1
|
Huang LW, Garden DLF, McClure C, Nolan MF. Synaptic interactions between stellate cells and parvalbumin interneurons in layer 2 of the medial entorhinal cortex are organized at the scale of grid cell clusters. eLife 2024; 12:RP92854. [PMID: 39485383 PMCID: PMC11530233 DOI: 10.7554/elife.92854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Interactions between excitatory and inhibitory neurons are critical to computations in cortical circuits but their organization is difficult to assess with standard electrophysiological approaches. Within the medial entorhinal cortex, representation of location by grid and other spatial cells involves circuits in layer 2 in which excitatory stellate cells interact with each other via inhibitory parvalbumin expressing interneurons. Whether this connectivity is structured to support local circuit computations is unclear. Here, we introduce strategies to address the functional organization of excitatory-inhibitory interactions using crossed Cre- and Flp-driver mouse lines to direct targeted presynaptic optogenetic activation and postsynaptic cell identification. We then use simultaneous patch-clamp recordings from postsynaptic neurons to assess their shared input from optically activated presynaptic populations. We find that extensive axonal projections support spatially organized connectivity between stellate cells and parvalbumin interneurons, such that direct connections are often, but not always, shared by nearby neurons, whereas multisynaptic interactions coordinate inputs to neurons with greater spatial separation. We suggest that direct excitatory-inhibitory synaptic interactions may operate at the scale of grid cell clusters, with local modules defined by excitatory-inhibitory connectivity, while indirect interactions may coordinate activity at the scale of grid cell modules.
Collapse
Affiliation(s)
- Li-Wen Huang
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Derek LF Garden
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, University of EdinburghEdinburghUnited Kingdom
- Institute of Medical Sciences, University of AberdeenAberdeenUnited Kingdom
| | - Christina McClure
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Matthew F Nolan
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, University of EdinburghEdinburghUnited Kingdom
- Centre for Statistics, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
2
|
Long X, Wang X, Deng B, Shen R, Lv S, Zhang S. Intrinsic Bipolar Head-Direction Cells in the Medial Entorhinal Cortex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401216. [PMID: 39206928 PMCID: PMC11515902 DOI: 10.1002/advs.202401216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Head-direction (HD) cells are a fundamental component in the hippocampal-entorhinal circuit for spatial navigation and help maintain an internal sense of direction to anchor the orientation in space. A classical HD cell robustly increases its firing rate when the head is oriented toward a specific direction, with each cell tuned to only one direction. Although unidirectional HD cells are reported broadly across multiple brain regions, computation modelling has predicted the existence of multiple equilibrium states of HD network, which has yet to be proven. In this study, a novel HD variant of bipolar HD cells in the medial entorhinal cortex (MEC) are identified that exhibit stable double-peaked directional tuning properties. The bipolar patterns remain stable in the darkness and across environments of distinct geometric shapes. Moreover, bipolar HD cells co-rotate coherently with unipolar HD cells to anchor the external visual cue. The discovery reveals a new spatial cell type of bipolar HD cells, whose unique activity patterns may comprise a potential building block for a sophisticated local neural circuit configuration for the internal representation of direction. These findings may contribute to the understanding of how the brain processes spatial information by shedding light on the role of bipolar HD cells in this process.
Collapse
Affiliation(s)
- Xiaoyang Long
- Department of NeurosurgeryXinqiao HospitalArmy Medical UniversityChongqing400037China
| | - Xiaoxia Wang
- Department of Basic PsychologySchool of PsychologyArmy Medical UniversityChongqing400038China
| | - Bin Deng
- Department of NeurosurgeryXinqiao HospitalArmy Medical UniversityChongqing400037China
| | - Rui Shen
- Department of NeurosurgeryXinqiao HospitalArmy Medical UniversityChongqing400037China
| | - Sheng‐Qing Lv
- Department of NeurosurgeryXinqiao HospitalArmy Medical UniversityChongqing400037China
| | - Sheng‐Jia Zhang
- Department of NeurosurgeryXinqiao HospitalArmy Medical UniversityChongqing400037China
| |
Collapse
|
3
|
Zouridis IS, Balsamo G, Preston-Ferrer P, Burgalossi A. Anatomical and electrophysiological analysis of the fasciola cinerea of the mouse hippocampus. Hippocampus 2024; 34:528-539. [PMID: 39105449 DOI: 10.1002/hipo.23623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 05/20/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
The hippocampus is considered essential for several forms of declarative memory, including spatial and social memory. Despite the extensive research of the classic subfields of the hippocampus, the fasciola cinerea (FC)-a medially located structure within the hippocampal formation-has remained largely unexplored. In the present study, we performed a morpho-functional characterization of principal neurons in the mouse FC. Using in vivo juxtacellular recording of single neurons, we found that FC neurons are distinct from neighboring CA1 pyramidal cells, both morphologically and electrophysiologically. Specifically, FC neurons displayed non-pyramidal morphology and granule cell-like apical dendrites. Compared to neighboring CA1 pyramidal neurons, FC neurons exhibited more regular in vivo firing patterns and a lower tendency to fire spikes at short interspike intervals. Furthermore, tracing experiments revealed that the FC receives inputs from the lateral but not the medial entorhinal cortex and CA3, and it provides a major intra-hippocampal projection to the septal CA2 and sparser inputs to the distal CA1. Overall, our results indicate that the FC is a morphologically and electrophysiologically distinct subfield of the hippocampal formation; given the established role of CA2 in social memory and seizure initiation, the unique efferent intra-hippocampal connectivity of the FC points to possible roles in social cognition and temporal lobe epilepsy.
Collapse
Affiliation(s)
- Ioannis S Zouridis
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience-International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Giuseppe Balsamo
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience-International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Patricia Preston-Ferrer
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Andrea Burgalossi
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Dong LL, Fiete IR. Grid Cells in Cognition: Mechanisms and Function. Annu Rev Neurosci 2024; 47:345-368. [PMID: 38684081 DOI: 10.1146/annurev-neuro-101323-112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The activity patterns of grid cells form distinctively regular triangular lattices over the explored spatial environment and are largely invariant to visual stimuli, animal movement, and environment geometry. These neurons present numerous fascinating challenges to the curious (neuro)scientist: What are the circuit mechanisms responsible for creating spatially periodic activity patterns from the monotonic input-output responses of single neurons? How and why does the brain encode a local, nonperiodic variable-the allocentric position of the animal-with a periodic, nonlocal code? And, are grid cells truly specialized for spatial computations? Otherwise, what is their role in general cognition more broadly? We review efforts in uncovering the mechanisms and functional properties of grid cells, highlighting recent progress in the experimental validation of mechanistic grid cell models, and discuss the coding properties and functional advantages of the grid code as suggested by continuous attractor network models of grid cells.
Collapse
Affiliation(s)
- Ling L Dong
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Ila R Fiete
- McGovern Institute and K. Lisa Yang Integrative Computational Neuroscience Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
5
|
Zouridis IS, Schmors L, Fischer KM, Berens P, Preston-Ferrer P, Burgalossi A. Juxtacellular recordings from identified neurons in the mouse locus coeruleus. Eur J Neurosci 2024; 60:3659-3676. [PMID: 38872397 DOI: 10.1111/ejn.16368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/15/2024] [Accepted: 04/11/2024] [Indexed: 06/15/2024]
Abstract
The locus coeruleus (LC) is the primary source of noradrenergic transmission in the mammalian central nervous system. This small pontine nucleus consists of a densely packed nuclear core-which contains the highest density of noradrenergic neurons-embedded within a heterogeneous surround of non-noradrenergic cells. This local heterogeneity, together with the small size of the LC, has made it particularly difficult to infer noradrenergic cell identity based on extracellular sampling of in vivo spiking activity. Moreover, the relatively high cell density, background activity and synchronicity of LC neurons have made spike identification and unit isolation notoriously challenging. In this study, we aimed at bridging these gaps by performing juxtacellular recordings from single identified neurons within the mouse LC complex. We found that noradrenergic neurons (identified by tyrosine hydroxylase, TH, expression; TH-positive) and intermingled putatively non-noradrenergic (TH-negative) cells displayed similar morphologies and responded to foot shock stimuli with excitatory responses; however, on average, TH-positive neurons exhibited more prominent foot shock responses and post-activation firing suppression. The two cell classes also displayed different spontaneous firing rates, spike waveforms and temporal spiking properties. A logistic regression classifier trained on spontaneous electrophysiological features could separate the two cell classes with 76% accuracy. Altogether, our results reveal in vivo electrophysiological correlates of TH-positive neurons, which can be useful for refining current approaches for the classification of LC unit activity.
Collapse
Affiliation(s)
- Ioannis S Zouridis
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Lisa Schmors
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Hertie Institute for AI in Brain Health, University of Tübingen, Tübingen, Germany
| | - Kathrin Maite Fischer
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Philipp Berens
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Hertie Institute for AI in Brain Health, University of Tübingen, Tübingen, Germany
- Tübingen AI Center, University of Tübingen, Tübingen, Germany
| | - Patricia Preston-Ferrer
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| | - Andrea Burgalossi
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| |
Collapse
|
6
|
Buss EW, Jiang YQ, Santoro B, Brann DH, Nicholson DA, Siegelbaum SA, Sun Q. Regulation by Presynaptic NMDA Receptors of Non-Linear Postsynaptic Summation of the Cortical Input to CA1 Pyramidal Neurons. Neuroscience 2024:S0306-4522(24)00262-8. [PMID: 38878815 PMCID: PMC11638401 DOI: 10.1016/j.neuroscience.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/24/2024]
Abstract
Entorhinal cortex (EC) LIII and LII glutamatergic neurons make monosynaptic connections onto distal apical dendrites of hippocampal CA1 and CA2 pyramidal neurons (PNs), respectively, through perforant path (PP) projections. We previously reported that a brief train of PP stimuli evokes strong supralinear temporal summation of excitatory postsynaptic potentials (EPSPs) in CA1 PNs that requires NMDAR activation, with relatively little summation in CA2 PNs in mice of either sex. Here we provide evidence from combined immunogold electron microscopy, cell-type specific genetic deletion and pharmacology that the NMDARs required for supralinear temporal summation of the CA1 PP EPSP are presynaptic, located in the PP terminals. Moreover, we found that the number of NMDARs in PP terminals innervating CA1 PNs is significantly greater than that found in PP terminals innervating CA2 PNs, providing a potential explanation for the difference in temporal summation in these two classes of hippocampal PNs.
Collapse
Affiliation(s)
- Eric W Buss
- Department of Neuroscience, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yu-Qiu Jiang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Bina Santoro
- Department of Neuroscience, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - David H Brann
- Department of Neuroscience, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Daniel A Nicholson
- Department of Neuroscience, Rush University Medical Center, Chicago, IL, USA
| | - Steven A Siegelbaum
- Department of Neuroscience, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Qian Sun
- Department of Neuroscience, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
7
|
Zhi T, Ma A, Liu X, Chen Z, Li S, Jia Y. Dietary Supplementation of Brevibacillus laterosporus S62-9 Improves Broiler Growth and Immunity by Regulating Cecal Microbiota and Metabolites. Probiotics Antimicrob Proteins 2024; 16:949-963. [PMID: 37211578 DOI: 10.1007/s12602-023-10088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 05/23/2023]
Abstract
Brevibacillus laterosporus has been added as a direct-fed microbiota to chicken. Yet, few studies have reported the effects of B. laterosporus on broiler growth and gut microbiota. The aim of this study was to evaluate the effects of B. laterosporus S62-9 on growth performance, immunity, cecal microbiota, and metabolites in broilers. A total of 160 1-day-old broilers were randomly divided into S62-9 and control groups, with or without 106 CFU/g B. laterosporus S62-9 supplementation, respectively. During the 42 days feeding, body weight and feed intake were recorded weekly. Serum was collected for immunoglobulin determination, and cecal contents were taken for 16S rDNA analysis and metabolome at Day 42. Results indicated that the broilers in S62-9 group showed an increase in body weight of 7.2% and 5.19% improvement in feed conversion ratio compared to the control group. The B. laterosporus S62-9 supplementation promoted the maturation of immune organs and increased the concentration of serum immunoglobulins. Furthermore, the α-diversity of cecal microbiota was improved in the S62-9 group. B. laterosporus S62-9 supplementation increased the relative abundance of beneficial bacteria including Akkermansia, Bifidobacterium, and Lactobacillus, while decreased the relative abundance of pathogens including Klebsiella and Pseudomonas. Untargeted metabolomics revealed that 53 differential metabolites between the two groups. The differential metabolites were enriched in 4 amino acid metabolic pathways, including arginine biosynthesis and glutathione metabolism. In summary, B. laterosporus S62-9 supplementation could improve the growth performance and immunity through the regulation of gut microbiota and metabolome in broilers.
Collapse
Affiliation(s)
- Tongxin Zhi
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Xiangfei Liu
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Zhou Chen
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Siting Li
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Yingmin Jia
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, People's Republic of China.
| |
Collapse
|
8
|
Blanco-Hernández E, Balsamo G, Preston-Ferrer P, Burgalossi A. Sensory and behavioral modulation of thalamic head-direction cells. Nat Neurosci 2024; 27:28-33. [PMID: 38177338 DOI: 10.1038/s41593-023-01506-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/24/2023] [Indexed: 01/06/2024]
Abstract
Head-direction (HD) neurons are thought to exclusively encode directional heading. In awake mice, we found that sensory stimuli evoked robust short-latency responses in thalamic HD cells, but not in non-HD neurons. The activity of HD cells, but not that of non-HD neurons, was tightly correlated to brain-state fluctuations and dynamically modulated during social interactions. These data point to a new role for the thalamic compass in relaying sensory and behavioral-state information.
Collapse
Affiliation(s)
- Eduardo Blanco-Hernández
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| | - Giuseppe Balsamo
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Graduate Training Centre of Neuroscience, IMPRS, Tübingen, Germany
| | - Patricia Preston-Ferrer
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany.
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.
| | - Andrea Burgalossi
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany.
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.
| |
Collapse
|
9
|
Congiu M, Mondoloni S, Zouridis IS, Schmors L, Lecca S, Lalive AL, Ginggen K, Deng F, Berens P, Paolicelli RC, Li Y, Burgalossi A, Mameli M. Plasticity of neuronal dynamics in the lateral habenula for cue-punishment associative learning. Mol Psychiatry 2023; 28:5118-5127. [PMID: 37414924 PMCID: PMC11041652 DOI: 10.1038/s41380-023-02155-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/30/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
The brain's ability to associate threats with external stimuli is vital to execute essential behaviours including avoidance. Disruption of this process contributes instead to the emergence of pathological traits which are common in addiction and depression. However, the mechanisms and neural dynamics at the single-cell resolution underlying the encoding of associative learning remain elusive. Here, employing a Pavlovian discrimination task in mice we investigate how neuronal populations in the lateral habenula (LHb), a subcortical nucleus whose excitation underlies negative affect, encode the association between conditioned stimuli and a punishment (unconditioned stimulus). Large population single-unit recordings in the LHb reveal both excitatory and inhibitory responses to aversive stimuli. Additionally, local optical inhibition prevents the formation of cue discrimination during associative learning, demonstrating a critical role of LHb activity in this process. Accordingly, longitudinal in vivo two-photon imaging tracking LHb calcium neuronal dynamics during conditioning reveals an upward or downward shift of individual neurons' CS-evoked responses. While recordings in acute slices indicate strengthening of synaptic excitation after conditioning, support vector machine algorithms suggest that postsynaptic dynamics to punishment-predictive cues represent behavioral cue discrimination. To examine the presynaptic signaling in LHb participating in learning we monitored neurotransmitter dynamics with genetically-encoded indicators in behaving mice. While glutamate, GABA, and serotonin release in LHb remain stable across associative learning, we observe enhanced acetylcholine signaling developing throughout conditioning. In summary, converging presynaptic and postsynaptic mechanisms in the LHb underlie the transformation of neutral cues in valued signals supporting cue discrimination during learning.
Collapse
Affiliation(s)
- Mauro Congiu
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland
| | - Sarah Mondoloni
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland
| | - Ioannis S Zouridis
- Institute of Neurobiology and Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, 72076, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School (IMPRS), University of Tübingen, Tübingen, Germany
| | - Lisa Schmors
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Hertie Institute for AI in Brain Health, University of Tübingen, Tübingen, Germany
| | - Salvatore Lecca
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland
| | - Arnaud L Lalive
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland
| | - Kyllian Ginggen
- The Department of Biomedical Sciences, The University of Lausanne, 1005, Lausanne, Switzerland
| | - Fei Deng
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Tübingen AI Center, University of Tübingen, Tübingen, Germany
| | - Rosa Chiara Paolicelli
- The Department of Biomedical Sciences, The University of Lausanne, 1005, Lausanne, Switzerland
| | - Yulong Li
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Andrea Burgalossi
- Institute of Neurobiology and Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, 72076, Tübingen, Germany
| | - Manuel Mameli
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland.
- Inserm, UMR-S 839, 75005, Paris, France.
| |
Collapse
|
10
|
Ding L, Balsamo G, Diamantaki M, Preston-Ferrer P, Burgalossi A. Opto-juxtacellular interrogation of neural circuits in freely moving mice. Nat Protoc 2023; 18:2415-2440. [PMID: 37420087 DOI: 10.1038/s41596-023-00842-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/11/2023] [Indexed: 07/09/2023]
Abstract
Neural circuits are assembled from an enormous variety of neuronal cell types. Although significant advances have been made in classifying neurons on the basis of morphological, molecular and electrophysiological properties, understanding how this diversity contributes to brain function during behavior has remained a major experimental challenge. Here, we present an extension to our previous protocol, in which we describe the technical procedures for performing juxtacellular opto-tagging of single neurons in freely moving mice by using Channelrhodopsin-2-expressing viral vectors. This method allows one to selectively target molecularly defined cell classes for in vivo single-cell recordings. The targeted cells can be labeled via juxtacellular procedures and further characterized via post-hoc morphological and molecular analysis. In its current form, the protocol allows multiple recording and labeling attempts to be performed within individual animals, by means of a mechanical pipette micropositioning system. We provide proof-of-principle validation of this technique by recording from Calbindin-positive pyramidal neurons in the mouse hippocampus during spatial exploration; however, this approach can easily be extended to other behaviors and cortical or subcortical areas. The procedures described here, from the viral injection to the histological processing of brain sections, can be completed in ~4-5 weeks.This protocol is an extension to: Nat. Protoc. 9, 2369-2381 (2014): https://doi.org/10.1038/nprot.2014.161.
Collapse
Affiliation(s)
- Lingjun Ding
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Graduate Training Centre of Neuroscience-International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Giuseppe Balsamo
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Graduate Training Centre of Neuroscience-International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Maria Diamantaki
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Graduate Training Centre of Neuroscience-International Max-Planck Research School (IMPRS), Tübingen, Germany
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Heraklion, Greece
| | - Patricia Preston-Ferrer
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.
| | - Andrea Burgalossi
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.
| |
Collapse
|
11
|
Traub RD, Whittington MA, Cunningham MO. Simulation of oscillatory dynamics induced by an approximation of grid cell output. Rev Neurosci 2023; 34:517-532. [PMID: 36326795 PMCID: PMC10329426 DOI: 10.1515/revneuro-2022-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/06/2022] [Indexed: 07/20/2023]
Abstract
Grid cells, in entorhinal cortex (EC) and related structures, signal animal location relative to hexagonal tilings of 2D space. A number of modeling papers have addressed the question of how grid firing behaviors emerge using (for example) ideas borrowed from dynamical systems (attractors) or from coupled oscillator theory. Here we use a different approach: instead of asking how grid behavior emerges, we take as a given the experimentally observed intracellular potentials of superficial medial EC neurons during grid firing. Employing a detailed neural circuit model modified from a lateral EC model, we then ask how the circuit responds when group of medial EC principal neurons exhibit such potentials, simultaneously with a simulated theta frequency input from the septal nuclei. The model predicts the emergence of robust theta-modulated gamma/beta oscillations, suggestive of oscillations observed in an in vitro medial EC experimental model (Cunningham, M.O., Pervouchine, D.D., Racca, C., Kopell, N.J., Davies, C.H., Jones, R.S.G., Traub, R.D., and Whittington, M.A. (2006). Neuronal metabolism governs cortical network response state. Proc. Natl. Acad. Sci. U S A 103: 5597-5601). Such oscillations result because feedback interneurons tightly synchronize with each other - despite the varying phases of the grid cells - and generate a robust inhibition-based rhythm. The lack of spatial specificity of the model interneurons is consistent with the lack of spatial periodicity in parvalbumin interneurons observed by Buetfering, C., Allen, K., and Monyer, H. (2014). Parvalbumin interneurons provide grid cell-driven recurrent inhibition in the medial entorhinal cortex. Nat. Neurosci. 17: 710-718. If in vivo EC gamma rhythms arise during exploration as our model predicts, there could be implications for interpreting disrupted spatial behavior and gamma oscillations in animal models of Alzheimer's disease and schizophrenia. Noting that experimental intracellular grid cell potentials closely resemble cortical Up states and Down states, during which fast oscillations also occur during Up states, we propose that the co-occurrence of slow principal cell depolarizations and fast network oscillations is a general property of the telencephalon, in both waking and sleep states.
Collapse
Affiliation(s)
- Roger D. Traub
- AI Foundations, IBM T.J. Watson Research Center, Yorktown Heights, NY10598, USA
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104, USA
| | | | - Mark O. Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, University of Dublin, 152-160 Pearse St., Dublin 2, Ireland
| |
Collapse
|
12
|
Osanai H, Nair IR, Kitamura T. Dissecting cell-type-specific pathways in medial entorhinal cortical-hippocampal network for episodic memory. J Neurochem 2023; 166:172-188. [PMID: 37248771 PMCID: PMC10538947 DOI: 10.1111/jnc.15850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
Episodic memory, which refers to our ability to encode and recall past events, is essential to our daily lives. Previous research has established that both the entorhinal cortex (EC) and hippocampus (HPC) play a crucial role in the formation and retrieval of episodic memories. However, to understand neural circuit mechanisms behind these processes, it has become necessary to monitor and manipulate the neural activity in a cell-type-specific manner with high temporal precision during memory formation, consolidation, and retrieval in the EC-HPC networks. Recent studies using cell-type-specific labeling, monitoring, and manipulation have demonstrated that medial EC (MEC) contains multiple excitatory neurons that have differential molecular markers, physiological properties, and anatomical features. In this review, we will comprehensively examine the complementary roles of superficial layers of neurons (II and III) and the roles of deeper layers (V and VI) in episodic memory formation and recall based on these recent findings.
Collapse
Affiliation(s)
- Hisayuki Osanai
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Indrajith R Nair
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
13
|
Katz LN, Yu G, Herman JP, Krauzlis RJ. Correlated variability in primate superior colliculus depends on functional class. Commun Biol 2023; 6:540. [PMID: 37202508 DOI: 10.1038/s42003-023-04912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/04/2023] [Indexed: 05/20/2023] Open
Abstract
Correlated variability in neuronal activity (spike count correlations, rSC) can constrain how information is read out from populations of neurons. Traditionally, rSC is reported as a single value summarizing a brain area. However, single values, like summary statistics, stand to obscure underlying features of the constituent elements. We predict that in brain areas containing distinct neuronal subpopulations, different subpopulations will exhibit distinct levels of rSC that are not captured by the population rSC. We tested this idea in macaque superior colliculus (SC), a structure containing several functional classes (i.e., subpopulations) of neurons. We found that during saccade tasks, different functional classes exhibited differing degrees of rSC. "Delay class" neurons displayed the highest rSC, especially during saccades that relied on working memory. Such dependence of rSC on functional class and cognitive demand underscores the importance of taking functional subpopulations into account when attempting to model or infer population coding principles.
Collapse
Affiliation(s)
- Leor N Katz
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, 20892, USA.
| | - Gongchen Yu
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, 20892, USA
| | - James P Herman
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, 20892, USA
| |
Collapse
|
14
|
The Impact of COVID-19 Control Measures on Air Quality in Guangdong Province. SUSTAINABILITY 2022. [DOI: 10.3390/su14137853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
COVID-19 control measures had a significant social and economic impact in Guangdong Province, and provided a unique opportunity to assess the impact of human activities on air quality. Based on the monitoring data of PM2.5, PM10, NO2, and O3 concentrations from 101 air quality monitoring stations in Guangdong Province from October 2019 to April 2020, the PSCF (potential source contribution factor) analysis and LSTM (long short-term memory) neural network were applied to explore the impact of epidemic control measures on air quality in Guangdong Province. Results showed that during the lockdown, the average concentration of PM2.5, PM10, NO2, and O3 decreased by 37.84%, 51.56%, 58.82%, and 24.00%, respectively. The ranges of potential sources of pollutants were reduced, indicating that air quality in Guangdong Province improved significantly. The Pearl River Delta, characterized by a high population density, recorded the highest NO2 concentration values throughout the whole study period. Due to the lockdown, the areas with the highest concentrations of O3, PM2.5, and PM10 changed from the Pearl River Delta to the eastern and western Guangdong. Moreover, LSTM simulation results showed that the average concentration of PM2.5, PM10, NO2, and O3 decreased by 46.34%, 54.56%, 70.63%, and 26.76%, respectively, which was caused by human-made impacts. These findings reveal the remarkable impact of human activities on air quality and provide effective theoretical support for the prevention and control of air pollution in Guangdong Province.
Collapse
|
15
|
Modular microcircuit organization of the presubicular head-direction map. Cell Rep 2022; 39:110684. [PMID: 35417686 DOI: 10.1016/j.celrep.2022.110684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/16/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022] Open
Abstract
Our internal sense of direction is thought to rely on the activity of head-direction (HD) neurons. We find that the mouse dorsal presubiculum (PreS), a key structure in the cortical representation of HD, displays a modular "patch-matrix" organization, which is conserved across species (including human). Calbindin-positive layer 2 neurons within the "matrix" form modular recurrent microcircuits, while inputs from the anterodorsal and laterodorsal thalamic nuclei are non-overlapping and target the "patch" and "matrix" compartments, respectively. The apical dendrites of identified HD cells are largely restricted within the "matrix," pointing to a non-random sampling of patterned inputs and to a precise structure-function architecture. Optogenetic perturbation of modular recurrent microcircuits results in a drastic tonic suppression of firing only in a subpopulation of HD neurons. Altogether, our data reveal a modular microcircuit organization of the PreS HD map and point to the existence of cell-type-specific microcircuits that support the cortical HD representation.
Collapse
|
16
|
Tukker JJ, Beed P, Brecht M, Kempter R, Moser EI, Schmitz D. Microcircuits for spatial coding in the medial entorhinal cortex. Physiol Rev 2022; 102:653-688. [PMID: 34254836 PMCID: PMC8759973 DOI: 10.1152/physrev.00042.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The hippocampal formation is critically involved in learning and memory and contains a large proportion of neurons encoding aspects of the organism's spatial surroundings. In the medial entorhinal cortex (MEC), this includes grid cells with their distinctive hexagonal firing fields as well as a host of other functionally defined cell types including head direction cells, speed cells, border cells, and object-vector cells. Such spatial coding emerges from the processing of external inputs by local microcircuits. However, it remains unclear exactly how local microcircuits and their dynamics within the MEC contribute to spatial discharge patterns. In this review we focus on recent investigations of intrinsic MEC connectivity, which have started to describe and quantify both excitatory and inhibitory wiring in the superficial layers of the MEC. Although the picture is far from complete, it appears that these layers contain robust recurrent connectivity that could sustain the attractor dynamics posited to underlie grid pattern formation. These findings pave the way to a deeper understanding of the mechanisms underlying spatial navigation and memory.
Collapse
Affiliation(s)
- John J Tukker
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Prateep Beed
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humbold-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany
- Neurocure Cluster of Excellence, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard Kempter
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Edvard I Moser
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humbold-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Neurocure Cluster of Excellence, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
17
|
Morales L, González-Alonso A, Desfilis E, Medina L. Precise Mapping of Otp Expressing Cells Across Different Pallial Regions Throughout Ontogenesis Using Otp-Specific Reporter Transgenic Mice. Front Neural Circuits 2022; 16:831074. [PMID: 35250495 PMCID: PMC8891171 DOI: 10.3389/fncir.2022.831074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Taking advantage of two Otp-specific reporter lines of transgenic mice (Otp-eGFP and Otp-Cre; Rpl22-HA), we identify and describe different Otp cell populations across various pallial regions, including the pallial amygdala, the piriform cortex, the mesocortex, the neocortex, and the hippocampal complex. Some of these populations can be followed throughout development, suggesting migration from external sources (for example, those of the pallial amygdala and at least some of the cingulate cortex). Other cells become visible during postnatal development (some of those in the neocortex and hippocampal formation) or in adulthood (those of the parahippocampal lobe), and seem to be produced locally. We discuss the possible role of Otp in these different populations during different moments of ontogenesis. We also analyze the connectivity patterns of some of these cells and discuss their functional implications. For example, our data suggest that Otp cells of the pallial amygdala might be engaged in networks with other Otp cells of the medial amygdala with the same embryonic origin, and may regulate specific aspects of social behavior. Regarding Otp cells in the parahippocampal lobe, they seem to be projection neurons and may regulate hippocampal function during spatial navigation and memory formation. The two reporter transgenic mice employed here provide very powerful tools for high precision studies on these different Otp cells of the pallium, but careful attention should be paid to the age and to differences between lines.
Collapse
Affiliation(s)
- Lorena Morales
- Departament de Medicina Experimental, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary Developmental Neurobiology, Lleida’s Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Alba González-Alonso
- Departament de Medicina Experimental, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary Developmental Neurobiology, Lleida’s Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ester Desfilis
- Departament de Medicina Experimental, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary Developmental Neurobiology, Lleida’s Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
- Serra Húnter Fellows, Lleida, Spain
| | - Loreta Medina
- Departament de Medicina Experimental, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary Developmental Neurobiology, Lleida’s Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
- Serra Húnter Fellows, Lleida, Spain
- *Correspondence: Loreta Medina, ,
| |
Collapse
|
18
|
Ding L, Balsamo G, Chen H, Blanco-Hernandez E, Zouridis IS, Naumann R, Preston-Ferrer P, Burgalossi A. Juxtacellular opto-tagging of hippocampal CA1 neurons in freely moving mice. eLife 2022; 11:71720. [PMID: 35080491 PMCID: PMC8791633 DOI: 10.7554/elife.71720] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/06/2022] [Indexed: 01/05/2023] Open
Abstract
Neural circuits are made of a vast diversity of neuronal cell types. While immense progress has been made in classifying neurons based on morphological, molecular, and functional properties, understanding how this heterogeneity contributes to brain function during natural behavior has remained largely unresolved. In the present study, we combined the juxtacellular recording and labeling technique with optogenetics in freely moving mice. This allowed us to selectively target molecularly defined cell classes for in vivo single-cell recordings and morphological analysis. We validated this strategy in the CA1 region of the mouse hippocampus by restricting Channelrhodopsin expression to Calbindin-positive neurons. Directly versus indirectly light-activated neurons could be readily distinguished based on the latencies of light-evoked spikes, with juxtacellular labeling and post hoc histological analysis providing ‘ground-truth’ validation. Using these opto-juxtacellular procedures in freely moving mice, we found that Calbindin-positive CA1 pyramidal cells were weakly spatially modulated and conveyed less spatial information than Calbindin-negative neurons – pointing to pyramidal cell identity as a key determinant for neuronal recruitment into the hippocampal spatial map. Thus, our method complements current in vivo techniques by enabling optogenetic-assisted structure–function analysis of single neurons recorded during natural, unrestrained behavior.
Collapse
Affiliation(s)
- Lingjun Ding
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.,Graduate Training Centre of Neuroscience - International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Giuseppe Balsamo
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.,Graduate Training Centre of Neuroscience - International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Hongbiao Chen
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.,Graduate Training Centre of Neuroscience - International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Eduardo Blanco-Hernandez
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| | - Ioannis S Zouridis
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.,Graduate Training Centre of Neuroscience - International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Robert Naumann
- Chinese Academy of Sciences, Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Nanshan, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Patricia Preston-Ferrer
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| | - Andrea Burgalossi
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| |
Collapse
|
19
|
Liu C, Zuo Z, Xu F, Wang Y. Authentication of Herbal Medicines Based on Modern Analytical Technology Combined with Chemometrics Approach: A Review. Crit Rev Anal Chem 2022; 53:1393-1418. [PMID: 34991387 DOI: 10.1080/10408347.2021.2023460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Since ancient times, herbal medicines (HMs) have been widely popular with consumers as a "natural" drug for health care and disease treatment. With the emergence of problems, such as increasing demand for HMs and shortage of resources, it often occurs the phenomenon of shoddy exceed and mixing the false with the genuine in the market. There is an urgent need to evaluate the quality of HMs to ensure their important role in health care and disease treatment, and to reduce the possibility of threat to human health. Modern analytical technology is can be analyzed for analyzing chemical components of HMs or their preparations. Reflecting complex chemical components' characteristic curves in the analysis sample, and the comprehensive effect of active ingredients of HMs. In this review, modern analytical technology (chromatography, spectroscopy, mass spectrometry), chemometrics methods (unsupervised, supervised) and their advantages, disadvantages, and applicability were introduced and summarized. In addition, the authentication application of modern analytical technology combined with chemometrics methods in four aspects, including origin, processing methods, cultivation methods, and adulteration of HMs have also been discussed and illustrated by a few typical studies. This article offers a general workflow of analytical methods that have been applied for HMs authentication and explains that the accuracy of authentication in favor of the quality assurance of HMs. It was provided reference value for the development and application of modern HMs.
Collapse
Affiliation(s)
- Chunlu Liu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhitian Zuo
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Furong Xu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
20
|
Gerlei KZ, Brown CM, Sürmeli G, Nolan MF. Deep entorhinal cortex: from circuit organization to spatial cognition and memory. Trends Neurosci 2021; 44:876-887. [PMID: 34593254 DOI: 10.1016/j.tins.2021.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 10/20/2022]
Abstract
The deep layers of the entorhinal cortex are important for spatial cognition, as well as memory storage, consolidation and retrieval. A long-standing hypothesis is that deep-layer neurons relay spatial and memory-related signals between the hippocampus and telencephalon. We review the implications of recent circuit-level analyses that suggest more complex roles. The organization of deep entorhinal layers is consistent with multi-stage processing by specialized cell populations; in this framework, hippocampal, neocortical, and subcortical inputs are integrated to generate representations for use by targets in the telencephalon and for feedback to the superficial entorhinal cortex and hippocampus. Addressing individual sublayers of the deep entorhinal cortex in future experiments and models will be important for establishing systems-level mechanisms for spatial cognition and episodic memory.
Collapse
Affiliation(s)
- Klára Z Gerlei
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Christina M Brown
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Gülşen Sürmeli
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Matthew F Nolan
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| |
Collapse
|
21
|
Frequency-Dependent Synaptic Dynamics Differentially Tune CA1 and CA2 Pyramidal Neuron Responses to Cortical Input. J Neurosci 2021; 41:8103-8110. [PMID: 34385360 DOI: 10.1523/jneurosci.0451-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/27/2021] [Accepted: 08/07/2021] [Indexed: 11/21/2022] Open
Abstract
Entorhinal cortex neurons make monosynaptic connections onto distal apical dendrites of CA1 and CA2 pyramidal neurons through the perforant path (PP) projection. Previous studies show that differences in dendritic properties and synaptic input density enable the PP inputs to produce a much stronger excitation of CA2 compared with CA1 pyramidal neurons. Here, using mice of both sexes, we report that the difference in PP efficacy varies substantially as a function of presynaptic firing rate. Although a single PP stimulus evokes a 5- to 6-fold greater EPSP in CA2 compared with CA1, a brief high-frequency train of PP stimuli evokes a strongly facilitating postsynaptic response in CA1, with relatively little change in CA2. Furthermore, we demonstrate that blockade of NMDARs significantly reduces strong temporal summation in CA1 but has little impact on that in CA2. As a result of the differences in the frequency- and NMDAR-dependent temporal summation, naturalistic patterns of presynaptic activity evoke CA1 and CA2 responses with distinct dynamics, differentially tuning CA1 and CA2 responses to bursts of presynaptic firing versus single presynaptic spikes, respectively.SIGNIFICANCE STATEMENT Recent studies have demonstrated that abundant entorhinal cortical innervation and efficient dendritic propagation enable hippocampal CA2 pyramidal neurons to produce robust excitation evoked by single cortical stimuli, compared with CA1. Here we uncovered, unexpectedly, that the difference in efficacy of cortical excitation varies substantially as a function of presynaptic firing rate. A burst of stimuli evokes a strongly facilitating response in CA1, but not in CA2. As a result, the postsynaptic response of CA1 and CA2 to presynaptic naturalistic firing displays contrasting temporal dynamics, which depends on the activation of NMDARs. Thus, whereas CA2 responds to single stimuli, CA1 is selectively recruited by bursts of cortical input.
Collapse
|
22
|
Theta Oscillations Gate the Transmission of Reliable Sequences in the Medial Entorhinal Cortex. eNeuro 2021; 8:ENEURO.0059-20.2021. [PMID: 33820802 PMCID: PMC8208650 DOI: 10.1523/eneuro.0059-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/21/2022] Open
Abstract
Stability and precision of sequential activity in the entorhinal cortex (EC) is crucial for encoding spatially guided behavior and memory. These sequences are driven by constantly evolving sensory inputs and persist despite a noisy background. In a realistic computational model of a medial EC (MEC) microcircuit, we show that intrinsic neuronal properties and network mechanisms interact with theta oscillations to generate reliable outputs. In our model, sensory inputs activate interneurons near their most excitable phase during each theta cycle. As the inputs change, different interneurons are recruited and postsynaptic stellate cells are released from inhibition. This causes a sequence of rebound spikes. The rebound time scale of stellate cells, because of an h–current, matches that of theta oscillations. This fortuitous similarity of time scales ensures that stellate spikes get relegated to the least excitable phase of theta and the network encodes the external drive but ignores recurrent excitation. In contrast, in the absence of theta, rebound spikes compete with external inputs and disrupt the sequence that follows. Further, the same mechanism where theta modulates the gain of incoming inputs, can be used to select between competing inputs to create transient functionally connected networks. Our results concur with experimental data that show, subduing theta oscillations disrupts the spatial periodicity of grid cell receptive fields. In the bat MEC where grid cell receptive fields persist even in the absence of continuous theta oscillations, we argue that other low frequency fluctuations play the role of theta.
Collapse
|
23
|
Peng Y, Barreda Tomas FJ, Pfeiffer P, Drangmeister M, Schreiber S, Vida I, Geiger JRP. Spatially structured inhibition defined by polarized parvalbumin interneuron axons promotes head direction tuning. SCIENCE ADVANCES 2021; 7:7/25/eabg4693. [PMID: 34134979 PMCID: PMC8208710 DOI: 10.1126/sciadv.abg4693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/04/2021] [Indexed: 05/04/2023]
Abstract
In cortical microcircuits, it is generally assumed that fast-spiking parvalbumin interneurons mediate dense and nonselective inhibition. Some reports indicate sparse and structured inhibitory connectivity, but the computational relevance and the underlying spatial organization remain unresolved. In the rat superficial presubiculum, we find that inhibition by fast-spiking interneurons is organized in the form of a dominant super-reciprocal microcircuit motif where multiple pyramidal cells recurrently inhibit each other via a single interneuron. Multineuron recordings and subsequent 3D reconstructions and analysis further show that this nonrandom connectivity arises from an asymmetric, polarized morphology of fast-spiking interneuron axons, which individually cover different directions in the same volume. Network simulations assuming topographically organized input demonstrate that such polarized inhibition can improve head direction tuning of pyramidal cells in comparison to a "blanket of inhibition." We propose that structured inhibition based on asymmetrical axons is an overarching spatial connectivity principle for tailored computation across brain regions.
Collapse
Affiliation(s)
- Yangfan Peng
- Institute for Neurophysiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Federico J Barreda Tomas
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Paul Pfeiffer
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, 10115 Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Moritz Drangmeister
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, 10115 Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Susanne Schreiber
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, 10115 Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Imre Vida
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
| | - Jörg R P Geiger
- Institute for Neurophysiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
| |
Collapse
|
24
|
Liu J, Kashima T, Morikawa S, Noguchi A, Ikegaya Y, Matsumoto N. Molecular Characterization of Superficial Layers of the Presubiculum During Development. Front Neuroanat 2021; 15:662724. [PMID: 34234650 PMCID: PMC8256428 DOI: 10.3389/fnana.2021.662724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
The presubiculum, a subarea of the parahippocampal region, plays a critical role in spatial navigation and spatial representation. An outstanding aspect of presubicular spatial codes is head-direction selectivity of the firing of excitatory neurons, called head-direction cells. Head-direction selectivity emerges before eye-opening in rodents and is maintained in adulthood through neurophysiological interactions between excitatory and inhibitory neurons. Although the presubiculum has been physiologically profiled in terms of spatial representation during development, the histological characteristics of the developing presubiculum are poorly understood. We found that the expression of vesicular glutamate transporter 2 (VGluT2) could be used to delimit the superficial layers of the presubiculum, which was identified using an anterograde tracer injected into the anterior thalamic nucleus (ATN). Thus, we immunostained slices from mice ranging in age from neonates to adults using an antibody against VGluT2 to evaluate the VGluT2-positive area, which was identified as the superficial layers of the presubiculum, during development. We also immunostained the slices using antibodies against parvalbumin (PV) and somatostatin (SOM) and found that in the presubicular superficial layers, PV-positive neurons progressively increased in number during development, whereas SOM-positive neurons exhibited no increasing trend. In addition, we observed repeating patch structures in presubicular layer III from postnatal days 12. The abundant expression of VGluT2 suggests that the presubicular superficial layers are regulated primarily by VGluT2-mediated excitatory neurotransmission. Moreover, developmental changes in the densities of PV- and SOM-positive interneurons and the emergence of the VGluT2-positive patch structures during adolescence may be associated with the functional development of spatial codes in the superficial layers of the presubiculum.
Collapse
Affiliation(s)
- Jiayan Liu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuhiko Kashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shota Morikawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Asako Noguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Suita City, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
Comprehensive Estimates of Potential Synaptic Connections in Local Circuits of the Rodent Hippocampal Formation by Axonal-Dendritic Overlap. J Neurosci 2020; 41:1665-1683. [PMID: 33361464 DOI: 10.1523/jneurosci.1193-20.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/19/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022] Open
Abstract
A quantitative description of the hippocampal formation synaptic architecture is essential for understanding the neural mechanisms of episodic memory. Yet the existing knowledge of connectivity statistics between different neuron types in the rodent hippocampus only captures a mere 5% of this circuitry. We present a systematic pipeline to produce first-approximation estimates for most of the missing information. Leveraging the www.Hippocampome.org knowledge base, we derive local connection parameters between distinct pairs of morphologically identified neuron types based on their axonal-dendritic overlap within every layer and subregion of the hippocampal formation. Specifically, we adapt modern image analysis technology to determine the parcel-specific neurite lengths of every neuron type from representative morphologic reconstructions obtained from either sex. We then compute the average number of synapses per neuron pair using relevant anatomic volumes from the mouse brain atlas and ultrastructurally established interaction distances. Hence, we estimate connection probabilities and number of contacts for >1900 neuron type pairs, increasing the available quantitative assessments more than 11-fold. Connectivity statistics thus remain unknown for only a minority of potential synapses in the hippocampal formation, including those involving long-range (23%) or perisomatic (6%) connections and neuron types without morphologic tracings (7%). The described approach also yields approximate measurements of synaptic distances from the soma along the dendritic and axonal paths, which may affect signal attenuation and delay. Overall, this dataset fills a substantial gap in quantitatively describing hippocampal circuits and provides useful model specifications for biologically realistic neural network simulations, until further direct experimental data become available.SIGNIFICANCE STATEMENT The hippocampal formation is a crucial functional substrate for episodic memory and spatial representation. Characterizing the complex neuron type circuit of this brain region is thus important to understand the cellular mechanisms of learning and navigation. Here we present the first numerical estimates of connection probabilities, numbers of contacts per connected pair, and synaptic distances from the soma along the axonal and dendritic paths, for more than 1900 distinct neuron type pairs throughout the dentate gyrus, CA3, CA2, CA1, subiculum, and entorhinal cortex. This comprehensive dataset, publicly released online at www.Hippocampome.org, constitutes an unprecedented quantification of the majority of the local synaptic circuit for a prominent mammalian neural system and provides an essential foundation for data-driven, anatomically realistic neural network models.
Collapse
|
26
|
Intracellular neuronal recording in awake nonhuman primates. Nat Protoc 2020; 15:3615-3631. [PMID: 33046899 DOI: 10.1038/s41596-020-0388-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 07/28/2020] [Indexed: 11/08/2022]
Abstract
Intracellular neuronal recordings from the brain of awake nonhuman primates have remained difficult to obtain because of several formidable technical challenges, such as poor recording stability and difficulties in maintaining long-term recording conditions. We have developed a technique to record neuronal activity by using a coaxial guide tube and sharp electrode assembly, which allows researchers to repeatedly and reliably perform intracellular recordings in the cortex of awake marmosets. Recordings from individual neurons last from several minutes to more than an hour. A key advantage of this approach is that it does not require dura removal, permitting recordings over weeks and months in a single animal. This protocol describes the step-by-step procedures for construction of a custom-made marmoset chair, head-cap implantation, preparation of the sharp electrode and guide tube, neuronal recording and data analysis. As the technique is practical and easy to adapt, we anticipate that it can also be applied to other mammalian models, including larger-size nonhuman primates.
Collapse
|
27
|
Structural Correlates of CA2 and CA3 Pyramidal Cell Activity in Freely-Moving Mice. J Neurosci 2020; 40:5797-5806. [PMID: 32554511 DOI: 10.1523/jneurosci.0099-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022] Open
Abstract
Plasticity within hippocampal circuits is essential for memory functions. The hippocampal CA2/CA3 region is thought to be able to rapidly store incoming information by plastic modifications of synaptic weights within its recurrent network. High-frequency spike-bursts are believed to be essential for this process, by serving as triggers for synaptic plasticity. Given the diversity of CA2/CA3 pyramidal neurons, it is currently unknown whether and how burst activity, assessed in vivo during natural behavior, relates to principal cell heterogeneity. To explore this issue, we juxtacellularly recorded the activity of single CA2/CA3 neurons from freely-moving male mice, exploring a familiar environment. In line with previous work, we found that spatial and temporal activity patterns of pyramidal neurons correlated with their topographical position. Morphometric analysis revealed that neurons with a higher proportion of distal dendritic length displayed a higher tendency to fire spike-bursts. We propose that the dendritic architecture of pyramidal neurons might determine burst-firing by setting the relative amount of distal excitatory inputs from the entorhinal cortex.SIGNIFICANCE STATEMENT High-frequency spike-bursts are thought to serve fundamental computational roles within neural circuits. Within hippocampal circuits, spike-bursts are believed to serve as potent instructive signals, which increase the efficiency of information transfer and induce rapid modifications of synaptic efficacies. In the present study, by juxtacellularly recording and labeling single CA2/CA3 neurons in freely-moving mice, we explored whether and how burst propensity relates to pyramidal cell heterogeneity. We provide evidence that, within the CA2/CA3 region, neurons with higher proportion of distal dendritic length display a higher tendency to fire spike-bursts. Thus, the relative amount of entorhinal inputs, arriving onto the distal dendrites, might determine the burst propensity of individual CA2/CA3 neurons in vivo during natural behavior.
Collapse
|
28
|
Bjerre AS, Palmer LM. Probing Cortical Activity During Head-Fixed Behavior. Front Mol Neurosci 2020; 13:30. [PMID: 32180705 PMCID: PMC7059801 DOI: 10.3389/fnmol.2020.00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/10/2020] [Indexed: 01/20/2023] Open
Abstract
The cortex is crucial for many behaviors, ranging from sensory-based behaviors to working memory and social behaviors. To gain an in-depth understanding of the contribution to these behaviors, cellular and sub-cellular recordings from both individual and populations of cortical neurons are vital. However, techniques allowing such recordings, such as two-photon imaging and whole-cell electrophysiology, require absolute stability of the head, a requirement not often fulfilled in freely moving animals. Here, we review and compare behavioral paradigms that have been developed and adapted for the head-fixed preparation, which together offer the needed stability for live recordings of neural activity in behaving animals. We also review how the head-fixed preparation has been used to explore the function of primary sensory cortices, posterior parietal cortex (PPC) and anterior lateral motor (ALM) cortex in sensory-based behavioral tasks, while also discussing the considerations of performing such recordings. Overall, this review highlights the head-fixed preparation as allowing in-depth investigation into the neural activity underlying behaviors by providing highly controllable settings for precise stimuli presentation which can be combined with behavioral paradigms ranging from simple sensory detection tasks to complex, cross-modal, memory-guided decision-making tasks.
Collapse
Affiliation(s)
- Ann-Sofie Bjerre
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Lucy M Palmer
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
29
|
Electrophysiological and Molecular Characterization of the Parasubiculum. J Neurosci 2019; 39:8860-8876. [PMID: 31548233 DOI: 10.1523/jneurosci.0796-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 11/21/2022] Open
Abstract
The parahippocampal region is thought to be critical for memory and spatial navigation. Within this region lies the parasubiculum, a small structure that exhibits strong theta modulation, contains functionally specialized cells, and projects to layer II of the medial entorhinal cortex (MEC). Thus, it is uniquely positioned to influence firing of spatially modulated cells in the MEC and play a key role in the internal representation of the external environment. However, the basic neuronal composition of the parasubiculum remains largely unknown, and its border with the MEC is often ambiguous. We combine electrophysiology and immunohistochemistry in adult mice (both sexes) to define first, the boundaries of the parasubiculum, and second, the major cell types found in this region. We find distinct differences in the colabeling of molecular markers between the parasubiculum and the MEC, allowing us to clearly separate the two structures. Moreover, we find distinct distribution patterns of different molecular markers within the parasubiculum, across both superficial-deep and DV axes. Using unsupervised cluster analysis, we find that neurons in the parasubiculum can be broadly separated into three clusters based on their electrophysiological properties, and that each cluster corresponds to a different molecular marker. We demonstrate that, while the parasubiculum aligns structurally to some to general cortical principals, it also shows divergent features in particular in contrast to the MEC. This work will form an important basis for future studies working to disentangle the circuitry underlying memory and spatial navigation functions of the parasubiculum.SIGNIFICANCE STATEMENT We identify the major neuron types in the parasubiculum using immunohistochemistry and electrophysiology, and determine their distribution throughout the parasubiculum. We find that the neuronal composition of the parasubiculum differs considerably compared with the neighboring medial entorhinal cortex. Both regions are involved in spatial navigation. Thus, our findings are of importance for unraveling the underlying circuitry of this process and for determining the role of the parasubiculum within this network.
Collapse
|
30
|
Valero M, English DF. Head-mounted approaches for targeting single-cells in freely moving animals. J Neurosci Methods 2019; 326:108397. [DOI: 10.1016/j.jneumeth.2019.108397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022]
|
31
|
Doan TP, Lagartos-Donate MJ, Nilssen ES, Ohara S, Witter MP. Convergent Projections from Perirhinal and Postrhinal Cortices Suggest a Multisensory Nature of Lateral, but Not Medial, Entorhinal Cortex. Cell Rep 2019; 29:617-627.e7. [DOI: 10.1016/j.celrep.2019.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/06/2019] [Accepted: 08/30/2019] [Indexed: 10/25/2022] Open
|
32
|
Cid E, de la Prida LM. Methods for single-cell recording and labeling in vivo. J Neurosci Methods 2019; 325:108354. [PMID: 31302156 DOI: 10.1016/j.jneumeth.2019.108354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/07/2019] [Accepted: 07/07/2019] [Indexed: 01/29/2023]
Abstract
Targeting individual neurons in vivo is a key method to study the role of single cell types within local and brain-wide microcircuits. While novel technological developments now permit assessing activity from large number of cells simultaneously, there is currently no better solution than glass micropipettes to relate the physiology and morphology of single-cells. Sharp intracellular, juxtacellular, loose-patch and whole-cell approaches are some of the configurations used to record and label individual neurons. Here, we review procedures to establish successful electrophysiological recordings in vivo followed by appropriate labeling for post hoc morphological analysis. We provide operational recommendations for optimizing each configuration and a generic framework for functional, neurochemical and morphological identification of the different cell-types in a given region. Finally, we highlight emerging approaches that are challenging our current paradigms for single-cell recording and labeling in the living brain.
Collapse
Affiliation(s)
- Elena Cid
- Instituto Cajal, CSIC, Ave Doctor Arce 37, Madrid, 28002, Spain
| | | |
Collapse
|
33
|
Genetically Defined Functional Modules for Spatial Orienting in the Mouse Superior Colliculus. Curr Biol 2019; 29:2892-2904.e8. [PMID: 31474533 PMCID: PMC6739420 DOI: 10.1016/j.cub.2019.07.083] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 01/27/2023]
Abstract
In order to explore and interact with their surroundings, animals need to orient toward specific positions in space. Throughout the animal kingdom, head movements represent a primary form of orienting behavior. The superior colliculus (SC) is a fundamental structure for the generation of orienting responses, but how genetically distinct groups of collicular neurons contribute to these spatially tuned behaviors remains largely to be defined. Here, through the genetic dissection of the murine SC, we identify a functionally and genetically homogeneous subclass of glutamatergic neurons defined by the expression of the paired-like homeodomain transcription factor Pitx2. We show that the optogenetic stimulation of Pitx2ON neurons drives three-dimensional head displacements characterized by stepwise, saccade-like kinematics. Furthermore, during naturalistic foraging behavior, the activity of Pitx2ON neurons precedes and predicts the onset of spatially tuned head movements. Intriguingly, we reveal that Pitx2ON neurons are clustered in an orderly array of anatomical modules that tile the entire intermediate layer of the SC. Such a modular organization gives origin to a discrete and discontinuous representation of the motor space, with each Pitx2ON module subtending a defined portion of the animal’s egocentric space. The modularity of Pitx2ON neurons provides an anatomical substrate for the convergence of spatially coherent sensory and motor signals of cortical and subcortical origins, thereby promoting the recruitment of appropriate movement vectors. Overall, these data support the view of the superior colliculus as a selectively addressable and modularly organized spatial-motor register. Pitx2 expression labels a functionally homogeneous class of projecting SC neurons Pitx2ON neurons drive three-dimensional head movements during foraging behavior Pitx2ON neurons are organized in an orderly array of anatomical modules Modularity of Pitx2ON neurons defines a discrete motor map for spatial orienting
Collapse
|
34
|
Balogh V, Szádeczky-Kardoss K, Varró P, Világi I, Borbély S. Analysis of Propagation of Slow Rhythmic Activity Induced in Ex Vivo Rat Brain Slices. Brain Connect 2019; 9:649-660. [PMID: 31179725 DOI: 10.1089/brain.2018.0650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Slow wave oscillation is a synchronous oscillatory mechanism that is a characteristic wave type of the cerebral cortex during physiological deep sleep or anesthesia. It may play an important role in cortical analysis of sensory input. Our goal was (1) to develop optimal conditions for the induction of this slow rhythmic activity in adult rat cortical slices, (2) to identify connections through which the activity propagates between coupled cortical regions, and (3) to study the pattern of horizontal and vertical flow of activity developed spontaneously in cortical slices. Experiments were performed on intact or differently incised rat cortical slices. According to our results, spontaneous cortical activity develops reliably in slightly modified artificial cerebrospinal fluid, first in the entorhinal cortical region of horizontally cut slices and then it spreads directly to the perirhinal (PRh) cortex. The activity readily generated in layer 2/3 of the entorhinal cortex then quickly spreads vertically to upper layer 2-3 in the same area and to the neighboring regions, that is, to the PRh cortex. Synchronization of activity in neighboring cortical areas occurs through both callosal connections and layer 2-3 intrinsic network, which are important in the propagation of spontaneous, inherent cortical slow wave activity.
Collapse
Affiliation(s)
- Veronika Balogh
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary.,Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Petra Varró
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Ildikó Világi
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Sándor Borbély
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary.,Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
35
|
Kornienko O, Latuske P, Bassler M, Kohler L, Allen K. Non-rhythmic head-direction cells in the parahippocampal region are not constrained by attractor network dynamics. eLife 2018; 7:35949. [PMID: 30222110 PMCID: PMC6158010 DOI: 10.7554/elife.35949] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/24/2018] [Indexed: 11/13/2022] Open
Abstract
Computational models postulate that head-direction (HD) cells are part of an attractor network integrating head turns. This network requires inputs from visual landmarks to anchor the HD signal to the external world. We investigated whether information about HD and visual landmarks is integrated in the medial entorhinal cortex and parasubiculum, resulting in neurons expressing a conjunctive code for HD and visual landmarks. We found that parahippocampal HD cells could be divided into two classes based on their theta-rhythmic activity: non-rhythmic and theta-rhythmic HD cells. Manipulations of the visual landmarks caused tuning curve alterations in most HD cells, with the largest visually driven changes observed in non-rhythmic HD cells. Importantly, the tuning modifications of non-rhythmic HD cells were often non-coherent across cells, refuting the notion that attractor-like dynamics control non-rhythmic HD cells. These findings reveal a new population of non-rhythmic HD cells whose malleable organization is controlled by visual landmarks.
Collapse
Affiliation(s)
- Olga Kornienko
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - Patrick Latuske
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - Mathis Bassler
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - Laura Kohler
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - Kevin Allen
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
36
|
Rowland DC, Obenhaus HA, Skytøen ER, Zhang Q, Kentros CG, Moser EI, Moser MB. Functional properties of stellate cells in medial entorhinal cortex layer II. eLife 2018; 7:36664. [PMID: 30215597 PMCID: PMC6140717 DOI: 10.7554/elife.36664] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/09/2018] [Indexed: 11/24/2022] Open
Abstract
Layer II of the medial entorhinal cortex (MEC) contains two principal cell types: pyramidal cells and stellate cells. Accumulating evidence suggests that these two cell types have distinct molecular profiles, physiological properties, and connectivity. The observations hint at a fundamental functional difference between the two cell populations but conclusions have been mixed. Here, we used a tTA-based transgenic mouse line to drive expression of ArchT, an optogenetic silencer, specifically in stellate cells. We were able to optogenetically identify stellate cells and characterize their firing properties in freely moving mice. The stellate cell population included cells from a range of functional cell classes. Roughly one in four of the tagged cells were grid cells, suggesting that stellate cells contribute not only to path-integration-based representation of self-location but also have other functions. The data support observations suggesting that grid cells are not the sole determinant of place cell firing.
Collapse
Affiliation(s)
- David C Rowland
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Horst A Obenhaus
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Emilie R Skytøen
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Qiangwei Zhang
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Cliff G Kentros
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Edvard I Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - May-Britt Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
37
|
Lee AK, Brecht M. Elucidating Neuronal Mechanisms Using Intracellular Recordings during Behavior. Trends Neurosci 2018; 41:385-403. [DOI: 10.1016/j.tins.2018.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 12/17/2022]
|
38
|
Coletta S, Zeraati R, Nasr K, Preston-Ferrer P, Burgalossi A. Interspike interval analysis and spikelets in presubicular head-direction cells. J Neurophysiol 2018; 120:564-575. [PMID: 29718804 DOI: 10.1152/jn.00019.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Head-direction (HD) neurons are thought to provide the mammalian brain with an internal sense of direction. These cells, which selectively increase their firing when the animal's head points in a specific direction, use the spike rate to encode HD with a high signal-to-noise ratio. In the present work, we analyzed spike train features of presubicular HD cells recorded juxtacellularly in passively rotated rats. We found that HD neurons could be classified into two groups on the basis of their propensity to fire spikes at short interspike intervals. "Bursty" neurons displayed distinct spike waveforms and were weakly but significantly more modulated by HD compared with "nonbursty" cells. In a subset of HD neurons, we observed the occurrence of spikelets, small-amplitude "spike-like" events, whose HD tuning was highly correlated to that of the co-recorded juxtacellular spikes. Bursty and nonbursty HD cells, as well as spikelets, were also observed in freely moving animals during natural behavior. We speculate that spike bursts and spikelets might contribute to presubicular HD coding by enhancing its accuracy and transmission reliability to downstream targets. NEW & NOTEWORTHY We provide evidence that presubicular head-direction (HD) cells can be classified into two classes (bursty and nonbursty) on the basis of their propensity to fire spikes at short interspike intervals. Bursty cells displayed distinct electrophysiological properties and stronger directional tuning compared with nonbursty neurons. We also provide evidence for the occurrence of spikelets in a subset of HD cells. These electrophysiological features (spike bursts and spikelets) might contribute to the precision and robustness of the presubicular HD code.
Collapse
Affiliation(s)
- Stefano Coletta
- Graduate Training Centre of Neuroscience, International Max Planck Research School , Tübingen , Germany
| | - Roxana Zeraati
- Graduate Training Centre of Neuroscience, International Max Planck Research School , Tübingen , Germany
| | - Khaled Nasr
- Graduate Training Centre of Neuroscience, International Max Planck Research School , Tübingen , Germany
| | | | - Andrea Burgalossi
- Werner-Reichardt Centre for Integrative Neuroscience , Tübingen , Germany
| |
Collapse
|
39
|
Naumann RK, Preston-Ferrer P, Brecht M, Burgalossi A. Structural modularity and grid activity in the medial entorhinal cortex. J Neurophysiol 2018. [PMID: 29513150 DOI: 10.1152/jn.00574.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Following the groundbreaking discovery of grid cells, the medial entorhinal cortex (MEC) has become the focus of intense anatomical, physiological, and computational investigations. Whether and how grid activity maps onto cell types and cortical architecture is still an open question. Fundamental similarities in microcircuits, function, and connectivity suggest a homology between rodent MEC and human posteromedial entorhinal cortex. Both are specialized for spatial processing and display similar cellular organization, consisting of layer 2 pyramidal/calbindin cell patches superimposed on scattered stellate neurons. Recent data indicate the existence of a further nonoverlapping modular system (zinc patches) within the superficial MEC layers. Zinc and calbindin patches have been shown to receive largely segregated inputs from the presubiculum and parasubiculum. Grid cells are also clustered in the MEC, and we discuss possible structure-function schemes on how grid activity could map onto cortical patch systems. We hypothesize that in the superficial layers of the MEC, anatomical location can be predictive of function; thus relating functional properties and neuronal morphologies to the cortical modules will be necessary for resolving how grid activity maps onto cortical architecture. Imaging or cell identification approaches in freely moving animals will be required for testing this hypothesis.
Collapse
Affiliation(s)
- Robert K Naumann
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin , Berlin , Germany.,Max-Planck-Institute for Brain Research, Frankfurt am Main , Germany.,Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town, Nanshan District, Shenzhen , China
| | | | - Michael Brecht
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin , Berlin , Germany.,German Center for Neurodegenerative Diseases , Berlin , Germany
| | - Andrea Burgalossi
- Werner-Reichardt Centre for Integrative Neuroscience , Tübingen , Germany
| |
Collapse
|
40
|
Testing the Efficacy of Single-Cell Stimulation in Biasing Presubicular Head Direction Activity. J Neurosci 2018; 38:3287-3302. [PMID: 29487125 DOI: 10.1523/jneurosci.1814-17.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/15/2018] [Accepted: 02/05/2018] [Indexed: 12/11/2022] Open
Abstract
To support navigation, the firing of head direction (HD) neurons must be tightly anchored to the external space. Indeed, inputs from external landmarks can rapidly reset the preferred direction of HD cells. Landmark stimuli have often been simulated as excitatory inputs from "visual cells" (encoding landmark information) to the HD attractor network; when excitatory visual inputs are sufficiently strong, preferred directions switch abruptly to the landmark location. In the present work, we tested whether mimicking such inputs via juxtacellular stimulation would be sufficient for shifting the tuning of individual presubicular HD cells recorded in passively rotated male rats. We recorded 81 HD cells in a cue-rich environment, and evoked spikes trains outside of their preferred direction (distance range, 11-178°). We found that HD tuning was remarkably resistant to activity manipulations. Even strong stimulations, which induced seconds-long spike trains, failed to induce a detectable shift in directional tuning. HD tuning curves before and after stimulation remained highly correlated, indicating that postsynaptic activation alone is insufficient for modifying HD output. Our data are thus consistent with the predicted stability of an HD attractor network when anchored to external landmarks. A small spiking bias at the stimulus direction could only be observed in a visually deprived environment in which both average firing rates and directional tuning were markedly reduced. Based on this evidence, we speculate that, when attractor dynamics become unstable (e.g., under disorientation), the output of HD neurons could be more efficiently controlled by strong biasing stimuli.SIGNIFICANCE STATEMENT The activity of head direction (HD) cells is thought to provide the mammalian brain with an internal sense of direction. To support navigation, the firing of HD neurons must be anchored to external landmarks, a process thought to be supported by associative plasticity within the HD system. Here, we investigated these plasticity mechanisms by juxtacellular stimulation of single HD neurons in vivo in awake rats. We found that HD coding is strongly resistant to external manipulations of spiking activity. Only in a visually deprived environment was juxtacellular stimulation able to induce a small activity bias in single presubicular neurons. We propose that juxtacellular stimulation can bias HD tuning only when competing anchoring inputs are reduced or not available.
Collapse
|
41
|
Linking neuronal structure to function in rodent hippocampus: a methodological prospective. Cell Tissue Res 2017; 373:605-618. [PMID: 29181629 DOI: 10.1007/s00441-017-2732-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
Abstract
Since the discovery of place cells, hippocampus-dependent spatial navigation has proven to be an ideal model system for resolving the relationship between neural coding and behavior. Electrical recordings from the hippocampal formation in freely moving animals have revealed a rich repertoire of spatial firing patterns and have enormously advanced our understanding of the neural principles of spatial representation. However, limited progress has been achieved in resolving the underlying cellular mechanisms. This is partially attributable to the inability of standard recording techniques to link neuronal structure to function directly. In this review, we summarize recent efforts aimed at filling this gap. We also highlight the development of methodologies that allow functional measurements from identified neuronal elements in behaving rodents. Recent progress in the dentate gyrus serves as a showcase to reveal the potential of such methodologies and the necessity of resolving structure-function relationships in order to access the cellular mechanisms of hippocampal circuit computations.
Collapse
|
42
|
Schmidt H, Gour A, Straehle J, Boergens KM, Brecht M, Helmstaedter M. Axonal synapse sorting in medial entorhinal cortex. Nature 2017; 549:469-475. [DOI: 10.1038/nature24005] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/16/2017] [Indexed: 11/09/2022]
|
43
|
Bonilla-Quintana M, Wedgwood KCA, O’Dea RD, Coombes S. An Analysis of Waves Underlying Grid Cell Firing in the Medial Enthorinal Cortex. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2017; 7:9. [PMID: 28842863 PMCID: PMC5572897 DOI: 10.1186/s13408-017-0051-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
Layer II stellate cells in the medial enthorinal cortex (MEC) express hyperpolarisation-activated cyclic-nucleotide-gated (HCN) channels that allow for rebound spiking via an [Formula: see text] current in response to hyperpolarising synaptic input. A computational modelling study by Hasselmo (Philos. Trans. R. Soc. Lond. B, Biol. Sci. 369:20120523, 2013) showed that an inhibitory network of such cells can support periodic travelling waves with a period that is controlled by the dynamics of the [Formula: see text] current. Hasselmo has suggested that these waves can underlie the generation of grid cells, and that the known difference in [Formula: see text] resonance frequency along the dorsal to ventral axis can explain the observed size and spacing between grid cell firing fields. Here we develop a biophysical spiking model within a framework that allows for analytical tractability. We combine the simplicity of integrate-and-fire neurons with a piecewise linear caricature of the gating dynamics for HCN channels to develop a spiking neural field model of MEC. Using techniques primarily drawn from the field of nonsmooth dynamical systems we show how to construct periodic travelling waves, and in particular the dispersion curve that determines how wave speed varies as a function of period. This exhibits a wide range of long wavelength solutions, reinforcing the idea that rebound spiking is a candidate mechanism for generating grid cell firing patterns. Importantly we develop a wave stability analysis to show how the maximum allowed period is controlled by the dynamical properties of the [Formula: see text] current. Our theoretical work is validated by numerical simulations of the spiking model in both one and two dimensions.
Collapse
Affiliation(s)
- Mayte Bonilla-Quintana
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, University Park, NG7 2RD Nottingham, UK
| | - Kyle C. A. Wedgwood
- Centre for Biomedical Modelling and Analysis, University of Exeter, Living Systems Institute, Stocker Road, EX4 4QD Exeter, UK
| | - Reuben D. O’Dea
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, University Park, NG7 2RD Nottingham, UK
| | - Stephen Coombes
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, University Park, NG7 2RD Nottingham, UK
| |
Collapse
|
44
|
CA2 Pyramidal Neurons: Biophysically and Anatomically Predisposed Integrators of Cortical Sensory Information. J Neurosci 2017; 37:7564-7566. [PMID: 28821683 DOI: 10.1523/jneurosci.1405-17.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/08/2017] [Accepted: 07/11/2017] [Indexed: 11/21/2022] Open
|
45
|
Lin EC, Combe CL, Gasparini S. Differential Contribution of Ca 2+-Dependent Mechanisms to Hyperexcitability in Layer V Neurons of the Medial Entorhinal Cortex. Front Cell Neurosci 2017; 11:182. [PMID: 28713246 PMCID: PMC5491848 DOI: 10.3389/fncel.2017.00182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/13/2017] [Indexed: 11/13/2022] Open
Abstract
Temporal lobe epilepsy is characterized by recurrent seizures in one or both temporal lobes of the brain; some in vitro models show that epileptiform discharges initiate in entorhinal layer V neurons and then spread into other areas of the temporal lobe. We previously found that, in the presence of GABAA receptor antagonists, stimulation of afferent fibers, terminating both at proximal and distal dendritic locations, initiated hyperexcitable bursts in layer V medial entorhinal neurons. We investigated the differential contribution of Ca2+-dependent mechanisms to the plateaus underlying these bursts at proximal and distal synapses. We found that the NMDA glutamatergic antagonist D,L-2-amino-5-phosphonovaleric acid (APV; 50 μM) reduced both the area and duration of the bursts at both proximal and distal synapses by about half. The L-type Ca2+ channel blocker nimodipine (10 μM) and the R- and T-type Ca2+ channel blocker NiCl2 (200 μM) decreased the area of the bursts to a lesser extent; none of these effects appeared to be location-dependent. Remarkably, the perfusion of flufenamic acid (FFA; 100 μM), to block Ca2+-activated non-selective cation currents (ICAN) mediated by transient receptor potential (TRP) channels, had a location-dependent effect, by abolishing burst firing and switching the suprathreshold response to a single action potential (AP) for proximal stimulation, but only minimally affecting the bursts evoked by distal stimulation. A similar outcome was found when FFA was pressure-applied locally around the proximal dendrite of the recorded neurons and in the presence of a selective blocker of melastatin TRP (TRPM) channels, 9-phenanthrol (100 μM), whereas a selective blocker of canonical TRP (TRPC) channels, SKF 96365, did not affect the bursts. These results indicate that different mechanisms might contribute to the initiation of hyperexcitability in layer V neurons at proximal and distal synapses and could shed light on the initiation of epileptiform activity in the entorhinal cortex.
Collapse
Affiliation(s)
- Eric C Lin
- Neuroscience Center of Excellence, Louisiana State University Health Sciences CenterNew Orleans, LA, United States
| | - Crescent L Combe
- Neuroscience Center of Excellence, Louisiana State University Health Sciences CenterNew Orleans, LA, United States
| | - Sonia Gasparini
- Neuroscience Center of Excellence, Louisiana State University Health Sciences CenterNew Orleans, LA, United States.,Department of Cell Biology and Anatomy, Louisiana State University Health Sciences CenterNew Orleans, LA, United States
| |
Collapse
|
46
|
Micallef AH, Takahashi N, Larkum ME, Palmer LM. A Reward-Based Behavioral Platform to Measure Neural Activity during Head-Fixed Behavior. Front Cell Neurosci 2017; 11:156. [PMID: 28620282 PMCID: PMC5449766 DOI: 10.3389/fncel.2017.00156] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/15/2017] [Indexed: 01/01/2023] Open
Abstract
Understanding the neural computations that contribute to behavior requires recording from neurons while an animal is behaving. This is not an easy task as most subcellular recording techniques require absolute head stability. The Go/No-Go sensory task is a powerful decision-driven task that enables an animal to report a binary decision during head-fixation. Here we discuss how to set up an Ardunio and Python based platform system to control a Go/No-Go sensory behavior paradigm. Using an Arduino micro-controller and Python-based custom written program, a reward can be delivered to the animal depending on the decision reported. We discuss the various components required to build the behavioral apparatus that can control and report such a sensory stimulus paradigm. This system enables the end user to control the behavioral testing in real-time and therefore it provides a strong custom-made platform for probing the neural basis of behavior.
Collapse
Affiliation(s)
- Andrew H Micallef
- The Florey Institute of Neuroscience and Mental Health, University of MelbourneMelbourne, VIC, Australia
| | - Naoya Takahashi
- Institute for Biology, Humboldt University of BerlinBerlin, Germany
| | - Matthew E Larkum
- Institute for Biology, Humboldt University of BerlinBerlin, Germany
| | - Lucy M Palmer
- The Florey Institute of Neuroscience and Mental Health, University of MelbourneMelbourne, VIC, Australia
| |
Collapse
|
47
|
Ray S, Burgalossi A, Brecht M, Naumann RK. Complementary Modular Microcircuits of the Rat Medial Entorhinal Cortex. Front Syst Neurosci 2017; 11:20. [PMID: 28443003 PMCID: PMC5385340 DOI: 10.3389/fnsys.2017.00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/24/2017] [Indexed: 11/13/2022] Open
Abstract
The parahippocampal region is organized into different areas, with the medial entorhinal cortex (MEC), presubiculum and parasubiculum prominent in spatial memory. Here, we also describe a region at the extremity of the MEC and bordering the subicular complex, the medial-most part of the entorhinal cortex. While the subdivisions of hippocampus proper form more or less continuous cell sheets, the superficial layers of the parahippocampal region have a distinct modular architecture. We investigate the spatial distribution, laminar position, and putative connectivity of zinc-positive modules in layer 2 of the MEC of rats and relate them to the calbindin-positive patches previously described in the entorhinal cortex. We found that the zinc-positive modules are complementary to the previously described calbindin-positive patches. We also found that inputs from the presubiculum are directed toward the zinc-positive modules while the calbindin-positive patches received inputs from the parasubiculum. Notably, the dendrites of neurons from layers 3 and 5, positive for Purkinje Cell Protein 4 expression, overlap with the zinc modules. Our data thus indicate that these two complementary modular systems, the calbindin patches and zinc modules, are part of parallel information streams in the hippocampal formation.
Collapse
Affiliation(s)
- Saikat Ray
- Bernstein Center for Computational Neuroscience, Humboldt University of BerlinBerlin, Germany
| | - Andrea Burgalossi
- Werner-Reichardt Centre for Integrative NeuroscienceTübingen, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience, Humboldt University of BerlinBerlin, Germany
- German Center for Neurodegenerative DiseasesBerlin, Germany
| | - Robert K. Naumann
- Bernstein Center for Computational Neuroscience, Humboldt University of BerlinBerlin, Germany
- Max-Planck-Institute for Brain ResearchFrankfurt, Germany
| |
Collapse
|
48
|
Peng Y, Barreda Tomás FJ, Klisch C, Vida I, Geiger JR. Layer-Specific Organization of Local Excitatory and Inhibitory Synaptic Connectivity in the Rat Presubiculum. Cereb Cortex 2017; 27:2435-2452. [PMID: 28334142 PMCID: PMC5390487 DOI: 10.1093/cercor/bhx049] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
The presubiculum is part of the parahippocampal spatial navigation system and contains head direction and grid cells upstream of the medial entorhinal cortex. This position within the parahippocampal cortex renders the presubiculum uniquely suited for analyzing the circuit requirements underlying the emergence of spatially tuned neuronal activity. To identify the local circuit properties, we analyzed the topology of synaptic connections between pyramidal cells and interneurons in all layers of the presubiculum by testing 4250 potential synaptic connections using multiple whole-cell recordings of up to 8 cells simultaneously. Network topology showed layer-specific organization of microcircuits consistent with the prevailing distinction of superficial and deep layers. While connections among pyramidal cells were almost absent in superficial layers, deep layers exhibited an excitatory connectivity of 3.9%. In contrast, synaptic connectivity for inhibition was higher in superficial layers though markedly lower than in other cortical areas. Finally, synaptic amplitudes of both excitatory and inhibitory connections showed log-normal distributions suggesting a nonrandom functional connectivity. In summary, our study provides new insights into the microcircuit organization of the presubiculum by revealing area- and layer-specific connectivity rules and sets new constraints for future models of the parahippocampal navigation system.
Collapse
Affiliation(s)
- Yangfan Peng
- Institute of Neurophysiology, Charité - Universitätsmedizin, 10117 Berlin, Germany
| | | | - Constantin Klisch
- Institute of Neurophysiology, Charité - Universitätsmedizin, 10117 Berlin, Germany
| | - Imre Vida
- Institute for Integrative Neuroanatomy, Charité - Universitätsmedizin, 10117 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin, 10117 Berlin, Germany
| | - Jörg R.P. Geiger
- Institute of Neurophysiology, Charité - Universitätsmedizin, 10117 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin, 10117 Berlin, Germany
| |
Collapse
|
49
|
Averkin RG, Szemenyei V, Bordé S, Tamás G. Identified Cellular Correlates of Neocortical Ripple and High-Gamma Oscillations during Spindles of Natural Sleep. Neuron 2016; 92:916-928. [PMID: 27746131 PMCID: PMC5130902 DOI: 10.1016/j.neuron.2016.09.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/25/2016] [Accepted: 08/31/2016] [Indexed: 11/29/2022]
Abstract
Ultra-high-frequency network events in the hippocampus are instrumental in a dialogue with the neocortex during memory formation, but the existence of transient ∼200 Hz network events in the neocortex is not clear. Our recordings from neocortical layer II/III of freely behaving rats revealed field potential events at ripple and high-gamma frequencies repeatedly occurring at troughs of spindle oscillations during sleep. Juxtacellular recordings identified subpopulations of fast-spiking, parvalbumin-containing basket cells with epochs of firing at ripple (∼200 Hz) and high-gamma (∼120 Hz) frequencies detected during spindles and centered with millisecond precision at the trough of spindle waves in phase with field potential events but phase shifted relative to pyramidal cell firing. The results suggest that basket cell subpopulations are involved in spindle-nested, high-frequency network events that hypothetically provide repeatedly occurring neocortical temporal reference states potentially involved in mnemonic processes. Field potential events at ripple and high-gamma frequencies occur at spindle troughs Interneurons fire in phase with spindle ripple and spindle high-gamma oscillations Pyramidal cells fire sporadically and phase shifted relative to interneurons Spindle ripple events might provide neocortical reference states in mnemonic processes
Collapse
Affiliation(s)
- Robert G Averkin
- MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, Hungary
| | - Viktor Szemenyei
- MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, Hungary
| | - Sándor Bordé
- MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, Hungary
| | - Gábor Tamás
- MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, Hungary.
| |
Collapse
|
50
|
Diamantaki M, Frey M, Berens P, Preston-Ferrer P, Burgalossi A. Sparse activity of identified dentate granule cells during spatial exploration. eLife 2016; 5. [PMID: 27692065 PMCID: PMC5077296 DOI: 10.7554/elife.20252] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/01/2016] [Indexed: 01/20/2023] Open
Abstract
In the dentate gyrus - a key component of spatial memory circuits - granule cells (GCs) are known to be morphologically diverse and to display heterogeneous activity profiles during behavior. To resolve structure-function relationships, we juxtacellularly recorded and labeled single GCs in freely moving rats. We found that the vast majority of neurons were silent during exploration. Most active GCs displayed a characteristic spike waveform, fired at low rates and showed spatial activity. Primary dendritic parameters were sufficient for classifying neurons as active or silent with high accuracy. Our data thus support a sparse coding scheme in the dentate gyrus and provide a possible link between structural and functional heterogeneity among the GC population.
Collapse
Affiliation(s)
- Maria Diamantaki
- Werner-Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Graduate Training Centre of Neuroscience - IMPRS, University of Tübingen, Tübingen, Germany
| | - Markus Frey
- Werner-Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Philipp Berens
- Werner-Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany
| | - Patricia Preston-Ferrer
- Werner-Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Andrea Burgalossi
- Werner-Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|