1
|
Lau JCY, Guilfoyle J, Crawford S, Johnson G, Landau E, Xing J, Kumareswaran M, Ethridge S, Butler M, Goldman L, Martin GE, Zhou L, Krizman J, Nicol T, Kraus N, Berry-Kravis E, Losh M. Prosodic Differences in Women with the FMR1 Premutation: Subtle Expression of Autism-Related Phenotypes Through Speech. Int J Mol Sci 2025; 26:2481. [PMID: 40141125 PMCID: PMC11942500 DOI: 10.3390/ijms26062481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Evidence suggests that carriers of FMR1 mutations (e.g., fragile X syndrome and the FMR1 premutation) may demonstrate specific phenotypic patterns shared with autism (AU), particularly in the domain of pragmatic language, which involves the use of language in social contexts. Such evidence may implicate FMR1, a high-confidence gene associated with AU, in components of the AU phenotype. Prosody (i.e., using intonation and rhythm in speech to express meaning) is a pragmatic feature widely impacted in AU. Prosodic differences have also been observed in unaffected relatives of autistic individuals and in those with fragile X syndrome, although prosody has not been extensively studied among FMR1 premutation carriers. This study investigated how FMR1 variability may specifically influence prosody by examining the prosodic characteristics and related neural processing of prosodic features in women carrying the FMR1 premutation (PM). In Study 1, acoustic measures of prosody (i.e., in intonation and rhythm) were examined in speech samples elicited from a semi-structured narrative task. Study 2 examined the neural frequency following response (FFR) as an index of speech prosodic processing. Findings revealed differences in the production of intonation and rhythm in PM carriers relative to controls, with patterns that parallel differences identified in parents of autistic individuals. No differences in neural processing of prosodic cues were found. Post hoc analyses further revealed associations between speech rhythm and FMR1 variation (number of CGG repeats) among PM carriers. Together, the results suggest that FMR1 may play a role in speech prosodic phenotypes, at least in speech production, contributing to a deeper understanding of AU-related speech and language phenotypes among FMR1 mutation carriers.
Collapse
Affiliation(s)
- Joseph C. Y. Lau
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| | - Janna Guilfoyle
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| | - Stephanie Crawford
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| | - Grace Johnson
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| | - Emily Landau
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| | - Jiayin Xing
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| | - Mitra Kumareswaran
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| | - Sarah Ethridge
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| | - Maureen Butler
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| | - Lindsay Goldman
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| | - Gary E. Martin
- Department of Communication Sciences and Disorders, St. John’s University, Queens, NY 11439, USA;
| | - Lili Zhou
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA; (L.Z.); (E.B.-K.)
| | - Jennifer Krizman
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| | - Trent Nicol
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| | - Nina Kraus
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA; (L.Z.); (E.B.-K.)
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA; (J.C.Y.L.); (J.G.); (S.C.); (G.J.); (E.L.); (J.X.); (M.K.); (S.E.); (M.B.); (L.G.); (J.K.); (T.N.); (N.K.)
| |
Collapse
|
2
|
Martin H, Choi JE, Rodrigues AR, Eshel N. Review: Dopamine, Serotonin, and the Translational Neuroscience of Aggression in Autism Spectrum Disorder. JAACAP OPEN 2025; 3:29-41. [PMID: 40109493 PMCID: PMC11914923 DOI: 10.1016/j.jaacop.2024.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 03/22/2025]
Abstract
Objective Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a 1% to 2% prevalence in children. In addition to social communication deficits and restricted or repetitive behavior, ASD is often characterized by a heightened propensity for aggression. In fact, aggressive behavior is the primary reason for hospitalization in children with ASD, and current treatment options, despite some efficacy, are often associated with prominent side effects. Despite such high clinical toll, the neurobiology of aggression in ASD remains poorly understood. Method The neural circuits linked to both ASD and aggression were reviewed, with the goal of identifying overlapping components to help guide future treatment development. In discussing the clinical phenotype of aggression in ASD, some of the triggers and risk factors were noted to differ from those that cause aggression in neurotypical children. Preclinical and clinical studies on the neurobiology of aggression and ASD were synthesized to combine evidence from genetics, neuroimaging, pharmacology, and circuit manipulations. Dopamine and serotonin, 2 neuromodulators that contribute to development and behavioral control, were specifically studied. Results The literature indicates that the intricate interplay of the dopamine and serotonin systems has a pivotal role in shaping behavior, including the expression of aggression. Conclusion Understanding the balance between dopamine as an accelerator and serotonin as a brake may provide insights into the mechanisms of aggression in children with ASD. Although much work remains to be done, new perspectives promise to bridge the gap between human and animal studies and pinpoint the neurobiology of aggression in ASD. Diversity & Inclusion Statement One or more of the authors of this paper self-identifies as a member of one or more historically underrepresented sexual and/or gender groups in science. We actively worked to promote sex and gender balance in our author group.
Collapse
Affiliation(s)
| | | | | | - Neir Eshel
- Stanford University, Stanford, California
| |
Collapse
|
3
|
Gao W, Cai Q, Ying X, Zhao B. Establishing a Mouse Model of NL3R617W-Associated Autism Spectrum Disorder for a Functional Study. ACTAS ESPANOLAS DE PSIQUIATRIA 2025; 53:253-266. [PMID: 40071366 PMCID: PMC11898267 DOI: 10.62641/aep.v53i2.1780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 03/15/2025]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and limited behavior. Despite the association of numerous synaptic gene mutations with ASD, the presence of behavioral abnormalities in mice expressing autism-associated R617W mutation in synaptic adhesion protein neuroligin-3 (NL3) has not been established. This work focuses on establishing a mouse model of ASD caused by NL3 R617W missense mutation (NL3R617W) and characterizing and profiling the molecular as well as behavioral features of the animal model. METHODS The expression and distribution of NL3R617W mutant protein in the 293T cell membrane and intracellular NL3 was detected by using immunofluorescence approach. Meanwhile, synaptic markers (Synapsin I, vesicular glutamate transporter (VGluT) I and vesicular γ-aminobutyric acid transporter (VGAT)) and synapse number were detected with a confocal fluorescence microscope. Thereafter, the effect on NL3R617W was verified. The expression of synaptic proteins, postsynaptic density protein-95 (PSD95) and Src homology domain and multiple ankyrin repeat domains protein 3 (SHANK3), was verified by Western blot. The interaction between NL3 and neurexin 1 (NRXN1) was studied by means of co-immunoprecipitation. The behavior of autistic mice induced by NL3R617W mutation was examined using the Morris water maze and the Y maze. NL3R617W mutant mice were assessed in the open field, and three-chamber test was conducted to assess and observe the presence of hyperactivity, repetitive behavior, friendliness, and social novelty. RESULTS The results indicated that the NL3 mutation could influence the interaction between NL3 and NRXN1, and inhibit the expression of VGluT I. Nevertheless, NL3 mutation would not influence the expression of NL3 on cell membrane, the intracellular distribution of NL3, or the endoplasmic reticulum retention. The outcomes of animal studies demonstrated that the ASD mice with NL3R617W exhibited a significant decrease in the capacity for spatial memory and exploration, as well as the expression levels of the postsynaptic scaffolding proteins, PSD95 and SHANK3 (p < 0.05). The number of excitatory synapses in hippocampal cornu ammonis (CA)1 and CA3 and the sensory cortex was also significantly reduced (p < 0.01). Compared to the control mice, the NL3R617W mutant mice were less active in the open field (p < 0.001), a finding consistent with the three-chamber test result showing reduced degree of activity. Furthermore, compared to the control mice, the NL3R617W mutant animals spent less time with stranger mice (p < 0.05). CONCLUSIONS NL3R617W mutation may inhibit the expression of postsynaptic scaffolding proteins by influencing the interaction with NRXN1, thus inhibiting synapse formation and reducing the number of excitatory synapses.
Collapse
Affiliation(s)
- Wei Gao
- Children’s Health Department, Hongkou District Maternal and Child Health Institution, 200000 Shanghai, China
- Department of Pediatric, The First People’s Hospital of Taizhou, 318020 Taizhou, Zhejiang, China
| | - Qiao Cai
- Department of Pediatric, The First People’s Hospital of Taizhou, 318020 Taizhou, Zhejiang, China
| | - Xiaoming Ying
- Department of Pediatric, The First People’s Hospital of Taizhou, 318020 Taizhou, Zhejiang, China
| | - Bei Zhao
- Department of Pediatric, The First People’s Hospital of Taizhou, 318020 Taizhou, Zhejiang, China
| |
Collapse
|
4
|
Lehr AW, McDaniel KF, Roche KW. Analyses of Human Genetic Data to Identify Clinically Relevant Domains of Neuroligins. Genes (Basel) 2024; 15:1601. [PMID: 39766868 PMCID: PMC11675371 DOI: 10.3390/genes15121601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025] Open
Abstract
Background/Objectives: Neuroligins (NLGNs) are postsynaptic adhesion molecules critical for neuronal development that are highly associated with autism spectrum disorder (ASD). Here, we provide an overview of the literature on NLGN rare variants. In addition, we introduce a new approach to analyze human variation within NLGN genes to identify sensitive regions that have an increased frequency of ASD-associated variants to better understand NLGN function. Methods: To identify critical protein subdomains within the NLGN gene family, we developed an algorithm that assesses tolerance to missense mutations in human genetic variation by comparing clinical variants from ClinVar to reference variants from gnomAD. This approach provides tolerance values to subdomains within the protein. Results: Our algorithm identified several critical regions that were conserved across multiple NLGN isoforms. Importantly, this approach also identified a previously reported cluster of pathogenic variants in NLGN4X (also conserved in NLGN1 and NLGN3) as well as a region around the highly characterized NLGN3 R451C ASD-associated mutation. Additionally, we highlighted other, as of yet, uncharacterized regions enriched with mutations. Conclusions: The systematic analysis of NLGN ASD-associated variants compared to variants identified in the unaffected population (gnomAD) reveals conserved domains in NLGN isoforms that are tolerant to variation or are enriched in clinically relevant variants. Examination of databases also allows for predictions of the presumed tolerance to loss of an allele. The use of the algorithm we developed effectively allowed the evaluation of subdomains of NLGNs and can be used to examine other ASD-associated genes.
Collapse
Affiliation(s)
- Alexander W. Lehr
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (A.W.L.); (K.F.M.)
- Department of Neuroscience, Brown University, Providence, RI 02906, USA
| | - Kathryn F. McDaniel
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (A.W.L.); (K.F.M.)
- Department of Neuroscience, Brown University, Providence, RI 02906, USA
| | - Katherine W. Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (A.W.L.); (K.F.M.)
| |
Collapse
|
5
|
Schottmann G, Martínez Almudéver C, Knop JCM, Suk EK, Meyer Z, Kohlhase J, Himmelreich N, Kühnisch J, Ott CE, Seifert W. Impact of genetic test interpretation on a VPS13B missense variant in Cohen syndrome. Front Neurosci 2024; 18:1488133. [PMID: 39723426 PMCID: PMC11668768 DOI: 10.3389/fnins.2024.1488133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/18/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Cohen syndrome (CS) is an early-onset pediatric neurodevelopmental disorder characterized by postnatal microcephaly and intellectual disability. An accurate diagnosis for individuals with CS is crucial, particularly for their caretakers and future prospects. CS is predominantly caused by rare homozygous or compound heterozygous pathogenic variants in the vacuolar protein sorting-associated 13B (VPS13B) gene, which disrupt protein translation and lead to a loss of function (LoF) of the encoded VPS13B protein. Methods The widespread incorporation of next-generation sequencing approaches in genetic diagnostics increases the number of individuals carrying VPS13B mutant alleles. At the same time, it increases the detection of variants of unknown clinical significance, necessitating further functional pathogenicity validation. Results In this study, we present a family with two CS patients. Within this family, four rare VPS13B variants were detected: c.710G > C, p.Arg237Pro; c.6804delT, p.Phe2268Leufs*24; c.7304C > T, p.Ala2435Val; and c.10302T > A, p.Tyr3434*. These variants challenge the interpretation of their disease-causing role. Specifically, the variants c.6804delT, p.Phe2268Leufs*24 and c.710G > C, p.Arg237Pro were detected in trans configuration and are considered to be causing CS genetically. The functional characterization of the missense variant c.710G > C, p.Arg237Pro shows diminished localization at the Golgi complex, highlighting its clinical relevance and supporting its classification by the American College of Medical Genetics and Genomics (ACMG) as likely pathogenic, class 4. Discussion Overall, we emphasize the need for combining genetic and functional testing of VPS13B missense variants to ensure accurate molecular diagnosis and personalized medical care for CS patients.
Collapse
Affiliation(s)
- Gudrun Schottmann
- Zentrum für Sozial-und Neuropädiatrie (DBZ), Vivantes Klinikum Neukölln, Berlin, Germany
| | - Carmen Martínez Almudéver
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia C. M. Knop
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | - Jürgen Kohlhase
- Zentrum für Humangenetik, SYNLAB MVZ Humangenetik Freiburg, Tübingen, Germany
| | | | - Jirko Kühnisch
- Experimental and Clinical Research Center (ECRC), a cooperation been the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité—Universitätsmedizin Berlin, Berlin, Germany
- Institute of Physiology, Brandenburg Medical School (MHB) Theodor Fontane, Brandenburg an der Havel, Germany
| | - Claus-Eric Ott
- Institute for Medical Genetics and Human Genetics, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt Universität zu Berlin, Berlin, Germany
| | - Wenke Seifert
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
6
|
Herrera ML, Paraíso-Luna J, Bustos-Martínez I, Barco Á. Targeting epigenetic dysregulation in autism spectrum disorders. Trends Mol Med 2024; 30:1028-1046. [PMID: 38971705 DOI: 10.1016/j.molmed.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/08/2024]
Abstract
Autism spectrum disorders (ASD) comprise a range of neurodevelopmental pathologies characterized by deficits in social interaction and repetitive behaviors, collectively affecting almost 1% of the worldwide population. Deciphering the etiology of ASD has proven challenging due to the intricate interplay of genetic and environmental factors and the variety of molecular pathways affected. Epigenomic alterations have emerged as key players in ASD etiology. Their research has led to the identification of biomarkers for diagnosis and pinpointed specific gene targets for therapeutic interventions. This review examines the role of epigenetic alterations, resulting from both genetic and environmental influences, as a central causative factor in ASD, delving into its contribution to pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Macarena L Herrera
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Juan Paraíso-Luna
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Isabel Bustos-Martínez
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Ángel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain.
| |
Collapse
|
7
|
Leblond CS, Rolland T, Barthome E, Mougin Z, Fleury M, Ecker C, Bonnot-Briey S, Cliquet F, Tabet AC, Maruani A, Chaumette B, Green J, Delorme R, Bourgeron T. A Genetic Bridge Between Medicine and Neurodiversity for Autism. Annu Rev Genet 2024; 58:487-512. [PMID: 39585908 DOI: 10.1146/annurev-genet-111523-102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Autism represents a large spectrum of diverse individuals with varying underlying genetic architectures and needs. For some individuals, a single de novo or ultrarare genetic variant has a large effect on the intensity of specific dimensions of the phenotype, while, for others, a combination of thousands of variants commonly found in the general population are involved. The variants with large impact are found in up to 30% of autistic individuals presenting with intellectual disability, significant speech delay, motor delay, and/or seizures. The common variants are shared with those found in individuals with attention-deficit/hyperactivity disorder, major depressive disorders, greater educational attainment, and higher cognitive performance, suggesting overlapping genetic architectures. The genetic variants modulate the function of chromatin remodeling and synaptic proteins that influence the connectivity of neuronal circuits and, in interaction with the environment of each individual, the subsequent cognitive and personal trajectory of the child. Overall, this genetic heterogeneity mirrors the phenotypic diversity of autistic individuals and provides a helpful bridge between biomedical and neurodiversity perspectives. We propose that participative and multidisciplinary research should use this information to understand better the assessment, treatments, and accommodations that individuals with autism and families need.
Collapse
Affiliation(s)
- Claire S Leblond
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
| | - Thomas Rolland
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
| | - Eli Barthome
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
| | - Zakaria Mougin
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
| | - Mathis Fleury
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, University Hospital of the Goethe University, Frankfurt am Main, Germany
| | | | - Freddy Cliquet
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
| | - Anne-Claude Tabet
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
- Department of Genetics, Cytogenetics Unit, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Anna Maruani
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Boris Chaumette
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Groupe Hospitalier Universitaire-Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, Paris, France
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université Paris Cité, Paris, France
| | - Jonathan Green
- Division of Psychology and Mental Health, University of Manchester and Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Richard Delorme
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
| |
Collapse
|
8
|
Kuwako KI, Suzuki S. Diverse Roles of the LINC Complex in Cellular Function and Disease in the Nervous System. Int J Mol Sci 2024; 25:11525. [PMID: 39519078 PMCID: PMC11545860 DOI: 10.3390/ijms252111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex, which spans the nuclear envelope, physically connects nuclear components to the cytoskeleton and plays a pivotal role in various cellular processes, including nuclear positioning, cell migration, and chromosomal configuration. Studies have revealed that the LINC complex is essential for different aspects of the nervous system, particularly during development. The significance of the LINC complex in neural lineage cells is further corroborated by the fact that mutations in genes associated with the LINC complex have been implicated in several neurological diseases, including neurodegenerative and psychiatric disorders. In this review, we aimed to summarize the expanding knowledge of LINC complex-related neuronal functions and associated neurological diseases.
Collapse
Affiliation(s)
- Ken-ichiro Kuwako
- Department of Neural and Muscular Physiology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi 693-8501, Shimane, Japan
| | | |
Collapse
|
9
|
Liu X, Wang W. Gating mechanism of the human α1β GlyR by glycine. Structure 2024; 32:1621-1631.e3. [PMID: 39146932 PMCID: PMC11562016 DOI: 10.1016/j.str.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/20/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
Glycine receptors (GlyRs) are members of the Cys-loop receptors that constitute a major portion of mammalian neurotransmitter receptors. Recent resolution of heteromeric GlyR structures in multiple functional states raised fundamental questions regarding the gating mechanism of GlyR, and generally the Cys-loop family receptors. Here, we characterized in detail equilibrium properties as well as the transition kinetics between functional states. We show that, while all allosteric sites bind cooperatively to glycine, occupation of 2 sites at the α-α interfaces is sufficient for activation and necessary for high-efficacy gating. Differential glycine concentration dependence of desensitization rate, extent, and its recovery suggests separate but concerted roles of ligand-binding and ionophore reorganization. Based on these observations and available structural information, we developed a quantitative gating model that accurately predicts both equilibrium and kinetical properties throughout the glycine gating cycle. This model likely applies generally to the Cys-loop receptors and informs on pharmaceutical endeavors.
Collapse
Affiliation(s)
- Xiaofen Liu
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weiwei Wang
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
10
|
Shin T, Song JHT, Kosicki M, Kenny C, Beck SG, Kelley L, Antony I, Qian X, Bonacina J, Papandile F, Gonzalez D, Scotellaro J, Bushinsky EM, Andersen RE, Maury E, Pennacchio LA, Doan RN, Walsh CA. Rare variation in non-coding regions with evolutionary signatures contributes to autism spectrum disorder risk. CELL GENOMICS 2024; 4:100609. [PMID: 39019033 PMCID: PMC11406188 DOI: 10.1016/j.xgen.2024.100609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/11/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024]
Abstract
Little is known about the role of non-coding regions in the etiology of autism spectrum disorder (ASD). We examined three classes of non-coding regions: human accelerated regions (HARs), which show signatures of positive selection in humans; experimentally validated neural VISTA enhancers (VEs); and conserved regions predicted to act as neural enhancers (CNEs). Targeted and whole-genome analysis of >16,600 samples and >4,900 ASD probands revealed that likely recessive, rare, inherited variants in HARs, VEs, and CNEs substantially contribute to ASD risk in probands whose parents share ancestry, which enriches for recessive contributions, but modestly contribute, if at all, in simplex family structures. We identified multiple patient variants in HARs near IL1RAPL1 and in VEs near OTX1 and SIM1 and showed that they change enhancer activity. Our results implicate both human-evolved and evolutionarily conserved non-coding regions in ASD risk and suggest potential mechanisms of how regulatory changes can modulate social behavior.
Collapse
Affiliation(s)
- Taehwan Shin
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Janet H T Song
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Michael Kosicki
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Connor Kenny
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Samantha G Beck
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Lily Kelley
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA
| | - Irene Antony
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Xuyu Qian
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Julieta Bonacina
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA
| | - Frances Papandile
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Dilenny Gonzalez
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Julia Scotellaro
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Evan M Bushinsky
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Rebecca E Andersen
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Eduardo Maury
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Len A Pennacchio
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ryan N Doan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA.
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Wang W, Liu X. Mechanism of human α3β GlyR modulation in inflammatory pain and 2, 6-DTBP interaction. RESEARCH SQUARE 2024:rs.3.rs-4402878. [PMID: 39149480 PMCID: PMC11326354 DOI: 10.21203/rs.3.rs-4402878/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
α3β glycine receptor (GlyR) is a subtype of the GlyRs that belongs to the Cys-loop receptor superfamily. It is a target for non-psychoactive pain control drug development due to its high expression in the spinal dorsal horn and indispensable roles in pain sensation. α3β GlyR activity is inhibited by a phosphorylation in the large internal M3/M4 loop of α3 through the prostaglandin E2 (PGE2) pathway, which can be reverted by a small molecule analgesic, 2, 6-DTBP. However, the mechanism of regulation by phosphorylation or 2, 6-DTBP is unknown. Here we show M3/M4 loop compaction through phosphorylation and 2, 6-DTBP binding, which in turn changes the local environment and rearranges ion conduction pore conformation to modulate α3β GlyR activity. We resolved glycine-bound structures of α3β GlyR with and without phosphorylation, as well as in the presence of 2, 6-DTBP and found no change in functional states upon phosphorylation, but transition to an asymmetric super open pore by 2, 6-DTBP binding. Single-molecule Forster resonance energy transfer (smFRET) experiment shows compaction of M3/M4 loop towards the pore upon phosphorylation, and further compaction by 2, 6-DTBP. Our results reveal a localized interaction model where M3/M4 loop modulate GlyR function through physical proximation. This regulation mechanism should inform on pain medication development targeting GlyRs. Our strategy allowed investigation of how post-translational modification of an unstructured loop modulate channel conduction, which we anticipate will be applicable to intrinsically disordered loops ubiquitously found in ion channels.
Collapse
Affiliation(s)
- Weiwei Wang
- University of Texas Southwestern Medical Center
| | - Xiaofen Liu
- University of Texas Southwestern Medical Center
| |
Collapse
|
12
|
van der Westhuizen ET. Single nucleotide variations encoding missense mutations in G protein-coupled receptors may contribute to autism. Br J Pharmacol 2024; 181:2158-2181. [PMID: 36787962 DOI: 10.1111/bph.16057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/21/2022] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Autism is a neurodevelopmental condition with a range of symptoms that vary in intensity and severity from person to person. Genetic sequencing has identified thousands of genes containing mutations in autistic individuals, which may contribute to the development of autistic symptoms. Several of these genes encode G protein-coupled receptors (GPCRs), which are cell surface expressed proteins that transduce extracellular messages to the intracellular space. Mutations in GPCRs can impact their function, resulting in aberrant signalling within cells and across neurotransmitter systems in the brain. This review summarises the current knowledge on autism-associated single nucleotide variations encoding missense mutations in GPCRs and the impact of these genetic mutations on GPCR function. For some autism-associated mutations, changes in GPCR expression levels, ligand affinity, potency and efficacy have been observed. However, for many the functional consequences remain unknown. Thus, further work to characterise the functional impacts of the genetically identified mutations is required. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
|
13
|
Harrington CN, Morales A, Bernstein JA, Calderwood L. Implications of Provider Specialty, Test Type, and Demographic Factors on Genetic Testing Outcomes for Patients with Autism Spectrum Disorder. J Autism Dev Disord 2024:10.1007/s10803-024-06423-1. [PMID: 38858309 DOI: 10.1007/s10803-024-06423-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/12/2024]
Abstract
A minority of patients with autism spectrum disorder (ASD) are offered genetic testing by their providers or referred for genetics evaluation despite published guidelines and consensus statements supporting genetics-informed care for this population. This study aimed to investigate the ordering habits of providers of different specialties and to additionally assess the diagnostic utility of genetic testing by test type, patient sex, and race and ethnicity. We retrospectively analyzed data associated with orders for the indication of ASD from a large clinical laboratory over 6 years (2017-2022). Geneticists and neurologists were more likely than other specialists to order exome sequencing and neurodevelopmental (NDD) panel testing while other providers were more likely to order chromosomal microarray (CMA) and Fragile X testing. Exome had the highest diagnostic yield (24.5%), followed by NDD panel (6.4%), CMA (6.2%), and Fragile X testing (0.4%). Females were 1.4x (95% CI: 1.2-1.7) more likely than males to receive a genetic diagnosis. However, for Fragile X, males had a higher diagnostic yield than females (0.4% vs 0.2%). Our findings highlight the need to enable non-genetics providers to order comprehensive genetic testing or promote referral to genetics following negative CMA and/or Fragile X testing. Our data supports that ASD testing should include exome, CMA, and other clinically indicated tests, as first-tier tests, with the consideration of panel testing, in cases where exome sequencing is not an option. Lastly, our study helps to inform expectations for genetic testing yield by test type and patient presentation.
Collapse
Affiliation(s)
- Caitlin N Harrington
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Medicine Children's Health, Stanford, CA, USA.
| | - Ana Morales
- Translational Health Sciences Program, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Jonathan A Bernstein
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Medicine Children's Health, Stanford, CA, USA
| | - Laurel Calderwood
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Medicine Children's Health, Stanford, CA, USA
| |
Collapse
|
14
|
Dolu MH, Öz Tunçer G, Akça Ü, Aydın S, Bahadir O, Sezer Ö, Aksoy A, Taşdemir HA. Hyperekplexia: A Single-Center Experience. J Child Neurol 2024; 39:260-267. [PMID: 39051604 DOI: 10.1177/08830738241263243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
BACKGROUND Hyperekplexia is a rare neurogenetic disorder that is classically characterized by an exaggerated startle response to sudden unexpected stimuli. This study aimed to determine clinical and genetic characteristics of our patients with hyperekplexia. METHODS The age of onset and diagnosis, familial and perinatal history, clinical course, complications, metabolic screening tests, magnetic resonance imaging (MRI), medications, neuropsychometric evaluations, and gene mutations of patients diagnosed with hyperekplexia were reviewed retrospectively. RESULTS All hyperekplexia patients had displayed neonatal excessive startle response and muscle stiffness, which we accepted as the major form of the disorder. Sixteen patients had mutations in genes associated with hyperekplexia. The ages at clinical diagnosis and genetic confirmation ranged from newborn to 16 years old and from 2.5 to 19 years, respectively. Nine patients (56.25%) were initially misdiagnosed with epilepsy. Seven patients (43.75%) carried a diagnosis of intellectual disability, defined here as a total IQ <80. Delayed gross motor development was detected in 4 patients (25%), and speech delay was reported in 3 (18.75%). Mutations in GLRA1 (NM_000171.4) and SLC6A5 (NM_004211.5) were identified in 13 (81.25%) and 3 patients (18.75%), respectively. Fifteen of the 16 patients (93.75%) showed autosomal recessive inheritance. Only 1 patient (6.25%) showed autosomal dominant inheritance. CONCLUSION Although hyperekplexia is a potentially treatable disease, it can be complicated by delayed speech and/or motor acquisition and also by intellectual disability. This study shows that hyperekplexia is not always a benign condition and that all patients diagnosed with hyperekplexia should be evaluated for neuropsychiatric status and provided with genetic testing.
Collapse
Affiliation(s)
- Merve Hilal Dolu
- Department of Pediatric Neurology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Gökçen Öz Tunçer
- Department of Pediatric Neurology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ünal Akça
- Department of Pediatric Neurology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Seren Aydın
- Department of Pediatric Neurology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Oğuzhan Bahadir
- Department of Medical Genetics, Samsun Education and Research Hospital, Samsun, Turkey
| | - Özlem Sezer
- Department of Medical Genetics, Samsun Education and Research Hospital, Samsun, Turkey
| | - Ayşe Aksoy
- Department of Pediatric Neurology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Haydar Ali Taşdemir
- Department of Pediatric Neurology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
15
|
Emani PS, Liu JJ, Clarke D, Jensen M, Warrell J, Gupta C, Meng R, Lee CY, Xu S, Dursun C, Lou S, Chen Y, Chu Z, Galeev T, Hwang A, Li Y, Ni P, Zhou X, Bakken TE, Bendl J, Bicks L, Chatterjee T, Cheng L, Cheng Y, Dai Y, Duan Z, Flaherty M, Fullard JF, Gancz M, Garrido-Martín D, Gaynor-Gillett S, Grundman J, Hawken N, Henry E, Hoffman GE, Huang A, Jiang Y, Jin T, Jorstad NL, Kawaguchi R, Khullar S, Liu J, Liu J, Liu S, Ma S, Margolis M, Mazariegos S, Moore J, Moran JR, Nguyen E, Phalke N, Pjanic M, Pratt H, Quintero D, Rajagopalan AS, Riesenmy TR, Shedd N, Shi M, Spector M, Terwilliger R, Travaglini KJ, Wamsley B, Wang G, Xia Y, Xiao S, Yang AC, Zheng S, Gandal MJ, Lee D, Lein ES, Roussos P, Sestan N, Weng Z, White KP, Won H, Girgenti MJ, Zhang J, Wang D, Geschwind D, Gerstein M. Single-cell genomics and regulatory networks for 388 human brains. Science 2024; 384:eadi5199. [PMID: 38781369 PMCID: PMC11365579 DOI: 10.1126/science.adi5199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
Single-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet little is understood about how genetic variants influence cell-level gene expression. Addressing this, we uniformly processed single-nuclei, multiomics datasets into a resource comprising >2.8 million nuclei from the prefrontal cortex across 388 individuals. For 28 cell types, we assessed population-level variation in expression and chromatin across gene families and drug targets. We identified >550,000 cell type-specific regulatory elements and >1.4 million single-cell expression quantitative trait loci, which we used to build cell-type regulatory and cell-to-cell communication networks. These networks manifest cellular changes in aging and neuropsychiatric disorders. We further constructed an integrative model accurately imputing single-cell expression and simulating perturbations; the model prioritized ~250 disease-risk genes and drug targets with associated cell types.
Collapse
Affiliation(s)
- Prashant S Emani
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Jason J Liu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Declan Clarke
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Matthew Jensen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Jonathan Warrell
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Chirag Gupta
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ran Meng
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Che Yu Lee
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Siwei Xu
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Cagatay Dursun
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Shaoke Lou
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yuhang Chen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Zhiyuan Chu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Timur Galeev
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Ahyeon Hwang
- Department of Computer Science, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology, University of California, Irvine, CA 92697, USA
| | - Yunyang Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Computer Science, Yale University, New Haven, CT 06520, USA
| | - Pengyu Ni
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Xiao Zhou
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lucy Bicks
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Tanima Chatterjee
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Yuyan Cheng
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Dai
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Ziheng Duan
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | | | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Gancz
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Diego Garrido-Martín
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona 08028, Spain
| | - Sophia Gaynor-Gillett
- Tempus Labs, Chicago, IL 60654, USA
- Department of Biology, Cornell College, Mount Vernon, IA 52314, USA
| | - Jennifer Grundman
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Natalie Hawken
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ella Henry
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY 10468, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Ao Huang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Yunzhe Jiang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Ting Jin
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, CA 90095, USA
| | - Saniya Khullar
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jianyin Liu
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Junhao Liu
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Shuang Liu
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Samantha Mazariegos
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jill Moore
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | | | - Eric Nguyen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Nishigandha Phalke
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Milos Pjanic
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Henry Pratt
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Diana Quintero
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | - Tiernon R Riesenmy
- Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA
| | - Nicole Shedd
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | | | | | - Rosemarie Terwilliger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Brie Wamsley
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Gaoyuan Wang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yan Xia
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Shaohua Xiao
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Andrew C Yang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Suchen Zheng
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Michael J Gandal
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles CA, 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Donghoon Lee
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY 10468, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Zhiping Weng
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Kevin P White
- Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06520, USA
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Jing Zhang
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Daifeng Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daniel Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, CA 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Computer Science, Yale University, New Haven, CT 06520, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Informatics & Data Science, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
16
|
Van Hirtum LDFM, Van Damme T, Van Hove JLK, Steyaert JG. The behavioral phenotype of children and adolescents with attenuated non-ketotic hyperglycinemia, intermediate to good subtype. Orphanet J Rare Dis 2024; 19:150. [PMID: 38589924 PMCID: PMC11003182 DOI: 10.1186/s13023-024-03172-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/30/2024] [Indexed: 04/10/2024] Open
Abstract
AIM We aim to describe the behavioral phenotype of children and adolescents with the good to intermediate attenuated form of non-ketotic hyperglycinemia (NKH) and to explore associations between the behavioral phenotype and age, sex, plasma glycine levels and drug treatment. METHOD Parents of children with attenuated NKH completed questionnaires assessing maladaptive behavior, adaptive behavior, social communication, speech/language development and motor development in addition to demographic and medical questions. RESULTS AND INTERPRETATION Twelve children, age 6 to 21y, functioned at mild to severe intellectual disability levels. Their speech/language development was in line with their developmental quotient. Relative to their intellectual functioning, their motor development and communication were weaker in comparison to their general development. Their adaptive behavior, however, appeared a relative strength. There was no evidence for autism spectrum disorder occurring more frequently than expected, rather social skills, except for communication, were rated as a relative strength. Maladaptive behaviors with ADHD-like characteristics were present in more than two thirds of children. Maladaptive behaviors were significantly related to female sex and to taking dextromethorphan, but no significant relation between plasma glycine levels and behavior was found. Future studies will need to evaluate causality in the observed relation between dextromethorphan use and maladaptive behaviors. Clinicians should reconsider the benefit of dextromethorphan when presented with disruptive behaviors in children with attenuated NKH.
Collapse
Affiliation(s)
- Liesbet D F M Van Hirtum
- Department of Child- and Adolescent Psychiatry, KU Leuven, Leuven, Belgium.
- Ankerpunt vzw, Leuven, Belgium.
| | - Tine Van Damme
- Department of Child Psychiatry, UPC Z.Org, Leuven, Belgium
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Johan L K Van Hove
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, Colorado, USA
| | - Jean G Steyaert
- Department of Child- and Adolescent Psychiatry, KU Leuven, Leuven, Belgium
- Leuven Autism Research Consortium, Leuven, Belgium
| |
Collapse
|
17
|
Emani PS, Liu JJ, Clarke D, Jensen M, Warrell J, Gupta C, Meng R, Lee CY, Xu S, Dursun C, Lou S, Chen Y, Chu Z, Galeev T, Hwang A, Li Y, Ni P, Zhou X, Bakken TE, Bendl J, Bicks L, Chatterjee T, Cheng L, Cheng Y, Dai Y, Duan Z, Flaherty M, Fullard JF, Gancz M, Garrido-Martín D, Gaynor-Gillett S, Grundman J, Hawken N, Henry E, Hoffman GE, Huang A, Jiang Y, Jin T, Jorstad NL, Kawaguchi R, Khullar S, Liu J, Liu J, Liu S, Ma S, Margolis M, Mazariegos S, Moore J, Moran JR, Nguyen E, Phalke N, Pjanic M, Pratt H, Quintero D, Rajagopalan AS, Riesenmy TR, Shedd N, Shi M, Spector M, Terwilliger R, Travaglini KJ, Wamsley B, Wang G, Xia Y, Xiao S, Yang AC, Zheng S, Gandal MJ, Lee D, Lein ES, Roussos P, Sestan N, Weng Z, White KP, Won H, Girgenti MJ, Zhang J, Wang D, Geschwind D, Gerstein M. Single-cell genomics and regulatory networks for 388 human brains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585576. [PMID: 38562822 PMCID: PMC10983939 DOI: 10.1101/2024.03.18.585576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Single-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet, little is understood about how genetic variants influence cell-level gene expression. Addressing this, we uniformly processed single-nuclei, multi-omics datasets into a resource comprising >2.8M nuclei from the prefrontal cortex across 388 individuals. For 28 cell types, we assessed population-level variation in expression and chromatin across gene families and drug targets. We identified >550K cell-type-specific regulatory elements and >1.4M single-cell expression-quantitative-trait loci, which we used to build cell-type regulatory and cell-to-cell communication networks. These networks manifest cellular changes in aging and neuropsychiatric disorders. We further constructed an integrative model accurately imputing single-cell expression and simulating perturbations; the model prioritized ~250 disease-risk genes and drug targets with associated cell types.
Collapse
Affiliation(s)
- Prashant S Emani
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jason J Liu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Declan Clarke
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Matthew Jensen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jonathan Warrell
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Chirag Gupta
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Ran Meng
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Che Yu Lee
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Siwei Xu
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Cagatay Dursun
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Shaoke Lou
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Yuhang Chen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Zhiyuan Chu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
| | - Timur Galeev
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Ahyeon Hwang
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
- Mathematical, Computational and Systems Biology, University of California, Irvine, CA, 92697, USA
| | - Yunyang Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Department of Computer Science, Yale University, New Haven, CT, 06520, USA
| | - Pengyu Ni
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Xiao Zhou
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | | | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lucy Bicks
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Tanima Chatterjee
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | | | - Yuyan Cheng
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Opthalmology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yi Dai
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Ziheng Duan
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | | | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael Gancz
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Diego Garrido-Martín
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Sophia Gaynor-Gillett
- Tempus Labs, Inc., Chicago, IL, 60654, USA
- Department of Biology, Cornell College, Mount Vernon, IA, 52314, USA
| | - Jennifer Grundman
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Natalie Hawken
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Ella Henry
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Ao Huang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
| | - Yunzhe Jiang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Ting Jin
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, CA, 90095, USA
| | - Saniya Khullar
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jianyin Liu
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Junhao Liu
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Shuang Liu
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale University, New Haven, CT, 06510, USA
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Michael Margolis
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Samantha Mazariegos
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Jill Moore
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | | | - Eric Nguyen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Nishigandha Phalke
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Milos Pjanic
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Henry Pratt
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Diana Quintero
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | | | - Tiernon R Riesenmy
- Department of Statistics & Data Science, Yale University, New Haven, CT, 06520, USA
| | - Nicole Shedd
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Manman Shi
- Tempus Labs, Inc., Chicago, IL, 60654, USA
| | | | - Rosemarie Terwilliger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | | | - Brie Wamsley
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Gaoyuan Wang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Yan Xia
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Shaohua Xiao
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Andrew C Yang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Suchen Zheng
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Michael J Gandal
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Donghoon Lee
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, 98109, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University, New Haven, CT, 06510, USA
| | - Zhiping Weng
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Kevin P White
- Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06520, USA
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Jing Zhang
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Daifeng Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Daniel Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Department of Computer Science, Yale University, New Haven, CT, 06520, USA
- Department of Statistics & Data Science, Yale University, New Haven, CT, 06520, USA
- Department of Biomedical Informatics & Data Science, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
18
|
Al-Sarraj Y, Taha RZ, Al-Dous E, Ahram D, Abbasi S, Abuazab E, Shaath H, Habbab W, Errafii K, Bejaoui Y, AlMotawa M, Khattab N, Aqel YA, Shalaby KE, Al-Ansari A, Kambouris M, Abouzohri A, Ghazal I, Tolfat M, Alshaban F, El-Shanti H, Albagha OME. The genetic landscape of autism spectrum disorder in the Middle Eastern population. Front Genet 2024; 15:1363849. [PMID: 38572415 PMCID: PMC10987745 DOI: 10.3389/fgene.2024.1363849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction: Autism spectrum disorder (ASD) is characterized by aberrations in social interaction and communication associated with repetitive behaviors and interests, with strong clinical heterogeneity. Genetic factors play an important role in ASD, but about 75% of ASD cases have an undetermined genetic risk. Methods: We extensively investigated an ASD cohort made of 102 families from the Middle Eastern population of Qatar. First, we investigated the copy number variations (CNV) contribution using genome-wide SNP arrays. Next, we employed Next Generation Sequencing (NGS) to identify de novo or inherited variants contributing to the ASD etiology and its associated comorbid conditions in families with complete trios (affected child and the parents). Results: Our analysis revealed 16 CNV regions located in genomic regions implicated in ASD. The analysis of the 88 ASD cases identified 41 genes in 39 ASD subjects with de novo (n = 24) or inherited variants (n = 22). We identified three novel de novo variants in new candidate genes for ASD (DTX4, ARMC6, and B3GNT3). Also, we have identified 15 de novo variants in genes that were previously implicated in ASD or related neurodevelopmental disorders (PHF21A, WASF1, TCF20, DEAF1, MED13, CREBBP, KDM6B, SMURF1, ADNP, CACNA1G, MYT1L, KIF13B, GRIA2, CHM, and KCNK9). Additionally, we defined eight novel recessive variants (RYR2, DNAH3, TSPYL2, UPF3B KDM5C, LYST, and WNK3), four of which were X-linked. Conclusion: Despite the ASD multifactorial etiology that hinders ASD genetic risk discovery, the number of identified novel or known putative ASD genetic variants was appreciable. Nevertheless, this study represents the first comprehensive characterization of ASD genetic risk in Qatar's Middle Eastern population.
Collapse
Affiliation(s)
- Yasser Al-Sarraj
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Rowaida Z. Taha
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Eman Al-Dous
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Dina Ahram
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, United States
| | - Somayyeh Abbasi
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Eman Abuazab
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Hibah Shaath
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Wesal Habbab
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Khaoula Errafii
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Yosra Bejaoui
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Maryam AlMotawa
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Namat Khattab
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Yasmin Abu Aqel
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Karim E. Shalaby
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Amina Al-Ansari
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Marios Kambouris
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Pathology & Laboratory Medicine Department, Genetics Division, Sidra Medicine, Doha, Qatar
| | - Adel Abouzohri
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Iman Ghazal
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Mohammed Tolfat
- The Shafallah Center for Children with Special Needs, Doha, Qatar
| | - Fouad Alshaban
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Hatem El-Shanti
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Omar M. E. Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
19
|
Li LY, Imai A, Izumi H, Inoue R, Koshidaka Y, Takao K, Mori H, Yoshida T. Differential contribution of canonical and noncanonical NLGN3 pathways to early social development and memory performance. Mol Brain 2024; 17:16. [PMID: 38475840 PMCID: PMC10935922 DOI: 10.1186/s13041-024-01087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Neuroligin (NLGN) 3 is a postsynaptic cell adhesion protein organizing synapse formation through two different types of transsynaptic interactions, canonical interaction with neurexins (NRXNs) and a recently identified noncanonical interaction with protein tyrosine phosphatase (PTP) δ. Although, NLGN3 gene is known as a risk gene for neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID), the pathogenic contribution of the canonical NLGN3-NRXN and noncanonical NLGN3-PTPδ pathways to these disorders remains elusive. In this study, we utilized Nlgn3 mutant mice selectively lacking the interaction with either NRXNs or PTPδ and investigated their social and memory performance. Neither Nlgn3 mutants showed any social cognitive deficiency in the social novelty recognition test. However, the Nlgn3 mutant mice lacking the PTPδ pathway exhibited significant decline in the social conditioned place preference (sCPP) at the juvenile stage, suggesting the involvement of the NLGN3-PTPδ pathway in the regulation of social motivation and reward. In terms of learning and memory, disrupting the canonical NRXN pathway attenuated contextual fear conditioning while disrupting the noncanonical NLGN3-PTPδ pathway enhanced it. Furthermore, disruption of the NLGN3-PTPδ pathway negatively affected the remote spatial reference memory in the Barnes maze test. These findings highlight the differential contributions of the canonical NLGN3-NRXN and noncanonical NLGN3-PTPδ synaptogenic pathways to the regulation of higher order brain functions associated with ASD and ID.
Collapse
Affiliation(s)
- Lin-Yu Li
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Ayako Imai
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Hironori Izumi
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Ran Inoue
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Yumie Koshidaka
- Division of Experimental Animal Resource and Development, Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Keizo Takao
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
- Division of Experimental Animal Resource and Development, Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan.
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
20
|
Sun W, Liu Z, Jiang X, Chen MB, Dong H, Liu J, Südhof TC, Quake SR. Spatial transcriptomics reveal neuron-astrocyte synergy in long-term memory. Nature 2024; 627:374-381. [PMID: 38326616 PMCID: PMC10937396 DOI: 10.1038/s41586-023-07011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024]
Abstract
Memory encodes past experiences, thereby enabling future plans. The basolateral amygdala is a centre of salience networks that underlie emotional experiences and thus has a key role in long-term fear memory formation1. Here we used spatial and single-cell transcriptomics to illuminate the cellular and molecular architecture of the role of the basolateral amygdala in long-term memory. We identified transcriptional signatures in subpopulations of neurons and astrocytes that were memory-specific and persisted for weeks. These transcriptional signatures implicate neuropeptide and BDNF signalling, MAPK and CREB activation, ubiquitination pathways, and synaptic connectivity as key components of long-term memory. Notably, upon long-term memory formation, a neuronal subpopulation defined by increased Penk and decreased Tac expression constituted the most prominent component of the memory engram of the basolateral amygdala. These transcriptional changes were observed both with single-cell RNA sequencing and with single-molecule spatial transcriptomics in intact slices, thereby providing a rich spatial map of a memory engram. The spatial data enabled us to determine that this neuronal subpopulation interacts with adjacent astrocytes, and functional experiments show that neurons require interactions with astrocytes to encode long-term memory.
Collapse
Affiliation(s)
- Wenfei Sun
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhihui Liu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Xian Jiang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle B Chen
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Hua Dong
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathan Liu
- Chan Zuckerberg Initiative, Redwood City, CA, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Initiative, Redwood City, CA, USA.
| |
Collapse
|
21
|
Hamzic E, Spahic L, Pistoljevic N, Dzanko E, Pasic S, Kadric L, Serdarevic F, Hajdarpasic A. Exploratory genetic analysis in children with autism spectrum disorder and other developmental disorders using whole exome sequencing. BIOMOLECULES & BIOMEDICINE 2024; 24:888-896. [PMID: 38421723 PMCID: PMC11293238 DOI: 10.17305/bb.2024.10221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Developmental disorders (DDs), such as autism spectrum disorder (ASD), incorporate various conditions; once identified, further diagnostics are necessary to specify their type and severity. The aim of this exploratory study was to identify genetic variants that can help differentiate ASD early from other DDs. We selected 36 children (mean age 60.1 months) with DDs using Developmental Behavioral Scales (DBS) through "EDUS-Education for All", an organization providing services for children with developmental disorders in Bosnia and Herzegovina. We further rated children's autistic traits with the preschool version of the Childhood Autism Rating Scale, second edition (CARS-II). We defined ASD if scores were >25.5 and other DDs if scores were <25.5. Diagnosis of ASD and DD were independently confirmed by child psychiatrists. Whole exome sequencing (WES) was performed by Veritas Genetics, USA, using Illumina NovaSeq 6000 (Illumina Inc., San Diego, CA, USA) next-generation sequencing (NGS) apparatus. We tested genetic association by applying SKAT-O, which optimally combines the standard Sequence Kernel Association Test (SKAT) and burden tests to identify rare variants associated with complex traits in samples of limited power. The analysis yielded seven genes (DSE, COL10A1, DLK2, CSMD1, FAM47E, PPIA, PYDC2) to potentially differentiate observed phenotypic characteristics between our cohort participants with ASD and other DDs. Our exploratory study in a small sample of participants with ASD and other DDs contributed to gene discovery in differentiating ASD from DDs. A replication study is needed in a larger sample to confirm our results.
Collapse
Affiliation(s)
- Edin Hamzic
- Biocomputix, Sarajevo, Bosnia and Herzegovina
- BioCertica, Paarl, South Africa
| | - Lemana Spahic
- International Burch University, Sarajevo, Bosnia and Herzegovina
| | | | - Eldin Dzanko
- Education for All (EDUS), Sarajevo, Bosnia and Herzegovina
| | - Sanela Pasic
- Department of Economics and Business, Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| | - Lejla Kadric
- Department of Medical Biology and Genetics, Sarajevo Medical School, Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| | - Fadila Serdarevic
- Department of Epidemiology, Sarajevo Medical School, Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
- Department of Child and Adolescent Psychiatry, Erasmus MC, Rotterdam, The Netherlands
| | - Aida Hajdarpasic
- Department of Medical Biology and Genetics, Sarajevo Medical School, Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
22
|
Leung YY, Naj AC, Chou YF, Valladares O, Schmidt M, Hamilton-Nelson K, Wheeler N, Lin H, Gangadharan P, Qu L, Clark K, Kuzma AB, Lee WP, Cantwell L, Nicaretta H, Haines J, Farrer L, Seshadri S, Brkanac Z, Cruchaga C, Pericak-Vance M, Mayeux RP, Bush WS, Destefano A, Martin E, Schellenberg GD, Wang LS. Human whole-exome genotype data for Alzheimer's disease. Nat Commun 2024; 15:684. [PMID: 38263370 PMCID: PMC10805795 DOI: 10.1038/s41467-024-44781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
The heterogeneity of the whole-exome sequencing (WES) data generation methods present a challenge to a joint analysis. Here we present a bioinformatics strategy for joint-calling 20,504 WES samples collected across nine studies and sequenced using ten capture kits in fourteen sequencing centers in the Alzheimer's Disease Sequencing Project. The joint-genotype called variant-called format (VCF) file contains only positions within the union of capture kits. The VCF was then processed specifically to account for the batch effects arising from the use of different capture kits from different studies. We identified 8.2 million autosomal variants. 96.82% of the variants are high-quality, and are located in 28,579 Ensembl transcripts. 41% of the variants are intronic and 1.8% of the variants are with CADD > 30, indicating they are of high predicted pathogenicity. Here we show our new strategy can generate high-quality data from processing these diversely generated WES samples. The improved ability to combine data sequenced in different batches benefits the whole genomics research community.
Collapse
Affiliation(s)
- Yuk Yee Leung
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Adam C Naj
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi-Fan Chou
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Otto Valladares
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Schmidt
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Kara Hamilton-Nelson
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Nicholas Wheeler
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Honghuang Lin
- Department of Medicine, UMass Chan Medical School, Boston, MA, USA
| | - Prabhakaran Gangadharan
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Liming Qu
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kaylyn Clark
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda B Kuzma
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wan-Ping Lee
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Cantwell
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heather Nicaretta
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lindsay Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Sudha Seshadri
- Boston University School of Medicine, Boston, MA, USA
- The Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Zoran Brkanac
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Carlos Cruchaga
- Washington University School of Medicine, St. Louis, MO, USA
| | - Margaret Pericak-Vance
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Richard P Mayeux
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center, Columbia University and the New York Presbyterian Hospital, New York, NY, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Anita Destefano
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Eden Martin
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Gerard D Schellenberg
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Li-San Wang
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Konstantinidis G, Tavernarakis N. In Vivo Monitoring of Nucleophagy in Caenorhabditis elegans. Methods Mol Biol 2024; 2845:67-77. [PMID: 39115658 DOI: 10.1007/978-1-0716-4067-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The autophagy-lysosomal pathway enables the controlled degradation of cellular contents. Nucleophagy is the selective autophagic recycling of nuclear components upon delivery to the lysosome. Although methods to monitor and quantify autophagy as well as selective types of autophagy have been developed and implemented in cells and in vivo, methods monitoring nucleophagy remain scarce. Here, we describe a procedure to monitor the autophagic engagement of an endogenous nuclear envelope component, i.e., ANC-1, the nematode homologue of the mammalian Nesprins in vivo, utilizing super-resolution microscopy.
Collapse
Affiliation(s)
- Georgios Konstantinidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece.
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece.
| |
Collapse
|
24
|
Soueid J, Hamze Z, Bedran J, Chahrour M, Boustany RM. A novel autism-associated UBLCP1 mutation impacts proteasome regulation/activity. Transl Psychiatry 2023; 13:404. [PMID: 38129378 PMCID: PMC10739866 DOI: 10.1038/s41398-023-02702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The landscape of autism spectrum disorder (ASD) in Lebanon is unique because of high rates of consanguinity, shared ancestry, and increased remote consanguinity. ASD prevalence in Lebanon is 1 in 68 with a male-to-female ratio of 2:1. This study aims to investigate the impact of an inherited deletion in UBLCP1 (Ubiquitin-Like Domain-Containing CTD Phosphatase 1) on the ubiquitin-proteasome system (UPS) and proteolysis. Whole exome sequencing in a Lebanese family with ASD without pathogenic copy number variations (CNVs) uncovered a deletion in UBLCP1. Functional evaluation of the identified variant is described in fibroblasts from the affected. The deletion in UBLCP1 exon 10 (g.158,710,261CAAAG > C) generates a premature stop codon interrupting the phosphatase domain and is predicted as pathogenic. It is absent from databases of normal variation worldwide and in Lebanon. Wild-type UBLCP1 is widely expressed in mouse brains. The mutation results in decreased UBLCP1 protein expression in patient-derived fibroblasts from the autistic patient compared to controls. The truncated UBLCP1 protein results in increased proteasome activity decreased ubiquitinated protein levels, and downregulation in expression of other proteasome subunits in samples from the affected compared to controls. Inhibition of the proteasome by using MG132 in proband cells reverses alterations in gene expression due to the restoration of protein levels of the common transcription factor, NRF1. Finally, treatment with gentamicin, which promotes premature termination codon read-through, restores UBLCP1 expression and function. Discovery of an ASD-linked mutation in UBLCP1 leading to overactivation of cell proteolysis is reported. This, in turn, leads to dysregulation of proteasome subunit transcript levels as a compensatory response.
Collapse
Affiliation(s)
- Jihane Soueid
- Department of Biochemistry and Molecular Genetics, American university of Beirut, Beirut, Lebanon
| | - Zeinab Hamze
- Department of Biochemistry and Molecular Genetics, American university of Beirut, Beirut, Lebanon
| | - Joe Bedran
- Department of Biochemistry and Molecular Genetics, American university of Beirut, Beirut, Lebanon
| | - Maria Chahrour
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rose-Mary Boustany
- Department of Biochemistry and Molecular Genetics, American university of Beirut, Beirut, Lebanon.
- Departments of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center Special Kids Clinic, Neurogenetics Program and Division of Pediatric Neurology, Beirut, Lebanon.
| |
Collapse
|
25
|
Cho CH, Deyneko IV, Cordova-Martinez D, Vazquez J, Maguire AS, Diaz JR, Carbonell AU, Tindi JO, Cui MH, Fleysher R, Molholm S, Lipton ML, Branch CA, Hodgson L, Jordan BA. ANKS1B encoded AIDA-1 regulates social behaviors by controlling oligodendrocyte function. Nat Commun 2023; 14:8499. [PMID: 38129387 PMCID: PMC10739966 DOI: 10.1038/s41467-023-43438-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
Heterozygous deletions in the ANKS1B gene cause ANKS1B neurodevelopmental syndrome (ANDS), a rare genetic disease characterized by autism spectrum disorder (ASD), attention deficit/hyperactivity disorder, and speech and motor deficits. The ANKS1B gene encodes for AIDA-1, a protein that is enriched at neuronal synapses and regulates synaptic plasticity. Here we report an unexpected role for oligodendroglial deficits in ANDS pathophysiology. We show that Anks1b-deficient mouse models display deficits in oligodendrocyte maturation, myelination, and Rac1 function, and recapitulate white matter abnormalities observed in ANDS patients. Selective loss of Anks1b from the oligodendrocyte lineage, but not from neuronal populations, leads to deficits in social preference and sensory reactivity previously observed in a brain-wide Anks1b haploinsufficiency model. Furthermore, we find that clemastine, an antihistamine shown to increase oligodendrocyte precursor cell maturation and central nervous system myelination, rescues deficits in social preference in 7-month-old Anks1b-deficient mice. Our work shows that deficits in social behaviors present in ANDS may originate from abnormal Rac1 activity within oligodendrocytes.
Collapse
Affiliation(s)
- Chang Hoon Cho
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Human Pathobiology and OMNI Reverse Translation, Genentech, Inc., San Francisco, CA, USA
| | - Ilana Vasilisa Deyneko
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dylann Cordova-Martinez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Juan Vazquez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anne S Maguire
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jenny R Diaz
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abigail U Carbonell
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jaafar O Tindi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Min-Hui Cui
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Roman Fleysher
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sophie Molholm
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael L Lipton
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Craig A Branch
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Louis Hodgson
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bryen A Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
26
|
Shnaider TA, Khabarova AA, Morozova KN, Yunusova AM, Yakovleva SA, Chvileva AS, Wolf ER, Kiseleva EV, Grigor'eva EV, Voinova VY, Lagarkova MA, Pomerantseva EA, Musatova EV, Smirnov AV, Smirnova AV, Stoklitskaya DS, Arefieva TI, Larina DA, Nikitina TV, Pristyazhnyuk IE. Ultrastructural Abnormalities in Induced Pluripotent Stem Cell-Derived Neural Stem Cells and Neurons of Two Cohen Syndrome Patients. Cells 2023; 12:2702. [PMID: 38067130 PMCID: PMC10705360 DOI: 10.3390/cells12232702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Cohen syndrome is an autosomal recessive disorder caused by VPS13B (COH1) gene mutations. This syndrome is significantly underdiagnosed and is characterized by intellectual disability, microcephaly, autistic symptoms, hypotension, myopia, retinal dystrophy, neutropenia, and obesity. VPS13B regulates intracellular membrane transport and supports the Golgi apparatus structure, which is critical for neuron formation. We generated induced pluripotent stem cells from two patients with pronounced manifestations of Cohen syndrome and differentiated them into neural stem cells and neurons. Using transmission electron microscopy, we documented multiple new ultrastructural changes associated with Cohen syndrome in the neuronal cells. We discovered considerable disturbances in the structure of some organelles: Golgi apparatus fragmentation and swelling, endoplasmic reticulum structural reorganization, mitochondrial defects, and the accumulation of large autophagosomes with undigested contents. These abnormalities underline the ultrastructural similarity of Cohen syndrome to many neurodegenerative diseases. The cell models that we developed based on patient-specific induced pluripotent stem cells can serve to uncover not only neurodegenerative processes, but the causes of intellectual disability in general.
Collapse
Affiliation(s)
- Tatiana A Shnaider
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anna A Khabarova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Ksenia N Morozova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anastasia M Yunusova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sophia A Yakovleva
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anastasia S Chvileva
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Ekaterina R Wolf
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Elena V Kiseleva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena V Grigor'eva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Viktori Y Voinova
- Clinical Research Institute of Pediatrics Named after Acad. Y.E. Veltischev, Moscow 125412, Russia
- The Mental Health Research Center, Moscow 115522, Russia
| | - Maria A Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | | | | | - Alexander V Smirnov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anna V Smirnova
- Clinical Research Institute of Pediatrics Named after Acad. Y.E. Veltischev, Moscow 125412, Russia
| | | | - Tatiana I Arefieva
- National Medical Research Centre of Cardiology Named after Academician E. I. Chazov., Moscow 121552, Russia
| | - Daria A Larina
- Clinical Research Institute of Pediatrics Named after Acad. Y.E. Veltischev, Moscow 125412, Russia
| | - Tatiana V Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk 634050, Russia
| | - Inna E Pristyazhnyuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
27
|
Rabaya S, Nairat S, Bader K, Herzallah MM, Darwish HM. Iron metabolism in autism spectrum disorder; inference through single nucleotide polymorphisms in key iron metabolism genes. J Neurol Sci 2023; 453:120817. [PMID: 37813049 DOI: 10.1016/j.jns.2023.120817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/11/2023]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental problems with various genetic and environmental components. The ASD diagnosis is based on symptom expression without reliance on any biomarkers. The genetic contributions in ASD remain elusive. Various studies have linked ASD with iron. Since iron plays a crucial role in brain development, neurotransmitter synthesis, neuronal myelination and mitochondrial function, we hypothesized that iron dysregulation in the brain could play a role and contribute to the pathogenesis of ASD. In this study, we investigated single nucleotide polymorphisms in ASD in various iron metabolism genes, including the Transferrin Receptor (TFRC) gene (rs11915082), the Solute Carrier Family 11 Member 2 (SLC11A2) gene (rs1048230 and rs224589), the Solute Carrier Family 40 Member 1 (SLC40A1) gene (rs1439816), and hepcidin antimicrobial peptide (HAMP) gene (rs10421768). We recruited 48 patients with ASD and 88 matched non-ASD controls. Our results revealed a significant difference between ASD and controls in the G allele of the TFRC gene rs11915082, and in the C allele of the SLC40A1 gene rs1439816. In silico analysis demonstrated potential positive role of the indicated genetic variations in ASD development and pathogenesis. These results suggest that specific genetic variations in iron metabolism genes may represent part of early genetic markers for early diagnosis of ASD. A significant effect of SNPs, groups (ASD/control) as well as interaction between SNPs and groups was revealed. Follow-up post hoc tests showed a significant difference between the ASD and control groups in rs11915082 (TFRC gene) and rs1439816 (SLC40A1 gene). Backward conditional logistic regression using both the genotype and allele data showed similar ability in detecting ASD using allel model (Nagelkerke R2 = 0.350 p = 0.967; Variables: rs1439816, rs11915082) compared to genotype model (Nagelkerke R2 = 0.347, p = 0.430; Variables: rs1439816 G, rs1439816 C, rs10421768 A). ROC curve showed 54% sensitivity in detecting ASD compared to 47% for the genotype model. Both models differentiated controls with high accuracy; the allele model had a specificity of 91% compared to 92% for the genotype model. In conclusion, our findings suggest that specific genetic variations in iron metabolism may represent early biomarkers for a diagnosis of ASD. Further research is needed to correlate these markers with specific blood iron indicators and their contribution to brain development and behavior.
Collapse
Affiliation(s)
- Sabha Rabaya
- Department of Health Sciences, Molecular Genetics and Genetic Toxicology Program, Arab American University, Ramallah,Palestine
| | - Sameera Nairat
- Palestinian Neuroscience Initiative, Al-Quds University, Abu Dis, Jerusalem, Palestine
| | - Khaldoun Bader
- Faculty of Public Health, Al-Quds University, Abu Dis, Jerusalem, Palestine
| | - Mohammad M Herzallah
- Palestinian Neuroscience Initiative, Al-Quds University, Abu Dis, Jerusalem, Palestine; Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA.
| | - Hisham M Darwish
- Department of Health Sciences, Molecular Genetics and Genetic Toxicology Program, Arab American University, Ramallah,Palestine; Department of Medical Laboratory Sciences, Faculty ofAllied Medical Sciences, Arab American University, Jenin, Palestine.
| |
Collapse
|
28
|
Liu X, Wang W. Asymmetric gating of a human hetero-pentameric glycine receptor. Nat Commun 2023; 14:6377. [PMID: 37821459 PMCID: PMC10567788 DOI: 10.1038/s41467-023-42051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
Hetero-pentameric Cys-loop receptors constitute a major type of neurotransmitter receptors that enable signal transmission and processing in the nervous system. Despite intense investigations into their working mechanism and pharmaceutical potentials, how neurotransmitters activate these receptors remains unclear due to the lack of high-resolution structural information in the activated open state. Here we report near-atomic resolution structures resolved in digitonin consistent with all principle functional states of the human α1β GlyR, which is a major Cys-loop receptor that mediates inhibitory neurotransmission in the central nervous system of adults. Glycine binding induces cooperative and symmetric structural rearrangements in the neurotransmitter-binding extracellular domain but asymmetrical pore dilation in the transmembrane domain. Symmetric response in the extracellular domain is consistent with electrophysiological data showing cooperative glycine activation and contribution from both α1 and β subunits. A set of functionally essential but differentially charged amino acid residues in the transmembrane domain of the α1 and β subunits explains asymmetric activation. These findings provide a foundation for understanding how the gating of the Cys-loop receptor family members diverges to accommodate specific physiological environments.
Collapse
Affiliation(s)
- Xiaofen Liu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weiwei Wang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
29
|
Murphy KE, Duncan B, Sperringer JE, Zhang E, Haberman V, Wyatt EV, Maness P. Ankyrin B promotes developmental spine regulation in the mouse prefrontal cortex. Cereb Cortex 2023; 33:10634-10648. [PMID: 37642601 PMCID: PMC10560577 DOI: 10.1093/cercor/bhad311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Postnatal regulation of dendritic spine formation and refinement in cortical pyramidal neurons is critical for excitatory/inhibitory balance in neocortical networks. Recent studies have identified a selective spine pruning mechanism in the mouse prefrontal cortex mediated by class 3 Semaphorins and the L1 cell adhesion molecules, neuron-glia related cell adhesion molecule, Close Homolog of L1, and L1. L1 cell adhesion molecules bind Ankyrin B, an actin-spectrin adaptor encoded by Ankyrin2, a high-confidence gene for autism spectrum disorder. In a new inducible mouse model (Nex1Cre-ERT2: Ank2flox: RCE), Ankyrin2 deletion in early postnatal pyramidal neurons increased spine density on apical dendrites in prefrontal cortex layer 2/3 of homozygous and heterozygous Ankyrin2-deficient mice. In contrast, Ankyrin2 deletion in adulthood had no effect on spine density. Sema3F-induced spine pruning was impaired in cortical neuron cultures from Ankyrin B-null mice and was rescued by re-expression of the 220 kDa Ankyrin B isoform but not 440 kDa Ankyrin B. Ankyrin B bound to neuron-glia related CAM at a cytoplasmic domain motif (FIGQY1231), and mutation to FIGQH inhibited binding, impairing Sema3F-induced spine pruning in neuronal cultures. Identification of a novel function for Ankyrin B in dendritic spine regulation provides insight into cortical circuit development, as well as potential molecular deficiencies in autism spectrum disorder.
Collapse
Affiliation(s)
- Kelsey E Murphy
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Campus Box 7260, Chapel Hill, NC, 27599, United States
| | - Bryce Duncan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Campus Box 7260, Chapel Hill, NC, 27599, United States
| | - Justin E Sperringer
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Campus Box 7260, Chapel Hill, NC, 27599, United States
| | - Erin Zhang
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Campus Box 7260, Chapel Hill, NC, 27599, United States
| | - Victoria Haberman
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Campus Box 7260, Chapel Hill, NC, 27599, United States
| | - Elliott V Wyatt
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Campus Box 7260, Chapel Hill, NC, 27599, United States
| | - Patricia Maness
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Campus Box 7260, Chapel Hill, NC, 27599, United States
| |
Collapse
|
30
|
Shin T, Song JH, Kosicki M, Kenny C, Beck SG, Kelley L, Qian X, Bonacina J, Papandile F, Antony I, Gonzalez D, Scotellaro J, Bushinsky EM, Andersen RE, Maury E, Pennacchio LA, Doan RN, Walsh CA. Rare variation in noncoding regions with evolutionary signatures contributes to autism spectrum disorder risk. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.19.23295780. [PMID: 37790480 PMCID: PMC10543033 DOI: 10.1101/2023.09.19.23295780] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Little is known about the role of noncoding regions in the etiology of autism spectrum disorder (ASD). We examined three classes of noncoding regions: Human Accelerated Regions (HARs), which show signatures of positive selection in humans; experimentally validated neural Vista Enhancers (VEs); and conserved regions predicted to act as neural enhancers (CNEs). Targeted and whole genome analysis of >16,600 samples and >4900 ASD probands revealed that likely recessive, rare, inherited variants in HARs, VEs, and CNEs substantially contribute to ASD risk in probands whose parents share ancestry, which enriches for recessive contributions, but modestly, if at all, in simplex family structures. We identified multiple patient variants in HARs near IL1RAPL1 and in a VE near SIM1 and showed that they change enhancer activity. Our results implicate both human-evolved and evolutionarily conserved noncoding regions in ASD risk and suggest potential mechanisms of how changes in regulatory regions can modulate social behavior.
Collapse
Affiliation(s)
- Taehwan Shin
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Janet H.T. Song
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Michael Kosicki
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Connor Kenny
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Samantha G. Beck
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Lily Kelley
- Division of Genetics and Genomics, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School; Allen Discovery Center for Human Brain Evolution, Boston, MA, 02115, USA
| | - Xuyu Qian
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Julieta Bonacina
- Division of Genetics and Genomics, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School; Allen Discovery Center for Human Brain Evolution, Boston, MA, 02115, USA
| | - Frances Papandile
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Irene Antony
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Dilenny Gonzalez
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Julia Scotellaro
- Division of Genetics and Genomics, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School; Allen Discovery Center for Human Brain Evolution, Boston, MA, 02115, USA
| | - Evan M. Bushinsky
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Rebecca E. Andersen
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Eduardo Maury
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Len A. Pennacchio
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ryan N. Doan
- Division of Genetics and Genomics, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School; Allen Discovery Center for Human Brain Evolution, Boston, MA, 02115, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| |
Collapse
|
31
|
Montillot C, Skutunova E, Ayushma, Dubied M, Lahmar A, Nguyen S, Peerally B, Prin F, Duffourd Y, Thauvin-Robinet C, Duplomb L, Wang H, Ansar M, Faivre L, Navarro N, Minocha S, Collins SC, Yalcin B. Characterization of Vps13b-mutant mice reveals neuroanatomical and behavioral phenotypes with females less affected. Neurobiol Dis 2023; 185:106259. [PMID: 37573958 DOI: 10.1016/j.nbd.2023.106259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023] Open
Abstract
The vacuolar protein sorting-associated protein 13B (VPS13B) is a large and highly conserved protein. Disruption of VPS13B causes the autosomal recessive Cohen syndrome, a rare disorder characterized by microcephaly and intellectual disability among other features, including developmental delay, hypotonia, and friendly-personality. However, the underlying mechanisms by which VPS13B disruption leads to brain dysfunction still remain unexplained. To gain insights into the neuropathogenesis of Cohen syndrome, we systematically characterized brain changes in Vps13b-mutant mice and compared murine findings to 235 previously published and 17 new patients diagnosed with VPS13B-related Cohen syndrome. We showed that Vps13b is differentially expressed across brain regions with the highest expression in the cerebellum, the hippocampus and the cortex with postnatal peak. Half of the Vps13b-/- mice die during the first week of life. The remaining mice have a normal lifespan and display the core phenotypes of the human disease, including microcephaly, growth delay, hypotonia, altered memory, and enhanced sociability. Systematic 2D and 3D brain histo-morphological analyses reveal specific structural changes in the brain starting after birth. The dentate gyrus is the brain region with the most prominent reduction in size, while the motor cortex is specifically thinner in layer VI. The fornix, the fasciculus retroflexus, and the cingulate cortex remain unaffected. Interestingly, these neuroanatomical changes implicate an increase of neuronal death during infantile stages with no progression in adulthood suggesting that VPS13B promotes neuronal survival early in life. Importantly, whilst both sexes were affected, some neuroanatomical and behavioral phenotypes were less pronounced or even absent in females. We evaluate sex differences in Cohen patients and conclude that females are less affected both in mice and patients. Our findings provide new insights about the neurobiology of VPS13B and highlight previously unreported brain phenotypes while defining Cohen syndrome as a likely new entity of non-progressive infantile neurodegeneration.
Collapse
Affiliation(s)
- Charlotte Montillot
- Université de Bourgogne, 21000 Dijon, France; Inserm Unit 1231, 21000 Dijon, France
| | - Emilia Skutunova
- Université de Bourgogne, 21000 Dijon, France; Inserm Unit 1231, 21000 Dijon, France
| | - Ayushma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi (IITD), Hauz Khas, New Delhi 110016, India
| | - Morgane Dubied
- Biogéosciences, UMR 6282 CNRS, EPHE, Université de Bourgogne, 21000 Dijon, France
| | - Adam Lahmar
- Université de Bourgogne, 21000 Dijon, France; Inserm Unit 1231, 21000 Dijon, France
| | - Sylvie Nguyen
- Université de Bourgogne, 21000 Dijon, France; Inserm Unit 1231, 21000 Dijon, France
| | - Benazir Peerally
- Université de Bourgogne, 21000 Dijon, France; Inserm Unit 1231, 21000 Dijon, France
| | - Fabrice Prin
- Crick Advanced Light Microscopy Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Yannis Duffourd
- Université de Bourgogne, 21000 Dijon, France; Inserm Unit 1231, 21000 Dijon, France; Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, 21000 Dijon, France
| | - Christel Thauvin-Robinet
- Université de Bourgogne, 21000 Dijon, France; Inserm Unit 1231, 21000 Dijon, France; Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, 21000 Dijon, France; Reference Center for Rare Diseases "Déficiences intellectuelles de causes rares", Dijon University Hospital, 21000 Dijon, France
| | - Laurence Duplomb
- Université de Bourgogne, 21000 Dijon, France; Inserm Unit 1231, 21000 Dijon, France
| | - Heng Wang
- DDC Clinic for Special Needs Children, Middlefield, OH 44062, USA
| | - Muhammad Ansar
- Jules Gonin Eye Hospital, University of Lausanne, CH-1015 Lausanne, Switzerland; Advanced Molecular Genetics and Genomics Disease Research and Treatment Centre, Dow University of Health Sciences, Karachi, Pakistan
| | - Laurence Faivre
- Université de Bourgogne, 21000 Dijon, France; Inserm Unit 1231, 21000 Dijon, France; Reference Center for Rare Diseases "Anomalies du Développement et syndromes malformatifs", Dijon University Hospital, 21000 Dijon, France
| | - Nicolas Navarro
- Biogéosciences, UMR 6282 CNRS, EPHE, Université de Bourgogne, 21000 Dijon, France; EPHE, PSL University, Paris 75014, France
| | - Shilpi Minocha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi (IITD), Hauz Khas, New Delhi 110016, India
| | - Stephan C Collins
- Université de Bourgogne, 21000 Dijon, France; Inserm Unit 1231, 21000 Dijon, France
| | - Binnaz Yalcin
- Université de Bourgogne, 21000 Dijon, France; Inserm Unit 1231, 21000 Dijon, France.
| |
Collapse
|
32
|
Liu X, Wang W. Gating mechanism of the human α1β GlyR by glycine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552474. [PMID: 37609197 PMCID: PMC10441291 DOI: 10.1101/2023.08.08.552474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Glycine receptors (GlyRs) are members of the Cys-loop receptors that constitute a major portion of neurotransmitter receptors in the human nervous system. GlyRs are found in the spinal cord and brain mediating locomotive, sensory and cognitive functions, and are targets for pharmaceutical development. GlyRs share a general gating scheme with Cys-loop receptor family members, but the underlying mechanism is unclear. Recent resolution of heteromeric GlyRs structures in multiple functional states identified an invariable 4:1 α:β subunit stoichiometry and provided snapshots in the gating cycle, challenging previous beliefs and raising the fundamental questions of how α and β subunit functions in glycine binding and channel activation. In addition, how a single glycine-bound extracellular domain conformation leads to structurally and functionally different open and desensitized states remained enigmatic. In this study, we characterized in detail equilibrium properties as well as the transition kinetics between functional states. We show that while all allosteric sites bind cooperatively to glycine, occupation of 2 sites at the α-α interfaces is necessary and sufficient for GlyR activation. We also demonstrate differential glycine concentration dependence of desensitization rate, extent, and its recovery, which suggests separate but concerted roles of ligand-binding and ionophore reorganization. Based on these observations and available structural information, we developed a comprehensive quantitative gating model that accurately predicts both equilibrium and kinetical properties throughout glycine gating cycle. This model likely applies generally to the Cys-loop receptor family and informs on pharmaceutical endeavors in function modulation of this receptor family.
Collapse
|
33
|
Tang H, Liang J, Chai K, Gu H, Ye W, Cao P, Chen S, Shen D. Artificial intelligence and bioinformatics analyze markers of children's transcriptional genome to predict autism spectrum disorder. Front Neurol 2023; 14:1203375. [PMID: 37528852 PMCID: PMC10390071 DOI: 10.3389/fneur.2023.1203375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction Autism spectrum disorder (ASD), characterized by difficulties in social interaction and communication as well as restricted interests and repetitive behaviors, is extremely challenging to diagnose in toddlers. Early diagnosis and intervention are crucial however. Methods In this study, we developed a machine learning classification model based on mRNA expression data from the peripheral blood of 128 toddlers with ASD and 126 controls. Differentially expressed genes (DEGs) between ASD and controls were identified. Results We identified genes such as UBE4B, SPATA2 and RBM3 as DEGs, mainly involved in immune-related pathways. 21 genes were screened as key biomarkers using LASSO regression, yielding an accuracy of 86%. A neural network model based on these 21 genes achieved an AUC of 0.88. Discussion Our findings suggest that the identified neurotransmitters and 21 immune-related biomarkers may facilitate the early diagnosis of ASD. The mRNA expression profile sheds light on the biological underpinnings of ASD in toddlers and potential biomarkers for early identification. Nevertheless, larger samples are needed to validate these biomarkers.
Collapse
Affiliation(s)
- Huitao Tang
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
| | - Jiawei Liang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Keping Chai
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
| | - Huaqian Gu
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
| | - Weiping Ye
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
| | - Panlong Cao
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
| | - Shufang Chen
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
| | - Daojiang Shen
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
34
|
Sandhu A, Kumar A, Rawat K, Gautam V, Sharma A, Saha L. Modernising autism spectrum disorder model engineering and treatment via CRISPR-Cas9: A gene reprogramming approach. World J Clin Cases 2023; 11:3114-3127. [PMID: 37274051 PMCID: PMC10237133 DOI: 10.12998/wjcc.v11.i14.3114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
A neurological abnormality called autism spectrum disorder (ASD) affects how a person perceives and interacts with others, leading to social interaction and communication issues. Limited and recurring behavioural patterns are another feature of the illness. Multiple mutations throughout development are the source of the neurodevelopmental disorder autism. However, a well-established model and perfect treatment for this spectrum disease has not been discovered. The rising era of the clustered regularly interspaced palindromic repeats (CRISPR)-associated protein 9 (Cas9) system can streamline the complexity underlying the pathogenesis of ASD. The CRISPR-Cas9 system is a powerful genetic engineering tool used to edit the genome at the targeted site in a precise manner. The major hurdle in studying ASD is the lack of appropriate animal models presenting the complex symptoms of ASD. Therefore, CRISPR-Cas9 is being used worldwide to mimic the ASD-like pathology in various systems like in vitro cell lines, in vitro 3D organoid models and in vivo animal models. Apart from being used in establishing ASD models, CRISPR-Cas9 can also be used to treat the complexities of ASD. The aim of this review was to summarize and critically analyse the CRISPR-Cas9-mediated discoveries in the field of ASD.
Collapse
Affiliation(s)
- Arushi Sandhu
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| | - Anil Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| | - Kajal Rawat
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| | - Vipasha Gautam
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| | - Antika Sharma
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| | - Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| |
Collapse
|
35
|
Carbonell AU, Freire-Cobo C, Deyneko IV, Dobariya S, Erdjument-Bromage H, Clipperton-Allen AE, Page DT, Neubert TA, Jordan BA. Comparing synaptic proteomes across five mouse models for autism reveals converging molecular similarities including deficits in oxidative phosphorylation and Rho GTPase signaling. Front Aging Neurosci 2023; 15:1152562. [PMID: 37255534 PMCID: PMC10225639 DOI: 10.3389/fnagi.2023.1152562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023] Open
Abstract
Specific and effective treatments for autism spectrum disorder (ASD) are lacking due to a poor understanding of disease mechanisms. Here we test the idea that similarities between diverse ASD mouse models are caused by deficits in common molecular pathways at neuronal synapses. To do this, we leverage the availability of multiple genetic models of ASD that exhibit shared synaptic and behavioral deficits and use quantitative mass spectrometry with isobaric tandem mass tagging (TMT) to compare their hippocampal synaptic proteomes. Comparative analyses of mouse models for Fragile X syndrome (Fmr1 knockout), cortical dysplasia focal epilepsy syndrome (Cntnap2 knockout), PTEN hamartoma tumor syndrome (Pten haploinsufficiency), ANKS1B syndrome (Anks1b haploinsufficiency), and idiopathic autism (BTBR+) revealed several common altered cellular and molecular pathways at the synapse, including changes in oxidative phosphorylation, and Rho family small GTPase signaling. Functional validation of one of these aberrant pathways, Rac1 signaling, confirms that the ANKS1B model displays altered Rac1 activity counter to that observed in other models, as predicted by the bioinformatic analyses. Overall similarity analyses reveal clusters of synaptic profiles, which may form the basis for molecular subtypes that explain genetic heterogeneity in ASD despite a common clinical diagnosis. Our results suggest that ASD-linked susceptibility genes ultimately converge on common signaling pathways regulating synaptic function and propose that these points of convergence are key to understanding the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Abigail U. Carbonell
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Carmen Freire-Cobo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ilana V. Deyneko
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Saunil Dobariya
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Amy E. Clipperton-Allen
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL, United States
| | - Damon T. Page
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL, United States
| | - Thomas A. Neubert
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Bryen A. Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
36
|
LaSalle JM. Epigenomic signatures reveal mechanistic clues and predictive markers for autism spectrum disorder. Mol Psychiatry 2023; 28:1890-1901. [PMID: 36650278 PMCID: PMC10560404 DOI: 10.1038/s41380-022-01917-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023]
Abstract
Autism spectrum disorder (ASD) comprises a heterogeneous group of neurodevelopmental outcomes in children with a commonality in deficits in social communication and language combined with repetitive behaviors and interests. The etiology of ASD is heterogeneous, as several hundred genes have been implicated as well as multiple in utero environmental exposures. Over the past two decades, epigenetic investigations, including DNA methylation, have emerged as a novel way to capture the complex interface of multivariate ASD etiologies. More recently, epigenome-wide association studies using human brain and surrogate accessible tissues have revealed some convergent genes that are epigenetically altered in ASD, many of which overlap with known genetic risk factors. Unlike transcriptomes, epigenomic signatures defined by DNA methylation from surrogate tissues such as placenta and cord blood can reflect past differences in fetal brain gene transcription, transcription factor binding, and chromatin. For example, the discovery of NHIP (neuronal hypoxia inducible, placenta associated) through an epigenome-wide association in placenta, identified a common genetic risk for ASD that was modified by prenatal vitamin use. While epigenomic signatures are distinct between different genetic syndromic causes of ASD, bivalent chromatin and some convergent gene pathways are consistently epigenetically altered in both syndromic and idiopathic ASD, as well as some environmental exposures. Together, these epigenomic signatures hold promising clues towards improved early prediction and prevention of ASD as well genes and gene pathways to target for pharmacological interventions. Future advancements in single cell and multi-omic technologies, machine learning, as well as non-invasive screening of epigenomic signatures during pregnancy or newborn periods are expected to continue to impact the translatability of the recent discoveries in epigenomics to precision public health.
Collapse
Affiliation(s)
- Janine M LaSalle
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
37
|
Senarathne UD, Indika NLR, Jezela-Stanek A, Ciara E, Frye RE, Chen C, Stepien KM. Biochemical, Genetic and Clinical Diagnostic Approaches to Autism-Associated Inherited Metabolic Disorders. Genes (Basel) 2023; 14:genes14040803. [PMID: 37107561 PMCID: PMC10138025 DOI: 10.3390/genes14040803] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders characterized by impaired social interaction, limited communication skills, and restrictive and repetitive behaviours. The pathophysiology of ASD is multifactorial and includes genetic, epigenetic, and environmental factors, whereas a causal relationship has been described between ASD and inherited metabolic disorders (IMDs). This review describes biochemical, genetic, and clinical approaches to investigating IMDs associated with ASD. The biochemical work-up includes body fluid analysis to confirm general metabolic and/or lysosomal storage diseases, while the advances and applications of genomic testing technology would assist with identifying molecular defects. An IMD is considered likely underlying pathophysiology in ASD patients with suggestive clinical symptoms and multiorgan involvement, of which early recognition and treatment increase their likelihood of achieving optimal care and a better quality of life.
Collapse
Affiliation(s)
- Udara D. Senarathne
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
- Department of Chemical Pathology, Monash Health Pathology, Monash Health, Melbourne, VIC 3168, Australia
| | - Neluwa-Liyanage R. Indika
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland
| | - Elżbieta Ciara
- Department of Medical Genetics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| | - Richard E. Frye
- Autism Discovery and Treatment Foundation, Phoenix, AZ 85050, USA
| | - Cliff Chen
- Clinical Neuropsychology Department, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
| | - Karolina M. Stepien
- Adult Inherited Metabolic Diseases, Mark Holland Unit, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
- Division of Diabetes, Endocrinology and Gastroenterology, University of Manchester, Manchester M13 9PL, UK
- Correspondence:
| |
Collapse
|
38
|
Galgani A, Bartolini E, D’Amora M, Faraguna U, Giorgi FS. The Central Noradrenergic System in Neurodevelopmental Disorders: Merging Experimental and Clinical Evidence. Int J Mol Sci 2023; 24:5805. [PMID: 36982879 PMCID: PMC10055776 DOI: 10.3390/ijms24065805] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The aim of this article is to highlight the potential role of the locus-coeruleus-noradrenergic (LC-NA) system in neurodevelopmental disorders (NdDs). The LC is the main brain noradrenergic nucleus, key in the regulation of arousal, attention, and stress response, and its early maturation and sensitivity to perinatal damage make it an interesting target for translational research. Clinical data shows the involvement of the LC-NA system in several NdDs, suggesting a pathogenetic role in the development of such disorders. In this context, a new neuroimaging tool, LC Magnetic Resonance Imaging (MRI), has been developed to visualize the LC in vivo and assess its integrity, which could be a valuable tool for exploring morphological alterations in NdD in vivo in humans. New animal models may be used to test the contribution of the LC-NA system to the pathogenic pathways of NdD and to evaluate the efficacy of NA-targeting drugs. In this narrative review, we provide an overview of how the LC-NA system may represent a common pathophysiological and pathogenic mechanism in NdD and a reliable target for symptomatic and disease-modifying drugs. Further research is needed to fully understand the interplay between the LC-NA system and NdD.
Collapse
Affiliation(s)
- Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (A.G.)
| | - Emanuele Bartolini
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
- Tuscany PhD Programme in Neurosciences, 50121 Florence, Italy
| | - Marta D’Amora
- Department of Biology, University of Pisa, 56125 Pisa, Italy
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Ugo Faraguna
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (A.G.)
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (A.G.)
| |
Collapse
|
39
|
Evaluation of Individuals with Non-Syndromic Global Developmental Delay and Intellectual Disability. CHILDREN 2023; 10:children10030414. [PMID: 36979972 PMCID: PMC10047567 DOI: 10.3390/children10030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Global Developmental Delay (GDD) and Intellectual Disability (ID) are two of the most common presentations encountered by physicians taking care of children. GDD/ID is classified into non-syndromic GDD/ID, where GDD/ID is the sole evident clinical feature, or syndromic GDD/ID, where there are additional clinical features or co-morbidities present. Careful evaluation of children with GDD and ID, starting with detailed history followed by a thorough examination, remain the cornerstone for etiologic diagnosis. However, when initial history and examination fail to identify a probable underlying etiology, further genetic testing is warranted. In recent years, genetic testing has been shown to be the single most important diagnostic modality for clinicians evaluating children with non-syndromic GDD/ID. In this review, we discuss different genetic testing currently available, review common underlying copy-number variants and molecular pathways, explore the recent evidence and recommendations for genetic evaluation and discuss an approach to the diagnosis and management of children with non-syndromic GDD and ID.
Collapse
|
40
|
AbdelAleem A, Haddad N, Al-Ettribi G, Crunk A, Elsotouhy A. Cohen syndrome and early-onset epileptic encephalopathy in male triplets: two disease-causing mutations in VPS13B and NAPB. Neurogenetics 2023; 24:103-112. [PMID: 36780047 PMCID: PMC10063482 DOI: 10.1007/s10048-023-00710-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/07/2023] [Indexed: 02/14/2023]
Abstract
Cohen syndrome (CS) is a rare multisystem autosomal recessive disorder associated with mutations in VPS13B (vacuolar protein sorting homolog 13B). The NAPB-related neurodevelopmental disorder is characterized mainly by early-onset epileptic encephalopathy (EOEE) and is associated with mutations in NAPB that encodes for SNAP-beta (soluble NSF attachment protein beta). Here we describe male triplets, clinically presenting with the phenotype of subtle but distinctive facial features, intellectual disability, increased body weight, neonatal EOEE, and prominently variable abnormal behaviors of autism and sexual arousal. The EEG showed multifocal epilepsy, while the brain MRI showed no abnormalities. Diagnostic exome sequencing (ES), the applied next-generation sequencing approach, revealed the interesting finding of two novel homozygous variants in two genes: VPS13B missense variant (c.8516G > A) and NAPB splice-site loss (c.354 + 2 T > G). Sanger sequencing verified the segregation of the two recessive gene variants with the phenotype in family members. The prediction algorithms support the pathogenicity of these variants. Homozygosity mapping of ES data of this consanguineous family revealed multiple chromosomal regions of homozygosity stretches with the residing of VPS13B (chr8: 100830758G > A) and NAPB (Chr20: 23,375,774 A > C) variants within the largest homozygous blocks further supporting the disease-genes causal role. Interestingly, the functions of the two proteins; VPS13B, a transmembrane protein involved in intracellular protein transport, and SNAP-beta involved in neurotransmitters release at the neuronal synaptic complexes, have been associated with Golgi-mediated vesicular trafficking. Our ES findings provide new insights into the pathologic mechanism underlying the expansion of the neurodevelopmental spectrum in CS and further highlight the importance of Golgi and Golgi-membrane-related proteins in the development of neurodevelopmental syndromes associated with early-onset non-channelopathy epilepsy. To our knowledge, this is the first report documenting multifocal EOEE in CS patients with the association of a pathogenic NAPB variant.
Collapse
Affiliation(s)
- Alice AbdelAleem
- Neurogenetics Research Lab, Weill Cornell Medicine Qatar, Doha, Qatar.
- Clinical Genetics Division (Clinical Privilege), Hamad Medical Corporation, Doha, Qatar.
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Naim Haddad
- Neurology Department, Weill Cornell Medicine Qatar, Doha, Qatar
| | - Ghada Al-Ettribi
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | | | - Ahmed Elsotouhy
- Neuroradiology Department, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
41
|
Alasiri A, Karczewski KJ, Cole B, Loza BL, Moore JH, van der Laan SW, Asselbergs FW, Keating BJ, van Setten J. LoFTK: a framework for fully automated calculation of predicted Loss-of-Function variants and genes. BioData Min 2023; 16:3. [PMID: 36732776 PMCID: PMC9893534 DOI: 10.1186/s13040-023-00321-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Loss-of-Function (LoF) variants in human genes are important due to their impact on clinical phenotypes and frequent occurrence in the genomes of healthy individuals. The association of LoF variants with complex diseases and traits may lead to the discovery and validation of novel therapeutic targets. Current approaches predict high-confidence LoF variants without identifying the specific genes or the number of copies they affect. Moreover, there is a lack of methods for detecting knockout genes caused by compound heterozygous (CH) LoF variants. RESULTS We have developed the Loss-of-Function ToolKit (LoFTK), which allows efficient and automated prediction of LoF variants from genotyped, imputed and sequenced genomes. LoFTK enables the identification of genes that are inactive in one or two copies and provides summary statistics for downstream analyses. LoFTK can identify CH LoF variants, which result in LoF genes with two copies lost. Using data from parents and offspring we show that 96% of CH LoF genes predicted by LoFTK in the offspring have the respective alleles donated by each parent. CONCLUSIONS LoFTK is a command-line based tool that provides a reliable computational workflow for predicting LoF variants from genotyped and sequenced genomes, identifying genes that are inactive in 1 or 2 copies. LoFTK is an open software and is freely available to non-commercial users at https://github.com/CirculatoryHealth/LoFTK .
Collapse
Affiliation(s)
- Abdulrahman Alasiri
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, Netherlands
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Konrad J Karczewski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Brian Cole
- Bioinformatics Core, Harvard Medical School, Boston, MA, USA
| | - Bao-Li Loza
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason H Moore
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sander W van der Laan
- Central Diagnostic Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | - Brendan J Keating
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica van Setten
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, Netherlands.
| |
Collapse
|
42
|
Liu X, Wang W. Asymmetric gating of a human hetero-pentameric glycine receptor. RESEARCH SQUARE 2023:rs.3.rs-2386831. [PMID: 36711971 PMCID: PMC9882600 DOI: 10.21203/rs.3.rs-2386831/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hetero-pentameric Cys-loop receptors constitute a major type of neurotransmitter receptors that enable signal transmission and processing in the nervous system. Despite intense investigations in their working mechanism and pharmaceutical potentials, how neurotransmitters activate these receptors remain unclear due to the lack of high-resolution structural information in the activated open state. Here we report near-atomic resolution structures in all principle functional states of the human α1β GlyR, which is a major Cys-loop receptor that mediates inhibitory neurotransmission in the central nervous system of adults. Glycine binding induced cooperative and symmetric structural rearrangements in the neurotransmitter-binding extracellular domain, but asymmetrical pore dilation in the transmembrane domain. Symmetric response in the extracellular domain is consistent with electrophysiological data showing similar contribution to activation from all the α1 and β subunits. A set of functionally essential but differentially charged amino-acid residues in the transmembrane domain of the α1 and β subunits explains asymmetric activation. These findings point to a gating mechanism that is distinct from homomeric receptors but more compatible with heteromeric GlyRs being clustered at synapses through β subunit-scaffolding protein interactions. Such mechanism provides foundation for understanding how gating of the Cys-loop receptor members diverge to accommodate specific physiological environment.
Collapse
Affiliation(s)
- Xiaofen Liu
- University of Texas Southwestern Medical Center
| | - Weiwei Wang
- University of Texas Southwestern Medical Center
| |
Collapse
|
43
|
Jiang H, Feng Y, He G, Liu Y, Li X. Analysis of the expression and distribution of protein O-linked mannose β1,2- N-acetylglucosaminyltransferase 1 in the normal adult mouse brain. Front Neuroanat 2023; 16:1043924. [PMID: 36686576 PMCID: PMC9853526 DOI: 10.3389/fnana.2022.1043924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Protein O-linked mannose β1,2-N-acetylglucosaminyltransferase 1 (POMGNT1) is crucial for the elongation of O-mannosyl glycans. Mutations in POMGNT1 cause muscle-eye-brain (MEB) disease, one of the main features of which is anatomical aberrations in the brain. A growing number of studies have shown that defects in POMGNT1 affect neuronal migration and distribution, disrupt basement membranes, and misalign Cajal-Retzius cells. Several studies have examined the distribution and expression of POMGNT1 in the fetal or neonatal brain for neurodevelopmental studies in the mouse or human brain. However, little is known about the neuroanatomical distribution and expression of POMGNT1 in the normal adult mouse brain. Methods We analyzed the expression of POMGNT1 mRNA and protein in the brains of various neuroanatomical regions and spinal cords by western blotting and RT-qPCR. We also detected the distribution profile of POMGnT1 in normal adult mouse brains by immunohistochemistry and double-immunofluorescence. Results In the present study, we found that POMGNT1-positive cells were widely distributed in various regions of the brain, with high levels of expression in the cerebral cortex and hippocampus. In terms of cell type, POMGNT1 was predominantly expressed in neurons and was mainly enriched in glutamatergic neurons; to a lesser extent, it was expressed in glial cells. At the subcellular level, POMGNT1 was mainly co-localized with the Golgi apparatus, but expression in the endoplasmic reticulum and mitochondria could not be excluded. Discussion The present study suggests that POMGNT1, although widely expressed in various brain regions, may has some regional and cellular specificity, and the outcomes of this study provide a new laboratory basis for revealing the possible involvement of POMGNT1 in normal physiological functions of the brain from a morphological perspective.
Collapse
Affiliation(s)
- Hanxiao Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxue Feng
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guiqiong He
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China,Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Yuanjie Liu
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China,Department of Anatomy, Chongqing Medical University, Chongqing, China,*Correspondence: Yuanjie Liu,
| | - Xiaofeng Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China,Xiaofeng Li,
| |
Collapse
|
44
|
Vashisth S, Chahrour MH. Genomic strategies to untangle the etiology of autism: A primer. Autism Res 2023; 16:31-39. [PMID: 36415077 PMCID: PMC10615252 DOI: 10.1002/aur.2844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in communication, diminished social skills, and restrictive and repetitive behaviors and interests. ASD affects approximately 2.3% of the population and is highly heterogeneous, both phenotypically and genetically. As genomic technologies advance, our understanding of the genetic architecture of ASD is becoming clearer, encompassing spontaneous and inherited alterations throughout the genome, and delineating alterations that are either rare or common in the population. This commentary provides an overview of the genomic strategies and resulting major findings of genetic alterations associated with ASD.
Collapse
Affiliation(s)
- Shayal Vashisth
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Maria H. Chahrour
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
45
|
Xiong Y, Chen J, Li Y. Microglia and astrocytes underlie neuroinflammation and synaptic susceptibility in autism spectrum disorder. Front Neurosci 2023; 17:1125428. [PMID: 37021129 PMCID: PMC10067592 DOI: 10.3389/fnins.2023.1125428] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder with onset in childhood. The mechanisms underlying ASD are unclear. In recent years, the role of microglia and astrocytes in ASD has received increasing attention. Microglia prune the synapses or respond to injury by sequestrating the injury site and expressing inflammatory cytokines. Astrocytes maintain homeostasis in the brain microenvironment through the uptake of ions and neurotransmitters. However, the molecular link between ASD and microglia and, or astrocytes remains unknown. Previous research has shown the significant role of microglia and astrocytes in ASD, with reports of increased numbers of reactive microglia and astrocytes in postmortem tissues and animal models of ASD. Therefore, an enhanced understanding of the roles of microglia and astrocytes in ASD is essential for developing effective therapies. This review aimed to summarize the functions of microglia and astrocytes and their contributions to ASD.
Collapse
|
46
|
Al-Mamari W, Idris AB, Al-Thihli K, Abdulrahim R, Jalees S, Al-Jabri M, Gabr A, Al Murshedi F, Al Kindy A, Al-Hadabi I, Bruwer Z, Islam MM, Alsayegh A. Applying whole exome sequencing in a consanguineous population with autism spectrum disorder. INTERNATIONAL JOURNAL OF DEVELOPMENTAL DISABILITIES 2023; 69:190-200. [PMID: 37025335 PMCID: PMC10071987 DOI: 10.1080/20473869.2021.1937000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This study aimed to systematically assess the impact of clinical and demographic variables on the diagnostic yield of Whole Exome Sequencing (WES) when applied to children with Autism Spectrum Disorder (ASD) from a consanguineous population. Ninety-seven children were included in the analysis, 63% were male and 37% were females. 77.3% had a suspected syndromic aetiology of which 68% had co-existent central nervous system (CNS) clinical features, while 69% had other systems involved. The diagnostic yield of WES in our cohort with ASD was 34%. Children with seizures were more likely to have positive WES results (46% vs. 31%, p = 0.042). Probands with suspected syndromic ASD aetiology showed no significant differential impact on the diagnostic yield of WES.
Collapse
Affiliation(s)
- Watfa Al-Mamari
- Developmental Pediatric Unit, Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
- Correspondence to: Watfa Al-Mamari, Developmental Pediatric Unit, Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman.
| | - Ahmed B. Idris
- Developmental Pediatric Unit, Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Khalid Al-Thihli
- Genetic Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Reem Abdulrahim
- Genetic Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Saquib Jalees
- Developmental Pediatric Unit, Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Muna Al-Jabri
- Department of Nursing, Sultan Qaboos University Hospital, Muscat, Oman
| | - Ahlam Gabr
- Developmental Pediatric Unit, Child Health Department, Sultan Qaboos University Hospital, Muscat, Oman
| | | | - Adila Al Kindy
- Genetic Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Intisar Al-Hadabi
- Department of Nursing, Sultan Qaboos University Hospital, Muscat, Oman
| | - Zandrè Bruwer
- Genetic Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - M. Mazharul Islam
- Department of Statistics, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Abeer Alsayegh
- Genetic Department, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
47
|
Wanders RJA, Baes M, Ribeiro D, Ferdinandusse S, Waterham HR. The physiological functions of human peroxisomes. Physiol Rev 2023; 103:957-1024. [PMID: 35951481 DOI: 10.1152/physrev.00051.2021] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peroxisomes are subcellular organelles that play a central role in human physiology by catalyzing a range of unique metabolic functions. The importance of peroxisomes for human health is exemplified by the existence of a group of usually severe diseases caused by an impairment in one or more peroxisomal functions. Among others these include the Zellweger spectrum disorders, X-linked adrenoleukodystrophy, and Refsum disease. To fulfill their role in metabolism, peroxisomes require continued interaction with other subcellular organelles including lipid droplets, lysosomes, the endoplasmic reticulum, and mitochondria. In recent years it has become clear that the metabolic alliance between peroxisomes and other organelles requires the active participation of tethering proteins to bring the organelles physically closer together, thereby achieving efficient transfer of metabolites. This review intends to describe the current state of knowledge about the metabolic role of peroxisomes in humans, with particular emphasis on the metabolic partnership between peroxisomes and other organelles and the consequences of genetic defects in these processes. We also describe the biogenesis of peroxisomes and the consequences of the multiple genetic defects therein. In addition, we discuss the functional role of peroxisomes in different organs and tissues and include relevant information derived from model systems, notably peroxisomal mouse models. Finally, we pay particular attention to a hitherto underrated role of peroxisomes in viral infections.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| |
Collapse
|
48
|
Bhumika S, Basalingappa KM, Gopenath TS, Basavaraju S. Glycine encephalopathy. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022; 58:132. [PMID: 36415754 PMCID: PMC9672649 DOI: 10.1186/s41983-022-00567-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
Inherited neurotransmitter diseases are a subset of rare neurometabolic disorders characterized by hereditary deficiencies in neurotransmitter metabolism or transport. Non-ketotic hyperglycinaemia (NKH), called glycine encephalopathy, is an autosomal recessive glycine metabolism disorder characterized by an abnormal accumulation of glycine in all bodily tissues, including the CNS. The SLC6A9 gene, which codes for the GLYT1 protein, a biochemical abnormality in the GCS, and dihydrolipoamide dehydrogenase enzymes, which function as a GCS component, are responsible for the neonatal form's symptoms, which include progressive encephalopathy, hypotonia, seizures, and occasionally mortality in the first few days of life. By changing the MAPK signalling pathways, glycine deprivation in the brain damages neurons by increasing NMDA receptor activation, increasing intracellular Ca levels, and leading to DNA breakage and cell death in the neuron region. In addition to the previously mentioned clinical diagnosis, NKH or GE would be determined by MLPA and 13C glycine breath tests. Pediatricians, surgeons, neurologists, and geneticists treat NKH and GE at the newborn period; there is no cure for either condition.
Collapse
Affiliation(s)
- S. Bhumika
- Division of Molecular Biology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, 570015 India
| | - Kanthesh M. Basalingappa
- Division of Molecular Biology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, 570015 India
| | - T. S. Gopenath
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS AHER, Mysuru, 570015 India
| | - Suman Basavaraju
- Department of Periodontology, JSS Dental College and Hospital, S.S. Nagar, Mysuru, 570015 India
| |
Collapse
|
49
|
Fischer NC, Friedman V, Martinez-Reyes MA, Hao H, Chowdhury TA, Starr DA, Quinn CC. The ANC-1 (Nesprin-1/2) organelle-anchoring protein functions through mitochondria to polarize axon growth in response to SLT-1. PLoS Genet 2022; 18:e1010521. [PMID: 36409768 PMCID: PMC9721489 DOI: 10.1371/journal.pgen.1010521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/05/2022] [Accepted: 11/11/2022] [Indexed: 11/22/2022] Open
Abstract
A family of giant KASH proteins, including C. elegans ANC-1 and mammalian Nesprin-1 and -2, are involved in organelle anchoring and are associated with multiple neurodevelopmental disorders including autism, bipolar disorder, and schizophrenia. However, little is known about how these proteins function in neurons. Moreover, the role of organelle anchoring in axon development is poorly understood. Here, we report that ANC-1 functions with the SLT-1 extracellular guidance cue to polarize ALM axon growth. This role for ANC-1 is specific to its longer ANC-1A and ANC-1C isoforms, suggesting that it is mechanistically distinct from previously described roles for ANC-1. We find that ANC-1 is required for the localization of a cluster of mitochondria to the base of the proximal axon. Furthermore, genetic and pharmacological studies indicate that ANC-1 functions with mitochondria to promote polarization of ALM axon growth. These observations reveal a mechanism whereby ANC-1 functions through mitochondria to polarize axon growth in response to SLT-1.
Collapse
Affiliation(s)
- Nathan C. Fischer
- Department of Biological Sciences, University of Wisconsin-Milwaukee; Milwaukee, Wisconsin, United States of America
| | - Vladislav Friedman
- Department of Biological Sciences, University of Wisconsin-Milwaukee; Milwaukee, Wisconsin, United States of America
| | - Miguel A. Martinez-Reyes
- Department of Biological Sciences, University of Wisconsin-Milwaukee; Milwaukee, Wisconsin, United States of America
| | - Hongyan Hao
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Tamjid A. Chowdhury
- Department of Biological Sciences, University of Wisconsin-Milwaukee; Milwaukee, Wisconsin, United States of America
| | - Daniel A. Starr
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Christopher C. Quinn
- Department of Biological Sciences, University of Wisconsin-Milwaukee; Milwaukee, Wisconsin, United States of America
| |
Collapse
|
50
|
Dougherty JD, Marrus N, Maloney SE, Yip B, Sandin S, Turner TN, Selmanovic D, Kroll KL, Gutmann DH, Constantino JN, Weiss LA. Can the "female protective effect" liability threshold model explain sex differences in autism spectrum disorder? Neuron 2022; 110:3243-3262. [PMID: 35868305 PMCID: PMC9588569 DOI: 10.1016/j.neuron.2022.06.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/09/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022]
Abstract
Male sex is a strong risk factor for autism spectrum disorder (ASD). The leading theory for a "female protective effect" (FPE) envisions males and females have "differing thresholds" under a "liability threshold model" (DT-LTM). Specifically, this model posits that females require either a greater number or larger magnitude of risk factors (i.e., greater liability) to manifest ASD, which is supported by the finding that a greater proportion of females with ASD have highly penetrant genetic mutations. Herein, we derive testable hypotheses from the DT-LTM for ASD, investigating heritability, familial recurrence, correlation between ASD penetrance and sex ratio, population traits, clinical features, the stability of the sex ratio across diagnostic changes, and highlight other key prerequisites. Our findings reveal that several key predictions of the DT-LTM are not supported by current data, requiring us to establish a different conceptual framework for evaluating alternate models that explain sex differences in ASD.
Collapse
Affiliation(s)
- Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA.
| | - Natasha Marrus
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Benjamin Yip
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Sven Sandin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Seaver Autism Center for Research and Treatment at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tychele N Turner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Din Selmanovic
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristen L Kroll
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - John N Constantino
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Lauren A Weiss
- Institute for Human Genetics, Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|