1
|
Deng X, Xu W, Liu Y, Jing H, Zhong J, Sun K, Zhou R, Xu L, Wu X, Zhang B, Chen W, Jiang S, Chen G, Zhu Y. Social rank modulates methamphetamine-seeking in dominant and subordinate male rodents via distinct dopaminergic pathways. Nat Neurosci 2025; 28:1268-1279. [PMID: 40355612 DOI: 10.1038/s41593-025-01951-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/14/2025] [Indexed: 05/14/2025]
Abstract
Social status has a profound impact on mental health and propensity towards drug addiction. However, the neural mechanisms underlying the effects of social rank on drug-seeking behavior remain unclear. Here we found that dominant male rodents (based on the tube test) had denser mesocortical dopaminergic projections and were more resistant to methamphetamine (METH)-seeking, whereas subordinates had heightened dopaminergic function in the mesolimbic pathway and were more vulnerable to METH seeking. Optogenetic activation of the mesocortical dopaminergic pathway promoted winning and suppressed METH seeking in subordinates, whereas lesions of the mesocortical pathway increased METH seeking in dominants. Elevation of social rank with forced win training in subordinates led to remodeling of the dopaminergic system and prevented METH-seeking behavior. In females, however, both ranks were susceptible to METH seeking, with mesocorticolimbic pathways comparable to those in subordinate males. These results provide a framework for understanding the neural basis of the impact of social status on drug-seeking.
Collapse
Affiliation(s)
- Xiaofei Deng
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Xu
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yutong Liu
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haiyang Jing
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiafeng Zhong
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaige Sun
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ruiyi Zhou
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liang Xu
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaocong Wu
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Baofang Zhang
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wanqi Chen
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shaolei Jiang
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Gaowei Chen
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China.
- Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, and State Key Laboratory of Biomedical Imaging Science and System, Shenzhen, China.
| |
Collapse
|
2
|
Choi BM, Gu SM, Jabborov A, Yang MS, Yeon SW, Park CW, Lee MK, Yun J. Hinokinin Decreases Methamphetamine-Induced Hyperlocomotion via the Regulatory Effects on Dopamine Levels. ACS Chem Neurosci 2025; 16:393-404. [PMID: 39838725 DOI: 10.1021/acschemneuro.4c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
The global abuse of stimulant methamphetamine (METH) imposes a significant social burden. Despite this, effective therapeutic interventions for mitigating the harmful effects associated with METH-induced central nervous system (CNS) stimulation remain elusive. Chamaecyparis obtusa (hinoki), containing hinokinin as its active constituent, has been identified to exhibit CNS depressant properties. Here, we explored the potential of the hinoki extract and hinokinin in modulating METH-induced hyperlocomotion through the regulation of dopaminergic neuronal activity. We discovered that pretreatment with hinokinin significantly attenuates METH-induced locomotor activity, indicative of reduced CNS stimulation. Furthermore, treatment with hinokinin was observed to inhibit the METH-induced elevation in dopamine levels and the concomitant decrease in dopamine transporter (DAT) function within striatal brain slices of mice. In silico analysis coupled with pull-down assays and the dose-response curve substantiated the direct binding of hinokinin to DAT. We propose that hinokinin mitigates METH-induced hyperlocomotion via the inhibition of dopaminergic neurotransmission, with allosteric modulation of DAT playing a critical role in this regulatory mechanism. Collectively, our research suggests the potential of hinokinin to mitigate dopamine-mediated central nervous system excitation.
Collapse
Affiliation(s)
- Byoung Mo Choi
- College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Sun Mi Gu
- College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Abdulaziz Jabborov
- College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Min-Seok Yang
- College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Sang Won Yeon
- College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Chun-Woong Park
- College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| |
Collapse
|
3
|
Harsing LG, Szénási G, Fehér B, Miklya I. Regulation by Trace Amine-Associated Receptor 1 (TAAR1) of Dopaminergic-GABAergic Interaction in the Striatum: Effects of the Enhancer Drug (-)BPAP. Neurochem Res 2025; 50:94. [PMID: 39903411 PMCID: PMC11794408 DOI: 10.1007/s11064-025-04337-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/06/2025]
Abstract
Although it is well documented that the striatal GABAergic projection neurons receive excitatory and inhibitory dopaminergic innervation via D1 and D2 receptors, the trace amine-associated receptor 1 (TAAR1)-mediated regulation of this neural connection is much less studied. The presence of TAAR1 was originally detected in brain aminergic neurons, with recent evidence indicating its presence in striatal GABAergic neurons as well. The objective of the present study was to demonstrate the role of TAAR1 and signaling in dopaminergic-GABAergic interaction in the neural circuitry of the striatum. Besides trace amines, which are considered natural ligands for TAAR1, series of different exogenous drugs were identified to act on this receptor. Using the dopaminergic activity enhancer compound (-)BPAP ((-)-1-(benzofuran-2-yl)-2-propylaminopentane HCl), a potential agonist for TAAR1, we have found that it increased the electrical stimulation-induced [3H]dopamine release in rat striatal slices. This effect of (-)BPAP occurred parallel with increases of [3H]GABA release in striatum when used in 10-13-10-11 mol/L concentrations. The effects of (-)BPAP on the release of both neurotransmitters were bell-shaped. We speculated that the rising phase of the concentration-effect curves was evoked by an agonist effect of (-)BPAP on TAAR1 whereas the declining phase was a result of heterodimerization of TAAR1 with pre- and postsynaptic dopamine D2 receptors. The bell-shaped curves suggest that the (-)BPAP-induced heterodimerization of TAAR1 with dopamine D2 receptors may switch off TAAR1 signaling and switch on transduction coupled to D2 receptors. We also suggest that (-)BPAP increases synaptic strength in a hypothetical quadrilateral neuronal organization consisting of dopaminergic nerve ending, GABAergic neurons, trace amine-producing D cells, and supportive glial cell processes.
Collapse
Affiliation(s)
- Laszlo G Harsing
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Gábor Szénási
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Balázs Fehér
- Budapest University of Technology and Economics, Budapest, Hungary
| | - Ildikó Miklya
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
4
|
Mabry SJ, Cao X, Zhu Y, Rowe C, Patel S, González-Arancibia C, Romanazzi T, Saleeby DP, Elam A, Lee HT, Turkmen S, Lauzon SN, Hernandez CE, Sun H, Wu H, Carter AM, Galli A. Fusobacterium nucleatum determines the expression of amphetamine-induced behavioral responses through an epigenetic phenomenon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633210. [PMID: 39868090 PMCID: PMC11761806 DOI: 10.1101/2025.01.15.633210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Amphetamines (AMPHs) are psychostimulants commonly used for the treatment of neuropsychiatric disorders. They are also misused (AMPH use disorder; AUD), with devastating outcomes. Recent studies have implicated dysbiosis in the pathogenesis of AUD. However, the mechanistic roles of microbes in AUD are unknown. Fusobacterium nucleatum (Fn) is a bacterium that increases in abundance in both rats and humans upon AMPH exposure. Fn releases short-chain fatty acids (SCFAs), bacterial byproducts thought to play a fundamental role in the gut-brain axis as well as the pathogenesis of AUD. We demonstrate that in gnotobiotic Drosophila melanogaster, colonization with Fn or dietary supplementation of the SCFA butyrate, a potent inhibitor of histone deacetylases (HDACs), enhances the psychomotor and rewarding properties of AMPH as well as its ability to promote male sexual motivation. Furthermore, solely HDAC1 RNAi targeted inhibition recapitulates these enhancements, pointing to a specific process underlying this Fn phenomenon. Of note is that the expression of these AMPH behaviors is determined by the increase in extracellular dopamine (DA) levels that result from AMPH-induced reversal of DA transporter (DAT) function, termed non-vesicular DA release (NVDR). The magnitude of AMPH-induced NVDR is dictated, at least in part, by DAT expression levels. Consistent with our behavioral data, we show that Fn, butyrate, and HDAC1 inhibition enhance NVDR by elevating DAT expression. Thus, the participation of Fn in AUD stems from its ability to release butyrate and inhibit HDAC1. These data offer a microbial target and probiotic interventions for AUD treatment.
Collapse
Affiliation(s)
- Samuel J Mabry
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
| | - Xixi Cao
- Oregon Health & Science University, School of Dentistry, Portland, Oregon
| | - Yanqi Zhu
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
| | - Caleb Rowe
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
| | - Shalin Patel
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
| | | | - Tiziana Romanazzi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - David P Saleeby
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
| | - Anna Elam
- University of Alabama Birmingham, Department of Psychiatry, Birmingham, Alabama
| | - Hui-Ting Lee
- University of Alabama Birmingham, Department of Chemistry, Birmingham, Alabama
| | - Serhat Turkmen
- Howard Hughes Medical Institute, University of Alabama Birmingham, Department of Cell, Developmental, and Integrative Biology, Birmingham, Alabama
| | - Shelby N Lauzon
- Howard Hughes Medical Institute, University of Alabama Birmingham, Department of Cell, Developmental, and Integrative Biology, Birmingham, Alabama
| | - Cesar E Hernandez
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
| | - HaoSheng Sun
- Howard Hughes Medical Institute, University of Alabama Birmingham, Department of Cell, Developmental, and Integrative Biology, Birmingham, Alabama
| | - Hui Wu
- Oregon Health & Science University, School of Dentistry, Portland, Oregon
| | - Angela M Carter
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
- University of Alabama Birmingham, Center for Inter-systemic Networks and Enteric Medical Advances (CINEMA), Birmingham, Alabama
| | - Aurelio Galli
- University of Alabama Birmingham, Department of Surgery, Birmingham, Alabama
- University of Alabama Birmingham, Center for Inter-systemic Networks and Enteric Medical Advances (CINEMA), Birmingham, Alabama
| |
Collapse
|
5
|
Luján MÁ, Kim Y, Zhang LY, Cheer JF. Cannabinoid-based Pharmacology for the Management of Substance Use Disorders. Curr Top Behav Neurosci 2025. [PMID: 39813001 DOI: 10.1007/7854_2024_551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In the last two decades, the endocannabinoid system has emerged as a crucial modulator of motivation and emotional processing. Due to its widespread neuroanatomical distribution and characteristic retrograde signaling nature, cannabinoid type I receptors and their endogenous ligands finely orchestrate somatic and axon terminal activity of dopamine neurons. Owing to these unique features, this signaling system is a promising pharmacological target to ameliorate dopamine-mediated drug-seeking behaviors while circumventing the adverse side effects of, for instance, dopaminergic antagonists. Despite considerable preclinical efforts, an agreement on the efficacy of endocannabinoid-targeting compounds for treating drug substance use disorders in humans has not been reached. In the following chapter, we will summarize preclinical and clinical evidence addressing the therapeutic potential of cannabinoids and endocannabinoid-targeting compounds in substance use disorders. To bridge the gap between animal and clinical research, we capitalize on studies evaluating the impact of endocannabinoid-targeting compounds in relevant settings, such as the management of drug relapse. Finally, we discuss the therapeutic potential of novel cannabinoid compounds that hold promise for treating substance use disorders.
Collapse
Affiliation(s)
- M Á Luján
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Y Kim
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - L Y Zhang
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - J F Cheer
- Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Cataldi S, Lacefield C, Shashaank N, Sulzer D. Direct Pathway Neurons in the Mouse Ventral Striatum Are Active During Goal-Directed Action but Not Reward Consumption During Operant Conditioning. Biomedicines 2024; 12:2755. [PMID: 39767662 PMCID: PMC11673053 DOI: 10.3390/biomedicines12122755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Learning is classically modeled to consist of an acquisition period followed by a mastery period when the skill no longer requires conscious control and becomes automatic. Dopamine neurons projecting to the ventral striatum (VS) produce a teaching signal that shifts from responding to rewarding or aversive events to anticipating cues, thus facilitating learning. However, the role of the dopamine-receptive neurons in the ventral striatum, particularly in encoding decision-making processes, remains less understood. METHODS Here, we introduce an operant conditioning paradigm using open-source microcontrollers to train mice in three sequential learning phases. Phase I employs classical conditioning, associating a 5 s sound cue (CS) with a sucrose-water reward. In Phase II, the CS is replaced by a lever press as the requirement for reward delivery, marking an operant conditioning stage. Phase III combines these elements, requiring mice to press the lever during the CS to obtain the reward. We recorded calcium signals from direct pathway spiny projection neurons (dSPNs) in the VS throughout the three phases of training. RESULTS We find that dSPNs are specifically engaged when the mouse makes a decision to perform a reward-seeking action in response to a CS but are largely inactive during actions taken outside the CS. CONCLUSIONS These findings suggest that direct pathway neurons in the VS contribute to decision-making in learned action-outcome associations, indicating a specialized role in initiating operant behaviors.
Collapse
Affiliation(s)
- Stefano Cataldi
- Department of Psychiatry, Division of Molecular Therapeutics, New York State Psychiatric Institute, Columbia University, New York, NY 10032, USA; (S.C.); (C.L.)
- Italian Academy, Columbia University, New York, NY 10027, USA
| | - Clay Lacefield
- Department of Psychiatry, Division of Molecular Therapeutics, New York State Psychiatric Institute, Columbia University, New York, NY 10032, USA; (S.C.); (C.L.)
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - N Shashaank
- Departments of Computer Science, Shapiro Center for Engineering and Physical Science Research, Columbia University, New York, NY 10027, USA;
- New York Genome Center, New York, NY 10013, USA
| | - David Sulzer
- Department of Psychiatry, Division of Molecular Therapeutics, New York State Psychiatric Institute, Columbia University, New York, NY 10032, USA; (S.C.); (C.L.)
- Departments of Neurology, Columbia University, New York, NY 10032, USA
- Departments of Pharmacology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
7
|
Pomrenze MB, Vaillancourt S, Salgado JS, Raymond KB, Llorach P, Touponse GC, Cardozo Pinto DF, Rastegar Z, Casey AB, Eshel N, Malenka RC, Heifets BD. 5-HT 2C receptors in the nucleus accumbens constrain the rewarding effects of MDMA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.20.619256. [PMID: 39484424 PMCID: PMC11527024 DOI: 10.1101/2024.10.20.619256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
MDMA is a promising adjunct to psychotherapy and has well-known abuse liability, although less than other amphetamine analogs. While the reinforcing dopamine (DA)-releasing properties of MDMA are on par with methamphetamine (METH), MDMA is a far more potent serotonin (5-HT) releaser, via the 5-HT transporter (SERT). MDMA-mediated 5-HT release in a major reward center, the nucleus accumbens (NAc), drives prosocial behaviors via 5-HT1BR activation. We hypothesized that this prosocial mechanism contributes to the reduced reinforcing properties of MDMA compared to METH and used a platform of assays to predict the balance of prosocial and abuse-linked effects of (R)-MDMA, a novel entactogen in clinical development. NAc DA release, measured by GRAB-DA photometry in vivo, increased in proportion to MDMA (7.5 and 15 mg/kg, i.p.) and METH (2 mg/kg i.p.)-conditioned place preference (CPP). Using conditional knockouts (cKOs) for DAT and SERT, microdialysis, and photometry, we found that MDMA-released 5-HT limited MDMA-released DA through actions in the NAc, rather than at ventral tegmental area DAergic cell bodies. SERT cKO reduced the MDMA dose required for CPP three-fold. This enhanced MDMA-CPP and increased DA release were replicated by intra-NAc infusion of either a 5-HT reuptake inhibitor (escitalopram) to prevent MDMA interaction with SERT, or a 5-HT2CR antagonist (SB242084), but not by the 5-HT1BR antagonist NAS-181. These data support separate mechanisms for the low abuse potential versus prosocial effect of MDMA. Using this platform of assays, (R)-MDMA is predicted to have prosocial effects and low abuse potential.
Collapse
Affiliation(s)
- Matthew B. Pomrenze
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | - Sam Vaillancourt
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Juliana S. Salgado
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Kendall B. Raymond
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | - Pierre Llorach
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Gavin C. Touponse
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | - Daniel F. Cardozo Pinto
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | - Zahra Rastegar
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Austen B. Casey
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Neir Eshel
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | - Robert C. Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
| | - Boris D. Heifets
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
8
|
Chandler CM, Nickell JR, George Wilson A, Culver JP, Crooks PA, Bardo MT, Dwoskin LP. Vesicular monoamine transporter-2 inhibitor JPC-141 prevents methamphetamine-induced dopamine toxicity and blocks methamphetamine self-administration in rats. Biochem Pharmacol 2024; 228:116189. [PMID: 38580165 PMCID: PMC11546627 DOI: 10.1016/j.bcp.2024.116189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Previous research has demonstrated therapeutic potential for VMAT2 inhibitors in rat models of methamphetamine use disorder. Here, we report on the neurochemical and behavioral effects of 1-(2-methoxyphenethyl)-4-phenethypiperazine (JPC-141), a novel analog of lobelane. JPC-141 potently inhibited (Ki = 52 nM) [3H]dopamine uptake by VMAT2 in striatal vesicles with 50 to 250-fold greater selectivity for VMAT2 over dopamine, norepinephrine and serotonin plasmalemma transporters. Also, JPC-141 was 57-fold more selective for inhibiting VMAT2 over [3H]dofetilide binding to hERG channels expressed by HEK293, suggesting relatively low potential for cardiotoxicity. When administered in vivo to rats, JPC-141 prevented the METH-induced reduction in striatal dopamine content when given either prior to or after a high dose of METH, suggesting a reduction in METH-induced dopaminergic neurotoxicity. In behavioral assays, JPC-141 decreased METH-stimulated locomotor activity in METH-sensitized rats at doses of JPC-141 which did not alter locomotor activity in the saline control group. Moreover, JPC-141 specifically decreased iv METH self-administration at doses that had no effect on food-maintained responding. These findings support the further development of VMAT2 inhibitors as pharmacotherapies for individuals with methamphetamine use disorder.
Collapse
Affiliation(s)
- Cassie M Chandler
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Justin R Nickell
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - A George Wilson
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - John P Culver
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
9
|
Ide S, Ikeda K. Caenorhabditis elegans for opioid addiction research. Curr Opin Neurobiol 2024; 88:102914. [PMID: 39236640 DOI: 10.1016/j.conb.2024.102914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
The problem of drug addiction has become a profound societal problem worldwide. A better understanding of the neurobiological basis of addiction and the discovery of more effective treatments are needed. Recent studies have shown that many mechanisms that underlie addiction exist in more primitive organisms, including the nematode Caenorhabditis elegans (C. elegans). C. elegans is also hypothesized to possess a functional opioid-like system, including the endogenous opioid-like peptide NLP-24 and opioid-like receptor NPR-17. Opioids, such as morphine, are thought to cause addiction-like behavior by activating dopamine nerves in C. elegans via the opioid-like system. Accumulating evidence suggests that C. elegans is an excellent animal model for identifying molecular mechanisms of addiction.
Collapse
Affiliation(s)
- Soichiro Ide
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, Japan.
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, Japan; Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo, Japan
| |
Collapse
|
10
|
Delaney J, Nathani S, Tan V, Chavez C, Orr A, Paek J, Faraji M, Setlow B, Urs NM. Enhanced cognitive flexibility and phasic striatal dopamine dynamics in a mouse model of low striatal tonic dopamine. Neuropsychopharmacology 2024; 49:1600-1608. [PMID: 38698264 PMCID: PMC11319590 DOI: 10.1038/s41386-024-01868-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024]
Abstract
The catecholamine neuromodulators dopamine and norepinephrine are implicated in motor function, motivation, and cognition. Although roles for striatal dopamine in these aspects of behavior are well established, the specific roles for cortical catecholamines in regulating striatal dopamine dynamics and behavior are less clear. We recently showed that elevating cortical dopamine but not norepinephrine suppresses hyperactivity in dopamine transporter knockout (DAT-KO) mice, which have elevated striatal dopamine levels. In contrast, norepinephrine transporter knockout (NET-KO) mice have a phenotype distinct from DAT-KO mice, as they show elevated extracellular cortical catecholamines but reduced baseline striatal dopamine levels. Here we evaluated the consequences of altered catecholamine levels in NET-KO mice on cognitive flexibility and striatal dopamine dynamics. In a probabilistic reversal learning task, NET-KO mice showed enhanced reversal learning, which was consistent with larger phasic dopamine transients (dLight) in the dorsomedial striatum (DMS) during reward delivery and reward omission, compared to WT controls. Selective depletion of dorsal medial prefrontal cortex (mPFC) norepinephrine in WT mice did not alter performance on the reversal learning task but reduced nestlet shredding. Surprisingly, NET-KO mice did not show altered breakpoints in a progressive ratio task, suggesting intact food motivation. Collectively, these studies show novel roles of cortical catecholamines in the regulation of tonic and phasic striatal dopamine dynamics and cognitive flexibility, updating our current views on dopamine regulation and informing future therapeutic strategies to counter multiple psychiatric disorders.
Collapse
Affiliation(s)
- Jena Delaney
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Sanya Nathani
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Victor Tan
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Carson Chavez
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Alexander Orr
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Joon Paek
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Mojdeh Faraji
- Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA
| | - Nikhil M Urs
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
11
|
Radhakrishna U, Radhakrishnan R, Uppala LV, Muvvala SB, Prajapati J, Rawal RM, Bahado-Singh RO, Sadhasivam S. Prenatal opioid exposure significantly impacts placental protein kinase C (PKC) and drug transporters, leading to drug resistance and neonatal opioid withdrawal syndrome. Front Neurosci 2024; 18:1442915. [PMID: 39238930 PMCID: PMC11376091 DOI: 10.3389/fnins.2024.1442915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/23/2024] [Indexed: 09/07/2024] Open
Abstract
Background Neonatal Opioid Withdrawal Syndrome (NOWS) is a consequence of in-utero exposure to prenatal maternal opioids, resulting in the manifestation of symptoms like irritability, feeding problems, tremors, and withdrawal signs. Opioid use disorder (OUD) during pregnancy can profoundly impact both mother and fetus, disrupting fetal brain neurotransmission and potentially leading to long-term neurological, behavioral, and vision issues, and increased infant mortality. Drug resistance complicates OUD and NOWS treatment, with protein kinase regulation of drug transporters not fully understood. Methods DNA methylation levels of ATP-binding cassette (ABC) and solute carrier (SLC) drug transporters, along with protein kinase C (PKC) genes, were assessed in 96 placental samples using the Illumina Infinium MethylationEPIC array (850K). Samples were collected from three distinct groups: 32 mothers with infants prenatally exposed to opioids who needed pharmacological intervention for NOWS, 32 mothers with prenatally opioid-exposed infants who did not necessitate NOWS treatment, and 32 mothers who were not exposed to opioids during pregnancy. Results We identified 69 significantly differentially methylated SLCs, with 24 hypermethylated and 34 hypomethylated, and 11 exhibiting both types of methylation changes including SLC13A3, SLC15A2, SLC16A11, SLC16A3, SLC19A2, and SLC26A1. We identified methylation changes in 11 ABC drug transporters (ABCA1, ABCA12, ABCA2, ABCB10, ABCB5, ABCC12, ABCC2, ABCC9, ABCE1, ABCC7, ABCB3): 3 showed hypermethylation, 3 hypomethylation, and 5 exhibited both. Additionally, 7 PKC family genes (PRKCQ, PRKAA1, PRKCA, PRKCB, PRKCH, PRKCI, and PRKCZ) showed methylation changes. These genes are associated with 13 pathways involved in NOWS, including ABC transporters, bile secretion, pancreatic secretion, insulin resistance, glutamatergic synapse, and gastric acid secretion. Conclusion We report epigenetic changes in PKC-related regulation of drug transporters, which could improve our understanding of clinical outcomes like drug resistance, pharmacokinetics, drug-drug interactions, and drug toxicity, leading to maternal relapse and severe NOWS. Novel drugs targeting PKC pathways and transporters may improve treatment outcomes for OUD in pregnancy and NOWS.
Collapse
Affiliation(s)
- Uppala Radhakrishna
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, MI, United States
| | - Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lavanya V Uppala
- College of Information Science & Technology, the University of Nebraska at Omaha, Peter Kiewit Institute, Omaha, NE, United States
| | - Srinivas B Muvvala
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Jignesh Prajapati
- Department of Biochemistry & Forensic Sciences, Gujarat University, Ahmedabad, India
| | - Rakesh M Rawal
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | - Ray O Bahado-Singh
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, MI, United States
| | - Senthilkumar Sadhasivam
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
12
|
Xu Y, Lin Y, Yu M, Zhou K. The nucleus accumbens in reward and aversion processing: insights and implications. Front Behav Neurosci 2024; 18:1420028. [PMID: 39184934 PMCID: PMC11341389 DOI: 10.3389/fnbeh.2024.1420028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
The nucleus accumbens (NAc), a central component of the brain's reward circuitry, has been implicated in a wide range of behaviors and emotional states. Emerging evidence, primarily drawing from recent rodent studies, suggests that the function of the NAc in reward and aversion processing is multifaceted. Prolonged stress or drug use induces maladaptive neuronal function in the NAc circuitry, which results in pathological conditions. This review aims to provide comprehensive and up-to-date insights on the role of the NAc in motivated behavior regulation and highlights areas that demand further in-depth analysis. It synthesizes the latest findings on how distinct NAc neuronal populations and pathways contribute to the processing of opposite valences. The review examines how a range of neuromodulators, especially monoamines, influence the NAc's control over various motivational states. Furthermore, it delves into the complex underlying mechanisms of psychiatric disorders such as addiction and depression and evaluates prospective interventions to restore NAc functionality.
Collapse
Affiliation(s)
| | | | | | - Kuikui Zhou
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
13
|
Nourani N, Taghvimi A, Bavili-Tabrizi A, Javadzadeh Y, Dastmalchi S. Microextraction Techniques for Sample Preparation of Amphetamines in Urine: A Comprehensive Review. Crit Rev Anal Chem 2024; 54:1304-1319. [PMID: 36093632 DOI: 10.1080/10408347.2022.2113028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Psychological disorders and dramatic social problems are serious concerns regarding the abuse of amphetamine and its stimulant derivatives worldwide. Consumers of such drugs experience great euphoria along with serious health problems. Determination and quantification of amphetamine-type stimulants are indispensable skills for clinical and forensic laboratories. Analysis of low drug doses in bio-matrices necessitates applications of simple and also effective preparation steps. The preparation procedures not only eliminate adverse matrix effects, but also provide reasonable clean-up and pre-concentration benefits. The current review presents different methods used for sample preparation of amphetamines from urine as the most frequently used biological matrix. The advantages and limitations of various sample preparation methods were discussed focusing on the miniaturized methods.
Collapse
Affiliation(s)
- Nasim Nourani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Taghvimi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Bavili-Tabrizi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, North Cyprus, Turkey
| |
Collapse
|
14
|
Sitte HH. Structures of the dopamine transporter point to ways to target addiction and disease. Nature 2024; 632:509-511. [PMID: 39112574 DOI: 10.1038/d41586-024-02435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
|
15
|
Bucher ML, Dicent J, Duarte Hospital C, Miller GW. Neurotoxicology of dopamine: Victim or assailant? Neurotoxicology 2024; 103:175-188. [PMID: 38857676 PMCID: PMC11694735 DOI: 10.1016/j.neuro.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Since the identification of dopamine as a neurotransmitter in the mid-20th century, investigators have examined the regulation of dopamine homeostasis at a basic biological level and in human disorders. Genetic animal models that manipulate the expression of proteins involved in dopamine homeostasis have provided key insight into the consequences of dysregulated dopamine. As a result, we have come to understand the potential of dopamine to act as an endogenous neurotoxin through the generation of reactive oxygen species and reactive metabolites that can damage cellular macromolecules. Endogenous factors, such as genetic variation and subcellular processes, and exogenous factors, such as environmental exposures, have been identified as contributors to the dysregulation of dopamine homeostasis. Given the variety of dysregulating factors that impact dopamine homeostasis and the potential for dopamine itself to contribute to further cellular dysfunction, dopamine can be viewed as both the victim and an assailant of neurotoxicity. Parkinson's disease has emerged as the exemplar case study of dopamine dysregulation due to the genetic and environmental factors known to contribute to disease risk, and due to the evidence of dysregulated dopamine as a pathologic and pathogenic feature of the disease. This review, inspired by the talk, "Dopamine in Durham: location, location, location" presented by Dr. Miller for the Jacob Hooisma Memorial Lecture at the International Neurotoxicology Association meeting in 2023, offers a primer on dopamine toxicity covering endogenous and exogenous factors that disrupt dopamine homeostasis and the actions of dopamine as an endogenous neurotoxin.
Collapse
Affiliation(s)
- Meghan L Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Jocelyn Dicent
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Carolina Duarte Hospital
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA; Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
16
|
Duffus BLM, Haggerty DL, Doud EH, Mosley AL, Yamamoto BK, Atwood BK. The impact of abstinence from chronic alcohol consumption on the mouse striatal proteome: sex and subregion-specific differences. Front Pharmacol 2024; 15:1405446. [PMID: 38887549 PMCID: PMC11180734 DOI: 10.3389/fphar.2024.1405446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Alcohol misuse is the third leading preventable cause of death in the world. The World Health Organization currently estimates that 1 in 20 deaths are directly alcohol related. One of the ways in which consuming excessive levels of alcohol can both directly and indirectly affect human mortality and morbidity, is through chronic inflammation. Recently, studies have suggested a link between increased alcohol use and the incidence of neuroinflammatory-related diseases. However, the mechanism in which alcohol potentially influences neuroinflammatory processes is still being uncovered. We implemented an unbiased proteomics exploration of alcohol-induced changes in the striatum, with a specific emphasis on proteins related to inflammation. The striatum is a brain region that is critically involved with the progression of alcohol use disorder. Using mass spectrometry following voluntary alcohol self-administration in mice, we show that distinct protein abundances and signaling pathways in different subregions of the striatum are disrupted by chronic exposure to alcohol compared to water drinking control mice. Further, in mice that were allowed to experience abstinence from alcohol compared to mice that were non-abstinent, the overall proteome and signaling pathways showed additional differences, suggesting that the responses evoked by chronic alcohol exposure are dependent on alcohol use history. To our surprise we did not find that chronic alcohol drinking or abstinence altered protein abundance or pathways associated with inflammation, but rather affected proteins and pathways associated with neurodegeneration and metabolic, cellular organization, protein translation, and molecular transport processes. These outcomes suggest that in this drinking model, alcohol-induced neuroinflammation in the striatum is not a primary outcome controlling altered neurobehavioral function, but these changes are rather mediated by altered striatal neuronal structure and cellular health.
Collapse
Affiliation(s)
- Brittnie-lee M. Duffus
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - David L. Haggerty
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bryan K. Yamamoto
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | | |
Collapse
|
17
|
Ye J, Chen H, Wang K, Wang Y, Ammerman A, Awasthi S, Xu J, Liu B, Li W. Structural insights into vesicular monoamine storage and drug interactions. Nature 2024; 629:235-243. [PMID: 38499039 PMCID: PMC11070986 DOI: 10.1038/s41586-024-07290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
Biogenic monoamines-vital transmitters orchestrating neurological, endocrinal and immunological functions1-5-are stored in secretory vesicles by vesicular monoamine transporters (VMATs) for controlled quantal release6,7. Harnessing proton antiport, VMATs enrich monoamines around 10,000-fold and sequester neurotoxicants to protect neurons8-10. VMATs are targeted by an arsenal of therapeutic drugs and imaging agents to treat and monitor neurodegenerative disorders, hypertension and drug addiction1,8,11-16. However, the structural mechanisms underlying these actions remain unclear. Here we report eight cryo-electron microscopy structures of human VMAT1 in unbound form and in complex with four monoamines (dopamine, noradrenaline, serotonin and histamine), the Parkinsonism-inducing MPP+, the psychostimulant amphetamine and the antihypertensive drug reserpine. Reserpine binding captures a cytoplasmic-open conformation, whereas the other structures show a lumenal-open conformation stabilized by extensive gating interactions. The favoured transition to this lumenal-open state contributes to monoamine accumulation, while protonation facilitates the cytoplasmic-open transition and concurrently prevents monoamine binding to avoid unintended depletion. Monoamines and neurotoxicants share a binding pocket that possesses polar sites for specificity and a wrist-and-fist shape for versatility. Variations in this pocket explain substrate preferences across the SLC18 family. Overall, these structural insights and supporting functional studies elucidate the mechanism of vesicular monoamine transport and provide the basis to develop therapeutics for neurodegenerative diseases and substance abuse.
Collapse
Affiliation(s)
- Jin Ye
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Huaping Chen
- Department of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Kaituo Wang
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yi Wang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Aaron Ammerman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Samjhana Awasthi
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Bin Liu
- The Hormel Institute, University of Minnesota, Austin, MN, USA.
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
18
|
Ke T, Poquette KE, Amro Gazze SL, Carvelli L. Amphetamine Exposure during Embryogenesis Alters Expression and Function of Tyrosine Hydroxylase and the Vesicular Monoamine Transporter in Adult C. elegans. Int J Mol Sci 2024; 25:4219. [PMID: 38673805 PMCID: PMC11050232 DOI: 10.3390/ijms25084219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Amphetamines (Amph) are psychostimulants broadly used as physical and cognitive enhancers. However, the long-term effects of prenatal exposure to Amph have been poorly investigated. Here, we show that continuous exposure to Amph during early development induces long-lasting changes in histone methylation at the C. elegans tyrosine hydroxylase (TH) homolog cat-2 and the vesicular monoamine transporter (VMAT) homologue cat-1 genes. These Amph-induced histone modifications are correlated with enhanced expression and function of CAT-2/TH and higher levels of dopamine, but decreased expression of CAT-1/VMAT in adult animals. Moreover, while adult animals pre-exposed to Amph do not show obvious behavioral defects, when challenged with Amph they exhibit Amph hypersensitivity, which is associated with a rapid increase in cat-2/TH mRNA. Because C. elegans has helped reveal neuronal and epigenetic mechanisms that are shared among animals as diverse as roundworms and humans, and because of the evolutionary conservation of the dopaminergic response to psychostimulants, data collected in this study could help us to identify the mechanisms through which Amph induces long-lasting physiological and behavioral changes in mammals.
Collapse
Affiliation(s)
- Tao Ke
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA (K.E.P.); (S.L.A.G.)
| | - Katie E. Poquette
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA (K.E.P.); (S.L.A.G.)
| | - Sophia L. Amro Gazze
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA (K.E.P.); (S.L.A.G.)
| | - Lucia Carvelli
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA (K.E.P.); (S.L.A.G.)
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
19
|
Manoj M, Sowmyanarayan S, Kowshik AV, Chatterjee J. Identification of Potentially Repurposable Drugs for Lewy Body Dementia Using a Network-Based Approach. J Mol Neurosci 2024; 74:21. [PMID: 38363395 DOI: 10.1007/s12031-024-02199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
The conventional method of one drug being used for one target has not yielded therapeutic solutions for Lewy body dementia (LBD), which is a leading progressive neurological disorder characterized by significant loss of neurons. The age-related disease is marked by memory loss, hallucinations, sleep disorder, mental health deterioration, palsy, and cognitive impairment, all of which have no known effective cure. The present study deploys a network medicine pipeline to repurpose drugs having considerable effect on the genes and proteins related to the diseases of interest. We utilized the novel SAveRUNNER algorithm to quantify the proximity of all drugs obtained from DrugBank with the disease associated gene dataset obtained from Phenopedia and targets in the human interactome. We found that most of the 154 FDA-approved drugs predicted by SAveRUNNER were used to treat nervous system disorders, but some off-label drugs like quinapril and selegiline were interestingly used to treat hypertension and Parkinson's disease (PD), respectively. Additionally, we performed gene set enrichment analysis using Connectivity Map (CMap) and pathway enrichment analysis using EnrichR to validate the efficacy of the drug candidates obtained from the pipeline approach. The investigation enabled us to identify the significant role of the synaptic vesicle pathway in our disease and accordingly finalize 8 suitable antidepressant drugs from the 154 drugs initially predicted by SAveRUNNER. These potential anti-LBD drugs are either selective or non-selective inhibitors of serotonin, dopamine, and norepinephrine transporters. The validated selective serotonin and norepinephrine inhibitors like milnacipran, protriptyline, and venlafaxine are predicted to manage LBD along with the affecting symptomatic issues.
Collapse
Affiliation(s)
- Megha Manoj
- Department of Biotechnology, PES University, Bangalore, 560085, India
| | | | - Arjun V Kowshik
- Department of Biotechnology, PES University, Bangalore, 560085, India
| | - Jhinuk Chatterjee
- Department of Biotechnology, PES University, Bangalore, 560085, India.
| |
Collapse
|
20
|
Henderson BJ, Tetteh-Quarshie S, Olszewski NA. Modulators of nicotine reward and reinforcement. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 99:355-386. [PMID: 38467487 DOI: 10.1016/bs.apha.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Nicotine has been well-characterized for its ability to alter neurophysiology to promote rewarding and reinforcing properties. However, several exogenous chemicals possess properties that modulate or enhance nicotine's ability to alter neurophysiology. This chapter focuses on nicotine's impact on behavior through changes in neurophysiology and several chemical entities that in-turn modulate nicotine's ability to act as a neuromodulator.
Collapse
Affiliation(s)
- Brandon J Henderson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, United States.
| | - Samuel Tetteh-Quarshie
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, United States
| | - Nathan A Olszewski
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, United States
| |
Collapse
|
21
|
Everett T, Ten Eyck TW, Wu CH, Shelowitz AL, Stansbury SM, Firek A, Setlow B, McIntyre JC. Cilia loss on distinct neuron populations differentially alters cocaine-induced locomotion and reward. J Psychopharmacol 2024; 38:200-212. [PMID: 38151883 PMCID: PMC11078551 DOI: 10.1177/02698811231219058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
BACKGROUND Neuronal primary cilia are being recognized for their role in mediating signaling associated with a variety of neurobehaviors, including responses to drugs of abuse. They function as signaling hubs, enriched with a diverse array of G-protein coupled receptors (GPCRs), including several associated with motivation and drug-related behaviors. However, our understanding of how cilia regulate neuronal function and behavior is still limited. AIMS The objective of the current study was to investigate the contributions of primary cilia on specific neuronal populations to behavioral responses to cocaine. METHODS To test the consequences of cilia loss on cocaine-induced locomotion and reward-related behavior, we selectively ablated cilia from dopaminergic or GAD2-GABAergic neurons in mice. RESULTS Cilia ablation on either population of neurons failed to significantly alter acute locomotor responses to cocaine at a range of doses. With repeated administration, mice lacking cilia on GAD2-GABAergic neurons showed no difference in locomotor sensitization to cocaine compared to wild-type (WT) littermates, whereas mice lacking cilia on dopaminergic neurons exhibited reduced locomotor sensitization to cocaine at 10 and 30 mg/kg. Mice lacking cilia on GAD2-GABAergic neurons showed no difference in cocaine conditioned place preference (CPP), whereas mice lacking cilia on dopaminergic neurons exhibited reduced CPP compared to WT littermates. CONCLUSIONS Combined with previous findings using amphetamine, our results show that behavioral effects of cilia ablation are cell- and drug type-specific, and that neuronal cilia contribute to modulation of both the locomotor-inducing and rewarding properties of cocaine.
Collapse
Affiliation(s)
- Thomas Everett
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Tyler W. Ten Eyck
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Chang-Hung Wu
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | | | - Sofia M. Stansbury
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Alexandra Firek
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL 32610
- Center for Addiction Research and Education, University of Florida, Gainesville, FL 32610
| | - Jeremy C. McIntyre
- Department of Neuroscience, University of Florida, Gainesville, FL 32610
- Center for Addiction Research and Education, University of Florida, Gainesville, FL 32610
| |
Collapse
|
22
|
Heifets BD, Olson DE. Therapeutic mechanisms of psychedelics and entactogens. Neuropsychopharmacology 2024; 49:104-118. [PMID: 37488282 PMCID: PMC10700553 DOI: 10.1038/s41386-023-01666-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
Recent clinical and preclinical evidence suggests that psychedelics and entactogens may produce both rapid and sustained therapeutic effects across several indications. Currently, there is a disconnect between how these compounds are used in the clinic and how they are studied in preclinical species, which has led to a gap in our mechanistic understanding of how these compounds might positively impact mental health. Human studies have emphasized extra-pharmacological factors that could modulate psychedelic-induced therapeutic responses including set, setting, and integration-factors that are poorly modelled in current animal experiments. In contrast, animal studies have focused on changes in neuronal activation and structural plasticity-outcomes that are challenging to measure in humans. Here, we describe several hypotheses that might explain how psychedelics rescue neuropsychiatric disease symptoms, and we propose ways to bridge the gap between human and rodent studies. Given the diverse pharmacological profiles of psychedelics and entactogens, we suggest that their rapid and sustained therapeutic mechanisms of action might best be described by the collection of circuits that they modulate rather than their actions at any single molecular target. Thus, approaches focusing on selective circuit modulation of behavioral phenotypes might prove more fruitful than target-based methods for identifying novel compounds with rapid and sustained therapeutic effects similar to psychedelics and entactogens.
Collapse
Affiliation(s)
- Boris D Heifets
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA.
| | - David E Olson
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA, 95616, USA.
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA.
- Center for Neuroscience, University of California, Davis, Davis, CA, 95618, USA.
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
23
|
Tecuapa-Flores ED, Palacios-Cabrera CB, Santiago-Cuevas AJ, Hernández JG, Narayanan J, Thangarasu P. Simultaneous recognition of dopamine and uric acid in real samples through highly sensitive new electrode fabricated using ZnO/carbon quantum dots: bio-imaging and theoretical studies. Analyst 2023; 149:108-124. [PMID: 37982410 DOI: 10.1039/d3an01467c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Dopamine (DA) and uric acid (UA), which are vital components in human metabolism, cause several health problems if they are present in altered concentrations; thus, the determination of DA and UA is essential in real samples using selective sensors. In the present study, graphite carbon paste electrodes (CPE) were fabricated using ZnO/carbon quantum dots (ZnO/CQDs) and employed as electrochemical sensors for the detection of DA and UA. These electrodes were fully characterized via different analytical techniques (XRD, SEM, TEM, XPS, and EDS). The electrochemical responses from the modified electrodes were evaluated using cyclic voltammetry, square wave voltammetry, and electrochemical impedance spectroscopy. The results showed that the present electrode has exhibited high sensitivity towards DA, recognizing even at low concentrations (0.12 μM), and no inference was observed in the presence of UA. The ZnO/CQD electrode was applied for the simultaneous detection of co-existing DA and UA in real human urine samples and the peak potential separation between DA and UA was found to be greatly associated with the synergistic effect originated from ZnO and CQDs. The limit of detection (LOD) of the electrode was analyzed, and compared with other commercially available electrodes. Thus, the ZnO/CQD electrode was used to detect DA and UA in real samples, such as Saccharomyces cerevisiae cells.
Collapse
Affiliation(s)
- Eduardo D Tecuapa-Flores
- División de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de México, Av. Mexiquense s/n esquina Av. Universidad Politécnica, Tultitlán, Estado de México CP 54910, México
| | - Cristian B Palacios-Cabrera
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, México D. F., México.
| | - Alan J Santiago-Cuevas
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, México D. F., México.
| | - José G Hernández
- Centro Tecnológico, Facultad de Estudios Superiores (FES-Aragón), Universidad Nacional Autónoma de México (UNAM), Estado de México, CP 57130, México
| | - Jayanthi Narayanan
- División de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de México, Av. Mexiquense s/n esquina Av. Universidad Politécnica, Tultitlán, Estado de México CP 54910, México
| | - Pandiyan Thangarasu
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, México D. F., México.
| |
Collapse
|
24
|
Sitte HH. Structures of the amphetamine-binding receptor will aid drug discovery. Nature 2023; 624:529-530. [PMID: 38087097 DOI: 10.1038/d41586-023-03786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
|
25
|
Hu RR, Yang MD, Ding XY, Wu N, Li J, Song R. Blockade of the Dopamine D 3 Receptor Attenuates Opioids-Induced Addictive Behaviours Associated with Inhibiting the Mesolimbic Dopamine System. Neurosci Bull 2023; 39:1655-1668. [PMID: 37040055 PMCID: PMC10603017 DOI: 10.1007/s12264-023-01059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/23/2023] [Indexed: 04/12/2023] Open
Abstract
Opioid use disorder (OUD) has become a considerable global public health challenge; however, potential medications for the management of OUD that are effective, safe, and nonaddictive are not available. Accumulating preclinical evidence indicates that antagonists of the dopamine D3 receptor (D3R) have effects on addiction in different animal models. We have previously reported that YQA14, a D3R antagonist, exhibits very high affinity and selectivity for D3Rs over D2Rs, and is able to inhibit cocaine- or methamphetamine-induced reinforcement and reinstatement in self-administration tests. In the present study, our results illustrated that YQA14 dose-dependently reduced infusions under the fixed-ratio 2 procedure and lowered the breakpoint under the progressive-ratio procedure in heroin self-administered rats, also attenuated heroin-induced reinstatement of drug-seeking behavior. On the other hand, YQA14 not only reduced morphine-induced expression of conditioned place preference but also facilitated the extinguishing process in mice. Moreover, we elucidated that YQA14 attenuated opioid-induced reward or reinforcement mainly by inhibiting morphine-induced up-regulation of dopaminergic neuron activity in the ventral tegmental area and decreasing dopamine release in the nucleus accumbens with a fiber photometry recording system. These findings suggest that D3R might play a very important role in opioid addiction, and YQA14 may have pharmacotherapeutic potential in attenuating opioid-induced addictive behaviors dependent on the dopamine system.
Collapse
Affiliation(s)
- Rong-Rong Hu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- Department of Nuclear Medicine, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, China
| | - Meng-Die Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiao-Yan Ding
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Ning Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Rui Song
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
26
|
Chen R. Cholesterol modulation of interactions between psychostimulants and dopamine transporters. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 99:35-59. [PMID: 38467486 DOI: 10.1016/bs.apha.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The dopamine transporter (DAT) is a key site of action for cocaine and amphetamines. Dysfunctional DAT is associated with aberrant synaptic dopamine transmission and enhanced drug-seeking and taking behavior. Studies in cultured cells and ex vivo suggest that DAT function is sensitive to membrane cholesterol content. Although it is largely unknown whether psychostimulants alter cholesterol metabolism in the brain, emerging evidence indicates that peripheral cholesterol metabolism is altered in patients with psychostimulant use disorder and circulating cholesterol levels are associated with vulnerability to relapse. Cholesterol interacts with sphingolipids forming lipid raft microdomains on the membrane. These cholesterol-rich lipid raft microdomains serve to recruit and assemble other lipids and proteins to initiate signal transduction. There are two spatially and functionally distinct populations of the DAT segregated by cholesterol-rich lipid raft microdomains and cholesterol-scarce non-raft microdomains on the plasma membrane. These two DAT populations are differentially regulated by DAT blockers (e.g. cocaine), substrates (e.g. amphetamine), and protein kinase C providing distinct cholesterol-dependent modulation of dopamine uptake and efflux. In this chapter, we summarize the impact of depletion and addition of membrane cholesterol on DAT conformational changes between the outward-facing and the inward-facing states, lipid raft-associated DAT localization, basal and induced DAT internalization, and DAT function. In particular, we focus on how the interactions of the DAT with cocaine and amphetamine are influenced by membrane cholesterol. Lastly, we discuss the therapeutic potential of cholesterol-modifying drugs as a new avenue to normalize DAT function and dopamine transmission in patients with psychostimulant use disorder.
Collapse
Affiliation(s)
- Rong Chen
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston Salem, NC, United States.
| |
Collapse
|
27
|
Ke T, Ambigapathy G, Ton T, Dhasarathy A, Carvelli L. Long-Lasting Epigenetic Changes in the Dopamine Transporter in Adult Animals Exposed to Amphetamine during Embryogenesis: Investigating Behavioral Effects. Int J Mol Sci 2023; 24:13092. [PMID: 37685899 PMCID: PMC10487411 DOI: 10.3390/ijms241713092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The dopamine transporter (DAT) is an integral member of the dopaminergic system and is responsible for the release and reuptake of dopamine from the synaptic space into the dopaminergic neurons. DAT is also the major target of amphetamine (Amph). The effects of Amph on DAT have been intensively studied; however, the mechanisms underlying the long-term effects caused by embryonal exposure to addictive doses of Amph remain largely unexplored. As in mammals, in the nematode C. elegans Amph causes changes in locomotion which are largely mediated by the C. elegans DAT homologue, DAT-1. Here, we show that chronic embryonic exposures to Amph alter the expression of DAT-1 in adult C. elegans via long-lasting epigenetic modifications. These changes are correlated with an enhanced behavioral response to Amph in adult animals. Importantly, pharmacological and genetic intervention directed at preventing the Amph-induced epigenetic modifications occurring during embryogenesis inhibited the long-lasting behavioral effects observed in adult animals. Because many components of the dopaminergic system, as well as epigenetic mechanisms, are highly conserved between C. elegans and mammals, these results could be critical for our understanding of how drugs of abuse initiate predisposition to addiction.
Collapse
Affiliation(s)
- Tao Ke
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA; (T.K.); (T.T.)
| | - Ganesh Ambigapathy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA (A.D.)
| | - Thanh Ton
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA; (T.K.); (T.T.)
| | - Archana Dhasarathy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA (A.D.)
| | - Lucia Carvelli
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA; (T.K.); (T.T.)
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
28
|
Støier JF, Konomi-Pilkati A, Apuschkin M, Herborg F, Gether U. Amphetamine-induced reverse transport of dopamine does not require cytosolic Ca 2. J Biol Chem 2023; 299:105063. [PMID: 37468107 PMCID: PMC10448275 DOI: 10.1016/j.jbc.2023.105063] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023] Open
Abstract
Amphetamines (AMPHs) are substrates of the dopamine transporter (DAT) and reverse the direction of dopamine (DA) transport. This has been suggested to depend on activation of Ca2+-dependent pathways, but the mechanism underlying reverse transport via endogenously expressed DAT is still unclear. Here, to enable concurrent visualization by live imaging of extracellular DA dynamics and cytosolic Ca2+ levels, we employ the fluorescent Ca2+ sensor jRGECO1a expressed in cultured dopaminergic neurons together with the fluorescent DA sensor GRABDA1H expressed in cocultured "sniffer" cells. In the presence of the Na+-channel blocker tetrodotoxin to prevent exocytotic DA release, AMPH induced in the cultured neurons a profound dose-dependent efflux of DA that was blocked both by inhibition of DAT with cocaine and by inhibition of the vesicular monoamine transporter-2 with Ro-4-1284 or reserpine. However, the AMPH-induced DA efflux was not accompanied by an increase in cytosolic Ca2+ and was unaffected by blockade of voltage-gated calcium channels or chelation of cytosolic Ca2+. The independence of cytosolic Ca2+ was further supported by activation of N-methyl-D-aspartate-type ionotropic glutamate receptors leading to a marked increase in cytosolic Ca2+ without affecting AMPH-induced DA efflux. Curiously, AMPH elicited spontaneous Ca2+ spikes upon blockade of the D2 receptor, suggesting that AMPH can regulate intracellular Ca2+ in an autoreceptor-dependent manner regardless of the apparent independence of Ca2+ for AMPH-induced efflux. We conclude that AMPH-induced DA efflux in dopaminergic neurons does not require cytosolic Ca2+ but is strictly dependent on the concerted action of AMPH on both vesicular monoamine transporter-2 and DAT.
Collapse
Affiliation(s)
- Jonatan Fullerton Støier
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, Panum Institute - Maersk Tower 7.5, University of Copenhagen, Copenhagen, Denmark
| | - Ainoa Konomi-Pilkati
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, Panum Institute - Maersk Tower 7.5, University of Copenhagen, Copenhagen, Denmark
| | - Mia Apuschkin
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, Panum Institute - Maersk Tower 7.5, University of Copenhagen, Copenhagen, Denmark
| | - Freja Herborg
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, Panum Institute - Maersk Tower 7.5, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, Panum Institute - Maersk Tower 7.5, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
29
|
Bappi MH, Prottay AAS, Kamli H, Sonia FA, Mia MN, Akbor MS, Hossen MM, Awadallah S, Mubarak MS, Islam MT. Quercetin Antagonizes the Sedative Effects of Linalool, Possibly through the GABAergic Interaction Pathway. Molecules 2023; 28:5616. [PMID: 37513487 PMCID: PMC10384931 DOI: 10.3390/molecules28145616] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Sedatives promote calmness or sleepiness during surgery or severely stressful events. In addition, depression is a mental health issue that negatively affects emotional well-being. A group of drugs called anti-depressants is used to treat major depressive illnesses. The aim of the present work was to evaluate the effects of quercetin (QUR) and linalool (LIN) on thiopental sodium (TS)-induced sleeping mice and to investigate the combined effects of these compounds using a conventional co-treatment strategy and in silico studies. For this, the TS-induced sleeping mice were monitored to compare the occurrence, latency, and duration of the sleep-in response to QUR (10, 25, 50 mg/kg), LIN (10, 25, 50 mg/kg), and diazepam (DZP, 3 mg/kg, i.p.). Moreover, an in silico investigation was undertaken to assess this study's putative modulatory sedation mechanism. For this, we observed the ability of test and standard medications to interact with various gamma-aminobutyric acid A receptor (GABAA) subunits. Results revealed that QUR and LIN cause dose-dependent antidepressant-like and sedative-like effects in animals, respectively. In addition, QUR-50 mg/kg and LIN-50 mg/kg and/or DZP-3 mg/kg combined were associated with an increased latency period and reduced sleeping times in animals. Results of the in silico studies demonstrated that QUR has better binding interaction with GABAA α3, β1, and γ2 subunits when compared with DZP, whereas LIN showed moderate affinity with the GABAA receptor. Taken together, the sleep duration of LIN and DZP is opposed by QUR in TS-induced sleeping mice, suggesting that QUR may be responsible for providing sedation-antagonizing effects through the GABAergic interaction pathway.
Collapse
Affiliation(s)
- Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Fatema Akter Sonia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Nayem Mia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Showkoth Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Munnaf Hossen
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Samir Awadallah
- Department of Medical Lab Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa 13110, Jordan
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
30
|
Clauss NJ, Mayer FP, Owens WA, Vitela M, Clarke KM, Bowman MA, Horton RE, Gründemann D, Schmid D, Holy M, Gould GG, Koek W, Sitte HH, Daws LC. Ethanol inhibits dopamine uptake via organic cation transporter 3: Implications for ethanol and cocaine co-abuse. Mol Psychiatry 2023; 28:2934-2945. [PMID: 37308680 PMCID: PMC10615754 DOI: 10.1038/s41380-023-02064-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/20/2022] [Accepted: 03/29/2023] [Indexed: 06/14/2023]
Abstract
Concurrent cocaine and alcohol use is among the most frequent drug combination, and among the most dangerous in terms of deleterious outcomes. Cocaine increases extracellular monoamines by blocking dopamine (DA), norepinephrine (NE) and serotonin (5-HT) transporters (DAT, NET and SERT, respectively). Likewise, ethanol also increases extracellular monoamines, however evidence suggests that ethanol does so independently of DAT, NET and SERT. Organic cation transporter 3 (OCT3) is an emergent key player in the regulation of monoamine signaling. Using a battery of in vitro, in vivo electrochemical, and behavioral approaches, as well as wild-type and constitutive OCT3 knockout mice, we show that ethanol's actions to inhibit monoamine uptake are dependent on OCT3. These findings provide a novel mechanistic basis whereby ethanol enhances the neurochemical and behavioral effects of cocaine and encourage further research into OCT3 as a target for therapeutic intervention in the treatment of ethanol and ethanol/cocaine use disorders.
Collapse
Affiliation(s)
- N J Clauss
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - F P Mayer
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - W A Owens
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - M Vitela
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - K M Clarke
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - M A Bowman
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - R E Horton
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - D Gründemann
- Department of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - D Schmid
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - M Holy
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - G G Gould
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - W Koek
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - H H Sitte
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
- Center for Addiction Research and Science, Medical University Vienna, Waehringerstrasse 13 A, 1090, Vienna, Austria
| | - L C Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
31
|
Hamamah S, Hajnal A, Covasa M. Reduced Striatal Dopamine Transporter Availability and Heightened Response to Natural and Pharmacological Stimulation in CCK-1R-Deficient Obese Rats. Int J Mol Sci 2023; 24:ijms24119773. [PMID: 37298724 DOI: 10.3390/ijms24119773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/28/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Alterations in dopamine neurotransmission are associated with obesity and food preferences. Otsuka Long-Evans Tokushima Fatty (OLETF) rats that lack functional cholecystokinin receptor type-1 (CCK-1R), due to a natural mutation, exhibit impaired satiation, are hyperphagic, and become obese. In addition, compared to lean control Long-Evans Tokushima (LETO) rats, OLETF rats have pronounced avidity for over-consuming palatable sweet solutions, have greater dopamine release to psychostimulants, reduced dopamine 2 receptor (D2R) binding, and exhibit increased sensitivity to sucrose reward. This supports altered dopamine function in this strain and its general preference for palatable solutions such as sucrose. In this study, we examined the relationship between OLETF's hyperphagic behavior and striatal dopamine signaling by investigating basal and amphetamine stimulated motor activity in prediabetic OLETF rats before and after access to sucrose solution (0.3 M) compared to non-mutant control LETO rats, as well as availability of dopamine transporter (DAT) using autoradiography. In the sucrose tests, one group of OLETF rats received ad libitum access to sucrose while the other group received an amount of sucrose equal to that consumed by the LETO. OLETFs with ad libitum access consumed significantly more sucrose than LETOs. Sucrose exerted a biphasic effect on basal activity in both strains, i.e., reduced activity for 1 week followed by increased activity in weeks 2 and 3. Basal locomotor activity was reduced (-17%) in OLETFs prior to sucrose, compared to LETOs. Withdrawal of sucrose resulted in increased locomotor activity in both strains. The magnitude of this effect was greater in OLETFs and the activity was increased in restricted compared to ad-libitum-access OLETFs. Sucrose access augmented AMPH-responses in both strains with a greater sensitization to AMPH during week 1, an effect that was a function of the amount of sucrose consumed. One week of sucrose withdrawal sensitized AMPH-induced ambulatory activity in both strains. In OLETF with restricted access to sucrose, withdrawal resulted in no further sensitization to AMPH. DAT availability in the nucleus accumbens shell was significantly reduced in OLETF compared with aged-matched LETO. Together, these findings show that OLETF rats have reduced basal DA transmission and a heightened response to natural and pharmacological stimulation.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
32
|
Mohammed SM, Hashim ZH, Hussein MM, Al-Mayah QS. Serum brain-derived neurotrophic factor levels in patients with schizophrenia and methamphetamine addiction: correlation with Mini-Mental State Examination (MMSE). J Med Life 2023; 16:799-805. [PMID: 37520481 PMCID: PMC10375342 DOI: 10.25122/jml-2022-0250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/26/2023] [Indexed: 08/01/2023] Open
Abstract
Methamphetamine use can induce psychosis resembling acute schizophrenia spectrum psychosis, making it challenging to differentiate between the two based on symptoms alone. Brain-derived neurotrophic factor (BDNF) exerts a critical role in hippocampal neural plasticity, influencing critical cognitive functions such as memory and learning. This study aimed to determine the role of serum BDNF levels in schizophrenia and methamphetamine addiction. A case-control study was conducted involving 50 patients with schizophrenia, 50 patients with methamphetamine addiction, and 50 healthy control subjects recruited from Ibn-Rushed Psychiatric Teaching Hospital in Baghdad. Cognitive impairment was assessed using the Mini-Mental State Examination (MMSE), while serum BDNF levels were measured using ELISA following standardized protocols. The findings revealed significantly lower median levels of BDNF (0.36 pg/ml) in patients with schizophrenia compared to both the control group (0.51 pg/ml) and the methamphetamine group (0.72 pg/ml). Moreover, there was a significant difference observed between the methamphetamine group and the control group. At a cut-off value of BDNF=0.37 pg/ml, the sensitivity and specificity of BDNF in differentiating between schizophrenia and methamphetamine addiction were 84% and 70%, respectively. Serum level of BDNF could be used to differentiate between schizophrenia and methamphetamine addiction when clinical distinctions are challenging to detect.
Collapse
Affiliation(s)
| | - Zainab Hassan Hashim
- Department of Physiology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | | | | |
Collapse
|
33
|
Garton DR, Turconi G, Iivanainen V, Andressoo JO. Opposing Spatially Segregated Function of Endogenous GDNF-RET Signaling in Cocaine Addiction. Biomolecules 2023; 13:biom13050761. [PMID: 37238631 DOI: 10.3390/biom13050761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Cocaine addiction is a serious condition with potentially lethal complications and no current pharmacological approaches towards treatment. Perturbations of the mesolimbic dopamine system are crucial to the establishment of cocaine-induced conditioned place preference and reward. As a potent neurotrophic factor modulating the function of dopamine neurons, glial cell line-derived neurotrophic factor (GDNF) acting through its receptor RET on dopamine neurons may provide a novel therapeutic avenue towards psychostimulant addiction. However, current knowledge on endogenous GDNF and RET function after the onset of addiction is scarce. Here, we utilized a conditional knockout approach to reduce the expression of the GDNF receptor tyrosine kinase RET from dopamine neurons in the ventral tegmental area (VTA) after the onset of cocaine-induced conditioned place preference. Similarly, after establishing cocaine-induced conditioned place preference, we studied the effect of conditionally reducing GDNF in the ventral striatum nucleus accumbens (NAc), the target of mesolimbic dopaminergic innervation. We find that the reduction of RET within the VTA hastens cocaine-induced conditioned place preference extinction and reduces reinstatement, while the reduction of GDNF within the NAc does the opposite: prolongs cocaine-induced conditioned place preference and increases preference during reinstatement. In addition, the brain-derived neurotrophic factor (BDNF) was increased and key dopamine-related genes were reduced in the GDNF cKO mutant animals after cocaine administration. Thus, RET antagonism in the VTA coupled with intact or enhanced accumbal GDNF function may provide a new approach towards cocaine addiction treatment.
Collapse
Affiliation(s)
- Daniel R Garton
- Department of Pharmacology, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland
| | - Giorgio Turconi
- Department of Pharmacology, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland
| | - Vilma Iivanainen
- Department of Pharmacology, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland
| | - Jaan-Olle Andressoo
- Department of Pharmacology, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland
- Division of Neurogeriatrics, Department of Neurobiology, Care Science and Society (NVS), Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
34
|
Conn KA, Zou S, Das J, Alexander S, Burne TH, Kesby JP. Activating the dorsomedial and ventral midbrain projections to the striatum differentially impairs goal-directed action in male mice. Neuropharmacology 2023; 234:109550. [PMID: 37085011 DOI: 10.1016/j.neuropharm.2023.109550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/29/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
The cognitive symptoms of schizophrenia are wide ranging and include impaired goal-directed action. This could be driven by an increase in dopamine transmission in the dorsomedial striatum, a pathophysiological hallmark of schizophrenia. Although commonly associated with psychotic symptoms, dopamine signalling in this region also modulates associative learning that aids in the execution of actions. To gain a better understanding of the role of subcortical dopamine in learning and decision-making, we assessed goal-directed action in male mice using the cross-species outcome-specific devaluation task (ODT). First, we administered systemic amphetamine during training to determine the impact of altered dopaminergic signaling on associative learning. Second, we used pathway-specific chemogenetic approaches to activate the dorsomedial and ventral striatal pathways (that originate in the midbrain) to separately assess learning and performance. Amphetamine treatment during learning led to a dose-dependent impairment in goal-directed action. Activation of both striatal pathways during learning also impaired performance. However, when these pathways were activated during choice, only activation of the ventral pathway impaired goal-directed action. This suggests that elevated transmission in the dorsomedial striatal pathway impairs associative learning processes that guide the goal-directed execution of actions. By contrast, elevated transmission of the ventral striatal pathway disrupts the encoding of outcome values that are important for both associative learning and choice performance. These findings highlight the differential roles of the dorsomedial and ventral inputs into the striatum in goal-directed action and provides insight into how striatal dopamine signaling may contribute to the cognitive problems in those with schizophrenia.
Collapse
Affiliation(s)
- Kyna-Anne Conn
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Simin Zou
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Joyosmita Das
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Suzy Alexander
- Queensland Centre for Mental Health Research, Wacol, QLD, 4076, Australia
| | - Thomas Hj Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia; Queensland Centre for Mental Health Research, Wacol, QLD, 4076, Australia
| | - James P Kesby
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia; Queensland Centre for Mental Health Research, Wacol, QLD, 4076, Australia; QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia.
| |
Collapse
|
35
|
Dominguez-Lopez S, Ahn B, Sataranatarajan K, Ranjit R, Premkumar P, Van Remmen H, Beckstead MJ. Long-term methamphetamine self-administration increases mesolimbic mitochondrial oxygen consumption and decreases striatal glutathione. Neuropharmacology 2023; 227:109436. [PMID: 36693561 PMCID: PMC10080784 DOI: 10.1016/j.neuropharm.2023.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/26/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Neurotoxic regimens of methamphetamine (METH) are known to increase reactive oxygen species (ROS), affect redox homeostasis, and lead to damage in dopamine neurons. Functional changes induced by long-term METH self-administration on mitochondrial respiratory metabolism and redox homeostasis are less known. To fill this gap, we implanted a jugular catheter into adult male mice and trained them to nose poke for METH infusions. After several weeks of METH exposure, we collected samples of the ventral striatum (vST) and the ventral midbrain (vMB). We used HPLC to determine the levels of the ROS scavenger glutathione in its reduced (GSH) and oxidized forms. Then, we used high-resolution respirometry to determine the oxygen consumption rate (OCR) of mitochondrial complexes. Finally, using in vivo electrophysiology, we assessed changes in dopamine neuron firing activity in the VTA. METH self-administration produced a decrease of the GSH pool in vST, correlating with lifetime METH intake. We observed increased mitochondrial respiration across the two mesolimbic regions. METH self-administration decreases firing rate and burst activity but increases the number of spontaneously active dopamine neurons per track. We conclude that METH self-administration progressively decreased the antioxidant pool in sites of higher dopamine release and produced an increase in mitochondrial metabolism in the mesolimbic areas, probably derived from the increased number of dopamine neurons actively firing. However, dopamine neuron firing activity is decreased by METH self-administration, reflecting a new basal level of dopamine neurotransmission.
Collapse
Affiliation(s)
- Sergio Dominguez-Lopez
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA; Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - Bumsoo Ahn
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | | | - Rojina Ranjit
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Pavithra Premkumar
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Holly Van Remmen
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
| | - Michael J Beckstead
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
| |
Collapse
|
36
|
Plaza-Briceño W, Velásquez VB, Silva-Olivares F, Ceballo K, Céspedes R, Jorquera G, Cruz G, Martínez-Pinto J, Bonansco C, Sotomayor-Zárate R. Chronic Exposure to High Fat Diet Affects the Synaptic Transmission That Regulates the Dopamine Release in the Nucleus Accumbens of Adolescent Male Rats. Int J Mol Sci 2023; 24:ijms24054703. [PMID: 36902133 PMCID: PMC10003643 DOI: 10.3390/ijms24054703] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 03/05/2023] Open
Abstract
Obesity is a pandemic caused by many factors, including a chronic excess in hypercaloric and high-palatable food intake. In addition, the global prevalence of obesity has increased in all age categories, such as children, adolescents, and adults. However, at the neurobiological level, how neural circuits regulate the hedonic consumption of food intake and how the reward circuit is modified under hypercaloric diet consumption are still being unraveled. We aimed to determine the molecular and functional changes of dopaminergic and glutamatergic modulation of nucleus accumbens (NAcc) in male rats exposed to chronic consumption of a high-fat diet (HFD). Male Sprague-Dawley rats were fed a chow diet or HFD from postnatal day (PND) 21 to 62, increasing obesity markers. In addition, in HFD rats, the frequency but not amplitude of the spontaneous excitatory postsynaptic current is increased in NAcc medium spiny neurons (MSNs). Moreover, only MSNs expressing dopamine (DA) receptor type 2 (D2) increase the amplitude and glutamate release in response to amphetamine, downregulating the indirect pathway. Furthermore, NAcc gene expression of inflammasome components is increased by chronic exposure to HFD. At the neurochemical level, DOPAC content and tonic dopamine (DA) release are reduced in NAcc, while phasic DA release is increased in HFD-fed rats. In conclusion, our model of childhood and adolescent obesity functionally affects the NAcc, a brain nucleus involved in the hedonic control of feeding, which might trigger addictive-like behaviors for obesogenic foods and, through positive feedback, maintain the obese phenotype.
Collapse
Affiliation(s)
- Wladimir Plaza-Briceño
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Programa de Doctorado en Ciencias Mención Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Victoria B. Velásquez
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Programa de Doctorado en Ciencias Mención Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Francisco Silva-Olivares
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Programa de Doctorado en Ciencias Mención Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Viña del Mar 2520000, Chile
| | - Karina Ceballo
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Programa de Doctorado en Ciencias Mención Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Ricardo Céspedes
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Programa de Doctorado en Ciencias Mención Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Gonzalo Jorquera
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Jonathan Martínez-Pinto
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Christian Bonansco
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Correspondence: (C.B.); (R.S.-Z.)
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Correspondence: (C.B.); (R.S.-Z.)
| |
Collapse
|
37
|
Chemical Flavorants in Vaping Products Alter Neurobiology in a Sex-Dependent Manner to Promote Vaping-Related Behaviors. J Neurosci 2023; 43:1360-1374. [PMID: 36690450 PMCID: PMC9987575 DOI: 10.1523/jneurosci.0755-22.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 01/24/2023] Open
Abstract
Electronic nicotine delivery systems (ENDS) are distinctly different from combustible cigarettes because of the availability of flavor options. Subjective measures have been used to demonstrate that adults and adolescents prefer flavors for various reasons; (1) they are pleasing and (2) they mask the harshness of nicotine. Despite this, there have been few investigations into the molecular interactions that connect chemical flavorants to smoking or vaping-related behaviors. Here, we investigated the effects of three chemical flavorants (hexyl acetate, ethyl acetate, and methylbutyl acetate) that are found in green apple (GA) ENDS e-liquids but are also found in other flavor categories. We used a translationally relevant vapor self-administration mouse model and observed that adult male and female mice self-administered GA flavorants in the absence of nicotine. Using α4-mCherryα6-GFP nicotinic acetylcholine receptor (nAChR) mice, we observed that mice exposed to GA flavorants exhibited a sex-specific increase (upregulation) of nAChRs that was also brain-region specific. Electrophysiology revealed that mice exposed to GA flavorants exhibited enhanced firing of ventral tegmental area dopamine neurons. Fast-scan cyclic voltammetry revealed that electrically stimulated dopamine release in the nucleus accumbens core is increased in mice that are exposed to GA flavorants. These effects were similarly observed in the medial habenula. Overall, these findings demonstrate that ENDS flavors alone change neurobiology and may promote vaping-dependent behaviors in the absence of nicotine. Furthermore, the flavorant-induced changes in neurobiology parallel those caused by nicotine, which highlights the fact that nonmenthol flavorants may contribute to or enhance nicotine reward and reinforcement.SIGNIFICANCE STATEMENT The impact of flavors on vaping is a hotly debated topic; however, few investigations have examined this in a model that is relevant to vaping. Although a full understanding of the exact mechanism remains undetermined, our observations reveal that chemical flavorants in the absence of nicotine alter brain circuits relevant to vaping-related behavior. The fact that the flavorants investigated here exist in multiple flavor categories of vaping products highlights the fact that a multitude of flavored vaping products may pose a risk toward vaping-dependent behaviors even without the impact of nicotine. Furthermore, as the neurobiological changes have an impact on neurons of the reward system, there exists the possibility that nonmenthol flavorants may enhance nicotine reward and reinforcement.
Collapse
|
38
|
Shekar A, Mabry SJ, Cheng MH, Aguilar JI, Patel S, Zanella D, Saleeby DP, Zhu Y, Romanazzi T, Ulery-Reynolds P, Bahar I, Carter AM, Matthies HJG, Galli A. Syntaxin 1 Ser 14 phosphorylation is required for nonvesicular dopamine release. SCIENCE ADVANCES 2023; 9:eadd8417. [PMID: 36630507 PMCID: PMC9833662 DOI: 10.1126/sciadv.add8417] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/14/2022] [Indexed: 05/30/2023]
Abstract
Amphetamine (AMPH) is a psychostimulant that is commonly abused. The stimulant properties of AMPH are associated with its ability to increase dopamine (DA) neurotransmission. This increase is promoted by nonvesicular DA release mediated by reversal of DA transporter (DAT) function. Syntaxin 1 (Stx1) is a SNARE protein that is phosphorylated at Ser14 by casein kinase II. We show that Stx1 phosphorylation is critical for AMPH-induced nonvesicular DA release and, in Drosophila melanogaster, regulates the expression of AMPH-induced preference and sexual motivation. Our molecular dynamics simulations of the DAT/Stx1 complex demonstrate that phosphorylation of these proteins is pivotal for DAT to dwell in a DA releasing state. This state is characterized by the breakdown of two key salt bridges within the DAT intracellular gate, causing the opening and hydration of the DAT intracellular vestibule, allowing DA to bind from the cytosol, a mechanism that we hypothesize underlies nonvesicular DA release.
Collapse
Affiliation(s)
- Aparna Shekar
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Samuel J. Mabry
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary H. Cheng
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jenny I. Aguilar
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shalin Patel
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniele Zanella
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David P. Saleeby
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yanqi Zhu
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tiziana Romanazzi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Angela M. Carter
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Aurelio Galli
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
39
|
Sun Y, Giocomo LM. Neural circuit dynamics of drug-context associative learning in the mouse hippocampus. Nat Commun 2022; 13:6721. [PMID: 36344498 PMCID: PMC9640587 DOI: 10.1038/s41467-022-34114-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
The environmental context associated with previous drug consumption is a potent trigger for drug relapse. However, the mechanism by which neural representations of context are modified to incorporate information associated with drugs of abuse remains unknown. Using longitudinal calcium imaging in freely behaving mice, we find that unlike the associative learning of natural reward, drug-context associations for psychostimulants and opioids are encoded in a specific subset of hippocampal neurons. After drug conditioning, these neurons weakened their spatial coding for the non-drug paired context, resulting in an orthogonal representation for the drug versus non-drug context that was predictive of drug-seeking behavior. Furthermore, these neurons were selected based on drug-spatial experience and were exclusively tuned to animals' allocentric position. Together, this work reveals how drugs of abuse alter the hippocampal circuit to encode drug-context associations and points to the possibility of targeting drug-associated memory in the hippocampus.
Collapse
Affiliation(s)
- Yanjun Sun
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
40
|
Sequeira-Cordero A, Brenes JC. Time course of plasticity-related alterations following the first exposure to amphetamine in juvenile rats. Pharmacol Biochem Behav 2022; 221:173489. [PMID: 36375621 DOI: 10.1016/j.pbb.2022.173489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/14/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
In vulnerable consumers, the first drug exposure induces various neurobehavioral adaptations that may represent the starting point toward addiction. Elucidating the neuroplastic mechanisms underlying that first rewarding experience would contribute to understanding the transition from recreational to compulsive drug use. In a preclinical model with juvenile rats, we analyzed the time-dependent fluctuations in the expression of neuroplasticity-related genes like the brain-derived neurotrophic factor (BDNF), its tropomyosin receptor kinase B (TrkB), the cAMP response element-binding protein (CREB), the microRNA-132, the Rho GTPase-activating protein 32 (p250GAP), the corticotropin-releasing factor (CRF), and the neurotransmitters contents in the nucleus accumbens (NAc) and the dorsal striatum (DS) 45, 90, and 180 min after an amphetamine (AMPH) injection. As expected, AMPH altered the concentration of norepinephrine, dopamine, DOPAC, and serotonin in a region- and time-dependent manner. Regarding gene expression, AMPH at 45 min upregulated BDNF and primiR-132 expression in NAc and downregulated TrkB expression in DS. At 90 min, AMPH upregulated TrkB, CREB, p250GAP, and primiR-132 expression in NAc and BDNF, primiR-132, and CRF in DS. At 180 min, only BNDF in NAc continued to be upregulated by AMPH. Based on the levels of AMPH-induced hyperactivity, we classified the rats as low and high AMPH responders. High AMPH responders characterized by overexpressing BDNF, CREB, p250GAP, and CRF in NAc and by showing lower levels of dopamine and serotonin metabolites and turnovers in both regions. Our findings demonstrated that a single AMPH administration is enough to induce neuroplastic adaptations, especially in the NAc of prone rats.
Collapse
Affiliation(s)
- Andrey Sequeira-Cordero
- Instituto de Investigaciones en Salud, Universidad de Costa Rica, Costa Rica; Centro de Investigación en Neurociencias, Universidad de Costa Rica, Costa Rica
| | - Juan C Brenes
- Instituto de Investigaciones Psicológicas, Universidad de Costa Rica, Costa Rica; Centro de Investigación en Neurociencias, Universidad de Costa Rica, Costa Rica.
| |
Collapse
|
41
|
Song AK, Hay KR, Trujillo P, Aumann M, Stark AJ, Yan Y, Kang H, Donahue MJ, Zald DH, Claassen DO. Amphetamine-induced dopamine release and impulsivity in Parkinson's disease. Brain 2022; 145:3488-3499. [PMID: 34951464 PMCID: PMC10233259 DOI: 10.1093/brain/awab487] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/12/2022] Open
Abstract
Impulsive-compulsive behaviours manifest in a substantial proportion of subjects with Parkinson's disease. Reduced ventral striatum dopamine receptor availability, and increased dopamine release is noted in patients with these symptoms. Prior studies of impulsivity suggest that midbrain D2 autoreceptors regulate striatal dopamine release in a feedback inhibitory manner, and in healthy populations, greater impulsivity is linked to poor proficiency of this inhibition. This has not been assessed in a Parkinson's disease population. Here, we applied 18F-fallypride PET studies to assess striatal and extrastriatal D2-like receptor uptake in a placebo-controlled oral dextroamphetamine sequence. We hypothesized that Parkinson's disease patients with impulsive-compulsive behaviours would have greater ventral striatal dopaminergic response to dextroamphetamine, and that an inability to attenuate ventral striatal dopamine release via midbrain D2 autoreceptors would underlie this response. Twenty patients with Parkinson's disease (mean age = 64.1 ± 5.8 years) both with (n = 10) and without (n = 10) impulsive-compulsive behaviours, participated in a single-blind dextroamphetamine challenge (oral; 0.43 mg/kg) in an OFF dopamine state. All completed PET imaging with 18F-fallypride, a high-affinity D2-like receptor ligand, in the placebo and dextroamphetamine state. Both voxelwise and region of interest analyses revealed dextroamphetamine-induced endogenous dopamine release localized to the ventral striatum, and the caudal-medial orbitofrontal cortex. The endogenous dopamine release observed in the ventral striatum correlated positively with patient-reported participation in reward-based behaviours, as quantified by the self-reported Questionnaire for Impulsivity in Parkinson's disease Rating Scale. In participants without impulsive-compulsive behaviours, baseline midbrain D2 receptor availability negatively correlated with ventral striatal dopamine release; however, this relationship was absent in those with impulsive-compulsive behaviours. These findings emphasize that reward-based behaviours in Parkinson's disease are regulated by ventral striatal dopamine release, and suggest that loss of inhibitory feedback from midbrain autoreceptors may underlie the manifestation of impulsive-compulsive behaviours.
Collapse
Affiliation(s)
- Alexander K Song
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kaitlyn R Hay
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Megan Aumann
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Department of Psychology, Vanderbilt University, Nashville, TN 37232, USA
| | - Adam J. Stark
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yan Yan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Manus J Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David H Zald
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
42
|
Jiménez-González A, Gómez-Acevedo C, Ochoa-Aguilar A, Chavarría A. The Role of Glia in Addiction: Dopamine as a Modulator of Glial Responses in Addiction. Cell Mol Neurobiol 2022; 42:2109-2120. [PMID: 34057683 PMCID: PMC11421599 DOI: 10.1007/s10571-021-01105-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Addiction is a chronic and potentially deadly disease considered a global health problem. Nevertheless, there is still no ideal treatment for its management. The alterations in the reward system are the most known pathophysiological mechanisms. Dopamine is the pivotal neurotransmitter involved in neuronal drug reward mechanisms and its neuronal mechanisms have been intensely investigated in recent years. However, neuroglial interactions and their relation to drug addiction development and maintenance of drug addiction have been understudied. Many reports have found that most neuroglial cells express dopamine receptors and that dopamine activity may induce neuroimmunomodulatory effects. Furthermore, current research has also shown that pro- and anti-inflammatory molecules modulate dopaminergic neuron activity. Thus, studying the immune mechanisms of dopamine associated with drug abuse is vital in researching new pathophysiological mechanisms and new therapeutic targets for addiction management.
Collapse
Affiliation(s)
- Ariadna Jiménez-González
- Laboratorio de Biomembranas, Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Claudia Gómez-Acevedo
- Laboratorio de Biomembranas, Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Abraham Ochoa-Aguilar
- Plan de Estudios Combinados en Medicina, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
43
|
Pyurveev SS, Sizov VV, Lebedev AA, Bychkov ER, Mukhin VN, Droblenkov AV, Shabanov PD. Registration of Changes in the Level of Extracellular Dopamine in the Nucleus Accumbens by Fast-Scan Cyclic Voltammetry during Stimulation of the Zone of the Ventral Tegmentаl Area, Which Also Caused a Self-Stimulation. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022050295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Yu C, Jiang TT, Shoemaker CT, Fan D, Rossi MA, Yin HH. Striatal mechanisms of turning behaviour following unilateral dopamine depletion in mice. Eur J Neurosci 2022; 56:4529-4545. [PMID: 35799410 PMCID: PMC9710193 DOI: 10.1111/ejn.15764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
Unilateral dopamine (DA) depletion produces ipsiversive turning behaviour, and the injection of DA receptor agonists can produce contraversive turning, but the underlying mechanisms remain unclear. We conducted in vivo recording and pharmacological and optogenetic manipulations to study the role of DA and striatal output in turning behaviour. We used a video-based tracking programme while recording single unit activity in both putative medium spiny projection neurons (MSNs) and fast-spiking interneurons (FSIs) in the dorsal striatum bilaterally. Our results suggest that unilateral DA depletion reduced striatal output from the depleted side, resulting in asymmetric striatal output. Depletion systematically altered activity in both MSNs and FSIs, especially in neurons that increased firing during turning movements. Like D1 agonist SKF 38393, optogenetic stimulation in the depleted striatum increased striatal output and reversed biassed turning. These results suggest that relative striatal outputs from the two cerebral hemispheres determine the direction of turning: Mice turn away from the side of higher striatal output and towards the side of the lower striatal output.
Collapse
Affiliation(s)
- Chunxiu Yu
- Department of Biomedical Engineering, Michigan Technological University
| | | | | | - David Fan
- Department of Psychology and Neuroscience, Duke University
| | | | - Henry H. Yin
- Department of Psychology and Neuroscience, Duke University
| |
Collapse
|
45
|
Zhu F, Liu L, Li J, Liu B, Wang Q, Jiao R, Xu Y, Wang L, Sun S, Sun X, Younus M, Wang C, Hokfelt T, Zhang B, Gu H, Xu ZQD, Zhou Z. Cocaine increases quantal norepinephrine secretion through NET-dependent PKC activation in locus coeruleus neurons. Cell Rep 2022; 40:111199. [PMID: 35977516 DOI: 10.1016/j.celrep.2022.111199] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/20/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022] Open
Abstract
The norepinephrine neurons in locus coeruleus (LC-NE neurons) are essential for sleep arousal, pain sensation, and cocaine addiction. According to previous studies, cocaine increases NE overflow (the profile of extracellular NE level in response to stimulation) by blocking the NE reuptake. NE overflow is determined by NE release via exocytosis and reuptake through NE transporter (NET). However, whether cocaine directly affects vesicular NE release has not been directly tested. By recording quantal NE release from LC-NE neurons, we report that cocaine directly increases the frequency of quantal NE release through regulation of NET and downstream protein kinase C (PKC) signaling, and this facilitation of NE release modulates the activity of LC-NE neurons and cocaine-induced stimulant behavior. Thus, these findings expand the repertoire of mechanisms underlying the effects of cocaine on NE (pro-release and anti-reuptake), demonstrate NET as a release enhancer in LC-NE neurons, and provide potential sites for treatment of cocaine addiction.
Collapse
Affiliation(s)
- Feipeng Zhu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Lina Liu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Core Facilities Center, Departments of Neurobiology and Pathology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Jie Li
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Bing Liu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Qinglong Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Ruiying Jiao
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yongxin Xu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Lun Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Suhua Sun
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Xiaoxuan Sun
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Muhammad Younus
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Changhe Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Tomas Hokfelt
- Department of Neuroscience, Karolinska Institute, 171 71 Stockholm, Sweden
| | - Bo Zhang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Howard Gu
- Department of Biological Chemistry and Pharmacology, Ohio State University College of Medicine, Columbus, OH 43210, USA.
| | - Zhi-Qing David Xu
- Core Facilities Center, Departments of Neurobiology and Pathology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Zhuan Zhou
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| |
Collapse
|
46
|
Boroń A, Śmiarowska M, Grzywacz A, Chmielowiec K, Chmielowiec J, Masiak J, Pawłowski T, Larysz D, Ciechanowicz A. Association of Polymorphism within the Putative miRNA Target Site in the 3'UTR Region of the DRD2 Gene with Neuroticism in Patients with Substance Use Disorder. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9955. [PMID: 36011589 PMCID: PMC9408599 DOI: 10.3390/ijerph19169955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The study aims at looking into associations between the polymorphism rs6276 that occurs in the putative miRNA target site in the 3'UTR region of the DRD2 gene in patients with substance use disorder (SUD) comorbid with a maniacal syndrome (SUD MANIA). In our study, we did not state any essential difference in DRD2 rs6276 genotype frequencies in the studied samples of SUD MANIA, SUD, and control subjects. A significant result was found for the SUD MANIA group vs. SUD vs. controls on the Neuroticism Scale of NEO FFI test, and DRD2 rs6276 (p = 0.0320) accounted for 1.7% of the variance. The G/G homozygous variants were linked with lower results on the neuroticism scale in the SUD MANIA group because G/G alleles may serve a protective role in the expression of neuroticism in patients with SUD MANIA. So far, there have been no data in the literature on the relationship between the miRSNP rs6276 region in the DRD2 gene and neuroticism (personal traits) in patients with a diagnosis of substance use disorder comorbid with the affective, maniacal type disturbances related to SUD. This is the first report on this topic.
Collapse
Affiliation(s)
- Agnieszka Boroń
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, Aleja Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland
| | - Małgorzata Śmiarowska
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Aleja Powstańcόw Wielkopolskich 72 St., 70-111 Szczecin, Poland
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, Aleja Powstańcόw Wielkopolskich 72 St., 70-111 Szczecin, Poland
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Gora, Poland
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Gora, Poland
| | - Jolanta Masiak
- Second Department of Psychiatry and Psychiatric Rehabilitation, Medical University of Lublin, Głuska 1 St., 20-059 Lublin, Poland
| | - Tomasz Pawłowski
- Division of Psychotherapy and Psychosomatic Medicine, Wroclaw Medical University, Wyb. L. Pasteura 10 St., 50-367 Wroclaw, Poland
| | - Dariusz Larysz
- 109 Military Hospital with Cutpatient Cinic in Szczecin, Piotra Skargi 9-11 St., 70-965 Szczecin, Poland
| | - Andrzej Ciechanowicz
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, Aleja Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland
| |
Collapse
|
47
|
Enhancer Regulation of Dopaminergic Neurochemical Transmission in the Striatum. Int J Mol Sci 2022; 23:ijms23158543. [PMID: 35955676 PMCID: PMC9369307 DOI: 10.3390/ijms23158543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
The trace amine-associated receptor 1 (TAAR1) is a Gs protein-coupled, intracellularly located metabotropic receptor. Trace and classic amines, amphetamines, act as agonists on TAAR1; they activate downstream signal transduction influencing neurotransmitter release via intracellular phosphorylation. Our aim was to check the effect of the catecholaminergic activity enhancer compound ((−)BPAP, (R)-(−)-1-(benzofuran-2-yl)-2-propylaminopentane) on neurotransmitter release via the TAAR1 signaling. Rat striatal slices were prepared and the resting and electrical stimulation-evoked [3H]dopamine release was measured. The releaser (±)methamphetamine evoked non-vesicular [3H]dopamine release in a TAAR1-dependent manner, whereas (−)BPAP potentiated [3H]dopamine release with vesicular origin via TAAR1 mediation. (−)BPAP did not induce non-vesicular [3H]dopamine release. N-Ethylmaleimide, which inhibits SNARE core complex disassembly, potentiated the stimulatory effect of (−)BPAP on vesicular [3H]dopamine release. Subsequent analyses indicated that the dopamine-release stimulatory effect of (−)BPAP was due to an increase in PKC-mediated phosphorylation. We have hypothesized that there are two binding sites present on TAAR1, one for the releaser and one for the enhancer compounds, and they activate different PKC-mediated phosphorylation leading to the evoking of non-vesicular and vesicular dopamine release. (−)BPAP also increased VMAT2 operation enforcing vesicular [3H]dopamine accumulation and release. Vesicular dopamine release promoted by TAAR1 evokes activation of D2 dopamine autoreceptor-mediated presynaptic feedback inhibition. In conclusion, TAAR1 possesses a triggering role in both non-vesicular and vesicular dopamine release, and the mechanism of action of (−)BPAP is linked to the activation of TAAR1 and the signal transduction attached.
Collapse
|
48
|
Brumbaugh S, Tuan WJ, Scott A, Latronica JR, Bone C. Trends in characteristics of the recipients of new prescription stimulants between years 2010 and 2020 in the United States: An observational cohort study. EClinicalMedicine 2022; 50:101524. [PMID: 35812998 PMCID: PMC9257326 DOI: 10.1016/j.eclinm.2022.101524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Stimulant prescriptions increased by 250% in the United States from 2006-2016 while diagnoses for ADHD minimally increased. There is insufficient data regarding who may be the recipients of these new stimulant prescriptions and safety of stimulants have come under scrutiny in some populations. We aim to describe trends in stimulant prescriptions across biopsychosocial patient level factors between 2010 and 2020. METHODS We applied a retrospective observational cohort design utilizing electronic health records from 52 healthcare organizations sourced from the TriNetX research network database in the United States. We assessed new stimulant prescriptions across biopsychosocial variables for recipients of prescriptions. We utilized linear regression to assess longitudinal trends of all participants and also conducted an age stratified logistic regression analysis. FINDINGS There was an increase in stimulants to people categorized as white (OR 1.24 CI 1.20-1.28), female (OR 1.28 CI 1.23-1.31), and to those with diagnosed anxiety disorders (OR 1.39 CI 1.35-1.44) as well as obesity (OR 1.34 CI 1.28-1.41). The average age of recipients increased throughout the study, and among people sixty-five and older, there was an increase in prescriptions to people with multiple cardiovascular risk factors. INTERPRETATION Prescription stimulant dispensing may have liberalized during the study period in some demographics as a greater number of new prescriptions were dispensed to individuals with risk of adverse outcomes (i.e. older individuals, obese individuals, and geriatric patients with CV risk factors) between 2010 and 2020. Similar trends in prescription medications were witnessed through the opioid epidemic and warrant attention given concerning trends with illicit stimulants. Additional research that investigates patient and provider motivation for stimulant prescriptions, as well as risk perception of stimulants, may be warranted. FUNDING This study was made possible by institutional resources at Penn State Hershey Medical Center.
Collapse
Affiliation(s)
- Shannon Brumbaugh
- Penn State Hershey Medical Center, College of Medicine, Hershey, PA, USA
| | - Wen Jan Tuan
- Penn State Hershey Medical Center, Department of Family and Community Medicine, Hershey, PA, USA
| | - Alyssa Scott
- Penn State Hershey Medical Center, College of Medicine, Hershey, PA, USA
| | - James R. Latronica
- University of Pittsburgh School of Medicine, Department of Psychiatry and Department of Family Medicine, Pittsburgh, PA, USA
- Corresponding author at: University of Pittsburgh School of Medicine, Department of Psychiatry, Department of Family Medicine, 3501 Forbes Ave., Suite 860, Pittsburgh, PA 15213, USA.
| | - Curtis Bone
- Penn State Hershey Medical Center, Department of Family and Community Medicine, Hershey, PA, USA
| |
Collapse
|
49
|
Georgieva E, Benkova K, Vlaeva N, Karamalakova Y, Miteva R, Abrashev H, Nikolova G. Is Illicit Substance Use Gender-Specific? The Basic Points of Mental and Health Disorders. TOXICS 2022; 10:toxics10070344. [PMID: 35878250 PMCID: PMC9323370 DOI: 10.3390/toxics10070344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 12/20/2022]
Abstract
Among the groups of users of illicit substances, a high percentage are persons deprived of their liberty; at the same time, each social and age group is also affected, to one degree or another. The purpose of this study is to provide general data on the relationship between different psychostimulants, clinical and socio-demographic studies, and gender, both among the general population and in one of the most at-risk groups. This review identifies the use of illicit substances as gender-specific in the general population. A detailed study of the causal relationship between the use of illicit substances and gender was carried out. Electronic databases Academic Search Complete, PubMed, HealthCare, Web of Science, and Google Scholar were searched for relevant studies up to 2022 associated with drug abuse and mental and health disorders. The analysis indicated that the human population showed significant differences between the sex of the consumer as to the type of drug consumers, development of addiction, and relapse. We focus on the pathological changes caused by drug use, the personal and physiological individual traits that influence drug choice, and the extent of use in one of the most affected groups of individuals. The study may provide some guidance in developing gender-specific treatment and prevention, including response to some pharmacological and behavioral therapies. The review is intended for a wide audience of social workers, toxicologists, and pharmacologists.
Collapse
Affiliation(s)
- Ekaterina Georgieva
- Department of General and Clinical Pathology, Forensic Medicine, Deontology and Dermatovenerology, Faculty of Medicine, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (E.G.); (R.M.)
- Department of Medical Psychology, Social Activities and Foreign Languages, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.B.); (N.V.)
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
| | - Krasimira Benkova
- Department of Medical Psychology, Social Activities and Foreign Languages, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.B.); (N.V.)
| | - Nadya Vlaeva
- Department of Medical Psychology, Social Activities and Foreign Languages, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.B.); (N.V.)
| | - Yanka Karamalakova
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
| | - Radostina Miteva
- Department of General and Clinical Pathology, Forensic Medicine, Deontology and Dermatovenerology, Faculty of Medicine, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (E.G.); (R.M.)
| | - Hristo Abrashev
- Department of Vascular Surgery, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
| | - Galina Nikolova
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
- Correspondence: ; Tel.: +359-897-771-301
| |
Collapse
|
50
|
Puri NM, Romano GR, Lin TY, Mai QN, Irannejad R. The organic cation Transporter 2 regulates dopamine D1 receptor signaling at the Golgi apparatus. eLife 2022; 11:75468. [PMID: 35467530 PMCID: PMC9098220 DOI: 10.7554/elife.75468] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Dopamine is a key catecholamine in the brain and kidney, where it is involved in a number of physiological functions such as locomotion, cognition, emotion, endocrine regulation, and renal function. As a membrane-impermeant hormone and neurotransmitter, dopamine is thought to signal by binding and activating dopamine receptors, members of the G protein coupled receptor (GPCR) family, only on the plasma membrane. Here, using novel nanobody-based biosensors, we demonstrate for the first time that the dopamine D1 receptor (D1DR), the primary mediator of dopaminergic signaling in the brain and kidney, not only functions on the plasma membrane but becomes activated at the Golgi apparatus in the presence of its ligand. We present evidence that activation of the Golgi pool of D1DR is dependent on organic cation transporter 2 (OCT2), a dopamine transporter, providing an explanation for how the membrane-impermeant dopamine accesses subcellular pools of D1DR. We further demonstrate that dopamine activates Golgi-D1DR in murine striatal medium spiny neurons, and this activity depends on OCT2 function. We also introduce a new approach to selectively interrogate compartmentalized D1DR signaling by inhibiting Gαs coupling using a nanobody-based chemical recruitment system. Using this strategy, we show that Golgi-localized D1DRs regulate cAMP production and mediate local protein kinase A activation. Together, our data suggest that spatially compartmentalized signaling hubs are previously unappreciated regulatory aspects of D1DR signaling. Our data provide further evidence for the role of transporters in regulating subcellular GPCR activity.
Collapse
Affiliation(s)
- Natasha M Puri
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Giovanna R Romano
- Biochemistry Department, Weill Cornell Medicine, New York, United States
| | - Ting-Yu Lin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Quynh N Mai
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Roshanak Irannejad
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|