrites and DAN axons, which ensures precise connections between MBON dendrites and DAN axons and proper learning and memory formation.
Collapse
|
11
|
Yan L, Wu L, Wiggin TD, Su X, Yan W, Li H, Li L, Lu Z, Li Y, Meng Z, Guo F, Li F, Griffith LC, Liu C. Brief disruption of activity in a subset of dopaminergic neurons during consolidation impairs long-term memory by fragmenting sleep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.23.563499. [PMID: 37961167 PMCID: PMC10634733 DOI: 10.1101/2023.10.23.563499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Sleep disturbances are associated with poor long-term memory (LTM) formation, yet the underlying cell types and neural circuits involved have not been fully decoded. Dopamine neurons (DANs) are involved in memory processing at multiple stages. Here, using both male and female flies, Drosophila melanogaster , we show that, during the first few hours of memory consolidation, disruption of basal activity of a small subset of protocerebral anterior medial DANs (PAM-DANs), by either brief activation or inhibition of the two dorsal posterior medial (DPM) neurons, impairs 24 h LTM. Interestingly, these brief changes in activity using female flies result in sleep loss and fragmentation, especially at night. Pharmacological rescue of sleep after manipulation restores LTM. A specific subset of PAM-DANs (PAM-α1) that synapse onto DPM neurons specify the microcircuit that links sleep and memory. PAM-DANs, including PAM-α1, form functional synapses onto DPM mainly via multiple dopamine receptor subtypes. This PAM-α1 to DPM microcircuit exhibits a synchronized, transient, post-training increase in activity during the critical memory consolidation window, suggesting an effect of this microcircuit on maintaining the sleep necessary for LTM consolidation. Our results provide a new cellular and circuit basis for the complex relationship between sleep and memory.
Collapse
|
12
|
Jacobs RV, Wang CX, Nguyen L, Pruitt TJ, Wang P, Lozada-Perdomo FV, Deere JU, Liphart HA, Devineni AV. Overlap and divergence of neural circuits mediating distinct behavioral responses to sugar. Cell Rep 2024; 43:114782. [PMID: 39306846 DOI: 10.1016/j.celrep.2024.114782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/31/2024] [Accepted: 09/05/2024] [Indexed: 10/26/2024] Open
Abstract
How do neural circuits coordinate multiple behavioral responses to a single sensory cue? Here, we investigate how sweet taste drives appetitive behaviors in Drosophila, including feeding, locomotor suppression, spatial preference, and associative learning. We find that neural circuits mediating different innate responses to sugar are partially overlapping and diverge at the second and third layers. Connectomic analyses reveal distinct subcircuits that mediate different behaviors. Connectome-based simulations of neuronal activity predict that second-order sugar neurons act synergistically to promote downstream activity and that bitter input overrides the sugar circuit through multiple pathways acting at third- and fourth-order neurons. Consistent with the latter prediction, optogenetic experiments suggest that bitter input inhibits third- and fourth-order sugar neurons to override the sugar pathway, whereas hunger and diet act earlier in the circuit to modulate behavior. Together, these studies provide insight into how circuits are organized to drive diverse behavioral responses to a single stimulus.
Collapse
Affiliation(s)
- Ruby V Jacobs
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Crystal X Wang
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Lam Nguyen
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Trinity J Pruitt
- Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA
| | - Panxi Wang
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Julia U Deere
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Hannah A Liphart
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Anita V Devineni
- Department of Biology, Emory University, Atlanta, GA 30322, USA; Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
13
|
Timalsina B, Lee S, Kaang BK. Advances in the labelling and selective manipulation of synapses. Nat Rev Neurosci 2024; 25:668-687. [PMID: 39174832 DOI: 10.1038/s41583-024-00851-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
Synapses are highly specialized neuronal structures that are essential for neurotransmission, and they are dynamically regulated throughout the lifetime. Although accumulating evidence indicates that these structures are crucial for information processing and storage in the brain, their precise roles beyond neurotransmission are yet to be fully appreciated. Genetically encoded fluorescent tools have deepened our understanding of synaptic structure and function, but developing an ideal methodology to selectively visualize, label and manipulate synapses remains challenging. Here, we provide an overview of currently available synapse labelling techniques and describe their extension to enable synapse manipulation. We categorize these approaches on the basis of their conceptual bases and target molecules, compare their advantages and limitations and propose potential modifications to improve their effectiveness. These methods have broad utility, particularly for investigating mechanisms of synaptic function and synaptopathy.
Collapse
Affiliation(s)
- Binod Timalsina
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Sangkyu Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Bong-Kiun Kaang
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea.
| |
Collapse
|
14
|
Shiu PK, Sterne GR, Spiller N, Franconville R, Sandoval A, Zhou J, Simha N, Kang CH, Yu S, Kim JS, Dorkenwald S, Matsliah A, Schlegel P, Yu SC, McKellar CE, Sterling A, Costa M, Eichler K, Bates AS, Eckstein N, Funke J, Jefferis GSXE, Murthy M, Bidaye SS, Hampel S, Seeds AM, Scott K. A Drosophila computational brain model reveals sensorimotor processing. Nature 2024; 634:210-219. [PMID: 39358519 PMCID: PMC11446845 DOI: 10.1038/s41586-024-07763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/27/2024] [Indexed: 10/04/2024]
Abstract
The recent assembly of the adult Drosophila melanogaster central brain connectome, containing more than 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain1,2. Here we create a leaky integrate-and-fire computational model of the entire Drosophila brain, on the basis of neural connectivity and neurotransmitter identity3, to study circuit properties of feeding and grooming behaviours. We show that activation of sugar-sensing or water-sensing gustatory neurons in the computational model accurately predicts neurons that respond to tastes and are required for feeding initiation4. In addition, using the model to activate neurons in the feeding region of the Drosophila brain predicts those that elicit motor neuron firing5-a testable hypothesis that we validate by optogenetic activation and behavioural studies. Activating different classes of gustatory neurons in the model makes accurate predictions of how several taste modalities interact, providing circuit-level insight into aversive and appetitive taste processing. Additionally, we applied this model to mechanosensory circuits and found that computational activation of mechanosensory neurons predicts activation of a small set of neurons comprising the antennal grooming circuit, and accurately describes the circuit response upon activation of different mechanosensory subtypes6-10. Our results demonstrate that modelling brain circuits using only synapse-level connectivity and predicted neurotransmitter identity generates experimentally testable hypotheses and can describe complete sensorimotor transformations.
Collapse
Affiliation(s)
- Philip K Shiu
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
- Eon Systems, San Francisco, CA, USA.
| | - Gabriella R Sterne
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
- University of Rochester Medical Center, Department of Biomedical Genetics, New York, NY, USA
| | - Nico Spiller
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | | | - Andrea Sandoval
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Joie Zhou
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Neha Simha
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Chan Hyuk Kang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Seongbong Yu
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Jinseop S Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Philipp Schlegel
- Department of Zoology, University of Cambridge, Cambridge, UK
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire E McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Marta Costa
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Katharina Eichler
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Alexander Shakeel Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Centre for Neural Circuits and Behaviour, The University of Oxford, Oxford, UK
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | - Jan Funke
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Gregory S X E Jefferis
- Department of Zoology, University of Cambridge, Cambridge, UK
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Salil S Bidaye
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Stefanie Hampel
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Andrew M Seeds
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Kristin Scott
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
15
|
Wu G, Ma T, Hancock CE, Gonzalez S, Aryal B, Vaz S, Chan G, Palarca-Wong M, Allen N, Chung CI, Shu X, Liu Q. Opposing GPCR signaling programs protein intake setpoint in Drosophila. Cell 2024; 187:5376-5392.e17. [PMID: 39197448 PMCID: PMC11437785 DOI: 10.1016/j.cell.2024.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/31/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024]
Abstract
Animals defend a target level for their fundamental needs, including food, water, and sleep. Deviation from the target range, or "setpoint," triggers motivated behaviors to eliminate that difference. Whether and how the setpoint itself is encoded remains enigmatic for all motivated behaviors. Employing a high-throughput feeding assay in Drosophila, we demonstrate that the protein intake setpoint is set to different values in male, virgin female, and mated female flies to meet their varying protein demands. Leveraging this setpoint variability, we found, remarkably, that the information on the intake setpoint is stored within the protein hunger neurons as the resting membrane potential. Two RFamide G protein-coupled receptor (GPCR) pathways, by tuning the resting membrane potential in opposite directions, coordinately program and adjust the protein intake setpoint. Together, our studies map the protein intake setpoint to a single trackable physiological parameter and elucidate the cellular and molecular mechanisms underlying setpoint determination and modulation.
Collapse
Affiliation(s)
- Guangyan Wu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tianji Ma
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Clare E Hancock
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Santiago Gonzalez
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Binod Aryal
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sharon Vaz
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gabrielle Chan
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Madison Palarca-Wong
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nick Allen
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chan-I Chung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qili Liu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
16
|
Walker SR, Peña-Garcia M, Devineni AV. Connectomic analysis of taste circuits in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613080. [PMID: 39314399 PMCID: PMC11419157 DOI: 10.1101/2024.09.14.613080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Our sense of taste is critical for regulating food consumption. The fruit fly Drosophila represents a highly tractable model to investigate mechanisms of taste processing, but taste circuits beyond sensory neurons are largely unidentified. Here, we use a whole-brain connectome to investigate the organization of Drosophila taste circuits. We trace pathways from four populations of sensory neurons that detect different taste modalities and project to the subesophageal zone (SEZ). We find that second-order taste neurons are primarily located within the SEZ and largely segregated by taste modality, whereas third-order neurons have more projections outside the SEZ and more overlap between modalities. Taste projections out of the SEZ innervate regions implicated in feeding, olfactory processing, and learning. We characterize interconnections between taste pathways, identify modality-dependent differences in taste neuron properties, and use computational simulations to relate connectivity to predicted activity. These studies provide insight into the architecture of Drosophila taste circuits.
Collapse
Affiliation(s)
- Sydney R. Walker
- Department of Biology, Emory University, Atlanta GA 30322
- These authors contributed equally
| | - Marco Peña-Garcia
- Neuroscience Graduate Program, Emory University, Atlanta GA 30322
- These authors contributed equally
| | - Anita V. Devineni
- Department of Biology, Emory University, Atlanta GA 30322
- Neuroscience Graduate Program, Emory University, Atlanta GA 30322
- Lead contact
| |
Collapse
|
17
|
Guillemin J, Li J, Li V, McDowell SAT, Audette K, Davis G, Jelen M, Slamani S, Kelliher L, Gordon MD, Stanley M. Taste cells expressing Ionotropic Receptor 94e reciprocally impact feeding and egg laying in Drosophila. Cell Rep 2024; 43:114625. [PMID: 39141516 DOI: 10.1016/j.celrep.2024.114625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/01/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
Chemosensory cells across the body of Drosophila melanogaster evaluate the environment to prioritize certain behaviors. Previous mapping of gustatory receptor neurons (GRNs) on the fly labellum identified a set of neurons in L-type sensilla that express Ionotropic Receptor 94e (IR94e), but the impact of IR94e GRNs on behavior remains unclear. We used optogenetics and chemogenetics to activate IR94e neurons and found that they drive mild feeding suppression but enhance egg laying. In vivo calcium imaging revealed that IR94e GRNs respond strongly to certain amino acids, including glutamate, and that IR94e plus co-receptors IR25a and IR76b are required for amino acid detection. Furthermore, IR94e mutants show behavioral changes to solutions containing amino acids, including increased consumption and decreased egg laying. Overall, our results suggest that IR94e GRNs on the fly labellum discourage feeding and encourage egg laying as part of an important behavioral switch in response to certain chemical cues.
Collapse
Affiliation(s)
| | - Jinfang Li
- Department of Zoology, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Viktoriya Li
- Department of Zoology, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sasha A T McDowell
- Department of Zoology, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kayla Audette
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA
| | - Grace Davis
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA
| | - Meghan Jelen
- Department of Zoology, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Samy Slamani
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA
| | - Liam Kelliher
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA
| | - Michael D Gordon
- Department of Zoology, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Molly Stanley
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
18
|
Imoto K, Ishikawa Y, Aso Y, Funke J, Tanaka R, Kamikouchi A. Neural-circuit basis of song preference learning in fruit flies. iScience 2024; 27:110266. [PMID: 39040064 PMCID: PMC11260866 DOI: 10.1016/j.isci.2024.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/27/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024] Open
Abstract
As observed in human language learning and song learning in birds, the fruit fly Drosophila melanogaster changes its auditory behaviors according to prior sound experiences. This phenomenon, known as song preference learning in flies, requires GABAergic input to pC1 neurons in the brain, with these neurons playing a key role in mating behavior. The neural circuit basis of this GABAergic input, however, is not known. Here, we find that GABAergic neurons expressing the sex-determination gene doublesex are necessary for song preference learning. In the brain, only four doublesex-expressing GABAergic neurons exist per hemibrain, identified as pCd-2 neurons. pCd-2 neurons directly, and in many cases mutually, connect with pC1 neurons, suggesting the existence of reciprocal circuits between them. Moreover, GABAergic and dopaminergic inputs to doublesex-expressing GABAergic neurons are necessary for song preference learning. Together, this study provides a neural circuit model that underlies experience-dependent auditory plasticity at a single-cell resolution.
Collapse
Affiliation(s)
- Keisuke Imoto
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Yuki Ishikawa
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jan Funke
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ryoya Tanaka
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
19
|
Li X, Yang Y, Bai X, Wang X, Tan H, Chen Y, Zhu Y, Liu Q, Wu MN, Li Y. A brain-derived insulin signal encodes protein satiety for nutrient-specific feeding inhibition. Cell Rep 2024; 43:114282. [PMID: 38795342 PMCID: PMC11220824 DOI: 10.1016/j.celrep.2024.114282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/08/2024] [Accepted: 05/10/2024] [Indexed: 05/27/2024] Open
Abstract
The suppressive effect of insulin on food intake has been documented for decades. However, whether insulin signals can encode a certain type of nutrients to regulate nutrient-specific feeding behavior remains elusive. Here, we show that in female Drosophila, a pair of dopaminergic neurons, tritocerebrum 1-dopaminergic neurons (T1-DANs), are directly activated by a protein-intake-induced insulin signal from insulin-producing cells (IPCs). Intriguingly, opto-activating IPCs elicits feeding inhibition for both protein and sugar, while silencing T1-DANs blocks this inhibition only for protein food. Elevating insulin signaling in T1-DANs or opto-activating these neurons is sufficient to mimic protein satiety. Furthermore, this signal is conveyed to local neurons of the protocerebral bridge (PB-LNs) and specifically suppresses protein intake. Therefore, our findings reveal that a brain-derived insulin signal encodes protein satiety and suppresses feeding behavior in a nutrient-specific manner, shedding light on the functional specificity of brain insulin signals in regulating behaviors.
Collapse
Affiliation(s)
- Xiaoyu Li
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaobing Bai
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish Center for Education and Research, Beijing 100190, China
| | - Xiaotong Wang
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houqi Tan
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbo Chen
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Zhu
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish Center for Education and Research, Beijing 100190, China
| | - Qili Liu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mark N Wu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yan Li
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish Center for Education and Research, Beijing 100190, China.
| |
Collapse
|
20
|
Kim H, Zhong Z, Cui X, Sung H, Agrawal N, Jiang T, Dus M, Yapici N. HisCl1 regulates gustatory habituation in sweet taste neurons and mediates sugar ingestion in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592591. [PMID: 38765964 PMCID: PMC11100615 DOI: 10.1101/2024.05.06.592591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Similar to other animals, the fly, Drosophila melanogaster, reduces its responsiveness to tastants with repeated exposure, a phenomenon called gustatory habituation. Previous studies have focused on the circuit basis of gustatory habituation in the fly chemosensory system1,2. However, gustatory neurons reduce their firing rate during repeated stimulation3, suggesting that cell-autonomous mechanisms also contribute to habituation. Here, we used deep learning-based pose estimation and optogenetic stimulation to demonstrate that continuous activation of sweet taste neurons causes gustatory habituation in flies. We conducted a transgenic RNAi screen to identify genes involved in this process and found that knocking down Histamine-gated chloride channel subunit 1 (HisCl1) in the sweet taste neurons significantly reduced gustatory habituation. Anatomical analysis showed that HisCl1 is expressed in the sweet taste neurons of various chemosensory organs. Using single sensilla electrophysiology, we showed that sweet taste neurons reduced their firing rate with prolonged exposure to sucrose. Knocking down HisCl1 in sweet taste neurons suppressed gustatory habituation by reducing the spike frequency adaptation observed in these neurons during high-concentration sucrose stimulation. Finally, we showed that flies lacking HisCl1 in sweet taste neurons increased their consumption of high-concentration sucrose solution at their first meal bout compared to control flies. Together, our results demonstrate that HisCl1 tunes spike frequency adaptation in sweet taste neurons and contributes to gustatory habituation and food intake regulation in flies. Since HisCl1 is highly conserved across many dipteran and hymenopteran species, our findings open a new direction in studying insect gustatory habituation.
Collapse
Affiliation(s)
- Haein Kim
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Ziqing Zhong
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
- Current address: Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Xinyue Cui
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Hayeon Sung
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, USA
| | - Naman Agrawal
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Tianxing Jiang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Monica Dus
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| |
Collapse
|
21
|
Çoban B, Poppinga H, Rachad EY, Geurten B, Vasmer D, Rodriguez Jimenez FJ, Gadgil Y, Deimel SH, Alyagor I, Schuldiner O, Grunwald Kadow IC, Riemensperger TD, Widmann A, Fiala A. The caloric value of food intake structurally adjusts a neuronal mushroom body circuit mediating olfactory learning in Drosophila. Learn Mem 2024; 31:a053997. [PMID: 38862177 PMCID: PMC11199950 DOI: 10.1101/lm.053997.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024]
Abstract
Associative learning enables the adaptive adjustment of behavioral decisions based on acquired, predicted outcomes. The valence of what is learned is influenced not only by the learned stimuli and their temporal relations, but also by prior experiences and internal states. In this study, we used the fruit fly Drosophila melanogaster to demonstrate that neuronal circuits involved in associative olfactory learning undergo restructuring during extended periods of low-caloric food intake. Specifically, we observed a decrease in the connections between specific dopaminergic neurons (DANs) and Kenyon cells at distinct compartments of the mushroom body. This structural synaptic plasticity was contingent upon the presence of allatostatin A receptors in specific DANs and could be mimicked optogenetically by expressing a light-activated adenylate cyclase in exactly these DANs. Importantly, we found that this rearrangement in synaptic connections influenced aversive, punishment-induced olfactory learning but did not impact appetitive, reward-based learning. Whether induced by prolonged low-caloric conditions or optogenetic manipulation of cAMP levels, this synaptic rearrangement resulted in a reduction of aversive associative learning. Consequently, the balance between positive and negative reinforcing signals shifted, diminishing the ability to learn to avoid odor cues signaling negative outcomes. These results exemplify how a neuronal circuit required for learning and memory undergoes structural plasticity dependent on prior experiences of the nutritional value of food.
Collapse
Affiliation(s)
- Büşra Çoban
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - Haiko Poppinga
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - El Yazid Rachad
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - Bart Geurten
- Department of Zoology, Otago University, Dunedin 9016, New Zealand
| | - David Vasmer
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | | | - Yogesh Gadgil
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | | | - Idan Alyagor
- Department of Molecular Cell Biology, Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | | | - Annekathrin Widmann
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - André Fiala
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
22
|
Liao QQ, Shu X, Sun W, Mandapaka H, Xie F, Zhang Z, Dai T, Wang S, Zhao J, Jiang H, Zhang L, Lin J, Li SW, Coin I, Yang F, Peng J, Li K, Wu H, Zhou F, Yang B. Capturing Protein-Protein Interactions with Acidic Amino Acids Reactive Cross-Linkers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308383. [PMID: 38073323 DOI: 10.1002/smll.202308383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/14/2023] [Indexed: 05/18/2024]
Abstract
Acidic residues (Asp and Glu) have a high prevalence on protein surfaces, but cross-linking reactions targeting these residues are limited. Existing methods either require high-concentration coupling reagents or have low structural compatibility. Here a previously reported "plant-and-cast" strategy is extended to develop heterobifunctional cross-linkers. These cross-linkers first react rapidly with Lys sidechains and then react with Asp and Glu sidechains, in a proximity-enhanced fashion. The cross-linking reaction proceeds at neutral pH and room temperature without coupling reagents. The efficiency and robustness of cross-linking using model proteins, ranging from small monomeric proteins to large protein complexes are demonstrated. Importantly, it is shown that this type of cross-linkers are efficient at identifying protein-protein interactions involving acidic domains. The Cross-linking mass spectrometry (XL-MS) study with p53 identified 87 putative binders of the C-terminal domain of p53. Among them, SARNP, ZRAB2, and WBP11 are shown to regulate the expression and alternative splicing of p53 target genes. Thus, these carboxylate-reactive cross-linkers will further expand the power of XL-MS in the analysis of protein structures and protein-protein interactions.
Collapse
Affiliation(s)
- Qing-Qing Liao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xin Shu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wei Sun
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hyma Mandapaka
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, KS, 67260, USA
| | - Feng Xie
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhengkui Zhang
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Tong Dai
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Shuai Wang
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jinghua Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital Fudan University, Shanghai, 200438, China
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Long Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital Fudan University, Shanghai, 200438, China
| | - Shu-Wei Li
- Nanjing Apollomics Biotech, Inc, Nanjing, Jiangsu, 210033, China
| | - Irene Coin
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, 04103, Leipzig, Germany
| | - Fan Yang
- Department of Biophysics, Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jinrong Peng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Kui Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haifan Wu
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, KS, 67260, USA
| | - Fangfang Zhou
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
23
|
Arntsen C, Guillemin J, Audette K, Stanley M. Tastant-receptor interactions: insights from the fruit fly. Front Nutr 2024; 11:1394697. [PMID: 38665300 PMCID: PMC11043608 DOI: 10.3389/fnut.2024.1394697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Across species, taste provides important chemical information about potential food sources and the surrounding environment. As details about the chemicals and receptors responsible for gustation are discovered, a complex view of the taste system is emerging with significant contributions from research using the fruit fly, Drosophila melanogaster, as a model organism. In this brief review, we summarize recent advances in Drosophila gustation and their relevance to taste research more broadly. Our goal is to highlight the molecular mechanisms underlying the first step of gustatory circuits: ligand-receptor interactions in primary taste cells. After an introduction to the Drosophila taste system and how it encodes the canonical taste modalities sweet, bitter, and salty, we describe recent insights into the complex nature of carboxylic acid and amino acid detection in the context of sour and umami taste, respectively. Our analysis extends to non-canonical taste modalities including metals, fatty acids, and bacterial components, and highlights unexpected receptors and signaling pathways that have recently been identified in Drosophila taste cells. Comparing the intricate molecular and cellular underpinnings of how ligands are detected in vivo in fruit flies reveals both specific and promiscuous receptor selectivity for taste encoding. Throughout this review, we compare and contextualize these Drosophila findings with mammalian research to not only emphasize the conservation of these chemosensory systems, but to demonstrate the power of this model organism in elucidating the neurobiology of taste and feeding.
Collapse
Affiliation(s)
| | | | | | - Molly Stanley
- Department of Biology, University of Vermont, Burlington, VT, United States
| |
Collapse
|
24
|
Kockel L, Zhang V, Wang J, Gulick C, Laws ME, Rajan A, Lantz N, Asgarova A, Dai L, Garcia K, Kim C, Li M, Ordonez-Acosta P, Peng D, Shull H, Tse L, Wang Y, Yu W, Zhou Z, Rankin A, Park S, Kim SK. CRISPR/Cas9 gene editing in Drosophila via visual selection in a summer classroom. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587232. [PMID: 38585736 PMCID: PMC10996655 DOI: 10.1101/2024.03.28.587232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
CRISPR/Cas9 methods are a powerful in vivo approach to edit the genome of Drosophila melanogaster. To convert existing Drosophila GAL4 lines to LexA driver lines in a secondary school classroom setting, we applied the CRISPR-based genetic approach to a collection of Gal4 'driver' lines. The integration of the yellow+ coat color marker into homology-assisted CRISPR knock-in (HACK) enabled visual selection of Gal4-to-LexA conversions using brightfield stereo-microscopy available in a broader set of standard classrooms. Here, we report the successful conversion of eleven Gal4 lines with expression in neuropeptide-expressing cells into corresponding, novel LexA drivers. The conversion was confirmed by LexA- and Gal4-specific GFP reporter gene expression. This curriculum was successfully implemented in a summer course running 16 hours/week for seven weeks. The modularity, flexibility, and compactness of this course should enable development of similar classes in secondary schools and undergraduate curricula, to provide opportunities for experience-based science instruction, and university-secondary school collaborations that simultaneously fulfill research needs in the community of science.
Collapse
Affiliation(s)
- Lutz Kockel
- Stanford University, Stanford, CA 94305, USA
- Dept. of Developmental Biology, Stanford University SOM, Stanford, CA 94305, USA
| | | | - Jenna Wang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | - Arjun Rajan
- Stanford University, Stanford, CA 94305, USA
- Dept. of Developmental Biology, Stanford University SOM, Stanford, CA 94305, USA
| | - Nicole Lantz
- The Lawrenceville School, Lawrenceville, NJ 08648, USA
| | | | - Lillian Dai
- Lexington High School, Lexington, MA 02421, USA
| | | | - Charlene Kim
- Busan International High School, Busan, South Korea
| | - Michelle Li
- Shenzhen Foreign Language School, Shenzhen, China
| | | | - Dongshen Peng
- University of North Carolina, Chapel Hill, NC 27599, USA
| | - Henry Shull
- Harvard University, Cambridge, MA 02138, USA
| | - Lauren Tse
- Hong Kong International School, Hong Kong, China
| | | | - Wenxin Yu
- Guangdong Country Garden School, Guangdong, China
| | - Zee Zhou
- Thomas Jefferson High School for Science and Technology, Alexandria, VA 22312, USA
| | - Anne Rankin
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Sangbin Park
- Grier School, Tyrone, PA 16686, USA
- Dept. of Developmental Biology, Stanford University SOM, Stanford, CA 94305, USA
| | - Seung K Kim
- Stanford University, Stanford, CA 94305, USA
- Dept. of Developmental Biology, Stanford University SOM, Stanford, CA 94305, USA
- Lexington High School, Lexington, MA 02421, USA
- Stanford Diabetes Research Center, Stanford, CA 94305, USA
| |
Collapse
|
25
|
Castaneda AN, Huda A, Whitaker IBM, Reilly JE, Shelby GS, Bai H, Ni L. Functional labeling of individualized postsynaptic neurons using optogenetics and trans-Tango in Drosophila (FLIPSOT). PLoS Genet 2024; 20:e1011190. [PMID: 38483970 PMCID: PMC10965055 DOI: 10.1371/journal.pgen.1011190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 03/26/2024] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
A population of neurons interconnected by synapses constitutes a neural circuit, which performs specific functions upon activation. It is essential to identify both anatomical and functional entities of neural circuits to comprehend the components and processes necessary for healthy brain function and the changes that characterize brain disorders. To date, few methods are available to study these two aspects of a neural circuit simultaneously. In this study, we developed FLIPSOT, or functional labeling of individualized postsynaptic neurons using optogenetics and trans-Tango. FLIPSOT uses (1) trans-Tango to access postsynaptic neurons genetically, (2) optogenetic approaches to activate (FLIPSOTa) or inhibit (FLIPSOTi) postsynaptic neurons in a random and sparse manner, and (3) fluorescence markers tagged with optogenetic genes to visualize these neurons. Therefore, FLIPSOT allows using a presynaptic driver to identify the behavioral function of individual postsynaptic neurons. It is readily applied to identify functions of individual postsynaptic neurons and has the potential to be adapted for use in mammalian circuits.
Collapse
Affiliation(s)
- Allison N. Castaneda
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Ainul Huda
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Iona B. M. Whitaker
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Julianne E. Reilly
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Grace S. Shelby
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Hua Bai
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Lina Ni
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
26
|
Rankin AE, Fox E, Chisholm T, Lantz N, Rajan A, Phillips W, Griffin E, Harper J, Suhr C, Tan M, Wang J, Yang A, Kim ES, Ankrah NKA, Chakraborty P, Lam ACK, Laws ME, Lee J, Park KK, Wesel E, Covert PH, Kockel L, Park S, Kim SK. Simplified homology-assisted CRISPR for gene editing in Drosophila. G3 (BETHESDA, MD.) 2024; 14:jkad277. [PMID: 38058125 PMCID: PMC10849607 DOI: 10.1093/g3journal/jkad277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 08/28/2023] [Accepted: 10/29/2023] [Indexed: 12/08/2023]
Abstract
In vivo genome editing with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 generates powerful tools to study gene regulation and function. We revised the homology-assisted CRISPR knock-in method to convert Drosophila GAL4 lines to LexA lines using a new universal knock-in donor strain. A balancer chromosome-linked donor strain with both body color (yellow) and eye red fluorescent protein (RFP) expression markers simplified the identification of LexA knock-in using light or fluorescence microscopy. A second balancer chromosome-linked donor strain readily converted the second chromosome-linked GAL4 lines regardless of target location in the cis-chromosome but showed limited success for the third chromosome-linked GAL4 lines. We observed a consistent and robust expression of the yellow transgene in progeny harboring a LexA knock-in at diverse genomic locations. Unexpectedly, the expression of the 3xP3-RFP transgene in the "dual transgene" cassette was significantly increased compared with that of the original single 3xP3-RFP transgene cassette in all tested genomic locations. Using this improved screening approach, we generated 16 novel LexA lines; tissue expression by the derived LexA and originating GAL4 lines was similar or indistinguishable. In collaboration with 2 secondary school classes, we also established a systematic workflow to generate a collection of LexA lines from frequently used GAL4 lines.
Collapse
Affiliation(s)
| | - Elizabeth Fox
- The Lawrenceville School, Lawrenceville, NJ 08648, USA
| | | | - Nicole Lantz
- The Lawrenceville School, Lawrenceville, NJ 08648, USA
| | - Arjun Rajan
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | | | - Max Tan
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Jason Wang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Alana Yang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Ella S Kim
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | | | - Jackson Lee
- The Lawrenceville School, Lawrenceville, NJ 08648, USA
| | - Kyle K Park
- The Lawrenceville School, Lawrenceville, NJ 08648, USA
| | - Emily Wesel
- Stanford University, Stanford, CA 94305, USA
| | | | - Lutz Kockel
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sangbin Park
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Diabetes Research Center, Stanford, CA 94305, USA
| |
Collapse
|
27
|
Lobb-Rabe M, Nawrocka WI, Zhang R, Ashley J, Carrillo RA, Özkan E. Neuronal Wiring Receptors Dprs and DIPs Are GPI Anchored and This Modification Contributes to Their Cell Surface Organization. eNeuro 2024; 11:ENEURO.0184-23.2023. [PMID: 38233143 PMCID: PMC10863630 DOI: 10.1523/eneuro.0184-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024] Open
Abstract
The Drosophila Dpr and DIP proteins belong to the immunoglobulin superfamily of cell surface proteins (CSPs). Their hetero- and homophilic interactions have been implicated in a variety of neuronal functions, including synaptic connectivity, cell survival, and axon fasciculation. However, the signaling pathways underlying these diverse functions are unknown. To gain insight into Dpr-DIP signaling, we sought to examine how these CSPs are associated with the membrane. Specifically, we asked whether Dprs and DIPs are integral membrane proteins or membrane anchored through the addition of glycosylphosphatidylinositol (GPI) linkage. We demonstrate that most Dprs and DIPs are GPI anchored to the membrane of insect cells and validate these findings for some family members in vivo using Drosophila larvae, where GPI anchor cleavage results in loss of surface labeling. Additionally, we show that GPI cleavage abrogates aggregation of insect cells expressing cognate Dpr-DIP partners. To test if the GPI anchor affects Dpr and DIP localization, we replaced it with a transmembrane domain and observed perturbation of subcellular localization on motor neurons and muscles. These data suggest that membrane anchoring of Dprs and DIPs through GPI linkage is required for localization and that Dpr-DIP intracellular signaling likely requires transmembrane coreceptors.
Collapse
Affiliation(s)
- Meike Lobb-Rabe
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
- Program in Cell and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
| | - Wioletta I Nawrocka
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637
| | - Ruiling Zhang
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, Illinois 60637
| | - James Ashley
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
| | - Robert A Carrillo
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
- Program in Cell and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
| | - Engin Özkan
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
28
|
Malaguti M, Lebek T, Blin G, Lowell S. Enabling neighbour labelling: using synthetic biology to explore how cells influence their neighbours. Development 2024; 151:dev201955. [PMID: 38165174 PMCID: PMC10820747 DOI: 10.1242/dev.201955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Cell-cell interactions are central to development, but exploring how a change in any given cell relates to changes in the neighbour of that cell can be technically challenging. Here, we review recent developments in synthetic biology and image analysis that are helping overcome this problem. We highlight the opportunities presented by these advances and discuss opportunities and limitations in applying them to developmental model systems.
Collapse
Affiliation(s)
- Mattias Malaguti
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Tamina Lebek
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Guillaume Blin
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Sally Lowell
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
29
|
Xiao N, Xu S, Li ZK, Tang M, Mao R, Yang T, Ma SX, Wang PH, Li MT, Sunilkumar A, Rouyer F, Cao LH, Luo DG. A single photoreceptor splits perception and entrainment by cotransmission. Nature 2023; 623:562-570. [PMID: 37880372 PMCID: PMC10651484 DOI: 10.1038/s41586-023-06681-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
Vision enables both image-forming perception, driven by a contrast-based pathway, and unconscious non-image-forming circadian photoentrainment, driven by an irradiance-based pathway1,2. Although two distinct photoreceptor populations are specialized for each visual task3-6, image-forming photoreceptors can additionally contribute to photoentrainment of the circadian clock in different species7-15. However, it is unknown how the image-forming photoreceptor pathway can functionally implement the segregation of irradiance signals required for circadian photoentrainment from contrast signals required for image perception. Here we report that the Drosophila R8 photoreceptor separates image-forming and irradiance signals by co-transmitting two neurotransmitters, histamine and acetylcholine. This segregation is further established postsynaptically by histamine-receptor-expressing unicolumnar retinotopic neurons and acetylcholine-receptor-expressing multicolumnar integration neurons. The acetylcholine transmission from R8 photoreceptors is sustained by an autocrine negative feedback of the cotransmitted histamine during the light phase of light-dark cycles. At the behavioural level, elimination of histamine and acetylcholine transmission impairs R8-driven motion detection and circadian photoentrainment, respectively. Thus, a single type of photoreceptor can achieve the dichotomy of visual perception and circadian photoentrainment as early as the first visual synapses, revealing a simple yet robust mechanism to segregate and translate distinct sensory features into different animal behaviours.
Collapse
Affiliation(s)
- Na Xiao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shuang Xu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Ze-Kai Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Min Tang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Renbo Mao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Tian Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Si-Xing Ma
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Peng-Hao Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Meng-Tong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY, USA
| | - Ajay Sunilkumar
- Institut des Neurosciences Paris-Saclay, Université Paris-Sud, Université Paris-Saclay, CNRS, Gif-sur-Yvette, France
| | - François Rouyer
- Institut des Neurosciences Paris-Saclay, Université Paris-Sud, Université Paris-Saclay, CNRS, Gif-sur-Yvette, France
| | - Li-Hui Cao
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Dong-Gen Luo
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- School of Life Sciences, Peking University, Beijing, China.
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
30
|
Ruedenauer FA, Parreño MA, Grunwald Kadow IC, Spaethe J, Leonhardt SD. The ecology of nutrient sensation and perception in insects. Trends Ecol Evol 2023; 38:994-1004. [PMID: 37328389 DOI: 10.1016/j.tree.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 06/18/2023]
Abstract
Insects are equipped with neurological, physiological, and behavioral tools to locate potential food sources and assess their nutritional quality based on volatile and chemotactile cues. We summarize current knowledge on insect taste perception and the different modalities of reception and perception. We suggest that the neurophysiological mechanisms of reception and perception are closely linked to the species-specific ecology of different insects. Understanding these links consequently requires a multidisciplinary approach. We also highlight existing knowledge gaps, especially in terms of the exact ligands of receptors, and provide evidence for a perceptional hierarchy suggesting that insects have adapted their reception and perception to preferentially perceive nutrient stimuli that are important for their fitness.
Collapse
Affiliation(s)
- Fabian A Ruedenauer
- Plant-Insect Interactions, Research Department Life Science Systems, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany.
| | - Maria Alejandra Parreño
- Plant-Insect Interactions, Research Department Life Science Systems, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Ilona C Grunwald Kadow
- Institute of Physiology II, University of Bonn, University Clinic Bonn (UKB), Bonn, Germany
| | - Johannes Spaethe
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Sara D Leonhardt
- Plant-Insect Interactions, Research Department Life Science Systems, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| |
Collapse
|
31
|
González Segarra AJ, Pontes G, Jourjine N, Del Toro A, Scott K. Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion. eLife 2023; 12:RP88143. [PMID: 37732734 PMCID: PMC10513480 DOI: 10.7554/elife.88143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Consumption of food and water is tightly regulated by the nervous system to maintain internal nutrient homeostasis. Although generally considered independently, interactions between hunger and thirst drives are important to coordinate competing needs. In Drosophila, four neurons called the interoceptive subesophageal zone neurons (ISNs) respond to intrinsic hunger and thirst signals to oppositely regulate sucrose and water ingestion. Here, we investigate the neural circuit downstream of the ISNs to examine how ingestion is regulated based on internal needs. Utilizing the recently available fly brain connectome, we find that the ISNs synapse with a novel cell-type bilateral T-shaped neuron (BiT) that projects to neuroendocrine centers. In vivo neural manipulations revealed that BiT oppositely regulates sugar and water ingestion. Neuroendocrine cells downstream of ISNs include several peptide-releasing and peptide-sensing neurons, including insulin producing cells (IPCs), crustacean cardioactive peptide (CCAP) neurons, and CCHamide-2 receptor isoform RA (CCHa2R-RA) neurons. These neurons contribute differentially to ingestion of sugar and water, with IPCs and CCAP neurons oppositely regulating sugar and water ingestion, and CCHa2R-RA neurons modulating only water ingestion. Thus, the decision to consume sugar or water occurs via regulation of a broad peptidergic network that integrates internal signals of nutritional state to generate nutrient-specific ingestion.
Collapse
Affiliation(s)
| | - Gina Pontes
- University of California, BerkeleyBerkeleyUnited States
| | | | | | - Kristin Scott
- University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
32
|
Kim ES, Rajan A, Chang K, Govindarajan S, Gulick C, English E, Rodriguez B, Bloomfield O, Nakada S, Beard C, O’Connor S, Mastroianni S, Downey E, Feigenbaum M, Tolentino C, Pace A, Khan M, Moon S, DiPrima J, Syed A, Lin F, Abukhadra Y, Bacon I, Beckerle J, Cho S, Donkor NE, Garberg L, Harrington A, Hoang M, Lawani N, Noori A, Park E, Parsons E, Oravitan P, Chen M, Molina C, Richmond C, Reddi A, Huang J, Shugrue C, Coviello R, Unver S, Indelicarto M, Islamovic E, McIlroy R, Yang A, Hamad M, Griffin E, Ahmed Z, Alla A, Fitzgerald P, Choi A, Das T, Cheng Y, Yu J, Roderiques T, Lee E, Liu L, Harper J, Wang J, Suhr C, Tan M, Luque J, Tam AR, Chen E, Triff M, Zimmermann L, Zhang E, Wood J, Clark K, Kpodonu N, Dey A, Ecker A, Chuang M, López RKS, Sun H, Wei Z, Stone H, Chi CYJ, Silvestri A, Orloff P, Nedumaran N, Zou A, Ünver L, Page O, Kim M, Chan TYT, Tulloch A, Hernandez A, Pillai A, Chen C, Chowdhury N, Huang L, Mudide A, Paik G, Wingate A, Quinn L, Conybere C, Baumgardt LL, Buckley R, et alKim ES, Rajan A, Chang K, Govindarajan S, Gulick C, English E, Rodriguez B, Bloomfield O, Nakada S, Beard C, O’Connor S, Mastroianni S, Downey E, Feigenbaum M, Tolentino C, Pace A, Khan M, Moon S, DiPrima J, Syed A, Lin F, Abukhadra Y, Bacon I, Beckerle J, Cho S, Donkor NE, Garberg L, Harrington A, Hoang M, Lawani N, Noori A, Park E, Parsons E, Oravitan P, Chen M, Molina C, Richmond C, Reddi A, Huang J, Shugrue C, Coviello R, Unver S, Indelicarto M, Islamovic E, McIlroy R, Yang A, Hamad M, Griffin E, Ahmed Z, Alla A, Fitzgerald P, Choi A, Das T, Cheng Y, Yu J, Roderiques T, Lee E, Liu L, Harper J, Wang J, Suhr C, Tan M, Luque J, Tam AR, Chen E, Triff M, Zimmermann L, Zhang E, Wood J, Clark K, Kpodonu N, Dey A, Ecker A, Chuang M, López RKS, Sun H, Wei Z, Stone H, Chi CYJ, Silvestri A, Orloff P, Nedumaran N, Zou A, Ünver L, Page O, Kim M, Chan TYT, Tulloch A, Hernandez A, Pillai A, Chen C, Chowdhury N, Huang L, Mudide A, Paik G, Wingate A, Quinn L, Conybere C, Baumgardt LL, Buckley R, Kolberg Z, Pattison R, Shazli AA, Ganske P, Sfragara L, Strub A, Collier B, Tamana H, Ravindran D, Howden J, Stewart M, Shimizu S, Braniff J, Fong M, Gutman L, Irvine D, Malholtra S, Medina J, Park J, Yin A, Abromavage H, Barrett B, Chen J, Cho R, Dilatush M, Gaw G, Gu C, Huang J, Kilby H, Markel E, McClure K, Phillips W, Polaski B, Roselli A, Saint-Cyr S, Shin E, Tatum K, Tumpunyawat T, Wetherill L, Ptaszynska S, Zeleznik M, Pesendorfer A, Nolan A, Tao J, Sammeta D, Nicholson L, Dinh GV, Foltz M, Vo A, Ross M, Tokarski A, Hariharan S, Wang E, Baziuk M, Tay A, Wong YHM, Floyd J, Cui A, Pierre K, Coppisetti N, Kutam M, Khurjekar D, Gadzi A, Gubbay B, Pedretti S, Belovich S, Yeung T, Fey M, Shaffer L, Li A, Beritela G, Huyghue K, Foster G, Durso-Finley G, Thierfelder Q, Kiernan H, Lenkowsky A, Thomas T, Cheng N, Chao O, L’Etoile-Goga P, King A, McKinley P, Read N, Milberg D, Lin L, Wong M, Gilman I, Brown S, Chen L, Kosai J, Verbinsky M, Belshaw-Hood A, Lee H, Zhou C, Lobo M, Tse A, Tran K, Lewis K, Sonawane P, Ngo J, Zuzga S, Chow L, Huynh V, Yang W, Lim S, Stites B, Chang S, Cruz-Balleza R, Pelta M, Kujawski S, Yuan C, Standen-Bloom E, Witt O, Anders K, Duane A, Huynh N, Lester B, Fung-Lee S, Fung M, Situ M, Canigiula P, Dijkgraaf M, Romero W, Baula SK, Wong K, Xu I, Martinez B, Nuygen R, Norris L, Nijensohn N, Altman N, Maajid E, Burkhardt O, Chanda J, Doscher C, Gopal A, Good A, Good J, Herrera N, Lanting L, Liem S, Marks A, McLaughlin E, Lee A, Mohr C, Patton E, Pyarali N, Oczon C, Richards D, Good N, Goss S, Khan A, Madonia R, Mitchell V, Sun N, Vranka T, Garcia D, Arroyo F, Morales E, Camey S, Cano G, Bernabe A, Arroyo J, Lopez Y, Gonzalez E, Zumba B, Garcia J, Vargas E, Trinidad A, Candelaria N, Valdez V, Campuzano F, Pereznegron E, Medrano J, Gutierrez J, Gutierrez E, Abrego ET, Gutierrez D, Ortiz C, Barnes A, Arms E, Mitchell L, Balanzá C, Bradford J, Detroy H, Ferguson D, Guillermo E, Manapragada A, Nanula D, Serna B, Singh K, Sramaty E, Wells B, Wiggins M, Dowling M, Schmadeke G, Cafferky S, Good S, Reese M, Fleig M, Gannett A, Cain C, Lee M, Oberto P, Rinehart J, Pan E, Mathis SA, Joiner J, Barr L, Evans CJ, Baena-Lopez A, Beatty A, Collette J, Smullen R, Suttie J, Chisholm T, Rotondo C, Lewis G, Turner V, Stark L, Fox E, Amirapu A, Park S, Lantz N, Rankin AE, Kim SK, Kockel L. Generation of LexA enhancer-trap lines in Drosophila by an international scholastic network. G3 (BETHESDA, MD.) 2023; 13:jkad124. [PMID: 37279923 PMCID: PMC10468311 DOI: 10.1093/g3journal/jkad124] [Show More Authors] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Conditional gene regulation in Drosophila through binary expression systems like the LexA-LexAop system provides a superb tool for investigating gene and tissue function. To increase the availability of defined LexA enhancer trap insertions, we present molecular, genetic, and tissue expression studies of 301 novel Stan-X LexA enhancer traps derived from mobilization of the index SX4 line. This includes insertions into distinct loci on the X, II, and III chromosomes that were not previously associated with enhancer traps or targeted LexA constructs, an insertion into ptc, and seventeen insertions into natural transposons. A subset of enhancer traps was expressed in CNS neurons known to produce and secrete insulin, an essential regulator of growth, development, and metabolism. Fly lines described here were generated and characterized through studies by students and teachers in an international network of genetics classes at public, independent high schools, and universities serving a diversity of students, including those underrepresented in science. Thus, a unique partnership between secondary schools and university-based programs has produced and characterized novel resources in Drosophila, establishing instructional paradigms devoted to unscripted experimental science.
Collapse
Affiliation(s)
- Ella S Kim
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Arjun Rajan
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathleen Chang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | - Eva English
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | | | - Sarah O’Connor
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | | | - Emma Downey
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | | | | | - Abigail Pace
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | - Marina Khan
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | - Soyoun Moon
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | - Jordan DiPrima
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | - Amber Syed
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | - Flora Lin
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | | | | | | | - Sophia Cho
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | - Mai Hoang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Nosa Lawani
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Ayush Noori
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Euwie Park
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | | | | | - Adith Reddi
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Jason Huang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | - Selma Unver
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | - Alana Yang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Mahdi Hamad
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | - Zara Ahmed
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Asha Alla
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | - Audrey Choi
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Tanya Das
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | - Joshua Yu
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | - Ethan Lee
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | - Jason Wang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Chris Suhr
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Max Tan
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | - Emma Chen
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Max Triff
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | - Eric Zhang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Jackie Wood
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | - Nat Kpodonu
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Antar Dey
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | - Harry Sun
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Zijing Wei
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Henry Stone
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | | | | | - Leyla Ünver
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Oscair Page
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Minseo Kim
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | | | | | | | - Lina Huang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | - Lily Quinn
- Haileybury School, Hertford SG13 7NU, UK
| | | | | | | | | | | | | | - Pia Ganske
- Haileybury School, Hertford SG13 7NU, UK
| | | | | | | | | | | | | | | | | | - Julia Braniff
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Melanie Fong
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Lucy Gutman
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Danny Irvine
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Sahil Malholtra
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Jillian Medina
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - John Park
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Alicia Yin
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | | | - Breanna Barrett
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Jacqueline Chen
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Rachelle Cho
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Mac Dilatush
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Gabriel Gaw
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Caitlin Gu
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Jupiter Huang
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Houston Kilby
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Ethan Markel
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Katie McClure
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - William Phillips
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Benjamin Polaski
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Amelia Roselli
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Soleil Saint-Cyr
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Ellie Shin
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Kylan Tatum
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Tai Tumpunyawat
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Lucia Wetherill
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Sara Ptaszynska
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Maddie Zeleznik
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | | | - Anna Nolan
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Jeffrey Tao
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Divya Sammeta
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Laney Nicholson
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Giao Vu Dinh
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Merrin Foltz
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - An Vo
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Maggie Ross
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Andrew Tokarski
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Samika Hariharan
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Elaine Wang
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Martha Baziuk
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Ashley Tay
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | | | - Jax Floyd
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Aileen Cui
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Kieran Pierre
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Nikita Coppisetti
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Matthew Kutam
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Dhruv Khurjekar
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Anthony Gadzi
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Ben Gubbay
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Sophia Pedretti
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Sofiya Belovich
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Tiffany Yeung
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Mercy Fey
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Layla Shaffer
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Arthur Li
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | | | - Kyle Huyghue
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Greg Foster
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | | | - Quinn Thierfelder
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Holly Kiernan
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Andrew Lenkowsky
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Tesia Thomas
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Nicole Cheng
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Olivia Chao
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Pia L’Etoile-Goga
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Alexa King
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Paris McKinley
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Nicole Read
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - David Milberg
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Leila Lin
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Melinda Wong
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Io Gilman
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Samantha Brown
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Lila Chen
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Jordyn Kosai
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Mark Verbinsky
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | | | - Honon Lee
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Cathy Zhou
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Maya Lobo
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Asia Tse
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Kyle Tran
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Kira Lewis
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Pratmesh Sonawane
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Jonathan Ngo
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Sophia Zuzga
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Lillian Chow
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Vianne Huynh
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Wenyi Yang
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Samantha Lim
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Brandon Stites
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Shannon Chang
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | | | - Michaela Pelta
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Stella Kujawski
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Christopher Yuan
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | | | - Oliver Witt
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Karina Anders
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Audrey Duane
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Nancy Huynh
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Benjamin Lester
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Samantha Fung-Lee
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Melanie Fung
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Mandy Situ
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Paolo Canigiula
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Matijs Dijkgraaf
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Wilbert Romero
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | | | - Kimberly Wong
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Ivana Xu
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | | | - Reena Nuygen
- Latin School of Chicago, 59 W North Blvd, Chicago, IL 60610, USA
| | - Lucy Norris
- Latin School of Chicago, 59 W North Blvd, Chicago, IL 60610, USA
| | - Noah Nijensohn
- Latin School of Chicago, 59 W North Blvd, Chicago, IL 60610, USA
| | - Naomi Altman
- Latin School of Chicago, 59 W North Blvd, Chicago, IL 60610, USA
| | - Elise Maajid
- Latin School of Chicago, 59 W North Blvd, Chicago, IL 60610, USA
| | | | | | | | - Alex Gopal
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | - Aaron Good
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | - Jonah Good
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | | | | | - Sophia Liem
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | - Anila Marks
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | | | - Audrey Lee
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | - Collin Mohr
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | - Emma Patton
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | | | | | | | - Nathan Good
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | | | - Adeeb Khan
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | | | | | - Natasha Sun
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | | | | | | | | | | | | | | | | | | | | | - Bryan Zumba
- Pritzker College Prep, Chicago, IL 60639, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jake Bradford
- Loyola Marymount University, Los Angeles, CA 90045, USA
| | | | | | | | | | | | | | - Khushi Singh
- Loyola Marymount University, Los Angeles, CA 90045, USA
| | - Emily Sramaty
- Loyola Marymount University, Los Angeles, CA 90045, USA
| | - Brian Wells
- Loyola Marymount University, Los Angeles, CA 90045, USA
| | | | - Melissa Dowling
- Latin School of Chicago, 59 W North Blvd, Chicago, IL 60610, USA
| | | | | | | | | | | | | | - Cory Cain
- Pritzker College Prep, Chicago, IL 60639, USA
| | - Melody Lee
- Harvard-Westlake School, Los Angeles, CA 90077, USA
| | | | | | | | | | | | - Leslie Barr
- Westtown School, West Chester, PA 19382, USA
| | - Cory J Evans
- Loyola Marymount University, Los Angeles, CA 90045, USA
| | | | - Andrea Beatty
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | | | - Robert Smullen
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | - Jeanne Suttie
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | | | | | | | | | | | - Elizabeth Fox
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Anjana Amirapu
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Sangbin Park
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicole Lantz
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | | | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lutz Kockel
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
33
|
González-Segarra AJ, Pontes G, Jourjine N, Del Toro A, Scott K. Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535891. [PMID: 37066363 PMCID: PMC10104137 DOI: 10.1101/2023.04.06.535891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Consumption of food and water is tightly regulated by the nervous system to maintain internal nutrient homeostasis. Although generally considered independently, interactions between hunger and thirst drives are important to coordinate competing needs. In Drosophila , four neurons called the Interoceptive Subesophageal zone Neurons (ISNs) respond to intrinsic hunger and thirst signals to oppositely regulate sucrose and water ingestion. Here, we investigate the neural circuit downstream of the ISNs to examine how ingestion is regulated based on internal needs. Utilizing the recently available fly brain connectome, we find that the ISNs synapse with a novel cell type Bilateral T-shaped neuron (BiT) that projects to neuroendocrine centers. In vivo neural manipulations revealed that BiT oppositely regulates sugar and water ingestion. Neuroendocrine cells downstream of ISNs include several peptide-releasing and peptide-sensing neurons, including insulin producing cells (IPC), crustacean cardioactive peptide (CCAP) neurons, and CCHamide-2 receptor isoform RA (CCHa2R-RA) neurons. These neurons contribute differentially to ingestion of sugar and water, with IPCs and CCAP neurons oppositely regulating sugar and water ingestion, and CCHa2R-RA neurons modulating only water ingestion. Thus, the decision to consume sugar or water occurs via regulation of a broad peptidergic network that integrates internal signals of nutritional state to generate nutrient-specific ingestion.
Collapse
Affiliation(s)
| | - Gina Pontes
- University of California, Berkeley, United States
- present address: IBBEA, CONICET-UBA, Buenos Aires, Argentina
| | - Nicholas Jourjine
- University of California, Berkeley, United States
- present address: Harvard University, Cambridge, United States
| | - Alexander Del Toro
- University of California, Berkeley, United States
- present address: Brown University, Rhode Island, United States
| | | |
Collapse
|
34
|
Oikawa I, Kondo S, Hashimoto K, Yoshida A, Hamajima M, Tanimoto H, Furukubo-Tokunaga K, Honjo K. A descending inhibitory mechanism of nociception mediated by an evolutionarily conserved neuropeptide system in Drosophila. eLife 2023; 12:RP85760. [PMID: 37310871 DOI: 10.7554/elife.85760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Nociception is a neural process that animals have developed to avoid potentially tissue-damaging stimuli. While nociception is triggered in the peripheral nervous system, its modulation by the central nervous system is a critical process in mammals, whose dysfunction has been extensively implicated in chronic pain pathogenesis. The peripheral mechanisms of nociception are largely conserved across the animal kingdom. However, it is unclear whether the brain-mediated modulation is also conserved in non-mammalian species. Here, we show that Drosophila has a descending inhibitory mechanism of nociception from the brain, mediated by the neuropeptide Drosulfakinin (DSK), a homolog of cholecystokinin (CCK) that plays an important role in the descending control of nociception in mammals. We found that mutants lacking dsk or its receptors are hypersensitive to noxious heat. Through a combination of genetic, behavioral, histological, and Ca2+ imaging analyses, we subsequently revealed neurons involved in DSK-mediated nociceptive regulation at a single-cell resolution and identified a DSKergic descending neuronal pathway that inhibits nociception. This study provides the first evidence for a descending modulatory mechanism of nociception from the brain in a non-mammalian species that is mediated by the evolutionarily conserved CCK system, raising the possibility that the descending inhibition is an ancient mechanism to regulate nociception.
Collapse
Affiliation(s)
- Izumi Oikawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shu Kondo
- Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Kao Hashimoto
- College of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Akiho Yoshida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Megumi Hamajima
- Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Ken Honjo
- Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
35
|
Mohamed A, Malekou I, Sim T, O'Kane CJ, Maait Y, Scullion B, Masuda-Nakagawa LM. Mushroom body output neurons MBON-a1/a2 define an odor intensity channel that regulates behavioral odor discrimination learning in larval Drosophila. Front Physiol 2023; 14:1111244. [PMID: 37256074 PMCID: PMC10225628 DOI: 10.3389/fphys.2023.1111244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
The sensitivity of animals to sensory input must be regulated to ensure that signals are detected and also discriminable. However, how circuits regulate the dynamic range of sensitivity to sensory stimuli is not well understood. A given odor is represented in the insect mushroom bodies (MBs) by sparse combinatorial coding by Kenyon cells (KCs), forming an odor quality representation. To address how intensity of sensory stimuli is processed at the level of the MB input region, the calyx, we characterized a set of novel mushroom body output neurons that respond preferentially to high odor concentrations. We show that a pair of MB calyx output neurons, MBON-a1/2, are postsynaptic in the MB calyx, where they receive extensive synaptic inputs from KC dendrites, the inhibitory feedback neuron APL, and octopaminergic sVUM1 neurons, but relatively few inputs from projection neurons. This pattern is broadly consistent in the third-instar larva as well as in the first instar connectome. MBON-a1/a2 presynaptic terminals innervate a region immediately surrounding the MB medial lobe output region in the ipsilateral and contralateral brain hemispheres. By monitoring calcium activity using jRCamP1b, we find that MBON-a1/a2 responses are odor-concentration dependent, responding only to ethyl acetate (EA) concentrations higher than a 200-fold dilution, in contrast to MB neurons which are more concentration-invariant and respond to EA dilutions as low as 10-4. Optogenetic activation of the calyx-innervating sVUM1 modulatory neurons originating in the SEZ (Subesophageal zone), did not show a detectable effect on MBON-a1/a2 odor responses. Optogenetic activation of MBON-a1/a2 using CsChrimson impaired odor discrimination learning compared to controls. We propose that MBON-a1/a2 form an output channel of the calyx, summing convergent sensory and modulatory input, firing preferentially to high odor concentration, and might affect the activity of downstream MB targets.
Collapse
|
36
|
Sorkaç A, Moșneanu RA, Crown AM, Savaş D, Okoro AM, Memiş E, Talay M, Barnea G. retro-Tango enables versatile retrograde circuit tracing in Drosophila. eLife 2023; 12:e85041. [PMID: 37166114 PMCID: PMC10208638 DOI: 10.7554/elife.85041] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/11/2023] [Indexed: 05/12/2023] Open
Abstract
Transsynaptic tracing methods are crucial tools in studying neural circuits. Although a couple of anterograde tracing methods and a targeted retrograde tool have been developed in Drosophila melanogaster, there is still need for an unbiased, user-friendly, and flexible retrograde tracing system. Here, we describe retro-Tango, a method for transsynaptic, retrograde circuit tracing and manipulation in Drosophila. In this genetically encoded system, a ligand-receptor interaction at the synapse triggers an intracellular signaling cascade that results in reporter gene expression in presynaptic neurons. Importantly, panneuronal expression of the elements of the cascade renders this method versatile, enabling its use not only to test hypotheses but also to generate them. We validate retro-Tango in various circuits and benchmark it by comparing our findings with the electron microscopy reconstruction of the Drosophila hemibrain. Our experiments establish retro-Tango as a key method for circuit tracing in neuroscience research.
Collapse
Affiliation(s)
- Altar Sorkaç
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Rareș A Moșneanu
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Anthony M Crown
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Doruk Savaş
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Angel M Okoro
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Ezgi Memiş
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Mustafa Talay
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Gilad Barnea
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| |
Collapse
|
37
|
Shiu PK, Sterne GR, Spiller N, Franconville R, Sandoval A, Zhou J, Simha N, Kang CH, Yu S, Kim JS, Dorkenwald S, Matsliah A, Schlegel P, Szi-chieh Y, McKellar CE, Sterling A, Costa M, Eichler K, Jefferis GS, Murthy M, Bates AS, Eckstein N, Funke J, Bidaye SS, Hampel S, Seeds AM, Scott K. A leaky integrate-and-fire computational model based on the connectome of the entire adult Drosophila brain reveals insights into sensorimotor processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539144. [PMID: 37205514 PMCID: PMC10187186 DOI: 10.1101/2023.05.02.539144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The forthcoming assembly of the adult Drosophila melanogaster central brain connectome, containing over 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain. Here, we create a leaky integrate-and-fire computational model of the entire Drosophila brain, based on neural connectivity and neurotransmitter identity, to study circuit properties of feeding and grooming behaviors. We show that activation of sugar-sensing or water-sensing gustatory neurons in the computational model accurately predicts neurons that respond to tastes and are required for feeding initiation. Computational activation of neurons in the feeding region of the Drosophila brain predicts those that elicit motor neuron firing, a testable hypothesis that we validate by optogenetic activation and behavioral studies. Moreover, computational activation of different classes of gustatory neurons makes accurate predictions of how multiple taste modalities interact, providing circuit-level insight into aversive and appetitive taste processing. Our computational model predicts that the sugar and water pathways form a partially shared appetitive feeding initiation pathway, which our calcium imaging and behavioral experiments confirm. Additionally, we applied this model to mechanosensory circuits and found that computational activation of mechanosensory neurons predicts activation of a small set of neurons comprising the antennal grooming circuit that do not overlap with gustatory circuits, and accurately describes the circuit response upon activation of different mechanosensory subtypes. Our results demonstrate that modeling brain circuits purely from connectivity and predicted neurotransmitter identity generates experimentally testable hypotheses and can accurately describe complete sensorimotor transformations.
Collapse
Affiliation(s)
- Philip K. Shiu
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Gabriella R. Sterne
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
- University of Rochester Medical Center, Department of Biomedical Genetics
| | - Nico Spiller
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | | | - Andrea Sandoval
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Joie Zhou
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Neha Simha
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Chan Hyuk Kang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Seongbong Yu
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jinseop S. Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Philipp Schlegel
- Department of Zoology, University of Cambridge
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge
| | - Yu Szi-chieh
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire E. McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Marta Costa
- Department of Zoology, University of Cambridge
| | | | - Gregory S.X.E. Jefferis
- Department of Zoology, University of Cambridge
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Alexander Shakeel Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge
- Centre for Neural Circuits and Behaviour, The University of Oxford
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | - Jan Funke
- HHMI Janelia Research Campus, Ashburn, USA
| | - Salil S. Bidaye
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Stefanie Hampel
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Andrew M. Seeds
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Kristin Scott
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
38
|
Shen P, Wan X, Wu F, Shi K, Li J, Gao H, Zhao L, Zhou C. Neural circuit mechanisms linking courtship and reward in Drosophila males. Curr Biol 2023; 33:2034-2050.e8. [PMID: 37160122 DOI: 10.1016/j.cub.2023.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023]
Abstract
Courtship has evolved to achieve reproductive success in animal species. However, whether courtship itself has a positive value remains unclear. In the present work, we report that courtship is innately rewarding and can induce the expression of appetitive short-term memory (STM) and long-term memory (LTM) in Drosophila melanogaster males. Activation of male-specific P1 neurons is sufficient to mimic courtship-induced preference and memory performance. Surprisingly, P1 neurons functionally connect to a large proportion of dopaminergic neurons (DANs) in the protocerebral anterior medial (PAM) cluster. The acquisition of STM and LTM depends on two distinct subsets of PAM DANs that convey the courtship-reward signal to the restricted regions of the mushroom body (MB) γ and α/β lobes through two dopamine receptors, D1-like Dop1R1 and D2-like Dop2R. Furthermore, the retrieval of STM stored in the MB α'/β' lobes and LTM stored in the MB α/β lobe relies on two distinct MB output neurons. Finally, LTM consolidation requires two subsets of PAM DANs projecting to the MB α/β lobe and corresponding MB output neurons. Taken together, our findings demonstrate that courtship is a potent rewarding stimulus and reveal the underlying neural circuit mechanisms linking courtship and reward in Drosophila males.
Collapse
Affiliation(s)
- Peng Shen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaolu Wan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengming Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Hongjiang Gao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chuan Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
39
|
Zhao Y, Ke S, Cheng G, Lv X, Chang J, Zhou W. Direction Selectivity of TmY Neurites in Drosophila. Neurosci Bull 2023; 39:759-773. [PMID: 36399278 PMCID: PMC10169962 DOI: 10.1007/s12264-022-00966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022] Open
Abstract
The perception of motion is an important function of vision. Neural wiring diagrams for extracting directional information have been obtained by connectome reconstruction. Direction selectivity in Drosophila is thought to originate in T4/T5 neurons through integrating inputs with different temporal filtering properties. Through genetic screening based on synaptic distribution, we isolated a new type of TmY neuron, termed TmY-ds, that form reciprocal synaptic connections with T4/T5 neurons. Its neurites responded to grating motion along the four cardinal directions and showed a variety of direction selectivity. Intriguingly, its direction selectivity originated from temporal filtering neurons rather than T4/T5. Genetic silencing and activation experiments showed that TmY-ds neurons are functionally upstream of T4/T5. Our results suggest that direction selectivity is generated in a tripartite circuit formed among these three neurons-temporal filtering, TmY-ds, and T4/T5 neurons, in which TmY-ds plays a role in the enhancement of direction selectivity in T4/T5 neurons.
Collapse
Affiliation(s)
- Yinyin Zhao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shanshan Ke
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guo Cheng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaohua Lv
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jin Chang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Wei Zhou
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
40
|
Zhao Y, Duan J, Han Z, Engström Y, Hartenstein V. Identification of a GABAergic neuroblast lineage modulating sweet and bitter taste sensitivity. Curr Biol 2022; 32:5354-5363.e3. [PMID: 36347251 PMCID: PMC10728805 DOI: 10.1016/j.cub.2022.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/16/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
In Drosophila melanogaster, processing of gustatory information and controlling feeding behavior are executed by neural circuits located in the subesophageal zone (SEZ) of the brain.1 Gustatory receptor neurons (GRNs) project their axons in the primary gustatory center (PGC), which is located in the SEZ.1,2,3,4 To address the function of the PGC, we need detailed information about the different classes of gustatory interneurons that frame the PGC. In this work, we screened large collections of driver lines for SEZ interneuron-specific labeling and subsequently used candidate lines to access the SEZ neuroblast lineages. We converted 130 Gal4 lines to LexA drivers and carried out functional screening using calcium imaging. We found one neuroblast lineage, TRdm, whose neurons responded to both sweet and bitter tastants, and formed green fluorescent protein (GFP) reconstitution across synaptic partners (GRASP)-positive synapses with sweet sensory neurons. TRdm neurons express the inhibitory transmitter GABA, and silencing these neurons increases appetitive feeding behavior. These results demonstrate that TRdm generates a class of inhibitory local neurons that control taste sensitivity in Drosophila.
Collapse
Affiliation(s)
- Yunpo Zhao
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden; Biozentrum, University of Basel, 4056 Basel, Switzerland; Center for Precision Disease Modeling, University of Maryland School of Medicine, Baltimore 21201, USA.
| | - Jianli Duan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden; Center for Precision Disease Modeling, University of Maryland School of Medicine, Baltimore 21201, USA
| | - Zhe Han
- Center for Precision Disease Modeling, University of Maryland School of Medicine, Baltimore 21201, USA
| | - Ylva Engström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles 90095-1606, USA.
| |
Collapse
|
41
|
Ho MCW, Tabuchi M, Xie X, Brown MP, Luu S, Wang S, Kolodkin AL, Liu S, Wu MN. Sleep need-dependent changes in functional connectivity facilitate transmission of homeostatic sleep drive. Curr Biol 2022; 32:4957-4966.e5. [PMID: 36240772 PMCID: PMC9691613 DOI: 10.1016/j.cub.2022.09.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/28/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
How the homeostatic drive for sleep accumulates over time and is released remains poorly understood. In Drosophila, we previously identified the R5 ellipsoid body (EB) neurons as putative sleep drive neurons1 and recently described a mechanism by which astrocytes signal to these cells to convey sleep need.2 Here, we examine the mechanisms acting downstream of the R5 neurons to promote sleep. EM connectome data demonstrate that R5 neurons project to EPG neurons.3 Broad thermogenetic activation of EPG neurons promotes sleep, whereas inhibiting these cells reduces homeostatic sleep rebound. Perforated patch-clamp recordings reveal that EPG neurons exhibit elevated spontaneous firing following sleep deprivation, which likely depends on an increase in extrinsic excitatory inputs. Our data suggest that cholinergic R5 neurons participate in the homeostatic regulation of sleep, and epistasis experiments indicate that the R5 neurons act upstream of EPG neurons to promote sleep. Finally, we show that the physical and functional connectivity between the R5 and EPG neurons increases with greater sleep need. Importantly, dual patch-clamp recordings demonstrate that activating R5 neurons induces cholinergic-dependent excitatory postsynaptic responses in EPG neurons. Moreover, sleep loss triggers an increase in the amplitude of these responses, as well as in the proportion of EPG neurons that respond. Together, our data support a model whereby sleep drive strengthens the functional connectivity between R5 and EPG neurons, triggering sleep when a sufficient number of EPG neurons are activated. This process could enable the proper timing of the accumulation and release of sleep drive.
Collapse
Affiliation(s)
- Margaret C W Ho
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xiaojun Xie
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Matthew P Brown
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Skylar Luu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Serena Wang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alex L Kolodkin
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sha Liu
- VIB Center for Brain & Disease Research and Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
| | - Mark N Wu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
42
|
Kato YS, Tomita J, Kume K. Interneurons of fan-shaped body promote arousal in Drosophila. PLoS One 2022; 17:e0277918. [PMID: 36409701 PMCID: PMC9678257 DOI: 10.1371/journal.pone.0277918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/06/2022] [Indexed: 11/22/2022] Open
Abstract
Sleep is required to maintain physiological functions and is widely conserved across species. To understand the sleep-regulatory mechanisms, sleep-regulating genes and neuronal circuits are studied in various animal species. In the sleep-regulatory neuronal circuits in Drosophila melanogaster, the dorsal fan-shaped body (dFB) is a major sleep-promoting region. However, other sleep-regulating neuronal circuits were not well identified. We recently found that arousal-promoting T1 dopamine neurons, interneurons of protocerebral bridge (PB) neurons, and PB neurons innervating the ventral part of the FB form a sleep-regulatory circuit, which we named "the PB-FB pathway". In the exploration of other sleep-regulatory circuits, we found that activation of FB interneurons, also known as pontine neurons, promoted arousal. We then found that FB interneurons had possible connections with the PB-FB pathway and dFB neurons. Ca2+ imaging revealed that FB interneurons received excitatory signals from the PB-FB pathway. We also demonstrated the possible role of FB interneurons to regulate dFB neurons. These results suggested the role of FB interneurons in sleep regulation.
Collapse
Affiliation(s)
- Yoshiaki S. Kato
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Jun Tomita
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- * E-mail: ,
| |
Collapse
|
43
|
Deere JU, Devineni AV. Taste cues elicit prolonged modulation of feeding behavior in Drosophila. iScience 2022; 25:105159. [PMID: 36204264 PMCID: PMC9529979 DOI: 10.1016/j.isci.2022.105159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/02/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
Taste cues regulate immediate feeding behavior, but their ability to modulate future behavior has been less well studied. Pairing one taste with another can modulate subsequent feeding responses through associative learning, but this requires simultaneous exposure to both stimuli. We investigated whether exposure to one taste modulates future responses to other tastes even when they do not overlap in time. Using Drosophila, we found that brief exposure to sugar enhanced future feeding responses, whereas bitter exposure suppressed them. This modulation relies on neural pathways distinct from those that acutely regulate feeding or mediate learning-dependent changes. Sensory neuron activity was required not only during initial taste exposure but also afterward, suggesting that ongoing sensory activity may maintain experience-dependent changes in downstream circuits. Thus, the brain stores a memory of each taste stimulus after it disappears, enabling animals to integrate information as they sequentially sample different taste cues that signal local food quality.
Collapse
Affiliation(s)
- Julia U Deere
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Anita V Devineni
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
44
|
Amrein H, Keene AC. Sensory biology: Thirsty glia motivate water consumption. Curr Biol 2022; 32:R949-R952. [PMID: 36167042 PMCID: PMC11610468 DOI: 10.1016/j.cub.2022.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Regulation of water intake is governed by numerous motivated behaviors that are critical for the survival of nearly all animals. A recent study identifies a critical role for glia-neuron communication in the detection of water shortage and the initiation of thirst-associated behaviors.
Collapse
Affiliation(s)
- Hubert Amrein
- Department of Cellular and Molecular Medicine, College of Medicine, Health Science Center, Texas A&M University, College Station, TX 77845, USA
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX 77840, USA.
| |
Collapse
|
45
|
Active forgetting requires Sickie function in a dedicated dopamine circuit in Drosophila. Proc Natl Acad Sci U S A 2022; 119:e2204229119. [PMID: 36095217 PMCID: PMC9499536 DOI: 10.1073/pnas.2204229119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Forgetting is an essential component of the brain's memory management system, providing a balance to memory formation processes by removing unused or unwanted memories, or by suppressing their expression. However, the molecular, cellular, and circuit mechanisms underlying forgetting are poorly understood. Here we show that the memory suppressor gene, sickie, functions in a single dopamine neuron (DAn) by supporting the process of active forgetting in Drosophila. RNAi knockdown (KD) of sickie impairs forgetting by reducing the Ca2+ influx and DA release from the DAn that promotes forgetting. Coimmunoprecipitation/mass spectrometry analyses identified cytoskeletal and presynaptic active zone (AZ) proteins as candidates that physically interact with Sickie, and a focused RNAi screen of the candidates showed that Bruchpilot (Brp)-a presynaptic AZ protein that regulates calcium channel clustering and neurotransmitter release-impairs active forgetting like sickie KD. In addition, overexpression of brp rescued the impaired forgetting of sickie KD, providing evidence that they function in the same process. Moreover, we show that sickie KD in the DAn reduces the abundance and size of AZ markers but increases their number, suggesting that Sickie controls DAn activity for forgetting by modulating the presynaptic AZ structure. Our results identify a molecular and circuit mechanism for normal levels of active forgetting and reveal a surprising role of Sickie in maintaining presynaptic AZ structure for neurotransmitter release.
Collapse
|
46
|
Ishii K, Cortese M, Leng X, Shokhirev MN, Asahina K. A neurogenetic mechanism of experience-dependent suppression of aggression. SCIENCE ADVANCES 2022; 8:eabg3203. [PMID: 36070378 PMCID: PMC9451153 DOI: 10.1126/sciadv.abg3203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Aggression is an ethologically important social behavior, but excessive aggression can be detrimental to fitness. Social experiences among conspecific individuals reduce aggression in many species, the mechanism of which is largely unknown. We found that loss-of-function mutation of nervy (nvy), a Drosophila homolog of vertebrate myeloid translocation genes (MTGs), increased aggressiveness only in socially experienced flies and that this could be reversed by neuronal expression of human MTGs. A subpopulation of octopaminergic/tyraminergic neurons labeled by nvy was specifically required for such social experience-dependent suppression of aggression, in both males and females. Cell type-specific transcriptomic analysis of these neurons revealed aggression-controlling genes that are likely downstream of nvy. Our results illustrate both genetic and neuronal mechanisms by which the nervous system suppresses aggression in a social experience-dependent manner, a poorly understood process that is considered important for maintaining the fitness of animals.
Collapse
Affiliation(s)
- Kenichi Ishii
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Matteo Cortese
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Xubo Leng
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Maxim N. Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kenta Asahina
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
47
|
Circuit analysis reveals a neural pathway for light avoidance in Drosophila larvae. Nat Commun 2022; 13:5274. [PMID: 36071059 PMCID: PMC9452580 DOI: 10.1038/s41467-022-33059-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Understanding how neural circuits underlie behaviour is challenging even in the connectome era because it requires a combination of anatomical and functional analyses. This is exemplified in the circuit underlying the light avoidance behaviour displayed by Drosophila melanogaster larvae. While this behaviour is robust and the nervous system relatively simple, the circuit is only partially delineated with some contradictions among studies. Here, we devise trans-Tango MkII, an offshoot of the transsynaptic circuit tracing tool trans-Tango, and implement it in anatomical tracing together with functional analysis. We use neuronal inhibition to test necessity of particular neuronal types in light avoidance and selective neuronal activation to examine sufficiency in rescuing light avoidance deficiencies exhibited by photoreceptor mutants. Our studies reveal a four-order circuit for light avoidance connecting the light-detecting photoreceptors with a pair of neuroendocrine cells via two types of clock neurons. This approach can be readily expanded to studying other circuits. Studying neural circuits requires a multipronged approach. Here, the authors present a transsynaptic tracing tool in fruit fly larvae and combine it with neuronal inhibition and activation to study the circuit underlying light avoidance behaviour.
Collapse
|
48
|
Shiu PK, Sterne GR, Engert S, Dickson BJ, Scott K. Taste quality and hunger interactions in a feeding sensorimotor circuit. eLife 2022; 11:e79887. [PMID: 35791902 PMCID: PMC9292995 DOI: 10.7554/elife.79887] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Taste detection and hunger state dynamically regulate the decision to initiate feeding. To study how context-appropriate feeding decisions are generated, we combined synaptic resolution circuit reconstruction with targeted genetic access to specific neurons to elucidate a gustatory sensorimotor circuit for feeding initiation in adult Drosophila melanogaster. This circuit connects gustatory sensory neurons to proboscis motor neurons through three intermediate layers. Most neurons in this pathway are necessary and sufficient for proboscis extension, a feeding initiation behavior, and respond selectively to sugar taste detection. Pathway activity is amplified by hunger signals that act at select second-order neurons to promote feeding initiation in food-deprived animals. In contrast, the feeding initiation circuit is inhibited by a bitter taste pathway that impinges on premotor neurons, illuminating a local motif that weighs sugar and bitter taste detection to adjust the behavioral outcomes. Together, these studies reveal central mechanisms for the integration of external taste detection and internal nutritive state to flexibly execute a critical feeding decision.
Collapse
Affiliation(s)
- Philip K Shiu
- University of California, BerkeleyBerkeleyUnited States
| | - Gabriella R Sterne
- University of California, BerkeleyBerkeleyUnited States
- Janelia Research Campus, Howard Hughes Medical InstituteChevy ChaseUnited States
| | | | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical InstituteChevy ChaseUnited States
- Queensland Brain Institute, University of QueenslandBrisbaneAustralia
| | - Kristin Scott
- University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
49
|
Recurrent circadian circuitry regulates central brain activity to maintain sleep. Neuron 2022; 110:2139-2154.e5. [PMID: 35525241 DOI: 10.1016/j.neuron.2022.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/14/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022]
Abstract
Animal brains have discrete circadian neurons, but little is known about how they are coordinated to influence and maintain sleep. Here, through a systematic optogenetic screening, we identified a subtype of uncharacterized circadian DN3 neurons that is strongly sleep promoting in Drosophila. These anterior-projecting DN3s (APDN3s) receive signals from DN1 circadian neurons and then output to newly identified noncircadian "claw" neurons (CLs). CLs have a daily Ca2+ cycle, which peaks at night and correlates with DN1 and DN3 Ca2+ cycles. The CLs feedback onto a subset of DN1s to form a positive recurrent loop that maintains sleep. Using trans-synaptic photoactivatable green fluorescent protein (PA-GFP) tracing and functional in vivo imaging, we demonstrated that the CLs drive sleep by interacting with and releasing acetylcholine onto the mushroom body γ lobe. Taken together, the data identify a novel self-reinforcing loop within the circadian network and a new sleep-promoting neuropile that are both essential for maintaining normal sleep.
Collapse
|
50
|
Wang T, Jing B, Deng B, Shi K, Li J, Ma B, Wu F, Zhou C. Drosulfakinin signaling modulates female sexual receptivity in Drosophila. eLife 2022; 11:76025. [PMID: 35475782 PMCID: PMC9045819 DOI: 10.7554/elife.76025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
Female sexual behavior as an innate behavior is of prominent biological importance for survival and reproduction. However, molecular and circuit mechanisms underlying female sexual behavior is not well understood. Here, we identify the Cholecystokinin-like peptide Drosulfakinin (DSK) to promote female sexual behavior in Drosophila. Loss of DSK function reduces female receptivity while overexpressing DSK enhances female receptivity. We identify two pairs of Dsk-expressing neurons in the central brain to promote female receptivity. We find that the DSK peptide acts through one of its receptors, CCKLR-17D3, to modulate female receptivity. Manipulation of CCKLR-17D3 and its expressing neurons alters female receptivity. We further reveal that the two pairs of Dsk-expressing neurons receive input signal from pC1 neurons that integrate sex-related cues and mating status. These results demonstrate how a neuropeptide pathway interacts with a central neural node in the female sex circuitry to modulate sexual receptivity.
Collapse
Affiliation(s)
- Tao Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Biyang Jing
- State Key Laboratory of Membrane Biology, College of Life Sciences, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bowen Deng
- Chinese Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Zhongguangcun Life Sciences Park, Beijing, China
| | - Kai Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Baoxu Ma
- State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fengming Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chuan Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|