1
|
Shen J, Wang K, Gao W, Liu JK, Xu Q, Pan G, Chen X, Tang H. Temporal spiking generative adversarial networks for heading direction decoding. Neural Netw 2025; 184:106975. [PMID: 39693678 DOI: 10.1016/j.neunet.2024.106975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/05/2024] [Accepted: 11/06/2024] [Indexed: 12/20/2024]
Abstract
The spike-based neuronal responses within the ventral intraparietal area (VIP) exhibit intricate spatial and temporal dynamics in the posterior parietal cortex, presenting decoding challenges such as limited data availability at the biological population level. The practical difficulty in collecting VIP neuronal response data hinders the application of sophisticated decoding models. To address this challenge, we propose a unified spike-based decoding framework leveraging spiking neural networks (SNNs) for both generative and decoding purposes, for their energy efficiency and suitability for neural decoding tasks. We propose the Temporal Spiking Generative Adversarial Networks (T-SGAN), a model based on a spiking transformer, to generate synthetic time-series data reflecting the neuronal response of VIP neurons. T-SGAN incorporates temporal segmentation to reduce the temporal dimension length, while spatial self-attention facilitates the extraction of associated information among VIP neurons. This is followed by recurrent SNNs decoder equipped with an attention mechanism, designed to capture the intricate spatial and temporal dynamics for heading direction decoding. Experimental evaluations conducted on biological datasets from monkeys showcase the effectiveness of the proposed framework. Results indicate that T-SGAN successfully generates realistic synthetic data, leading to a significant improvement of up to 1.75% in decoding accuracy for recurrent SNNs. Furthermore, the SNN-based decoding framework capitalizes on the low power consumption advantages, offering substantial benefits for neuronal response decoding applications.
Collapse
Affiliation(s)
- Jiangrong Shen
- School of Computer Science and Technology, Xi'an Jiaotong University, China; State Key Lab of Brain-Machine Intelligence, Zhejiang University, China; College of Computer Science and Technology, Zhejiang University, China
| | - Kejun Wang
- State Key Lab of Brain-Machine Intelligence, Zhejiang University, China; College of Computer Science and Technology, Zhejiang University, China
| | - Wei Gao
- Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, China
| | - Jian K Liu
- School of Computer Science, University of Birmingham, United Kingdom
| | - Qi Xu
- School of Computer Science and Technology, Dalian University of Technology, China
| | - Gang Pan
- State Key Lab of Brain-Machine Intelligence, Zhejiang University, China; College of Computer Science and Technology, Zhejiang University, China
| | - Xiaodong Chen
- Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, China; Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, China.
| | - Huajin Tang
- State Key Lab of Brain-Machine Intelligence, Zhejiang University, China; College of Computer Science and Technology, Zhejiang University, China.
| |
Collapse
|
2
|
Buron F, Martin CZ, Brooks JX, Green AM. Reference Frames for Encoding of Translation and Tilt in the Caudal Cerebellar Vermis. J Neurosci 2025; 45:e0135242025. [PMID: 39933930 PMCID: PMC11905359 DOI: 10.1523/jneurosci.0135-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
Many daily behaviors rely on estimates of our body's motion and orientation in space. Vestibular signals are essential for such estimates, but to contribute appropriately, two key computations are required. First, ambiguous motion information from otolith organs must be combined with spatially transformed rotational signals (e.g., from the canals) to distinguish head translation from tilt. Second, tilt and translation estimates must be transformed from a head- to a body-centered reference frame to correctly interpret the body's motion. Studies have shown that cells in the caudal cerebellar vermis (nodulus and ventral uvula, NU) reflect the output of the first set of computations to estimate translation and tilt. However, it remains unknown whether these estimates are encoded exclusively in head-centered coordinates or whether they reflect further transformation toward body-centered coordinates. Here, we addressed this question by examining how the 3D spatial tuning of otolith and canal signals on translation- and tilt-selective NU Purkinje cells in male rhesus monkeys varies with changes in head-re-body and body-re-gravity orientation. We show that NU cell tuning properties are consistent with head-centered otolith signal coding during translation. Furthermore, while canal signals in the NU have been transformed into a specific world-referenced rotation signal indicating reorientation relative to gravity (tilt), as needed to resolve the tilt/translation ambiguity, the resulting tilt estimates are encoded in head-centered coordinates. Our results thus suggest that body-centered motion and orientation estimates required for postural control, navigation, and reaching are computed elsewhere, either by further transforming NU outputs or via computations in other parallel pathways.
Collapse
Affiliation(s)
- Félix Buron
- Département de Neurosciences, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Christophe Z Martin
- Département de Neurosciences, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Jessica X Brooks
- Département de Neurosciences, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Andrea M Green
- Département de Neurosciences, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
3
|
Haijoub S, Hautefort C, Toupet M, Lacour M. Asymmetry and rehabilitation of the subjective visual vertical in unilateral vestibular hypofunction patients. Front Syst Neurosci 2024; 18:1454637. [PMID: 39318996 PMCID: PMC11419993 DOI: 10.3389/fnsys.2024.1454637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Aims Patients with acute unilateral peripheral vestibular hypofunction (AUVP) show postural, ocular motor, and perceptive signs on the diseased side. The subjective visual vertical (SVV) test measures the perceived bias in earth-vertical orientation with a laser line in darkness. This study was aimed at (1) examining whether SVV bias could depend on preset line orientation and angles, and (2) investigating whether vestibular rehabilitation (VR) can improve SVV normalization. To our knowledge, SVV symmetry/asymmetry and impact of VR on SVV normalization have never been documented in the literature. Participants and methods We investigated the SVV bias in a retrospective study (Study 1: n = 42 AUVP patients) comparing the data recorded for line orientation to the ipsilateral and contralateral sides at preset angles of 15° and 30°. We investigated the effects of VR on SVV normalization in a prospective study (Study 2: n = 20 AUPV patients) in which patients were tilted in the roll plane using a support tilted to the hypofunction side with the same amplitude as the SVV bias. This VR protocol was performed twice a week for 4 weeks. Supplementary data on body weight distribution and medio-lateral position of the center of foot pressure (CoP) were obtained using posturography recordings. Results Study 1 showed asymmetrical values of the SVV bias. On average, the SVV errors were significantly higher for ipsilateral compared to contralateral line orientation (6.98° ± 3.7° vs. 4.95° ± 3.6°; p < 0.0001), and for 30° compared to 15° preset angle (6.76° ± 4.2° vs. 5.66° ± 3.3°; p < 0.0001). Study 2 showed a fast SVV normalization with VR. Non-pathological SVV bias (below ±2°) was found after only 3 to 5 VR sessions while pathological SVV values were still observed at the same time after symptoms onset in patients without VR (1.25° ± 1.46° vs. 4.32° ± 2.81°, respectively; p < 0.0001). A close temporal correlation was observed in the time course of body weight distribution, mediolateral CoP position, and SVV bias over time, suggesting beneficial effects of the VR protocol at both the perceptive and postural levels. Conclusion We recommend routine assessment of the ipsilateral and contralateral SVV bias separately for a better evaluation of otolith organs imbalance that can trigger chronic instability and dizziness. The SVV bias and the postural impairment caused by the imbalanced otolith inputs after unilateral vestibular loss can be rapidly normalized by tilting the patients in the roll plane, an additional means in the physiotherapist's toolbox. The protocol likely reweights the visual and somatosensory cues involved in the perception of verticality.
Collapse
Affiliation(s)
| | - Charlotte Hautefort
- Paris City University, Pasteur Institute, AP-HP Hôpital Lariboisière, Service ORL, INSERM, Fondation pour l’Audition, IHU reConnect, Paris, France
| | - Michel Toupet
- Centre d’Explorations Fonctionnelles Otoneurologiques, Paris, France
| | - Michel Lacour
- Department of Neurosciences, Aix-Marseille University/CNRS, Marseille, France
| |
Collapse
|
4
|
Basile GA, Tatti E, Bertino S, Milardi D, Genovese G, Bruno A, Muscatello MRA, Ciurleo R, Cerasa A, Quartarone A, Cacciola A. Neuroanatomical correlates of peripersonal space: bridging the gap between perception, action, emotion and social cognition. Brain Struct Funct 2024; 229:1047-1072. [PMID: 38683211 PMCID: PMC11147881 DOI: 10.1007/s00429-024-02781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/22/2024] [Indexed: 05/01/2024]
Abstract
Peripersonal space (PPS) is a construct referring to the portion of space immediately surrounding our bodies, where most of the interactions between the subject and the environment, including other individuals, take place. Decades of animal and human neuroscience research have revealed that the brain holds a separate representation of this region of space: this distinct spatial representation has evolved to ensure proper relevance to stimuli that are close to the body and prompt an appropriate behavioral response. The neural underpinnings of such construct have been thoroughly investigated by different generations of studies involving anatomical and electrophysiological investigations in animal models, and, recently, neuroimaging experiments in human subjects. Here, we provide a comprehensive anatomical overview of the anatomical circuitry underlying PPS representation in the human brain. Gathering evidence from multiple areas of research, we identified cortical and subcortical regions that are involved in specific aspects of PPS encoding.We show how these regions are part of segregated, yet integrated functional networks within the brain, which are in turn involved in higher-order integration of information. This wide-scale circuitry accounts for the relevance of PPS encoding in multiple brain functions, including not only motor planning and visuospatial attention but also emotional and social cognitive aspects. A complete characterization of these circuits may clarify the derangements of PPS representation observed in different neurological and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy.
| | - Elisa Tatti
- Department of Molecular, Cellular & Biomedical Sciences, CUNY, School of Medicine, New York, NY, 10031, USA
| | - Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | | | - Antonio Bruno
- Psychiatry Unit, University Hospital "G. Martino", Messina, Italy
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Maria Rosaria Anna Muscatello
- Psychiatry Unit, University Hospital "G. Martino", Messina, Italy
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | | | - Antonio Cerasa
- S. Anna Institute, Crotone, Italy
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy, Messina, Italy
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | | | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy.
| |
Collapse
|
5
|
Sun Q, Zhan LZ, You FH, Dong XF. Attention affects the perception of self-motion direction from optic flow. iScience 2024; 27:109373. [PMID: 38500831 PMCID: PMC10946324 DOI: 10.1016/j.isci.2024.109373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/02/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Many studies have demonstrated that attention affects the perception of many visual features. However, previous studies show conflicting results regarding the effect of attention on the perception of self-motion direction (i.e., heading) from optic flow. To address this question, we conducted three behavioral experiments and found that estimation accuracies of large headings (>14°) decreased with attention load, discrimination thresholds of these headings increased with attention load, and heading estimates were systematically compressed toward the focus of attention. Therefore, the current study demonstrated that attention affected heading perception from optic flow, showing that the perception is both information-driven and cognitive.
Collapse
Affiliation(s)
- Qi Sun
- School of Psychology, Zhejiang Normal University, Jinhua, P.R. China
- Zhejiang Philosophy and Social Science Laboratory for the Mental Health and Crisis Intervention of Children and Adolescents, Zhejiang Normal University, Jinhua, P.R. China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, P.R. China
| | - Lin-Zhe Zhan
- School of Psychology, Zhejiang Normal University, Jinhua, P.R. China
| | - Fan-Huan You
- School of Psychology, Zhejiang Normal University, Jinhua, P.R. China
| | - Xiao-Fei Dong
- School of Psychology, Zhejiang Normal University, Jinhua, P.R. China
| |
Collapse
|
6
|
Morfoisse T, Herrera Altamira G, Angelini L, Clément G, Beraneck M, McIntyre J, Tagliabue M. Modality-Independent Effect of Gravity in Shaping the Internal Representation of 3D Space for Visual and Haptic Object Perception. J Neurosci 2024; 44:e2457202023. [PMID: 38267257 PMCID: PMC10977025 DOI: 10.1523/jneurosci.2457-20.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
Visual and haptic perceptions of 3D shape are plagued by distortions, which are influenced by nonvisual factors, such as gravitational vestibular signals. Whether gravity acts directly on the visual or haptic systems or at a higher, modality-independent level of information processing remains unknown. To test these hypotheses, we examined visual and haptic 3D shape perception by asking male and female human subjects to perform a "squaring" task in upright and supine postures and in microgravity. Subjects adjusted one edge of a 3D object to match the length of another in each of the three canonical reference planes, and we recorded the matching errors to obtain a characterization of the perceived 3D shape. The results show opposing, body-centered patterns of errors for visual and haptic modalities, whose amplitudes are negatively correlated, suggesting that they arise in distinct, modality-specific representations that are nevertheless linked at some level. On the other hand, weightlessness significantly modulated both visual and haptic perceptual distortions in the same way, indicating a common, modality-independent origin for gravity's effects. Overall, our findings show a link between modality-specific visual and haptic perceptual distortions and demonstrate a role of gravity-related signals on a modality-independent internal representation of the body and peripersonal 3D space used to interpret incoming sensory inputs.
Collapse
Affiliation(s)
- Theo Morfoisse
- Université Paris Cité, CNRS UMR 8002, INCC - Integrative Neuroscience and Cognition Center, Paris F-75006, France
| | - Gabriela Herrera Altamira
- Université Paris Cité, CNRS UMR 8002, INCC - Integrative Neuroscience and Cognition Center, Paris F-75006, France
| | - Leonardo Angelini
- HumanTech Institute, University of Applied Sciences Western Switzerland//HES-SO, Fribourg 1700, Switzerland
- School of Management Fribourg, University of Applied Sciences Western Switzerland//HES-SO, Fribourg 1700, Switzerland
| | - Gilles Clément
- Université de Caen Normandie, Inserm, COMETE U1075, CYCERON, CHU de Caen, Normandie Univ, Caen 14000, France
| | - Mathieu Beraneck
- Université Paris Cité, CNRS UMR 8002, INCC - Integrative Neuroscience and Cognition Center, Paris F-75006, France
| | - Joseph McIntyre
- Tecnalia, Basque Research and Technology Alliance, San Sebastian 20009, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48009, Spain
| | - Michele Tagliabue
- Université Paris Cité, CNRS UMR 8002, INCC - Integrative Neuroscience and Cognition Center, Paris F-75006, France
| |
Collapse
|
7
|
Grove CR, Klatt BN, Wagner AR, Anson ER. Vestibular perceptual testing from lab to clinic: a review. Front Neurol 2023; 14:1265889. [PMID: 37859653 PMCID: PMC10583719 DOI: 10.3389/fneur.2023.1265889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Not all dizziness presents as vertigo, suggesting other perceptual symptoms for individuals with vestibular disease. These non-specific perceptual complaints of dizziness have led to a recent resurgence in literature examining vestibular perceptual testing with the aim to enhance clinical diagnostics and therapeutics. Recent evidence supports incorporating rehabilitation methods to retrain vestibular perception. This review describes the current field of vestibular perceptual testing from scientific laboratory techniques that may not be clinic friendly to some low-tech options that may be more clinic friendly. Limitations are highlighted suggesting directions for additional research.
Collapse
Affiliation(s)
- Colin R. Grove
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Physical Therapy, Department of Physical Medicine and Rehabilitation School of Medicine, Emory University, Atlanta, GA, United States
| | - Brooke N. Klatt
- Physical Therapy Department, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew R. Wagner
- Department of Otolaryngology—Head and Neck Surgery, Ohio State University Wexner Medical Center, Columbus, OH, United States
- School of Health and Rehabilitation Sciences, Ohio State University, Columbus, OH, United States
| | - Eric R. Anson
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States
- Physical Therapy Department, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
| |
Collapse
|
8
|
Liu B, Shan J, Gu Y. Temporal and spatial properties of vestibular signals for perception of self-motion. Front Neurol 2023; 14:1266513. [PMID: 37780704 PMCID: PMC10534010 DOI: 10.3389/fneur.2023.1266513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
It is well recognized that the vestibular system is involved in numerous important cognitive functions, including self-motion perception, spatial orientation, locomotion, and vector-based navigation, in addition to basic reflexes, such as oculomotor or body postural control. Consistent with this rationale, vestibular signals exist broadly in the brain, including several regions of the cerebral cortex, potentially allowing tight coordination with other sensory systems to improve the accuracy and precision of perception or action during self-motion. Recent neurophysiological studies in animal models based on single-cell resolution indicate that vestibular signals exhibit complex spatiotemporal dynamics, producing challenges in identifying their exact functions and how they are integrated with other modality signals. For example, vestibular and optic flow could provide congruent and incongruent signals regarding spatial tuning functions, reference frames, and temporal dynamics. Comprehensive studies, including behavioral tasks, neural recording across sensory and sensory-motor association areas, and causal link manipulations, have provided some insights into the neural mechanisms underlying multisensory self-motion perception.
Collapse
Affiliation(s)
- Bingyu Liu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, International Center for Primate Brain Research, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiayu Shan
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, International Center for Primate Brain Research, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Gu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, International Center for Primate Brain Research, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Gao W, Shen J, Lin Y, Wang K, Lin Z, Tang H, Chen X. Sequential sparse autoencoder for dynamic heading representation in ventral intraparietal area. Comput Biol Med 2023; 163:107114. [PMID: 37329620 DOI: 10.1016/j.compbiomed.2023.107114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
To navigate in space, it is important to predict headings in real-time from neural responses in the brain to vestibular and visual signals, and the ventral intraparietal area (VIP) is one of the critical brain areas. However, it remains unexplored in the population level how the heading perception is represented in VIP. And there are no commonly used methods suitable for decoding the headings from the population responses in VIP, given the large spatiotemporal dynamics and heterogeneity in the neural responses. Here, responses were recorded from 210 VIP neurons in three rhesus monkeys when they were performing a heading perception task. And by specifically and separately modelling the both dynamics with sparse representation, we built a sequential sparse autoencoder (SSAE) to do the population decoding on the recorded dataset and tried to maximize the decoding performance. The SSAE relies on a three-layer sparse autoencoder to extract temporal and spatial heading features in the dataset via unsupervised learning, and a softmax classifier to decode the headings. Compared with other population decoding methods, the SSAE achieves a leading accuracy of 96.8% ± 2.1%, and shows the advantages of robustness, low storage and computing burden for real-time prediction. Therefore, our SSAE model performs well in learning neurobiologically plausible features comprising dynamic navigational information.
Collapse
Affiliation(s)
- Wei Gao
- Department of Neurology and Psychiatry of the Second Affiliated Hospital, College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, 268 Kaixuan Road, Jianggan District, Hangzhou, 310029, China
| | - Jiangrong Shen
- College of Computer Science and Technology, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou, 310027, China
| | - Yipeng Lin
- Department of Neurology and Psychiatry of the Second Affiliated Hospital, College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, 268 Kaixuan Road, Jianggan District, Hangzhou, 310029, China
| | - Kejun Wang
- School of Software Technology, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou, 310027, China
| | - Zheng Lin
- Department of Psychiatry, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Huajin Tang
- College of Computer Science and Technology, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou, 310027, China.
| | - Xiaodong Chen
- Department of Neurology and Psychiatry of the Second Affiliated Hospital, College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, 268 Kaixuan Road, Jianggan District, Hangzhou, 310029, China.
| |
Collapse
|
10
|
Emonds AMX, Srinath R, Nielsen KJ, Connor CE. Object representation in a gravitational reference frame. eLife 2023; 12:e81701. [PMID: 37561119 PMCID: PMC10414968 DOI: 10.7554/elife.81701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/19/2023] [Indexed: 08/11/2023] Open
Abstract
When your head tilts laterally, as in sports, reaching, and resting, your eyes counterrotate less than 20%, and thus eye images rotate, over a total range of about 180°. Yet, the world appears stable and vision remains normal. We discovered a neural strategy for rotational stability in anterior inferotemporal cortex (IT), the final stage of object vision in primates. We measured object orientation tuning of IT neurons in macaque monkeys tilted +25 and -25° laterally, producing ~40° difference in retinal image orientation. Among IT neurons with consistent object orientation tuning, 63% remained stable with respect to gravity across tilts. Gravitational tuning depended on vestibular/somatosensory but also visual cues, consistent with previous evidence that IT processes scene cues for gravity's orientation. In addition to stability across image rotations, an internal gravitational reference frame is important for physical understanding of a world where object position, posture, structure, shape, movement, and behavior interact critically with gravity.
Collapse
Affiliation(s)
- Alexandriya MX Emonds
- Department of Biomedical Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Ramanujan Srinath
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Kristina J Nielsen
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Charles E Connor
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
11
|
Hovde K, Rautio IV, Hegstad AM, Witter MP, Whitlock JR. Visuomotor interactions in the mouse forebrain mediated by extrastriate cortico-cortical pathways. Front Neuroanat 2023; 17:1188808. [PMID: 37228422 PMCID: PMC10203190 DOI: 10.3389/fnana.2023.1188808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction The mammalian visual system can be broadly divided into two functional processing pathways: a dorsal stream supporting visually and spatially guided actions, and a ventral stream enabling object recognition. In rodents, the majority of visual signaling in the dorsal stream is transmitted to frontal motor cortices via extrastriate visual areas surrounding V1, but exactly where and to what extent V1 feeds into motor-projecting visual regions is not well known. Methods We employed a dual labeling strategy in male and female mice in which efferent projections from V1 were labeled anterogradely, and motor-projecting neurons in higher visual areas were labeled with retrogradely traveling adeno-associated virus (rAAV-retro) injected in M2. We characterized the labeling in both flattened and coronal sections of dorsal cortex and made high-resolution 3D reconstructions to count putative synaptic contacts in different extrastriate areas. Results The most pronounced colocalization V1 output and M2 input occurred in extrastriate areas AM, PM, RL and AL. Neurons in both superficial and deep layers in each project to M2, but high resolution volumetric reconstructions indicated that the majority of putative synaptic contacts from V1 onto M2-projecting neurons occurred in layer 2/3. Discussion These findings support the existence of a dorsal processing stream in the mouse visual system, where visual signals reach motor cortex largely via feedforward projections in anteriorly and medially located extrastriate areas.
Collapse
Affiliation(s)
- Karoline Hovde
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ida V. Rautio
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Andrea M. Hegstad
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Menno P. Witter
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jonathan R. Whitlock
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
12
|
Zeng F, Zaidel A, Chen A. Contrary neuronal recalibration in different multisensory cortical areas. eLife 2023; 12:82895. [PMID: 36877555 PMCID: PMC9988259 DOI: 10.7554/elife.82895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/21/2023] [Indexed: 03/07/2023] Open
Abstract
The adult brain demonstrates remarkable multisensory plasticity by dynamically recalibrating itself based on information from multiple sensory sources. After a systematic visual-vestibular heading offset is experienced, the unisensory perceptual estimates for subsequently presented stimuli are shifted toward each other (in opposite directions) to reduce the conflict. The neural substrate of this recalibration is unknown. Here, we recorded single-neuron activity from the dorsal medial superior temporal (MSTd), parietoinsular vestibular cortex (PIVC), and ventral intraparietal (VIP) areas in three male rhesus macaques during this visual-vestibular recalibration. Both visual and vestibular neuronal tuning curves in MSTd shifted - each according to their respective cues' perceptual shifts. Tuning of vestibular neurons in PIVC also shifted in the same direction as vestibular perceptual shifts (cells were not robustly tuned to the visual stimuli). By contrast, VIP neurons demonstrated a unique phenomenon: both vestibular and visual tuning shifted in accordance with vestibular perceptual shifts. Such that, visual tuning shifted, surprisingly, contrary to visual perceptual shifts. Therefore, while unsupervised recalibration (to reduce cue conflict) occurs in early multisensory cortices, higher-level VIP reflects only a global shift, in vestibular space.
Collapse
Affiliation(s)
- Fu Zeng
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal UniversityShanghaiChina
| | - Adam Zaidel
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan UniversityRamat GanIsrael
| | - Aihua Chen
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal UniversityShanghaiChina
| |
Collapse
|
13
|
Gao W, Lin Y, Shen J, Han J, Song X, Lu Y, Zhan H, Li Q, Ge H, Lin Z, Shi W, Drugowitsch J, Tang H, Chen X. Diverse effects of gaze direction on heading perception in humans. Cereb Cortex 2023:7024719. [PMID: 36734278 DOI: 10.1093/cercor/bhac541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 02/04/2023] Open
Abstract
Gaze change can misalign spatial reference frames encoding visual and vestibular signals in cortex, which may affect the heading discrimination. Here, by systematically manipulating the eye-in-head and head-on-body positions to change the gaze direction of subjects, the performance of heading discrimination was tested with visual, vestibular, and combined stimuli in a reaction-time task in which the reaction time is under the control of subjects. We found the gaze change induced substantial biases in perceived heading, increased the threshold of discrimination and reaction time of subjects in all stimulus conditions. For the visual stimulus, the gaze effects were induced by changing the eye-in-world position, and the perceived heading was biased in the opposite direction of gaze. In contrast, the vestibular gaze effects were induced by changing the eye-in-head position, and the perceived heading was biased in the same direction of gaze. Although the bias was reduced when the visual and vestibular stimuli were combined, integration of the 2 signals substantially deviated from predictions of an extended diffusion model that accumulates evidence optimally over time and across sensory modalities. These findings reveal diverse gaze effects on the heading discrimination and emphasize that the transformation of spatial reference frames may underlie the effects.
Collapse
Affiliation(s)
- Wei Gao
- Department of Neurology and Psychiatry of the Second Affiliated Hospital, College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, 268 Kaixuan Road, Jianggan District, Hangzhou 310029, China
| | - Yipeng Lin
- Department of Neurology and Psychiatry of the Second Affiliated Hospital, College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, 268 Kaixuan Road, Jianggan District, Hangzhou 310029, China
| | - Jiangrong Shen
- College of Computer Science and Technology, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou 310027, China
| | - Jianing Han
- College of Computer Science and Technology, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou 310027, China
| | - Xiaoxiao Song
- Department of Liberal Arts, School of Art Administration and Education, China Academy of Art, 218 Nanshan Road, Shangcheng District, Hangzhou 310002, China
| | - Yukun Lu
- Department of Neurology and Psychiatry of the Second Affiliated Hospital, College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, 268 Kaixuan Road, Jianggan District, Hangzhou 310029, China
| | - Huijia Zhan
- Department of Neurology and Psychiatry of the Second Affiliated Hospital, College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, 268 Kaixuan Road, Jianggan District, Hangzhou 310029, China
| | - Qianbing Li
- Department of Neurology and Psychiatry of the Second Affiliated Hospital, College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, 268 Kaixuan Road, Jianggan District, Hangzhou 310029, China
| | - Haoting Ge
- Department of Neurology and Psychiatry of the Second Affiliated Hospital, College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, 268 Kaixuan Road, Jianggan District, Hangzhou 310029, China
| | - Zheng Lin
- Department of Psychiatry, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Wenlei Shi
- Center for the Study of the History of Chinese Language and Center for the Study of Language and Cognition, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Jan Drugowitsch
- Department of Neurobiology, Harvard Medical School, Longwood Avenue 220, Boston, MA 02116, United States
| | - Huajin Tang
- College of Computer Science and Technology, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou 310027, China
| | - Xiaodong Chen
- Department of Neurology and Psychiatry of the Second Affiliated Hospital, College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, 268 Kaixuan Road, Jianggan District, Hangzhou 310029, China
| |
Collapse
|
14
|
Arshad I, Gallagher M, Ferrè ER. Visuo-vestibular conflicts within the roll plane modulate multisensory verticality perception. Neurosci Lett 2023; 792:136963. [PMID: 36375625 DOI: 10.1016/j.neulet.2022.136963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
The integration of visuo-vestibular information is crucial when interacting with the external environment. Under normal circumstances, vision and vestibular signals provide corroborating information, for example regarding the direction and speed of self-motion. However, conflicts in visuo-vestibular signalling, such as optic flow presented to a stationary observer, can change subsequent processing in either modality. While previous studies have demonstrated the impact of sensory conflict on unisensory visual or vestibular percepts, here we investigated whether visuo-vestibular conflicts impact sensitivity to multisensory percepts, specifically verticality. Participants were exposed to a visuo-vestibular conflicting or non-conflicting motion adaptor before completing a Vertical Detection Task. Sensitivity to vertical stimuli was reduced following visuo-vestibular conflict. No significant differences in criterion were found. Our findings suggest that visuo-vestibular conflicts not only modulate processing in unimodal channels, but also broader multisensory percepts, which may have implications for higher-level processing dependent on the integration of visual and vestibular signals.
Collapse
Affiliation(s)
- I Arshad
- Department of Psychology, Royal Holloway University of London, United Kingdom; Department of Psychological Sciences, Birkbeck University of London, United Kingdom
| | - M Gallagher
- School of Psychology, Cardiff University, United Kingdom; School of Psychology, University of Kent, United Kingdom.
| | - E R Ferrè
- Department of Psychological Sciences, Birkbeck University of London, United Kingdom
| |
Collapse
|
15
|
Gerb J, Brandt T, Dieterich M. Different strategies in pointing tasks and their impact on clinical bedside tests of spatial orientation. J Neurol 2022; 269:5738-5745. [PMID: 35258851 PMCID: PMC9553832 DOI: 10.1007/s00415-022-11015-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/27/2022] [Accepted: 02/05/2022] [Indexed: 11/24/2022]
Abstract
Deficits in spatial memory, orientation, and navigation are often early or neglected signs of degenerative and vestibular neurological disorders. A simple and reliable bedside test of these functions would be extremely relevant for diagnostic routine. Pointing at targets in the 3D environment is a basic well-trained common sensorimotor ability that provides a suitable measure. We here describe a smartphone-based pointing device using the built-in inertial sensors for analysis of pointing performance in azimuth and polar spatial coordinates. Interpretation of the vectors measured in this way is not trivial, since the individuals tested may use at least two different strategies: first, they may perform the task in an egocentric eye-based reference system by aligning the fingertip with the target retinotopically or second, by aligning the stretched arm and the index finger with the visual line of sight in allocentric world-based coordinates similar to using a rifle. The two strategies result in considerable differences of target coordinates. A pilot test with a further developed design of the device and an app for a standardized bedside utilization in five healthy volunteers revealed an overall mean deviation of less than 5° between the measured and the true coordinates. Future investigations of neurological patients comparing their performance before and after changes in body position (chair rotation) may allow differentiation of distinct orientational deficits in peripheral (vestibulopathy) or central (hippocampal or cortical) disorders.
Collapse
Affiliation(s)
- J. Gerb
- Department of Neurology, University Hospital, Ludwig-Maximilians University, Marchioninistrasse 15, 81377 Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians University, Marchioninistrasse 15, 81377 Munich, Germany
| | - T. Brandt
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians University, Marchioninistrasse 15, 81377 Munich, Germany
- Hertie Senior Professor for Clinical Neuroscience, Ludwig-Maximilians University, Munich, Germany
| | - M. Dieterich
- Department of Neurology, University Hospital, Ludwig-Maximilians University, Marchioninistrasse 15, 81377 Munich, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians University, Marchioninistrasse 15, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
16
|
Sulpizio V, Strappini F, Fattori P, Galati G, Galletti C, Pecchinenda A, Pitzalis S. The human middle temporal cortex responds to both active leg movements and egomotion-compatible visual motion. Brain Struct Funct 2022; 227:2573-2592. [PMID: 35963915 DOI: 10.1007/s00429-022-02549-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
The human middle-temporal region MT+ is highly specialized in processing visual motion. However, recent studies have shown that this region is modulated by extraretinal signals, suggesting a possible involvement in processing motion information also from non-visual modalities. Here, we used functional MRI data to investigate the influence of retinal and extraretinal signals on MT+ in a large sample of subjects. Moreover, we used resting-state functional MRI to assess how the subdivisions of MT+ (i.e., MST, FST, MT, and V4t) are functionally connected. We first compared responses in MST, FST, MT, and V4t to coherent vs. random visual motion. We found that only MST and FST were positively activated by coherent motion. Furthermore, regional analyses revealed that MST and FST were positively activated by leg, but not arm, movements, while MT and V4t were deactivated by arm, but not leg, movements. Taken together, regional analyses revealed a visuomotor role for the anterior areas MST and FST and a pure visual role for the anterior areas MT and V4t. These findings were mirrored by the pattern of functional connections between these areas and the rest of the brain. Visual and visuomotor regions showed distinct patterns of functional connectivity, with the latter preferentially connected with the somatosensory and motor areas representing leg and foot. Overall, these findings reveal a functional sensitivity for coherent visual motion and lower-limb movements in MST and FST, suggesting their possible involvement in integrating sensory and motor information to perform locomotion.
Collapse
Affiliation(s)
- Valentina Sulpizio
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | | | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gaspare Galati
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Sabrina Pitzalis
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', 00194, Rome, Italy.
| |
Collapse
|
17
|
Foster C, Sheng WA, Heed T, Ben Hamed S. The macaque ventral intraparietal area has expanded into three homologue human parietal areas. Prog Neurobiol 2021; 209:102185. [PMID: 34775040 DOI: 10.1016/j.pneurobio.2021.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
The macaque ventral intraparietal area (VIP) in the fundus of the intraparietal sulcus has been implicated in a diverse range of sensorimotor and cognitive functions such as motion processing, multisensory integration, processing of head peripersonal space, defensive behavior, and numerosity coding. Here, we exhaustively review macaque VIP function, cytoarchitectonics, and anatomical connectivity and integrate it with human studies that have attempted to identify a potential human VIP homologue. We show that human VIP research has consistently identified three, rather than one, bilateral parietal areas that each appear to subsume some, but not all, of the macaque area's functionality. Available evidence suggests that this human "VIP complex" has evolved as an expansion of the macaque area, but that some precursory specialization within macaque VIP has been previously overlooked. The three human areas are dominated, roughly, by coding the head or self in the environment, visual heading direction, and the peripersonal environment around the head, respectively. A unifying functional principle may be best described as prediction in space and time, linking VIP to state estimation as a key parietal sensorimotor function. VIP's expansive differentiation of head and self-related processing may have been key in the emergence of human bodily self-consciousness.
Collapse
Affiliation(s)
- Celia Foster
- Biopsychology & Cognitive Neuroscience, Faculty of Psychology & Sports Science, Bielefeld University, Bielefeld, Germany; Center of Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - Wei-An Sheng
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229, CNRS-University of Lyon 1, France
| | - Tobias Heed
- Biopsychology & Cognitive Neuroscience, Faculty of Psychology & Sports Science, Bielefeld University, Bielefeld, Germany; Center of Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany; Department of Psychology, University of Salzburg, Salzburg, Austria; Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229, CNRS-University of Lyon 1, France.
| |
Collapse
|
18
|
Orban GA, Sepe A, Bonini L. Parietal maps of visual signals for bodily action planning. Brain Struct Funct 2021; 226:2967-2988. [PMID: 34508272 PMCID: PMC8541987 DOI: 10.1007/s00429-021-02378-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022]
Abstract
The posterior parietal cortex (PPC) has long been understood as a high-level integrative station for computing motor commands for the body based on sensory (i.e., mostly tactile and visual) input from the outside world. In the last decade, accumulating evidence has shown that the parietal areas not only extract the pragmatic features of manipulable objects, but also subserve sensorimotor processing of others’ actions. A paradigmatic case is that of the anterior intraparietal area (AIP), which encodes the identity of observed manipulative actions that afford potential motor actions the observer could perform in response to them. On these bases, we propose an AIP manipulative action-based template of the general planning functions of the PPC and review existing evidence supporting the extension of this model to other PPC regions and to a wider set of actions: defensive and locomotor actions. In our model, a hallmark of PPC functioning is the processing of information about the physical and social world to encode potential bodily actions appropriate for the current context. We further extend the model to actions performed with man-made objects (e.g., tools) and artifacts, because they become integral parts of the subject’s body schema and motor repertoire. Finally, we conclude that existing evidence supports a generally conserved neural circuitry that transforms integrated sensory signals into the variety of bodily actions that primates are capable of preparing and performing to interact with their physical and social world.
Collapse
Affiliation(s)
- Guy A Orban
- Department of Medicine and Surgery, University of Parma, via Volturno 39/E, 43125, Parma, Italy.
| | - Alessia Sepe
- Department of Medicine and Surgery, University of Parma, via Volturno 39/E, 43125, Parma, Italy
| | - Luca Bonini
- Department of Medicine and Surgery, University of Parma, via Volturno 39/E, 43125, Parma, Italy.
| |
Collapse
|
19
|
Vestibular Stimulation May Drive Multisensory Processing: Principles for Targeted Sensorimotor Therapy (TSMT). Brain Sci 2021; 11:brainsci11081111. [PMID: 34439730 PMCID: PMC8393350 DOI: 10.3390/brainsci11081111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/01/2022] Open
Abstract
At birth, the vestibular system is fully mature, whilst higher order sensory processing is yet to develop in the full-term neonate. The current paper lays out a theoretical framework to account for the role vestibular stimulation may have driving multisensory and sensorimotor integration. Accordingly, vestibular stimulation, by activating the parieto-insular vestibular cortex, and/or the posterior parietal cortex may provide the cortical input for multisensory neurons in the superior colliculus that is needed for multisensory processing. Furthermore, we propose that motor development, by inducing change of reference frames, may shape the receptive field of multisensory neurons. This, by leading to lack of spatial contingency between formally contingent stimuli, may cause degradation of prior motor responses. Additionally, we offer a testable hypothesis explaining the beneficial effect of sensory integration therapies regarding attentional processes. Key concepts of a sensorimotor integration therapy (e.g., targeted sensorimotor therapy (TSMT)) are also put into a neurological context. TSMT utilizes specific tools and instruments. It is administered in 8-weeks long successive treatment regimens, each gradually increasing vestibular and postural stimulation, so sensory-motor integration is facilitated, and muscle strength is increased. Empirically TSMT is indicated for various diseases. Theoretical foundations of this sensorimotor therapy are discussed.
Collapse
|
20
|
Caruso VC, Pages DS, Sommer MA, Groh JM. Compensating for a shifting world: evolving reference frames of visual and auditory signals across three multimodal brain areas. J Neurophysiol 2021; 126:82-94. [PMID: 33852803 DOI: 10.1152/jn.00385.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stimulus locations are detected differently by different sensory systems, but ultimately they yield similar percepts and behavioral responses. How the brain transcends initial differences to compute similar codes is unclear. We quantitatively compared the reference frames of two sensory modalities, vision and audition, across three interconnected brain areas involved in generating saccades, namely the frontal eye fields (FEF), lateral and medial parietal cortex (M/LIP), and superior colliculus (SC). We recorded from single neurons in head-restrained monkeys performing auditory- and visually guided saccades from variable initial fixation locations and evaluated whether their receptive fields were better described as eye-centered, head-centered, or hybrid (i.e. not anchored uniquely to head- or eye-orientation). We found a progression of reference frames across areas and across time, with considerable hybrid-ness and persistent differences between modalities during most epochs/brain regions. For both modalities, the SC was more eye-centered than the FEF, which in turn was more eye-centered than the predominantly hybrid M/LIP. In all three areas and temporal epochs from stimulus onset to movement, visual signals were more eye-centered than auditory signals. In the SC and FEF, auditory signals became more eye-centered at the time of the saccade than they were initially after stimulus onset, but only in the SC at the time of the saccade did the auditory signals become "predominantly" eye-centered. The results indicate that visual and auditory signals both undergo transformations, ultimately reaching the same final reference frame but via different dynamics across brain regions and time.NEW & NOTEWORTHY Models for visual-auditory integration posit that visual signals are eye-centered throughout the brain, whereas auditory signals are converted from head-centered to eye-centered coordinates. We show instead that both modalities largely employ hybrid reference frames: neither fully head- nor eye-centered. Across three hubs of the oculomotor network (intraparietal cortex, frontal eye field, and superior colliculus) visual and auditory signals evolve from hybrid to a common eye-centered format via different dynamics across brain areas and time.
Collapse
Affiliation(s)
- Valeria C Caruso
- Duke Institute for Brain Sciences, Duke University, Durham, North Carolina.,Center for Cognitive Neuroscience, Duke University, Durham, North Carolina.,Department of Psychology and Neuroscience, Duke University, Durham, North Carolina.,Department of Neurobiology, Duke University, Durham, North Carolina.,Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Daniel S Pages
- Duke Institute for Brain Sciences, Duke University, Durham, North Carolina.,Center for Cognitive Neuroscience, Duke University, Durham, North Carolina.,Department of Psychology and Neuroscience, Duke University, Durham, North Carolina.,Department of Neurobiology, Duke University, Durham, North Carolina
| | - Marc A Sommer
- Duke Institute for Brain Sciences, Duke University, Durham, North Carolina.,Center for Cognitive Neuroscience, Duke University, Durham, North Carolina.,Department of Neurobiology, Duke University, Durham, North Carolina.,Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Jennifer M Groh
- Duke Institute for Brain Sciences, Duke University, Durham, North Carolina.,Center for Cognitive Neuroscience, Duke University, Durham, North Carolina.,Department of Psychology and Neuroscience, Duke University, Durham, North Carolina.,Department of Neurobiology, Duke University, Durham, North Carolina.,Department of Biomedical Engineering, Duke University, Durham, North Carolina
| |
Collapse
|
21
|
Dai S, Piscicelli C, Clarac E, Baciu M, Hommel M, Pérennou D. Lateropulsion After Hemispheric Stroke: A Form of Spatial Neglect Involving Graviception. Neurology 2021; 96:e2160-e2171. [PMID: 33722996 DOI: 10.1212/wnl.0000000000011826] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 01/28/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To test the hypothesis that lateropulsion is an entity expressing an impaired body orientation with respect to gravity in relation to a biased graviception and spatial neglect. METHODS Data from the DOBRAS cohort (ClinicalTrials.gov: NCT03203109) were collected 30 days after a first hemisphere stroke. Lateral body tilt, pushing, and resistance were assessed with the Scale for Contraversive Pushing. RESULTS Among 220 individuals, 72% were upright and 28% showed lateropulsion (tilters [14%] less severe than pushers [14%]). The 3 signs had very high factor loadings (>0.90) on a same dimension, demonstrating that lateropulsion was effectively an entity comprising body tilt (cardinal sign), pushing, and resistance. The factorial analyses also showed that lateropulsion was inseparable from the visual vertical (VV), a criterion referring to vertical orientation (graviception). Contralesional VV biases were frequent (44%), with a magnitude related to lateropulsion severity: upright -0.6° (-2.9; 2.4), tilters -2.9° (-7; 0.8), and pushers -12.3° (-15.4; -8.5). Ipsilesional VV biases were less frequent and milder (p < 0.001). They did not deal with graviception, 84% being found in upright individuals. Multivariate, factorial, contingency, and prediction analyses congruently showed strong similarities between lateropulsion and spatial neglect, the latter encompassing the former. CONCLUSIONS Lateropulsion (pusher syndrome) is a trinity constituted by body tilt, pushing, and resistance. It is a way to adjust the body orientation in the roll plane to a wrong reference of verticality. Referring to straight above, lateropulsion might correspond to a form of spatial neglect (referring to straight ahead), which would advocate for 3D maps in the human brain involving the internal model of verticality.
Collapse
Affiliation(s)
- Shenhao Dai
- From the Neurorehabilitation Department, Institute of Rehabilitation (S.D., C.P., E.C., M.B., D.P.), Grenoble Alpes University Hospital; and Lab Psychology and NeuroCognition (S.D., C.P., M.B., D.P.) and AGEIS EA 7407 (M.H.), Université Grenoble Alpes, Grenoble, France
| | - Céline Piscicelli
- From the Neurorehabilitation Department, Institute of Rehabilitation (S.D., C.P., E.C., M.B., D.P.), Grenoble Alpes University Hospital; and Lab Psychology and NeuroCognition (S.D., C.P., M.B., D.P.) and AGEIS EA 7407 (M.H.), Université Grenoble Alpes, Grenoble, France
| | - Emmanuelle Clarac
- From the Neurorehabilitation Department, Institute of Rehabilitation (S.D., C.P., E.C., M.B., D.P.), Grenoble Alpes University Hospital; and Lab Psychology and NeuroCognition (S.D., C.P., M.B., D.P.) and AGEIS EA 7407 (M.H.), Université Grenoble Alpes, Grenoble, France
| | - Monica Baciu
- From the Neurorehabilitation Department, Institute of Rehabilitation (S.D., C.P., E.C., M.B., D.P.), Grenoble Alpes University Hospital; and Lab Psychology and NeuroCognition (S.D., C.P., M.B., D.P.) and AGEIS EA 7407 (M.H.), Université Grenoble Alpes, Grenoble, France
| | - Marc Hommel
- From the Neurorehabilitation Department, Institute of Rehabilitation (S.D., C.P., E.C., M.B., D.P.), Grenoble Alpes University Hospital; and Lab Psychology and NeuroCognition (S.D., C.P., M.B., D.P.) and AGEIS EA 7407 (M.H.), Université Grenoble Alpes, Grenoble, France
| | - Dominic Pérennou
- From the Neurorehabilitation Department, Institute of Rehabilitation (S.D., C.P., E.C., M.B., D.P.), Grenoble Alpes University Hospital; and Lab Psychology and NeuroCognition (S.D., C.P., M.B., D.P.) and AGEIS EA 7407 (M.H.), Université Grenoble Alpes, Grenoble, France.
| |
Collapse
|
22
|
Ertl M, Zu Eulenburg P, Woller M, Dieterich M. The role of delta and theta oscillations during ego-motion in healthy adult volunteers. Exp Brain Res 2021; 239:1073-1083. [PMID: 33534022 PMCID: PMC8068649 DOI: 10.1007/s00221-020-06030-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022]
Abstract
The successful cortical processing of multisensory input typically requires the integration of data represented in different reference systems to perform many fundamental tasks, such as bipedal locomotion. Animal studies have provided insights into the integration processes performed by the neocortex and have identified region specific tuning curves for different reference frames during ego-motion. Yet, there remains almost no data on this topic in humans. In this study, an experiment originally performed in animal research with the aim to identify brain regions modulated by the position of the head and eyes relative to a translational ego-motion was adapted for humans. Subjects sitting on a motion platform were accelerated along a translational pathway with either eyes and head aligned or a 20° yaw-plane offset relative to the motion direction while EEG was recorded. Using a distributed source localization approach, it was found that activity in area PFm, a part of Brodmann area 40, was modulated by the congruency of translational motion direction, eye, and head position. In addition, an asymmetry between the hemispheres in the opercular-insular region was observed during the cortical processing of the vestibular input. A frequency specific analysis revealed that low-frequency oscillations in the delta- and theta-band are modulated by vestibular stimulation. Source-localization estimated that the observed low-frequency oscillations are generated by vestibular core-regions, such as the parieto-opercular region and frontal areas like the mid-orbital gyrus and the medial frontal gyrus.
Collapse
Affiliation(s)
- M Ertl
- Department of Psychology, University of Bern, Fabrikstrasse 8, 3012, Bern, Switzerland.
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany.
| | - P Zu Eulenburg
- German Center for Vertigo and Balance Disorders (IFBLMU), Ludwig-Maximilians-Universität München, München, Germany
- Institute for Neuroradiology, Ludwig-Maximilians-Universität München, München, Germany
| | - M Woller
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - M Dieterich
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
- German Center for Vertigo and Balance Disorders (IFBLMU), Ludwig-Maximilians-Universität München, München, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-Universität München, München, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
23
|
Martin CZ, Lapierre P, Haché S, Lucien D, Green AM. Vestibular contributions to online reach execution are processed via mechanisms with knowledge about limb biomechanics. J Neurophysiol 2021; 125:1022-1045. [PMID: 33502952 DOI: 10.1152/jn.00688.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Studies of reach control with the body stationary have shown that proprioceptive and visual feedback signals contributing to rapid corrections during reaching are processed by neural circuits that incorporate knowledge about the physical properties of the limb (an internal model). However, among the most common spatial and mechanical perturbations to the limb are those caused by our body's own motion, suggesting that processing of vestibular signals for online reach control may reflect a similar level of sophistication. We investigated this hypothesis using galvanic vestibular stimulation (GVS) to selectively activate the vestibular sensors, simulating body rotation, as human subjects reached to remembered targets in different directions (forward, leftward, rightward). If vestibular signals contribute to purely kinematic/spatial corrections for body motion, GVS should evoke reach trajectory deviations of similar size in all directions. In contrast, biomechanical modeling predicts that if vestibular processing for online reach control takes into account knowledge of the physical properties of the limb and the forces applied on it by body motion, then GVS should evoke trajectory deviations that are significantly larger during forward and leftward reaches as compared with rightward reaches. When GVS was applied during reaching, the observed deviations were on average consistent with this prediction. In contrast, when GVS was instead applied before reaching, evoked deviations were similar across directions, as predicted for a purely spatial correction mechanism. These results suggest that vestibular signals, like proprioceptive and visual feedback, are processed for online reach control via sophisticated neural mechanisms that incorporate knowledge of limb biomechanics.NEW & NOTEWORTHY Studies examining proprioceptive and visual contributions to rapid corrections for externally applied mechanical and spatial perturbations during reaching have provided evidence for flexible processing of sensory feedback that accounts for musculoskeletal system dynamics. Notably, however, such perturbations commonly arise from our body's own motion. In line with this, we provide compelling evidence that, similar to proprioceptive and visual signals, vestibular signals are processed for online reach control via sophisticated mechanisms that incorporate knowledge of limb biomechanics.
Collapse
Affiliation(s)
- Christophe Z Martin
- Département de Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | - Philippe Lapierre
- Département de Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | - Simon Haché
- Département de Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | - Diderot Lucien
- Département de Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | - Andrea M Green
- Département de Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Abstract
To achieve visual space constancy, our brain remaps eye-centered projections of visual objects across saccades. Here, we measured saccade trajectory curvature following the presentation of visual, auditory, and audiovisual distractors in a double-step saccade task to investigate if this stability mechanism also accounts for localized sounds. We found that saccade trajectories systematically curved away from the position at which either a light or a sound was presented, suggesting that both modalities are represented in eye-centered oculomotor centers. Importantly, the same effect was observed when the distractor preceded the execution of the first saccade. These results suggest that oculomotor centers keep track of visual, auditory and audiovisual objects by remapping their eye-centered representations across saccades. Furthermore, they argue for the existence of a supra-modal map which keeps track of multi-sensory object locations across our movements to create an impression of space constancy.
Collapse
|
25
|
Beylergil SB, Shaikh AG. Visual Perception of Heading in the Syndrome of Oculopalatal Tremor. THE CEREBELLUM 2020; 20:788-795. [PMID: 32740743 DOI: 10.1007/s12311-020-01176-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Perception of our linear motion, heading, relies on convergence from multiple sensory systems utilizing visual and vestibular signals. Multisensory convergence takes place in the visuo-vestibular areas of the cerebral cortex and posterior cerebellar vermis. Latter closely connected with the inferior olive may malfunction in disorders of olivo-cerebellar hypersynchrony, such as the syndrome of oculopalatal tremor (OPT). We had recently shown an impairment in vestibular heading perception in the subjects with OPT. Here we asked whether the hypersynchrony in the inferior-olive cerebellar circuit also affects the visual perception of heading, and the impairment is coupled with the deficits in vestibular heading perception. Three subjects with OPT and 11 healthy controls performed a two-alternative forced-choice task in two separate experiments; one when they were moved en bloc in a straight-ahead forward direction or at multiple heading angles to the right or the left; and second when under virtual reality goggle they experienced the movement of star cloud leading to the percept of heading straight, left or to the right at the heading angles similar to those utilized in the vestibular task. The resultant psychometric function curves, derived from the two-alternative-forced-choice task, revealed abnormal threshold to perceive heading direction, abnormal sensitivity to the change in heading direction compared to straight ahead, and a bias towards one side. Although the impairment was present in both visual and vestibular heading perception, the deficits were not coupled.
Collapse
Affiliation(s)
- Sinem Balta Beylergil
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.,National VA Parkinson Consortium Center, Neurology Service, Daroff-Dell' Osso Ocular Motility and Vestibular Laboratory, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Aasef G Shaikh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA. .,National VA Parkinson Consortium Center, Neurology Service, Daroff-Dell' Osso Ocular Motility and Vestibular Laboratory, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA. .,Department of Neurology, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, 44110, USA. .,Movement Disorders Center, Neurological Institute, University Hospitals, Cleveland, OH, USA.
| |
Collapse
|
26
|
Seidel Malkinson T, Migliaccio R, Migeot H, Picq C, Cerrato A, Pradat-Diehl P, Bartolomeo P, Toba MN. A dissociation between preserved abstract spatial knowledge and impaired navigation in a blind patient. Cortex 2020; 128:322-325. [DOI: 10.1016/j.cortex.2020.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/12/2020] [Accepted: 03/27/2020] [Indexed: 11/16/2022]
|
27
|
Flexible coding of object motion in multiple reference frames by parietal cortex neurons. Nat Neurosci 2020; 23:1004-1015. [PMID: 32541964 PMCID: PMC7474851 DOI: 10.1038/s41593-020-0656-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 05/14/2020] [Indexed: 12/28/2022]
Abstract
Neurons represent spatial information in diverse reference frames, but it remains unclear whether neural reference frames change with task demands and whether these changes can account for behavior. We examined how neurons represent the direction of a moving object during self-motion, while monkeys switched, from trial to trial, between reporting object direction in head- and world-centered reference frames. Self-motion information is needed to compute object motion in world coordinates, but should be ignored when judging object motion in head coordinates. Neural responses in the ventral intraparietal area are modulated by the task reference frame, such that population activity represents object direction in either reference frame. In contrast, responses in the lateral portion of the medial superior temporal area primarily represent object motion in head coordinates. Our findings demonstrate a neural representation of object motion that changes with task requirements.
Collapse
|
28
|
Ertl M, Klaus M, Mast FW, Brandt T, Dieterich M. Spectral fingerprints of correct vestibular discrimination of the intensity of body accelerations. Neuroimage 2020; 219:117015. [PMID: 32505699 DOI: 10.1016/j.neuroimage.2020.117015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 05/04/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Perceptual decision-making is a complex task that requires multiple processing steps performed by spatially distinct brain regions interacting in order to optimize perception and motor response. Most of our knowledge on these processes and interactions were derived from unimodal stimulations of the visual system which identified the lateral intraparietal area and the posterior parietal cortex as critical regions. Unlike the visual system, the vestibular system has no primary cortical areas and it is associated with separate multisensory areas within the temporo-parietal cortex with the parieto-insular vestibular cortex, PIVC, being the core region. The aim of the presented experiment was to investigate the transition from sensation to perception and to reveal the main structures of the cortical vestibular system involved in perceptual decision-making. Therefore, an EEG analysis was performed in 35 healthy subjects during linear whole-body accelerations of different intensities on a motor-driven motion platform (hexapod). We used a discrimination task in order to judge the intensity of the accelerations. Furthermore, we manipulated the expectation of the upcoming stimulus by indicating the probability (25%, 50%, 75%, 100%) of the motion direction. The analysis of the vestibular evoked potentials (VestEPs) showed that the decision-making process leads to a second positive peak (P2b) which was not observed in previous task-free experiments. The comparison of the estimated neural generators of the P2a and P2b components showed significant activity differences in the anterior cingulus, the parahippocampal and the middle temporal gyri. Taking into account the time courses of the P2 components, the physical properties of the stimuli, and the responses given by the subjects we conclude that the P2b likely reflects the transition from the processing of sensory information to perceptual evaluation. Analyzing the decision-uncertainty reported by the subjects, a persistent divergence of the time courses starting at 188 ms after the acceleration was found at electrode Pz. This finding demonstrated that meta-cognition by means of confidence estimation starts in parallel with the decision-making process itself. Further analyses in the time-frequency domain revealed that a correct classification of acceleration intensities correlated with an inter-trial phase clustering at electrode Cz and an inter-site phase clustering of theta oscillations over frontal, central, and parietal cortical areas. The sites where the phase clustering was observed corresponded to core decision-making brain areas known from neuroimaging studies in the visual domain.
Collapse
Affiliation(s)
- M Ertl
- Department of Psychology, University Bern, Switzerland; Department of Neurology, Ludwig-Maximilians-Universität München, Germany.
| | - M Klaus
- Department of Psychology, University Bern, Switzerland
| | - F W Mast
- Department of Psychology, University Bern, Switzerland
| | - T Brandt
- German Center for Vertigo and Balance Disorders-IFBLMU (DSGZ), Ludwig-Maximilians-Universität München, Germany; Hertie Senior Research Professor for Clinical Neuroscience, Ludwig-Maximilians-Universität München, Germany
| | - M Dieterich
- Department of Neurology, Ludwig-Maximilians-Universität München, Germany; German Center for Vertigo and Balance Disorders-IFBLMU (DSGZ), Ludwig-Maximilians-Universität München, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
29
|
Medendorp WP, Heed T. State estimation in posterior parietal cortex: Distinct poles of environmental and bodily states. Prog Neurobiol 2019; 183:101691. [DOI: 10.1016/j.pneurobio.2019.101691] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 01/06/2023]
|
30
|
Ertl M, Boegle R. Investigating the vestibular system using modern imaging techniques-A review on the available stimulation and imaging methods. J Neurosci Methods 2019; 326:108363. [PMID: 31351972 DOI: 10.1016/j.jneumeth.2019.108363] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
The vestibular organs, located in the inner ear, sense linear and rotational acceleration of the head and its position relative to the gravitational field of the earth. These signals are essential for many fundamental skills such as the coordination of eye and head movements in the three-dimensional space or the bipedal locomotion of humans. Furthermore, the vestibular signals have been shown to contribute to higher cognitive functions such as navigation. As the main aim of the vestibular system is the sensation of motion it is a challenging system to be studied in combination with modern imaging methods. Over the last years various different methods were used for stimulating the vestibular system. These methods range from artificial approaches like galvanic or caloric vestibular stimulation to passive full body accelerations using hexapod motion platforms, or rotatory chairs. In the first section of this review we provide an overview over all methods used in vestibular stimulation in combination with imaging methods (fMRI, PET, E/MEG, fNIRS). The advantages and disadvantages of every method are discussed, and we summarize typical settings and parameters used in previous studies. In the second section the role of the four imaging techniques are discussed in the context of vestibular research and their potential strengths and interactions with the presented stimulation methods are outlined.
Collapse
Affiliation(s)
- Matthias Ertl
- Department of Psychology, University of Bern, Switzerland; Sleep-Wake-Epilepsy Center, Department of Neurology, University Hospital (Inselspital) Bern, Switzerland.
| | - Rainer Boegle
- Department of Neurology, Ludwig-Maximilians-Universität München, Germany; German Center for Vertigo and Balance Disorders, IFB-LMU, Ludwig-Maximilians Universität, Munich, Germany
| |
Collapse
|
31
|
Saradjian AH, Teasdale N, Blouin J, Mouchnino L. Independent Early and Late Sensory Processes for Proprioceptive Integration When Planning a Step. Cereb Cortex 2019; 29:2353-2365. [PMID: 29750263 DOI: 10.1093/cercor/bhy104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 03/21/2018] [Accepted: 04/18/2018] [Indexed: 11/15/2022] Open
Abstract
Somatosensory inputs to the cortex undergo an early and a later stage of processing which are characterized by an early and a late somatosensory evoked potentials (SEP). The early response is highly representative of the stimulus characteristics whereas the late response reflects a more integrative, task specific, stage of sensory processing. We hypothesized that the later processing stage is independent of the early processing stage. We tested the prediction that a reduction of the first volley of input to the cortex should not prevent the increase of the late SEP. Using the sensory interference phenomenon, we halved the amplitude of the early response to somatosensory input of the ankle joints (evoked by vibration) when participants either planned a step forward or remained still. Despite the initial cortical response to the vibration being massively decreased in both tasks, the late response was still enhanced during step planning. Source localization indicated the posterior parietal cortex (PPC) as the likely origin of the late response modulation. Overall these results support the dissociation between the processes underlying the early and late SEP. The later processing stage could involve both direct and indirect thalamic connections to PPC which bypass the postcentral somatosensory cortex.
Collapse
Affiliation(s)
| | - Normand Teasdale
- Faculté de médecine, Département de kinésiologie, Université Laval, Québec, QC, Canada.,CHU de Québec - Hôpital du Saint-Sacrement, Centre d'excellence sur le vieillissement de Québec, Québec, QC, Canada
| | - Jean Blouin
- Aix-Marseille Univ, CNRS, LNC FR 3C 3512, Marseille, France
| | | |
Collapse
|
32
|
Cullen KE. Vestibular processing during natural self-motion: implications for perception and action. Nat Rev Neurosci 2019; 20:346-363. [PMID: 30914780 PMCID: PMC6611162 DOI: 10.1038/s41583-019-0153-1] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
How the brain computes accurate estimates of our self-motion relative to the world and our orientation relative to gravity in order to ensure accurate perception and motor control is a fundamental neuroscientific question. Recent experiments have revealed that the vestibular system encodes this information during everyday activities using pathway-specific neural representations. Furthermore, new findings have established that vestibular signals are selectively combined with extravestibular information at the earliest stages of central vestibular processing in a manner that depends on the current behavioural goal. These findings have important implications for our understanding of the brain mechanisms that ensure accurate perception and behaviour during everyday activities and for our understanding of disorders of vestibular processing.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
33
|
Rodriguez R, Crane BT. Effect of range of heading differences on human visual-inertial heading estimation. Exp Brain Res 2019; 237:1227-1237. [PMID: 30847539 DOI: 10.1007/s00221-019-05506-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/01/2019] [Indexed: 11/29/2022]
Abstract
Both visual and inertial cues are salient in heading determination. However, optic flow can ambiguously represent self-motion or environmental motion. It is unclear how visual and inertial heading cues are determined to have common cause and integrated vs perceived independently. In four experiments visual and inertial headings were presented simultaneously with ten subjects reporting visual or inertial headings in separate trial blocks. Experiment 1 examined inertial headings within 30° of straight-ahead and visual headings that were offset by up to 60°. Perception of the inertial heading was shifted in the direction of the visual stimulus by as much as 35° by the 60° offset, while perception of the visual stimulus remained largely uninfluenced. Experiment 2 used ± 140° range of inertial headings with up to 120° visual offset. This experiment found variable behavior between subjects with most perceiving the sensory stimuli to be shifted towards an intermediate heading but a few perceiving the headings independently. The visual and inertial headings influenced each other even at the largest offsets. Experiments 3 and 4 had similar inertial headings to experiments 1 and 2, respectively, except subjects reported environmental motion direction. Experiment 4 displayed similar perceptual influences as experiment 2, but in experiment 3 percepts were independent. Results suggested that perception of visual and inertial stimuli tend to be perceived as having common causation in most subjects with offsets up to 90° although with significant variation in perception between individuals. Limiting the range of inertial headings caused the visual heading to dominate the perception.
Collapse
Affiliation(s)
- Raul Rodriguez
- Department of Bioengineering, University of Rochester, 601 Elmwood Avenue, Box 629, Rochester, NY, 14642, USA
| | - Benjamin T Crane
- Department of Bioengineering, University of Rochester, 601 Elmwood Avenue, Box 629, Rochester, NY, 14642, USA. .,Department of Otolaryngology, University of Rochester, 601 Elmwood Avenue, Box 629, Rochester, NY, 14642, USA. .,Department of Neuroscience, University of Rochester, 601 Elmwood Avenue, Box 629, Rochester, NY, 14642, USA.
| |
Collapse
|
34
|
Babo-Rebelo M, Buot A, Tallon-Baudry C. Neural responses to heartbeats distinguish self from other during imagination. Neuroimage 2019; 191:10-20. [PMID: 30738205 PMCID: PMC6503945 DOI: 10.1016/j.neuroimage.2019.02.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 02/02/2023] Open
Abstract
Imagination is an internally-generated process, where one can make oneself or other people appear as protagonists of a scene. How does the brain tag the protagonist of an imagined scene as being oneself or someone else? Crucially, during imagination, neither external stimuli nor motor feedback are available to disentangle imagining oneself from imagining someone else. Here, we test the hypothesis that an internal mechanism based on the neural monitoring of heartbeats could distinguish between self and other. 23 participants imagined themselves (from a first-person perspective) or a friend (from a third-person perspective) in various scenarios, while their brain activity was recorded with magnetoencephalography and their cardiac activity was simultaneously monitored. We measured heartbeat-evoked responses, i.e. transients of neural activity occurring in response to each heartbeat, during imagination. The amplitude of heartbeat-evoked responses differed between imagining oneself and imagining a friend, in the precuneus and posterior cingulate regions bilaterally. Effect size was modulated by the daydreaming frequency scores of participants but not by their interoceptive abilities. These results could not be accounted for by other characteristics of imagination (e.g., the ability to adopt the perspective, valence or arousal), nor by cardiac parameters (e.g., heart rate) or arousal levels (e.g. arousal ratings, pupil diameter). Heartbeat-evoked responses thus appear as a neural marker distinguishing self from other during imagination. Heartbeat-evoked responses differentiate self from other during imagination. These effects were located in the precuneus and posterior cingulate. The neural monitoring of the heart could be a mechanism for self/other distinction.
Collapse
Affiliation(s)
- Mariana Babo-Rebelo
- Laboratoire de Neurosciences Cognitives et Computationnelles, Inserm, Ecole Normale Supérieure, PSL University, Paris, France; Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle Epinière, ICM, Ecole Normale Supérieure, ENS, Centre MEG-EEG, F-75013, Paris, France.
| | - Anne Buot
- Laboratoire de Neurosciences Cognitives et Computationnelles, Inserm, Ecole Normale Supérieure, PSL University, Paris, France
| | - Catherine Tallon-Baudry
- Laboratoire de Neurosciences Cognitives et Computationnelles, Inserm, Ecole Normale Supérieure, PSL University, Paris, France
| |
Collapse
|
35
|
Stratmann P, Albu-Schäffer A, Jörntell H. Scaling Our World View: How Monoamines Can Put Context Into Brain Circuitry. Front Cell Neurosci 2018; 12:506. [PMID: 30618646 PMCID: PMC6307502 DOI: 10.3389/fncel.2018.00506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
Monoamines are presumed to be diffuse metabotropic neuromodulators of the topographically and temporally precise ionotropic circuitry which dominates CNS functions. Their malfunction is strongly implicated in motor and cognitive disorders, but their function in behavioral and cognitive processing is scarcely understood. In this paper, the principles of such a monoaminergic function are conceptualized for locomotor control. We find that the serotonergic system in the ventral spinal cord scales ionotropic signals and shows topographic order that agrees with differential gain modulation of ionotropic subcircuits. Whereas the subcircuits can collectively signal predictive models of the world based on life-long learning, their differential scaling continuously adjusts these models to changing mechanical contexts based on sensory input on a fast time scale of a few 100 ms. The control theory of biomimetic robots demonstrates that this precision scaling is an effective and resource-efficient solution to adapt the activation of individual muscle groups during locomotion to changing conditions such as ground compliance and carried load. Although it is not unconceivable that spinal ionotropic circuitry could achieve scaling by itself, neurophysiological findings emphasize that this is a unique functionality of metabotropic effects since recent recordings in sensorimotor circuitry conflict with mechanisms proposed for ionotropic scaling in other CNS areas. We substantiate that precision scaling of ionotropic subcircuits is a main functional principle for many monoaminergic projections throughout the CNS, implying that the monoaminergic circuitry forms a network within the network composed of the ionotropic circuitry. Thereby, we provide an early-level interpretation of the mechanisms of psychopharmacological drugs that interfere with the monoaminergic systems.
Collapse
Affiliation(s)
- Philipp Stratmann
- Sensor Based Robotic Systems and Intelligent Assistance Systems, Department of Informatics, Technical University of Munich, Garching, Germany
- German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Weßling, Germany
| | - Alin Albu-Schäffer
- Sensor Based Robotic Systems and Intelligent Assistance Systems, Department of Informatics, Technical University of Munich, Garching, Germany
- German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Weßling, Germany
| | - Henrik Jörntell
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
36
|
Abstract
Detection of the state of self-motion, such as the instantaneous heading direction, the traveled trajectory and traveled distance or time, is critical for efficient spatial navigation. Numerous psychophysical studies have indicated that the vestibular system, originating from the otolith and semicircular canals in our inner ears, provides robust signals for different aspects of self-motion perception. In addition, vestibular signals interact with other sensory signals such as visual optic flow to facilitate natural navigation. These behavioral results are consistent with recent findings in neurophysiological studies. In particular, vestibular activity in response to the translation or rotation of the head/body in darkness is revealed in a growing number of cortical regions, many of which are also sensitive to visual motion stimuli. The temporal dynamics of the vestibular activity in the central nervous system can vary widely, ranging from acceleration-dominant to velocity-dominant. Different temporal dynamic signals may be decoded by higher level areas for different functions. For example, the acceleration signals during the translation of body in the horizontal plane may be used by the brain to estimate the heading directions. Although translation and rotation signals arise from independent peripheral organs, that is, otolith and canals, respectively, they frequently converge onto single neurons in the central nervous system including both the brainstem and the cerebral cortex. The convergent neurons typically exhibit stronger responses during a combined curved motion trajectory which may serve as the neural correlate for complex path perception. During spatial navigation, traveled distance or time may be encoded by different population of neurons in multiple regions including hippocampal-entorhinal system, posterior parietal cortex, or frontal cortex.
Collapse
Affiliation(s)
- Zhixian Cheng
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| | - Yong Gu
- Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
37
|
Mimica B, Dunn BA, Tombaz T, Bojja VPTNCS, Whitlock JR. Efficient cortical coding of 3D posture in freely behaving rats. Science 2018; 362:584-589. [DOI: 10.1126/science.aau2013] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/14/2018] [Indexed: 12/24/2022]
Abstract
Animals constantly update their body posture to meet behavioral demands, but little is known about the neural signals on which this depends. We therefore tracked freely foraging rats in three dimensions while recording from the posterior parietal cortex (PPC) and the frontal motor cortex (M2), areas critical for movement planning and navigation. Both regions showed strong tuning to posture of the head, neck, and back, but signals for movement were much less dominant. Head and back representations were organized topographically across the PPC and M2, and more neurons represented postures that occurred less often. Simultaneous recordings across areas were sufficiently robust to decode ongoing behavior and showed that spiking in the PPC tended to precede that in M2. Both the PPC and M2 strongly represent posture by using a spatially organized, energetically efficient population code.
Collapse
|
38
|
Gu Y. Vestibular signals in primate cortex for self-motion perception. Curr Opin Neurobiol 2018; 52:10-17. [DOI: 10.1016/j.conb.2018.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/12/2018] [Accepted: 04/07/2018] [Indexed: 10/17/2022]
|
39
|
Frank SM, Greenlee MW. The parieto-insular vestibular cortex in humans: more than a single area? J Neurophysiol 2018; 120:1438-1450. [DOI: 10.1152/jn.00907.2017] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Here, we review the structure and function of a core region in the vestibular cortex of humans that is located in the midposterior Sylvian fissure and referred to as the parieto-insular vestibular cortex (PIVC). Previous studies have investigated PIVC by using vestibular or visual motion stimuli and have observed activations that were distributed across multiple anatomical structures, including the temporo-parietal junction, retroinsula, parietal operculum, and posterior insula. However, it has remained unclear whether all of these anatomical areas correspond to PIVC and whether PIVC responds to both vestibular and visual stimuli. Recent results suggest that the region that has been referred to as PIVC in previous studies consists of multiple areas with different anatomical correlates and different functional specializations. Specifically, a vestibular but not visual area is located in the parietal operculum, close to the posterior insula, and likely corresponds to the nonhuman primate PIVC, while a visual-vestibular area is located in the retroinsular cortex and is referred to, for historical reasons, as the posterior insular cortex area (PIC). In this article, we review the anatomy, connectivity, and function of PIVC and PIC and propose that the core of the human vestibular cortex consists of at least two separate areas, which we refer to together as PIVC+. We also review the organization in the nonhuman primate brain and show that there are parallels to the proposed organization in humans.
Collapse
Affiliation(s)
- Sebastian M. Frank
- Institute for Experimental Psychology, University of Regensburg, Regensburg, Germany
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island
| | - Mark W. Greenlee
- Institute for Experimental Psychology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
40
|
Effect of vibration during visual-inertial integration on human heading perception during eccentric gaze. PLoS One 2018; 13:e0199097. [PMID: 29902253 PMCID: PMC6002115 DOI: 10.1371/journal.pone.0199097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/31/2018] [Indexed: 11/21/2022] Open
Abstract
Heading direction is determined from visual and inertial cues. Visual headings use retinal coordinates while inertial headings use body coordinates. Thus during eccentric gaze the same heading may be perceived differently by visual and inertial modalities. Stimulus weights depend on the relative reliability of these stimuli, but previous work suggests that the inertial heading may be given more weight than predicted. These experiments only varied the visual stimulus reliability, and it is unclear what occurs with variation in inertial reliability. Five human subjects completed a heading discrimination task using 2s of translation with a peak velocity of 16cm/s. Eye position was ±25° left/right with visual, inertial, or combined motion. The visual motion coherence was 50%. Inertial stimuli included 6 Hz vertical vibration with 0, 0.10, 0.15, or 0.20cm amplitude. Subjects reported perceived heading relative to the midline. With an inertial heading, perception was biased 3.6° towards the gaze direction. Visual headings biased perception 9.6° opposite gaze. The inertial threshold without vibration was 4.8° which increased significantly to 8.8° with vibration but the amplitude of vibration did not influence reliability. With visual-inertial headings, empirical stimulus weights were calculated from the bias and compared with the optimal weight calculated from the threshold. In 2 subjects empirical weights were near optimal while in the remaining 3 subjects the inertial stimuli were weighted greater than optimal predictions. On average the inertial stimulus was weighted greater than predicted. These results indicate multisensory integration may not be a function of stimulus reliability when inertial stimulus reliability is varied.
Collapse
|
41
|
Vélez-Fort M, Bracey EF, Keshavarzi S, Rousseau CV, Cossell L, Lenzi SC, Strom M, Margrie TW. A Circuit for Integration of Head- and Visual-Motion Signals in Layer 6 of Mouse Primary Visual Cortex. Neuron 2018; 98:179-191.e6. [PMID: 29551490 PMCID: PMC5896233 DOI: 10.1016/j.neuron.2018.02.023] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/19/2018] [Accepted: 02/23/2018] [Indexed: 11/10/2022]
Abstract
To interpret visual-motion events, the underlying computation must involve internal reference to the motion status of the observer's head. We show here that layer 6 (L6) principal neurons in mouse primary visual cortex (V1) receive a diffuse, vestibular-mediated synaptic input that signals the angular velocity of horizontal rotation. Behavioral and theoretical experiments indicate that these inputs, distributed over a network of 100 L6 neurons, provide both a reliable estimate and, therefore, physiological separation of head-velocity signals. During head rotation in the presence of visual stimuli, L6 neurons exhibit postsynaptic responses that approximate the arithmetic sum of the vestibular and visual-motion response. Functional input mapping reveals that these internal motion signals arrive into L6 via a direct projection from the retrosplenial cortex. We therefore propose that visual-motion processing in V1 L6 is multisensory and contextually dependent on the motion status of the animal's head.
Collapse
Affiliation(s)
- Mateo Vélez-Fort
- The Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK
| | - Edward F Bracey
- The Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK
| | - Sepiedeh Keshavarzi
- The Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK
| | - Charly V Rousseau
- The Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK
| | - Lee Cossell
- The Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK
| | - Stephen C Lenzi
- The Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK
| | - Molly Strom
- The Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK
| | - Troy W Margrie
- The Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK.
| |
Collapse
|
42
|
Pfeiffer C, Noel J, Serino A, Blanke O. Vestibular modulation of peripersonal space boundaries. Eur J Neurosci 2018; 47:800-811. [DOI: 10.1111/ejn.13872] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Christian Pfeiffer
- Center for Neuroprosthetics School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) Campus Biotech H4, Chemin des Mines 9 Geneva CH – 1202 Switzerland
- Laboratory of Cognitive Neuroscience Brain Mind Institute Ecole Polytechnique Fédérale de Lausanne (EPFL) Geneva Switzerland
- Autonomous Systems Laboratory Institute of Robotics and Intelligent Systems Eidgenössische Technische Hochschule Zürich (ETHZ) Zürich Switzerland
| | - Jean‐Paul Noel
- Center for Neuroprosthetics School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) Campus Biotech H4, Chemin des Mines 9 Geneva CH – 1202 Switzerland
- Laboratory of Cognitive Neuroscience Brain Mind Institute Ecole Polytechnique Fédérale de Lausanne (EPFL) Geneva Switzerland
- Vanderbilt Brain Institute Vanderbilt University Nashville TN USA
| | - Andrea Serino
- Center for Neuroprosthetics School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) Campus Biotech H4, Chemin des Mines 9 Geneva CH – 1202 Switzerland
- Laboratory of Cognitive Neuroscience Brain Mind Institute Ecole Polytechnique Fédérale de Lausanne (EPFL) Geneva Switzerland
- MySpace Lab Department of Clinical Neuroscience Lausanne University and University Hospital (CHUV) Lausanne Switzerland
| | - Olaf Blanke
- Center for Neuroprosthetics School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) Campus Biotech H4, Chemin des Mines 9 Geneva CH – 1202 Switzerland
- Laboratory of Cognitive Neuroscience Brain Mind Institute Ecole Polytechnique Fédérale de Lausanne (EPFL) Geneva Switzerland
- Department of Neurology University Hospital Geneva Geneva Switzerland
| |
Collapse
|
43
|
Flexible egocentric and allocentric representations of heading signals in parietal cortex. Proc Natl Acad Sci U S A 2018; 115:E3305-E3312. [PMID: 29555744 DOI: 10.1073/pnas.1715625115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
By systematically manipulating head position relative to the body and eye position relative to the head, previous studies have shown that vestibular tuning curves of neurons in the ventral intraparietal (VIP) area remain invariant when expressed in body-/world-centered coordinates. However, body orientation relative to the world was not manipulated; thus, an egocentric, body-centered representation could not be distinguished from an allocentric, world-centered reference frame. We manipulated the orientation of the body relative to the world such that we could distinguish whether vestibular heading signals in VIP are organized in body- or world-centered reference frames. We found a hybrid representation, depending on gaze direction. When gaze remained fixed relative to the body, the vestibular heading tuning of VIP neurons shifted systematically with body orientation, indicating an egocentric, body-centered reference frame. In contrast, when gaze remained fixed relative to the world, this representation changed to be intermediate between body- and world-centered. We conclude that the neural representation of heading in posterior parietal cortex is flexible, depending on gaze and possibly attentional demands.
Collapse
|
44
|
Conrad J, Boegle R, Ertl M, Brandt T, Dieterich M. Recovery from Spatial Neglect with Intra- and Transhemispheric Functional Connectivity Changes in Vestibular and Visual Cortex Areas-A Case Study. Front Neurol 2018; 9:112. [PMID: 29551990 PMCID: PMC5840167 DOI: 10.3389/fneur.2018.00112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/14/2018] [Indexed: 01/24/2023] Open
Abstract
Objective Vestibular signals are involved in higher cortical functions like spatial orientation and its disorders. Vestibular dysfunction contributes, for example, to spatial neglect which can be transiently improved by caloric stimulation. The exact roles and mechanisms of the vestibular and visual systems for the recovery of neglect are not yet known. Methods Resting-state functional connectivity (fc) magnetic resonance imaging was recorded in a patient with hemispatial neglect during the acute phase and after recovery 6 months later following a right middle cerebral artery infarction before and after caloric vestibular stimulation. Seeds in the vestibular [parietal operculum (OP2)], the parietal [posterior parietal cortex (PPC); 7A, hIP3], and the visual cortex (VC) were used for the analysis. Results During the acute stage after caloric stimulation the fc of the right OP2 to the left OP2, the anterior cingulum, and the para/hippocampus was increased bilaterally (i.e., the vestibular network), while the interhemispheric fc was reduced between homologous regions in the VC. After 6 months, similar fc increases in the vestibular network were found without stimulation. In addition, fc increases of the OP2 to the PPC and the VC were seen; interhemispherically this was true for both PPCs and for the right PPC to both VCs. Conclusion Improvement of neglect after caloric stimulation in the acute phase was associated with increased fc of vestibular cortex areas in both hemispheres to the para-hippocampus and the dorsal anterior cingulum, but simultaneously with reduced interhemispheric VC connectivity. This disclosed a, to some extent, similar but also distinct short-term mechanism (vestibular stimulation) of an improvement of spatial orientation compared to the long-term recovery of neglect.
Collapse
Affiliation(s)
- Julian Conrad
- Department of Neurology, Ludwig-Maximilians-Universität, Munich, Germany.,German Center for Vertigo and Balance Disorders - IFBLMU (DSGZ), Ludwig-Maximilians-Universität, Munich, Germany
| | - Rainer Boegle
- German Center for Vertigo and Balance Disorders - IFBLMU (DSGZ), Ludwig-Maximilians-Universität, Munich, Germany.,Graduate School for Systemic Neuroscience (GSN), Ludwig-Maximilians-Universität, Munich, Germany
| | - Matthias Ertl
- Department of Neurology, Ludwig-Maximilians-Universität, Munich, Germany.,Graduate School for Systemic Neuroscience (GSN), Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Brandt
- German Center for Vertigo and Balance Disorders - IFBLMU (DSGZ), Ludwig-Maximilians-Universität, Munich, Germany.,Clinical Neuroscience, Ludwig-Maximilians-Universität, Munich, Germany
| | - Marianne Dieterich
- Department of Neurology, Ludwig-Maximilians-Universität, Munich, Germany.,German Center for Vertigo and Balance Disorders - IFBLMU (DSGZ), Ludwig-Maximilians-Universität, Munich, Germany.,Graduate School for Systemic Neuroscience (GSN), Ludwig-Maximilians-Universität, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
45
|
Role of Rostral Fastigial Neurons in Encoding a Body-Centered Representation of Translation in Three Dimensions. J Neurosci 2018; 38:3584-3602. [PMID: 29487123 DOI: 10.1523/jneurosci.2116-17.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 02/01/2018] [Accepted: 02/20/2018] [Indexed: 11/21/2022] Open
Abstract
Many daily behaviors rely critically on estimates of our body motion. Such estimates must be computed by combining neck proprioceptive signals with vestibular signals that have been transformed from a head- to a body-centered reference frame. Recent studies showed that deep cerebellar neurons in the rostral fastigial nucleus (rFN) reflect these computations, but whether they explicitly encode estimates of body motion remains unclear. A key limitation in addressing this question is that, to date, cell tuning properties have only been characterized for a restricted set of motions across head-re-body orientations in the horizontal plane. Here we examined, for the first time, how 3D spatiotemporal tuning for translational motion varies with head-re-body orientation in both horizontal and vertical planes in the rFN of male macaques. While vestibular coding was profoundly influenced by head-re-body position in both planes, neurons typically reflected at most a partial transformation. However, their tuning shifts were not random but followed the specific spatial trajectories predicted for a 3D transformation. We show that these properties facilitate the linear decoding of fully body-centered motion representations in 3D with a broad range of temporal characteristics from small groups of 5-7 cells. These results demonstrate that the vestibular reference frame transformation required to compute body motion is indeed encoded by cerebellar neurons. We propose that maintaining partially transformed rFN responses with different spatiotemporal properties facilitates the creation of downstream body motion representations with a range of dynamic characteristics, consistent with the functional requirements for tasks such as postural control and reaching.SIGNIFICANCE STATEMENT Estimates of body motion are essential for many daily activities. Vestibular signals are important contributors to such estimates but must be transformed from a head- to a body-centered reference frame. Here, we provide the first direct demonstration that the cerebellum computes this transformation fully in 3D. We show that the output of these computations is reflected in the tuning properties of deep cerebellar rostral fastigial nucleus neurons in a specific distributed fashion that facilitates the efficient creation of body-centered translation estimates with a broad range of temporal properties (i.e., from acceleration to position). These findings support an important role for the rostral fastigial nucleus as a source of body translation estimates functionally relevant for behaviors ranging from postural control to perception.
Collapse
|
46
|
Abstract
The world has a complex, three-dimensional (3-D) spatial structure, but until recently the neural representation of space was studied primarily in planar horizontal environments. Here we review the emerging literature on allocentric spatial representations in 3-D and discuss the relations between 3-D spatial perception and the underlying neural codes. We suggest that the statistics of movements through space determine the topology and the dimensionality of the neural representation, across species and different behavioral modes. We argue that hippocampal place-cell maps are metric in all three dimensions, and might be composed of 2-D and 3-D fragments that are stitched together into a global 3-D metric representation via the 3-D head-direction cells. Finally, we propose that the hippocampal formation might implement a neural analogue of a Kalman filter, a standard engineering algorithm used for 3-D navigation.
Collapse
Affiliation(s)
- Arseny Finkelstein
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Liora Las
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Nachum Ulanovsky
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
47
|
Abstract
The vestibular cortex differs in various ways from other sensory cortices. It consists of a network of several distinct and separate temporoparietal areas. Its core region, the parietoinsular vestibular cortex (PIVC), is located in the posterior insula and retroinsular region and includes the parietal operculum. The entire network is multisensory (in particular, vestibular, visual, and somatosensory). The peripheral and central vestibular systems are bilaterally organized; there are various pontomesencephalic brainstem crossings and at least two transcallosal connections of both hemispheres, between the PIVC and the motion-sensitive visual cortex areas, which also mediate vestibular input. Structural and functional vestibular dominance characterizes the right hemisphere in right-handers and the left hemisphere in left-handers. This explains why right-hemispheric lesions in right-handers more often generally cause hemispatial neglect and the pusher syndrome, both of which involve vestibular function. Vestibular input also contributes to cognition and may determine individual lateralization of brain functions such as handedness. Bilateral organization is a major key to understanding cortical functions and disorders, for example, the visual-vestibular interaction that occurs in spatial orientation. Although the vestibular cortex is represented in both hemispheres, there is only one global percept of body position and motion. The chiefly vestibular aspects of the multiple functions and disorders of the parietal lobe dealt with in this chapter cannot be strictly separated from various multisensory vestibular functions within the entire brain.
Collapse
Affiliation(s)
- Marianne Dieterich
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany; German Center for Vertigo and Balance Disorders-IFB, Ludwig-Maximilians-University, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Thomas Brandt
- German Center for Vertigo and Balance Disorders-IFB, Ludwig-Maximilians-University, Munich, Germany; Clinical Neuroscience, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
48
|
Kheradmand A, Winnick A. Perception of Upright: Multisensory Convergence and the Role of Temporo-Parietal Cortex. Front Neurol 2017; 8:552. [PMID: 29118736 PMCID: PMC5660972 DOI: 10.3389/fneur.2017.00552] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/28/2017] [Indexed: 12/18/2022] Open
Abstract
We inherently maintain a stable perception of the world despite frequent changes in the head, eye, and body positions. Such "orientation constancy" is a prerequisite for coherent spatial perception and sensorimotor planning. As a multimodal sensory reference, perception of upright represents neural processes that subserve orientation constancy through integration of sensory information encoding the eye, head, and body positions. Although perception of upright is distinct from perception of body orientation, they share similar neural substrates within the cerebral cortical networks involved in perception of spatial orientation. These cortical networks, mainly within the temporo-parietal junction, are crucial for multisensory processing and integration that generate sensory reference frames for coherent perception of self-position and extrapersonal space transformations. In this review, we focus on these neural mechanisms and discuss (i) neurobehavioral aspects of orientation constancy, (ii) sensory models that address the neurophysiology underlying perception of upright, and (iii) the current evidence for the role of cerebral cortex in perception of upright and orientation constancy, including findings from the neurological disorders that affect cortical function.
Collapse
Affiliation(s)
- Amir Kheradmand
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Otolaryngology – Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ariel Winnick
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
49
|
Garzorz IT, MacNeilage PR. Visual-Vestibular Conflict Detection Depends on Fixation. Curr Biol 2017; 27:2856-2861.e4. [DOI: 10.1016/j.cub.2017.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/19/2017] [Accepted: 08/04/2017] [Indexed: 10/18/2022]
|
50
|
Crane BT. Effect of eye position during human visual-vestibular integration of heading perception. J Neurophysiol 2017; 118:1609-1621. [PMID: 28615328 DOI: 10.1152/jn.00037.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 11/22/2022] Open
Abstract
Visual and inertial stimuli provide heading discrimination cues. Integration of these multisensory stimuli has been demonstrated to depend on their relative reliability. However, the reference frame of visual stimuli is eye centered while inertia is head centered, and it remains unclear how these are reconciled with combined stimuli. Seven human subjects completed a heading discrimination task consisting of a 2-s translation with a peak velocity of 16 cm/s. Eye position was varied between 0° and ±25° left/right. Experiments were done with inertial motion, visual motion, or a combined visual-inertial motion. Visual motion coherence varied between 35% and 100%. Subjects reported whether their perceived heading was left or right of the midline in a forced-choice task. With the inertial stimulus the eye position had an effect such that the point of subjective equality (PSE) shifted 4.6 ± 2.4° in the gaze direction. With the visual stimulus the PSE shift was 10.2 ± 2.2° opposite the gaze direction, consistent with retinotopic coordinates. Thus with eccentric eye positions the perceived inertial and visual headings were offset ~15°. During the visual-inertial conditions the PSE varied consistently with the relative reliability of these stimuli such that at low visual coherence the PSE was similar to that of the inertial stimulus and at high coherence it was closer to the visual stimulus. On average, the inertial stimulus was weighted near Bayesian ideal predictions, but there was significant deviation from ideal in individual subjects. These findings support visual and inertial cue integration occurring in independent coordinate systems.NEW & NOTEWORTHY In multiple cortical areas visual heading is represented in retinotopic coordinates while inertial heading is in body coordinates. It remains unclear whether multisensory integration occurs in a common coordinate system. The experiments address this using a multisensory integration task with eccentric gaze positions making the effect of coordinate systems clear. The results indicate that the coordinate systems remain separate to the perceptual level and that during the multisensory task the perception depends on relative stimulus reliability.
Collapse
Affiliation(s)
- Benjamin T Crane
- Department of Otolaryngology, University of Rochester, Rochester, New York
| |
Collapse
|