1
|
Faccidomo S, Saunders BL, May AM, Eastman VR, Kim M, Taylor SM, Hoffman JL, McElligott ZA, Hodge CW. Ethanol self-administration targets GluA2-containing AMPA receptor expression and synaptic activity in the nucleus accumbens in a manner that drives the positive reinforcing properties of the drug. Psychopharmacology (Berl) 2025; 242:1437-1452. [PMID: 39714485 PMCID: PMC12084143 DOI: 10.1007/s00213-024-06740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
RATIONALE The positive reinforcing effects of alcohol (ethanol) drive repetitive use and contribute to alcohol use disorder (AUD). Ethanol alters the expression of glutamate AMPA receptor (AMPAR) subunits in reward-related brain regions, but the extent to which this effect regulates ethanol's reinforcing properties is unclear. OBJECTIVE This study investigates whether ethanol self-administration changes AMPAR subunit expression and synaptic activity in the nucleus accumbens core (AcbC) to regulate ethanol's reinforcing effects in male C57BL/6 J mice. RESULTS Sucrose-sweetened ethanol self-administration (0.81 g/kg/day) increased AMPAR GluA2 protein expression in the AcbC, without effect on GluA1, compared to sucrose-only controls. Infusion of myristoylated Pep2m in the AcbC, which blocks GluA2 binding to N-ethylmaleimide-sensitive fusion protein (NSF) and reduces GluA2-containing AMPAR activity, reduced ethanol-reinforced responding without affecting sucrose-only self-administration or motor activity. Antagonizing GluA2-lacking AMPARs, through AcbC infusion of NASPM, had no effect on ethanol self-administration. AcbC neurons receiving projections from the basolateral amygdala (BLA) showed increased sEPSC area under the curve (a measurement of charge transfer) and slower decay kinetics in ethanol self-administering mice as compared to sucrose. Optogenetic activation of these neurons revealed an ethanol-enhanced AMPA/NMDA ratio and significantly reduced paired-pulse ratio, suggesting elevated GluA2 contributions specifically within the BLA➔AcbC pathway. CONCLUSIONS Ethanol use upregulates GluA2 protein expression in the AcbC and AMPAR synaptic activity in AcbC neurons receiving BLA projections and enhances synaptic plasticity directly within the BLA➔AcbC circuit. GluA2-containing AMPAR activity in the AcbC regulates the positive reinforcing effects of ethanol through an NSF-dependent mechanism, highlighting a potential therapeutic target in AUD.
Collapse
Affiliation(s)
- Sara Faccidomo
- Bowles Center for Alcohol Studies, Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Briana L Saunders
- Bowles Center for Alcohol Studies, Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ashley M May
- Bowles Center for Alcohol Studies, Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Vallari R Eastman
- Bowles Center for Alcohol Studies, Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Michelle Kim
- Bowles Center for Alcohol Studies, Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Seth M Taylor
- Bowles Center for Alcohol Studies, Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jessica L Hoffman
- Bowles Center for Alcohol Studies, Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zoé A McElligott
- Bowles Center for Alcohol Studies, Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Clyde W Hodge
- Bowles Center for Alcohol Studies, Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
2
|
Thoreson WB, Bartol TM, Conoan NH, Diamond JS. The architecture of invaginating rod synapses slows glutamate diffusion and shapes synaptic responses. J Gen Physiol 2025; 157:e202413746. [PMID: 40019452 PMCID: PMC11869902 DOI: 10.1085/jgp.202413746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 03/01/2025] Open
Abstract
Synapses of retinal rod photoreceptors involve deep invaginations occupied by second-order rod bipolar cell (RBP) and horizontal cell (HC) dendrites. Synaptic vesicles are released into this invagination at multiple sites beneath an elongated presynaptic ribbon. To study the impact of this architecture on glutamate diffusion and receptor activity, we reconstructed four rod terminals and their postsynaptic dendrites from serial electron micrographs of the mouse retina. We incorporated these structures into anatomically realistic Monte Carlo simulations of neurotransmitter diffusion and receptor activation. By comparing passive diffusion of glutamate in realistic structures with geometrically simplified models, we found that glutamate exits anatomically realistic synapses 10-fold more slowly than previously predicted. Constraining simulations with physiological data, we modeled activity of EAAT5 glutamate transporters in rods, AMPA receptors on HC dendrites, and metabotropic glutamate receptors (mGluR6) on RBP dendrites. Simulations suggested that ∼3,000 EAAT5 populate rod membranes. While uptake by surrounding glial Müller cells retrieves most glutamate released by rods, binding and uptake by EAAT5 influence RBP kinetics. Glutamate persistence allows mGluR6 on RBP dendrites to integrate the stream of vesicles released by rods in darkness. Glutamate's tortuous diffusional path confers quantal variability, as release from nearby ribbon sites exerts larger effects on RBP and HC receptors than release from more distant sites. Temporal integration supports slower sustained release rates, but additional quantal variability can impede postsynaptic detection of changes in release produced by rod light responses. These results show an example of the profound impact that synaptic architecture can have on postsynaptic responses.
Collapse
Affiliation(s)
- Wallace B. Thoreson
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Thomas M. Bartol
- Computational Neurobiology Laboratory, The Salk Institute, La Jolla, CA, USA
| | - Nicholas H. Conoan
- Electron Microscopy Core, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jeffrey S. Diamond
- Synaptic Physiology Section, Division of Intramural Research, National Institute of Neurological Diseases and Strokes, Bethesda, MD, USA
| |
Collapse
|
3
|
Qneibi M, Bdir S, Bdair M, Aldwaik SA, Heeh M, Sandouka D, Idais T. Exploring the role of AMPA receptor auxiliary proteins in synaptic functions and diseases. FEBS J 2025; 292:2433-2478. [PMID: 39394632 DOI: 10.1111/febs.17287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/21/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic glutamate receptors (AMPARs) mediate rapid excitatory synaptic transmission in the mammalian brain, primarily driven by the neurotransmitter glutamate. The modulation of AMPAR activity, particularly calcium-permeable AMPARs (CP-AMPARs), is crucially influenced by various auxiliary subunits. These subunits are integral membrane proteins that bind to the receptor's core and modify its functional properties, including ion channel kinetics and receptor trafficking. This review comprehensively catalogs all known AMPAR auxiliary proteins, providing vital insights into the biochemical mechanisms governing synaptic modulation and the specific impact of CP-AMPARs compared to their calcium-impermeable AMPA receptor (CI-AMPARs). Understanding the complex interplay between AMPARs and their auxiliary subunits in different brain regions is essential for elucidating their roles in cognitive functions such as learning and memory. Importantly, alterations in these auxiliary proteins' expression, function or interactions have been implicated in various neurological disorders. Aberrant signaling through CP-AMPARs, in particular, is associated with severe synaptic dysfunctions across neurodevelopmental, neurodegenerative and psychiatric conditions. Targeting the distinct properties of AMPAR-auxiliary subunit complexes, especially those involving CP-AMPARs, could disclose new therapeutic strategies, potentially allowing for more precise interventions in treating complex neuronal disorders.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Samia Ammar Aldwaik
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Tala Idais
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
4
|
Kim D, Park P, Li X, Wong-Campos JD, Tian H, Moult EM, Grimm JB, Lavis LD, Cohen AE. EPSILON: a method for pulse-chase labeling to probe synaptic AMPAR exocytosis during memory formation. Nat Neurosci 2025; 28:1099-1107. [PMID: 40164742 DOI: 10.1038/s41593-025-01922-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/10/2025] [Indexed: 04/02/2025]
Abstract
A tool to map changes in synaptic strength during a defined time window could provide powerful insights into the mechanisms of learning and memory. Here we developed a technique, Extracellular Protein Surface Labeling in Neurons (EPSILON), to map α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) exocytosis in vivo by sequential pulse-chase labeling of surface AMPARs with membrane-impermeable dyes. This approach yields synaptic-resolution maps of AMPAR exocytosis, a proxy for synaptic potentiation, in genetically targeted neurons during memory formation. In mice undergoing contextual fear conditioning, we investigated the relationship between synapse-level AMPAR exocytosis in CA1 pyramidal neurons and cell-level expression of the immediate early gene product cFos, a frequently used marker of engram neurons. We observed a strong correlation between AMPAR exocytosis and cFos expression, suggesting a synaptic mechanism for the association of cFos expression with memory engrams. The EPSILON technique is a useful tool for mapping synaptic plasticity and may be extended to investigate trafficking of other transmembrane proteins.
Collapse
Affiliation(s)
- Doyeon Kim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Pojeong Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Xiuyuan Li
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - J David Wong-Campos
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - He Tian
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Eric M Moult
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Physics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
5
|
Rivera JF, Huang H, Weng W, Sohn H, Girasole AE, Li S, Albanese MA, Qin M, Tao C, Klug ME, Rao S, Paletzki R, Herring BE, Kanoski SE, Zhang LI, Gerfen CR, Sabatini BL, Arnold DB. ATLAS: a rationally designed anterograde transsynaptic tracer. Nat Methods 2025; 22:1101-1111. [PMID: 40312509 PMCID: PMC12074993 DOI: 10.1038/s41592-025-02670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/11/2025] [Indexed: 05/03/2025]
Abstract
Genetically modified rabies virus can map neural circuits retrogradely from genetically determined cells. However, similar tools for anterograde tracing are not available. Here, we describe a method for anterograde transsynaptic tracing from genetically determined neurons based on a rationally designed protein, ATLAS. Expression of ATLAS in neurons causes presynaptic release of a payload composed of an antibody-like protein, AMPA.FingR, which binds to the N terminus of GluA1, and a recombinase. In the synaptic cleft, AMPA.FingR binds to GluA1, causing the payload to be endocytosed into postsynaptic cells and delivered to the nucleus, where it triggers expression of a recombinase-dependent reporter. In mice, ATLAS mediates monosynaptic transneuronal tracing from random or genetically determined cells that is strictly anterograde, synaptic and nontoxic. Moreover, ATLAS-mediated tracing shows activity dependence, suggesting that it can label active circuits underlying specific behaviors. Finally, ATLAS is composed of modular components that can be independently replaced or modified.
Collapse
Affiliation(s)
- Jacqueline F Rivera
- Department of Biological Sciences, Dornsife College, University of Southern California, Los Angeles, CA, USA
| | - Haoyang Huang
- Department of Biological Sciences, Dornsife College, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Weiguang Weng
- Department of Biological Sciences, Dornsife College, University of Southern California, Los Angeles, CA, USA
| | - Heesung Sohn
- Department of Biological Sciences, Dornsife College, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Allison E Girasole
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Shun Li
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Madeline A Albanese
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Melissa Qin
- Department of Biological Sciences, Dornsife College, University of Southern California, Los Angeles, CA, USA
| | - Can Tao
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Molly E Klug
- Department of Biological Sciences, Dornsife College, University of Southern California, Los Angeles, CA, USA
| | - Sadhna Rao
- Department of Biological Sciences, Dornsife College, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Ronald Paletzki
- Section on Neuroanatomy, National Institute of Mental Health, Bethesda, MD, USA
| | - Bruce E Herring
- Department of Biological Sciences, Dornsife College, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Scott E Kanoski
- Department of Biological Sciences, Dornsife College, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Li I Zhang
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Charles R Gerfen
- Section on Neuroanatomy, National Institute of Mental Health, Bethesda, MD, USA
| | - Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Don B Arnold
- Department of Biological Sciences, Dornsife College, University of Southern California, Los Angeles, CA, USA.
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Hou Y, Zuo Y, Song S, Zhang T. Long-term variable photoperiod exposure impairs hippocampal synapse involving of the glutamate system and leads to memory deficits in male Wistar rats. Exp Neurol 2025; 387:115191. [PMID: 39971149 DOI: 10.1016/j.expneurol.2025.115191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/07/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
Excessive artificial light at night can induce the human circadian misalignment, potentially impairing memory consolidation and the rhythms of hippocampal clock genes. To investigate the impact of circadian misalignment on hippocampal function, we measured various field excitatory postsynaptic potentials (fEPSP) and golgi staining in the CA1 and dentate gyrus (DG) regions in Wistar rats. Our findings revealed that circadian misalignment resulted in a leftward shift in the input-output (I-O) curve within the CA1 region, decreased long-term potentiation (LTP), multi-time interval paired-pulse ratio (PPR), as well as dendritic spines and complexity across both CA1 and DG regions. Additionally, magnetic resonance spectroscopy (MRS) showed that circadian misalignment downregulated glutamate-related neurotransmitters (Glu + Gln) in the hippocampus, contributing to impaired synaptic function. Furthermore, disruptions to glutamate receptor subunits due to circadian misalignment led to reduced expression of AMPA receptor and NMDA receptor subunits in the hippocampus. In summary, our results suggest that memory impairments resulting from circadian misalignment are associated with diminished functionality within the glutamatergic system; this includes reductions in both Glx levels and availability of glutamate receptor subunits-key factors contributing to compromised synaptic function within the hippocampus.
Collapse
Affiliation(s)
- Yuanyuan Hou
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Yao Zuo
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, 550004, China
| | - Shaofei Song
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, 610041, China
| | - Tong Zhang
- Department of Neurological Rehabilitation, China Rehabilitation Research Center, Beijing Boai Hospital, Beijing, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China; School of Rehabilitation, Capital Medical University, Beijing 100068, China.
| |
Collapse
|
7
|
Küpeli Akkol E, Karatoprak GŞ, Dumlupınar B, Bahadır Acıkara Ö, Arıcı R, Yücel Ç, Aynal LC, Sobarzo Sánchez E. Stilbenes Against Alzheimer's Disease: A Comprehensive Review of Preclinical Studies of Natural and Synthetic Compounds Combined with the Contributions of Developed Nanodrug Delivery Systems. Molecules 2025; 30:1982. [PMID: 40363789 PMCID: PMC12073496 DOI: 10.3390/molecules30091982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
This review covers preclinical studies of stilbene derivative compounds (both natural and synthetic) with potential preventive and therapeutic effects against Alzheimer's disease (AD). AD is a worldwide neurodegenerative disease characterized by the destruction of nerve cells in the brain and the loss of cognitive function due to aging. Stilbenes are a unique class of natural phenolic compounds distinguished by a C6-C2-C6 (1,2-diphenylethylene) structure and two aromatic rings connected by an ethylene bridge. Stilbenes' distinct features make them an intriguing subject for pharmacological research and development. Several preclinical studies have suggested that stilbenes may have neuroprotective effects by reducing Aβ generation and oligomerization, enhancing Aβ clearance, and regulating tau neuropathology through the prevention of aberrant tau phosphorylation and aggregation, as well as scavenging reactive oxygen species. Synthetic stilbene derivatives also target multiple pathways involved in neuroprotection and have demonstrated promising biological activity in vitro. However, some properties of stilbenes, such as sensitivity to physiological conditions, low solubility, poor permeability, instability, and low bioavailability, limit their usefulness in clinical applications. To address this issue, current investigations have developed new drug delivery systems based on stilbene derivative molecules. This review aims to shed light on the development of next-generation treatment strategies by examining in detail the role of stilbenes in Alzheimer's pathophysiology and their therapeutic potential.
Collapse
Affiliation(s)
- Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Türkiye
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Türkiye;
| | - Berrak Dumlupınar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Okan University, İstanbul 34959, Türkiye;
| | - Özlem Bahadır Acıkara
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Ankara 06560, Türkiye;
| | - Reyhan Arıcı
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara Medipol University, Ankara 06570, Türkiye;
| | - Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Türkiye;
| | - Leyli Can Aynal
- Etlik City Hospital, Department of Neurology, Ankara 06170, Türkiye;
| | - Eduardo Sobarzo Sánchez
- Centro de Investigación en Ingeniería de Materiales, Facultad de Medicina y Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
8
|
Takahashi M, Caraveo G. Ykt6 SNARE protein drives GluA1 insertion at synaptic spines during LTP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.632800. [PMID: 40236018 PMCID: PMC11996430 DOI: 10.1101/2025.02.10.632800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Long-Term Potentiation (LTP), a crucial form of synaptic plasticity essential for memory and learning, depends on protein synthesis and the upregulation of GluA1 at postsynaptic terminals. While extensive research has focused on the role of endosomal trafficking in GluA1 regulation, the contribution of endoplasmic reticulum (ER) trafficking pathways remains largely unexplored. A key opportunity to investigate this emerged from Ykt6, an evolutionarily conserved SNARE protein and a master regulator of vesicular fusion along ER-trafficking pathways. Here, we demonstrate that Ykt6 is highly expressed in the mammalian hippocampus, where it localizes to synaptic spines and regulates GluA1 surface expression in an LTP-dependent manner. Furthermore, we found that Ykt6 modulates synaptic vesicle pool dynamics as well as the amplitude and frequency of miniature excitatory postsynaptic currents. Ykt6 loss of function has been linked to α-synuclein pathology, a hallmark of Lewy Body Dementias (LBDs), where α-synuclein misfolding in the hippocampus disrupts LTP. Taken together, our findings establish Ykt6 as a critical SNARE protein in hippocampal function during LTP, with significant implications for neurodegenerative disorders such as LBDs.
Collapse
|
9
|
Kelly D, Bicker S, Winterer J, Nanda P, Germain PL, Dieterich C, Schratt G. A functional screen uncovers circular RNAs regulating excitatory synaptogenesis in hippocampal neurons. Nat Commun 2025; 16:3040. [PMID: 40155636 PMCID: PMC11953392 DOI: 10.1038/s41467-025-58070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 03/11/2025] [Indexed: 04/01/2025] Open
Abstract
Circular RNAs (circRNAs) are an expanding class of largely unexplored RNAs which are prominently enriched in the mammalian brain. Here, we systematically interrogate their role in excitatory synaptogenesis of rat hippocampal neurons using RNA interference. Thereby, we identify seven circRNAs as negative regulators of excitatory synapse formation, many of which contain high-affinity microRNA binding sites. Knockdown of one of these candidates, circRERE, promotes the formation of electrophysiologically silent synapses. Mechanistically, circRERE knockdown results in a preferential upregulation of synaptic mRNAs containing binding sites for miR-128-3p. Overexpression of circRERE stabilizes miR-128-3p and rescues exaggerated synapse formation upon circRERE knockdown in a miR-128-3p binding site-specific manner. Overall, our results uncover circRERE-mediated stabilization of miR-128-3p as a means to restrict the formation of silent excitatory synaptic co-clusters and more generally implicate circRNA-dependent microRNA regulation in the control of synapse development and function.
Collapse
Affiliation(s)
- Darren Kelly
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Silvia Bicker
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Jochen Winterer
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Prakruti Nanda
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Pierre-Luc Germain
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
- Laboratory of Molecular and Behavioural Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
- Lab of Statistical Bioinformatics, IMLS, University of Zürich, Zurich, Switzerland
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Gerhard Schratt
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland.
| |
Collapse
|
10
|
Willems TS, Xiong H, Kessels HW, Lesuis SL. GluA1-containing AMPA receptors are necessary for sparse memory engram formation. Neurobiol Learn Mem 2025; 218:108031. [PMID: 39922481 DOI: 10.1016/j.nlm.2025.108031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Memory formation depends on the selective recruitment of neuronal ensembles into circuits known as engrams, which represent the physical substrate of memory. Sparse encoding of these ensembles is essential for memory specificity and efficiency. AMPA receptor (AMPAR) subunits, particularly GluA1, play a central role in synaptic plasticity, which underpins memory encoding. This study investigates how GluA1 expression influences the recruitment of neurons into memory engrams. Using global GluA1 knockout (GluA1KO) mice, localized knockout models, and contextual fear-conditioning paradigms, we evaluated the role of GluA1 in memory formation and engram sparsity. GluA1KO mice exhibited impaired short-term memory retention but preserved 24-hour contextual memory. Despite this, these mice displayed increased expression of the immediate early gene Arc in hippocampal neurons, indicative of a denser engram network. Electrophysiological analyses revealed reduced synaptic strength in GluA1-deficient neurons, irrespective of Arc expression. Localized GluA1 knockout in the hippocampus confirmed that GluA1 deficiency increases neuronal recruitment into engrams, disrupting the sparse encoding typically observed in wild-type mice. These findings demonstrate that GluA1-containing AMPARs constrain engram size, ensuring selective recruitment of neurons for efficient memory encoding. By regulating synaptic plasticity, GluA1 facilitates both the encoding and size of memory circuits. This study highlights the critical role of GluA1 in maintaining sparse engram formation and provides insight into mechanisms underlying memory deficits in conditions where synaptic composition is altered.
Collapse
Affiliation(s)
- Thije S Willems
- Department of Cell and Circuit Neuroscience, Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Hui Xiong
- Department of Cell and Circuit Neuroscience, Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, the Netherlands; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Helmut W Kessels
- Department of Cell and Circuit Neuroscience, Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Sylvie L Lesuis
- Department of Cell and Circuit Neuroscience, Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Xu N, He Y, Wei YN, Bai L, Wang L. Possible antidepressant mechanism of acupuncture: targeting neuroplasticity. Front Neurosci 2025; 19:1512073. [PMID: 40018358 PMCID: PMC11865234 DOI: 10.3389/fnins.2025.1512073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/03/2025] [Indexed: 03/01/2025] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent and severely disabling psychiatric disorder that decreases quality of life and imposes substantial economic burden. Acupuncture has emerged as an effective adjunctive treatment for depression, it regulates neurotransmitters involved in mood regulation and modulates the activity of specific brain regions associated with emotional processing, as evidenced by neuroimaging and biochemical studies. Despite these insights, the precise neuroplastic mechanisms through which acupuncture exerts its antidepressant effects remain not fully elucidated. This review aims to summarize the current knowledge on acupuncture's modulation of neuroplasticity in depression, with a focus on the neuroplasticity-based targets associated with acupuncture's antidepressant effects. We encapsulate two decades of research into the neurobiological mechanisms underpinning the efficacy of acupuncture in treating depression. Additionally, we detail the acupoints and electroacupuncture parameters used in the treatment of depression to better serve clinical application.
Collapse
Affiliation(s)
- Ning Xu
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yue He
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yong-Nan Wei
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lu Bai
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Long Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
12
|
Zelek-Molik A, Gądek-Michalska A, Wilczkowski M, Bielawski A, Maziarz K, Kreiner G, Nalepa I. Restraint stress effects on glutamate signaling protein levels in the rats' frontal cortex: Does β1 adrenoceptor activity matter? Front Pharmacol 2025; 15:1451895. [PMID: 39834820 PMCID: PMC11743458 DOI: 10.3389/fphar.2024.1451895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Stress-evoked dysfunctions of the frontal cortex (FC) are correlated with changes in the functioning of the glutamatergic system, and evidence demonstrates that noradrenergic transmission is an important regulator of this process. In the current study, we adopted a restraint stress (RS) model in male Wistar rats to investigate whether the blockade of β1 adrenergic receptors (β1AR) with betaxolol (BET) in stressed animals influences the body's stress response and the expression of selected signaling proteins in the medial prefrontal cortex (mPFC). Methods The study was divided into two parts. In the first part, rats were exposed to RS for 3, 7, or 14 days, and the expression of glutamate signaling proteins (p(S845)/t GluA1, p(Y1472)/t GluN2B, VGLUT1, and VGLUT2) in the FC was analyzed to determine the optimal RS duration for studying the mechanisms of hypofrontality. In the second part, rats were exposed to RS for 14 days, and BET (5 mg/kg, p. o.) was administered during the last 8 days immediately after RS. The body's stress reaction was assessed by analyzing body weight and blood levels of adrenocorticotropic hormone (ACTH) and corticosterone (CORT). Behavioral responses were evaluated using the novel object recognition (NOR) and elevated plus maze (EPM) tests. The impact of RS and BET on the expression of p(Y530)/t Fyn and p (S133)/t CREB in the mPFC was measured via Western blotting. Results and Discussion The first part of the study demonstrated a decreased level of glutamate receptors in rats exposed to 14 days of RS, following an initial increase observed after 7 days of RS. Results from the second part revealed that chronic RS reduced body weight, impaired recognition memory in the NOR test, augmented blood levels of ACTH, and increased the expression of p(Y530) Fyn in the mPFC. However, β1AR blockade did not alter the effects of RS on weight gain, cognitive function, or the expression of p(Y530) Fyn. β1AR blockade normalized only the blood concentration of ACTH. These results suggest that decreased Fyn kinase activity, indicated by phosphorylation at Y530, underlies the stress-evoked downregulation of GluN2B in the FC in a manner independent of β1AR activity.
Collapse
Affiliation(s)
- Agnieszka Zelek-Molik
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Anna Gądek-Michalska
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Michał Wilczkowski
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Adam Bielawski
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Maziarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Irena Nalepa
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
13
|
Thoreson WB, Bartol TM, Conoan NH, Diamond JS. Geometric tortuosity at invaginating rod synapses slows glutamate diffusion and shapes synaptic responses: insights from anatomically realistic Monte Carlo simulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621088. [PMID: 39554003 PMCID: PMC11565802 DOI: 10.1101/2024.10.30.621088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
At the first synapse in the vertebrate retina, rod photoreceptor terminals form deep invaginations occupied by multiple second-order rod bipolar and horizontal cell (RBP and HC) dendrites. Synaptic vesicles are released into this invagination at multiple sites beneath an elongated presynaptic ribbon. We investigated the impact of this complex architecture on the diffusion of synaptic glutamate and activity of postsynaptic receptors. We obtained serial electron micrographs of mouse retina and reconstructed four rod terminals along with their postsynaptic RBP and HC dendrites. We incorporated these structures into an anatomically realistic Monte Carlo simulation of neurotransmitter diffusion and receptor activation. We compared passive diffusion of glutamate in these realistic structures to existing, geometrically simplified models of the synapse and found that glutamate exits anatomically realistic synapses ten times more slowly than previously predicted. By comparing simulations with electrophysiological recordings, we modeled synaptic activation of EAAT5 glutamate transporters in rods, AMPA receptors on HC dendrites, and metabotropic glutamate receptors (mGluR6) on RRBP dendrites. Our simulations suggested that ~3,000 EAAT5 transporters populate the rod presynaptic membrane and that, while uptake by surrounding glial Müller cells retrieves much of the glutamate released by rods, binding and uptake by EAAT5 influences RBP response kinetics. The long lifetime of glutamate within the cleft allows mGluR6 on RBP dendrites to temporally integrate the steady stream of vesicles released at this synapse in darkness. Glutamate's tortuous diffusional path through realistic synaptic geometry confers quantal variability, as release from nearby ribbon sites exerts larger effects on RBP and HC receptors than release from more distant sites. While greater integration may allow slower sustained release rates, added quantal variability complicates the challenging task of detecting brief decreases in release produced by rod light responses at scotopic threshold.
Collapse
|
14
|
Leana-Sandoval G, Kolli AV, Chinn CA, Madrid A, Lo I, Sandoval MA, Vera VA, Simms J, Wood MA, Diaz-Alonso J. The GluA1 cytoplasmic tail regulates intracellular AMPA receptor trafficking and synaptic transmission onto dentate gyrus GABAergic interneurons, gating response to novelty. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626277. [PMID: 39677714 PMCID: PMC11643017 DOI: 10.1101/2024.12.01.626277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The GluA1 subunit, encoded by the putative schizophrenia-associated gene GRIA1, is required for activity-regulated AMPA receptor (AMPAR) trafficking, and plays a key role in cognitive and affective function. The cytoplasmic, carboxy-terminal domain (CTD) is the most divergent region across AMPAR subunits. The GluA1 CTD has received considerable attention for its role during long-term potentiation (LTP) at CA1 pyramidal neuron synapses. However, its function at other synapses and, more broadly, its contribution to different GluA1-dependent processes, is poorly understood. Here, we used mice with a constitutive truncation of the GluA1 CTD to dissect its role regulating AMPAR localization and function as well as its contribution to cognitive and affective processes. We found that GluA1 CTD truncation affected AMPAR subunit levels and intracellular trafficking. ΔCTD GluA1 mice exhibited no memory deficits, but presented exacerbated novelty-induced hyperlocomotion and dentate gyrus granule cell (DG GC) hyperactivity, among other behavioral alterations. Mechanistically, we found that AMPAR EPSCs onto DG GABAergic interneurons were significantly reduced, presumably underlying, at least in part, the observed changes in neuronal activity and behavior. In summary, this study dissociates CTD-dependent from CTD-independent GluA1 functions, unveiling the GluA1 CTD as a crucial hub regulating AMPAR function in a cell type-specific manner.
Collapse
Affiliation(s)
- Gerardo Leana-Sandoval
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Ananth V Kolli
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Carlene A Chinn
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
- Department of Neurobiology & Behavior, University of California at Irvine, CA, 92697, USA
| | - Alexis Madrid
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Iris Lo
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Matthew A Sandoval
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Vanessa Alizo Vera
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
- Department of Neurobiology & Behavior, University of California at Irvine, CA, 92697, USA
| | - Jeffrey Simms
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Marcelo A Wood
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
- Department of Neurobiology & Behavior, University of California at Irvine, CA, 92697, USA
| | - Javier Diaz-Alonso
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| |
Collapse
|
15
|
Kareemo DJ, Winborn CS, Olah SS, Miller CN, Kim J, Kadgien CA, Actor-Engel HS, Ramsay HJ, Ramsey AM, Aoto J, Kennedy MJ. Genetically encoded intrabody probes for labeling and manipulating AMPA-type glutamate receptors. Nat Commun 2024; 15:10374. [PMID: 39613728 PMCID: PMC11607441 DOI: 10.1038/s41467-024-54530-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/14/2024] [Indexed: 12/01/2024] Open
Abstract
Tools for visualizing and manipulating protein dynamics in living cells are critical for understanding cellular function. Here we leverage recently available monoclonal antibody sequences to generate a set of affinity tags for labeling and manipulating AMPA-type glutamate receptors (AMPARs), which mediate nearly all excitatory neurotransmission in the central nervous system. These antibodies can be produced from heterologous cells for exogenous labeling applications or directly expressed in living neurons as intrabodies, where they bind their epitopes in the endoplasmic reticulum and co-traffic to the cell surface for visualization with cell impermeant fluorescent dyes. We show these reagents do not perturb AMPAR trafficking, function, mobility, or synaptic recruitment during plasticity and therefore can be used as probes for monitoring endogenous receptors in living neurons. We also adapt these reagents to deplete AMPARs from the cell surface by trapping them in the endoplasmic reticulum, providing a simple approach for loss of excitatory neurotransmission. The strategies outlined here serve as a template for generating similar reagents targeting diverse proteins as more antibody sequences become available.
Collapse
Affiliation(s)
- Dean J Kareemo
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Christina S Winborn
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Samantha S Olah
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Carley N Miller
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - JungMin Kim
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Chelsie A Kadgien
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Hannah S Actor-Engel
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Harrison J Ramsay
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Austin M Ramsey
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jason Aoto
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Matthew J Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
16
|
Zimbelman AR, Wong B, Murray CH, Wolf ME, Stefanik MT. Dopamine D1 and NMDA Receptor Co-Regulation of Protein Translation in Cultured Nucleus Accumbens Neurons. Neurochem Res 2024; 50:27. [PMID: 39567459 PMCID: PMC11888153 DOI: 10.1007/s11064-024-04283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
Protein translation is essential for some forms of synaptic plasticity. Here we used fluorescent noncanonical amino acid tagging (FUNCAT) to examine whether dopamine modulates protein translation in cultured nucleus accumbens (NAc) medium spiny neurons (MSN). These neurons were co-cultured with cortical neurons to restore excitatory synapses. We measured translation in MSNs under basal conditions and after disinhibiting excitatory transmission using the GABAA receptor antagonist bicuculline (2 h). Under basal conditions, translation was not altered by the D1-class receptor (D1R) agonist SKF81297 or the D2-class receptor (D2R) agonist quinpirole. Bicuculline alone robustly increased translation. This was reversed by quinpirole but not SKF81297. It was also reversed by co-incubation with the D1R antagonist SCH23390, but not the D2R antagonist eticlopride, suggesting dopaminergic tone at D1Rs. This was surprising because no dopamine neurons are present. An alternative explanation is that bicuculline activates translation by increasing glutamate tone at NMDA receptors (NMDAR) within D1R/NMDAR heteromers. Supporting this, immunocytochemistry and proximity ligation assays revealed D1R/NMDAR heteromers on NAc cells both in vitro and in vivo, confirming previous results. Furthermore, bicuculline's effect was reversed to the same extent by SCH23390 alone, the NMDAR antagonist APV alone, or SCH23390 + APV. These results suggest that: (1) excitatory transmission stimulates translation in NAc MSNs, (2) this is opposed when glutamate activates D1R/NMDAR heteromers, even in the absence of dopamine, and (3) antagonist occupation of D1Rs within the heteromers prevents their activation. Our study is the first to suggest a role for D2 receptors and D1R/NMDAR heteromers in regulating protein translation.
Collapse
Affiliation(s)
- Alexa R Zimbelman
- Department of Psychology and Neuroscience, North Central College, 30 N. Brainard St., Naperville, IL, 60540, USA
| | - Benjamin Wong
- Department of Psychology and Neuroscience, North Central College, 30 N. Brainard St., Naperville, IL, 60540, USA
| | - Conor H Murray
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
- Present Address: UCLA Center for Cannabis and Cannabinoids, Semel Institute for Neuroscience & Human Behavior, Los Angeles, CA, 90025, USA
| | - Marina E Wolf
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
- Present Address: Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
| | - Michael T Stefanik
- Department of Psychology and Neuroscience, North Central College, 30 N. Brainard St., Naperville, IL, 60540, USA.
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
17
|
Faccidomo S, Saunders BL, May AM, Eastman VR, Kim M, Taylor SM, Hoffman JL, McElligott ZA, Hodge CW. Operant alcohol self-administration targets GluA2-containing AMPA receptor expression and synaptic activity in the nucleus accumbens in a manner that drives the positive reinforcing properties of the drug. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612946. [PMID: 39314444 PMCID: PMC11419130 DOI: 10.1101/2024.09.13.612946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Rationale : The positive reinforcing effects of alcohol (ethanol) drive its repetitive use and contribute to alcohol use disorder (AUD). Ethanol alters the expression of glutamate AMPA receptor (AMPAR) subunits in reward-related brain regions, but the extent to which this effect regulates ethanol's reinforcing properties is unclear. Objective: This study investigates whether ethanol self-administration changes AMPAR subunit expression and synaptic activity in the nucleus accumbens core (AcbC) to regulate ethanol's reinforcing effects in male C57BL/6J mice. Results: Sucrose-sweetened ethanol self-administration (0.81 g/kg/day) increased AMPAR GluA2 protein expression in the AcbC, without effect on GluA1, compared to sucrose-only controls. Infusion of myristoylated Pep2m in the AcbC, which blocks GluA2 binding to N-ethylmaleimide-sensitive fusion protein (NSF) and reduces GluA2-containing AMPAR activity, reduced ethanol-reinforced responding without affecting sucrose-only self-administration or motor activity. Antagonizing GluA2-lacking AMPARs, through AcbC infusion of NASPM, had no effect on ethanol self-administration. AcbC neurons receiving projections from the basolateral amygdala (BLA) showed increased sEPSC area under the curve (a measurement of charge transfer) and slower decay kinetics in ethanol self-administering mice as compared to sucrose. Optogenetic activation of these neurons revealed an ethanol-enhanced AMPA/NMDA ratio and significantly reduced paired-pulse ratio, suggesting elevated GluA2 contributions specifically within the BLA→AcbC pathway. Conclusions: Ethanol use upregulates GluA2 protein expression in the AcbC and AMPAR synaptic activity in AcbC neurons receiving BLA projections and enhances synaptic plasticity directly within the BLA→AcbC circuit. GluA2-containing AMPAR activity in the AcbC regulates the positive reinforcing effects of ethanol through an NSF-dependent mechanism, highlighting a potential therapeutic target in AUD.
Collapse
|
18
|
Ning L, Shen R, Xie B, Jiang Y, Geng X, Dong W. AMPA receptors in Alzheimer disease: Pathological changes and potential therapeutic targets. J Neuropathol Exp Neurol 2024; 83:895-906. [PMID: 39235983 DOI: 10.1093/jnen/nlae093] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Alzheimer disease (AD) is a prevalent neurodegenerative disorder that affects synapses and leads to progressive cognitive decline. The role of N-methyl-D-aspartic acid (NMDA) receptors in the pathogenesis of AD is well-established as they contribute to excitotoxicity and neurodegeneration in the pathological process of extrasynaptic glutamate concentration. However, the therapeutic potential of the NMDA receptor antagonist memantine in rescuing synaptic damage is limited. Research indicates that α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors also play a significant role in AD. Abnormal transcription, expression, and localization of AMPA receptors lead to synaptic dysfunction and damage, contributing to early cognitive impairment in AD patients. Understanding the impact of AMPA receptors on AD pathogenesis and exploring the potential for the development of AMPA receptor-targeting drugs are crucial. This review aims to consolidate recent research findings on AMPA receptors in AD, elucidate the current state of AMPA receptor research and lay the foundation for future basic research and drug development.
Collapse
Affiliation(s)
- Luying Ning
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Rongjing Shen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, Institute of Epigenetics and Brain Science, Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yong Jiang
- Laboratory of Neurological Diseases and Brain Function, Institute of Epigenetics and Brain Science, Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoqi Geng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
19
|
Chuang HW, Huang CC, Chen KT, Kuo YY, Ren JH, Wang TY, Tsai MH, Chen PT, Wei IH. Danshensu Interventions Mediate Rapid Antidepressant Effects by Activating the Mammalian Target of Rapamycin Signaling and Brain-Derived Neurotrophic Factor Release. Psychiatry Investig 2024; 21:1286-1298. [PMID: 39610240 DOI: 10.30773/pi.2024.0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/19/2024] [Indexed: 11/30/2024] Open
Abstract
OBJECTIVE Danshensu, a phenylpropanoid compound, is derived from the dry root and rhizome of Danshen (Salvia miltiorrhiza), a traditional Chinese medicinal herb. Evidence suggests that danshensu protects isolated rat hearts against ischemia/reperfusion injury by activating the protein kinase B (Akt)/extracellular signal-regulated kinase (ERK) pathway or by inhibiting autophagy and apoptosis through the activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, danshensu promotes the postischemic regeneration of brain cells by upregulating the expression of brain-derived neurotrophic factor (BDNF) in the peri-infarct region. However, basic and clinical studies are needed to investigate the antidepressant effects danshensu and determine whether brain mTOR signaling and BDNF activation mediate these effects. The aforementioned need prompted us to conduct the present study. METHODS Using a C57BL/6 mouse model, we investigated the antidepressant-like effects of danshensu and the mechanisms that mediate these effects. To elucidate the mechanisms, we analyzed the roles of Akt/ERK-mTOR signaling and BDNF activation in mediating the antidepressant-like effects of danshensu. RESULTS Danshensu exerted its antidepressant-like effects by activating the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) of Akt/ERK-mTOR signaling and promoting BDNF release. Treatment with danshensu increased the level of glutamate receptor 1 phosphorylation at the protein kinase A site. CONCLUSION Our study may be the first to demonstrate that the antidepressant effects of danshensu are dependent on the activation of the AMPAR-mTOR signaling pathway, are correlated with the elevation of BDNF level, and facilitate the insertion of AMPAR into the postsynaptic membrane. This study also pioneers in unveiling the potential of danshensu against depressive disorders.
Collapse
Affiliation(s)
- Han-Wen Chuang
- Department of Anatomy, China Medical University, Taichung, Taiwan
| | - Chih-Chia Huang
- Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan
- Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Kuang-Ti Chen
- Department of Anatomy, China Medical University, Taichung, Taiwan
| | - Yen-Yu Kuo
- Department of Anatomy, China Medical University, Taichung, Taiwan
| | - Jou-Hua Ren
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tse-Yen Wang
- Department of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Mang-Hung Tsai
- Department of Anatomy, China Medical University, Taichung, Taiwan
| | - Po-Ting Chen
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - I-Hua Wei
- Department of Anatomy, China Medical University, Taichung, Taiwan
| |
Collapse
|
20
|
Hong I, Kim J, Hainmueller T, Kim DW, Keijser J, Johnson RC, Park SH, Limjunyawong N, Yang Z, Cheon D, Hwang T, Agarwal A, Cholvin T, Krienen FM, McCarroll SA, Dong X, Leopold DA, Blackshaw S, Sprekeler H, Bergles DE, Bartos M, Brown SP, Huganir RL. Calcium-permeable AMPA receptors govern PV neuron feature selectivity. Nature 2024; 635:398-405. [PMID: 39358515 PMCID: PMC11560848 DOI: 10.1038/s41586-024-08027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
The brain helps us survive by forming internal representations of the external world1,2. Excitatory cortical neurons are often precisely tuned to specific external stimuli3,4. However, inhibitory neurons, such as parvalbumin-positive (PV) interneurons, are generally less selective5. PV interneurons differ from excitatory neurons in their neurotransmitter receptor subtypes, including AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors (AMPARs)6,7. Excitatory neurons express calcium-impermeable AMPARs that contain the GluA2 subunit (encoded by GRIA2), whereas PV interneurons express receptors that lack the GluA2 subunit and are calcium-permeable (CP-AMPARs). Here we demonstrate a causal relationship between CP-AMPAR expression and the low feature selectivity of PV interneurons. We find low expression stoichiometry of GRIA2 mRNA relative to other subunits in PV interneurons that is conserved across ferrets, rodents, marmosets and humans, and causes abundant CP-AMPAR expression. Replacing CP-AMPARs in PV interneurons with calcium-impermeable AMPARs increased their orientation selectivity in the visual cortex. Manipulations to induce sparse CP-AMPAR expression demonstrated that this increase was cell-autonomous and could occur with changes beyond development. Notably, excitatory-PV interneuron connectivity rates and unitary synaptic strength were unaltered by CP-AMPAR removal, which suggested that the selectivity of PV interneurons can be altered without markedly changing connectivity. In Gria2-knockout mice, in which all AMPARs are calcium-permeable, excitatory neurons showed significantly degraded orientation selectivity, which suggested that CP-AMPARs are sufficient to drive lower selectivity regardless of cell type. Moreover, hippocampal PV interneurons, which usually exhibit low spatial tuning, became more spatially selective after removing CP-AMPARs, which indicated that CP-AMPARs suppress the feature selectivity of PV interneurons independent of modality. These results reveal a new role of CP-AMPARs in maintaining low-selectivity sensory representation in PV interneurons and implicate a conserved molecular mechanism that distinguishes this cell type in the neocortex.
Collapse
Affiliation(s)
- Ingie Hong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| | - Juhyun Kim
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Thomas Hainmueller
- Institute for Physiology I, University of Freiburg, Medical Faculty, Freiburg, Germany
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Dong Won Kim
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Joram Keijser
- Modelling of Cognitive Processes, Technical University of Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Richard C Johnson
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Soo Hyun Park
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD, USA
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Nathachit Limjunyawong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center of Research Excellence in Allergy and Immunology, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Zhuonan Yang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - David Cheon
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Taeyoung Hwang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amit Agarwal
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences, University of Heidelberg, Heidelberg, Germany
| | - Thibault Cholvin
- Institute for Physiology I, University of Freiburg, Medical Faculty, Freiburg, Germany
| | - Fenna M Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David A Leopold
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD, USA
| | - Seth Blackshaw
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Henning Sprekeler
- Modelling of Cognitive Processes, Technical University of Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Marlene Bartos
- Institute for Physiology I, University of Freiburg, Medical Faculty, Freiburg, Germany
| | - Solange P Brown
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Richard L Huganir
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
21
|
Yao D, Wang X, Liu J, Xu XQ. Rbm24 modulates neuronal RNA splicing to restrict cognitive dysfunction. Int J Biol Macromol 2024; 276:133853. [PMID: 39004256 DOI: 10.1016/j.ijbiomac.2024.133853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/24/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Synaptic dysfunction is associated with early neurodegenerative changes and cognitive deficits. Neuronal cell-specific alternative splicing (AS) programs exclusively encode unique neuron- and synapse-specific proteins. However, it remains unclear whether splicing disturbances in neurons influence the pathogenesis of cognitive impairment. Here, we observed that RNA-binding motif protein 24 (RBM24) expression was decreased in Alzheimer's disease (AD) patients. Using conditional RBM24 knockout mice, we demonstrated that deletion of RBM24 in the brain resulted in learning and memory impairment. Electrophysiological recordings from hippocampal slices from mice lacking RBM24 revealed multiple defects in excitatory synaptic function and plasticity. Furthermore, RNA sequencing and splicing analysis showed that RBM24 regulates a network of genes related to cognitive function. Deletion of RBM24 disrupted the AS of synapse-associated genes, including GluR2 and Prrt1, the major disease genes involved in cognitive impairment and memory loss, leading to cognitive dysfunction. Together, our results suggest that the regulation of mRNA splicing by RBM24 is a key process involved in maintaining normal synaptic function and provide novel mechanistic insights into the pathogenesis of AD.
Collapse
Affiliation(s)
- Dongbo Yao
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Xiaoxia Wang
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Jing Liu
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Xiu Qin Xu
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China.
| |
Collapse
|
22
|
Ma R, Hanse E, Gustafsson B. Labile glutamate synaptic transmission in the adult CA1 stratum-lacunosum-moleculare region. Eur J Neurosci 2024; 60:4362-4389. [PMID: 38857895 DOI: 10.1111/ejn.16440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024]
Abstract
The excitatory monosynaptic activation of hippocampal CA1 pyramidal cells is spatially segregated such that the proximal part of the apical dendritic tree in stratum radiatum (SR) receives input from the hippocampal CA3 region while the distal part in the stratum-lacunosum-moleculare (SLM) receives input mainly from the entorhinal cortex. The AMPA receptor-mediated (AMPA) signalling of SLM synapses in slices from neonatal rats was previously found to considerably differ from that of the SR synapses. In the present study, AMPA signalling of SLM synapses in 1-month-old rats has been examined, that is, when the hippocampus is essentially functionally mature. For the SR synapses, this time is characterized by a facilitatory shift in short-term plasticity, in the disappearance of labile postsynaptic AMPA signalling, a property thought to be important for early activity-dependent organization of neural circuits, and the expression of an adult form of long-term potentiation. We found that the SLM synapses alter their short-term plasticity similarly to that of the SR synapses. However, the labile postsynaptic AMPA signalling was not only maintained but substantially enhanced in the SLM synapses. The long-term potentiation observed was not of the adult form but like that of the neonatal SR synapses based on unsilencing of AMPA labile synapses. We propose that these features of the SLM synapses in the mature hippocampus will help to produce a flexible map of the multimodal sensory input reaching the SLM required for its conjunctive operation with the SR input to generate a proper functional output from the CA1 region.
Collapse
Affiliation(s)
- Rong Ma
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eric Hanse
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Gustafsson
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Xu QW, Larosa A, Wong TP. Roles of AMPA receptors in social behaviors. Front Synaptic Neurosci 2024; 16:1405510. [PMID: 39056071 PMCID: PMC11269240 DOI: 10.3389/fnsyn.2024.1405510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
As a crucial player in excitatory synaptic transmission, AMPA receptors (AMPARs) contribute to the formation, regulation, and expression of social behaviors. AMPAR modifications have been associated with naturalistic social behaviors, such as aggression, sociability, and social memory, but are also noted in brain diseases featuring impaired social behavior. Understanding the role of AMPARs in social behaviors is timely to reveal therapeutic targets for treating social impairment in disorders, such as autism spectrum disorder and schizophrenia. In this review, we will discuss the contribution of the molecular composition, function, and plasticity of AMPARs to social behaviors. The impact of targeting AMPARs in treating brain disorders will also be discussed.
Collapse
Affiliation(s)
- Qi Wei Xu
- Douglas Hospital Research Centre, Montreal, QC, Canada
| | - Amanda Larosa
- Douglas Hospital Research Centre, Montreal, QC, Canada
| | - Tak Pan Wong
- Douglas Hospital Research Centre, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
24
|
Stockwell I, Watson JF, Greger IH. Tuning synaptic strength by regulation of AMPA glutamate receptor localization. Bioessays 2024; 46:e2400006. [PMID: 38693811 PMCID: PMC7616278 DOI: 10.1002/bies.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Long-term potentiation (LTP) of excitatory synapses is a leading model to explain the concept of information storage in the brain. Multiple mechanisms contribute to LTP, but central amongst them is an increased sensitivity of the postsynaptic membrane to neurotransmitter release. This sensitivity is predominantly determined by the abundance and localization of AMPA-type glutamate receptors (AMPARs). A combination of AMPAR structural data, super-resolution imaging of excitatory synapses, and an abundance of electrophysiological studies are providing an ever-clearer picture of how AMPARs are recruited and organized at synaptic junctions. Here, we review the latest insights into this process, and discuss how both cytoplasmic and extracellular receptor elements cooperate to tune the AMPAR response at the hippocampal CA1 synapse.
Collapse
Affiliation(s)
- Imogen Stockwell
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Jake F. Watson
- Institute of Science and Technology, Technology (IST) Austria, Klosterneuburg, Austria
| | - Ingo H. Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
25
|
Rao S, Liang F, Herring BE. RhoGEF Tiam2 Regulates Glutamatergic Synaptic Transmission in Hippocampal CA1 Pyramidal Neurons. eNeuro 2024; 11:ENEURO.0500-21.2024. [PMID: 38871458 PMCID: PMC11262554 DOI: 10.1523/eneuro.0500-21.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/29/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
Glutamatergic synapses exhibit significant molecular diversity, but circuit-specific mechanisms that underlie synaptic regulation are not well characterized. Prior reports show that Rho-guanine nucleotide exchange factor (RhoGEF) Tiam1 regulates perforant path→dentate gyrus granule neuron synapses. In the present study, we report Tiam1's homolog Tiam2 is implicated in glutamatergic neurotransmission in CA1 pyramidal neurons. We find that Tiam2 regulates evoked excitatory glutamatergic currents via a postsynaptic mechanism mediated by the catalytic Dbl-homology domain. Overall, we present evidence for RhoGEF Tiam2's role in glutamatergic synapse function at Schaffer collateral→CA1 pyramidal neuron synapses.
Collapse
Affiliation(s)
- Sadhna Rao
- Department of Biological Sciences, Neurobiology Section, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089
| | - Feng Liang
- Department of Biological Sciences, Neurobiology Section, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089
| | - Bruce E Herring
- Department of Biological Sciences, Neurobiology Section, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
26
|
Schoonover KE, Dienel SJ, Holly Bazmi H, Enwright JF, Lewis DA. Altered excitatory and inhibitory ionotropic receptor subunit expression in the cortical visuospatial working memory network in schizophrenia. Neuropsychopharmacology 2024; 49:1183-1192. [PMID: 38548877 PMCID: PMC11109337 DOI: 10.1038/s41386-024-01854-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/14/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024]
Abstract
Dysfunction of the cortical dorsal visual stream and visuospatial working memory (vsWM) network in individuals with schizophrenia (SZ) likely reflects alterations in both excitatory and inhibitory neurotransmission within nodes responsible for information transfer across the network, including primary visual (V1), visual association (V2), posterior parietal (PPC), and dorsolateral prefrontal (DLPFC) cortices. However, the expression patterns of ionotropic glutamatergic and GABAergic receptor subunits across these regions, and alterations of these patterns in SZ, have not been investigated. We quantified transcript levels of key subunits for excitatory N-methyl-D-aspartate receptors (NMDARs), excitatory alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs), and inhibitory GABAA receptors (GABAARs) in postmortem total gray matter from V1, V2, PPC, and DLPFC of unaffected comparison (UC) and matched SZ subjects. In UC subjects, levels of most AMPAR and NMDAR mRNAs exhibited opposite rostral-to-caudal gradients, with AMPAR GRIA1 and GRIA2 mRNA levels highest in DLPFC and NMDAR GRIN1 and GRIN2A mRNA levels highest in V1. GABRA5 and GABRA1 mRNA levels were highest in DLPFC and V1, respectively. In SZ, most transcript levels were lower relative to UC subjects, with these differences largest in V1, intermediate in V2 and PPC, and smallest in DLPFC. In UC subjects, these distinct patterns of receptor transcript levels across the cortical vsWM network suggest that the balance between excitation and inhibition is achieved in a region-specific manner. In SZ subjects, the large deficits in excitatory and inhibitory receptor transcript levels in caudal sensory regions suggest that abnormalities early in the vsWM pathway might contribute to altered information processing in rostral higher-order regions.
Collapse
Affiliation(s)
- Kirsten E Schoonover
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry and Behavioral Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Samuel J Dienel
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - H Holly Bazmi
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John F Enwright
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
27
|
Targa Dias Anastacio H, Matosin N, Ooi L. Familial Alzheimer's Disease Neurons Bearing Mutations in PSEN1 Display Increased Calcium Responses to AMPA as an Early Calcium Dysregulation Phenotype. Life (Basel) 2024; 14:625. [PMID: 38792645 PMCID: PMC11123496 DOI: 10.3390/life14050625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Familial Alzheimer's disease (FAD) can be caused by mutations in PSEN1 that encode presenilin-1, a component of the gamma-secretase complex that cleaves amyloid precursor protein. Alterations in calcium (Ca2+) homeostasis and glutamate signaling are implicated in the pathogenesis of FAD; however, it has been difficult to assess in humans whether or not these phenotypes are the result of amyloid or tau pathology. This study aimed to assess the early calcium and glutamate phenotypes of FAD by measuring the Ca2+ response of induced pluripotent stem cell (iPSC)-derived neurons bearing PSEN1 mutations to glutamate and the ionotropic glutamate receptor agonists NMDA, AMPA, and kainate compared to isogenic control and healthy lines. The data show that in early neurons, even in the absence of amyloid and tau phenotypes, FAD neurons exhibit increased Ca2+ responses to glutamate and AMPA, but not NMDA or kainate. Together, this suggests that PSEN1 mutations alter Ca2+ and glutamate signaling as an early phenotype of FAD.
Collapse
Affiliation(s)
- Helena Targa Dias Anastacio
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia;
| | - Natalie Matosin
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia;
| | - Lezanne Ooi
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia;
| |
Collapse
|
28
|
Chen J, Zhang Z, Liu Y, Huang L, Liu Y, Yang D, Bao X, Liu P, Ge Y, Li Q, Shu X, Xu L, Shi YS, Zhu X, Xu Y. Progressive reduction of nuclear receptor Nr4a1 mediates age-dependent cognitive decline. Alzheimers Dement 2024; 20:3504-3524. [PMID: 38605605 PMCID: PMC11095431 DOI: 10.1002/alz.13819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION Cognitive decline progresses with age, and Nr4a1 has been shown to participate in memory functions. However, the relationship between age-related Nr4a1 reduction and cognitive decline is undefined. METHODS Nr4a1 expressions were evaluated by quantitative PCR and immunochemical approaches. The cognition of mice was examined by multiple behavioral tests. Patch-clamp experiments were conducted to investigate the synaptic function. RESULTS NR4A1 in peripheral blood mononuclear cells decreased with age in humans. In the mouse brain, age-dependent Nr4a1 reduction occurred in the hippocampal CA1. Deleting Nr4a1 in CA1 pyramidal neurons (PyrNs) led to the impairment of cognition and excitatory synaptic function. Mechanistically, Nr4a1 enhanced TrkB expression via binding to its promoter. Blocking TrkB compromised the cognitive amelioration with Nr4a1-overexpression in CA1 PyrNs. DISCUSSION Our results elucidate the mechanism of Nr4a1-dependent TrkB regulation in cognition and synaptic function, indicating that Nr4a1 is a target for the treatment of cognitive decline. HIGHLIGHTS Nr4a1 is reduced in PBMCs and CA1 PyrNs with aging. Nr4a1 ablation in CA1 PyrNs impaired cognition and excitatory synaptic function. Nr4a1 overexpression in CA1 PyrNs ameliorated cognitive impairment of aged mice. Nr4a1 bound to TrkB promoter to enhance transcription. Blocking TrkB function compromised Nr4a1-induced cognitive improvement.
Collapse
|
29
|
Brunetti V, Soda T, Berra-Romani R, De Sarro G, Guerra G, Scarpellino G, Moccia F. Two Signaling Modes Are Better than One: Flux-Independent Signaling by Ionotropic Glutamate Receptors Is Coming of Age. Biomedicines 2024; 12:880. [PMID: 38672234 PMCID: PMC11048239 DOI: 10.3390/biomedicines12040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system. Glutamatergic transmission can be mediated by ionotropic glutamate receptors (iGluRs), which mediate rapid synaptic depolarization that can be associated with Ca2+ entry and activity-dependent change in the strength of synaptic transmission, as well as by metabotropic glutamate receptors (mGluRs), which mediate slower postsynaptic responses through the recruitment of second messenger systems. A wealth of evidence reported over the last three decades has shown that this dogmatic subdivision between iGluRs and mGluRs may not reflect the actual physiological signaling mode of the iGluRs, i.e., α-amino-3-hydroxy-5-methyl-4-isoxasolepropionic acid (AMPA) receptors (AMPAR), kainate receptors (KARs), and N-methyl-D-aspartate (NMDA) receptors (NMDARs). Herein, we review the evidence available supporting the notion that the canonical iGluRs can recruit flux-independent signaling pathways not only in neurons, but also in brain astrocytes and cerebrovascular endothelial cells. Understanding the signaling versatility of iGluRs can exert a profound impact on our understanding of glutamatergic synapses. Furthermore, it may shed light on novel neuroprotective strategies against brain disorders.
Collapse
Affiliation(s)
- Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, 27110 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.S.); (G.D.S.)
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Giovambattista De Sarro
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.S.); (G.D.S.)
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, 88110 Catanzaro, Italy
| | - Germano Guerra
- Department of Medicine and Health Science “Vincenzo Tiberio”, School of Medicine and Surgery, University of Molise, 86100 Campobasso, Italy;
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, 27110 Pavia, Italy; (V.B.); (G.S.)
| | - Francesco Moccia
- Department of Medicine and Health Science “Vincenzo Tiberio”, School of Medicine and Surgery, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
30
|
Meftah S, Cavallini A, Murray TK, Jankowski L, Bose S, Ashby MC, Brown JT, Witton J. Synaptic alterations associated with disrupted sensory encoding in a mouse model of tauopathy. Brain Commun 2024; 6:fcae134. [PMID: 38712321 PMCID: PMC11073755 DOI: 10.1093/braincomms/fcae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 02/09/2024] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
Synapse loss is currently the best biological correlate of cognitive decline in Alzheimer's disease and other tauopathies. Synapses seem to be highly vulnerable to tau-mediated disruption in neurodegenerative tauopathies. However, it is unclear how and when this leads to alterations in function related to the progression of tauopathy and neurodegeneration. We used the well-characterized rTg4510 mouse model of tauopathy at 5-6 months and 7-8 months of age, respectively, to study the functional impact of cortical synapse loss. The earlier age was used as a model of prodromal tauopathy, with the later age corresponding to more advanced tau pathology and presumed progression of neurodegeneration. Analysis of synaptic protein expression in the somatosensory cortex showed significant reductions in synaptic proteins and NMDA and AMPA receptor subunit expression in rTg4510 mice. Surprisingly, in vitro whole-cell patch clamp electrophysiology from putative pyramidal neurons in layer 2/3 of the somatosensory cortex suggested no functional alterations in layer 4 to layer 2/3 synaptic transmission at 5-6 months. From these same neurons, however, there were alterations in dendritic structure, with increased branching proximal to the soma in rTg4510 neurons. Therefore, in vivo whole-cell patch clamp recordings were utilized to investigate synaptic function and integration in putative pyramidal neurons in layer 2/3 of the somatosensory cortex. These recordings revealed a significant increase in the peak response to synaptically driven sensory stimulation-evoked activity and a loss of temporal fidelity of the evoked signal to the input stimulus in rTg4510 neurons. Together, these data suggest that loss of synapses, changes in receptor expression and dendritic restructuring may lead to alterations in synaptic integration at a network level. Understanding these compensatory processes could identify targets to help delay symptomatic onset of dementia.
Collapse
Affiliation(s)
- Soraya Meftah
- Faculty of Health and Life Sciences, Department of Clinical and Biomedical Science, University of Exeter, Exeter, EX1 2LU, UK
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Annalisa Cavallini
- Erl Wood Manor, Eli Lilly Pharmaceuticals, Windlesham, Surrey, GU20 6PH, UK
| | - Tracey K Murray
- Erl Wood Manor, Eli Lilly Pharmaceuticals, Windlesham, Surrey, GU20 6PH, UK
| | - Lukasz Jankowski
- Erl Wood Manor, Eli Lilly Pharmaceuticals, Windlesham, Surrey, GU20 6PH, UK
| | - Suchira Bose
- Erl Wood Manor, Eli Lilly Pharmaceuticals, Windlesham, Surrey, GU20 6PH, UK
| | - Michael C Ashby
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Jonathan T Brown
- Faculty of Health and Life Sciences, Department of Clinical and Biomedical Science, University of Exeter, Exeter, EX1 2LU, UK
| | - Jonathan Witton
- Faculty of Health and Life Sciences, Department of Clinical and Biomedical Science, University of Exeter, Exeter, EX1 2LU, UK
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|
31
|
Midorikawa R, Wakazono Y, Takamiya K. Aβ peptide enhances GluA1 internalization via lipid rafts in Alzheimer's-related hippocampal LTP dysfunction. J Cell Sci 2024; 137:jcs261281. [PMID: 38668720 DOI: 10.1242/jcs.261281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 03/08/2024] [Indexed: 05/01/2024] Open
Abstract
Amyloid β (Aβ) is a central contributor to neuronal damage and cognitive impairment in Alzheimer's disease (AD). Aβ disrupts AMPA receptor-mediated synaptic plasticity, a key factor in early AD progression. Numerous studies propose that Aβ oligomers hinder synaptic plasticity, particularly long-term potentiation (LTP), by disrupting GluA1 (encoded by GRIA1) function, although the precise mechanism remains unclear. In this study, we demonstrate that Aβ mediates the accumulation of GM1 ganglioside in lipid raft domains of cultured cells, and GluA1 exhibits preferential localization in lipid rafts via direct binding to GM1. Aβ enhances the raft localization of GluA1 by increasing GM1 in these areas. Additionally, chemical LTP stimulation induces lipid raft-dependent GluA1 internalization in Aβ-treated neurons, resulting in reduced cell surface and postsynaptic expression of GluA1. Consistent with this, disrupting lipid rafts and GluA1 localization in rafts rescues Aβ-mediated suppression of hippocampal LTP. These findings unveil a novel functional deficit in GluA1 trafficking induced by Aβ, providing new insights into the mechanism underlying AD-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Ryosuke Midorikawa
- Department of Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Yoshihiko Wakazono
- Department of Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
- Laboratory of Biophysical Research, Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Kogo Takamiya
- Department of Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
- Laboratory of Biophysical Research, Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan
| |
Collapse
|
32
|
Chen Y, Liu S, Jacobi AA, Jeng G, Ulrich JD, Stein IS, Patriarchi T, Hell JW. Rapid sequential clustering of NMDARs, CaMKII, and AMPARs upon activation of NMDARs at developing synapses. Front Synaptic Neurosci 2024; 16:1291262. [PMID: 38660466 PMCID: PMC11039796 DOI: 10.3389/fnsyn.2024.1291262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Rapid, synapse-specific neurotransmission requires the precise alignment of presynaptic neurotransmitter release and postsynaptic receptors. How postsynaptic glutamate receptor accumulation is induced during maturation is not well understood. We find that in cultures of dissociated hippocampal neurons at 11 days in vitro (DIV) numerous synaptic contacts already exhibit pronounced accumulations of the pre- and postsynaptic markers synaptotagmin, synaptophysin, synapsin, bassoon, VGluT1, PSD-95, and Shank. The presence of an initial set of AMPARs and NMDARs is indicated by miniature excitatory postsynaptic currents (mEPSCs). However, AMPAR and NMDAR immunostainings reveal rather smooth distributions throughout dendrites and synaptic enrichment is not obvious. We found that brief periods of Ca2+ influx through NMDARs induced a surprisingly rapid accumulation of NMDARs within 1 min, followed by accumulation of CaMKII and then AMPARs within 2-5 min. Postsynaptic clustering of NMDARs and AMPARs was paralleled by an increase in their mEPSC amplitudes. A peptide that blocked the interaction of NMDAR subunits with PSD-95 prevented the NMDAR clustering. NMDAR clustering persisted for 3 days indicating that brief periods of elevated glutamate fosters permanent accumulation of NMDARs at postsynaptic sites in maturing synapses. These data support the model that strong glutamatergic stimulation of immature glutamatergic synapses results in a fast and substantial increase in postsynaptic NMDAR content that required NMDAR binding to PSD-95 or its homologues and is followed by recruitment of CaMKII and subsequently AMPARs.
Collapse
Affiliation(s)
- Yucui Chen
- Department of Pharmacology, University of Iowa, Iowa City, IA, United States
| | - Shangming Liu
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Ariel A. Jacobi
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Grace Jeng
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Jason D. Ulrich
- Department of Pharmacology, University of Iowa, Iowa City, IA, United States
| | - Ivar S. Stein
- Department of Pharmacology, University of Iowa, Iowa City, IA, United States
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Tommaso Patriarchi
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Johannes W. Hell
- Department of Pharmacology, University of Iowa, Iowa City, IA, United States
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
33
|
Rao S, Sadybekov A, DeWitt DC, Lipka J, Katritch V, Herring BE. Detection of autism spectrum disorder-related pathogenic trio variants by a novel structure-based approach. Mol Autism 2024; 15:12. [PMID: 38566250 PMCID: PMC10988830 DOI: 10.1186/s13229-024-00590-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/16/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Glutamatergic synapse dysfunction is believed to underlie the development of Autism Spectrum Disorder (ASD) and Intellectual Disability (ID) in many individuals. However, identification of genetic markers that contribute to synaptic dysfunction in these individuals is notoriously difficult. Based on genomic analysis, structural modeling, and functional data, we recently established the involvement of the TRIO-RAC1 pathway in ASD and ID. Furthermore, we identified a pathological de novo missense mutation hotspot in TRIO's GEF1 domain. ASD/ID-related missense mutations within this domain compromise glutamatergic synapse function and likely contribute to the development of ASD/ID. The number of ASD/ID cases with mutations identified within TRIO's GEF1 domain is increasing. However, tools for accurately predicting whether such mutations are detrimental to protein function are lacking. METHODS Here we deployed advanced protein structural modeling techniques to predict potential de novo pathogenic and benign mutations within TRIO's GEF1 domain. Mutant TRIO-9 constructs were generated and expressed in CA1 pyramidal neurons of organotypic cultured hippocampal slices. AMPA receptor-mediated postsynaptic currents were examined in these neurons using dual whole-cell patch clamp electrophysiology. We also validated these findings using orthogonal co-immunoprecipitation and fluorescence lifetime imaging (FLIM-FRET) experiments to assay TRIO mutant overexpression effects on TRIO-RAC1 binding and on RAC1 activity in HEK293/T cells. RESULTS Missense mutations in TRIO's GEF1 domain that were predicted to disrupt TRIO-RAC1 binding or stability were tested experimentally and found to greatly impair TRIO-9's influence on glutamatergic synapse function. In contrast, missense mutations in TRIO's GEF1 domain that were predicted to have minimal effect on TRIO-RAC1 binding or stability did not impair TRIO-9's influence on glutamatergic synapse function in our experimental assays. In orthogonal assays, we find most of the mutations predicted to disrupt binding display loss of function but mutants predicted to disrupt stability do not reflect our results from neuronal electrophysiological data. LIMITATIONS We present a method to predict missense mutations in TRIO's GEF1 domain that may compromise TRIO function and test for effects in a limited number of assays. Possible limitations arising from the model systems employed here can be addressed in future studies. Our method does not provide evidence for whether these mutations confer ASD/ID risk or the likelihood that such mutations will result in the development of ASD/ID. CONCLUSIONS Here we show that a combination of structure-based computational predictions and experimental validation can be employed to reliably predict whether missense mutations in the human TRIO gene impede TRIO protein function and compromise TRIO's role in glutamatergic synapse regulation. With the growing accessibility of genome sequencing, the use of such tools in the accurate identification of pathological mutations will be instrumental in diagnostics of ASD/ID.
Collapse
Affiliation(s)
- Sadhna Rao
- Department of Biological Sciences, Neurobiology Section, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Anastasiia Sadybekov
- Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - David C DeWitt
- Department of Pathology, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Joanna Lipka
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Vsevolod Katritch
- Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Bruce E Herring
- Department of Biological Sciences, Neurobiology Section, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
34
|
Qneibi M, Bdir S, Bdair M, Aldwaik SA, Sandouka D, Heeh M, Idais TI. AMPA receptor neurotransmission and therapeutic applications: A comprehensive review of their multifaceted modulation. Eur J Med Chem 2024; 266:116151. [PMID: 38237342 DOI: 10.1016/j.ejmech.2024.116151] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 02/05/2024]
Abstract
The neuropharmacological community has shown a strong interest in AMPA receptors as critical components of excitatory synaptic transmission during the last fifteen years. AMPA receptors, members of the ionotropic glutamate receptor family, allow rapid excitatory neurotransmission in the brain. AMPA receptors, which are permeable to sodium and potassium ions, manage the bulk of the brain's rapid synaptic communications. This study thoroughly examines the recent developments in AMPA receptor regulation, focusing on a shift from single chemical illustrations to a more extensive investigation of underlying processes. The complex interplay of these modulators in modifying the function and structure of AMPA receptors is the main focus, providing insight into their influence on the speed of excitatory neurotransmission. This research emphasizes the potential of AMPA receptor modulation as a therapy for various neurological disorders such as epilepsy and Alzheimer's disease. Analyzing these regulators' sophisticated molecular details enhances our comprehension of neuropharmacology, representing a significant advancement in using AMPA receptors for treating intricate neurological conditions.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Samia Ammar Aldwaik
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Tala Iyad Idais
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
35
|
Chandrasekaran J, Caldwell KK, Brigman JL. Dynamic regulation of corticostriatal glutamatergic synaptic expression during reversal learning in male mice. Neurobiol Learn Mem 2024; 208:107892. [PMID: 38242226 PMCID: PMC10936219 DOI: 10.1016/j.nlm.2024.107892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Behavioral flexibility, one of the core executive functions of the brain, has been shown to be an essential skill for survival across species. Corticostriatal circuits play a critical role in mediating behavioral flexibility. The molecular mechanisms underlying these processes are still unclear. Here, we measured how synaptic glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and N-methyl-D-aspartic acid receptor (NMDAR) expression dynamically changed during specific stages of learning and reversal. Following training to well-established stages of discrimination and reversal learning on a touchscreen visual task, lateral orbitofrontal cortex (OFC), dorsal striatum (dS) as well as medial prefrontal cortex (mPFC), basolateral amygdala (BLA) and piriform cortex (Pir) were micro dissected from male mouse brain and the expression of glutamatergic receptor subunits in the synaptic fraction were measured via immunoblotting. We found that the GluN2B subunit of NMDAR in the OFC remained stable during initial discrimination learning but significantly increased in the synaptic fraction during mid-reversal stages, the period during which the OFC has been shown to play a critical role in updating outcome expectancies. In contrast, both GluA1 and GluA2 subunits of the AMPAR significantly increased in the dS synaptic fraction as new associations were learned late in reversal. Expression of NMDAR and AMPAR subunits did not significantly differ across learning stages in any other brain region. Together, these findings further support the involvement of OFC-dS circuits in moderating well-learned associations and flexible behavior and suggest that dynamic synaptic expression of NMDAR and AMPAR in these circuits may play a role in mediating efficient learning during discrimination and the ability to update previously learned associations as environmental contingencies change.
Collapse
Affiliation(s)
- Jayapriya Chandrasekaran
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Kevin K Caldwell
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque NM 87131, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque NM 87131, USA.
| |
Collapse
|
36
|
Zhang T, Dolga AM, Eisel ULM, Schmidt M. Novel crosstalk mechanisms between GluA3 and Epac2 in synaptic plasticity and memory in Alzheimer's disease. Neurobiol Dis 2024; 191:106389. [PMID: 38142840 DOI: 10.1016/j.nbd.2023.106389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease which accounts for the most cases of dementia worldwide. Impaired memory, including acquisition, consolidation, and retrieval, is one of the hallmarks in AD. At the cellular level, dysregulated synaptic plasticity partly due to reduced long-term potentiation (LTP) and enhanced long-term depression (LTD) underlies the memory deficits in AD. GluA3 containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are one of key receptors involved in rapid neurotransmission and synaptic plasticity. Recent studies revealed a novel form of GluA3 involved in neuronal plasticity that is dependent on cyclic adenosine monophosphate (cAMP), rather than N-methyl-d-aspartate (NMDA). However, this cAMP-dependent GluA3 pathway is specifically and significantly impaired by amyloid beta (Aβ), a pathological marker of AD. cAMP is a key second messenger that plays an important role in modulating memory and synaptic plasticity. We previously reported that exchange protein directly activated by cAMP 2 (Epac2), acting as a main cAMP effector, plays a specific and time-limited role in memory retrieval. From electrophysiological perspective, Epac2 facilities the maintenance of LTP, a cellular event closely associated with memory retrieval. Additionally, Epac2 was found to be involved in the GluA3-mediated plasticity. In this review, we comprehensively summarize current knowledge regarding the specific roles of GluA3 and Epac2 in synaptic plasticity and memory, and their potential association with AD.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
37
|
Wakazono Y, Midorikawa R, Takamiya K. Temporal and quantitative analysis of the functional expression of Ca 2+-permeable AMPA receptors during LTP. Neurosci Res 2024; 198:21-29. [PMID: 37429464 DOI: 10.1016/j.neures.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
In the present study, we attempted to temporally and quantitatively analyze the functional contributions of Ca2+-permeable (CP) α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) during long-term potentiation (LTP) expression using electrophysiological and pharmacological approaches. In hippocampal CA1 neurons, using 1-naphthyl acetyl spermine (NASPM), a CP-AMPAR antagonist, we began by demonstrating that NASPM-sensitive components, probably including the GluA1 homomer, functionally contributed to about 15% of AMPAR-mediated EPSC amplitude in basal conditions. Then, when NASPM was treated at different time points (3-30 min) after LTP induction, it was found that LTP was almost completely impaired at 3 or 10 min but maintained at 20 or 30 min, although its potentiation was reduced. Further temporal and quantitative analysis revealed that the functional expression of CP-AMPARs began increasing approximately 20 min after LTP induction and reached more than twice the basal level at 30 min. These results suggest that CP-AMPARs in the first 3-10 min of LTP might play an important role in LTP maintenance. Moreover, their decay time was also significantly increased at 30 min, suggesting that CP-AMPARs changed not only quantitatively in LTP but also qualitatively.
Collapse
Affiliation(s)
- Yoshihiko Wakazono
- Department of Neuroscience, Faculty of Medicine, University of Miyazaki, Japan; Laboratory of Biophysical Research, Frontier Science Research Center, University of Miyazaki, Japan
| | - Ryosuke Midorikawa
- Department of Neuroscience, Faculty of Medicine, University of Miyazaki, Japan
| | - Kogo Takamiya
- Department of Neuroscience, Faculty of Medicine, University of Miyazaki, Japan; Laboratory of Biophysical Research, Frontier Science Research Center, University of Miyazaki, Japan.
| |
Collapse
|
38
|
Pushkin AN, Kay Y, Herring BE. Protein 4.1N Plays a Cell Type-Specific Role in Hippocampal Glutamatergic Synapse Regulation. J Neurosci 2023; 43:8336-8347. [PMID: 37845032 PMCID: PMC10711697 DOI: 10.1523/jneurosci.0185-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/14/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023] Open
Abstract
Many glutamatergic synapse proteins contain a 4.1N protein binding domain. However, a role for 4.1N in the regulation of glutamatergic neurotransmission has been controversial. Here, we observe significantly higher expression of protein 4.1N in granule neurons of the dentate gyrus (DG granule neurons) compared with other hippocampal regions. We discover that reducing 4.1N expression in rat DG granule neurons of either sex results in a significant reduction in glutamatergic synapse function that is caused by a decrease in the number of glutamatergic synapses. By contrast, we find reduction of 4.1N expression in hippocampal CA1 pyramidal neurons has no impact on basal glutamatergic neurotransmission. We also find 4.1N's C-terminal domain (CTD) to be nonessential to its role in the regulation of glutamatergic synapses of DG granule neurons. Instead, we show that 4.1N's four-point-one, ezrin, radixin, and moesin (FERM) domain is essential for supporting synaptic AMPA receptor (AMPAR) function in these neurons. Altogether, this work demonstrates a novel, cell type-specific role for protein 4.1N in governing glutamatergic synapse function.SIGNIFICANCE STATEMENT Glutamatergic synapses exhibit immense molecular diversity. In comparison to heavily studied Schaffer collateral, CA1 glutamatergic synapses, significantly less is known about perforant path-dentate gyrus (DG) synapses. Our data demonstrate that compromising 4.1N function in CA1 pyramidal neurons produces no alteration in basal glutamatergic synaptic transmission. However, in DG granule neurons, compromising 4.1N function leads to a significant decrease in the strength of glutamatergic neurotransmission at perforant pathway synapses. Together, our data identifies 4.1N as a cell type-specific regulator of synaptic transmission within the hippocampus and reveals a unique molecular program that governs perforant pathway synapse function.
Collapse
Affiliation(s)
- Anna N Pushkin
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California 90089
| | - Yuni Kay
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California 90089
| | - Bruce E Herring
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California 90089
- Department of Biological Sciences, Neurobiology Section, Dornslife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
39
|
Moreton N, Puzio M, McCormack J, O'Connor JJ. The effects of prolyl hydroxylase inhibition during and post, hypoxia, oxygen glucose deprivation and oxidative stress, in isolated rat hippocampal slices. Brain Res Bull 2023; 205:110822. [PMID: 37984622 DOI: 10.1016/j.brainresbull.2023.110822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
The contributions of hypoxia and oxidative stress to the pathophysiology of acute ischemic stroke are well established and can lead to disruptions in synaptic signaling. Hypoxia and oxidative stress lead to the neurotoxic overproduction of reactive oxygen species (ROS) and the stabilization of hypoxia inducible factors (HIF). Compounds such as prolyl-4-hydroxylase domain enzyme inhibitors (PHDIs) have been shown to have a preconditioning and neuroprotective effect against ischemic insults such as hypoxia, anoxia, oxygen glucose deprivation (OGD) or H2O2. Therefore, this study explored the effects of two PHDIs, JNJ-42041935 (10 µM) and roxadustat (100 µM) on cell viability using organotypic hippocampal slice cultures. We also assessed the effects of these compounds on synaptic transmission during and post hypoxia, OGD and H2O2 application in isolated rat hippocampal slices using field recording electrophysiological techniques and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit trafficking using immunohistochemistry. Our organotypic data demonstrated a protective role for both inhibitors, where slices had significantly less cell death post anoxia and OGD compared to controls. We also report a distinct modulatory role for both JNJ-42041935 and roxadustat on fEPSP slope post hypoxia and OGD but not H2O2. In addition, we report that application of roxadustat impaired long-term potentiation, but only when applied post-hypoxia. This inhibitory effect was not reversed with co-application of the cyclin-dependent kinase 5 (CDK-5) inhibitor, roscovitine (10 µM), suggesting a CDK-5 independent synaptic AMPAR trafficking mechanism. Both hypoxia and OGD induced a reduction in synaptic AMPA GluA2 subunits, the OGD effect being reversed by prior treatment with both JNJ-42041935 and roxadustat. These results suggest an important role for PHDs in synaptic signaling and plasticity during episodes of ischemic stress.
Collapse
Affiliation(s)
- Niamh Moreton
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Martina Puzio
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Janet McCormack
- UCD Research Pathology Core, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - John J O'Connor
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
40
|
Collyer E, Boyle BR, Gomez-Galvez Y, Iacovitti L, Blanco-Suarez E. Absence of chordin-like 1 aids motor recovery in a mouse model of stroke. Exp Neurol 2023; 370:114548. [PMID: 37769794 PMCID: PMC11905929 DOI: 10.1016/j.expneurol.2023.114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/06/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Chordin-like 1 (Chrdl1) is an astrocyte-secreted protein that regulates synaptic maturation, and limits plasticity via GluA2-containing AMPA receptors (AMPARs). It was demonstrated that Chrdl1 expression is very heterogeneous throughout the brain, and it is enriched in astrocytes in cortical layers 2/3, with peak expression in the visual cortex at postnatal day 14. In response to ischemic stroke, Chrdl1 is upregulated during the acute and sub-acute phases in the peri-infarct region, potentially hindering recovery after stroke. Here, we used photothrombosis to model ischemic stroke in the motor cortex of adult male and female mice. In this study, we demonstrate that elimination of Chrdl1 in a global knock-out mouse reduces apoptotic cell death at early post-stroke stages and prevents ischemia-driven synaptic loss of AMPA receptors at later time points, all contributing to faster motor recovery. This suggests that synapse-regulating astrocyte-secreted proteins such as Chrdl1 have therapeutic potential to aid functional recovery after an ischemic injury.
Collapse
Affiliation(s)
- Eileen Collyer
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bridget R Boyle
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yolanda Gomez-Galvez
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lorraine Iacovitti
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Department of Neurological Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; The Joseph and Marie Field Cerebrovascular Research Laboratory, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elena Blanco-Suarez
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Department of Neurological Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
41
|
Eltokhi A, Bertocchi I, Rozov A, Jensen V, Borchardt T, Taylor A, Proenca CC, Rawlins JNP, Bannerman DM, Sprengel R. Distinct effects of AMPAR subunit depletion on spatial memory. iScience 2023; 26:108116. [PMID: 37876813 PMCID: PMC10590979 DOI: 10.1016/j.isci.2023.108116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/01/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023] Open
Abstract
Pharmacological studies established a role for AMPARs in the mammalian forebrain in spatial memory performance. Here we generated global GluA1/3 double knockout mice (Gria1/3-/-) and conditional knockouts lacking GluA1 and GluA3 AMPAR subunits specifically from principal cells across the forebrain (Gria1/3ΔFb). In both models, loss of GluA1 and GluA3 resulted in reduced hippocampal GluA2 and increased levels of the NMDAR subunit GluN2A. Electrically-evoked AMPAR-mediated EPSPs were greatly diminished, and there was an absence of tetanus-induced LTP. Gria1/3-/- mice showed premature mortality. Gria1/3ΔFb mice were viable, and their memory performance could be analyzed. In the Morris water maze (MWM), Gria1/3ΔFb mice showed profound long-term memory deficits, in marked contrast to the normal MWM learning previously seen in single Gria1-/- and Gria3-/- knockout mice. Our results suggest a redundancy of function within the pool of available ionotropic glutamate receptors for long-term spatial memory performance.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Pharmacolog, University of Washington, Seattle, WA, USA
| | - Ilaria Bertocchi
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Neuroscience Rita Levi Montalcini, University of Turin, 10126 Turin, Italy
- Neuroscience Institute - Cavalieri-Ottolenghi Foundation (NICO), Laboratory of Neuropsychopharmacology, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Andrei Rozov
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Institute of Neuroscience, Lobachevsky State University of Nizhniy, 603022 Novgorod, Russia
- Federal Center of Brain Research and Neurotechnology, 117997 Moscow, Russia
| | - Vidar Jensen
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Thilo Borchardt
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Amy Taylor
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Catia C. Proenca
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | | | - Rolf Sprengel
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| |
Collapse
|
42
|
Certain N, Gan Q, Bennett J, Hsieh H, Wollmuth LP. Differential regulation of tetramerization of the AMPA receptor glutamate-gated ion channel by auxiliary subunits. J Biol Chem 2023; 299:105227. [PMID: 37673338 PMCID: PMC10558804 DOI: 10.1016/j.jbc.2023.105227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) auxiliary subunits are specialized, nontransient binding partners of AMPARs that modulate AMPAR channel gating properties and pharmacology, as well as their biogenesis and trafficking. The most well-characterized families of auxiliary subunits are transmembrane AMPAR regulatory proteins (TARPs), cornichon homologs (CNIHs), and the more recently discovered GSG1-L. These auxiliary subunits can promote or reduce surface expression of AMPARs (composed of GluA1-4 subunits) in neurons, thereby impacting their functional role in membrane signaling. Here, we show that CNIH-2 enhances the tetramerization of WT and mutant AMPARs, presumably by increasing the overall stability of the tetrameric complex, an effect that is mainly mediated by interactions with the transmembrane domain of the receptor. We also find CNIH-2 and CNIH-3 show receptor subunit-specific actions in this regard with CNIH-2 enhancing both GluA1 and GluA2 tetramerization, whereas CNIH-3 only weakly enhances GluA1 tetramerization. These results are consistent with the proposed role of CNIHs as endoplasmic reticulum cargo transporters for AMPARs. In contrast, TARP γ-2, TARP γ-8, and GSG1-L have no or negligible effect on AMPAR tetramerization. On the other hand, TARP γ-2 can enhance receptor tetramerization but only when directly fused with the receptor at a maximal stoichiometry. Notably, surface expression of functional AMPARs was enhanced by CNIH-2 to a greater extent than TARP γ-2, suggesting that this distinction aids in maturation and membrane expression. These experiments define a functional distinction between CNIHs and other auxiliary subunits in the regulation of AMPAR biogenesis.
Collapse
Affiliation(s)
- Noele Certain
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, USA
| | - Quan Gan
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, New York, USA
| | - Joseph Bennett
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, New York, USA
| | - Helen Hsieh
- Department of Surgery, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, USA
| | - Lonnie P Wollmuth
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, New York, USA; Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, USA; Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
43
|
Nuwer JL, Povysheva N, Jacob TC. Long-term α5 GABA A receptor negative allosteric modulator treatment reduces NMDAR-mediated neuronal excitation and maintains basal neuronal inhibition. Neuropharmacology 2023; 237:109587. [PMID: 37270156 PMCID: PMC10527172 DOI: 10.1016/j.neuropharm.2023.109587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 06/05/2023]
Abstract
α5 subunit-containing GABA type-A receptors (α5 GABAARs) are enriched in the hippocampus and play critical roles in neurodevelopment, synaptic plasticity, and cognition. α5 GABAAR preferring negative allosteric modulators (α5 NAMs) show promise mitigating cognitive impairment in preclinical studies of conditions characterized by excess GABAergic inhibition, including Down syndrome and memory deficits post-anesthesia. However, previous studies have primarily focused on acute application or single-dose α5 NAM treatment. Here, we measured the effects of chronic (7-day) in vitro treatment with L-655,708 (L6), a highly selective α5 NAM, on glutamatergic and GABAergic synapses in rat hippocampal neurons. We previously showed that 2-day in vitro treatment with L6 enhanced synaptic levels of the glutamate NMDA receptor (NMDAR) GluN2A subunit without modifying surface α5 GABAAR expression, inhibitory synapse function, or L6 sensitivity. We hypothesized that chronic L6 treatment would further increase synaptic GluN2A subunit levels while maintaining GABAergic inhibition and L6 efficacy, thus increasing neuronal excitation and glutamate-evoked intracellular calcium responses. Immunofluorescence experiments revealed that 7-day L6 treatment slightly increased the synaptic levels of gephyrin and surface α5 GABAARs. Functional studies showed that chronic α5 NAM treatment did not alter inhibition or α5 NAM sensitivity. Surprisingly, chronic L6 exposure decreased surface levels of GluN2A and GluN2B subunits, concurrent with reduced NMDAR-mediated neuronal excitation as seen by faster synaptic decay rates and reduced glutamate-evoked calcium responses. Together, these results show that chronic in vitro treatment with an α5 NAM leads to subtle homeostatic changes in inhibitory and excitatory synapses that suggest an overall dampening of excitability.
Collapse
Affiliation(s)
- Jessica L Nuwer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadya Povysheva
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
44
|
Warming H, Deinhardt K, Garland P, More J, Bulters D, Galea I, Vargas-Caballero M. Functional effects of haemoglobin can be rescued by haptoglobin in an in vitro model of subarachnoid haemorrhage. J Neurochem 2023; 167:90-103. [PMID: 37702203 DOI: 10.1111/jnc.15936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023]
Abstract
During subarachnoid haemorrhage, a blood clot forms in the subarachnoid space releasing extracellular haemoglobin (Hb), which causes oxidative damage and cell death in surrounding tissues. High rates of disability and cognitive decline in SAH survivors are attributed to loss of neurons and functional connections during secondary brain injury. Haptoglobin sequesters Hb for clearance, but this scavenging system is overwhelmed after a haemorrhage. Whilst exogenous haptoglobin application can attenuate cytotoxicity of Hb in vitro and in vivo, the functional effects of sub-lethal Hb concentrations on surviving neurons and whether cellular function can be protected with haptoglobin treatment remain unclear. Here we use cultured neurons to investigate neuronal health and function across a range of Hb concentrations to establish the thresholds for cellular damage and investigate synaptic function. Hb impairs ATP concentrations and cytoskeletal structure. At clinically relevant but sub-lethal Hb concentrations, we find that synaptic AMPAR-driven currents are reduced, accompanied by a reduction in GluA1 subunit expression. Haptoglobin co-application can prevent these deficits by scavenging free Hb to reduce it to sub-threshold concentrations and does not need to be present at stoichiometric amounts to achieve efficacy. Haptoglobin itself does not impair measures of neuronal health and function at any concentration tested. Our data highlight a role for Hb in modifying synaptic function in surviving neurons, which may link to impaired cognition or plasticity after SAH and support the development of haptoglobin as a therapy for subarachnoid haemorrhage.
Collapse
Affiliation(s)
- Hannah Warming
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Katrin Deinhardt
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | | | - John More
- Bio Products Laboratory Limited, Elstree, UK
| | - Diederik Bulters
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Ian Galea
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
| | - Mariana Vargas-Caballero
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
45
|
Nicoll RA, Schulman H. Synaptic memory and CaMKII. Physiol Rev 2023; 103:2877-2925. [PMID: 37290118 PMCID: PMC10642921 DOI: 10.1152/physrev.00034.2022] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 06/10/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) and long-term potentiation (LTP) were discovered within a decade of each other and have been inextricably intertwined ever since. However, like many marriages, it has had its up and downs. Based on the unique biochemical properties of CaMKII, it was proposed as a memory molecule before any physiological linkage was made to LTP. However, as reviewed here, the convincing linkage of CaMKII to synaptic physiology and behavior took many decades. New technologies were critical in this journey, including in vitro brain slices, mouse genetics, single-cell molecular genetics, pharmacological reagents, protein structure, and two-photon microscopy, as were new investigators attracted by the exciting challenge. This review tracks this journey and assesses the state of this marriage 40 years on. The collective literature impels us to propose a relatively simple model for synaptic memory involving the following steps that drive the process: 1) Ca2+ entry through N-methyl-d-aspartate (NMDA) receptors activates CaMKII. 2) CaMKII undergoes autophosphorylation resulting in constitutive, Ca2+-independent activity and exposure of a binding site for the NMDA receptor subunit GluN2B. 3) Active CaMKII translocates to the postsynaptic density (PSD) and binds to the cytoplasmic C-tail of GluN2B. 4) The CaMKII-GluN2B complex initiates a structural rearrangement of the PSD that may involve liquid-liquid phase separation. 5) This rearrangement involves the PSD-95 scaffolding protein, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), and their transmembrane AMPAR-regulatory protein (TARP) auxiliary subunits, resulting in an accumulation of AMPARs in the PSD that underlies synaptic potentiation. 6) The stability of the modified PSD is maintained by the stability of the CaMKII-GluN2B complex. 7) By a process of subunit exchange or interholoenzyme phosphorylation CaMKII maintains synaptic potentiation in the face of CaMKII protein turnover. There are many other important proteins that participate in enlargement of the synaptic spine or modulation of the steps that drive and maintain the potentiation. In this review we critically discuss the data underlying each of the steps. As will become clear, some of these steps are more firmly grounded than others, and we provide suggestions as to how the evidence supporting these steps can be strengthened or, based on the new data, be replaced. Although the journey has been a long one, the prospect of having a detailed cellular and molecular understanding of learning and memory is at hand.
Collapse
Affiliation(s)
- Roger A Nicoll
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California, United States
| | - Howard Schulman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California, United States
- Panorama Research Institute, Sunnyvale, California, United States
| |
Collapse
|
46
|
Bagwe PV, Deshpande RD, Juhasz G, Sathaye S, Joshi SV. Uncovering the Significance of STEP61 in Alzheimer's Disease: Structure, Substrates, and Interactome. Cell Mol Neurobiol 2023; 43:3099-3113. [PMID: 37219664 PMCID: PMC11410018 DOI: 10.1007/s10571-023-01364-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
STEP (STriatal-Enriched Protein Tyrosine Phosphatase) is a brain-specific phosphatase that plays an important role in controlling signaling molecules involved in neuronal activity and synaptic development. The striatum is the main location of the STEP enzyme. An imbalance in STEP61 activity is a risk factor for Alzheimer's disease (AD). It can contribute to the development of numerous neuropsychiatric diseases, including Parkinson's disease (PD), schizophrenia, fragile X syndrome (FXS), Huntington's disease (HD), alcoholism, cerebral ischemia, and stress-related diseases. The molecular structure, chemistry, and molecular mechanisms associated with STEP61's two major substrates, Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAr) and N-methyl-D-aspartate receptors (NMDARs), are crucial in understanding the relationship between STEP61 and associated illnesses. STEP's interactions with its substrate proteins can alter the pathways of long-term potentiation and long-term depression. Therefore, understanding the role of STEP61 in neurological illnesses, particularly Alzheimer's disease-associated dementia, can provide valuable insights for possible therapeutic interventions. This review provides valuable insights into the molecular structure, chemistry, and molecular mechanisms associated with STEP61. This brain-specific phosphatase controls signaling molecules involved in neuronal activity and synaptic development. This review can aid researchers in gaining deep insights into the complex functions of STEP61.
Collapse
Affiliation(s)
- Pritam V Bagwe
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Radni D Deshpande
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Gabor Juhasz
- Clinical Research Unit (CRU Global Hungary Ltd.), Budapest, Hungary
| | - Sadhana Sathaye
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| | - Shreerang V Joshi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| |
Collapse
|
47
|
Nagao M, Hatae A, Mine K, Tsutsumi S, Omori H, Hirata M, Arimatsu M, Taniguchi C, Watanabe T, Kubota K, Katsurabayashi S, Iwasaki K. The Effects of Ninjinyoeito on Impaired Spatial Memory and Prefrontal Cortical Synaptic Plasticity through α-Amino-3-hydroxy-5-4-isoxazole Propionic Acid Receptor Subunit in a Rat Model with Cerebral Ischemia and β-Amyloid Injection. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:6035589. [PMID: 37808130 PMCID: PMC10560115 DOI: 10.1155/2023/6035589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 08/05/2023] [Accepted: 09/02/2023] [Indexed: 10/10/2023]
Abstract
Ninjinyoeito (NYT), a traditional Japanese medicine, is effective for improving physical strength and treating fatigue and anorexia. Recently, a clinical report revealed that NYT ameliorates cognitive dysfunction in Alzheimer's disease (AD) patients, although the mechanisms remain unclear. AD is a neurodegenerative disorder accompanied by a progressive deficit in memory. Current therapeutic agents are largely ineffective in treating cognitive dysfunction in AD patients. In this study, we investigated the effects of NYT on spatial memory impairment in a rat model of dementia. Rats were prepared with transient cerebral ischemia and intraventricular injection of β-amyloid1-42 for 7 days (CI + Aβ). NYT was orally administered for 7 days after cerebral ischemia. We evaluated spatial memory using the Morris water maze and investigated the expression of α-amino-3-hydroxy-5-4-isoxazole propionic acid receptor subunits, the phosphorylation level of glutamate receptor A (GluA)1 at serine sites S831 and S845, and the Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the hippocampus and prefrontal cortex of CI + Aβ rats. In the CI + Aβ rats, NYT treatment shortened the extended time to reach the platform. However, NYT did not restore the decrease in the hippocampal GluA1, GluA2, or CaMKII expression but increased prefrontal cortical phosphorylation levels of S845-GluA1 and CaMKII. Therefore, NYT may alleviate spatial memory impairment by promoting glutamatergic transmission involved in the phosphorylation of S845-GluA1 and CaMKII in the prefrontal cortex of CI + Aβ rats. Our results suggest that NYT is a valuable treatment for AD patients.
Collapse
Affiliation(s)
- Masaki Nagao
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Akinobu Hatae
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Kazuma Mine
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Soichiro Tsutsumi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Hiroya Omori
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Marika Hirata
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Maaya Arimatsu
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Chise Taniguchi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Takuya Watanabe
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka 814-0180, Japan
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Kaori Kubota
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka 814-0180, Japan
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Shutaro Katsurabayashi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Katsunori Iwasaki
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka 814-0180, Japan
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| |
Collapse
|
48
|
Gerace E, Curti L, Caffino L, Bigagli E, Mottarlini F, Castillo Díaz F, Ilari A, Luceri C, Dani C, Fumagalli F, Masi A, Mannaioni G. Ethanol-induced AMPA alterations are mediated by mGLU5 receptors through miRNA upregulation in hippocampal slices. Eur J Pharmacol 2023; 955:175878. [PMID: 37433363 DOI: 10.1016/j.ejphar.2023.175878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Prenatal alcohol exposure (PAE) affects neuronal networks and brain development causing a range of physical, cognitive and behavioural disorders in newborns that persist into adulthood. The array of consequences associated with PAE can be grouped under the umbrella-term 'fetal alcohol spectrum disorders' (FASD). Unfortunately, there is no cure for FASD as the molecular mechanisms underlying this pathology are still unknown. We have recently demonstrated that chronic EtOH exposure, followed by withdrawal, induces a significant decrease in AMPA receptor (AMPAR) expression and function in developing hippocampus in vitro. Here, we explored the EtOH-dependent pathways leading to hippocampal AMPAR suppression. Organotypic hippocampal slices (2 days in cultures) were exposed to EtOH (150 mM) for 7 days followed by 24 h EtOH withdrawal. Then, the slices were analysed by means of RT-PCR for miRNA content, western blotting for AMPA and NMDA related-synaptic proteins expression in postsynaptic compartment and electrophysiology to record electrical properties from CA1 pyramidal neurons. We observed that EtOH induces a significant downregulation of postsynaptic AMPA and NMDA subunits and relative scaffolding protein expression and, accordingly, a decrease of AMPA-mediated neurotransmission. Simultaneously, we found that chronic EtOH induced-upregulation of miRNA 137 and 501-3p and decreased AMPA-mediated neurotransmission are prevented by application of the selective mGlu5 antagonist MPEP during EtOH withdrawal. Our data indicate mGlu5 via miRNA137 and 501-3p expression as key factors in the regulation of AMPAergic neurotransmission that may contribute, at least in part, to the pathogenesis of FASD.
Collapse
Affiliation(s)
- Elisabetta Gerace
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Department of Health Sciences (DSS), University of Florence, Florence, Italy.
| | - Lorenzo Curti
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Italy
| | - Elisabetta Bigagli
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Italy
| | - Fernando Castillo Díaz
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Italy
| | - Alice Ilari
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Cristina Luceri
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Carlo Dani
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
49
|
Ugarte G, Piña R, Contreras D, Godoy F, Rubio D, Rozas C, Zeise M, Vidal R, Escobar J, Morales B. Attention Deficit-Hyperactivity Disorder (ADHD): From Abnormal Behavior to Impairment in Synaptic Plasticity. BIOLOGY 2023; 12:1241. [PMID: 37759640 PMCID: PMC10525904 DOI: 10.3390/biology12091241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Attention deficit-hyperactivity disorder (ADHD) is a neurodevelopmental disorder with high incidence in children and adolescents characterized by motor hyperactivity, impulsivity, and inattention. Magnetic resonance imaging (MRI) has revealed that neuroanatomical abnormalities such as the volume reduction in the neocortex and hippocampus are shared by several neuropsychiatric diseases such as schizophrenia, autism spectrum disorder and ADHD. Furthermore, the abnormal development and postnatal pruning of dendritic spines of neocortical neurons in schizophrenia, autism spectrum disorder and intellectual disability are well documented. Dendritic spines are dynamic structures exhibiting Hebbian and homeostatic plasticity that triggers intracellular cascades involving glutamate receptors, calcium influx and remodeling of the F-actin network. The long-term potentiation (LTP)-induced insertion of postsynaptic glutamate receptors is associated with the enlargement of spine heads and long-term depression (LTD) with spine shrinkage. Using a murine model of ADHD, a delay in dendritic spines' maturation in CA1 hippocampal neurons correlated with impaired working memory and hippocampal LTP has recently reported. The aim of this review is to summarize recent evidence that has emerged from studies focused on the neuroanatomical and genetic features found in ADHD patients as well as reports from animal models describing the molecular structure and remodeling of dendritic spines.
Collapse
Affiliation(s)
- Gonzalo Ugarte
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| | - Ricardo Piña
- Department of Biology, Faculty of Sciences, Metropolitan University of Education Sciences, Santiago 7760197, Chile;
- Department of Human Sciences, Faculty of Human Science, Bernardo O’Higgins University, Santiago 8370854, Chile
| | - Darwin Contreras
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| | - Felipe Godoy
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| | - David Rubio
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| | - Carlos Rozas
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| | - Marc Zeise
- School of Psychology, Faculty of Humanities, University of Santiago of Chile, Santiago 9170022, Chile;
| | - Rodrigo Vidal
- Laboratory of Genomics, Molecular Ecology and Evolutionary Studies, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile;
| | - Jorge Escobar
- Institute of Chemistry, Pontifical Catholic University of Valparaíso, Valparaíso 2340000, Chile
| | - Bernardo Morales
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| |
Collapse
|
50
|
Rivera JF, Weng W, Huang H, Rao S, Herring BE, Arnold DB. ATLAS: A rationally designed anterograde transsynaptic tracer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557425. [PMID: 37745471 PMCID: PMC10515852 DOI: 10.1101/2023.09.12.557425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Neural circuits, which constitute the substrate for brain processing, can be traced in the retrograde direction, from postsynaptic to presynaptic cells, using methods based on introducing modified rabies virus into genetically marked cell types. These methods have revolutionized the field of neuroscience. However, similarly reliable, transsynaptic, and non-toxic methods to trace circuits in the anterograde direction are not available. Here, we describe such a method based on an antibody-like protein selected against the extracellular N-terminus of the AMPA receptor subunit GluA1 (AMPA.FingR). ATLAS (Anterograde Transsynaptic Label based on Antibody-like Sensors) is engineered to release the AMPA.FingR and its payload, which can include Cre recombinase, from presynaptic sites into the synaptic cleft, after which it binds to GluA1, enters postsynaptic cells through endocytosis and subsequently carries its payload to the nucleus. Testing in vivo and in dissociated cultures shows that ATLAS mediates monosynaptic tracing from genetically determined cells that is strictly anterograde, synaptic, and non-toxic. Moreover, ATLAS shows activity dependence, which may make tracing active circuits that underlie specific behaviors possible.
Collapse
Affiliation(s)
- Jacqueline F. Rivera
- Department of Biology, University of Southern California, Los Angeles, CA 90089
- These authors contributed equally
| | - Weiguang Weng
- Department of Biology, University of Southern California, Los Angeles, CA 90089
- These authors contributed equally
| | - Haoyang Huang
- Department of Biology, University of Southern California, Los Angeles, CA 90089
- These authors contributed equally
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089
| | - Sadhna Rao
- Department of Biology, University of Southern California, Los Angeles, CA 90089
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089
| | - Bruce E. Herring
- Department of Biology, University of Southern California, Los Angeles, CA 90089
| | - Don B. Arnold
- Department of Biology, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|