1
|
Xu H, Fan Z. The role and mechanism of Schwann cells in the repair of peripheral nerve injury. Cell Tissue Res 2025; 400:81-95. [PMID: 39954051 DOI: 10.1007/s00441-025-03957-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Limb injuries such as severe strains, deep cuts, gunshot wounds, and ischemia can cause peripheral nerve damage. This can result in a range of clinical symptoms including sensory deficits, limb paralysis and atrophy, neuralgia, and sweating abnormalities in the innervated areas affected by the damaged nerves. These symptoms can have a significant impact on patients' daily lives and work. Despite existing clinical treatments, some patients cannot achieve satisfactory therapeutic effects and continue to experience persistent paralysis and pain. Schwann cells are responsible for repairing and regenerating damaged nerves in the peripheral nervous system. They play a crucial role in the healing of nerve injuries and are essential for the restoration of proper nerve function. An increasing number of studies have focused on the various regulatory mechanisms that specifically affect the repair of damage by Schwann cells. This article aims to provide information on the different types of peripheral nerve injuries and their available treatments. We also discuss the various molecular mechanisms that regulate Schwann cell function during peripheral nerve repair and how they can be used to promote nerve repair and regeneration. Furthermore, we explore the potential therapeutic applications of precision regulation of Schwann cells for the treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- Huiyue Xu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Loret C, Scherrer C, Rovini A, Lesage E, Richard L, Danigo A, Sturtz F, Favreau F, Faye PA, Lia AS. Addressing myelination disorders: Novel strategies using human 3D peripheral nerve model. Brain Res Bull 2025; 222:111252. [PMID: 39938756 DOI: 10.1016/j.brainresbull.2025.111252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Peripheral myelination disorders encompass a variety of disorders that affect myelin sheaths in the peripheral nervous system. The Charcot-Marie-Tooth disease (CMT), the most common inherited peripheral neuropathy, is one of the most prevalent among them. CMT stems from a wide range of genetic causes that disrupt the nerve conduction, leading to progressive muscle weakness and atrophy, sensory loss, and motor function impairment. Historically, the study of these disorders has relied heavily on animal studies, owing to the challenges in accessing human cells. However, the advent of human induced pluripotent stem cell (hiPSC)-derived neuronal cells has addressed these limitations in the realm of peripheral myelination disorders. Despite this, obtaining myelin in these models remains an expensive, time-consuming, and material-intensive process. This study presents a novel, cost-effective method utilizing hiPSC-derived Schwann cells and motor neurons in a three-dimensional culture system. Our method successfully enabled the acquisition of myelin in a control clone within just four weeks, as confirmed by electron microscopy. Furthermore, the utility of these approaches was validated by studying CMT4C, also named AR-CMTde-SH3TC2, the most common recessive demyelinating form of CMT. This revealed defects in Schwann cell support to motor neuron neurite outgrowth and impaired myelination in disease-specific hiPSC-derived lines. This approach offers valuable insights into the pathogenesis of peripheral myelination disorders and provides a platform for testing potential therapeutic strategies.
Collapse
Affiliation(s)
- Camille Loret
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France.
| | - Camille Scherrer
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France
| | - Amandine Rovini
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France
| | - Esther Lesage
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France
| | - Laurence Richard
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Service de Neurologie, Limoges F-87000, France
| | - Aurore Danigo
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Service de Neurologie, Limoges F-87000, France
| | - Franck Sturtz
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, Limoges F-87000, France
| | - Frédéric Favreau
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, Limoges F-87000, France.
| | - Pierre-Antoine Faye
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, Limoges F-87000, France
| | - Anne-Sophie Lia
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, Limoges F-87000, France; CHU Limoges, Department of Bioinformatics, Limoges F-87000, France
| |
Collapse
|
3
|
Martinez Moreno M, Karambizi D, Hwang H, Fregoso K, Michles MJ, Fajardo E, Fiser A, Tapinos N. Role of the Egr2 Promoter Antisense RNA in Modulating the Schwann Cell Chromatin Landscape. Biomedicines 2024; 12:2594. [PMID: 39595160 PMCID: PMC11592338 DOI: 10.3390/biomedicines12112594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Schwann cells (SCs) and their plasticity contribute to the peripheral nervous system's capacity for nerve regeneration after injury. The Egr2/Krox20 promoter antisense RNA (Egr2-AS) recruits chromatin remodeling complexes to inhibit Egr2 transcription following peripheral nerve injury. Methods: RNA-seq and ATAC-seq were performed on control cells, Lenti-GFP-transduced cells, and cells overexpressing Egr2-AS (Lenti-AS). Egr2 AS-RNA was cloned into the pLVX-DsRed-Express2-N1 lentiviral expression vector (Clontech, Mountain View, CA, USA), and the levels of AS-RNA expression were determined. Ezh2 and Wdr5 were immunoprecipitated from rat SCs and RT-qPCR was performed against AS-Egr2 RNA. ChIP followed by DNA purification columns was used to perform qPCR for relevant promoters. Hi-C, HiC-DC+, R, Bioconductor, and TOBIAS were used for significant and differential loop analysis, identifications of COREs and CORE-promotor loops, comparisons of TF activity at promoter sites, and identification of site-specific TF footprints. OnTAD was used to detect TADs, and Juicer was used to identify A/B compartments. Results: Here we show that a Neuregulin-ErbB2/3 signaling axis mediates binding of the Egr2-AS to YY1Ser184 and regulates its expression. Egr2-AS modulates the chromatin accessibility of Schwann cells and interacts with two distinct histone modification complexes. It binds to EZH2 and WDR5 and enables targeting of H3K27me3 and H3K4me3 to promoters of Egr2 and C-JUN, respectively. Expression of the Egr2-AS results in reorganization of the global chromatin landscape and quantitative changes in the loop formation and contact frequency at domain boundaries exhibiting enrichment for AP-1 genes. In addition, the Egr2-AS induces changes in the hierarchical TADs and increases transcription factor binding scores on an inter-TAD loop between a super-enhancer regulatory hub and the promoter of mTOR. Conclusions: Our results show that Neuregulin-ErbB2/3-YY1 regulates the expression of Egr2-AS, which mediates remodeling of the chromatin landscape in Schwann cells.
Collapse
Affiliation(s)
- Margot Martinez Moreno
- Department of Neurosurgery, Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - David Karambizi
- Laboratory of Cancer Epigenetics and Plasticity, Brown University, Providence, RI 02903, USA
| | - Hyeyeon Hwang
- Laboratory of Cancer Epigenetics and Plasticity, Brown University, Providence, RI 02903, USA
| | - Kristen Fregoso
- Laboratory of Cancer Epigenetics and Plasticity, Brown University, Providence, RI 02903, USA
| | - Madison J. Michles
- Department of Neurosurgery, Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Eduardo Fajardo
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nikos Tapinos
- Department of Neurosurgery, Brown University, Rhode Island Hospital, Providence, RI 02903, USA
- Laboratory of Cancer Epigenetics and Plasticity, Brown University, Providence, RI 02903, USA
| |
Collapse
|
4
|
Bjorklund GR, Rees KP, Balasubramanian K, Hewitt LT, Nishimura K, Newbern JM. Hyperactivation of MEK1 in cortical glutamatergic neurons results in projection axon deficits and aberrant motor learning. Dis Model Mech 2024; 17:dmm050570. [PMID: 38826084 PMCID: PMC11247507 DOI: 10.1242/dmm.050570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
Abnormal extracellular signal-regulated kinase 1/2 (ERK1/2, encoded by Mapk3 and Mapk1, respectively) signaling is linked to multiple neurodevelopmental diseases, especially the RASopathies, which typically exhibit ERK1/2 hyperactivation in neurons and non-neuronal cells. To better understand how excitatory neuron-autonomous ERK1/2 activity regulates forebrain development, we conditionally expressed a hyperactive MEK1 (MAP2K1) mutant, MEK1S217/221E, in cortical excitatory neurons of mice. MEK1S217/221E expression led to persistent hyperactivation of ERK1/2 in cortical axons, but not in soma/nuclei. We noted reduced axonal arborization in multiple target domains in mutant mice and reduced the levels of the activity-dependent protein ARC. These changes did not lead to deficits in voluntary locomotion or accelerating rotarod performance. However, skilled motor learning in a single-pellet retrieval task was significantly diminished in these MEK1S217/221E mutants. Restriction of MEK1S217/221E expression to layer V cortical neurons recapitulated axonal outgrowth deficits but did not affect motor learning. These results suggest that cortical excitatory neuron-autonomous hyperactivation of MEK1 is sufficient to drive deficits in axon outgrowth, which coincide with reduced ARC expression, and deficits in skilled motor learning. Our data indicate that neuron-autonomous decreases in long-range axonal outgrowth may be a key aspect of neuropathogenesis in RASopathies.
Collapse
Affiliation(s)
- George R. Bjorklund
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Katherina P. Rees
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | - Lauren T. Hewitt
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Kenji Nishimura
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Jason M. Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
5
|
Wei C, Guo Y, Ci Z, Li M, Zhang Y, Zhou Y. Advances of Schwann cells in peripheral nerve regeneration: From mechanism to cell therapy. Biomed Pharmacother 2024; 175:116645. [PMID: 38729050 DOI: 10.1016/j.biopha.2024.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Peripheral nerve injuries (PNIs) frequently occur due to various factors, including mechanical trauma such as accidents or tool-related incidents, as well as complications arising from diseases like tumor resection. These injuries frequently result in persistent numbness, impaired motor and sensory functions, neuropathic pain, or even paralysis, which can impose a significant financial burden on patients due to outcomes that often fall short of expectations. The most frequently employed clinical treatment for PNIs involves either direct sutures of the severed ends or bridging the proximal and distal stumps using autologous nerve grafts. However, autologous nerve transplantation may result in sensory and motor functional loss at the donor site, as well as neuroma formation and scarring. Transplantation of Schwann cells/Schwann cell-like cells has emerged as a promising cellular therapy to reconstruct the microenvironment and facilitate peripheral nerve regeneration. In this review, we summarize the role of Schwann cells and recent advances in Schwann cell therapy in peripheral nerve regeneration. We summarize current techniques used in cell therapy, including cell injection, 3D-printed scaffolds for cell delivery, cell encapsulation techniques, as well as the cell types employed in experiments, experimental models, and research findings. At the end of the paper, we summarize the challenges and advantages of various cells (including ESCs, iPSCs, and BMSCs) in clinical cell therapy. Our goal is to provide the theoretical and experimental basis for future treatments targeting peripheral nerves, highlighting the potential of cell therapy and tissue engineering as invaluable resources for promoting nerve regeneration.
Collapse
Affiliation(s)
- Chuqiao Wei
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuanxin Guo
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhen Ci
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Mucong Li
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yidi Zhang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China.
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
6
|
Weerasinghe-Mudiyanselage PDE, Kang S, Kim JS, Kim SH, Wang H, Shin T, Moon C. Changes in structural plasticity of hippocampal neurons in an animal model of multiple sclerosis. Zool Res 2024; 45:398-414. [PMID: 38485508 PMCID: PMC11017077 DOI: 10.24272/j.issn.2095-8137.2023.309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 03/19/2024] Open
Abstract
Structural plasticity is critical for the functional diversity of neurons in the brain. Experimental autoimmune encephalomyelitis (EAE) is the most commonly used model for multiple sclerosis (MS), successfully mimicking its key pathological features (inflammation, demyelination, axonal loss, and gliosis) and clinical symptoms (motor and non-motor dysfunctions). Recent studies have demonstrated the importance of synaptic plasticity in EAE pathogenesis. In the present study, we investigated the features of behavioral alteration and hippocampal structural plasticity in EAE-affected mice in the early phase (11 days post-immunization, DPI) and chronic phase (28 DPI). EAE-affected mice exhibited hippocampus-related behavioral dysfunction in the open field test during both early and chronic phases. Dendritic complexity was largely affected in the cornu ammonis 1 (CA1) and CA3 apical and dentate gyrus (DG) subregions of the hippocampus during the chronic phase, while this effect was only noted in the CA1 apical subregion in the early phase. Moreover, dendritic spine density was reduced in the hippocampal CA1 and CA3 apical/basal and DG subregions in the early phase of EAE, but only reduced in the DG subregion during the chronic phase. Furthermore, mRNA levels of proinflammatory cytokines ( Il1β, Tnfα, and Ifnγ) and glial cell markers ( Gfap and Cd68) were significantly increased, whereas the expression of activity-regulated cytoskeleton-associated protein (ARC) was reduced during the chronic phase. Similarly, exposure to the aforementioned cytokines in primary cultures of hippocampal neurons reduced dendritic complexity and ARC expression. Primary cultures of hippocampal neurons also showed significantly reduced extracellular signal-regulated kinase (ERK) phosphorylation upon treatment with proinflammatory cytokines. Collectively, these results suggest that autoimmune neuroinflammation alters structural plasticity in the hippocampus, possibly through the ERK-ARC pathway, indicating that this alteration may be associated with hippocampal dysfunctions in EAE.
Collapse
Affiliation(s)
- Poornima D E Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sung-Ho Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hongbing Wang
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea. E-mail:
| |
Collapse
|
7
|
Lian M, Qiao Z, Qiao S, Zhang X, Lin J, Xu R, Zhu N, Tang T, Huang Z, Jiang W, Shi J, Hao Y, Lai H, Dai K. Nerve Growth Factor-Preconditioned Mesenchymal Stem Cell-Derived Exosome-Functionalized 3D-Printed Hierarchical Porous Scaffolds with Neuro-Promotive Properties for Enhancing Innervated Bone Regeneration. ACS NANO 2024; 18:7504-7520. [PMID: 38412232 DOI: 10.1021/acsnano.3c11890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The essential role of the neural network in enhancing bone regeneration has often been overlooked in biomaterial design, leading to delayed or compromised bone healing. Engineered mesenchymal stem cells (MSCs)-derived exosomes are becoming increasingly recognized as potent cell-free agents for manipulating cellular behavior and improving therapeutic effectiveness. Herein, MSCs are stimulated with nerve growth factor (NGF) to regulate exosomal cargoes to improve neuro-promotive potential and facilitate innervated bone regeneration. In vitro cell experiments showed that the NGF-stimulated MSCs-derived exosomes (N-Exos) obviously improved the cellular function and neurotrophic effects of the neural cells, and consequently, the osteogenic potential of the osteo-reparative cells. Bioinformatic analysis by miRNA sequencing and pathway enrichment revealed that the beneficial effects of N-Exos may partly be ascribed to the NGF-elicited multicomponent exosomal miRNAs and the subsequent regulation and activation of the MAPK and PI3K-Akt signaling pathways. On this basis, N-Exos were delivered on the micropores of the 3D-printed hierarchical porous scaffold to accomplish the sustained release profile and extended bioavailability. In a rat model with a distal femoral defect, the N-Exos-functionalized hierarchical porous scaffold significantly induced neurovascular structure formation and innervated bone regeneration. This study provided a feasible strategy to modulate the functional cargoes of MSCs-derived exosomes to acquire desirable neuro-promotive and osteogenic potential. Furthermore, the developed N-Exos-functionalized hierarchical porous scaffold may represent a promising neurovascular-promotive bone reparative scaffold for clinical translation.
Collapse
Affiliation(s)
- Meifei Lian
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Zhiguang Qiao
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Shichong Qiao
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Xing Zhang
- State Key Laboratory of Mechanical Systems and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jieming Lin
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Ruida Xu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Naifeng Zhu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Tianhong Tang
- Department of Prosthodontics, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhuoli Huang
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Wenbo Jiang
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Junyu Shi
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Yongqiang Hao
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Hongchang Lai
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Kerong Dai
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
8
|
Deschênes-Simard X, Malleshaiah M, Ferbeyre G. Extracellular Signal-Regulated Kinases: One Pathway, Multiple Fates. Cancers (Basel) 2023; 16:95. [PMID: 38201521 PMCID: PMC10778234 DOI: 10.3390/cancers16010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
This comprehensive review delves into the multifaceted aspects of ERK signaling and the intricate mechanisms underlying distinct cellular fates. ERK1 and ERK2 (ERK) govern proliferation, transformation, epithelial-mesenchymal transition, differentiation, senescence, or cell death, contingent upon activation strength, duration, and context. The biochemical mechanisms underlying these outcomes are inadequately understood, shaped by signaling feedback and the spatial localization of ERK activation. Generally, ERK activation aligns with the Goldilocks principle in cell fate determination. Inadequate or excessive ERK activity hinders cell proliferation, while balanced activation promotes both cell proliferation and survival. Unraveling the intricacies of how the degree of ERK activation dictates cell fate requires deciphering mechanisms encompassing protein stability, transcription factors downstream of ERK, and the chromatin landscape.
Collapse
Affiliation(s)
- Xavier Deschênes-Simard
- Montreal University Hospital Center (CHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Mohan Malleshaiah
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Gerardo Ferbeyre
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
- Montreal Cancer Institute, CR-CHUM, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
9
|
Han SH, Kim YH, Park SJ, Cho JG, Shin YK, Hong YB, Yun J, Han JY, Park HT, Park JI. COUP-TFII plays a role in cAMP-induced Schwann cell differentiation and in vitro myelination by up-regulating Krox20. J Neurochem 2023; 165:660-681. [PMID: 36648143 DOI: 10.1111/jnc.15764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023]
Abstract
Schwann cells (SCs) are known to produce myelin for saltatory nerve conduction in the peripheral nervous system (PNS). Schwann cell differentiation and myelination processes are controlled by several transcription factors including Sox10, Oct6/Pou3f1, and Krox20/Egr2. Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII/NR2F2) is an orphan receptor that plays a role in the development and differentiation. However, the role of COUP-TFII in the transcriptional regulatory network of SC differentiation has not been fully identified yet. Thus, the objective of this study was to investigate the role and molecular hierarchy of COUP-TFII during cAMP-induced SC differentiation. Our results showed that dibutyryl-cAMP (db-cAMP) increased expression levels of COUP-TFII along with the expressions of Oct6, Krox20, and myelin-related genes known to be related to SC differentiation. Our mechanistic studies showed that COUP-TFII acted downstream of Hsp90/ErbB2/Gab1/ERK-AKT pathway during db-cAMP-induced SC differentiation. In addition, we found that COUP-TFII induced Krox20 expression by directly binding to Krox20-MSE8 as revealed by chromatin immunoprecipitation assay and promoter activity assay. In line with this, the expression of COUP-TFII was increased before up-regulation of Oct6, Krox20, and myelin-related genes in the sciatic nerves during early postnatal myelination period. Finally, COUP-TFII knockdown by COUP-TFII siRNA or via AAV-COUP-TFII shRNA in SCs inhibited db-cAMP-induced SC differentiation and in vitro myelination of sensory axons, respectively. Taken together, these findings indicate that COUP-TFII might be involved in postnatal myelination through induction of Krox20 in SCs. Our results present a new insight into the transcriptional regulatory mechanism in SC differentiation and myelination.
Collapse
Affiliation(s)
- Sang-Heum Han
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea
| | - Young Hee Kim
- Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea
| | - Su-Jeong Park
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea
| | - Jun-Gi Cho
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea
| | - Yoon Kyung Shin
- Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea
| | - Young Bin Hong
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea
| | - Jeanho Yun
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea
| | - Jin-Yeong Han
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, South Korea
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea.,Department of Molecular Neuroscience, Dong-A University College of Medicine, Busan, South Korea
| | - Joo-In Park
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea
| |
Collapse
|
10
|
Schwann cell functions in peripheral nerve development and repair. Neurobiol Dis 2023; 176:105952. [PMID: 36493976 DOI: 10.1016/j.nbd.2022.105952] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The glial cell of the peripheral nervous system (PNS), the Schwann cell (SC), counts among the most multifaceted cells of the body. During development, SCs secure neuronal survival and participate in axonal path finding. Simultaneously, they orchestrate the architectural set up of the developing nerves, including the blood vessels and the endo-, peri- and epineurial layers. Perinatally, in rodents, SCs radially sort and subsequently myelinate individual axons larger than 1 μm in diameter, while small calibre axons become organised in non-myelinating Remak bundles. SCs have a vital role in maintaining axonal health throughout life and several specialized SC types perform essential functions at specific locations, such as terminal SC at the neuromuscular junction (NMJ) or SC within cutaneous sensory end organs. In addition, neural crest derived satellite glia maintain a tight communication with the soma of sensory, sympathetic, and parasympathetic neurons and neural crest derivatives are furthermore an indispensable part of the enteric nervous system. The remarkable plasticity of SCs becomes evident in the context of a nerve injury, where SC transdifferentiate into intriguing repair cells, which orchestrate a regenerative response that promotes nerve repair. Indeed, the multiple adaptations of SCs are captivating, but remain often ill-resolved on the molecular level. Here, we summarize and discuss the knowns and unknowns of the vast array of functions that this single cell type can cover in peripheral nervous system development, maintenance, and repair.
Collapse
|
11
|
Abd Razak NH, Zainey AS, Idris J, Daud MF. The Fundamentals of Schwann Cell Biology. INDUSTRIAL REVOLUTION IN KNOWLEDGE MANAGEMENT AND TECHNOLOGY 2023:105-113. [DOI: 10.1007/978-3-031-29265-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
12
|
Acheta J, Bhatia U, Haley J, Hong J, Rich K, Close R, Bechler ME, Belin S, Poitelon Y. Piezo channels contribute to the regulation of myelination in Schwann cells. Glia 2022; 70:2276-2289. [PMID: 35903933 PMCID: PMC10638658 DOI: 10.1002/glia.24251] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 12/19/2022]
Abstract
Peripheral nerves and Schwann cells have to sustain constant mechanical constraints, caused by developmental growth as well as stretches associated with movements of the limbs and mechanical compressions from daily activities. In Schwann cells, signaling molecules sensitive to stiffness or stretch of the extracellular matrix, such as YAP/TAZ, have been shown to be critical for Schwann cell development and peripheral nerve regeneration. YAP/TAZ have also been suggested to contribute to tumorigenesis, neuropathic pain, and inherited disorders. Yet, the role of mechanosensitive ion channels in myelinating Schwann cells is vastly unexplored. Here we comprehensively assessed the expression of mechanosensitive ion channels in Schwann cells and identified that PIEZO1 and PIEZO2 are among the most abundant mechanosensitive ion channels expressed by Schwann cells. Using classic genetic ablation studies, we show that PIEZO1 is a transient inhibitor of radial and longitudinal myelination in Schwann cells. Contrastingly, we show that PIEZO2 may be required for myelin formation, as the absence of PIEZO2 in Schwann cells delays myelin formation. We found an epistatic relationship between PIEZO1 and PIEZO2, at both the morphological and molecular levels. Finally, we show that PIEZO1 channels affect the regulation of YAP/TAZ activation in Schwann cells. Overall, we present here the first demonstration that PIEZO1 and PIEZO2 contribute to mechanosensation in Schwann cells as well myelin development in the peripheral nervous system.
Collapse
Affiliation(s)
- Jenica Acheta
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Urja Bhatia
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Jeanette Haley
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Jiayue Hong
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Kyle Rich
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Rachel Close
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Marie E. Bechler
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Sophie Belin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| |
Collapse
|
13
|
Norcross RG, Abdelmoti L, Rouchka EC, Andreeva K, Tussey O, Landestoy D, Galperin E. Shoc2 controls ERK1/2-driven neural crest development by balancing components of the extracellular matrix. Dev Biol 2022; 492:156-171. [PMID: 36265687 PMCID: PMC10019579 DOI: 10.1016/j.ydbio.2022.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 02/02/2023]
Abstract
The extracellular signal-regulated kinase (ERK1/2) pathway is essential in embryonic development. The scaffold protein Shoc2 is a critical modulator of ERK1/2 signals, and mutations in the shoc2 gene lead to the human developmental disease known as Noonan-like syndrome with loose anagen hair (NSLH). The loss of Shoc2 and the shoc2 NSLH-causing mutations affect the tissues of neural crest (NC) origin. In this study, we utilized the zebrafish model to dissect the role of Shoc2-ERK1/2 signals in the development of NC. These studies established that the loss of Shoc2 significantly altered the expression of transcription factors regulating the specification and differentiation of NC cells. Using comparative transcriptome analysis of NC-derived cells from shoc2 CRISPR/Cas9 mutant larvae, we found that Shoc2-mediated signals regulate gene programs at several levels, including expression of genes coding for the proteins of extracellular matrix (ECM) and ECM regulators. Together, our results demonstrate that Shoc2 is an essential regulator of NC development. This study also indicates that disbalance in the turnover of the ECM may lead to the abnormalities found in NSLH patients.
Collapse
Affiliation(s)
- Rebecca G Norcross
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Lina Abdelmoti
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Eric C Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, 40292, USA; KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, 40292, USA
| | - Kalina Andreeva
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, 40292, USA; Department of Neuroscience Training, University of Louisville, Louisville, KY, 40292, USA; Department of Genetics, Stanford University, Palo Alto, CA, 94304, USA
| | - Olivia Tussey
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Daileen Landestoy
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
14
|
Fekete CD, Nishiyama A. Presentation and integration of multiple signals that modulate oligodendrocyte lineage progression and myelination. Front Cell Neurosci 2022; 16:1041853. [PMID: 36451655 PMCID: PMC9701731 DOI: 10.3389/fncel.2022.1041853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/17/2022] [Indexed: 11/15/2022] Open
Abstract
Myelination is critical for fast saltatory conduction of action potentials. Recent studies have revealed that myelin is not a static structure as previously considered but continues to be made and remodeled throughout adulthood in tune with the network requirement. Synthesis of new myelin requires turning on the switch in oligodendrocytes (OL) to initiate the myelination program that includes synthesis and transport of macromolecules needed for myelin production as well as the metabolic and other cellular functions needed to support this process. A significant amount of information is available regarding the individual intrinsic and extrinsic signals that promote OL commitment, expansion, terminal differentiation, and myelination. However, it is less clear how these signals are made available to OL lineage cells when needed, and how multiple signals are integrated to generate the correct amount of myelin that is needed in a given neural network state. Here we review the pleiotropic effects of some of the extracellular signals that affect myelination and discuss the cellular processes used by the source cells that contribute to the variation in the temporal and spatial availability of the signals, and how the recipient OL lineage cells might integrate the multiple signals presented to them in a manner dialed to the strength of the input.
Collapse
Affiliation(s)
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
15
|
Yidian C, Chen L, Hongxia D, Yanguo L, Zhisen S. Single-cell sequencing reveals the cell map and transcriptional network of sporadic vestibular schwannoma. Front Mol Neurosci 2022; 15:984529. [PMID: 36304995 PMCID: PMC9592810 DOI: 10.3389/fnmol.2022.984529] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, based on three tumor samples obtained from patients with sporadic vestibular schwannoma, 32,011 cells were obtained by single-cell transcriptome sequencing, and 22,309 high-quality cells were obtained after quality control and double cells removal. Then, 18 cell clusters were obtained after cluster analysis, and each cluster was annotated as six types of cells. Afterward, an in-depth analysis was conducted based on the defined six cell clusters, including characterizing the functional characteristics of each cell subtype, describing the cell development and differentiation pathway, exploring the interaction between cells, and analyzing the transcriptional regulatory network within the clusters. Based on these four dimensions, various types of cells in sporadic vestibular schwannoma tumor tissues were described in detail. For the first time, we expanded on the functional state of cell clusters that have been reported and described Schwann cells in the peripheral nervous system, which have not been reported in previous studies. Combined with the data of sporadic vestibular schwannoma and normal tissues in the gene expression omnibus (GEO) database, the candidate biomarkers of sporadic vestibular schwannoma were explored. Overall, this study described the single-cell map of sporadic vestibular schwannoma for the first time, revealing the functional state and development trajectory of different cell types. Combined with the analysis of data in the GEO database and immunohistochemical verification, it was concluded that HLA-DPB1 and VSIG4 may be candidate biomarkers and potential therapeutic targets for patients with sporadic vestibular schwannoma.
Collapse
Affiliation(s)
- Chu Yidian
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Lin Chen
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Deng Hongxia
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Li Yanguo
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Shen Zhisen
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
16
|
Klymenko A, Lutz D. Melatonin signalling in Schwann cells during neuroregeneration. Front Cell Dev Biol 2022; 10:999322. [PMID: 36299487 PMCID: PMC9589221 DOI: 10.3389/fcell.2022.999322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
It has widely been thought that in the process of nerve regeneration Schwann cells populate the injury site with myelinating, non–myelinating, phagocytic, repair, and mesenchyme–like phenotypes. It is now clear that the Schwann cells modify their shape and basal lamina as to accommodate re–growing axons, at the same time clear myelin debris generated upon injury, and regulate expression of extracellular matrix proteins at and around the lesion site. Such a remarkable plasticity may follow an intrinsic functional rhythm or a systemic circadian clock matching the demands of accurate timing and precision of signalling cascades in the regenerating nervous system. Schwann cells react to changes in the external circadian clock clues and to the Zeitgeber hormone melatonin by altering their plasticity. This raises the question of whether melatonin regulates Schwann cell activity during neurorepair and if circadian control and rhythmicity of Schwann cell functions are vital aspects of neuroregeneration. Here, we have focused on different schools of thought and emerging concepts of melatonin–mediated signalling in Schwann cells underlying peripheral nerve regeneration and discuss circadian rhythmicity as a possible component of neurorepair.
Collapse
|
17
|
Picca A, Birzu C, Berzero G, Sanchez-Pena P, Gaboriau L, Vidil F, Lenglet T, Tafani C, Ricard D, Psimaras D, Bihan K. Peripheral neuropathies after BRAF and/or MEK inhibitors treatment: a pharmacovigilance study. Br J Clin Pharmacol 2022; 88:4941-4949. [PMID: 36028463 DOI: 10.1111/bcp.15513] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022] Open
Abstract
Reports suggested the potential occurrence of peripheral neuropathies (PN) in patients treated with BRAF (BRAFi) and/or MEK inhibitors (MEKi) for BRAF-activated tumours. We aimed to better characterize these PN. We queried the French pharmacovigilance database for all cases of PN attributed to BRAFi and/or MEKi. Fifteen patients were identified. Two main clinical PN phenotypes were seen. Six patients presented a length-dependent, axonal polyneuropathy: symptoms were mostly sensory and affecting the lower limbs; management and outcome were variable. Nine patients developed a demyelinating polyradiculoneuropathy: symptoms affected the four limbs and included hypoesthesia, weakness, and ataxia; cranial nerves were involved in four cases; most patients received intravenous immunoglobulins or glucocorticoids, with variable outcome; one patient was rechallenged with a different BRAFi/MEKi combination with a rapid symptoms relapse. In conclusion, patients under BRAFi/MEKi therapy may develop treatment-induced PN. Two main phenotypes can occur: a symmetric, axonal, length-dependent polyneuropathy, and a demyelinating polyradiculoneuropathy.
Collapse
Affiliation(s)
- Alberto Picca
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix.,OncoNeuroTox Group, Center for Patients with Neurological Complications of Oncologic Treatments, GH Pitié-Salpêtrière et Hôpital Percy, Paris, France
| | - Cristina Birzu
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix.,OncoNeuroTox Group, Center for Patients with Neurological Complications of Oncologic Treatments, GH Pitié-Salpêtrière et Hôpital Percy, Paris, France
| | - Giulia Berzero
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Sanchez-Pena
- Service de Pharmacologie médicale, Pôle de Santé Publique, CHU de Bordeaux, Bordeaux, France
| | - Louise Gaboriau
- Centre Régional de Pharmacovigilance, Service de Pharmacologie Médicale, CHU de Lille, Lille, France
| | - Faustine Vidil
- Agence National de Sécurité du Médicament et des Produits de Santé, Saint-Denis, France
| | - Timothée Lenglet
- Département de Neurophysiologie Clinique, AP-HP, GH Pitié-Salpêtrière, Paris, France
| | - Camille Tafani
- OncoNeuroTox Group, Center for Patients with Neurological Complications of Oncologic Treatments, GH Pitié-Salpêtrière et Hôpital Percy, Paris, France.,Département de Neurologie, Hôpital d'instruction des Armées Percy, Service de Santé des Armées, Paris, France
| | - Damien Ricard
- OncoNeuroTox Group, Center for Patients with Neurological Complications of Oncologic Treatments, GH Pitié-Salpêtrière et Hôpital Percy, Paris, France.,Département de Neurologie, Hôpital d'instruction des Armées Percy, Service de Santé des Armées, Paris, France
| | - Dimitri Psimaras
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix.,OncoNeuroTox Group, Center for Patients with Neurological Complications of Oncologic Treatments, GH Pitié-Salpêtrière et Hôpital Percy, Paris, France
| | - Kévin Bihan
- OncoNeuroTox Group, Center for Patients with Neurological Complications of Oncologic Treatments, GH Pitié-Salpêtrière et Hôpital Percy, Paris, France.,Centre régional de Pharmacovigilance, Département de Pharmacologie, AP-HP, GH Pitié-Salpêtrière, Paris, France
| |
Collapse
|
18
|
Abstract
Schwann cells in the peripheral nervous system (PNS) are essential for the support and myelination of axons, ensuring fast and accurate communication between the central nervous system and the periphery. Schwann cells and related glia accompany innervating axons in virtually all tissues in the body, where they exhibit remarkable plasticity and the ability to modulate pathology in extraordinary, and sometimes surprising, ways. Here, we provide a brief overview of the various glial cell types in the PNS and describe the cornerstone cellular and molecular processes that enable Schwann cells to perform their canonical functions. We then dive into discussing exciting noncanonical functions of Schwann cells and related PNS glia, which include their role in organizing the PNS, in regulating synaptic activity and pain, in modulating immunity, in providing a pool of stem cells for different organs, and, finally, in influencing cancer.
Collapse
Affiliation(s)
- Carla Taveggia
- Axo-Glial Interaction Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy;
| | - M. Laura Feltri
- Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
19
|
Suo N, He B, Cui S, Yang Y, Wang M, Yuan Q, Xie X. The orphan G protein-coupled receptor GPR149 is a negative regulator of myelination and remyelination. Glia 2022; 70:1992-2008. [PMID: 35758525 DOI: 10.1002/glia.24233] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022]
Abstract
Myelin sheath, formed by oligodendrocytes (OLs) in the central nervous system (CNS) and Schwann cells in periphery, plays a critical role in supporting neuronal functions. OLs, differentiated from oligodendrocyte precursor cells (OPCs), are important for myelination during development and myelin repair in CNS demyelinating disease. To identify mechanisms of myelin development and remyelination after myelin damage is of great clinical interest. Here we show that the orphan G protein-coupled receptor GPR149, enriched in OPCs, negatively regulate OPC to OL differentiation, myelination, as well as remyelination. The expression of GPR149 is downregulated during OPCs differentiation into OLs. GPR149 deficiency does not affect the number of OPCs, but promotes OPC to OL differentiation which results in earlier development of myelin. In cuprizone-induced demyelination model, GPR149 deficiency significantly enhances myelin regeneration. Further study indicates that GPR149 may regulate OL differentiation and myelin formation via MAPK/ERK pathway. Our study suggests that deleting or blocking GPR149 might be an intriguing way to promote myelin repair in demyelinating diseases.
Collapse
Affiliation(s)
- Na Suo
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bingqing He
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shihao Cui
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Yang
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Min Wang
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qianting Yuan
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
20
|
McLean JW, Wilson JA, Tian T, Watson JA, VanHart M, Bean AJ, Scherer SS, Crossman DK, Ubogu E, Wilson SM. Disruption of Endosomal Sorting in Schwann Cells Leads to Defective Myelination and Endosomal Abnormalities Observed in Charcot-Marie-Tooth Disease. J Neurosci 2022; 42:5085-5101. [PMID: 35589390 PMCID: PMC9233440 DOI: 10.1523/jneurosci.2481-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/24/2022] [Accepted: 05/03/2022] [Indexed: 12/24/2022] Open
Abstract
Endosomal sorting plays a fundamental role in directing neural development. By altering the temporal and spatial distribution of membrane receptors, endosomes regulate signaling pathways that control the differentiation and function of neural cells. Several genes linked to inherited demyelinating peripheral neuropathies, known as Charcot-Marie-Tooth (CMT) disease, encode proteins that directly interact with components of the endosomal sorting complex required for transport (ESCRT). Our previous studies demonstrated that a point mutation in the ESCRT component hepatocyte growth-factor-regulated tyrosine kinase substrate (HGS), an endosomal scaffolding protein that identifies internalized cargo to be sorted by the endosome, causes a peripheral neuropathy in the neurodevelopmentally impaired teetering mice. Here, we constructed a Schwann cell-specific deletion of Hgs to determine the role of endosomal sorting during myelination. Inactivation of HGS in Schwann cells resulted in motor and sensory deficits, slowed nerve conduction velocities, delayed myelination and hypomyelinated axons, all of which occur in demyelinating forms of CMT. Consistent with a delay in Schwann cell maturation, HGS-deficient sciatic nerves displayed increased mRNA levels for several promyelinating genes and decreased mRNA levels for genes that serve as markers of myelinating Schwann cells. Loss of HGS also altered the abundance and activation of the ERBB2/3 receptors, which are essential for Schwann cell development. We therefore hypothesize that HGS plays a critical role in endosomal sorting of the ERBB2/3 receptors during Schwann cell maturation, which further implicates endosomal dysfunction in inherited peripheral neuropathies.SIGNIFICANCE STATEMENT Schwann cells myelinate peripheral axons, and defects in Schwann cell function cause inherited demyelinating peripheral neuropathies known as CMT. Although many CMT-linked mutations are in genes that encode putative endosomal proteins, little is known about the requirements of endosomal sorting during myelination. In this study, we demonstrate that loss of HGS disrupts the endosomal sorting pathway in Schwann cells, resulting in hypomyelination, aberrant myelin sheaths, and impairment of the ERBB2/3 receptor pathway. These findings suggest that defective endosomal trafficking of internalized cell surface receptors may be a common mechanism contributing to demyelinating CMT.
Collapse
Affiliation(s)
- John W McLean
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Julie A Wilson
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Tina Tian
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jennifer A Watson
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Mary VanHart
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Andrew J Bean
- Graduate College, Rush University, Chicago, Illinois 60612
| | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Eroboghene Ubogu
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
- Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Scott M Wilson
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
21
|
Protocadherin 15 suppresses oligodendrocyte progenitor cell proliferation and promotes motility through distinct signalling pathways. Commun Biol 2022; 5:511. [PMID: 35637313 PMCID: PMC9151716 DOI: 10.1038/s42003-022-03470-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) express protocadherin 15 (Pcdh15), a member of the cadherin superfamily of transmembrane proteins. Little is known about the function of Pcdh15 in the central nervous system (CNS), however, Pcdh15 expression can predict glioma aggression and promote the separation of embryonic human OPCs immediately following a cell division. Herein, we show that Pcdh15 knockdown significantly increases extracellular signal-related kinase (ERK) phosphorylation and activation to enhance OPC proliferation in vitro. Furthermore, Pcdh15 knockdown elevates Cdc42-Arp2/3 signalling and impairs actin kinetics, reducing the frequency of lamellipodial extrusion and slowing filopodial withdrawal. Pcdh15 knockdown also reduces the number of processes supported by each OPC and new process generation. Our data indicate that Pcdh15 is a critical regulator of OPC proliferation and process motility, behaviours that characterise the function of these cells in the healthy CNS, and provide mechanistic insight into the role that Pcdh15 might play in glioma progression. Protocadherin 15 promotes lamellipodial and filopodial dynamics in oligodendrocyte progenitor cells by regulating Cdc42-Arp2/3 activity, but also suppresses ERK1/2 phosphorylation to reduce proliferation.
Collapse
|
22
|
Brosius Lutz A, Lucas TA, Carson GA, Caneda C, Zhou L, Barres BA, Buckwalter MS, Sloan SA. An RNA-sequencing transcriptome of the rodent Schwann cell response to peripheral nerve injury. J Neuroinflammation 2022; 19:105. [PMID: 35501870 PMCID: PMC9063194 DOI: 10.1186/s12974-022-02462-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/13/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The important contribution of glia to mechanisms of injury and repair of the nervous system is increasingly recognized. In stark contrast to the central nervous system (CNS), the peripheral nervous system (PNS) has a remarkable capacity for regeneration after injury. Schwann cells are recognized as key contributors to PNS regeneration, but the molecular underpinnings of the Schwann cell response to injury and how they interact with the inflammatory response remain incompletely understood. METHODS We completed bulk RNA-sequencing of Schwann cells purified acutely using immunopanning from the naïve and injured rodent sciatic nerve at 3, 5, and 7 days post-injury. We used qRT-PCR and in situ hybridization to assess cell purity and probe dataset integrity. Finally, we used bioinformatic analysis to probe Schwann cell-specific injury-induced modulation of cellular pathways. RESULTS Our data confirm Schwann cell purity and validate RNAseq dataset integrity. Bioinformatic analysis identifies discrete modules of genes that follow distinct patterns of regulation in the 1st days after injury and their corresponding molecular pathways. These findings enable improved differentiation of myeloid and glial components of neuroinflammation after peripheral nerve injury and highlight novel molecular aspects of the Schwann cell injury response such as acute downregulation of the AGE/RAGE pathway and of secreted molecules Sparcl1 and Sema5a. CONCLUSIONS We provide a helpful resource for further deciphering the Schwann cell injury response and a depth of transcriptional data that can complement the findings of recent single cell sequencing approaches. As more data become available on the response of CNS glia to injury, we anticipate that this dataset will provide a valuable platform for understanding key differences in the PNS and CNS glial responses to injury and for designing approaches to ameliorate CNS regeneration.
Collapse
Affiliation(s)
- Amanda Brosius Lutz
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA.
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA.
- Department of Obstetrics and Gynecology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| | - Tawaun A Lucas
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA
| | - Glenn A Carson
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA
| | - Christine Caneda
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA
| | - Lu Zhou
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA
| | - Ben A Barres
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA
| | - Steven A Sloan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305-5125, USA
- Department of Human Genetics, Emory University, 30322, Atlanta, Georgia
| |
Collapse
|
23
|
Wang Y, Guo F. Group I PAKs in myelin formation and repair of the central nervous system: what, when, and how. Biol Rev Camb Philos Soc 2021; 97:615-639. [PMID: 34811887 DOI: 10.1111/brv.12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
p21-activated kinases (PAKs) are a family of cell division control protein 42/ras-related C3 botulinum toxin substrate 1 (Cdc42/Rac1)-activated serine/threonine kinases. Group I PAKs (PAK1-3) have distinct activation mechanisms from group II PAKs (PAK4-6) and are the focus of this review. In transformed cancer cells, PAKs regulate a variety of cellular processes and molecular pathways which are also important for myelin formation and repair in the central nervous system (CNS). De novo mutations in group I PAKs are frequently seen in children with neurodevelopmental defects and white matter anomalies. Group I PAKs regulate virtually every aspect of neuronal development and function. Yet their functions in CNS myelination and remyelination remain incompletely defined. Herein, we highlight the current understanding of PAKs in regulating cellular and molecular pathways and discuss the status of PAK-regulated pathways in oligodendrocyte development. We point out outstanding questions and future directions in the research field of group I PAKs and oligodendrocyte development.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, Shriners Hospitals for Children/School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), University of California, Davis, 2425 Stockton Blvd, Sacramento, CA, 95817, U.S.A
| | - Fuzheng Guo
- Department of Neurology, Shriners Hospitals for Children/School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), University of California, Davis, 2425 Stockton Blvd, Sacramento, CA, 95817, U.S.A
| |
Collapse
|
24
|
ERK/MAPK signalling in the developing brain: Perturbations and consequences. Neurosci Biobehav Rev 2021; 131:792-805. [PMID: 34634357 DOI: 10.1016/j.neubiorev.2021.10.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022]
Abstract
The extracellular regulated kinase/microtubule-associated protein kinase (ERK/MAPK) signalling pathway transduces signals that cause an alteration in the ongoing metabolic pathways and modifies gene expression patterns; thus, influencing cellular behaviour. ERK/MAPK signalling is essential for the proper development of the nervous system from neural progenitor cells derived from the embryonic mesoderm. Several signalling molecules that regulate the well-coordinated process of neurodevelopment transduce developmental information through the ERK/MAPK signalling pathway. The ERK/MAPK is a potential novel therapeutic target in several neurodevelopmental disorders, however, despite years of study, there is still significant uncertainty about the exact mechanism by which the ERK/MAPK signalling pathway elicits specific responses in neurodevelopment. Here, we will review the evidence highlighting the role of ERK/MAPK signalling in neurodevelopment. We will also discuss the structural implication and behavioural deficits associated with perturbed ERK/MAPK signalling pathway in cortical development, whilst examining its contribution to the neuropathology of several neurodevelopmental disorders, such as Autism Spectrum Disorder, Schizophrenia, Fragile X, and Attention Deficit Hyperactive Disorder.
Collapse
|
25
|
Previtali SC. Peripheral Nerve Development and the Pathogenesis of Peripheral Neuropathy: the Sorting Point. Neurotherapeutics 2021; 18:2156-2168. [PMID: 34244926 PMCID: PMC8804061 DOI: 10.1007/s13311-021-01080-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Nerve development requires a coordinated sequence of events and steps to be accomplished for the generation of functional peripheral nerves to convey sensory and motor signals. Any abnormality during development may result in pathological structure and function of the nerve, which evolves in peripheral neuropathy. In this review, we will briefly describe different steps of nerve development while we will mostly focus on the molecular mechanisms involved in radial sorting of axons, one of these nerve developmental steps. We will summarize current knowledge of molecular pathways so far reported in radial sorting and their possible interactions. Finally, we will describe how disruption of these pathways may result in human neuropathies.
Collapse
Affiliation(s)
- Stefano C Previtali
- Neuromuscular Repair Unit, InSpe (Institute of Experimental Neurology) and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
26
|
Abstract
Myelin is a key evolutionary specialization and adaptation of vertebrates formed by the plasma membrane of glial cells, which insulate axons in the nervous system. Myelination not only allows rapid and efficient transmission of electric impulses in the axon by decreasing capacitance and increasing resistance but also influences axonal metabolism and the plasticity of neural circuits. In this review, we will focus on Schwann cells, the glial cells which form myelin in the peripheral nervous system. Here, we will describe the main extrinsic and intrinsic signals inducing Schwann cell differentiation and myelination and how myelin biogenesis is achieved. Finally, we will also discuss how the study of human disorders in which molecules and pathways relevant for myelination are altered has enormously contributed to the current knowledge on myelin biology.
Collapse
Affiliation(s)
- Alessandra Bolino
- Human Inherited Neuropathies Unit, Institute of Experimental Neurology INSPE, Division of Neuroscience, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
27
|
Okubo Y, Ohtake F, Igarashi K, Yasuhiko Y, Hirabayashi Y, Saga Y, Kanno J. Cleaved Delta like 1 intracellular domain regulates neural development via Notch signal-dependent and -independent pathways. Development 2021; 148:272156. [PMID: 34519339 PMCID: PMC8513606 DOI: 10.1242/dev.193664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/06/2021] [Indexed: 11/20/2022]
Abstract
Notch-Delta signaling regulates many developmental processes, including tissue homeostasis and maintenance of stem cells. Upon interaction of juxtaposed cells via Notch and Delta proteins, intracellular domains of both transmembrane proteins are cleaved and translocate to the nucleus. Notch intracellular domain activates target gene expression; however, the role of the Delta intracellular domain remains elusive. Here, we show the biological function of Delta like 1 intracellular domain (D1ICD) by modulating its production. We find that the sustained production of D1ICD abrogates cell proliferation but enhances neurogenesis in the developing dorsal root ganglia (DRG), whereas inhibition of D1ICD production promotes cell proliferation and gliogenesis. D1ICD acts as an integral component of lateral inhibition mechanism by inhibiting Notch activity. In addition, D1ICD promotes neurogenesis in a Notch signaling-independent manner. We show that D1ICD binds to Erk1/2 in neural crest stem cells and inhibits the phosphorylation of Erk1/2. In summary, our results indicate that D1ICD regulates DRG development by modulating not only Notch signaling but also the MAP kinase pathway.
Collapse
Affiliation(s)
- Yusuke Okubo
- Division of Cellular and Molecular Toxicology, Center for Biological Safety & Research, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Fumiaki Ohtake
- Division of Cellular and Molecular Toxicology, Center for Biological Safety & Research, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.,Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Katsuhide Igarashi
- Division of Cellular and Molecular Toxicology, Center for Biological Safety & Research, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.,Life Science Tokyo Advanced Research center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Science, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yukuto Yasuhiko
- Division of Cellular and Molecular Toxicology, Center for Biological Safety & Research, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Yoko Hirabayashi
- Division of Cellular and Molecular Toxicology, Center for Biological Safety & Research, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Yumiko Saga
- Division of Mammalian Development, National Institute of Genetics, Yata 1111, Mishima 411-8540, Japan.,Department of Biological Science, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jun Kanno
- Division of Cellular and Molecular Toxicology, Center for Biological Safety & Research, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
28
|
Wong FC, Ye L, Demir IE, Kahlert C. Schwann cell-derived exosomes: Janus-faced mediators of regeneration and disease. Glia 2021; 70:20-34. [PMID: 34519370 DOI: 10.1002/glia.24087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022]
Abstract
The phenotypic plasticity of Schwann cells (SCs) has contributed to the regenerative potential of the peripheral nervous system (PNS), but also pathological processes. This double-sided effect has led to an increasing attention to the role of extracellular vesicles (EVs) or exosomes in SCs to examine the intercellular communication between SCs and their surroundings. Here, we first describe the current knowledge of SC and EV biology, which forms the basis for the updates on advances in SC-derived exosomes research. We seek to explore in-depth the exosome-mediated molecular mechanisms involved in the regulation of SCs and their microenvironment. This review concludes with potential applications of SC-derived exosomes as delivery vehicles for therapeutics and biomarkers. The goal of this review is to emphasize the crucial role of SC-derived exosomes in the functional integration of the PNS, highlighting an emerging area in which there is much to explore and re-explore.
Collapse
Affiliation(s)
- Fang Cheng Wong
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Linhan Ye
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany.,Germany German Cancer Consortium (DKTK), Partner Site, Munich, Germany.,CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany.,Germany German Cancer Consortium (DKTK), Partner Site, Munich, Germany.,Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.,CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany.,Else Kröner Clinician Scientist Professor for "Translational Pancreatic Surgery
| | - Christoph Kahlert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
| |
Collapse
|
29
|
Yow YY, Goh TK, Nyiew KY, Lim LW, Phang SM, Lim SH, Ratnayeke S, Wong KH. Therapeutic Potential of Complementary and Alternative Medicines in Peripheral Nerve Regeneration: A Systematic Review. Cells 2021; 10:cells10092194. [PMID: 34571842 PMCID: PMC8472132 DOI: 10.3390/cells10092194] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the progressive advances, current standards of treatments for peripheral nerve injury do not guarantee complete recovery. Thus, alternative therapeutic interventions should be considered. Complementary and alternative medicines (CAMs) are widely explored for their therapeutic value, but their potential use in peripheral nerve regeneration is underappreciated. The present systematic review, designed according to guidelines of Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols, aims to present and discuss the current literature on the neuroregenerative potential of CAMs, focusing on plants or herbs, mushrooms, decoctions, and their respective natural products. The available literature on CAMs associated with peripheral nerve regeneration published up to 2020 were retrieved from PubMed, Scopus, and Web of Science. According to current literature, the neuroregenerative potential of Achyranthes bidentata, Astragalus membranaceus, Curcuma longa, Panax ginseng, and Hericium erinaceus are the most widely studied. Various CAMs enhanced proliferation and migration of Schwann cells in vitro, primarily through activation of MAPK pathway and FGF-2 signaling, respectively. Animal studies demonstrated the ability of CAMs to promote peripheral nerve regeneration and functional recovery, which are partially associated with modulations of neurotrophic factors, pro-inflammatory cytokines, and anti-apoptotic signaling. This systematic review provides evidence for the potential use of CAMs in the management of peripheral nerve injury.
Collapse
Affiliation(s)
- Yoon-Yen Yow
- Department of Biological Sciences, School of Medicine and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia; (T.-K.G.); (K.-Y.N.); (S.R.)
- Correspondence: (Y.-Y.Y.); (L.-W.L.); (K.-H.W.); Tel.: +603-7491-8622 (Y.-Y.Y.); +852-3917-6830 (L.-W.L.); +603-7967-4729 (K.-H.W.)
| | - Tiong-Keat Goh
- Department of Biological Sciences, School of Medicine and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia; (T.-K.G.); (K.-Y.N.); (S.R.)
| | - Ke-Ying Nyiew
- Department of Biological Sciences, School of Medicine and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia; (T.-K.G.); (K.-Y.N.); (S.R.)
| | - Lee-Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, L4 Laboratory Block, Hong Kong
- Correspondence: (Y.-Y.Y.); (L.-W.L.); (K.-H.W.); Tel.: +603-7491-8622 (Y.-Y.Y.); +852-3917-6830 (L.-W.L.); +603-7967-4729 (K.-H.W.)
| | - Siew-Moi Phang
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia
| | - Siew-Huah Lim
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Shyamala Ratnayeke
- Department of Biological Sciences, School of Medicine and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia; (T.-K.G.); (K.-Y.N.); (S.R.)
| | - Kah-Hui Wong
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (Y.-Y.Y.); (L.-W.L.); (K.-H.W.); Tel.: +603-7491-8622 (Y.-Y.Y.); +852-3917-6830 (L.-W.L.); +603-7967-4729 (K.-H.W.)
| |
Collapse
|
30
|
Ainatzoglou A, Stamoula E, Dardalas I, Siafis S, Papazisis G. The Effects of PDE Inhibitors on Multiple Sclerosis: a Review of in vitro and in vivo Models. Curr Pharm Des 2021; 27:2387-2397. [PMID: 33655851 DOI: 10.2174/1381612827666210303142356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic inflammatory and immune-mediated disease, whose current therapeutic means are mostly effective in the relapsing-remitting form of MS, where inflammation is still prominent, but fall short of preventing long term impairment. However, apart from inflammationmediated demyelination, autoimmune mechanisms play a major role in MS pathophysiology, constituting a promising pharmacological target. Phosphodiesterase (PDE) inhibitors have been approved for clinical use in psoriasis and have undergone trials suggesting their neuroprotective effects, rendering them eligible as an option for accessory MS therapy. OBJECTIVE In this review, we discuss the potential role of PDE inhibitors as a complementary MS therapy. METHODS We conducted a literature search through which we screened and comparatively assessed papers on the effects of PDE inhibitor use, both in vitro and in animal models of MS, taking into account a number of inclusion and exclusion criteria. RESULTS In vitro studies indicated that PDE inhibitors promote remyelination and axonal sustenance, while curbing inflammatory cell infiltration, hindering oligodendrocyte and neuronal loss and suppressing cytokine production. In vivo studies underlined that these agents alleviate symptoms and reduce disease scores in MS animal models. CONCLUSION PDE inhibitors proved to be effective in addressing various aspects of MS pathogenesis both in vitro and in vivo models. Given the latest clinical trials proving that the PDE4 inhibitor Ibudilast exerts neuroprotective effects in patients with progressive MS, research on this field should be intensified and selective PDE4 inhibitors with enhanced safety features should be seriously considered as prospective complementary MS therapy.
Collapse
Affiliation(s)
- Alexandra Ainatzoglou
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Stamoula
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Dardalas
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Spyridon Siafis
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Papazisis
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
31
|
Ishii A, Furusho M, Bansal R. Mek/ERK1/2-MAPK and PI3K/Akt/mTOR signaling plays both independent and cooperative roles in Schwann cell differentiation, myelination and dysmyelination. Glia 2021; 69:2429-2446. [PMID: 34157170 DOI: 10.1002/glia.24049] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/29/2021] [Accepted: 06/04/2021] [Indexed: 01/15/2023]
Abstract
Multiple signals are involved in the regulation of developmental myelination by Schwann cells and in the maintenance of a normal myelin homeostasis throughout adult life, preserving the integrity of the axons in the PNS. Recent studies suggest that Mek/ERK1/2-MAPK and PI3K/Akt/mTOR intracellular signaling pathways play important, often overlapping roles in the regulation of myelination in the PNS. In addition, hyperactivation of these signaling pathways in Schwann cells leads to a late onset of various pathological changes in the sciatic nerves. However, it remains poorly understood whether these pathways function independently or sequentially or converge using a common mechanism to facilitate Schwann cell differentiation and myelin growth during development and in causing pathological changes in the adult animals. To address these questions, we analyzed multiple genetically modified mice using simultaneous loss- and constitutive gain-of-function approaches. We found that during development, the Mek/ERK1/2-MAPK pathway plays a primary role in Schwann cell differentiation, distinct from mTOR. However, during active myelination, ERK1/2 is dependent on mTOR signaling to drive the growth of the myelin sheath and regulate its thickness. Finally, our data suggest that peripheral nerve pathology during adulthood caused by hyperactivation of Mek/ERK1/2-MAPK or PI3K is likely to be independent or dependent on mTOR-signaling in different contexts. Thus, this study highlights the complexities in the roles played by two major intracellular signaling pathways in Schwann cells that affect their differentiation, myelination, and later PNS pathology and predicts that potential therapeutic modulation of these pathways in PNS neuropathies could be a complex process.
Collapse
Affiliation(s)
- Akihiro Ishii
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Miki Furusho
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Rashmi Bansal
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| |
Collapse
|
32
|
Park K, Shin Y, Lee G, Park H, Choi Y. Dabrafenib Promotes Schwann Cell Differentiation by Inhibition of the MEK-ERK Pathway. Molecules 2021; 26:2141. [PMID: 33917810 PMCID: PMC8068149 DOI: 10.3390/molecules26082141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Schwann cell differentiation involves a dynamic interaction of signaling cascades. However, much remains to be elucidated regarding the function of signaling molecules that differ depending on the context in which the molecules are engaged. Here, we identified a small molecule, dabrafenib, which promotes Schwann cell differentiation in vitro and exploited this compound as a pharmacological tool to understand the molecular mechanisms regulating Schwann cell differentiation. The results indicated that dabrafenib inhibited ERK phosphorylation and enhanced ErbB2 autophosphorylation and Akt phosphorylation, and the effects of dabrafenib on ErbB2 and Akt phosphorylation were phenocopied by pharmacological inhibition of the MEK-ERK signaling pathway. However, the small molecule inhibitors of MEK and ERK had no effect on the expression of Oct6 and EGR2, which are key transcription factors that drive Schwann cell differentiation. In addition, pharmacological inhibition of phosphatidylinositol-3-kinase (PI3K) almost completely interfered with dabrafenib-induced Schwann cell differentiation. These results suggest that the ErbB2-PI3K-Akt axis is required for the induction of Schwann cell differentiation by dabrafenib in vitro. Although additional molecules targeted by dabrafenib remain to be identified, our data provides insights into the crosstalk that exists between the MEK-ERK signaling pathway and the PI3K-Akt axis in Schwann cell differentiation.
Collapse
Affiliation(s)
- Kyuhee Park
- Biocenter, Gyeonggido Business and Science Accelerator, Suwon 16229, Korea; (K.P.); (G.L.)
| | - Yoonkyoung Shin
- Department of Physiology, Peripheral Neuropathy Research Center, Donga University Medical School, Busan 49201, Korea; (Y.S.); (H.P.)
| | - Gyeongbeen Lee
- Biocenter, Gyeonggido Business and Science Accelerator, Suwon 16229, Korea; (K.P.); (G.L.)
| | - Hwantae Park
- Department of Physiology, Peripheral Neuropathy Research Center, Donga University Medical School, Busan 49201, Korea; (Y.S.); (H.P.)
| | - Yongmun Choi
- Biocenter, Gyeonggido Business and Science Accelerator, Suwon 16229, Korea; (K.P.); (G.L.)
| |
Collapse
|
33
|
Ginsenoside Compound K Promotes Proliferation, Migration and Differentiation of Schwann Cells via the Activation of MEK/ERK1/2 and PI3K/AKT Pathways. Neurochem Res 2021; 46:1400-1409. [PMID: 33738663 DOI: 10.1007/s11064-021-03279-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/29/2021] [Accepted: 02/19/2021] [Indexed: 12/17/2022]
Abstract
The proliferation and differentiation of Schwann cells are critical for the remyelination of injured peripheral nerve. Ginsenoside compound K (CK) is a metabolite produced from ginsenoside Rb1 which has strong anti-inflammatory effects. However, the potential effects of CK on Schwann cells have not been studied systematically before. Therefore, this study was aimed to explore the functions of CK in Schwann cell proliferation, migration and differentiation and its potential regulatory mechanism. Primary Schwann cells and RSC96 cells were treated with or without CK at different doses. The proliferation and migration of primary Schwann cells and RSC96 cells were examined by Cell Counting Kit-8 (CCK-8) and Transwell assays, respectively. The mRNA expression of myelin-associated glycoprotein (MAG) and myelin basic protein (MBP) was tested by quantitative real-time polymerase chain reaction (qRT-PCR). The levels of all proteins were examined by Western blot. CK could promote cell proliferation, migration and induce MAG and MBP expression in primary Schwann cells and RSC96 cells. Furthermore, CK activated MEK/ERK1/2 and PI3K/AKT pathways, and the beneficial effects of CK on primary Schwann cells and RSC96 cells were distinctly suppressed by inhibitor PD98059 or LY294002. Ginsenoside compound K induced cell proliferation, migration and differentiation via the activation of MEK/ERK1/2 and PI3K/AKT pathways in cultured primary Schwann cells and RSC96 cells.
Collapse
|
34
|
Allan KC, Hu LR, Scavuzzo MA, Morton AR, Gevorgyan AS, Cohn EF, Clayton BL, Bederman IR, Hung S, Bartels CF, Madhavan M, Tesar PJ. Non-canonical Targets of HIF1a Impair Oligodendrocyte Progenitor Cell Function. Cell Stem Cell 2021; 28:257-272.e11. [PMID: 33091368 PMCID: PMC7867598 DOI: 10.1016/j.stem.2020.09.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/19/2020] [Accepted: 09/29/2020] [Indexed: 12/25/2022]
Abstract
Mammalian cells respond to insufficient oxygen through transcriptional regulators called hypoxia-inducible factors (HIFs). Although transiently protective, prolonged HIF activity drives distinct pathological responses in different tissues. Using a model of chronic HIF1a accumulation in pluripotent-stem-cell-derived oligodendrocyte progenitors (OPCs), we demonstrate that HIF1a activates non-canonical targets to impair generation of oligodendrocytes from OPCs. HIF1a activated a unique set of genes in OPCs through interaction with the OPC-specific transcription factor OLIG2. Non-canonical targets, including Ascl2 and Dlx3, were sufficient to block differentiation through suppression of the oligodendrocyte regulator Sox10. Chemical screening revealed that inhibition of MEK/ERK signaling overcame the HIF1a-mediated block in oligodendrocyte generation by restoring Sox10 expression without affecting canonical HIF1a activity. MEK/ERK inhibition also drove oligodendrocyte formation in hypoxic regions of human oligocortical spheroids. This work defines mechanisms by which HIF1a impairs oligodendrocyte formation and establishes that cell-type-specific HIF1a targets perturb cell function in response to low oxygen.
Collapse
Affiliation(s)
- Kevin C. Allan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Lucille R. Hu
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Marissa A. Scavuzzo
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Andrew R. Morton
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Artur S. Gevorgyan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Erin F. Cohn
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Benjamin L.L. Clayton
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Ilya R. Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Stevephen Hung
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Cynthia F. Bartels
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Mayur Madhavan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Paul J. Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Lead Contact,Correspondence:
| |
Collapse
|
35
|
Balakrishnan A, Belfiore L, Chu TH, Fleming T, Midha R, Biernaskie J, Schuurmans C. Insights Into the Role and Potential of Schwann Cells for Peripheral Nerve Repair From Studies of Development and Injury. Front Mol Neurosci 2021; 13:608442. [PMID: 33568974 PMCID: PMC7868393 DOI: 10.3389/fnmol.2020.608442] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve injuries arising from trauma or disease can lead to sensory and motor deficits and neuropathic pain. Despite the purported ability of the peripheral nerve to self-repair, lifelong disability is common. New molecular and cellular insights have begun to reveal why the peripheral nerve has limited repair capacity. The peripheral nerve is primarily comprised of axons and Schwann cells, the supporting glial cells that produce myelin to facilitate the rapid conduction of electrical impulses. Schwann cells are required for successful nerve regeneration; they partially “de-differentiate” in response to injury, re-initiating the expression of developmental genes that support nerve repair. However, Schwann cell dysfunction, which occurs in chronic nerve injury, disease, and aging, limits their capacity to support endogenous repair, worsening patient outcomes. Cell replacement-based therapeutic approaches using exogenous Schwann cells could be curative, but not all Schwann cells have a “repair” phenotype, defined as the ability to promote axonal growth, maintain a proliferative phenotype, and remyelinate axons. Two cell replacement strategies are being championed for peripheral nerve repair: prospective isolation of “repair” Schwann cells for autologous cell transplants, which is hampered by supply challenges, and directed differentiation of pluripotent stem cells or lineage conversion of accessible somatic cells to induced Schwann cells, with the potential of “unlimited” supply. All approaches require a solid understanding of the molecular mechanisms guiding Schwann cell development and the repair phenotype, which we review herein. Together these studies provide essential context for current efforts to design glial cell-based therapies for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Anjali Balakrishnan
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Lauren Belfiore
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Tak-Ho Chu
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Taylor Fleming
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada
| | - Rajiv Midha
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
36
|
Brifault C, Romero H, Van-Enoo A, Pizzo D, Azmoon P, Kwon H, Nasamran C, Gonias SL, Campana WM. Deletion of the Gene Encoding the NMDA Receptor GluN1 Subunit in Schwann Cells Causes Ultrastructural Changes in Remak Bundles and Hypersensitivity in Pain Processing. J Neurosci 2020; 40:9121-9136. [PMID: 33051351 PMCID: PMC7672997 DOI: 10.1523/jneurosci.0663-20.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 09/24/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022] Open
Abstract
Abnormalities in interactions between sensory neurons and Schwann cells (SCs) may result in heightened pain processing and chronic pain states. We previously reported that SCs express the NMDA receptor (NMDA-R), which activates cell signaling in response to glutamate and specific protein ligands, such as tissue-type plasminogen activator. Herein, we genetically targeted grin1 encoding the essential GluN1 NMDA-R subunit, conditionally in SCs, to create a novel mouse model in which SCs are NMDA-R-deficient (GluN1- mice). These mice demonstrated increased sensitivity to light touch, pinprick, and thermal hyperalgesia in the absence of injury, without associated changes in motor function. Ultrastructural analysis of adult sciatic nerve in GluN1- mice revealed increases in the density of Aδ fibers and Remak bundles and a decrease in the density of Aβ fibers, without altered g-ratios. Abnormalities in adult Remak bundle ultrastructure were also present including aberrant C-fiber ensheathment, distances between axons, and increased poly-axonal pockets. Developmental and post radial sorting defects contributed to altered nerve fiber densities in adult. Uninjured sciatic nerves in GluN1- mice did not demonstrate an increase in neuroinflammatory infiltrates. Transcriptome profiling of dorsal root ganglia (DRGs) revealed 138 differentially regulated genes in GluN1- mice. One third of the regulated genes are known to be involved in pain processing, including sprr1a, npy, fgf3, atf3, and cckbr, which were significantly increased. The intraepidermal nerve fiber density (IENFD) was significantly decreased in the skin of GluN1- mice. Collectively, these findings demonstrate that SC NMDA-R is essential for normal PNS development and for preventing development of pain states.SIGNIFICANCE STATEMENT Chronic unremitting pain is a prevalent medical condition; however, the molecular mechanisms that underlie heightened pain processing remain incompletely understood. Emerging data suggest that abnormalities in Schwann cells (SCs) may cause neuropathic pain. We established a novel mouse model for small fiber neuropathy (SFN) in which grin1, the gene that encodes the NMDA receptor (NMDA-R) GluN1 subunit, is deleted in SCs. These mice demonstrate hypersensitivity in pain processing in the absence of nerve injury. Changes in the density of intraepidermal small fibers, the ultrastructure of Remak bundles, and the transcriptome of dorsal root ganglia (DRGs) provide possible explanations for the increase in pain processing. Our results support the hypothesis that abnormalities in communication between sensory nerve fibers and SCs may result in pain states.
Collapse
Affiliation(s)
- Coralie Brifault
- Department of Anesthesiology, University of California San Diego, La Jolla, California 92093
- Department of Pathology, University of California San Diego, La Jolla, California 92093
| | - Haylie Romero
- Department of Anesthesiology, University of California San Diego, La Jolla, California 92093
- Program in Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Alicia Van-Enoo
- Department of Anesthesiology, University of California San Diego, La Jolla, California 92093
- Program in Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Don Pizzo
- Department of Pathology, University of California San Diego, La Jolla, California 92093
| | - Pardis Azmoon
- Department of Pathology, University of California San Diego, La Jolla, California 92093
| | - HyoJun Kwon
- Department of Anesthesiology, University of California San Diego, La Jolla, California 92093
| | - Chanond Nasamran
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Steven L Gonias
- Department of Pathology, University of California San Diego, La Jolla, California 92093
| | - Wendy M Campana
- Department of Anesthesiology, University of California San Diego, La Jolla, California 92093
- Program in Neurosciences, University of California, San Diego, La Jolla, California 92093
- San Diego Veterans Administration Health Care System, San Diego, California 92161
| |
Collapse
|
37
|
Abstract
Primary nociceptors are a heterogeneous class of peripheral somatosensory neurons, responsible for detecting noxious, pruriceptive, and thermal stimuli. These neurons are further divided into several molecularly defined subtypes that correlate with their functional sensory modalities and morphological features. During development, all nociceptors arise from a common pool of embryonic precursors, and then segregate progressively into their mature specialized phenotypes. In this review, we summarize the intrinsic transcriptional programs and extrinsic trophic factor signaling mechanisms that interact to control nociceptor diversification. We also discuss how recent transcriptome profiling studies have significantly advanced the field of sensory neuron development.
Collapse
Affiliation(s)
- Suna L Cranfill
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
38
|
Muppirala AN, Limbach LE, Bradford EF, Petersen SC. Schwann cell development: From neural crest to myelin sheath. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e398. [PMID: 33145925 DOI: 10.1002/wdev.398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022]
Abstract
Vertebrate nervous system function requires glial cells, including myelinating glia that insulate axons and provide trophic support that allows for efficient signal propagation by neurons. In vertebrate peripheral nervous systems, neural crest-derived glial cells known as Schwann cells (SCs) generate myelin by encompassing and iteratively wrapping membrane around single axon segments. SC gliogenesis and neurogenesis are intimately linked and governed by a complex molecular environment that shapes their developmental trajectory. Changes in this external milieu drive developing SCs through a series of distinct morphological and transcriptional stages from the neural crest to a variety of glial derivatives, including the myelinating sublineage. Cues originate from the extracellular matrix, adjacent axons, and the developing SC basal lamina to trigger intracellular signaling cascades and gene expression changes that specify stages and transitions in SC development. Here, we integrate the findings from in vitro neuron-glia co-culture experiments with in vivo studies investigating SC development, particularly in zebrafish and mouse, to highlight critical factors that specify SC fate. Ultimately, we connect classic biochemical and mutant studies with modern genetic and visualization tools that have elucidated the dynamics of SC development. This article is categorized under: Signaling Pathways > Cell Fate Signaling Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Anoohya N Muppirala
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neuroscience, Kenyon College, Gambier, Ohio, USA
| | | | | | - Sarah C Petersen
- Department of Neuroscience, Kenyon College, Gambier, Ohio, USA.,Department of Biology, Kenyon College, Gambier, Ohio, USA
| |
Collapse
|
39
|
Won SY, Kwon S, Jeong HS, Chung KW, Choi B, Chang JW, Lee JE. Fibulin 5, a human Wharton's jelly-derived mesenchymal stem cells-secreted paracrine factor, attenuates peripheral nervous system myelination defects through the Integrin-RAC1 signaling axis. Stem Cells 2020; 38:1578-1593. [PMID: 33107705 PMCID: PMC7756588 DOI: 10.1002/stem.3287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 04/25/2023]
Abstract
In the peripheral nervous system (PNS), proper development of Schwann cells (SCs) contributing to axonal myelination is critical for neuronal function. Impairments of SCs or neuronal axons give rise to several myelin-related disorders, including dysmyelinating and demyelinating diseases. Pathological mechanisms, however, have been understood at the elementary level and targeted therapeutics has remained undeveloped. Here, we identify Fibulin 5 (FBLN5), an extracellular matrix (ECM) protein, as a key paracrine factor of human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) to control the development of SCs. We show that co-culture with WJ-MSCs or treatment of recombinant FBLN5 promotes the proliferation of SCs through ERK activation, whereas FBLN5-depleted WJ-MSCs do not. We further reveal that during myelination of SCs, FBLN5 binds to Integrin and modulates actin remodeling, such as the formation of lamellipodia and filopodia, through RAC1 activity. Finally, we show that FBLN5 effectively restores the myelination defects of SCs in the zebrafish model of Charcot-Marie-Tooth (CMT) type 1, a representative demyelinating disease. Overall, our data propose human WJ-MSCs or FBLN5 protein as a potential treatment for myelin-related diseases, including CMT.
Collapse
Affiliation(s)
- So Yeon Won
- Department of Health Sciences and TechnologySamsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan UniversitySeoulSouth Korea
| | - Soojin Kwon
- Stem Cell & Regenerative Medicine Institute, Samsung Medical CenterSeoulSouth Korea
- Stem Cell Institute, ENCell Co. LtdSeoulSouth Korea
| | - Hui Su Jeong
- Department of Health Sciences and TechnologySamsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan UniversitySeoulSouth Korea
| | - Ki Wha Chung
- Department of Biological SciencesKongju National UniversityKongjuSouth Korea
| | - Byung‐Ok Choi
- Department of NeurologySungkyunkwan University School of MedicineSeoulSouth Korea
| | - Jong Wook Chang
- Stem Cell & Regenerative Medicine Institute, Samsung Medical CenterSeoulSouth Korea
- Stem Cell Institute, ENCell Co. LtdSeoulSouth Korea
| | - Ji Eun Lee
- Department of Health Sciences and TechnologySamsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan UniversitySeoulSouth Korea
- Samsung Biomedical Research Institute, Samsung Medical CenterSeoulSouth Korea
| |
Collapse
|
40
|
Adams KL, Dahl KD, Gallo V, Macklin WB. Intrinsic and extrinsic regulators of oligodendrocyte progenitor proliferation and differentiation. Semin Cell Dev Biol 2020; 116:16-24. [PMID: 34110985 DOI: 10.1016/j.semcdb.2020.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022]
Abstract
Oligodendrocytes are highly specialized glial cells, responsible for producing myelin in the central nervous system (CNS). The multi-stage process of oligodendrocyte development is tightly regulated to ensure proper lineage progression of oligodendrocyte progenitor cells (OPCs) to mature myelin producing oligodendrocytes. This developmental process involves complex interactions between several intrinsic signaling pathways that are modulated by an array of extrinsic factors. Understanding these regulatory processes is of crucial importance, as it may help to identify specific molecular targets both to enhance plasticity in the normal CNS and to promote endogenous recovery following injury or disease. This review describes two major regulators that play important functional roles in distinct phases of oligodendrocyte development: OPC proliferation and differentiation. Specifically, we highlight the roles of the extracellular astrocyte/radial glia-derived protein Endothelin-1 in OPC proliferation and the intracellular Akt/mTOR pathway in OPC differentiation. Lastly, we reflect on how recent advances in neuroscience and scientific technology will enable greater understanding into how intrinsic and extrinsic regulators interact to generate oligodendrocyte diversity.
Collapse
Affiliation(s)
- Katrina L Adams
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010, USA
| | - Kristin D Dahl
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010, USA
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
41
|
Scapin C, Ferri C, Pettinato E, Bianchi F, Del Carro U, Feltri ML, Kaufman RJ, Wrabetz L, D'Antonio M. Phosphorylation of eIF2α Promotes Schwann Cell Differentiation and Myelination in CMT1B Mice with Activated UPR. J Neurosci 2020; 40:8174-8187. [PMID: 32973043 PMCID: PMC7574653 DOI: 10.1523/jneurosci.0957-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/09/2020] [Accepted: 07/27/2020] [Indexed: 01/01/2023] Open
Abstract
Myelin Protein Zero (MPZ/P0) is the most abundant glycoprotein of peripheral nerve myelin. P0 is synthesized by myelinating Schwann cells, processed in the endoplasmic reticulum (ER) and delivered to myelin via the secretory pathway. The mutant P0S63del (deletion of serine 63 in the extracellular domain of P0), that causes Charcot-Marie-Tooth type 1B (CMT1B) neuropathy in humans and a similar demyelinating neuropathy in transgenic mice, is instead retained the ER where it activates an unfolded protein response. Under ER-stress conditions, protein kinase R-like endoplasmic reticulum kinase (PERK) phosphorylates eukaryotic initiation factor 2α (eIF2α) to attenuate global translation, thus reducing the misfolded protein overload in the ER. Genetic and pharmacological inactivation of Gadd34 (damage-inducible protein 34), a subunit of the PP1 phosphatase complex that promotes the dephosphorylation of eIF2α, prolonged eIF2α phosphorylation and improved motor, neurophysiological, and morphologic deficits in S63del mice. However, PERK ablation in S63del Schwann cells ameliorated, rather than worsened, S63del neuropathy despite reduced levels of phosphorylated eIF2α. These contradictory findings prompted us to genetically explore the role of eIF2α phosphorylation in P0S63del-CMT1B neuropathy through the generation of mice in which eIF2α cannot be phosphorylated specifically in Schwann cells. Morphologic and electrophysiological analysis of male and female S63del mice showed a worsening of the neuropathy in the absence of eIF2α phosphorylation. However, we did not detect significant changes in ER stress levels, but rather a dramatic increase of the MEK/ERK/c-Jun pathway accompanied by a reduction in expression of myelin genes and a delay in Schwann cell differentiation. Our results support the hypothesis that eIF2α phosphorylation is protective in CMT1B and unveil a possible cross talk between eIF2α and the MEK/ERK pathway in neuropathic nerves.SIGNIFICANCE STATEMENT In the P0S63del (deletion of serine 63 in the extracellular domain of P0) mouse model of Charcot-Marie-Tooth type 1B (CMT1B), the genetic and pharmacological inhibition of Gadd34 (damage-inducible protein 34) prolonged eukaryotic initiation factor 2α (eIF2α) phosphorylation, leading to a proteostatic rebalance that significantly ameliorated the neuropathy. Yet, ablation of protein kinase R-like endoplasmic reticulum kinase (PERK) also ameliorated the S63del neuropathy, despite reduced levels of eIF2α phosphorylation (P-eIF2α). In this study, we provide genetic evidence that eIF2α phosphorylation has a protective role in CMT1B Schwann cells by limiting ERK/c-Jun hyperactivation. Our data support the targeting of the P-eIF2α/Gadd34 complex as a therapeutic avenue in CMT1B and also suggest that PERK may hamper myelination via mechanisms outside its role in the unfolded protein response.
Collapse
Affiliation(s)
- Cristina Scapin
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Cinzia Ferri
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Emanuela Pettinato
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesca Bianchi
- Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ubaldo Del Carro
- Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - M Laura Feltri
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, New York 14203
- Department of Neurology, State University of New York at Buffalo, Buffalo, New York 14203
- Department of Biochemistry, Jacob School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14203
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, California 92130
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, New York 14203
- Department of Neurology, State University of New York at Buffalo, Buffalo, New York 14203
- Department of Biochemistry, Jacob School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14203
| | - Maurizio D'Antonio
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
42
|
Nocera G, Jacob C. Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury. Cell Mol Life Sci 2020; 77:3977-3989. [PMID: 32277262 PMCID: PMC7532964 DOI: 10.1007/s00018-020-03516-9] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 01/01/2023]
Abstract
The great plasticity of Schwann cells (SCs), the myelinating glia of the peripheral nervous system (PNS), is a critical feature in the context of peripheral nerve regeneration following traumatic injuries and peripheral neuropathies. After a nerve damage, SCs are rapidly activated by injury-induced signals and respond by entering the repair program. During the repair program, SCs undergo dynamic cell reprogramming and morphogenic changes aimed at promoting nerve regeneration and functional recovery. SCs convert into a repair phenotype, activate negative regulators of myelination and demyelinate the damaged nerve. Moreover, they express many genes typical of their immature state as well as numerous de-novo genes. These genes modulate and drive the regeneration process by promoting neuronal survival, damaged axon disintegration, myelin clearance, axonal regrowth and guidance to their former target, and by finally remyelinating the regenerated axon. Many signaling pathways, transcriptional regulators and epigenetic mechanisms regulate these events. In this review, we discuss the main steps of the repair program with a particular focus on the molecular mechanisms that regulate SC plasticity following peripheral nerve injury.
Collapse
Affiliation(s)
- Gianluigi Nocera
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz, Germany
| | - Claire Jacob
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
43
|
Reed CB, Frick LR, Weaver A, Sidoli M, Schlant E, Feltri ML, Wrabetz L. Deletion of Calcineurin in Schwann Cells Does Not Affect Developmental Myelination, But Reduces Autophagy and Delays Myelin Clearance after Peripheral Nerve Injury. J Neurosci 2020; 40:6165-6176. [PMID: 32641402 PMCID: PMC7406276 DOI: 10.1523/jneurosci.0951-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/09/2020] [Accepted: 06/20/2020] [Indexed: 11/21/2022] Open
Abstract
In the PNS, myelination occurs postnatally when Schwann cells (SCs) contact axons. Axonal factors, such as Neuregulin-1 Type III, trigger promyelinating signals that upregulate myelin genes. Neuregulin-1 Type III has been proposed to activate calcineurin signaling in immature SCs to initiate differentiation and myelination. However, little is known about the role of calcineurin in promyelinating SCs after birth. By creating a SC conditional KO of calcineurin B (CnBscko), we assessed the effects of CnB ablation on peripheral myelination after birth in both male and female mice. Surprisingly, CnBscko mice have minimal myelination defects, no alteration of myelin thickness, and normal KROX20 expression. In contrast, we did find a unique role for calcineurin in SCs after nerve injury. Following nerve crush, CnBscko mice have slower degeneration of myelin compared with WT mice. Furthermore, absence of CnB in primary SCs delays clearance of myelin debris. SCs clear myelin via autophagy and recent literature has demonstrated that calcineurin can regulate autophagy via dephosphorylation of transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy. We demonstrate that loss of CnB reduces autophagic flux in primary SCs, indicating a possible mechanism for impaired myelin clearance. In addition, ablation of CnB impairs TFEB translocation to the nucleus 3 d after crush, suggesting that calcineurin may regulate autophagy in SCs via TFEB activation. Together, our data indicate that calcineurin is not essential for myelination but has a novel role in myelin clearance after injury.SIGNIFICANCE STATEMENT Our data offer a novel mechanism for activation of autophagy after peripheral nerve injury. Efficient clearance of myelin after injury by Schwann cells is important for axonal regrowth and remyelination, which is one reason why the PNS is significantly better at recovery compared with the CNS. Improved understanding of myelin clearance allows for the identification of pathways that are potentially accessible to increase myelin clearance and improve remyelination and recovery. Finally, this paper clarifies the role of calcineurin in Schwann cells and myelination.
Collapse
Affiliation(s)
- Chelsey B Reed
- Hunter James Kelly Research Institute
- Department of Neurology
| | - Luciana R Frick
- Hunter James Kelly Research Institute
- Department of Neurology
| | | | - Mariapaola Sidoli
- Hunter James Kelly Research Institute
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
- Department of Developmental Biology, School of Medicine, Stanford University, Stanford, California 94305
| | - Elizabeth Schlant
- Hunter James Kelly Research Institute
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - M Laura Feltri
- Hunter James Kelly Research Institute
- Department of Neurology
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute
- Department of Neurology
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| |
Collapse
|
44
|
Zarei-Kheirabadi M, Vaccaro AR, Rahimi-Movaghar V, Kiani S, Baharvand H. An Overview of Extrinsic and Intrinsic Mechanisms Involved in Astrocyte Development in the Central Nervous System. Stem Cells Dev 2020; 29:266-280. [PMID: 31847709 DOI: 10.1089/scd.2019.0189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Over the past few decades, our knowledge about the function of the central nervous system (CNS) and astrocytes has improved, and research has confirmed the key roles that astrocytes play in the physiology and pathology of the CNS. Here, we reviewed the intrinsic and extrinsic mechanisms that regulate the development of astrocytes, which are generated from radial glial cells. These regulatory systems modulate various signaling pathways and transcription factors. In this review, four stages of astrocyte development-specification (patterning and switch), migration, proliferation, and maturation, are discussed. In astrocyte patterning, VA1-VA3 domains create the astrocyte subtypes by differential expression of Slit1 and Reelin in the spinal cord. In the brain, patterning creates several astrocyte subtypes by different organizing centers. At the switch step, the janus kinase-signal transducer and activator of transcription pathway governs the transition of neurogenesis to gliogenesis. Bone marrow protein and Notch pathways are also important players of the progliogenic switch. Intrinsic regulation is mediated by DNA methylation transferases, and polycomb group complexes can intrinsically affect the development of astrocytes. In the next stage, these cells proliferate and migrate to their final location. Astrocyte maturation is accomplished through the development of cellular processes, molecular markers, and functions.
Collapse
Affiliation(s)
- Masoumeh Zarei-Kheirabadi
- Department of Brain, Cognitive Sciences and Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Alexander R Vaccaro
- Department of Orthopedics, Rothman Orthopedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Kiani
- Department of Brain, Cognitive Sciences and Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
45
|
Garg A, Hannan A, Wang Q, Makrides N, Zhong J, Li H, Yoon S, Mao Y, Zhang X. Etv transcription factors functionally diverge from their upstream FGF signaling in lens development. eLife 2020; 9:e51915. [PMID: 32043969 PMCID: PMC7069720 DOI: 10.7554/elife.51915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
The signal regulated transcription factors (SRTFs) control the ultimate transcriptional output of signaling pathways. Here, we examined a family of FGF-induced SRTFs - Etv1, Etv 4, and Etv 5 - in murine lens development. Contrary to FGF receptor mutants that displayed loss of ERK signaling and defective cell differentiation, Etv deficiency augmented ERK phosphorylation without disrupting the normal lens fiber gene expression. Instead, the transitional zone for lens differentiation was shifted anteriorly as a result of reduced Jag1-Notch signaling. We also showed that Etv proteins suppresses mTOR activity by promoting Tsc2 expression, which is necessary for the nuclei clearance in mature lens. These results revealed the functional divergence between Etv and FGF in lens development, demonstrating that these SRTFs can operate outside the confine of their upstream signaling.
Collapse
Affiliation(s)
- Ankur Garg
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia UniversityNew YorkUnited States
| | - Abdul Hannan
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia UniversityNew YorkUnited States
| | - Qian Wang
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia UniversityNew YorkUnited States
| | - Neoklis Makrides
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia UniversityNew YorkUnited States
| | - Jian Zhong
- Burke Neurological Institute and Feil Family Brain and Mind Research Institute, Weill Cornell MedicineWhite PlainsUnited States
| | - Hongge Li
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia UniversityNew YorkUnited States
| | - Sungtae Yoon
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia UniversityNew YorkUnited States
| | - Yingyu Mao
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia UniversityNew YorkUnited States
| | - Xin Zhang
- Department of Ophthalmology, Columbia UniversityNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia UniversityNew YorkUnited States
| |
Collapse
|
46
|
Wang L, Tanaka Y, Wang D, Morikawa M, Zhou R, Homma N, Miyamoto Y, Hirokawa N. The Atypical Kinesin KIF26A Facilitates Termination of Nociceptive Responses by Sequestering Focal Adhesion Kinase. Cell Rep 2019; 24:2894-2907. [PMID: 30208315 DOI: 10.1016/j.celrep.2018.05.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 04/27/2018] [Accepted: 05/23/2018] [Indexed: 11/18/2022] Open
Abstract
Kinesin superfamily proteins (KIFs) are molecular motors that typically alter the subcellular localization of their cargos. However, the atypical kinesin KIF26A does not serve as a motor but can bind microtubules and affect cellular signaling cascades. Here, we show that KIF26A maintains intracellular calcium homeostasis and negatively regulates nociceptive sensation. Kif26a-/- mice exhibit intense and prolonged nociceptive responses. In their primary sensory neurons, excessive inhibitory phosphorylation of plasma membrane Ca2+ ATPase (PMCA) mediated by focal adhesion kinase (FAK) rendered the Ca transients resistant to termination, and the peripheral axonal outgrowth was significantly enhanced. Upstream, KIF26A is directly associated with a FERM domain of FAK and antagonizes FAK function in integrin-Src family kinase (SFK)-FAK signaling, possibly through steric hindrance and localization to cytoplasmic microtubules.
Collapse
Affiliation(s)
- Li Wang
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yosuke Tanaka
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Doudou Wang
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Momo Morikawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ruyun Zhou
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Noriko Homma
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Miyamoto
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Center of Excellence in Genome Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
47
|
Rimer M. Extracellular signal-regulated kinases 1 and 2 regulate neuromuscular junction and myofiber phenotypes in mammalian skeletal muscle. Neurosci Lett 2019; 715:134671. [PMID: 31805372 DOI: 10.1016/j.neulet.2019.134671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 02/06/2023]
Abstract
The neuromuscular junction is the synapse between a motor neuron of the spinal cord and a skeletal muscle fiber in the periphery. Reciprocal interactions between these excitable cells, and between them and others cell types present within the muscle tissue, shape the development, homeostasis and plasticity of skeletal muscle. An important aim in the field is to understand the molecular mechanisms underlying these cellular interactions, which include identifying the nature of the signals and receptors involved but also of the downstream intracellular signaling cascades elicited by them. This review focuses on work that shows that skeletal muscle fiber-derived extracellular signal-regulated kinases 1 and 2 (ERK1/2), ubiquitous and prototypical intracellular mitogen-activated protein kinases, have modulatory roles in the maintenance of the neuromuscular synapse and in the acquisition and preservation of fiber type identity in skeletal muscle.
Collapse
Affiliation(s)
- Mendell Rimer
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center and Texas A&M Institute for Neuroscience, Bryan, TX 77807 USA.
| |
Collapse
|
48
|
Horie T, Park G, Inaba Y, Hashiuchi E, Iezaki T, Tokumura K, Fukasawa K, Yamada T, Hiraiwa M, Kitaguchi Y, Kamada H, Kaneda K, Tanaka T, Inoue H, Hinoi E. MAPK Erk5 in Leptin Receptor‒Expressing Neurons Controls Body Weight and Systemic Energy Homeostasis in Female Mice. Endocrinology 2019; 160:2837-2848. [PMID: 31555819 DOI: 10.1210/en.2019-00090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/11/2019] [Indexed: 01/06/2023]
Abstract
Extracellular signal-regulated kinase 5 (Erk5), a member of the MAPK family, is specifically phosphorylated and activated by MAPK/Erk kinase-5. Although it has been implicated in odor discrimination and long-term memory via its expression in the central nervous system, little is known regarding the physiological importance of neuronal Erk5 in body weight and energy homeostasis. In the current study, systemic insulin injection significantly induced phosphorylation of Erk5 in the hypothalamus. Moreover, Erk5 deficiency in leptin receptor (LepR)‒expressing neurons led to an obesity phenotype, with increased white adipose tissue mass due to increased adipocyte size, only in female mice fed a normal chow diet. Furthermore, Erk5 deficiency in LepR-expressing neurons showed impaired glucose tolerance along with decreased physical activity, food intake, and energy expenditure. These results suggest that Erk5 controls body weight and systemic energy homeostasis probably via its expression in hypothalamic neurons in female mice, thereby providing a target for metabolic diseases such as obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Tetsuhiro Horie
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Gyujin Park
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuka Inaba
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Emi Hashiuchi
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takashi Iezaki
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
- Venture Business Laboratory, Organization of Frontier Science and Innovation, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuya Tokumura
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Kazuya Fukasawa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Takanori Yamada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Manami Hiraiwa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuka Kitaguchi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Hikari Kamada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Tomohiro Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroshi Inoue
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
49
|
Tzortzopoulos A, Thomaidou D, Gaitanou M, Matsas R, Skoulakis E. Expression of Mammalian BM88/CEND1 in Drosophila Affects Nervous System Development by Interfering with Precursor Cell Formation. Neurosci Bull 2019; 35:979-995. [PMID: 31079319 PMCID: PMC6864003 DOI: 10.1007/s12264-019-00386-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/27/2018] [Indexed: 12/31/2022] Open
Abstract
We used Drosophila melanogaster as an experimental model to express mouse and pig BM88/CEND1 (cell cycle exit and neuronal differentiation 1) in order to investigate its potential functional effects on Drosophila neurogenesis. BM88/CEND1 is a neuron-specific protein whose function is implicated in triggering cells to exit from the cell cycle and differentiate towards a neuronal phenotype. Transgenic flies expressing either mouse or pig BM88/CEND1 in the nervous system had severe neuronal phenotypes with variable expressivity at various stages of embryonic development. In early embryonic stage 10, BM88/CEND1 expression led to an increase in the neural-specific antigenicity of neuroectoderm at the expense of precursor cells [neuroblasts (Nbs) and ganglion mother cells (GMCs)] including the defective formation and differentiation of the MP2 precursors, whereas at later stages (12-15), protein accumulation induced gross morphological defects primarily in the CNS accompanied by a reduction of Nb and GMC markers. Furthermore, the neuronal precursor cells of embryos expressing BM88/CEND1 failed to carry out proper cell-cycle progression as revealed by the disorganized expression patterns of specific cell-cycle markers. BM88/CEND1 accumulation in the Drosophila eye affected normal eye disc development by disrupting the ommatidia. Finally, we demonstrated that expression of BM88/CEND1 modified/reduced the levels of activated MAP kinase indicating a functional effect of BM88/CEND1 on the MAPK signaling pathway. Our findings suggest that the expression of mammalian BM88/CEND1 in Drosophila exerts specific functional effects associated with neuronal precursor cell formation during embryonic neurogenesis and proper eye disc development. This study also validates the use of Drosophila as a powerful model system in which to investigate gene function and the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Dimitra Thomaidou
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Efthimios Skoulakis
- "Alexander Fleming" Biomedical Sciences Research Centre, 16672, Athens, Greece
| |
Collapse
|
50
|
Fletcher JS, Pundavela J, Ratner N. After Nf1 loss in Schwann cells, inflammation drives neurofibroma formation. Neurooncol Adv 2019; 2:i23-i32. [PMID: 32642730 PMCID: PMC7317060 DOI: 10.1093/noajnl/vdz045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Plexiform neurofibromas (PNF) are peripheral nerve tumors caused by bi-allelic loss of NF1 in the Schwann cell (SC) lineage. PNF are common in individuals with Neurofibromatosis type I (NF1) and can cause significant patient morbidity, spurring research into potential therapies. Immune cells are rare in peripheral nerve, whereas in PNF 30% of the cells are monocytes/macrophages. Mast cells, T cells, and dendritic cells (DCs) are also present. NF1 mutant neurofibroma SCs with elevated Ras-GTP signaling resemble injury-induced repair SCs, in producing growth factors and cytokines not normally present in SCs. This provides a cytokine-rich environment facilitating PNF immune cell recruitment and fibrosis. We propose a model based on genetic and pharmacologic evidence in which, after loss of Nf1 in the SC lineage, a lag occurs. Then, mast cells and macrophages are recruited to nerve. Later, T cell/DC recruitment through CXCL10/CXCR3 drives neurofibroma initiation and sustains PNF macrophages and tumor growth. Stat3 signaling is an additional critical mediator of neurofibroma initiation, cytokine production, and PNF growth. At each stage of PNF development therapeutic benefit should be achievable through pharmacologic modulation of leukocyte recruitment and function.
Collapse
Affiliation(s)
- Jonathan S Fletcher
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jay Pundavela
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|