1
|
Maejima I, Sato K. New aspects of a small GTPase RAB35 in brain development and function. Neural Regen Res 2025; 20:1971-1980. [PMID: 39254551 PMCID: PMC11691468 DOI: 10.4103/nrr.nrr-d-23-01543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/12/2023] [Accepted: 12/30/2023] [Indexed: 09/11/2024] Open
Abstract
In eukaryotic cells, organelles in the secretory, lysosomal, and endocytic pathways actively exchange biological materials with each other through intracellular membrane trafficking, which is the process of transporting the cargo of proteins, lipids, and other molecules to appropriate compartments via transport vesicles or intermediates. These processes are strictly regulated by various small GTPases such as the RAS-like in rat brain (RAB) protein family, which is the largest subfamily of the RAS superfamily. Dysfunction of membrane trafficking affects tissue homeostasis and leads to a wide range of diseases, including neurological disorders and neurodegenerative diseases. Therefore, it is important to understand the physiological and pathological roles of RAB proteins in brain function. RAB35, a member of the RAB family, is an evolutionarily conserved protein in metazoans. A wide range of studies using cultured mammalian cells and model organisms have revealed that RAB35 mediates various processes such as cytokinesis, endocytic recycling, actin bundling, and cell migration. RAB35 is also involved in neurite outgrowth and turnover of synaptic vesicles. We generated brain-specific Rab35 knockout mice to study the physiological roles of RAB35 in brain development and function. These mice exhibited defects in anxiety-related behaviors and spatial memory. Strikingly, RAB35 is required for the precise positioning of pyramidal neurons during hippocampal development, and thereby for normal hippocampal lamination. In contrast, layer formation in the cerebral cortex occurred superficially, even in the absence of RAB35, suggesting a predominant role for RAB35 in hippocampal development rather than in cerebral cortex development. Recent studies have suggested an association between RAB35 and neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. In this review, we provide an overview of the current understanding of subcellular functions of RAB35. We also provide insights into the physiological role of RAB35 in mammalian brain development and function, and discuss the involvement of RAB35 dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ikuko Maejima
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
2
|
Lv Y, Zou W, Li L, Zhang S, Liang J, Pu J, Jiao J. IFITM2 Modulates Endocytosis Maintaining Neural Stem Cells in Developing Neocortex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2501593. [PMID: 40052215 PMCID: PMC12061285 DOI: 10.1002/advs.202501593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/17/2025] [Indexed: 05/10/2025]
Abstract
Brain development is orchestrated by a complex interplay of genetic and environmental signals, with endocytosis serving as a pivotal process in integrating extracellular cues. However, the specific role of endocytosis in neurogenesis remains unclear. We uncover a critical function of the interferon-induced transmembrane protein, IFITM2, essential for endocytic processes in radial glial cells (RGCs). IFITM2 is highly expressed near the ventricular surface in the developing brain. Loss of IFITM2 impairs endosome formation and disrupts RGC maintenance. Mechanistically, we confirmed that the YXXø endocytic motif on IFITM2 is essential for its subcellular localization, with mutations in this motif reducing endocytic vesicles. Additionally, the K82 and K87 residues of IFITM2 interact with phosphoinositides to promote endocytic vesicle formation. Polarized localization of phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) on the ventricular side suggests its role in vesicle formation. IFITM2 deficiency also leads to reduced phosphorylation of AKT and GSK3β. These findings highlight the essential role of IFITM2 in regulating endocytosis in RGCs, which is critical for maintaining neural stem cells and proper brain development, offering new insights into the connection between cellular signaling and neurogenesis in both mouse and human models.
Collapse
Affiliation(s)
- Yuqing Lv
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| | - Wenzheng Zou
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical UniversityZhanjiang523710China
| | - Lin Li
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| | - Shukui Zhang
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| | - Jiaqi Liang
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| | - Jiali Pu
- Department of NeurologySecond Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Jianwei Jiao
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
| |
Collapse
|
3
|
Han D, Zhang J, Zheng Y, Wang L, Yu H, Su B. The phosphomimetic Rab10 T73D mutation in mice leads to postnatal lethality and aberrations in neuronal development. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167830. [PMID: 40203954 DOI: 10.1016/j.bbadis.2025.167830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/25/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
The phosphorylation of the evolutionarily conserved Thr73 residue of Rab10 has been implicated in various neurodegenerative diseases. However, its impact on neuronal physiological function remains poorly understood. In this study, we generated a novel mouse model constitutively expressing the phosphomimetic Rab10 T73D to investigate its effects. Our findings revealed that homozygous Rab10 T73D mutant mice were postnatally lethal and exhibited brain developmental defects characterized by cortical thinning and shortened neuronal processes. Further investigation demonstrated that cultured hippocampal neurons with homozygous T73D mutation displayed decreased axon development, with reduced accumulation of Rab10 at the tips of neuronal processes and increased Rab10 localization at lysosomes. Mechanistically, the T73D mutation induces a constitutively GTP-bound state and while substantially weakening interaction with GDI1, GDI2 and JIP1. These molecular alterations collectively lead to altered T73D Rab10-positive vesicle trafficking dynamics, manifesting as decreased anterograde transport and increased movement velocity. Notably, comparative localization studies in RPE cells confirmed fundamental discrepancies between T73D distribution patterns and authentic phosphorylated Rab10 dynamics, validating limitations of this phosphomimetic approach. Collectively, our study elucidates the potential physiological roles of phosphorylated Rab10 in the regulation of neuronal process outgrowth and underscores its significance in the neural system. Additionally, it highlights the limitations of the T73D mutant in fully mimicking Rab10 phosphorylation.
Collapse
Affiliation(s)
- DaoBin Han
- Department of Cell Biology, Shandong Key Laboratory of Mental Disorders and Intelligent Control, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jing Zhang
- Department of Cell Biology, Shandong Key Laboratory of Mental Disorders and Intelligent Control, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yuan Zheng
- Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - LuWen Wang
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Hui Yu
- Department of Cell Biology, Shandong Key Laboratory of Mental Disorders and Intelligent Control, School of Basic Medical Sciences, Shandong University, Jinan, China.
| | - Bo Su
- Department of Cell Biology, Shandong Key Laboratory of Mental Disorders and Intelligent Control, School of Basic Medical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
4
|
Tsuneura Y, Matsuki T, Eda S, Hamada N, Harada A, Nagata KI, Nakayama A. Distribution analysis of RAB11A and RAB11B, small GTP-binding proteins, in mice. Mol Biol Rep 2025; 52:178. [PMID: 39883192 DOI: 10.1007/s11033-025-10282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND RAB11 is a small GTP-binding protein that regulates intracellular trafficking of recycling endosomes and is thereby involved in several neural functions. Highly similar RAB11 isoforms are encoded by RAB11A and RAB11B genes, and their pathogenic variants are associated with similar neurodevelopmental disorders, suggesting that RAB11A and RAB11B play similar and important roles in brain development. However, the detailed distribution patterns of these isoforms in various organs, including the brain, remain undetermined. METHODS AND RESULTS We generated an antibody against RAB11A and analyzed the distribution of RAB11A and RAB11B in mice. RAB11A was highly expressed in the ovary and the uterus but less abundant in the brain, whereas RAB11B was abundant in the brain, the testis, the ovary, and the uterus. In the developing cortex, RAB11A was enriched in the apical endfeet of apical radial glial cells, whereas RAB11B was abundantly expressed in postmigratory neurons of the cortical plate. In the adult mouse brain, RAB11A and RAB11B were similarly expressed in most neurons, with weak RAB11A signals also observed in the neuropil. In cultured neurons, RAB11A and RAB11B showed only partial co-localization and differential distribution in both soma and neurites. Notably, RAB11A appeared to be more abundant at presynapses than RAB11B. CONCLUSIONS RAB11A and RAB11B exhibit distinct and characteristic distributions in the brain and other organs, suggesting they play different roles throughout the body. In particular, our results suggest they make distinct contributions to cortical development and regulation of the synaptic vesicle cycle.
Collapse
Affiliation(s)
- Yumi Tsuneura
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, 486-0392, Japan
| | - Tohru Matsuki
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, 486-0392, Japan
| | - Shima Eda
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, 486-0392, Japan
| | - Nanako Hamada
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, 480-0392, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, 480-0392, Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai- cho, Nagoya, 466-8560, Japan
| | - Atsuo Nakayama
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, 486-0392, Japan.
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai- cho, Nagoya, 466-8560, Japan.
| |
Collapse
|
5
|
Romano R, Cordella P, Bucci C. The Type III Intermediate Filament Protein Peripherin Regulates Lysosomal Degradation Activity and Autophagy. Int J Mol Sci 2025; 26:549. [PMID: 39859265 PMCID: PMC11766092 DOI: 10.3390/ijms26020549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Peripherin belongs to heterogeneous class III of intermediate filaments, and it is the only intermediate filament protein selectively expressed in the neurons of the peripheral nervous system. It has been previously discovered that peripherin interacts with proteins important for the endo-lysosomal system and for the transport to late endosomes and lysosomes, such as RAB7A and AP-3, although little is known about its role in the endocytic pathway. Here, we show that peripherin silencing affects lysosomal abundance but also positioning, causing the redistribution of lysosomes from the perinuclear area to the cell periphery. Moreover, peripherin silencing affects lysosomal activity, inhibiting EGFR degradation and the degradation of a fluorogenic substrate for proteases. Furthermore, we demonstrate that peripherin silencing affects lysosomal biogenesis by reducing the TFEB and TFE3 contents. Finally, in peripherin-depleted cells, the autophagic flux is strongly inhibited. Therefore, these data indicate that peripherin has an important role in regulating lysosomal biogenesis, and positioning and functions of lysosomes, affecting both the endocytic and autophagic pathways. Considering that peripherin is the most abundant intermediate filament protein of peripheral neurons, its dysregulation, affecting its functions, could be involved in the onset of several neurodegenerative diseases of the peripheral nervous system characterized by alterations in the endocytic and/or autophagic pathways.
Collapse
Affiliation(s)
| | | | - Cecilia Bucci
- Department of Experimental Medicine, University of Salento, Via Provinciale Lecce-Monteroni n. 165, 73100 Lecce, Italy; (R.R.); (P.C.)
| |
Collapse
|
6
|
Ito S, Kawauchi T. Roles of N-cadherin in cerebral cortical development: cooperation with membrane trafficking and actin cytoskeletal regulation. Neural Regen Res 2025; 20:188-190. [PMID: 39657084 DOI: 10.4103/nrr.nrr-d-23-02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/06/2024] [Indexed: 12/17/2024] Open
Affiliation(s)
- Shiho Ito
- Department of Adaptive and Maladaptive Responses in Health and Disease, Graduate School of Medicine, Kyoto University, Kyoto, Japan (Ito S, Kawauchi T)
| | - Takeshi Kawauchi
- Department of Adaptive and Maladaptive Responses in Health and Disease, Graduate School of Medicine, Kyoto University, Kyoto, Japan (Ito S, Kawauchi T)
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan (Kawauchi T)
| |
Collapse
|
7
|
Nakagawa N. The neuronal Golgi in neural circuit formation and reorganization. Front Neural Circuits 2024; 18:1504422. [PMID: 39703196 PMCID: PMC11655203 DOI: 10.3389/fncir.2024.1504422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
The Golgi apparatus is a central hub in the intracellular secretory pathway. By positioning in the specific intracellular region and transporting materials to spatially restricted compartments, the Golgi apparatus contributes to the cell polarity establishment and morphological specification in diverse cell types. In neurons, the Golgi apparatus mediates several essential steps of initial neural circuit formation during early brain development, such as axon-dendrite polarization, neuronal migration, primary dendrite specification, and dendritic arbor elaboration. Moreover, neuronal activity-dependent remodeling of the Golgi structure enables morphological changes in neurons, which provides the cellular basis of circuit reorganization during postnatal critical period. In this review, I summarize recent findings illustrating the unique Golgi positioning and its developmental dynamics in various types of neurons. I also discuss the upstream regulators for the Golgi positioning in neurons, and functional roles of the Golgi in neural circuit formation and reorganization. Elucidating how Golgi apparatus sculpts neuronal connectivity would deepen our understanding of the cellular/molecular basis of neural circuit development and plasticity.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Japan
| |
Collapse
|
8
|
Luckmann MR, Nazari EM. Cellular responses to developmental exposure to pyriproxyfen in chicken model: Contrasting embryos with and without exencephaly. Neurotoxicol Teratol 2024; 106:107395. [PMID: 39307295 DOI: 10.1016/j.ntt.2024.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
The insecticide pyriproxyfen (PPF), commonly used in drinking water, has already been described as a potential neurotoxic agent in non-target organisms, particularly during embryonic development. Consequently, exposure to PPF can lead to congenital anomalies in the central nervous system. Therefore, understanding the impact of this insecticide on developing neural cells is a relevant concern that requires attention. Thus, this study aimed to investigate the effects of PPF on the proliferation, differentiation, migration, and cell death of neural cells by comparing embryos that develop exencephaly with normal embryos, after exposure to this insecticide. Chicken embryos, used as a study model, were exposed to concentrations of 0.01 and 10 mg/L PPF on embryonic day E1 and analyzed on embryonic day E10. Exposed embryos received 50 μL of PPF diluted in vehicle solution, and control embryos received exclusively 50 μL of vehicle solution. After exposure, embryos were categorized into control embryos, embryos with exencephaly exposed to PPF, and embryos without exencephaly exposed to PPF. The results showed that although the impact was differentiated in the forebrain and midbrain, both brain vesicles were affected by PPF exposure, and this was observed in embryos with and without exencephaly. The most evident changes observed in embryos with exencephaly were DNA damage accompanied by alterations in cell proliferation, increased apoptosis, and reduced neural differentiation and migration. Embryos without exencephaly showed DNA damage and reduced cell proliferation and migration. These cellular events directly interfered with the density and thickness of neural cell layers. Together, these results suggest that PPF exposure causes cellular damage during neurogenesis, regardless of whether embryos display or do not display external normal morphology. This nuanced understanding provides important insights into the neurotoxicity of PPF and its potential effects on inherent events in neurogenesis.
Collapse
Affiliation(s)
- Maico Roberto Luckmann
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Evelise Maria Nazari
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil.
| |
Collapse
|
9
|
Kawauchi T, Ito S. Exchangeable leaders of collectively migrating glioma abuse N-cadherin trafficking. J Cell Biol 2024; 223:e202404129. [PMID: 38700903 PMCID: PMC11070641 DOI: 10.1083/jcb.202404129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
Collectively migrating cells consist of leaders and followers with different features. In this issue, Kim et al. (https://doi.org/10.1083/jcb.202401057) characterize the leader and follower cells in collective glioma migration and uncover important roles of YAP1/TAZ-mediated regulation of N-cadherin in the leader cells.
Collapse
Affiliation(s)
- Takeshi Kawauchi
- Department of Adaptive and Maladaptive Responses in Health and Disease, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Shiho Ito
- Department of Adaptive and Maladaptive Responses in Health and Disease, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Kim D, Olson JM, Cooper JA. N-cadherin dynamically regulates pediatric glioma cell migration in complex environments. J Cell Biol 2024; 223:e202401057. [PMID: 38477830 PMCID: PMC10937189 DOI: 10.1083/jcb.202401057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Pediatric high-grade gliomas are highly invasive and essentially incurable. Glioma cells migrate between neurons and glia, along axon tracts, and through extracellular matrix surrounding blood vessels and underlying the pia. Mechanisms that allow adaptation to such complex environments are poorly understood. N-cadherin is highly expressed in pediatric gliomas and associated with shorter survival. We found that intercellular homotypic N-cadherin interactions differentially regulate glioma migration according to the microenvironment, stimulating migration on cultured neurons or astrocytes but inhibiting invasion into reconstituted or astrocyte-deposited extracellular matrix. N-cadherin localizes to filamentous connections between migrating leader cells but to epithelial-like junctions between followers. Leader cells have more surface and recycling N-cadherin, increased YAP1/TAZ signaling, and increased proliferation relative to followers. YAP1/TAZ signaling is dynamically regulated as leaders and followers change position, leading to altered N-cadherin levels and organization. Together, the results suggest that pediatric glioma cells adapt to different microenvironments by regulating N-cadherin dynamics and cell-cell contacts.
Collapse
Affiliation(s)
- Dayoung Kim
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - James M. Olson
- Clinical Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Jonathan A. Cooper
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
11
|
Suazo KF, Mishra V, Maity S, Auger SA, Justyna K, Petre AM, Ottoboni L, Ongaro J, Corti SP, Lotti F, Przedborski S, Distefano MD. Improved synthesis and application of an alkyne-functionalized isoprenoid analogue to study the prenylomes of motor neurons, astrocytes and their stem cell progenitors. Bioorg Chem 2024; 147:107365. [PMID: 38636436 PMCID: PMC11653755 DOI: 10.1016/j.bioorg.2024.107365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Protein prenylation is one example of a broad class of post-translational modifications where proteins are covalently linked to various hydrophobic moieties. To globally identify and monitor levels of all prenylated proteins in a cell simultaneously, our laboratory and others have developed chemical proteomic approaches that rely on the metabolic incorporation of isoprenoid analogues bearing bio-orthogonal functionality followed by enrichment and subsequent quantitative proteomic analysis. Here, several improvements in the synthesis of the alkyne-containing isoprenoid analogue C15AlkOPP are reported to improve synthetic efficiency. Next, metabolic labeling with C15AlkOPP was optimized to obtain useful levels of metabolic incorporation of the probe in several types of primary cells. Those conditions were then used to study the prenylomes of motor neurons (ES-MNs), astrocytes (ES-As), and their embryonic stem cell progenitors (ESCs), which allowed for the identification of 54 prenylated proteins from ESCs, 50 from ES-MNs, and 84 from ES-As, representing all types of prenylation. Bioinformatic analysis revealed specific enriched pathways, including nervous system development, chemokine signaling, Rho GTPase signaling, and adhesion. Hierarchical clustering showed that most enriched pathways in all three cell types are related to GTPase activity and vesicular transport. In contrast, STRING analysis showed significant interactions in two populations that appear to be cell type dependent. The data provided herein demonstrates that robust incorporation of C15AlkOPP can be obtained in ES-MNs and related primary cells purified via magnetic-activated cell sorting allowing the identification and quantification of numerous prenylated proteins. These results suggest that metabolic labeling with C15AlkOPP should be an effective approach for investigating the role of prenylated proteins in primary cells in both normal cells and disease pathologies, including ALS.
Collapse
Affiliation(s)
- Kiall F Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Vartika Mishra
- Center for Motor Neuron Biology and Diseases, Department of Neurology. Columbia University Irving Medical Center. New York, NY 10032, USA; Department of Pathology & Cell Biology. Columbia University Irving Medical Center. New York, NY 10032, USA.
| | - Sanjay Maity
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shelby A Auger
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Katarzyna Justyna
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Alexandru M Petre
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Linda Ottoboni
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy.
| | - Jessica Ongaro
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania P Corti
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy; Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Francesco Lotti
- Center for Motor Neuron Biology and Diseases, Department of Neurology. Columbia University Irving Medical Center. New York, NY 10032, USA; Department of Pathology & Cell Biology. Columbia University Irving Medical Center. New York, NY 10032, USA.
| | - Serge Przedborski
- Center for Motor Neuron Biology and Diseases, Department of Neurology. Columbia University Irving Medical Center. New York, NY 10032, USA; Department of Pathology & Cell Biology. Columbia University Irving Medical Center. New York, NY 10032, USA; Department of Neuroscience, Pathology, and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
12
|
Hizawa K, Sasaki T, Arimura N. A comparative overview of DSCAM and its multifunctional roles in Drosophila and vertebrates. Neurosci Res 2024; 202:1-7. [PMID: 38141781 DOI: 10.1016/j.neures.2023.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
DSCAM (Down syndrome cell adhesion molecule) is a unique neuronal adhesion protein with extensively documented multifaceted functionalities. DSCAM also has interesting properties in vertebrates and invertebrates, respectively. In Drosophila species, particularly, Dscam exhibits remarkable genetic diversity, with tens of thousands of splicing isoforms that modulate the specificity of neuronal wiring. Interestingly, this splice variant diversity of Dscam is absent in vertebrates. DSCAM plays a pivotal role in mitigating excessive adhesion between identical cell types, thereby maintaining the structural and functional coherence of neural networks. DSCAM contributes to the oversight of selective intercellular interactions such as synaptogenesis; however, the precise regulatory mechanisms underlying the promotion and inhibition of cell adhesion involved remain unclear. In this review, we aim to delineate the distinct molecules that interact with DSCAM and their specific roles within the biological landscapes of Drosophila and vertebrates. By integrating these comparative insights, we aim to elucidate the multifunctional nature of DSCAM, particularly its capacity to facilitate or deter intercellular adhesion.
Collapse
Affiliation(s)
- Kento Hizawa
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8578, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8578, Japan
| | - Nariko Arimura
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
13
|
Matsuura Y, Kaizuka K, Inoue YH. Essential Role of COPII Proteins in Maintaining the Contractile Ring Anchoring to the Plasma Membrane during Cytokinesis in Drosophila Male Meiosis. Int J Mol Sci 2024; 25:4526. [PMID: 38674111 PMCID: PMC11050551 DOI: 10.3390/ijms25084526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Coatomer Protein Complex-II (COPII) mediates anterograde vesicle transport from the endoplasmic reticulum (ER) to the Golgi apparatus. Here, we report that the COPII coatomer complex is constructed dependent on a small GTPase, Sar1, in spermatocytes before and during Drosophila male meiosis. COPII-containing foci co-localized with transitional endoplasmic reticulum (tER)-Golgi units. They showed dynamic distribution along astral microtubules and accumulated around the spindle pole, but they were not localized on the cleavage furrow (CF) sites. The depletion of the four COPII coatomer subunits, Sec16, or Sar1 that regulate COPII assembly resulted in multinucleated cell production after meiosis, suggesting that cytokinesis failed in both or either of the meiotic divisions. Although contractile actomyosin and anilloseptin rings were formed once plasma membrane ingression was initiated, they were frequently removed from the plasma membrane during furrowing. We explored the factors conveyed toward the CF sites in the membrane via COPII-mediated vesicles. DE-cadherin-containing vesicles were formed depending on Sar1 and were accumulated in the cleavage sites. Furthermore, COPII depletion inhibited de novo plasma membrane insertion. These findings suggest that COPII vesicles supply the factors essential for the anchoring and/or constriction of the contractile rings at cleavage sites during male meiosis in Drosophila.
Collapse
Affiliation(s)
- Yoshiki Matsuura
- Biomedical Research Center, Kyoto Institute of Technology, Mastugasaki, Kyoto 606-0962, Japan; (Y.M.); (K.K.)
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-0962, Japan
| | - Kana Kaizuka
- Biomedical Research Center, Kyoto Institute of Technology, Mastugasaki, Kyoto 606-0962, Japan; (Y.M.); (K.K.)
| | - Yoshihiro H. Inoue
- Biomedical Research Center, Kyoto Institute of Technology, Mastugasaki, Kyoto 606-0962, Japan; (Y.M.); (K.K.)
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-0962, Japan
| |
Collapse
|
14
|
Aguila A, Salah S, Kulasekaran G, Shweiki M, Shaul-Lotan N, Mor-Shaked H, Daana M, Harel T, McPherson PS. A neurodevelopmental disorder associated with a loss-of-function missense mutation in RAB35. J Biol Chem 2024; 300:107124. [PMID: 38432637 PMCID: PMC10966776 DOI: 10.1016/j.jbc.2024.107124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024] Open
Abstract
Rab35 (Ras-associated binding protein) is a small GTPase that regulates endosomal membrane trafficking and functions in cell polarity, cytokinesis, and growth factor signaling. Altered Rab35 function contributes to progression of glioblastoma, defects in primary cilia formation, and altered cytokinesis. Here, we report a pediatric patient with global developmental delay, hydrocephalus, a Dandy-Walker malformation, axial hypotonia with peripheral hypertonia, visual problems, and conductive hearing impairment. Exome sequencing identified a homozygous missense variant in the GTPase fold of RAB35 (c.80G>A; p.R27H) as the most likely candidate. Functional analysis of the R27H-Rab35 variant protein revealed enhanced interaction with its guanine-nucleotide exchange factor, DENND1A and decreased interaction with a known effector, MICAL1, indicating that the protein is in an inactive conformation. Cellular expression of the variant drives the activation of Arf6, a small GTPase under negative regulatory control of Rab35. Importantly, variant expression leads to delayed cytokinesis and altered length, number, and Arl13b composition of primary cilia, known factors in neurodevelopmental disease. Our findings provide evidence of altered Rab35 function as a causative factor of a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Adriana Aguila
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Somaya Salah
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Gopinath Kulasekaran
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Moatasem Shweiki
- Neurosurgery Department, Hadassah Medical Center, Jerusalem, Israel
| | - Nava Shaul-Lotan
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Muhannad Daana
- Child Development Centers, Clalit Health Care Services, Yokne'am Illit, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
15
|
Hallada LP, Shirinifard A, Solecki DJ. Junctional Adhesion Molecule (JAM)-C recruitment of Pard3 and drebrin to cell contacts initiates neuron-glia recognition and layer-specific cell sorting in developing cerebella. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586832. [PMID: 38585827 PMCID: PMC10996703 DOI: 10.1101/2024.03.26.586832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Sorting maturing neurons into distinct layers is critical for brain development, with disruptions leading to neurological disorders and pediatric cancers. Lamination coordinates where, when, and how cells interact, facilitating events that direct migrating neurons to their destined positions within emerging neural networks and control the wiring of connections in functional circuits. While the role of adhesion molecule expression and presentation in driving adhesive recognition during neuronal migration along glial fibers is recognized, the mechanisms by which the spatial arrangement of these molecules on the cell surface dictates adhesive specificity and translates contact-based external cues into intracellular responses like polarization and cytoskeletal organization remain largely unexplored. We used the cerebellar granule neuron (CGN) system to demonstrate that JAM-C receptor cis-binding on the same cell and trans-binding to neighboring cells controls the recruitment of the Pard3 polarity protein and drebrin microtubule-actin crosslinker at CGN to glial adhesion sites, complementing previous studies that showed Pard3 controls JAM-C exocytic surface presentation. Leveraging advanced imaging techniques, specific probes for cell recognition, and analytical methods to dissect adhesion dynamics, our findings reveal: 1) JAM-C cis or trans mutants result in reduced adhesion formation between CGNs and cerebellar glia, 2) these mutants exhibit delayed recruitment of Pard3 at the adhesion sites, and 3) CGNs with JAM-C mutations experience postponed sorting and entry into the cerebellar molecular layer (ML). By developing a conditional system to image adhesion components from two different cells simultaneously, we made it possible to investigate the dynamics of cell recognition on both sides of neuron-glial contacts and the subsequent recruitment of proteins required for CGN migration. This system and an approach that calculates local correlation based on convolution kernels at the cell adhesions site revealed that CGN to CGN JAM recognition preferentially recruits higher levels of Pard3 and drebrin than CGN to glia JAM recognition. The long latency time of CGNs in the inner external germinal layer (EGL) can be attributed to the combined strength of CGN-CGN contacts and the less efficient Pard3 recruitment by CGN-BG contacts, acting as gatekeepers to ML entry. As CGNs eventually transition to glia binding for radial migration, our research demonstrates that establishing permissive JAM-recognition sites on glia via cis and trans interactions of CGN JAM-C serves as a critical temporal checkpoint for sorting at the EGL to ML boundary. This mechanism integrates intrinsic and extrinsic cellular signals, facilitating heterotypic cell sorting into the ML and dictating the precise spatial organization within the cerebellar architecture.
Collapse
|
16
|
Nakajima C, Sawada M, Umeda E, Takagi Y, Nakashima N, Kuboyama K, Kaneko N, Yamamoto S, Nakamura H, Shimada N, Nakamura K, Matsuno K, Uesugi S, Vepřek NA, Küllmer F, Nasufović V, Uchiyama H, Nakada M, Otsuka Y, Ito Y, Herranz-Pérez V, García-Verdugo JM, Ohno N, Arndt HD, Trauner D, Tabata Y, Igarashi M, Sawamoto K. Identification of the growth cone as a probe and driver of neuronal migration in the injured brain. Nat Commun 2024; 15:1877. [PMID: 38461182 PMCID: PMC10924819 DOI: 10.1038/s41467-024-45825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/01/2024] [Indexed: 03/11/2024] Open
Abstract
Axonal growth cones mediate axonal guidance and growth regulation. We show that migrating neurons in mice possess a growth cone at the tip of their leading process, similar to that of axons, in terms of the cytoskeletal dynamics and functional responsivity through protein tyrosine phosphatase receptor type sigma (PTPσ). Migrating-neuron growth cones respond to chondroitin sulfate (CS) through PTPσ and collapse, which leads to inhibition of neuronal migration. In the presence of CS, the growth cones can revert to their extended morphology when their leading filopodia interact with heparan sulfate (HS), thus re-enabling neuronal migration. Implantation of an HS-containing biomaterial in the CS-rich injured cortex promotes the extension of the growth cone and improve the migration and regeneration of neurons, thereby enabling functional recovery. Thus, the growth cone of migrating neurons is responsive to extracellular environments and acts as a primary regulator of neuronal migration.
Collapse
Affiliation(s)
- Chikako Nakajima
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Masato Sawada
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
- Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Erika Umeda
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Yuma Takagi
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Norihiko Nakashima
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Kazuya Kuboyama
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Naoko Kaneko
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
- Laboratory of Neuronal Regeneration, Graduate School of Brain Science, Doshisha University, Kyoto, 610-0394, Japan
| | - Satoaki Yamamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Haruno Nakamura
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Naoki Shimada
- Research and Development Center, The Japan Wool Textile Co., Ltd., Kobe, 675-0053, Japan
| | - Koichiro Nakamura
- Medical Device Department, Nikke Medical Co., Ltd., Osaka, 541-0048, Japan
| | - Kumiko Matsuno
- Research and Development Center, The Japan Wool Textile Co., Ltd., Kobe, 675-0053, Japan
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, 606-8507, Japan
| | - Shoji Uesugi
- Medical Device Department, Nikke Medical Co., Ltd., Osaka, 541-0048, Japan
| | - Nynke A Vepřek
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Florian Küllmer
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Veselin Nasufović
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, 07743, Germany
| | | | | | - Yuji Otsuka
- Toray Research Center, Inc., Otsu, 520-8567, Japan
| | - Yasuyuki Ito
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Cavanilles Institute, University of Valencia, CIBERNED, Valencia, 46980, Spain
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute, University of Valencia, CIBERNED, Valencia, 46980, Spain
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of Medicine, Shimotsuke, 329-0498, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Hans-Dieter Arndt
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Dirk Trauner
- Department of Chemistry, New York University, New York, NY, 10003, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, 606-8507, Japan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan.
- Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan.
| |
Collapse
|
17
|
Suazo KF, Mishra V, Maity S, Auger SA, Justyna K, Petre A, Ottoboni L, Ongaro J, Corti SP, Lotti F, Przedborski S, Distefano MD. Improved synthesis and application of an alkyne-functionalized isoprenoid analogue to study the prenylomes of motor neurons, astrocytes and their stem cell progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583211. [PMID: 38496415 PMCID: PMC10942399 DOI: 10.1101/2024.03.03.583211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Protein prenylation is one example of a broad class of post-translational modifications where proteins are covalently linked to various hydrophobic moieties. To globally identify and monitor levels of all prenylated proteins in a cell simultaneously, our laboratory and others have developed chemical proteomic approaches that rely on the metabolic incorporation of isoprenoid analogues bearing bio-orthogonal functionality followed by enrichment and subsequent quantitative proteomic analysis. Here, several improvements in the synthesis of the alkyne-containing isoprenoid analogue C15AlkOPP are reported to improve synthetic efficiency. Next, metabolic labeling with C15AlkOPP was optimized to obtain useful levels of metabolic incorporation of the probe in several types of primary cells. Those conditions were then used to study the prenylomes of motor neurons (ES-MNs), astrocytes (ES-As), and their embryonic stem cell progenitors (ESCs), which allowed for the identification of 54 prenylated proteins from ESCs, 50 from ES-MNs and 84 from ES-As, representing all types of prenylation. Bioinformatic analysis revealed specific enriched pathways, including nervous system development, chemokine signaling, Rho GTPase signaling, and adhesion. Hierarchical clustering showed that most enriched pathways in all three cell types are related to GTPase activity and vesicular transport. In contrast, STRING analysis showed significant interactions in two populations that appear to be cell type dependent. The data provided herein demonstrates that robust incorporation of C15AlkOPP can be obtained in ES-MNs and related primary cells purified via magnetic-activated cell sorting allowing the identification and quantification of numerous prenylated proteins. These results suggest that metabolic labeling with C15AlkOPP should be an effective approach for investigating the role of prenylated proteins in primary cells in both normal cells and disease pathologies, including ALS.
Collapse
Affiliation(s)
- Kiall F Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN USA 55455
| | - Vartika Mishra
- Center for Motor Neuron Biology and Diseases, Department of Neurology. Columbia University Irving Medical Center. New York, NY 10032
- Department of Pathology & Cell Biology. Columbia University Irving Medical Center. New York, NY 10032
| | - Sanjay Maity
- Department of Chemistry, University of Minnesota, Minneapolis, MN USA 55455
| | - Shelby A Auger
- Department of Chemistry, University of Minnesota, Minneapolis, MN USA 55455
| | - Katarzyna Justyna
- Department of Chemistry, University of Minnesota, Minneapolis, MN USA 55455
| | - Alex Petre
- Department of Chemistry, University of Minnesota, Minneapolis, MN USA 55455
| | - Linda Ottoboni
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Jessica Ongaro
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania P Corti
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Lotti
- Center for Motor Neuron Biology and Diseases, Department of Neurology. Columbia University Irving Medical Center. New York, NY 10032
- Department of Pathology & Cell Biology. Columbia University Irving Medical Center. New York, NY 10032
| | - Serge Przedborski
- Center for Motor Neuron Biology and Diseases, Department of Neurology. Columbia University Irving Medical Center. New York, NY 10032
- Department of Pathology & Cell Biology. Columbia University Irving Medical Center. New York, NY 10032
- Department of Neuroscience, Pathology, and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN USA 55455
| |
Collapse
|
18
|
Mingo-Moreno N, Truschow P, Staiger JF, Wagener RJ. Caudally pronounced deficiencies in preplate splitting and migration underly a rostro-caudal progression of cortical lamination defects in the reeler brain. Cereb Cortex 2024; 34:bhae023. [PMID: 38383722 DOI: 10.1093/cercor/bhae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 02/23/2024] Open
Abstract
In mammalian neocortex development, every cohort of newborn neurons is guided toward the marginal zone, leading to an "inside-out" organization of the 6 neocortical layers. This migratory pattern is regulated by the extracellular glycoprotein Reelin. The reeler mouse shows a homozygous mutation of the reelin gene. Using RNA in situ hybridization we could demonstrate that the Reelin-deficient mouse cortex (male and female) displays an increasing lamination defect along the rostro-caudal axis that is characterized by strong cellular intermingling, but roughly reproduces the "inside-out" pattern in rostral cortex, while caudal cortex shows a relative inversion of neuronal positioning ("outside-in"). We found that in development of the reeler cortex, preplate-splitting is also defective with an increasing severity along the rostro-caudal axis. This leads to a misplacement of subplate neurons that are crucial for a switch in migration mode within the cortical plate. Using Flash Tag labeling and nucleoside analog pulse-chasing, we found an according migration defect within the cortical plate, again with a progressive severity along the rostro-caudal axis. Thus, loss of one key player in neocortical development leads to highly area-specific (caudally pronounced) developmental deficiencies that result in multiple roughly opposite rostral versus caudal adult neocortical phenotypes.
Collapse
Affiliation(s)
- Nieves Mingo-Moreno
- Institute for Neuroanatomy, University Medical Center Göttingen, Göttingen 37075, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen 37073, Germany
| | - Pavel Truschow
- Institute for Neuroanatomy, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center Göttingen, Göttingen 37075, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen 37073, Germany
| | - Robin J Wagener
- Institute for Neuroanatomy, University Medical Center Göttingen, Göttingen 37075, Germany
- Department of Neurology, University Hospital Heidelberg, Heidelberg 69120, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| |
Collapse
|
19
|
Gavrish M, Kustova A, Celis Suescún JC, Bessa P, Mitina N, Tarabykin V. Molecular mechanisms of corpus callosum development: a four-step journey. Front Neuroanat 2024; 17:1276325. [PMID: 38298831 PMCID: PMC10827913 DOI: 10.3389/fnana.2023.1276325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024] Open
Abstract
The Corpus Callosum (CC) is a bundle of axons connecting the cerebral hemispheres. It is the most recent structure to have appeared during evolution of placental mammals. Its development is controlled by a very complex interplay of many molecules. In humans it contains almost 80% of all commissural axons in the brain. The formation of the CC can be divided into four main stages, each controlled by numerous intracellular and extracellular molecular factors. First, a newborn neuron has to specify an axon, leave proliferative compartments, the Ventricular Zone (VZ) and Subventricular Zone (SVZ), migrate through the Intermediate Zone (IZ), and then settle at the Cortical Plate (CP). During the second stage, callosal axons navigate toward the midline within a compact bundle. Next stage is the midline crossing into contralateral hemisphere. The last step is targeting a defined area and synapse formation. This review provides an insight into these four phases of callosal axons development, as well as a description of the main molecular players involved.
Collapse
Affiliation(s)
- Maria Gavrish
- Laboratory of Genetics of Brain Development, Research Institute of Neurosciences, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Angelina Kustova
- Laboratory of Genetics of Brain Development, Research Institute of Neurosciences, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Juan C. Celis Suescún
- Laboratory of Genetics of Brain Development, Research Institute of Neurosciences, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Paraskevi Bessa
- Charité Hospital, Institute of Cell Biology and Neurobiology, Berlin, Germany
| | - Natalia Mitina
- Laboratory of Genetics of Brain Development, Research Institute of Neurosciences, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Victor Tarabykin
- Charité Hospital, Institute of Cell Biology and Neurobiology, Berlin, Germany
| |
Collapse
|
20
|
Kim D, Olson JM, Cooper JA. N-cadherin dynamically regulates pediatric glioma cell migration in complex environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.04.535599. [PMID: 38260559 PMCID: PMC10802396 DOI: 10.1101/2023.04.04.535599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Pediatric high-grade gliomas are highly invasive and essentially incurable. Glioma cells migrate between neurons and glia, along axon tracts, and through extracellular matrix surrounding blood vessels and underlying the pia. Mechanisms that allow adaptation to such complex environments are poorly understood. N-cadherin is highly expressed in pediatric gliomas and associated with shorter survival. We found that inter-cellular homotypic N-cadherin interactions differentially regulate glioma migration according to the microenvironment, stimulating migration on cultured neurons or astrocytes but inhibiting invasion into reconstituted or astrocyte-deposited extracellular matrix. N-cadherin localizes to filamentous connections between migrating leader cells but to epithelial-like junctions between followers. Leader cells have more surface and recycling N-cadherin, increased YAP1/TAZ signaling, and increased proliferation relative to followers. YAP1/TAZ signaling is dynamically regulated as leaders and followers change position, leading to altered N-cadherin levels and organization. Together, the results suggest that pediatric glioma cells adapt to different microenvironments by regulating N-cadherin dynamics and cell-cell contacts.
Collapse
Affiliation(s)
- Dayoung Kim
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - James M Olson
- Clinical Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, 98101, USA
| | - Jonathan A Cooper
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| |
Collapse
|
21
|
Ma H, Huo J, Xin C, Yang J, Liu Q, Dong H, Li R, Liu Y. RABGGTB plays a critical role in ALS pathogenesis. Brain Res Bull 2024; 206:110833. [PMID: 38042502 DOI: 10.1016/j.brainresbull.2023.110833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease with unknown causes, which mainly affects motor neurons in the anterior horn of the spinal cord, brain stem, and cerebral cortex, also known as motor neuron disease. An important pathological feature of ALS is the formation of aggregates of mutant SOD1 protein, CTF25 of TDP-43, or other abnormal proteins in motor neurons, which require autophagy for degradation. Protein prenylation is known to participate in membrane association and proper localization of proteins. RABGGTB is the β subunit of GGTase II (one of the prenyltransferases) that can regulate autophagy via Rab7 geranylgeranylation. In this study, we overexpressed RABGGTB via lentiviral transfection in NSC34-hSOD1G93A and TDP-43 cells. Overexpression of RABGGTB improved ALS cell proliferation by facilitating autophagosome-lysosome fusion. Furthermore, the abnormal aggregation of SOD1 protein was reduced. This indicates that protein prenylation is important for the proliferation and autophagy of cells autophagy. Enhanced autophagy has been observed in two of the most widely used ALS cell models. These findings indicate the widespread applicability of prenylation in ALS. In summary, overexpression of RABGGTB improved the geranylgeranylation of the Rab7 protein and had a positive effect on cells. These findings provide insights into the development of a novel therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Haiyang Ma
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Jia Huo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Cheng Xin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Jing Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Qi Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Hui Dong
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Rui Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China.
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China.
| |
Collapse
|
22
|
Valamparamban GF, Spéder P. Homemade: building the structure of the neurogenic niche. Front Cell Dev Biol 2023; 11:1275963. [PMID: 38107074 PMCID: PMC10722289 DOI: 10.3389/fcell.2023.1275963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Neural stem/progenitor cells live in an intricate cellular environment, the neurogenic niche, which supports their function and enables neurogenesis. The niche is made of a diversity of cell types, including neurons, glia and the vasculature, which are able to signal to and are structurally organised around neural stem/progenitor cells. While the focus has been on how individual cell types signal to and influence the behaviour of neural stem/progenitor cells, very little is actually known on how the niche is assembled during development from multiple cellular origins, and on the role of the resulting topology on these cells. This review proposes to draw a state-of-the art picture of this emerging field of research, with the aim to expose our knowledge on niche architecture and formation from different animal models (mouse, zebrafish and fruit fly). We will span its multiple aspects, from the existence and importance of local, adhesive interactions to the potential emergence of larger-scale topological properties through the careful assembly of diverse cellular and acellular components.
Collapse
Affiliation(s)
| | - Pauline Spéder
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| |
Collapse
|
23
|
Hara Y, Katsuyama T, Fukaya M, Sugawara T, Shiroshima T, Sadakata T, Osumi N, Sakagami H. ADP Ribosylation Factor 4 (Arf4) Regulates Radial Migration through N-Cadherin Trafficking during Cerebral Cortical Development. eNeuro 2023; 10:ENEURO.0125-23.2023. [PMID: 37848288 PMCID: PMC10630928 DOI: 10.1523/eneuro.0125-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
During the development of the cerebral cortex, N-cadherin plays a crucial role in facilitating radial migration by enabling cell-to-cell adhesion between migrating neurons and radial glial fibers or Cajar-Reztius cells. ADP ribosylation factor 4 (Arf4) and Arf5, which belong to the Class II Arf small GTPase subfamily, control membrane trafficking in the endocytic and secretory pathways. However, their specific contribution to cerebral cortex development remains unclear. In this study, we sought to investigate the functional involvement of Class II Arfs in radial migration during the layer formation of the cerebral cortex using mouse embryos and pups. Our findings indicate that knock-down of Arf4, but not Arf5, resulted in the stalling of transfected neurons with disorientation of the Golgi in the upper intermediate zone (IZ) and reduction in the migration speed in both the IZ and cortical plate (CP). Migrating neurons with Arf4 knock-down exhibited cytoplasmic accumulation of N-cadherin, along with disturbed organelle morphology and distribution. Furthermore, supplementation of exogenous N-cadherin partially rescued the migration defect caused by Arf4 knock-down. In conclusion, our results suggest that Arf4 plays a crucial role in regulating radial migration via N-cadherin trafficking during cerebral cortical development.
Collapse
Affiliation(s)
- Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Takehiko Katsuyama
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Takeyuki Sugawara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Tomoko Shiroshima
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Tetsushi Sadakata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| |
Collapse
|
24
|
Koop K, Yuan W, Tessadori F, Rodriguez-Polanco WR, Grubbs J, Zhang B, Osmond M, Graham G, Sawyer S, Conboy E, Vetrini F, Treat K, Płoski R, Pienkowski VM, Kłosowska A, Fieg E, Krier J, Mallebranche C, Alban Z, Aldinger KA, Ritter D, Macnamara E, Sullivan B, Herriges J, Alaimo JT, Helbig C, Ellis CA, van Eyk C, Gecz J, Farrugia D, Osei-Owusu I, Adès L, van den Boogaard MJ, Fuchs S, Bakker J, Duran K, Dawson ZD, Lindsey A, Huang H, Baldridge D, Silverman GA, Grant BD, Raizen D, van Haaften G, Pak SC, Rehmann H, Schedl T, van Hasselt P. Macrocephaly and developmental delay caused by missense variants in RAB5C. Hum Mol Genet 2023; 32:3063-3077. [PMID: 37552066 PMCID: PMC10586195 DOI: 10.1093/hmg/ddad130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/06/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023] Open
Abstract
Rab GTPases are important regulators of intracellular vesicular trafficking. RAB5C is a member of the Rab GTPase family that plays an important role in the endocytic pathway, membrane protein recycling and signaling. Here we report on 12 individuals with nine different heterozygous de novo variants in RAB5C. All but one patient with missense variants (n = 9) exhibited macrocephaly, combined with mild-to-moderate developmental delay. Patients with loss of function variants (n = 2) had an apparently more severe clinical phenotype with refractory epilepsy and intellectual disability but a normal head circumference. Four missense variants were investigated experimentally. In vitro biochemical studies revealed that all four variants were damaging, resulting in increased nucleotide exchange rate, attenuated responsivity to guanine exchange factors and heterogeneous effects on interactions with effector proteins. Studies in C. elegans confirmed that all four variants were damaging in vivo and showed defects in endocytic pathway function. The variant heterozygotes displayed phenotypes that were not observed in null heterozygotes, with two shown to be through a dominant negative mechanism. Expression of the human RAB5C variants in zebrafish embryos resulted in defective development, further underscoring the damaging effects of the RAB5C variants. Our combined bioinformatic, in vitro and in vivo experimental studies and clinical data support the association of RAB5C missense variants with a neurodevelopmental disorder characterized by macrocephaly and mild-to-moderate developmental delay through disruption of the endocytic pathway.
Collapse
Affiliation(s)
- Klaas Koop
- Department of Pediatrics, University Medical Center Utrecht, Utrecht, 3584 EA, The Netherlands
| | - Weimin Yuan
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Federico Tessadori
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Wilmer R Rodriguez-Polanco
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jeremy Grubbs
- Department of Neurology and the Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bo Zhang
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Matt Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada
| | - Gail Graham
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada
| | - Sarah Sawyer
- Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada
| | - Erin Conboy
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Francesco Vetrini
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kayla Treat
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Rafal Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, 02-106, Poland
| | - Victor Murcia Pienkowski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, 02-106, Poland
- Marseille Medical Genetics U1251, Aix Marseille University, Marseille, 13005, France
| | - Anna Kłosowska
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdańsk, Gdańsk, 80-210, Poland
| | - Elizabeth Fieg
- Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Joel Krier
- Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Coralie Mallebranche
- Unité d'Onco-Hémato-Immunologie pédiatrique, CHU d’Angers, Angers, 49933, France
| | - Ziegler Alban
- Service de génétique, CHU d’Angers, Angers, 49933, France
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Deborah Ritter
- Department of Pediatrics, Oncology Section, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ellen Macnamara
- Undiagnosed Diseases Program Translational Laboratory, NHGRI, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bonnie Sullivan
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy-Kansas City, Kansas City, MO, 64108, USA
| | - John Herriges
- Department of Pathology and Laboratory Medicine, Children's Mercy-Kansas City, Kansas City, MO, 64108, USA
| | - Joseph T Alaimo
- Department of Pathology and Laboratory Medicine, Children's Mercy-Kansas City, Kansas City, MO, 64108, USA
| | - Catherine Helbig
- The Epilepsy Neurogenetics Initiative, Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Colin A Ellis
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia PA, 19104, USA
| | - Clare van Eyk
- Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5006, Australia
| | - Jozef Gecz
- Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5006, Australia
| | | | - Ikeoluwa Osei-Owusu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Lesley Adès
- Department of Clinical Genetics, The Children’s Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, 2145, Australia
| | - Marie-Jose van den Boogaard
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, 3584EA, The Netherlands
| | - Sabine Fuchs
- Department of Pediatrics, University Medical Center Utrecht, Utrecht, 3584 EA, The Netherlands
| | - Jeroen Bakker
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Karen Duran
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Zachary D Dawson
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Anika Lindsey
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Huiyan Huang
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Dustin Baldridge
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Gary A Silverman
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - David Raizen
- Department of Neurology and the Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, 3584EA, The Netherlands
| | - Stephen C Pak
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Holger Rehmann
- Department of Energy and Biotechnology, Flensburg University of Applied Sciences, 24943, Flensburg, Germany
| | - Tim Schedl
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Peter van Hasselt
- Department of Pediatrics, University Medical Center Utrecht, Utrecht, 3584 EA, The Netherlands
| |
Collapse
|
25
|
Peralta Cuasolo YM, Dupraz S, Unsain N, Bisbal M, Quassollo G, Galiano MR, Grassi D, Quiroga S, Sosa LJ. The GTPase Rab21 is required for neuronal development and migration in the cerebral cortex. J Neurochem 2023; 166:790-808. [PMID: 37534523 DOI: 10.1111/jnc.15925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 08/04/2023]
Abstract
Development of the mammalian neocortex requires proper inside-out migration of developing cortical neurons from the germinal ventricular zone toward the cortical plate. The mechanics of this migration requires precise coordination of different cellular phenomena including cytoskeleton dynamics, membrane trafficking, and cell adhesion. The small GTPases play a central role in all these events. The small GTPase Rab21 regulates migration and neurite growth in developing neurons. Moreover, regulators and effectors of Rab21 have been implicated in brain pathologies with cortical malformations, suggesting a key function for the Rab21 signaling pathway in cortical development. Mechanistically, it has been posited that Rab21 influences cell migration by controlling the trafficking of endocytic vesicles containing adhesion molecules. However, direct evidence of the participation of Rab21 or its mechanism of action in the regulation of cortical migration is still incomplete. In this study, we demonstrate that Rab21 plays a critical role in the differentiation and migration of pyramidal neurons by regulating the levels of the amyloid precursor protein on the neuronal cell surface. Rab21 loss of function increased the levels of membrane-exposed APP, resulting in impaired cortical neuronal differentiation and migration. These findings further our understanding of the processes governing the development of the cerebral cortex and shed light onto the molecular mechanisms behind cortical development disorders derived from the malfunctioning of Rab21 signaling effectors.
Collapse
Affiliation(s)
- Yael Macarena Peralta Cuasolo
- Departamento de Química Biológica Ranwell Caputto, Facultad de Ciencias Químicas, CIQUIBIC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Sebastián Dupraz
- Axonal Growth and Regeneration, German Center for Neurodegenarative Diseases, Bonn, Germany
| | - Nicolas Unsain
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Biología Celular y Molecular (CeBiCeM, FCEFyN-UNC), Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariano Bisbal
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Córdoba, Argentina
| | - Gonzalo Quassollo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mauricio R Galiano
- Departamento de Química Biológica Ranwell Caputto, Facultad de Ciencias Químicas, CIQUIBIC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Diego Grassi
- Departamento de Química Biológica Ranwell Caputto, Facultad de Ciencias Químicas, CIQUIBIC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Santiago Quiroga
- Departamento de Química Biológica Ranwell Caputto, Facultad de Ciencias Químicas, CIQUIBIC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lucas Javier Sosa
- Departamento de Química Biológica Ranwell Caputto, Facultad de Ciencias Químicas, CIQUIBIC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
26
|
Tsuneura Y, Kawai T, Yamada K, Aoki S, Nakashima M, Eda S, Matsuki T, Nishikawa M, Nagata KI, Enokido Y, Saitsu H, Nakayama A. A Novel Constitutively Active c.98 G > C, p.(R33P) Variant in RAB11A Associated with Intellectual Disability Promotes Neuritogenesis and Affects Oligodendroglial Arborization. Hum Mutat 2023; 2023:8126544. [PMID: 40225156 PMCID: PMC11918571 DOI: 10.1155/2023/8126544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 04/15/2025]
Abstract
Whole exome sequencing/whole genome sequencing has accelerated the identification of novel genes associated with intellectual disabilities (ID), and RAB11A which encodes an endosomal small GTPase is among them. However, consequent neural abnormalities have not been studied, and pathophysiological mechanisms underlying the ID and other clinical features in patients harboring RAB11A variants remain to be clarified. In this study, we report a novel de novo missense variant in RAB11A, NM_004663.5: c.98G > C, which would result in NP_004654.1: p.(R33P) substitution, in a Japanese boy with severe ID and hypomyelination. Biochemical analyses indicated that the RAB11A-R33P is a gain-of-function, constitutively active variant. Accordingly, the introduction of the RAB11A-R33P promoted neurite extension in neurons like a known constitutively active variant Rab11A-Q70L. In addition, the RAB11A-R33P induced excessive branching with thinner processes in oligodendrocytes. These results indicate that the gain-of-function RAB11A-R33P variant in association with ID and hypomyelination affects neural cells and can be deleterious to them, especially to oligodendrocytes, and strongly suggest the pathogenic role of the RAB11A-R33P variant in neurodevelopmental impairments, especially in the hypomyelination.
Collapse
Affiliation(s)
- Yumi Tsuneura
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Taeko Kawai
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Keitaro Yamada
- Department of Pediatric Neurology, Central Hospital, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Shintaro Aoki
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Shima Eda
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Tohru Matsuki
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Masashi Nishikawa
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Koh-ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Yasushi Enokido
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Atsuo Nakayama
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| |
Collapse
|
27
|
Li X, Zou S, Tu X, Hao S, Jiang T, Chen JG. Inhibition of Foxp4 Disrupts Cadherin-based Adhesion of Radial Glial Cells, Leading to Abnormal Differentiation and Migration of Cortical Neurons in Mice. Neurosci Bull 2023; 39:1131-1145. [PMID: 36646976 PMCID: PMC10313612 DOI: 10.1007/s12264-022-01004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/04/2022] [Indexed: 01/18/2023] Open
Abstract
Heterozygous loss-of-function variants of FOXP4 are associated with neurodevelopmental disorders (NDDs) that exhibit delayed speech development, intellectual disability, and congenital abnormalities. The etiology of NDDs is unclear. Here we found that FOXP4 and N-cadherin are expressed in the nuclei and apical end-feet of radial glial cells (RGCs), respectively, in the mouse neocortex during early gestation. Knockdown or dominant-negative inhibition of Foxp4 abolishes the apical condensation of N-cadherin in RGCs and the integrity of neuroepithelium in the ventricular zone (VZ). Inhibition of Foxp4 leads to impeded radial migration of cortical neurons and ectopic neurogenesis from the proliferating VZ. The ectopic differentiation and deficient migration disappear when N-cadherin is over-expressed in RGCs. The data indicate that Foxp4 is essential for N-cadherin-based adherens junctions, the loss of which leads to periventricular heterotopias. We hypothesize that FOXP4 variant-associated NDDs may be caused by disruption of the adherens junctions and malformation of the cerebral cortex.
Collapse
Affiliation(s)
- Xue Li
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, 325027, China
| | - Shimin Zou
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, 325027, China
| | - Xiaomeng Tu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, 325027, China
| | - Shishuai Hao
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, 325027, China
| | - Tian Jiang
- Research Center for Translational Medicine, the Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, 317500, China
| | - Jie-Guang Chen
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, 325027, China.
| |
Collapse
|
28
|
Stoufflet J, Tielens S, Nguyen L. Shaping the cerebral cortex by cellular crosstalk. Cell 2023; 186:2733-2747. [PMID: 37352835 DOI: 10.1016/j.cell.2023.05.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/30/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
The cerebral cortex is the brain's outermost layer. It is responsible for processing motor and sensory information that support high-level cognitive abilities and shape personality. Its development and functional organization strongly rely on cell communication that is established via an intricate system of diffusible signals and physical contacts during development. Interfering with this cellular crosstalk can cause neurodevelopmental disorders. Here, we review how crosstalk between migrating cells and their environment influences cerebral cortex development, ranging from neurogenesis to synaptogenesis and assembly of cortical circuits.
Collapse
Affiliation(s)
- Julie Stoufflet
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Sylvia Tielens
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavres, Belgium.
| |
Collapse
|
29
|
Yap CC, Digilio L, McMahon L, Winckler B. "Disruption of Golgi markers by two RILP-directed shRNAs in neurons: a new role for RILP or a neuron-specific off-target phenotype?". J Biol Chem 2023:104916. [PMID: 37315786 PMCID: PMC10362152 DOI: 10.1016/j.jbc.2023.104916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
In neurons, degradation of dendritic cargos requires RAB7 and dynein-mediated retrograde transport to somatic lysosomes. To test if the dynein adaptor RILP (RAB-interacting lysosomal protein) mediated the recruitment of dynein to late endosomes for retrograde transport in dendrites, we obtained several knockdown reagents previously validated in non-neuronal cells. Striking endosomal phenotypes elicited by one shRILP plasmid were not reproduced by another one. Furthermore, we discovered a profound depletion of Golgi/TGN markers for both shRILP plasmids. This Golgi disruption was only observed in neurons and could not be rescued by re-expression of RILP. This Golgi phenotype was also not found in neurons treated with siRILP or gRILP/Cas9. Lastly, we tested if a different RAB protein that interacts with RILP, namely the Golgi-associated RAB34, might be responsible for the loss of Golgi markers. Expression of a dominant-negative RAB34 did indeed cause changes in Golgi staining in a small subset of neurons but manifested as fragmentation rather than loss of staining. Unlike in non-neuronal cells, interference with RAB34 did not cause dispersal of lysosomes in neurons. Based on multiple lines of experimentation, we conclude that the neuronal Golgi phenotype observed with shRILP is likely off-target in this cell type specifically. Any observed disruptions of endosomal trafficking caused by shRILP in neurons might thus be downstream of Golgi disruption. It would be interesting to identify the actual target for this neuronal Golgi phenotype. Cell type-specific off-target phenotypes therefore likely occur in neurons, necessitating re-validation of reagents that were previously validated in other cell types.
Collapse
Affiliation(s)
- Chan Choo Yap
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall 3226, Charlottesville, VA 22908, USA.
| | - Laura Digilio
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall 3226, Charlottesville, VA 22908, USA
| | - Lloyd McMahon
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall 3226, Charlottesville, VA 22908, USA
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall 3226, Charlottesville, VA 22908, USA.
| |
Collapse
|
30
|
Gu X, Jia C, Wang J. Advances in Understanding the Molecular Mechanisms of Neuronal Polarity. Mol Neurobiol 2023; 60:2851-2870. [PMID: 36738353 DOI: 10.1007/s12035-023-03242-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
The establishment and maintenance of neuronal polarity are important for neural development and function. Abnormal neuronal polarity establishment commonly leads to a variety of neurodevelopmental disorders. Over the past three decades, with the continuous development and improvement of biological research methods and techniques, we have made tremendous progress in the understanding of the molecular mechanisms of neuronal polarity establishment. The activity of positive and negative feedback signals and actin waves are both essential in this process. They drive the directional transport and aggregation of key molecules of neuronal polarity, promote the spatiotemporal regulation of ordered and coordinated interactions of actin filaments and microtubules, stimulate the specialization and growth of axons, and inhibit the formation of multiple axons. In this review, we focus on recent advances in these areas, in particular the important findings about neuronal polarity in two classical models, in vitro primary hippocampal/cortical neurons and in vivo cortical pyramidal neurons, and discuss our current understanding of neuronal polarity..
Collapse
Affiliation(s)
- Xi Gu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| | - Chunhong Jia
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Junhao Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
31
|
Maejima I, Hara T, Tsukamoto S, Koizumi H, Kawauchi T, Akuzawa T, Hirai R, Kobayashi H, Isobe I, Emoto K, Kosako H, Sato K. RAB35 is required for murine hippocampal development and functions by regulating neuronal cell distribution. Commun Biol 2023; 6:440. [PMID: 37085665 PMCID: PMC10121692 DOI: 10.1038/s42003-023-04826-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/07/2023] [Indexed: 04/23/2023] Open
Abstract
RAB35 is a multifunctional small GTPase that regulates endocytic recycling, cytoskeletal rearrangement, and cytokinesis. However, its physiological functions in mammalian development remain unclear. Here, we generated Rab35-knockout mice and found that RAB35 is essential for early embryogenesis. Interestingly, brain-specific Rab35-knockout mice displayed severe defects in hippocampal lamination owing to impaired distribution of pyramidal neurons, although defects in cerebral cortex formation were not evident. In addition, Rab35-knockout mice exhibited defects in spatial memory and anxiety-related behaviors. Quantitative proteomics indicated that the loss of RAB35 significantly affected the levels of other RAB proteins associated with endocytic trafficking, as well as some neural cell adhesion molecules, such as contactin-2. Collectively, our findings revealed that RAB35 is required for precise neuronal distribution in the developing hippocampus by regulating the expression of cell adhesion molecules, thereby influencing spatial memory.
Collapse
Affiliation(s)
- Ikuko Maejima
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Taichi Hara
- Laboratory of Food and Life Science, Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, 359-1192, Japan
| | - Satoshi Tsukamoto
- Laboratory Animal and Genome Sciences Section, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba, 263-8555, Japan
| | - Hiroyuki Koizumi
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Molecular and Cellular Biology, School of Pharmaceutical Sciences, Ohu University, Koriyama, Fukushima, 963-8611, Japan
| | - Takeshi Kawauchi
- Department of Adaptive and Maladaptive Responses in Health and Diseases, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Tomoko Akuzawa
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Rika Hirai
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Hisae Kobayashi
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Inoya Isobe
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Kazuo Emoto
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Tokushima, 770-8503, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan.
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma, 371-8512, Japan.
| |
Collapse
|
32
|
Yap CC, Digilio L, McMahon L, Winckler B. "Disruption of Golgi markers by two RILP-directed shRNAs in neurons: a new role for RILP or a neuron-specific off-target phenotype?". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531742. [PMID: 36945482 PMCID: PMC10028860 DOI: 10.1101/2023.03.08.531742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In neurons, degradation of dendritic cargos requires RAB7 and dynein-mediated retrograde transport to somatic lysosomes. In order to test if the dynein adaptor RILP (RAB-interacting lysosomal protein) mediated the recruitment of dynein to late endosomes for retrograde transport in dendrites, we obtained several knockdown reagents which had been previously validated in non-neuronal cells. We found that striking endosomal phenotypes elicited by one shRILP plasmid were not reproduced by another one. Furthermore, we discovered a profound depletion of Golgi/TGN markers for both shRILP plasmids. This Golgi disruption was only observed in neurons and could not be rescued by re-expression of RILP. This Golgi phenotype was also not found in neurons treated with siRILP or gRILP/Cas9. Lastly, we tested if a different RAB protein that interacts with RILP, namely the Golgi-associated RAB34, might be responsible for the loss of Golgi markers. Expression of a dominant-negative RAB34 did indeed cause changes in Golgi staining in a small subset of neurons but manifested as fragmentation rather than loss of markers. Unlike in non-neuronal cells, interference with RAB34 did not cause dispersal of lysosomes in neurons. Based on multiple lines of experimentation, we conclude that the neuronal Golgi phenotype observed with shRILP is likely off-target in this cell type specifically. Any observed disruptions of endosomal trafficking caused by shRILP in neurons might thus be downstream of Golgi disruption. Different approaches will be needed to test if RILP is required for late endosomal transport in dendrites. Cell type-specific off-target phenotypes therefore likely occur in neurons, making it prudent to re-validate reagents that were previously validated in other cell types.
Collapse
Affiliation(s)
- Chan Choo Yap
- Corresponding authors: Bettina Winckler and Chan Choo Yap, Phone: (434)924-5528/5526. ,
| | | | | | - Bettina Winckler
- Corresponding authors: Bettina Winckler and Chan Choo Yap, Phone: (434)924-5528/5526. ,
| |
Collapse
|
33
|
Shikanai M, Ito S, Nishimura YV, Akagawa R, Fukuda M, Yuzaki M, Nabeshima Y, Kawauchi T. Rab21 regulates caveolin-1-mediated endocytic trafficking to promote immature neurite pruning. EMBO Rep 2023; 24:e54701. [PMID: 36683567 PMCID: PMC9986827 DOI: 10.15252/embr.202254701] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 01/24/2023] Open
Abstract
Transmembrane proteins are internalized by clathrin- and caveolin-dependent endocytosis. Both pathways converge on early endosomes and are thought to share the small GTPase Rab5 as common regulator. In contrast to this notion, we show here that the clathrin- and caveolin-mediated endocytic pathways are differentially regulated. Rab5 and Rab21 localize to distinct populations of early endosomes in cortical neurons and preferentially regulate clathrin- and caveolin-mediated pathways, respectively, suggesting heterogeneity in the early endosomes, rather than a converging point. Suppression of Rab21, but not Rab5, results in decreased plasma membrane localization and total protein levels of caveolin-1, which perturbs immature neurite pruning of cortical neurons, an in vivo-specific step of neuronal maturation. Taken together, our data indicate that clathrin- and caveolin-mediated endocytic pathways run in parallel in early endosomes, which show different molecular regulation and physiological function.
Collapse
Affiliation(s)
- Mima Shikanai
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| | - Shiho Ito
- Department of Aging Science and Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
- Laboratory of Molecular Life ScienceInstitute of Biomedical Research and Innovation, FBRI, CLIK‐5FKobeJapan
| | - Yoshiaki V Nishimura
- Division of Neuroscience, Faculty of MedicineTohoku Medical and Pharmaceutical UniversitySendaiJapan
| | - Remi Akagawa
- Laboratory of Molecular Life ScienceInstitute of Biomedical Research and Innovation, FBRI, CLIK‐5FKobeJapan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Michisuke Yuzaki
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| | - Yo‐ichi Nabeshima
- Department of Aging Science and Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
- Laboratory of Molecular Life ScienceInstitute of Biomedical Research and Innovation, FBRI, CLIK‐5FKobeJapan
| | - Takeshi Kawauchi
- Department of PhysiologyKeio University School of MedicineTokyoJapan
- Department of Aging Science and Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
- Laboratory of Molecular Life ScienceInstitute of Biomedical Research and Innovation, FBRI, CLIK‐5FKobeJapan
| |
Collapse
|
34
|
Nabavi M, Hiesinger PR. Turnover of synaptic adhesion molecules. Mol Cell Neurosci 2023; 124:103816. [PMID: 36649812 DOI: 10.1016/j.mcn.2023.103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Molecular interactions between pre- and postsynaptic membranes play critical roles during the development, function and maintenance of synapses. Synaptic interactions are mediated by cell surface receptors that may be held in place by trans-synaptic adhesion or intracellular binding to membrane-associated scaffolding and signaling complexes. Despite their role in stabilizing synaptic contacts, synaptic adhesion molecules undergo turnover and degradation during all stages of a neuron's life. Here we review current knowledge about membrane trafficking mechanisms that regulate turnover of synaptic adhesion molecules and the functional significance of turnover for synapse development and function. Based on recent proteomics, genetics and imaging studies, synaptic adhesion molecules exhibit remarkably high turnover rates compared to other synaptic proteins. Degradation occurs predominantly via endolysosomal mechanisms, with little evidence for roles of proteasomal or autophagic degradation. Basal turnover occurs both during synaptic development and maintenance. Neuronal activity typically stabilizes synaptic adhesion molecules while downregulating neurotransmitter receptors based on turnover. In conclusion, constitutive turnover of synaptic adhesion molecules is not a necessarily destabilizing factor, but a basis for the dynamic regulation of trans-synaptic interactions during synapse formation and maintenance.
Collapse
Affiliation(s)
- Melinda Nabavi
- Institute for Biology, Division of Neurobiology, Freie Universität Berlin, Germany
| | - P Robin Hiesinger
- Institute for Biology, Division of Neurobiology, Freie Universität Berlin, Germany.
| |
Collapse
|
35
|
Vaid S, Heikinheimo O, Namba T. Embryonic mouse medial neocortex as a model system for studying the radial glial scaffold in fetal human neocortex. J Neural Transm (Vienna) 2023; 130:185-194. [PMID: 36450874 PMCID: PMC10033555 DOI: 10.1007/s00702-022-02570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
Abstract
Neocortex is the evolutionarily newest region in the brain, and is a structure with diversified size and morphology among mammalian species. Humans have the biggest neocortex compared to the body size, and their neocortex has many foldings, that is, gyri and sulci. Despite the recent methodological advances in in vitro models such as cerebral organoids, mice have been continuously used as a model system for studying human neocortical development because of the accessibility and practicality of in vivo gene manipulation. The commonly studied neocortical region, the lateral neocortex, generally recapitulates the developmental process of the human neocortex, however, there are several important factors missing in the lateral neocortex. First, basal (outer) radial glia (bRG), which are the main cell type providing the radial scaffold to the migrating neurons in the fetal human neocortex, are very few in the mouse lateral neocortex, thus the radial glial scaffold is different from the fetal human neocortex. Second, as a consequence of the difference in the radial glial scaffold, migrating neurons might exhibit different migratory behavior and thus distribution. To overcome those problems, we propose the mouse medial neocortex, where we have earlier revealed an abundance of bRG similar to the fetal human neocortex, as an alternative model system. We found that similar to the fetal human neocortex, the radial glial scaffold, neuronal migration and neuronal distribution are tangentially scattered in the mouse medial neocortex. Taken together, the embryonic mouse medial neocortex could be a suitable and accessible in vivo model system to study human neocortical development and its pathogenesis.
Collapse
Affiliation(s)
- Samir Vaid
- Department of Basic Neurosciences, University of Geneva, 1211, Geneva, Switzerland
| | - Oskari Heikinheimo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, P.O. 140, 00029, Helsinki, Finland
| | - Takashi Namba
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, P.O. 63, 00014, Helsinki, Finland.
| |
Collapse
|
36
|
Hu H, Chen X, Zhao K, Zheng W, Gao C. Recent Advances in Biomaterials-Based Therapies for Alleviation and Regeneration of Traumatic Brain Injury. Macromol Biosci 2023; 23:e2200577. [PMID: 36758541 DOI: 10.1002/mabi.202200577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Indexed: 02/11/2023]
Abstract
Traumatic brain injury (TBI), a major public health problem accompanied with numerous complications, usually leads to serve disability and huge financial burden. The adverse and unfavorable pathological environment triggers a series of secondary injuries, resulting in serious loss of nerve function and huge obstacle of endogenous nerve regeneration. With the advances in adaptive tissue regeneration biomaterials, regulation of detrimental microenvironment to reduce the secondary injury and to promote the neurogenesis becomes possible. The adaptive biomaterials could respond and regulate biochemical, cellular, and physiological events in the secondary injury, including excitotoxicity, oxidative stress, and neuroinflammation, to rebuild circumstances suitable for regeneration. In this review, the development of pathology after TBI is discussed, followed by the introduction of adaptive biomaterials based on various pathological characteristics. The adaptive biomaterials carried with neurotrophic factors and stem cells for TBI treatment are then summarized. Finally, the current drawbacks and future perspective of biomaterials for TBI treatment are suggested.
Collapse
Affiliation(s)
- Haijun Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiping Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kefei Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Weiwei Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China
| |
Collapse
|
37
|
Goo BS, Mun DJ, Kim S, Nhung TTM, Lee SB, Woo Y, Kim SJ, Suh BK, Park SJ, Lee HE, Park K, Jang H, Rah JC, Yoon KJ, Baek ST, Park SY, Park SK. Schizophrenia-associated Mitotic Arrest Deficient-1 (MAD1) regulates the polarity of migrating neurons in the developing neocortex. Mol Psychiatry 2023; 28:856-870. [PMID: 36357673 PMCID: PMC9908555 DOI: 10.1038/s41380-022-01856-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
Although large-scale genome-wide association studies (GWAS) have identified an association between MAD1L1 (Mitotic Arrest Deficient-1 Like 1) and the pathology of schizophrenia, the molecular mechanisms underlying this association remain unclear. In the present study, we aimed to address these mechanisms by examining the role of MAD1 (the gene product of MAD1L1) in key neurodevelopmental processes in mice and human organoids. Our findings indicated that MAD1 is highly expressed during active cortical development and that MAD1 deficiency leads to impairments in neuronal migration and neurite outgrowth. We also observed that MAD1 is localized to the Golgi apparatus and regulates vesicular trafficking from the Golgi apparatus to the plasma membrane, which is required for the growth and polarity of migrating neurons. In this process, MAD1 physically interacts and collaborates with the kinesin-like protein KIFC3 (kinesin family member C3) to regulate the morphology of the Golgi apparatus and neuronal polarity, thereby ensuring proper neuronal migration and differentiation. Consequently, our findings indicate that MAD1 is an essential regulator of neuronal development and that alterations in MAD1 may underlie schizophrenia pathobiology.
Collapse
Affiliation(s)
- Bon Seong Goo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Dong Jin Mun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Seunghyun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Truong Thi My Nhung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Su Been Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Youngsik Woo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Soo Jeong Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Bo Kyoung Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Sung Jin Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Hee-Eun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Kunyou Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hyunsoo Jang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jong-Cheol Rah
- Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seung Tae Baek
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
38
|
Nik Akhtar S, Bunner WP, Brennan E, Lu Q, Szatmari EM. Crosstalk between the Rho and Rab family of small GTPases in neurodegenerative disorders. Front Cell Neurosci 2023; 17:1084769. [PMID: 36779014 PMCID: PMC9911442 DOI: 10.3389/fncel.2023.1084769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Neurodegeneration is associated with defects in cytoskeletal dynamics and dysfunctions of the vesicular trafficking and sorting systems. In the last few decades, studies have demonstrated that the key regulators of cytoskeletal dynamics are proteins from the Rho family GTPases, meanwhile, the central hub for vesicle sorting and transport between target membranes is the Rab family of GTPases. In this regard, the role of Rho and Rab GTPases in the induction and maintenance of distinct functional and morphological neuronal domains (such as dendrites and axons) has been extensively studied. Several members belonging to these two families of proteins have been associated with many neurodegenerative disorders ranging from dementia to motor neuron degeneration. In this analysis, we attempt to present a brief review of the potential crosstalk between the Rab and Rho family members in neurodegenerative pathologies such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington disease, and amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Shayan Nik Akhtar
- The Harriet and John Wooten Laboratory for Alzheimer’s and Neurodegenerative Diseases Research, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Wyatt P. Bunner
- Laboratory of Neuroscience, Department of Physical Therapy, College of Allied Health Sciences, East Carolina University, Greenville, NC, United States
| | - Elizabeth Brennan
- Laboratory of Neuroscience, Department of Physical Therapy, College of Allied Health Sciences, East Carolina University, Greenville, NC, United States
| | - Qun Lu
- The Harriet and John Wooten Laboratory for Alzheimer’s and Neurodegenerative Diseases Research, Brody School of Medicine, East Carolina University, Greenville, NC, United States,*Correspondence: Erzsebet M. Szatmari Qun Lu
| | - Erzsebet M. Szatmari
- Laboratory of Neuroscience, Department of Physical Therapy, College of Allied Health Sciences, East Carolina University, Greenville, NC, United States,*Correspondence: Erzsebet M. Szatmari Qun Lu
| |
Collapse
|
39
|
Abstract
Vesicles mediate the trafficking of membranes/proteins in the endocytic and secretory pathways. These pathways are regulated by small GTPases of the Rab family. Rab proteins belong to the Ras superfamily of GTPases, which are significantly involved in various intracellular trafficking and signaling processes in the nervous system. Rab11 is known to play a key role especially in recycling many proteins, including receptors important for signal transduction and preservation of functional activities of nerve cells. Rab11 activity is controlled by GEFs (guanine exchange factors) and GAPs (GTPase activating proteins), which regulate its function through modulating GTP/GDP exchange and the intrinsic GTPase activity, respectively. Rab11 is involved in the transport of several growth factor molecules important for the development and repair of neurons. Overexpression of Rab11 has been shown to significantly enhance vesicle trafficking. On the other hand, a reduced expression of Rab11 was observed in several neurodegenerative diseases. Current evidence appears to support the notion that Rab11 and its cognate proteins may be potential targets for therapeutic intervention. In this review, we briefly discuss the function of Rab11 and its related interaction partners in intracellular pathways that may be involved in neurodegenerative processes.
Collapse
Affiliation(s)
| | - Jiri Novotny
- Jiri Novotny, Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
40
|
Ramachandran J, Zhou W, Bardenhagen AE, Nasr T, Yates ER, Zorn AM, Ji H, Vokes SA. Hedgehog regulation of epithelial cell state and morphogenesis in the larynx. eLife 2022; 11:e77055. [PMID: 36398878 PMCID: PMC9718526 DOI: 10.7554/elife.77055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/18/2022] [Indexed: 11/19/2022] Open
Abstract
The larynx enables speech while regulating swallowing and respiration. Larynx function hinges on the laryngeal epithelium which originates as part of the anterior foregut and undergoes extensive remodeling to separate from the esophagus and form vocal folds that interface with the adjacent trachea. Here we find that sonic hedgehog (SHH) is essential for epithelial integrity in the mouse larynx as well as the anterior foregut. During larynx-esophageal separation, low Shh expression marks specific domains of actively remodeling epithelium that undergo an epithelial-to-mesenchymal transition (EMT) characterized by the induction of N-Cadherin and movement of cells out of the epithelial layer. Consistent with a role for SHH signaling in regulating this process, Shh mutants undergo an abnormal EMT throughout the anterior foregut and larynx, marked by a cadherin switch, movement out of the epithelial layer and cell death. Unexpectedly, Shh mutant epithelial cells are replaced by a new population of FOXA2-negative cells that likely derive from adjacent pouch tissues and form a rudimentary epithelium. These findings have important implications for interpreting the etiology of HH-dependent birth defects within the foregut. We propose that SHH signaling has a default role in maintaining epithelial identity throughout the anterior foregut and that regionalized reductions in SHH trigger epithelial remodeling.
Collapse
Affiliation(s)
- Janani Ramachandran
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Anna E Bardenhagen
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| | - Talia Nasr
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, and Perinatal Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Department of Pediatrics, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Ellen R Yates
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| | - Aaron M Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, and Perinatal Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Department of Pediatrics, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Steven A Vokes
- Department of Molecular Biosciences, The University of Texas at AustinAustinUnited States
| |
Collapse
|
41
|
Kanadome T, Hayashi K, Seto Y, Eiraku M, Nakajima K, Nagai T, Matsuda T. Development of intensiometric indicators for visualizing N-cadherin interaction across cells. Commun Biol 2022; 5:1065. [PMID: 36207396 PMCID: PMC9546846 DOI: 10.1038/s42003-022-04023-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
N-cadherin (NCad) is a classical cadherin that mediates cell–cell interactions in a Ca2+-dependent manner. NCad participates in various biological processes, from ontogenesis to higher brain functions, though the visualization of NCad interactions in living cells remains limited. Here, we present intensiometric NCad interaction indicators, named INCIDERs, that utilize dimerization-dependent fluorescent proteins. INCIDERs successfully visualize reversible NCad interactions across cells. Compared to FRET-based indicators, INCIDERs have a ~70-fold higher signal contrast, enabling clear identification of NCad interactions. In primary neuronal cells, NCad interactions are visualized between closely apposed processes. Furthermore, visualization of NCad interaction at cell adhesion sites in dense cell populations is achieved by two-photon microscopy. INCIDERs are useful tools in the spatiotemporal investigation of NCad interactions across cells; future research should evaluate the potential of INCIDERs in mapping complex three-dimensional architectures in multi-cellular systems. Intensiometric N-cadherin (NCad) interaction indicators, named INCIDERs, visualize reversible NCad-mediated cell-cell interactions.
Collapse
Affiliation(s)
- Takashi Kanadome
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan.,Department of Biomolecular Science and Engineering, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, 567-0047, Japan
| | - Kanehiro Hayashi
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yusuke Seto
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Mototsugu Eiraku
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8507, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takeharu Nagai
- Department of Biomolecular Science and Engineering, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, 567-0047, Japan
| | - Tomoki Matsuda
- Department of Biomolecular Science and Engineering, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, 567-0047, Japan.
| |
Collapse
|
42
|
Vallee A, Lecarpentier Y, Vallée JN. WNT/β-catenin pathway and circadian rhythms in obsessive-compulsive disorder. Neural Regen Res 2022; 17:2126-2130. [PMID: 35259818 PMCID: PMC9083179 DOI: 10.4103/1673-5374.332133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The neuropsychiatric disease named obsessive-compulsive disorder is composed by obsessions and/or compulsions. Obsessive-compulsive disorder etiologies are undefined. However, numerous mechanisms in several localizations are implicated. Some studies showed that both glutamate, inflammatory factors and oxidative stress could have main functions in obsessive-compulsive disorder. Glycogen synthase kinase-3β, the major negative controller of the WNT/β-catenin pathway is upregulated in obsessive-compulsive disorder. In obsessive-compulsive disorder, some studies presented the actions of the different circadian clock genes. WNT/β-catenin pathway and circadian clock genes appear to be intricate. Thus, this review focuses on the interaction between circadian clock genes and the WNT/β-catenin pathway in obsessive-compulsive disorder.
Collapse
Affiliation(s)
- Alexandre Vallee
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, Suresnes, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - Jean-Noël Vallée
- Laboratoire de Mathématiques et Applications (LMA), Université de Poitiers, Poitiers; Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
43
|
László ZI, Lele Z. Flying under the radar: CDH2 (N-cadherin), an important hub molecule in neurodevelopmental and neurodegenerative diseases. Front Neurosci 2022; 16:972059. [PMID: 36213737 PMCID: PMC9539934 DOI: 10.3389/fnins.2022.972059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
CDH2 belongs to the classic cadherin family of Ca2+-dependent cell adhesion molecules with a meticulously described dual role in cell adhesion and β-catenin signaling. During CNS development, CDH2 is involved in a wide range of processes including maintenance of neuroepithelial integrity, neural tube closure (neurulation), confinement of radial glia progenitor cells (RGPCs) to the ventricular zone and maintaining their proliferation-differentiation balance, postmitotic neural precursor migration, axon guidance, synaptic development and maintenance. In the past few years, direct and indirect evidence linked CDH2 to various neurological diseases, and in this review, we summarize recent developments regarding CDH2 function and its involvement in pathological alterations of the CNS.
Collapse
Affiliation(s)
- Zsófia I. László
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Zsolt Lele
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
44
|
Rai P, Kumar Roy J. Endosomal recycling protein Rab11 in Parkin and Pink1 signaling in Drosophila model of Parkinson's disease. Exp Cell Res 2022; 420:113357. [PMID: 36116557 DOI: 10.1016/j.yexcr.2022.113357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/23/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022]
Abstract
Neurodegenerative diseases are progressive disorders of the nervous system primarily affecting the loss of neuronal cells present in the brain. Although most neurodegenerative cases are sporadic, some familial genes are found to be involved in the neurodegenerative diseases. The extensively studied parkin and pink1 gene products are known to be involved in the removal of damaged mitochondria via autophagy (mitophagy), a quality control process. If the function of any of these genes is somehow disrupted, accumulation of damaged mitochondria occurs in the forms of protein aggregates in the cytoplasm, leading to formation of the Lewy-bodies. Autophagy is an important catabolic process where the endosomal Rab proteins are seen to be involved. Rab11, an endosomal recycling protein, serves as an ATG9A carrier that helps in autophagosome formation and maturation. Earlier studies have reported that loss of Rab11 prevents the fusion of autophagosomes with the late endosomes hampering the autophagy pathway resulting in apoptosis of cells. In this study, we have emphasized on the importance and functional role of Rab11 in the molecular pathway of Parkin/Pink1 in Parkinson's disease.
Collapse
Affiliation(s)
- Pooja Rai
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
45
|
Gu Y, Guerra F, Hu M, Pope A, Sung K, Yang W, Jetha S, Shoff TA, Gunatilake T, Dahlkamp O, Shi LZ, Manganelli F, Nolano M, Zhou Y, Ding J, Bucci C, Wu C. Mitochondria dysfunction in Charcot Marie Tooth 2B Peripheral Sensory Neuropathy. Commun Biol 2022; 5:717. [PMID: 35851620 PMCID: PMC9293960 DOI: 10.1038/s42003-022-03632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/23/2022] [Indexed: 11/21/2022] Open
Abstract
Rab7 GTPase regulates mitochondrial morphology and function. Missense mutation(s) of Rab7 underlies the pathogenesis of Charcot Marie Tooth 2B (CMT2B) peripheral neuropathy. Herein, we investigate how mitochondrial morphology and function are impacted by the CMT2B associated Rab7V162M mutation. In contrast to recent studies of using heterologous overexpression systems, our results demonstrate significant mitochondrial fragmentation in both human CMT2B patient fibroblasts and CMT2B embryonic fibroblasts (MEFs). Primary cultured E18 dorsal root ganglion (DRG) sensory neurons also show mitochondrial fragmentation and altered axonal mitochondrial movement. In addition, we demonstrate that inhibitors to either the mitochondrial fission protein Drp1 or to the nucleotide binding to Rab7 normalize the mitochondrial deficits in both MEFs and E18 cultured DRG neurons. Our study reveals, for the first time, that expression of CMT2B Rab7 mutation at the physiological level enhances Drp1 activity to promote mitochondrial fission, potentially underlying selective vulnerability of peripheral sensory neurons in CMT2B pathogenesis.
Collapse
Affiliation(s)
- Yingli Gu
- Department of Neurosciences, University of California San Diego, La Jolla, 92093, CA, USA
- Department of Neurology, the Fourth Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Università del Salento, Via Provinciale Lecce-Monteroni n. 165, 73100, Lecce, Italy
| | - Mingzheng Hu
- Department of Neurosciences, University of California San Diego, La Jolla, 92093, CA, USA
| | - Alexander Pope
- Department of Neurosciences, University of California San Diego, La Jolla, 92093, CA, USA
| | - Kijung Sung
- Department of Neurosciences, University of California San Diego, La Jolla, 92093, CA, USA
| | - Wanlin Yang
- Department of Neurosciences, University of California San Diego, La Jolla, 92093, CA, USA
- Department of Neurology, Zhujiang Hospital of Southern Medical University Guangzhou, Guangzhou, 510280, Guangdong Sheng, China
| | - Simone Jetha
- Department of Neurosciences, University of California San Diego, La Jolla, 92093, CA, USA
| | - Thomas A Shoff
- Department of Neurosciences, University of California San Diego, La Jolla, 92093, CA, USA
| | - Tessanya Gunatilake
- Department of Neurosciences, University of California San Diego, La Jolla, 92093, CA, USA
| | - Owen Dahlkamp
- Department of Neurosciences, University of California San Diego, La Jolla, 92093, CA, USA
| | - Linda Zhixia Shi
- Department of Bioengineering, University of California San Diego, La Jolla, 92093, CA, USA
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Via Sergio Pansini 5, 80131, Naples, Italy
| | - Maria Nolano
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Via Sergio Pansini 5, 80131, Naples, Italy
| | - Yue Zhou
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Jianqing Ding
- Institute of Neurology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Università del Salento, Via Provinciale Lecce-Monteroni n. 165, 73100, Lecce, Italy.
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, 92093, CA, USA.
| |
Collapse
|
46
|
Casingal CR, Descant KD, Anton ES. Coordinating cerebral cortical construction and connectivity: Unifying influence of radial progenitors. Neuron 2022; 110:1100-1115. [PMID: 35216663 PMCID: PMC8989671 DOI: 10.1016/j.neuron.2022.01.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/15/2021] [Accepted: 01/26/2022] [Indexed: 01/02/2023]
Abstract
Radial progenitor development and function lay the foundation for the construction of the cerebral cortex. Radial glial scaffold, through its functions as a source of neurogenic progenitors and neuronal migration guide, is thought to provide a template for the formation of the cerebral cortex. Emerging evidence is challenging this limited view. Intriguingly, radial glial scaffold may also play a role in axonal growth, guidance, and neuronal connectivity. Radial glial cells not only facilitate the generation, placement, and allocation of neurons in the cortex but also regulate how they wire up. The organization and function of radial glial cells may thus be a unifying feature of the developing cortex that helps to precisely coordinate the right patterns of neurogenesis, neuronal placement, and connectivity necessary for the emergence of a functional cerebral cortex. This perspective critically explores this emerging view and its impact in the context of human brain development and disorders.
Collapse
Affiliation(s)
- Cristine R Casingal
- UNC Neuroscience Center, the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Katherine D Descant
- UNC Neuroscience Center, the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - E S Anton
- UNC Neuroscience Center, the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
47
|
Sokpor G, Brand-Saberi B, Nguyen HP, Tuoc T. Regulation of Cell Delamination During Cortical Neurodevelopment and Implication for Brain Disorders. Front Neurosci 2022; 16:824802. [PMID: 35281509 PMCID: PMC8904418 DOI: 10.3389/fnins.2022.824802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cortical development is dependent on key processes that can influence apical progenitor cell division and progeny. Pivotal among such critical cellular processes is the intricate mechanism of cell delamination. This indispensable cell detachment process mainly entails the loss of apical anchorage, and subsequent migration of the mitotic derivatives of the highly polarized apical cortical progenitors. Such apical progenitor derivatives are responsible for the majority of cortical neurogenesis. Many factors, including transcriptional and epigenetic/chromatin regulators, are known to tightly control cell attachment and delamination tendency in the cortical neurepithelium. Activity of these molecular regulators principally coordinate morphogenetic cues to engender remodeling or disassembly of tethering cellular components and external cell adhesion molecules leading to exit of differentiating cells in the ventricular zone. Improper cell delamination is known to frequently impair progenitor cell fate commitment and neuronal migration, which can cause aberrant cortical cell number and organization known to be detrimental to the structure and function of the cerebral cortex. Indeed, some neurodevelopmental abnormalities, including Heterotopia, Schizophrenia, Hydrocephalus, Microcephaly, and Chudley-McCullough syndrome have been associated with cell attachment dysregulation in the developing mammalian cortex. This review sheds light on the concept of cell delamination, mechanistic (transcriptional and epigenetic regulation) nuances involved, and its importance for corticogenesis. Various neurodevelopmental disorders with defective (too much or too little) cell delamination as a notable etiological underpinning are also discussed.
Collapse
Affiliation(s)
- Godwin Sokpor
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Godwin Sokpor,
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Tran Tuoc
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Tran Tuoc,
| |
Collapse
|
48
|
Romano R, Del Fiore VS, Saveri P, Palamà IE, Pisciotta C, Pareyson D, Bucci C, Guerra F. Autophagy and Lysosomal Functionality in CMT2B Fibroblasts Carrying the RAB7 K126R Mutation. Cells 2022; 11:cells11030496. [PMID: 35159308 PMCID: PMC8834514 DOI: 10.3390/cells11030496] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/18/2023] Open
Abstract
Charcot-Marie-Tooth type 2B (CMT2B) disease is a dominant axonal peripheral neuropathy caused by five mutations in the RAB7A gene. Autophagy and late endocytic trafficking were already characterized in CMT2B. Indeed, impairment of autophagy and an increase in lysosomal degradative activity were found in cells expressing the mutant proteins. Recently, we described a novel RAB7 mutation associated with predominantly motor CMT2 and impaired EGFR trafficking. With the aim to analyze the autophagy process and lysosomal activity in CMT2B fibroblasts carrying the p.K126R RAB7 novel mutation and to investigate further the causes of the different phenotype, we have performed Western blot, immunofluorescence and cytometric analyses monitoring autophagic markers and endocytic proteins. Moreover, we investigated lipophagy by analyzing accumulation of lipid droplets and their co-localization with endolysosomal degradative compartments. We found that cells expressing the RAB7K126R mutant protein were characterized by impairment of autophagy and lipophagy processes and by a moderate increase in lysosomal activity compared to the previously studied cells carrying the RAB7V162M mutation. Thus, we concluded that EGFR trafficking alterations and a moderate increase in lysosomal activity with concomitant impairment of autophagy could induce the specific predominantly motor phenotype observed in K126R patients.
Collapse
Affiliation(s)
- Roberta Romano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, 73100 Lecce, Italy; (R.R.); (V.S.D.F.)
| | - Victoria Stefania Del Fiore
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, 73100 Lecce, Italy; (R.R.); (V.S.D.F.)
| | - Paola Saveri
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (P.S.); (C.P.); (D.P.)
| | | | - Chiara Pisciotta
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (P.S.); (C.P.); (D.P.)
| | - Davide Pareyson
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (P.S.); (C.P.); (D.P.)
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, 73100 Lecce, Italy; (R.R.); (V.S.D.F.)
- Correspondence: (C.B.); (F.G.); Tel.: +39-08-3229-8900 (C.B.)
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, 73100 Lecce, Italy; (R.R.); (V.S.D.F.)
- Correspondence: (C.B.); (F.G.); Tel.: +39-08-3229-8900 (C.B.)
| |
Collapse
|
49
|
Possible actions of cannabidiol in obsessive-compulsive disorder by targeting the WNT/β-catenin pathway. Mol Psychiatry 2022; 27:230-248. [PMID: 33837269 DOI: 10.1038/s41380-021-01086-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/13/2021] [Accepted: 03/26/2021] [Indexed: 02/02/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder characterized by recurrent and distinctive obsessions and/or compulsions. The etiologies remain unclear. Recent findings have shown that oxidative stress, inflammation, and glutamatergic pathways play key roles in the causes of OCD. However, first-line therapies include cognitive-behavioral therapy but only 40% of the patients respond to this first-line therapy. Research for new treatment is mandatory. This review focuses on the potential effects of cannabidiol (CBD), as a potential therapeutic strategy, on OCD and some of the presumed mechanisms by which CBD provides its benefit properties. CBD medication downregulates GSK-3β, the main inhibitor of the WNT/β-catenin pathway. The activation of the WNT/β-catenin could be associated with the control of oxidative stress, inflammation, and glutamatergic pathway and circadian rhythms dysregulation in OCD. Future prospective clinical trials could focus on CBD and its different and multiple interactions in OCD.
Collapse
|
50
|
Chai Y, Zhao H, Yang S, Gao X, Cao Z, Lu J, Sun Q, Liu W, Zhang Z, Yang J, Wang X, Chen T, Kong X, Mikos AG, Zhang X, Zhang Y, Wang X. Structural alignment guides oriented migration and differentiation of endogenous neural stem cells for neurogenesis in brain injury treatment. Biomaterials 2021; 280:121310. [PMID: 34890972 DOI: 10.1016/j.biomaterials.2021.121310] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 02/04/2023]
Abstract
Radial glia (RG) cells that align in parallel in the embryonic brain are found to be able to guide the directed migration of neurons in response to brain injury. Therefore, biomaterials with aligned architectures are supposed to have positive effects on neural migration and neurogenic differentiation for brain injury repair that are rarely addressed, although they have been widely demonstrated in spinal cord and peripheral nerve system. Here, we present a highly biomimetic scaffold of aligned fibrin hydrogel (AFG) that mimics the oriented structure of RG fibers. Through a combination of histological, behavioral, imaging, and transcriptomic analyses, we demonstrated that transplanting the AFG scaffold into injured cortical brains promotes effective migration, differentiation, and maturation of endogenous neural stem cells, resulting in neurological functional recovery. Therefore, this study will light up a new perspective on applying an aligned scaffold to promote cortical regeneration after injury by inducing endogenous neurogenesis.
Collapse
Affiliation(s)
- Yi Chai
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China; Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100040, China; Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160, Pujian Road, District Pudong, Shanghai, 200127, China
| | - He Zhao
- Department of orthopacdic III, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Shuhui Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaohan Gao
- Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100040, China
| | - Zheng Cao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Jiaju Lu
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qingling Sun
- Department of orthopacdic III, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Wei Liu
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Hebei, 050000, China
| | - Zhe Zhang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Junyi Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Xuelin Wang
- School of Medical Science and Engineering, Beihang University, Beijing, 100191, China
| | - Tuoyu Chen
- Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100040, China
| | - Xiangdong Kong
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Xiaohua Zhang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160, Pujian Road, District Pudong, Shanghai, 200127, China
| | - Yuqi Zhang
- Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100040, China.
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|