1
|
Zhu H, Mu L, Xu X, Huang T, Wang Y, Xu S, Wang Y, Wang W, Wang Z, Wang H, Xue C. EZH2-dependent myelination following sciatic nerve injury. Neural Regen Res 2025; 20:2382-2394. [PMID: 39359095 PMCID: PMC11759024 DOI: 10.4103/nrr.nrr-d-23-02040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/26/2024] [Accepted: 03/29/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00028/figure1/v/2024-09-30T120553Z/r/image-tiff Demyelination and remyelination have been major focal points in the study of peripheral nerve regeneration following peripheral nerve injury. Notably, the gene regulatory network of regenerated myelin differs from that of native myelin. Silencing of enhancer of zeste homolog 2 (EZH2) hinders the differentiation, maturation, and myelination of Schwann cells in vitro. To further determine the role of EZH2 in myelination and recovery post-peripheral nerve injury, conditional knockout mice lacking Ezh2 in Schwann cells (Ezh2fl/fl;Dhh-Cre and Ezh2fl/fl;Mpz-Cre) were generated. Our results show that a significant proportion of axons in the sciatic nerve of Ezh2-depleted mice remain unmyelinated. This highlights the crucial role of Ezh2 in initiating Schwann cell myelination. Furthermore, we observed that 21 days after inducing a sciatic nerve crush injury in these mice, most axons had remyelinated at the injury site in the control nerve, while Ezh2fl/fl;Mpz-Cre mice had significantly fewer remyelinated axons compared with their wild-type littermates. This suggests that the absence of Ezh2 in Schwann cells impairs myelin formation and remyelination. In conclusion, EZH2 has emerged as a pivotal regulatory factor in the process of demyelination and myelin regeneration following peripheral nerve injury. Modulating EZH2 activity during these processes may offer a promising therapeutic target for the treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- Hui Zhu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Li Mu
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xi Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Tianyi Huang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Ying Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Siyuan Xu
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yiting Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Wencong Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhiping Wang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Critical Care Medicine, Nantong Fourth People’s Hospital, Nantong, Jiangsu Province, China
| | - Hongkui Wang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Chengbin Xue
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Doan RA, Monk KR. Dock1 functions in Schwann cells to regulate development, maintenance, and repair. J Cell Biol 2025; 224:e202311041. [PMID: 40105697 PMCID: PMC11921805 DOI: 10.1083/jcb.202311041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/05/2024] [Accepted: 02/10/2025] [Indexed: 03/20/2025] Open
Abstract
Schwann cells, the myelinating glia of the peripheral nervous system (PNS), are critical for myelin development, maintenance, and repair. Rac1 is a known regulator of radial sorting, a key step in developmental myelination. Previously, in zebrafish, we showed that the loss of Dock1, a Rac1-specific guanine nucleotide exchange factor, resulted in delayed peripheral myelination during development. Here, we demonstrate that Dock1 is necessary for myelin maintenance and remyelination after injury in adult zebrafish. Furthermore, Dock1 performs an evolutionarily conserved role in mice, functioning cell autonomously in Schwann cells to regulate the development, maintenance, and repair of peripheral myelin. Pharmacological and genetic manipulation of Rac1 in larval zebrafish, along with the analysis of active Rac1 levels in developing Dock1 mutant mouse nerves, revealed an interaction between these two proteins. We propose that the interplay between Dock1 and Rac1 signaling in Schwann cells is required to establish, maintain, and facilitate repair and remyelination within the PNS.
Collapse
Affiliation(s)
- Ryan A. Doan
- The Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Kelly R. Monk
- The Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
3
|
Liu K, Wang H, Wang L, Ma W, Yang J, Li C, Liu J, Bao W, Li L, Du Y, Gao H. Benzeneboronic acid-modified hyaluronic acid hydrogel enhances the differentiation of dorsal root ganglion stem cells in a three-dimensional environment. Int J Biol Macromol 2025; 309:142786. [PMID: 40185459 DOI: 10.1016/j.ijbiomac.2025.142786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Peripheral nerve injuries (PNI) remain challenging to treat due to limited regeneration capacity and the lack of effective therapeutic scaffolds to support nerve repair. This study aims to develop and evaluate a 3-aminophenylboronic acid-modified hyaluronic acid (HAB) hydrogel as a 3D scaffold to enhance Dorsal root ganglion-derived stem cells (DRGSCs) attachment, migration, and neuronal differentiation for peripheral nerve regeneration. The HAB hydrogel was synthesized through an amidation reaction and characterized using Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance (1H NMR). DRGSCs were cultured in HAB hydrogel, and neuronal differentiation was assessed through immunofluorescence staining, PCR, and multi-electrode array (MEA) recordings. Cytotoxicity, proliferation, and in vivo biocompatibility were evaluated through live/dead staining, CCK-8 assays, and subcutaneous implantation in rats. Transcriptomic analysis was performed to explore gene expression profiles. Our results shown that DRGSCs cultured in HAB hydrogel exhibited significantly improved attachment (78.5 % ± 3.2 % vs. 45.3 % ± 2.8 %, p < 0.05) and migration speeds (21.4 μm/h vs. 12.9 μm/h, p < 0.05) compared to 2D cultures. Neuronal differentiation efficiency, as indicated by Tuj1-positive cells, was also higher (72.6 % ± 4.1 % vs. 42.8 % ± 3.9 %, p < 0.01). RNA sequencing identified 990 differentially expressed genes (627 upregulated, 363 downregulated), with pathways involved in synaptic vesicle cycling, glutamatergic and GABAergic synapses significantly enriched (p < 0.05). Validation revealed that the expression trends of Gnao1 and Grm7 in the plastic petri dish and HAB hydrogel groups were consistent with the RNA sequencing results. In vivo, the hydrogel showed excellent biocompatibility, with reduced TNF-α and IL-1β expression over a 28-day degradation cycle (p < 0.01). The HAB hydrogel provides a supportive 3D microenvironment that enhances DRGSCs differentiation and electrophysiological activity, highlighting its potential as a promising scaffold for peripheral nerve regeneration and neuroregenerative medicine.
Collapse
Affiliation(s)
- Kuangpin Liu
- College of Rehabilitation, Kunming Medical University, Kunming 650500, China
| | - Hailei Wang
- Hepatic Surgery, Affiliated Calmette Hospital of Kunming Medical University, Kunming 650500, China
| | - Le Wang
- Department of Clinical Laboratory, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, China
| | - Jinwei Yang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Chunyan Li
- Neurology Department, The Second Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Jinhua Liu
- College of Rehabilitation, Kunming Medical University, Kunming 650500, China
| | - Wenli Bao
- College of Rehabilitation, Kunming Medical University, Kunming 650500, China
| | - Liyan Li
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, China.
| | - Yan Du
- College of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650032, China.
| | - Hongqiang Gao
- Hepatic Surgery, Affiliated Calmette Hospital of Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
4
|
Unal S, Kutluhan MA, Soydas T, Uzundal H, Okulu E, Ozayar A, Kayigil O. Evaluation of electrophysiological changes after radical prostatectomy and their relationship with erectile function recovery. Int J Impot Res 2025:10.1038/s41443-025-01068-9. [PMID: 40234545 DOI: 10.1038/s41443-025-01068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/27/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
Erectile dysfunction (ED) is a common complication of radical prostatectomy (RP), mostly due to cavernous nerve (CN) injury. Despite improved surgical techniques and tools, ED rates are still high. Electrophysiological studies help to understand the functional effects of RP on CN and cavernous smooth muscles. The aim of this study is to evaluate the clinical reflection of changes on corpus cavernosum electromyography (CC-EMG) parameters caused by RP. A total of 44 patients were included in this prospective cohort study who underwent RP. The patients were divided into three groups based on nerve-sparing status: bilateral nerve-sparing (Group A) (n = 21), unilateral nerve-sparing (Group B) (n = 12), and non-nerve-sparing (Group C) (n = 11). All patients underwent CC-EMG one month before the operation and at the postoperative third month and were administered the International Index of Erectile Function (IIEF)-5 one month before the operation and at the postoperative third and 12th months. The postoperative third-month CC-EMG showed that the degree of cavernous smooth muscle relaxation in Group A was significantly higher than in Group B and Group C (p = 0.010 and p = 0.032, respectively). In the regression analysis, it was determined that patients with a postoperative IIEF-5 score of 12 or higher at the 12th month had a significantly greater degree of relaxation on the postoperative third-month CC-EMG (p = 0.034). In conclusion, a greater relaxation degree on postoperative third-month CC-EMG correlates with better long-term recovery of erectile function in patients who underwent RP.
Collapse
Affiliation(s)
- Selman Unal
- Department of Urology, Urgup State Hospital, Nevsehir, Turkey.
| | - Musab Ali Kutluhan
- Department of Urology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Turker Soydas
- Department of Urology, Ankara Etlik City Hospital, Ankara, Turkey
| | - Halil Uzundal
- Department of Pediatric Urology, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Emrah Okulu
- Department of Urology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Asim Ozayar
- Department of Urology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Onder Kayigil
- Department of Urology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
5
|
Haider S, Sassu E, Stefanovska D, Stoyek MR, Preissl S, Hortells L. News from the old: Aging features in the intracardiac, musculoskeletal, and enteric nervous systems. Ageing Res Rev 2025; 105:102690. [PMID: 39947485 DOI: 10.1016/j.arr.2025.102690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/08/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
Aging strongly affects the peripheral nervous system (PNS), triggering alterations that vary depending on the innervated tissue. The most frequent alteration in peripheral nerve aging is reduced nerve fiber and glial density which can lead to abnormal nerve functionality. Interestingly, the activation of a destructive phenotype takes place in macrophages across the PNS while a reduced number of neuronal bodies is a unique feature of some enteric ganglia. Single cell/nucleus RNA-sequencing has unveiled a striking complexity of cell populations in the peripheral nerves, and these refined cell type annotations could facilitate a better understanding of PNS aging. While the effects of senescence on individual PNS cell types requires further characterization, the use of senolytics appears to improve general PNS function in models of aging. Here, we review the current understanding of age-related changes of the intracardiac, musculoskeletal, and enteric nervous system sub-sections of the PNS, highlighting their commonalities and differences.
Collapse
Affiliation(s)
- Severin Haider
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany
| | - Eliza Sassu
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany
| | - Dragana Stefanovska
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany
| | - Mathew R Stoyek
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Sebastian Preissl
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany; Institute of Pharmaceutical Sciences, Pharmacology & Toxicology, University of Graz, Graz 8010, Austria; Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Luis Hortells
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany; Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Science, UiT-The Arctic University of Norway, Tromsø 9019, Norway.
| |
Collapse
|
6
|
Costa NN, dos Santos JF, Aranha MFDAC, Coelho EWF, Paes VLS, de Oliveira RDCS. Repair methods in peripheral nerves after traumatic injuries: a systematic literature review. Acta Cir Bras 2025; 40:e401225. [PMID: 40008718 PMCID: PMC11849802 DOI: 10.1590/acb401225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/14/2024] [Indexed: 02/27/2025] Open
Abstract
PURPOSE To identify and describe the most used surgical repair methods for traumatic injuries to peripheral nerves, as well as highlight the causes of trauma to peripheral nerves and the most prevalent traumatized nerves. METHODS This is a systematic literature review using the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The searches were carried out in PubMED, in the time window from January 2018 to December 2022. RESULTS In total, 3,687 articles were collected, of which, after applying the inclusion and exclusion filters and analyzing the risk of bias, 34 articles remained. It was observed that the age of the injury and type of nerve repair strongly influence the recovery of patients. The most identified trauma repair procedures were neurolysis, direct suturing, grafting, and nerve transfer. Among these four procedures, direct suturing is currently preferred. CONCLUSION Several repair methods can be used in peripheral nerve injuries, with emphasis on direct suturing. However, nerve transfer proves to be a differential in those cases in which repair is delayed or the first treatment options have failed, which shows that each method will be used according to the indication for each case.
Collapse
Affiliation(s)
- Naely Nobre Costa
- Universidade do Estado do Pará – Medical School – Belém (PA) – Brazil
| | | | | | | | | | | |
Collapse
|
7
|
Guest JD, Santamaria AJ, Solano JP, de Rivero Vaccari JP, Dietrich WD, Pearse DD, Khan A, Levi AD. Challenges in advancing Schwann cell transplantation for spinal cord injury repair. Cytotherapy 2025; 27:36-50. [PMID: 39387736 DOI: 10.1016/j.jcyt.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND AIMS In this article we aimed to provide an expert synthesis of the current status of Schwann cell (SC)therapeutics and potential steps to increase their clinical utility. METHODS We provide an expert synthesis based on preclinical, clinical and manufacturing experience. RESULTS Schwann cells (SCs) are essential for peripheral nerve regeneration and are of interest in supporting axonal repair after spinal cord injury (SCI). SCs can be isolated and cultivated in tissue culture from adult nerve biopsies or generated from precursors and neural progenitors using specific differentiation protocols leading to expanded quantities. In culture, they undergo dedifferentiation to a state similar to "repair" SCs. The known repertoire of SC functions is increasing beyond axon maintenance, myelination, and axonal regeneration to include immunologic regulation and the release of potentially therapeutic extracellular vesicles. Recently, autologous human SC cultures purified under cGMP conditions have been tested in both nerve repair and subacute and chronic SCI clinical trials. Although the effects of SCs to support nerve regeneration are indisputable, their efficacy for clinical SCI has been limited according to the outcomes examined. CONCLUSIONS This review discusses the current limitations of transplanted SCs within the damaged spinal cord environment. Limitations include limited post-transplant cell survival, the inability of SCs to migrate within astrocytic parenchyma, and restricted axonal regeneration out of SC-rich graft regions. We describe steps to amplify the survival and integration of transplanted SCs and to expand the repertoire of uses of SCs, including SC-derived extracellular vesicles. The relative merits of transplanting autologous versus allogeneic SCs and the role that endogenous SCs play in spinal cord repair are described. Finally, we briefly describe the issues requiring solutions to scale up SC manufacturing for commercial use.
Collapse
Affiliation(s)
- James D Guest
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Andrea J Santamaria
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Juan P Solano
- Pediatric Critical Care, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Juan P de Rivero Vaccari
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - William D Dietrich
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Aisha Khan
- The Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Allan D Levi
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
8
|
Cabeza-Fernández S, Hernández-Rojas R, Casillas-Bajo A, Patel N, de la Fuente AG, Cabedo H, Gomez-Sanchez JA. Schwann cell JUN expression worsens motor performance in an amyotrophic lateral sclerosis mouse model. Glia 2024; 72:2178-2189. [PMID: 39149866 DOI: 10.1002/glia.24604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease characterized by motor neuron death and distal axonopathy. Despite its clinical severity and profound impact in the patients and their families, many questions about its pathogenesis remain still unclear, including the role of Schwann cells and axon-glial signaling in disease progression. Upon axonal injury, upregulation of JUN transcription factor promotes Schwann cell reprogramming into a repair phenotype that favors axon regrowth and neuronal survival. To study the potential role of repair Schwann cells on motoneuron survival in amyotrophic lateral sclerosis, we generated a mouse line that over-expresses JUN in the Schwann cells of the SOD1G93A mutant, a mouse model of this disease. Then, we explored disease progression by evaluating survival, motor performance and histology of peripheral nerves and spinal cord of these mice. We found that Schwann cell JUN overexpression does not prevent axon degeneration neither motor neuron death in the SOD1G93A mice. Instead, it induces a partial demyelination of medium and large size axons, worsening motor performance and resulting in more aggressive disease phenotype.
Collapse
Affiliation(s)
- Sonia Cabeza-Fernández
- Instituto de Investigación Biomédica y Sanitaria de Alicante (ISABIAL), Alicante, Spain
- Molecular control of neuronal axon myelination laboratory, Instituto de Neurociencias UMH-CSIC, Sant Joan d'Alacant, Spain
| | - Rubí Hernández-Rojas
- Instituto de Investigación Biomédica y Sanitaria de Alicante (ISABIAL), Alicante, Spain
- Molecular control of neuronal axon myelination laboratory, Instituto de Neurociencias UMH-CSIC, Sant Joan d'Alacant, Spain
| | - Angeles Casillas-Bajo
- Instituto de Investigación Biomédica y Sanitaria de Alicante (ISABIAL), Alicante, Spain
- Molecular control of neuronal axon myelination laboratory, Instituto de Neurociencias UMH-CSIC, Sant Joan d'Alacant, Spain
| | - Nikiben Patel
- Instituto de Investigación Biomédica y Sanitaria de Alicante (ISABIAL), Alicante, Spain
- Molecular control of neuronal axon myelination laboratory, Instituto de Neurociencias UMH-CSIC, Sant Joan d'Alacant, Spain
| | - Alerie G de la Fuente
- Instituto de Investigación Biomédica y Sanitaria de Alicante (ISABIAL), Alicante, Spain
- Molecular control of neuronal axon myelination laboratory, Instituto de Neurociencias UMH-CSIC, Sant Joan d'Alacant, Spain
| | - Hugo Cabedo
- Instituto de Investigación Biomédica y Sanitaria de Alicante (ISABIAL), Alicante, Spain
- Molecular control of neuronal axon myelination laboratory, Instituto de Neurociencias UMH-CSIC, Sant Joan d'Alacant, Spain
| | - Jose A Gomez-Sanchez
- Instituto de Investigación Biomédica y Sanitaria de Alicante (ISABIAL), Alicante, Spain
- Molecular control of neuronal axon myelination laboratory, Instituto de Neurociencias UMH-CSIC, Sant Joan d'Alacant, Spain
| |
Collapse
|
9
|
Obeng E, Shen B, Wang W, Xie Z, Zhang W, Li Z, Yao Q, Wu W. Engineered bio-functional material-based nerve guide conduits for optic nerve regeneration: a view from the cellular perspective, challenges and the future outlook. Regen Biomater 2024; 12:rbae133. [PMID: 39776856 PMCID: PMC11703557 DOI: 10.1093/rb/rbae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/16/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
Nerve injuries can be tantamount to severe impairment, standard treatment such as the use of autograft or surgery comes with complications and confers a shortened relief. The mechanism relevant to the regeneration of the optic nerve seems yet to be fully uncovered. The prevailing rate of vision loss as a result of direct or indirect insult on the optic nerve is alarming. Currently, the use of nerve guide conduits (NGC) to some extent has proven reliable especially in rodents and among the peripheral nervous system, a promising ground for regeneration and functional recovery, however in the optic nerve, this NGC function seems quite unfamous. The insufficient NGC application and the unabridged regeneration of the optic nerve could be a result of the limited information on cellular and molecular activities. This review seeks to tackle two major factors (i) the cellular and molecular activity involved in traumatic optic neuropathy and (ii) the NGC application for the optic nerve regeneration. The understanding of cellular and molecular concepts encompassed, ocular inflammation, extrinsic signaling and intrinsic signaling for axon growth, mobile zinc role, Ca2+ factor associated with the optic nerve, alternative therapies from nanotechnology based on the molecular information and finally the nanotechnological outlook encompassing applicable biomaterials and the use of NGC for regeneration. The challenges and future outlook regarding optic nerve regenerations are also discussed. Upon the many approaches used, the comprehensive role of the cellular and molecular mechanism may set grounds for the efficient application of the NGC for optic nerve regeneration.
Collapse
Affiliation(s)
- Enoch Obeng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Baoguo Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhenyuan Xie
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wenyi Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhixing Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Qinqin Yao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang 325000, China
| |
Collapse
|
10
|
Yoo K, Jo YW, Yoo T, Hann SH, Park I, Kim YE, Kim YL, Rhee J, Song IW, Kim JH, Baek D, Kong YY. Muscle-resident mesenchymal progenitors sense and repair peripheral nerve injury via the GDNF-BDNF axis. eLife 2024; 13:RP97662. [PMID: 39324575 PMCID: PMC11426970 DOI: 10.7554/elife.97662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Fibro-adipogenic progenitors (FAPs) are muscle-resident mesenchymal progenitors that can contribute to muscle tissue homeostasis and regeneration, as well as postnatal maturation and lifelong maintenance of the neuromuscular system. Recently, traumatic injury to the peripheral nerve was shown to activate FAPs, suggesting that FAPs can respond to nerve injury. However, questions of how FAPs can sense the anatomically distant peripheral nerve injury and whether FAPs can directly contribute to nerve regeneration remained unanswered. Here, utilizing single-cell transcriptomics and mouse models, we discovered that a subset of FAPs expressing GDNF receptors Ret and Gfra1 can respond to peripheral nerve injury by sensing GDNF secreted by Schwann cells. Upon GDNF sensing, this subset becomes activated and expresses Bdnf. FAP-specific inactivation of Bdnf (Prrx1Cre; Bdnffl/fl) resulted in delayed nerve regeneration owing to defective remyelination, indicating that GDNF-sensing FAPs play an important role in the remyelination process during peripheral nerve regeneration. In aged mice, significantly reduced Bdnf expression in FAPs was observed upon nerve injury, suggesting the clinical relevance of FAP-derived BDNF in the age-related delays in nerve regeneration. Collectively, our study revealed the previously unidentified role of FAPs in peripheral nerve regeneration, and the molecular mechanism behind FAPs' response to peripheral nerve injury.
Collapse
Affiliation(s)
- Kyusang Yoo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young-Woo Jo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Takwon Yoo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Hyeon Hann
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Inkuk Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yea-Eun Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ye Lynne Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Joonwoo Rhee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - In-Wook Song
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hoon Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Daehyun Baek
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young-Yun Kong
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Gargareta VI, Berghoff SA, Krauter D, Hümmert S, Marshall-Phelps KLH, Möbius W, Nave KA, Fledrich R, Werner HB, Eichel-Vogel MA. Myelinated peripheral axons are more vulnerable to mechanical trauma in a model of enlarged axonal diameters. Glia 2024; 72:1572-1589. [PMID: 38895764 DOI: 10.1002/glia.24568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 06/21/2024]
Abstract
The velocity of axonal impulse propagation is facilitated by myelination and axonal diameters. Both parameters are frequently impaired in peripheral nerve disorders, but it is not known if the diameters of myelinated axons affect the liability to injury or the efficiency of functional recovery. Mice lacking the adaxonal myelin protein chemokine-like factor-like MARVEL-transmembrane domain-containing family member-6 (CMTM6) specifically from Schwann cells (SCs) display appropriate myelination but increased diameters of peripheral axons. Here we subjected Cmtm6-cKo mice as a model of enlarged axonal diameters to a mild sciatic nerve compression injury that causes temporarily reduced axonal diameters but otherwise comparatively moderate pathology of the axon/myelin-unit. Notably, both of these pathological features were worsened in Cmtm6-cKo compared to genotype-control mice early post-injury. The increase of axonal diameters caused by CMTM6-deficiency thus does not override their injury-dependent decrease. Accordingly, we did not detect signs of improved regeneration or functional recovery after nerve compression in Cmtm6-cKo mice; depleting CMTM6 in SCs is thus not a promising strategy toward enhanced recovery after nerve injury. Conversely, the exacerbated axonal damage in Cmtm6-cKo nerves early post-injury coincided with both enhanced immune response including foamy macrophages and SCs and transiently reduced grip strength. Our observations support the concept that larger peripheral axons are particularly susceptible toward mechanical trauma.
Collapse
Affiliation(s)
- Vasiliki-Ilya Gargareta
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stefan A Berghoff
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Doris Krauter
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sophie Hümmert
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Robert Fledrich
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Biology and Psychology, University of Göttingen, Göttingen, Germany
| | - Maria A Eichel-Vogel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Alhadidi QM, Bahader GA, Arvola O, Kitchen P, Shah ZA, Salman MM. Astrocytes in functional recovery following central nervous system injuries. J Physiol 2024; 602:3069-3096. [PMID: 37702572 PMCID: PMC11421637 DOI: 10.1113/jp284197] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Astrocytes are increasingly recognised as partaking in complex homeostatic mechanisms critical for regulating neuronal plasticity following central nervous system (CNS) insults. Ischaemic stroke and traumatic brain injury are associated with high rates of disability and mortality. Depending on the context and type of injury, reactive astrocytes respond with diverse morphological, proliferative and functional changes collectively known as astrogliosis, which results in both pathogenic and protective effects. There is a large body of research on the negative consequences of astrogliosis following brain injuries. There is also growing interest in how astrogliosis might in some contexts be protective and help to limit the spread of the injury. However, little is known about how astrocytes contribute to the chronic functional recovery phase following traumatic and ischaemic brain insults. In this review, we explore the protective functions of astrocytes in various aspects of secondary brain injury such as oedema, inflammation and blood-brain barrier dysfunction. We also discuss the current knowledge on astrocyte contribution to tissue regeneration, including angiogenesis, neurogenesis, synaptogenesis, dendrogenesis and axogenesis. Finally, we discuss diverse astrocyte-related factors that, if selectively targeted, could form the basis of astrocyte-targeted therapeutic strategies to better address currently untreatable CNS disorders.
Collapse
Affiliation(s)
- Qasim M Alhadidi
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pharmacy, Al-Yarmok University College, Diyala, Iraq
| | - Ghaith A Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Oiva Arvola
- Division of Anaesthesiology, Jorvi Hospital, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Mootaz M Salman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Kavli Institute for NanoScience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Kim B, Zhang S, Huang Y, Ko KP, Jung YS, Jang J, Zou G, Zhang J, Jun S, Kim KB, Park KS, Park JI. CRACD loss induces neuroendocrine cell plasticity of lung adenocarcinoma. Cell Rep 2024; 43:114286. [PMID: 38796854 PMCID: PMC11216895 DOI: 10.1016/j.celrep.2024.114286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 03/01/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Tumor cell plasticity contributes to intratumoral heterogeneity and therapy resistance. Through cell plasticity, some lung adenocarcinoma (LUAD) cells transform into neuroendocrine (NE) tumor cells. However, the mechanisms of NE cell plasticity remain unclear. CRACD (capping protein inhibiting regulator of actin dynamics), a capping protein inhibitor, is frequently inactivated in cancers. CRACD knockout (KO) is sufficient to de-repress NE-related gene expression in the pulmonary epithelium and LUAD cells. In LUAD mouse models, Cracd KO increases intratumoral heterogeneity with NE gene expression. Single-cell transcriptomic analysis showed that Cracd KO-induced NE cell plasticity is associated with cell de-differentiation and stemness-related pathway activation. The single-cell transcriptomic analysis of LUAD patient tumors recapitulates that the distinct LUAD NE cell cluster expressing NE genes is co-enriched with impaired actin remodeling. This study reveals the crucial role of CRACD in restricting NE cell plasticity that induces cell de-differentiation of LUAD.
Collapse
Affiliation(s)
- Bongjun Kim
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Shengzhe Zhang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuanjian Huang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kyung-Pil Ko
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Youn-Sang Jung
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jinho Jang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gengyi Zou
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sohee Jun
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kee-Beom Kim
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kwon-Sik Park
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Su Y, Huang M, Thomas AG, Maragakis J, Huizar KDJ, Zheng Y, Wu Y, Farah MH, Slusher BS. GCPII Inhibition Promotes Remyelination after Peripheral Nerve Injury in Aged Mice. Int J Mol Sci 2024; 25:6893. [PMID: 39000003 PMCID: PMC11241013 DOI: 10.3390/ijms25136893] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Peripheral nerve injuries (PNIs) represent a significant clinical challenge, particularly in elderly populations where axonal remyelination and regeneration are impaired. Developing therapies to enhance these processes is crucial for improving PNI repair outcomes. Glutamate carboxypeptidase II (GCPII) is a neuropeptidase that plays a pivotal role in modulating glutamate signaling through its enzymatic cleavage of the abundant neuropeptide N-acetyl aspartyl glutamate (NAAG) to liberate glutamate. Within the PNS, GCPII is expressed in Schwann cells and activated macrophages, and its expression is amplified with aging. In this study, we explored the therapeutic potential of inhibiting GCPII activity following PNI. We report significant GCPII protein and activity upregulation following PNI, which was normalized by the potent and selective GCPII inhibitor 2-(phosphonomethyl)-pentanedioic acid (2-PMPA). In vitro, 2-PMPA robustly enhanced myelination in dorsal root ganglion (DRG) explants. In vivo, using a sciatic nerve crush injury model in aged mice, 2-PMPA accelerated remyelination, as evidenced by increased myelin sheath thickness and higher numbers of remyelinated axons. These findings suggest that GCPII inhibition may be a promising therapeutic strategy to enhance remyelination and potentially improve functional recovery after PNI, which is especially relevant in elderly PNI patients where this process is compromised.
Collapse
Affiliation(s)
- Yu Su
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.S.); (M.H.); (A.G.T.); (J.M.); (K.D.J.H.); (Y.Z.); (Y.W.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Meixiang Huang
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.S.); (M.H.); (A.G.T.); (J.M.); (K.D.J.H.); (Y.Z.); (Y.W.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ajit G. Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.S.); (M.H.); (A.G.T.); (J.M.); (K.D.J.H.); (Y.Z.); (Y.W.)
| | - John Maragakis
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.S.); (M.H.); (A.G.T.); (J.M.); (K.D.J.H.); (Y.Z.); (Y.W.)
| | - Kaitlyn D. J. Huizar
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.S.); (M.H.); (A.G.T.); (J.M.); (K.D.J.H.); (Y.Z.); (Y.W.)
| | - Yuxin Zheng
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.S.); (M.H.); (A.G.T.); (J.M.); (K.D.J.H.); (Y.Z.); (Y.W.)
| | - Ying Wu
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.S.); (M.H.); (A.G.T.); (J.M.); (K.D.J.H.); (Y.Z.); (Y.W.)
| | - Mohamed H. Farah
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.S.); (M.H.); (A.G.T.); (J.M.); (K.D.J.H.); (Y.Z.); (Y.W.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
Stassart RM, Gomez-Sanchez JA, Lloyd AC. Schwann Cells as Orchestrators of Nerve Repair: Implications for Tissue Regeneration and Pathologies. Cold Spring Harb Perspect Biol 2024; 16:a041363. [PMID: 38199866 PMCID: PMC11146315 DOI: 10.1101/cshperspect.a041363] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Peripheral nerves exist in a stable state in adulthood providing a rapid bidirectional signaling system to control tissue structure and function. However, following injury, peripheral nerves can regenerate much more effectively than those of the central nervous system (CNS). This multicellular process is coordinated by peripheral glia, in particular Schwann cells, which have multiple roles in stimulating and nurturing the regrowth of damaged axons back to their targets. Aside from the repair of damaged nerves themselves, nerve regenerative processes have been linked to the repair of other tissues and de novo innervation appears important in establishing an environment conducive for the development and spread of tumors. In contrast, defects in these processes are linked to neuropathies, aging, and pain. In this review, we focus on the role of peripheral glia, especially Schwann cells, in multiple aspects of nerve regeneration and discuss how these findings may be relevant for pathologies associated with these processes.
Collapse
Affiliation(s)
- Ruth M Stassart
- Paul-Flechsig-Institute of Neuropathology, University Clinic Leipzig, Leipzig 04103, Germany
| | - Jose A Gomez-Sanchez
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante 03010, Spain
- Instituto de Neurociencias CSIC-UMH, Sant Joan de Alicante 03550, Spain
| | - Alison C Lloyd
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
16
|
Svačina MKR, Gao T, Sprenger-Svačina A, Lin J, Ganesh BP, Lee J, McCullough LD, Sheikh KA, Zhang G. Rejuvenating fecal microbiota transplant enhances peripheral nerve repair in aged mice by modulating endoneurial inflammation. Exp Neurol 2024; 376:114774. [PMID: 38599367 DOI: 10.1016/j.expneurol.2024.114774] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Peripheral nerve injury (PNI) resulting from trauma or neuropathies can cause significant disability, and its prognosis deteriorates with age. Emerging evidence suggests that gut dysbiosis and reduced fecal short-chain fatty acids (SCFAs) contribute to an age-related systemic hyperinflammation (inflammaging), which hinders nerve recovery after injury. This study thus aimed to evaluate the pro-regenerative effects of a rejuvenating fecal microbiota transplant (FMT) in a preclinical PNI model using aged mice. Aged C57BL/6 mice underwent bilateral crush injuries to their sciatic nerves. Subsequently, they either received FMT from young donors at three and four days after the injury or retained their aged gut microbiota. We analyzed gut microbiome composition and SCFA concentrations in fecal samples. The integrity of the ileac mucosal barrier was assessed by immunofluorescence staining of Claudin-1. Flow cytometry was utilized to examine immune cells and cytokine production in the ileum, spleen, and sciatic nerve. Various assessments, including behavioural tests, electrophysiological studies, and morphometrical analyses, were conducted to evaluate peripheral nerve function and repair following injury. Rejuvenating FMT reversed age-related gut dysbiosis by increasing Actinobacteria, especially Bifidobacteriales genera. This intervention also led to an elevation of gut SCFA levels and mitigated age-related ileac mucosal leakiness in aged recipients. Additionally, it augmented the number of T-helper 2 (Th2) and regulatory T (Treg) cells in the ileum and spleen, with the majority being positive for anti-inflammatory interleukin-10 (IL-10). In sciatic nerves, rejuvenating FMT resulted in increased M2 macrophage counts and a higher IL-10 production by IL-10+TNF-α- M2 macrophage subsets. Ultimately, restoring a youthful gut microbiome in aged mice led to improved nerve repair and enhanced functional recovery after PNI. Considering that FMT is already a clinically available technique, exploring novel translational strategies targeting the gut microbiome to enhance nerve repair in the elderly seems promising and warrants further evaluation.
Collapse
Affiliation(s)
- Martin K R Svačina
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; Department of Neurology, Faculty of Medicine and University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Tong Gao
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Alina Sprenger-Svačina
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; Department of Neurology, Faculty of Medicine and University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Jianxin Lin
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Bhanu P Ganesh
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Juneyoung Lee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Kazim A Sheikh
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Gang Zhang
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Wei C, Guo Y, Ci Z, Li M, Zhang Y, Zhou Y. Advances of Schwann cells in peripheral nerve regeneration: From mechanism to cell therapy. Biomed Pharmacother 2024; 175:116645. [PMID: 38729050 DOI: 10.1016/j.biopha.2024.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Peripheral nerve injuries (PNIs) frequently occur due to various factors, including mechanical trauma such as accidents or tool-related incidents, as well as complications arising from diseases like tumor resection. These injuries frequently result in persistent numbness, impaired motor and sensory functions, neuropathic pain, or even paralysis, which can impose a significant financial burden on patients due to outcomes that often fall short of expectations. The most frequently employed clinical treatment for PNIs involves either direct sutures of the severed ends or bridging the proximal and distal stumps using autologous nerve grafts. However, autologous nerve transplantation may result in sensory and motor functional loss at the donor site, as well as neuroma formation and scarring. Transplantation of Schwann cells/Schwann cell-like cells has emerged as a promising cellular therapy to reconstruct the microenvironment and facilitate peripheral nerve regeneration. In this review, we summarize the role of Schwann cells and recent advances in Schwann cell therapy in peripheral nerve regeneration. We summarize current techniques used in cell therapy, including cell injection, 3D-printed scaffolds for cell delivery, cell encapsulation techniques, as well as the cell types employed in experiments, experimental models, and research findings. At the end of the paper, we summarize the challenges and advantages of various cells (including ESCs, iPSCs, and BMSCs) in clinical cell therapy. Our goal is to provide the theoretical and experimental basis for future treatments targeting peripheral nerves, highlighting the potential of cell therapy and tissue engineering as invaluable resources for promoting nerve regeneration.
Collapse
Affiliation(s)
- Chuqiao Wei
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuanxin Guo
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhen Ci
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Mucong Li
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yidi Zhang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China.
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
18
|
Pandya VA, Patani R. The role of glial cells in amyotrophic lateral sclerosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:381-450. [PMID: 38802179 DOI: 10.1016/bs.irn.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) has traditionally been considered a neuron-centric disease. This view is now outdated, with increasing recognition of cell autonomous and non-cell autonomous contributions of central and peripheral nervous system glia to ALS pathomechanisms. With glial research rapidly accelerating, we comprehensively interrogate the roles of astrocytes, microglia, oligodendrocytes, ependymal cells, Schwann cells and satellite glia in nervous system physiology and ALS-associated pathology. Moreover, we highlight the inter-glial, glial-neuronal and inter-system polylogue which constitutes the healthy nervous system and destabilises in disease. We also propose classification based on function for complex glial reactive phenotypes and discuss the pre-requisite for integrative modelling to advance translation. Given the paucity of life-enhancing therapies currently available for ALS patients, we discuss the promising potential of harnessing glia in driving ALS therapeutic discovery.
Collapse
Affiliation(s)
- Virenkumar A Pandya
- University College London Medical School, London, United Kingdom; The Francis Crick Institute, London, United Kingdom.
| | - Rickie Patani
- The Francis Crick Institute, London, United Kingdom; Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, Queen Square, London, United Kingdom.
| |
Collapse
|
19
|
Martellucci S, Flütsch A, Carter M, Norimoto M, Pizzo D, Mantuano E, Sadri M, Wang Z, Chillin-Fuentes D, Rosenthal SB, Azmoon P, Gonias SL, Campana WM. Axon-derived PACSIN1 binds to the Schwann cell survival receptor, LRP1, and transactivates TrkC to promote gliatrophic activities. Glia 2024; 72:916-937. [PMID: 38372375 DOI: 10.1002/glia.24510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/20/2024]
Abstract
Schwann cells (SCs) undergo phenotypic transformation and then orchestrate nerve repair following PNS injury. The ligands and receptors that activate and sustain SC transformation remain incompletely understood. Proteins released by injured axons represent important candidates for activating the SC Repair Program. The low-density lipoprotein receptor-related protein-1 (LRP1) is acutely up-regulated in SCs in response to injury, activating c-Jun, and promoting SC survival. To identify novel LRP1 ligands released in PNS injury, we applied a discovery-based approach in which extracellular proteins in the injured nerve were captured using Fc-fusion proteins containing the ligand-binding motifs of LRP1 (CCR2 and CCR4). An intracellular neuron-specific protein, Protein Kinase C and Casein Kinase Substrate in Neurons (PACSIN1) was identified and validated as an LRP1 ligand. Recombinant PACSIN1 activated c-Jun and ERK1/2 in cultured SCs. Silencing Lrp1 or inhibiting the LRP1 cell-signaling co-receptor, the NMDA-R, blocked the effects of PACSIN1 on c-Jun and ERK1/2 phosphorylation. Intraneural injection of PACSIN1 into crush-injured sciatic nerves activated c-Jun in wild-type mice, but not in mice in which Lrp1 is conditionally deleted in SCs. Transcriptome profiling of SCs revealed that PACSIN1 mediates gene expression events consistent with transformation to the repair phenotype. PACSIN1 promoted SC migration and viability following the TNFα challenge. When Src family kinases were pharmacologically inhibited or the receptor tyrosine kinase, TrkC, was genetically silenced or pharmacologically inhibited, PACSIN1 failed to induce cell signaling and prevent SC death. Collectively, these studies demonstrate that PACSIN1 is a novel axon-derived LRP1 ligand that activates SC repair signaling by transactivating TrkC.
Collapse
Affiliation(s)
- Stefano Martellucci
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Andreas Flütsch
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Mark Carter
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Masaki Norimoto
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Donald Pizzo
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Elisabetta Mantuano
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Mahrou Sadri
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Zixuan Wang
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Daisy Chillin-Fuentes
- Center for Computational Biology & Bioinformatics, Altman Clinical & Translational Research Institute, University of California San Diego, La Jolla, California, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology & Bioinformatics, Altman Clinical & Translational Research Institute, University of California San Diego, La Jolla, California, USA
| | - Pardis Azmoon
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Steven L Gonias
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Wendy M Campana
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
- Program in Neurosciences, University of California San Diego, La Jolla, California, USA
- Division of Research, San Diego VA Health Care System, San Diego, California, USA
| |
Collapse
|
20
|
Schmitd LB, Hafner H, Ward A, Asghari Adib E, Biscola NP, Kohen R, Patel M, Williamson RE, Desai E, Bennett J, Saxman G, Athaiya M, Wilborn D, Shumpert J, Zhao XF, Kawaguchi R, Geschwind DH, Hoke A, Shrager P, Collins CA, Havton LA, Kalinski AL, Giger RJ. Sarm1 is not necessary for activation of neuron-intrinsic growth programs yet required for the Schwann cell repair response and peripheral nerve regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583374. [PMID: 38496662 PMCID: PMC10942360 DOI: 10.1101/2024.03.04.583374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Upon peripheral nervous system (PNS) injury, severed axons undergo rapid SARM1-dependent Wallerian degeneration (WD). In mammals, the role of SARM1 in PNS regeneration, however, is unknown. Here we demonstrate that Sarm1 is not required for axotomy induced activation of neuron-intrinsic growth programs and axonal growth into a nerve crush site. However, in the distal nerve, Sarm1 is necessary for the timely induction of the Schwann cell (SC) repair response, nerve inflammation, myelin clearance, and regeneration of sensory and motor axons. In Sarm1-/- mice, regenerated fibers exhibit reduced axon caliber, defective nerve conduction, and recovery of motor function is delayed. The growth hostile environment of Sarm1-/- distal nerve tissue was demonstrated by grafting of Sarm1-/- nerve into WT recipients. SC lineage tracing in injured WT and Sarm1-/- mice revealed morphological differences. In the Sarm1-/- distal nerve, the appearance of p75NTR+, c-Jun+ SCs is significantly delayed. Ex vivo, p75NTR and c-Jun upregulation in Sarm1-/- nerves can be rescued by pharmacological inhibition of ErbB kinase. Together, our studies show that Sarm1 is not necessary for the activation of neuron intrinsic growth programs but in the distal nerve is required for the orchestration of cellular programs that underlie rapid axon extension.
Collapse
Affiliation(s)
- Ligia B. Schmitd
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Hannah Hafner
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Ayobami Ward
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor MI, USA
| | - Elham Asghari Adib
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Natalia P. Biscola
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rafi Kohen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Manav Patel
- Department of Biology, Ball State University, Muncie IN, USA
| | | | - Emily Desai
- Department of Biology, Ball State University, Muncie IN, USA
| | | | - Grace Saxman
- Department of Biology, Ball State University, Muncie IN, USA
| | - Mitre Athaiya
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - David Wilborn
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Jaisha Shumpert
- Department of Biology, Ball State University, Muncie IN, USA
| | - Xiao-Feng Zhao
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Riki Kawaguchi
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Daniel H. Geschwind
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Institute of Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ahmet Hoke
- Department of Neurology, The Johns Hopkins University, Baltimore, MD, USA
| | - Peter Shrager
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Catherine A. Collins
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Leif A. Havton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J Peters VA Medical Center, Bronx, NY, USA
| | - Ashley L. Kalinski
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
- Department of Biology, Ball State University, Muncie IN, USA
| | - Roman J. Giger
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor MI, USA
| |
Collapse
|
21
|
Gobrecht P, Gebel J, Hilla A, Gisselmann G, Fischer D. Targeting Vasohibins to Promote Axon Regeneration. J Neurosci 2024; 44:e2031232024. [PMID: 38429108 PMCID: PMC10993095 DOI: 10.1523/jneurosci.2031-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/13/2023] [Accepted: 02/07/2024] [Indexed: 03/03/2024] Open
Abstract
Treatments accelerating axon regeneration in the nervous system are still clinically unavailable. However, parthenolide promotes adult sensory neurons' axon growth in culture by inhibiting microtubule detyrosination. Here, we show that overexpression of vasohibins increases microtubule detyrosination in growth cones and compromises growth in culture and in vivo. Moreover, overexpression of these proteins increases the required parthenolide concentrations to promote axon regeneration. At the same time, the partial knockdown of endogenous vasohibins or their enhancer SVBP in neurons facilitates axon growth, verifying them as pharmacological targets for promoting axon growth. In vivo, repeated intravenous application of parthenolide or its prodrug di-methyl-amino-parthenolide (DMAPT) markedly facilitates the regeneration of sensory, motor, and sympathetic axons in injured murine and rat nerves, leading to acceleration of functional recovery. Moreover, orally applied DMAPT was similarly effective in promoting nerve regeneration. Thus, pharmacological inhibition of vasohibins facilitates axon regeneration in different species and nerves, making parthenolide and DMAPT the first promising drugs for curing nerve injury.
Collapse
Affiliation(s)
- Philipp Gobrecht
- Center of Pharmacology, Institute II, Medical Faculty, University of Cologne, Cologne D-50931, Germany
- Department of Cell Physiology, Ruhr University of Bochum, Bochum 44780, Germany
| | - Jeannette Gebel
- Center of Pharmacology, Institute II, Medical Faculty, University of Cologne, Cologne D-50931, Germany
- Department of Cell Physiology, Ruhr University of Bochum, Bochum 44780, Germany
| | - Alexander Hilla
- Department of Cell Physiology, Ruhr University of Bochum, Bochum 44780, Germany
| | - Günter Gisselmann
- Department of Cell Physiology, Ruhr University of Bochum, Bochum 44780, Germany
| | - Dietmar Fischer
- Center of Pharmacology, Institute II, Medical Faculty, University of Cologne, Cologne D-50931, Germany
- Department of Cell Physiology, Ruhr University of Bochum, Bochum 44780, Germany
| |
Collapse
|
22
|
Aslami ZV, Leland CR, Strike SA, Forsberg JA, Morris CD, Levin AS, Tuffaha SH. Symptomatic Neuroma Development following En Bloc Resection of Skeletal and Soft-Tissue Tumors: A Retrospective Analysis of 331 Cases. Plast Reconstr Surg 2024; 153:873-883. [PMID: 37199679 DOI: 10.1097/prs.0000000000010659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
BACKGROUND Although symptomatic neuroma formation has been described in other patient populations, these data have not been studied in patients undergoing resection of musculoskeletal tumors. This study aimed to characterize the incidence and risk factors of symptomatic neuroma formation following en bloc resection in this population. METHODS The authors retrospectively reviewed adults undergoing en bloc resections for musculoskeletal tumors at a high-volume sarcoma center from 2014 to 2019. The authors included en bloc resections for an oncologic indication and excluded non-en bloc resections, primary amputations, and patients with insufficient follow-up. Data are provided as descriptive statistics, and multivariable regression modeling was performed. RESULTS The authors included 231 patients undergoing 331 en bloc resections (female, 46%; mean age, 52 years). Nerve transection was documented in 87 resections (26%). There were 81 symptomatic neuromas (25%) meeting criteria of Tinel sign or pain on examination and neuropathy in the distribution of suspected nerve injury. Factors associated with symptomatic neuroma formation included age 18 to 39 [adjusted OR (aOR), 3.6; 95% CI, 1.5 to 8.4; P < 0.01] and 40 to 64 (aOR, 2.2; 95% CI, 1.1 to 4.6; P = 0.04), multiple resections (aOR, 3.2; 95% CI, 1.7 to 5.9; P < 0.001), preoperative neuromodulator requirement (aOR, 2.7; 95% CI, 1.2 to 6.0; P = 0.01), and resection of fascia or muscle (aOR, 0.5; 95% CI, 0.3 to 1.0; P = 0.045). CONCLUSION The authors' results highlight the importance of adequate preoperative optimization of pain control and intraoperative prophylaxis for neuroma prevention following en bloc resection of tumors, particularly for younger patients with a recurrent tumor burden. CLINICAL QUESTION/LEVEL OF EVIDENCE Risk, III.
Collapse
Affiliation(s)
- Zohra V Aslami
- From the Department of Plastic and Reconstructive Surgery
| | - Christopher R Leland
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, The Johns Hopkins Hospital
| | - Sophia A Strike
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, The Johns Hopkins Hospital
| | - Jonathan A Forsberg
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, The Johns Hopkins Hospital
| | - Carol D Morris
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, The Johns Hopkins Hospital
| | - Adam S Levin
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, The Johns Hopkins Hospital
| | - Sami H Tuffaha
- From the Department of Plastic and Reconstructive Surgery
| |
Collapse
|
23
|
Jagaraj CJ, Shadfar S, Kashani SA, Saravanabavan S, Farzana F, Atkin JD. Molecular hallmarks of ageing in amyotrophic lateral sclerosis. Cell Mol Life Sci 2024; 81:111. [PMID: 38430277 PMCID: PMC10908642 DOI: 10.1007/s00018-024-05164-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/21/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, severely debilitating and rapidly progressing disorder affecting motor neurons in the brain, brainstem, and spinal cord. Unfortunately, there are few effective treatments, thus there remains a critical need to find novel interventions that can mitigate against its effects. Whilst the aetiology of ALS remains unclear, ageing is the major risk factor. Ageing is a slowly progressive process marked by functional decline of an organism over its lifespan. However, it remains unclear how ageing promotes the risk of ALS. At the molecular and cellular level there are specific hallmarks characteristic of normal ageing. These hallmarks are highly inter-related and overlap significantly with each other. Moreover, whilst ageing is a normal process, there are striking similarities at the molecular level between these factors and neurodegeneration in ALS. Nine ageing hallmarks were originally proposed: genomic instability, loss of telomeres, senescence, epigenetic modifications, dysregulated nutrient sensing, loss of proteostasis, mitochondrial dysfunction, stem cell exhaustion, and altered inter-cellular communication. However, these were recently (2023) expanded to include dysregulation of autophagy, inflammation and dysbiosis. Hence, given the latest updates to these hallmarks, and their close association to disease processes in ALS, a new examination of their relationship to pathophysiology is warranted. In this review, we describe possible mechanisms by which normal ageing impacts on neurodegenerative mechanisms implicated in ALS, and new therapeutic interventions that may arise from this.
Collapse
Affiliation(s)
- Cyril Jones Jagaraj
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Sina Shadfar
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Sara Assar Kashani
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Sayanthooran Saravanabavan
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Fabiha Farzana
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Julie D Atkin
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
24
|
Xue C, Zhu H, Wang H, Wang Y, Xu X, Zhou S, Liu D, Zhao Y, Qian T, Guo Q, He J, Zhang K, Gu Y, Gong L, Yang J, Yi S, Yu B, Wang Y, Liu Y, Yang Y, Ding F, Gu X. Skin derived precursors induced Schwann cells mediated tissue engineering-aided neuroregeneration across sciatic nerve defect. Bioact Mater 2024; 33:572-590. [PMID: 38111651 PMCID: PMC10726219 DOI: 10.1016/j.bioactmat.2023.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/08/2023] [Accepted: 11/23/2023] [Indexed: 12/20/2023] Open
Abstract
A central question in neural tissue engineering is how the tissue-engineered nerve (TEN) translates detailed transcriptional signals associated with peripheral nerve regeneration into meaningful biological processes. Here, we report a skin-derived precursor-induced Schwann cell (SKP-SC)-mediated chitosan/silk fibroin-fabricated tissue-engineered nerve graft (SKP-SCs-TEN) that can promote sciatic nerve regeneration and functional restoration nearly to the levels achieved by autologous nerve grafts according to behavioral, histological, and electrophysiological evidence. For achieving better effect of neuroregeneration, this is the first time to jointly apply a dynamic perfusion bioreactor and the ascorbic acid to stimulate the SKP-SCs secretion of extracellular matrix (ECM). To overcome the limitation of traditional tissue-engineered nerve grafts, jointly utilizing SKP-SCs and their ECM components were motivated by the thought of prolongating the effect of support cells and their bioactive cues that promote peripheral nerve regeneration. To further explore the regulatory model of gene expression and the related molecular mechanisms involved in tissue engineering-aided peripheral nerve regeneration, we performed a cDNA microarray analysis of gene expression profiling, a comprehensive bioinformatics analysis and a validation study on the grafted segments and dorsal root ganglia tissues. A wealth of transcriptomic and bioinformatics data has revealed complex molecular networks and orchestrated functional regulation that may be responsible for the effects of SKP-SCs-TEN on promoting peripheral nerve regeneration. Our work provides new insights into transcriptomic features and patterns of molecular regulation in nerve functional recovery aided by SKP-SCs-TEN that sheds light on the broader possibilities for novel repair strategies of peripheral nerve injury.
Collapse
Affiliation(s)
- Chengbin Xue
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Hui Zhu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Hongkui Wang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Yaxian Wang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Xi Xu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, JS, 226001, PR China
| | - Songlin Zhou
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Dong Liu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Yahong Zhao
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Tianmei Qian
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Qi Guo
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
- Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, PR China
| | - Jin He
- Medical School of Nantong University, Nantong, JS, 226001, PR China
| | - Kairong Zhang
- Medical School of Nantong University, Nantong, JS, 226001, PR China
| | - Yun Gu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Leilei Gong
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Jian Yang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Sheng Yi
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Bin Yu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Yongjun Wang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Yan Liu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Yumin Yang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Fei Ding
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Xiaosong Gu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| |
Collapse
|
25
|
Hagen KM, Gordon P, Frederick A, Palmer AL, Edalat P, Zonta YR, Scott L, Flancia M, Reid JK, Joel M, Ousman SS. CRYAB plays a role in terminating the presence of pro-inflammatory macrophages in the older, injured mouse peripheral nervous system. Neurobiol Aging 2024; 133:1-15. [PMID: 38381471 DOI: 10.1016/j.neurobiolaging.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 02/22/2024]
Abstract
Evidence indicates that dysfunction of older Schwann cells and macrophages contributes to poor regeneration of more mature peripheral nervous system (PNS) neurons after damage. Since the underlying molecular factors are largely unknown, we investigated if CRYAB, a small heat shock protein that is expressed by Schwann cells and axons and whose expression declines with age, impacts prominent deficits in the injured, older PNS including down-regulation of cholesterol biosynthesis enzyme genes, Schwann cell dysfunction, and macrophage persistence. Following sciatic nerve transection injury in 3- and 12-month-old wildtype and CRYAB knockout mice, we found by bulk RNA sequencing and RT-PCR, that while gene expression of cholesterol biosynthesis enzymes is markedly dysregulated in the aging, injured PNS, CRYAB is not involved. However, immunohistochemical staining of crushed sciatic nerves revealed that more macrophages of the pro-inflammatory but not immunosuppressive phenotype persisted in damaged 12-month-old knockout nerves. These pro-inflammatory macrophages were more efficient at engulfing myelin debris. CRYAB thus appears to play a role in resolving pro-inflammatory macrophage responses after damage to the older PNS.
Collapse
Affiliation(s)
- Kathleen Margaret Hagen
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Paul Gordon
- Cumming School of Medicine Centre for Health Genomics and Informatics, University of Calgary, Calgary, Alberta, Canada
| | - Ariana Frederick
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Alexandra Louise Palmer
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Pariya Edalat
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Yohan Ricci Zonta
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Lucas Scott
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Melissa Flancia
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jacqueline Kelsey Reid
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Matthew Joel
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Shalina Sheryl Ousman
- Departments of Clinical Neurosciences and Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
26
|
Hromada C, Szwarc-Hofbauer D, Quyen Nguyen M, Tomasch J, Purtscher M, Hercher D, Teuschl-Woller AH. Strain-induced bands of Büngner formation promotes axon growth in 3D tissue-engineered constructs. J Tissue Eng 2024; 15:20417314231220396. [PMID: 38249993 PMCID: PMC10798132 DOI: 10.1177/20417314231220396] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024] Open
Abstract
Treatment of peripheral nerve lesions remains a major challenge due to poor functional recovery; hence, ongoing research efforts strive to enhance peripheral nerve repair. In this study, we aimed to establish three-dimensional tissue-engineered bands of Büngner constructs by subjecting Schwann cells (SCs) embedded in fibrin hydrogels to mechanical stimulation. We show for the first time that the application of strain induces (i) longitudinal alignment of SCs resembling bands of Büngner, and (ii) the expression of a pronounced repair SC phenotype as evidenced by upregulation of BDNF, NGF, and p75NTR. Furthermore, we show that mechanically aligned SCs provide physical guidance for migrating axons over several millimeters in vitro in a co-culture model with rat dorsal root ganglion explants. Consequently, these constructs hold great therapeutic potential for transplantation into patients and might also provide a physiologically relevant in vitro peripheral nerve model for drug screening or investigation of pathologic or regenerative processes.
Collapse
Affiliation(s)
- Carina Hromada
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Dorota Szwarc-Hofbauer
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mai Quyen Nguyen
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
| | - Janine Tomasch
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Michaela Purtscher
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - David Hercher
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
| | - Andreas Herbert Teuschl-Woller
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
27
|
Kuang R, Zhang Y, Wu G, Zhu Z, Xu S, Liu X, Xu Y, Luo Y. Long Non-coding RNAs Influence Aging Process of Sciatic Nerves in SD Rats. Comb Chem High Throughput Screen 2024; 27:2140-2150. [PMID: 37691192 PMCID: PMC11348477 DOI: 10.2174/1386207326666230907115800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVES To investigate the long non-coding RNAs (lncRNAs) changes in the sciatic nerve (SN) in Sprague Dawley (SD) rats during aging. METHODS Eighteen healthy SD rats were selected at the age of 1 month (1M) and 24 months (24M) and SNs were collected. High-throughput transcriptome sequencing and bioinformatics analysis were performed. Protein-protein interaction (PPI) networks and competing endogenous RNA (ceRNA) networks were established according to differentially expressed genes (DEGs). RESULT As the length of lncRNAs increased, its proportion to the total number of lncRNAs decreased. A total of 4079 DElncRNAs were identified in Con vs. 24M. GO analysis was primarily clustered in nerve and lipid metabolism, extracellular matrix, and vascularization-related fields. There were 17 nodes in the PPI network of the target genes of up-regulating genes including Itgb2, Lox, Col11a1, Wnt5a, Kras, etc. Using quantitative RT-PCR, microarray sequencing accuracy was validated. There were 169 nodes constructing the PPI network of down-regulated target genes, mainly including Col1a1, Hmgcs1, Hmgcr. CeRNA interaction networks were constructed. CONCLUSION Lipid metabolism, angiogenesis, and ECM fields might play an important role in the senescence process in SNs. Col3a1, Serpinh1, Hmgcr, and Fdps could be candidates for nerve aging research.
Collapse
Affiliation(s)
- Rui Kuang
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Yi Zhang
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Guanggeng Wu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Zhaowei Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Shuqia Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Xiangxia Liu
- Department of Plastic Surgery, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yangbin Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Yunxiang Luo
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| |
Collapse
|
28
|
Wu G, Wen X, Kuang R, Lui KW, He B, Li G, Zhu Z. Roles of Macrophages and Their Interactions with Schwann Cells After Peripheral Nerve Injury. Cell Mol Neurobiol 2023; 44:11. [PMID: 38150045 PMCID: PMC11407145 DOI: 10.1007/s10571-023-01442-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 12/02/2023] [Indexed: 12/28/2023]
Abstract
The adult peripheral nervous system has a significant ability for regeneration compared to the central nervous system. This is related to the unique neuroimmunomodulation after peripheral nerve injury (PNI). Unlike the repair of other tissues after injury, Schwann cells (SCs) respond immediately to the trauma and send out signals to precisely recruit macrophages to the injured site. Then, macrophages promote the degradation of the damaged myelin sheath by phagocytosis of local debris. At the same time, macrophages and SCs jointly secrete various cytokines to reconstruct a microenvironment suitable for nerve regeneration. This unique pathophysiological process associated with macrophages provides important targets for the repair and treatment of PNI, as well as an important reference for guiding the repair of other nerve injuries. To understand these processes more systematically, this paper describes the characteristics of macrophage activation and metabolism in PNI, discusses the underlying molecular mechanism of interaction between macrophages and SCs, and reviews the latest research progress of crosstalk regulation between macrophages and SCs. These concepts and therapeutic strategies are summarized to provide a reference for the more effective use of macrophages in the repair of PNI.
Collapse
Affiliation(s)
- Guanggeng Wu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510100, Guangdong, China
| | - Xiaoyue Wen
- Joint and Orthopedic Trauma, Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510100, Guangdong, China
| | - Rui Kuang
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510100, Guangdong, China
| | - KoonHei Winson Lui
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510100, Guangdong, China
- Department of Plastic and Cosmetic Surgery, Liwan's People Hospital of Guangzhou, Guangzhou, 510370, Guangdong, China
| | - Bo He
- Joint and Orthopedic Trauma, Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510100, Guangdong, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, China.
- Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Medical Research Center, Guangdong Provincial People's Hospital(Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, China.
- Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510100, Guangdong, China.
| | - Zhaowei Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510100, Guangdong, China.
| |
Collapse
|
29
|
Fuentes-Flores A, Geronimo-Olvera C, Girardi K, Necuñir-Ibarra D, Patel SK, Bons J, Wright MC, Geschwind D, Hoke A, Gomez-Sanchez JA, Schilling B, Rebolledo DL, Campisi J, Court FA. Senescent Schwann cells induced by aging and chronic denervation impair axonal regeneration following peripheral nerve injury. EMBO Mol Med 2023; 15:e17907. [PMID: 37860842 DOI: 10.15252/emmm.202317907] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Following peripheral nerve injury, successful axonal growth and functional recovery require Schwann cell (SC) reprogramming into a reparative phenotype, a process dependent upon c-Jun transcription factor activation. Unfortunately, axonal regeneration is greatly impaired in aged organisms and following chronic denervation, which can lead to poor clinical outcomes. While diminished c-Jun expression in SCs has been associated with regenerative failure, it is unclear whether the inability to maintain a repair state is associated with the transition into an axonal growth inhibition phenotype. We here find that reparative SCs transition into a senescent phenotype, characterized by diminished c-Jun expression and secretion of inhibitory factors for axonal regeneration in aging and chronic denervation. In both conditions, the elimination of senescent SCs by systemic senolytic drug treatment or genetic targeting improved nerve regeneration and functional recovery, increased c-Jun expression and decreased nerve inflammation. This work provides the first characterization of senescent SCs and their influence on axonal regeneration in aging and chronic denervation, opening new avenues for enhancing regeneration and functional recovery after peripheral nerve injuries.
Collapse
Affiliation(s)
- Andrés Fuentes-Flores
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Cristian Geronimo-Olvera
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Karina Girardi
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - David Necuñir-Ibarra
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | | | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Megan C Wright
- Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Daniel Geschwind
- Departments of Neurology, Psychiatry, and Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ahmet Hoke
- Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jose A Gomez-Sanchez
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- Instituto de Neurociencias de Alicante, UMH-CSIC, San Juan de Alicante, Spain
| | | | - Daniela L Rebolledo
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | | | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, USA
| |
Collapse
|
30
|
Chen Q, Zhang L, Zhang F, Yi S. FOSL1 modulates Schwann cell responses in the wound microenvironment and regulates peripheral nerve regeneration. J Biol Chem 2023; 299:105444. [PMID: 37949219 PMCID: PMC10716580 DOI: 10.1016/j.jbc.2023.105444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Peripheral glial Schwann cells switch to a repair state after nerve injury, proliferate to supply lost cell population, migrate to form regeneration tracks, and contribute to the generation of a permissive microenvironment for nerve regeneration. Exploring essential regulators of the repair responses of Schwann cells may benefit the clinical treatment for peripheral nerve injury. In the present study, we find that FOSL1, a AP-1 member that encodes transcription factor FOS Like 1, is highly expressed at the injured sites following peripheral nerve crush. Interfering FOSL1 decreases the proliferation rate and migration ability of Schwann cells, leading to impaired nerve regeneration. Mechanism investigations demonstrate that FOSL1 regulates Schwann cell proliferation and migration by directly binding to the promoter of EPH Receptor B2 (EPHB2) and promoting EPHB2 transcription. Collectively, our findings reveal the essential roles of FOSL1 in regulating the activation of Schwann cells and indicate that FOSL1 can be targeted as a novel therapeutic approach to orchestrate the regeneration and functional recovery of injured peripheral nerves.
Collapse
Affiliation(s)
- Qianqian Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Lan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Fuchao Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
31
|
Huang W, Yi S, Zhao L. Genetic Features of Young and Aged Animals After Peripheral Nerve Injury: Implications for Diminished Regeneration Capacity. Cell Mol Neurobiol 2023; 43:4363-4375. [PMID: 37922116 PMCID: PMC10661822 DOI: 10.1007/s10571-023-01431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2023]
Abstract
The spontaneous regeneration capacity of peripheral nerves is fundamentally reduced with advancing age, leading to severe and long-term functional loss. The cellular and molecular basis underlying incomplete and delayed recovery of aging peripheral nerves is still murky. Here, we collected sciatic nerves of aged rats at 1d, 4d, and 7d after nerve injury, systematically analyzed the transcriptional changes of injured sciatic nerves, and examined the differences of injury responses between aged rats and young rats. RNA sequencing revealed that sciatic nerves of aged and young rats exhibit distinctive expression patterns after nerve injury. Acute and vigorous immune responses, including motivated B cell receptor signaling pathway, occurred in injured sciatic nerves of both aged and young rats. Different from young rats, aged rats have more CD8+ T cells and B cells in normal state and the elevation of M2 macrophages seemed to be more robust in sciatic nerves, especially at later time points after nerve injury. Young rats, on the other hand, showed strong and early up-regulation of cell cycle-related genes. These identified unique transcriptional signatures of aged and young rats help the understanding of aged-associated injury responses in the wound microenvironments and provide essential basis for the treatment of regeneration deficits in aged population.
Collapse
Affiliation(s)
- Weixiao Huang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Lili Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
32
|
Hastings RL, Avila MF, Suneby E, Juros D, O'Young A, Peres da Silva J, Valdez G. Cellular and molecular evidence that synaptic Schwann cells contribute to aging of mouse neuromuscular junctions. Aging Cell 2023; 22:e13981. [PMID: 37771191 PMCID: PMC10652323 DOI: 10.1111/acel.13981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/30/2023] Open
Abstract
Age-induced degeneration of the neuromuscular junction (NMJ) is associated with motor dysfunction and muscle atrophy. While the impact of aging on the NMJ presynapse and postsynapse is well-documented, little is known about the changes perisynaptic Schwann cells (PSCs), the synaptic glia of the NMJ, undergo during aging. Here, we examined PSCs in young, middle-aged, and old mice in three muscles with different susceptibility to aging. Using light and electron microscopy, we found that PSCs acquire age-associated cellular features either prior to or at the same time as the onset of NMJ degeneration. Notably, we found that aged PSCs fail to completely cap the NMJ even though they are more abundant in old compared with young mice. We also found that aging PSCs form processes that either intrude into the synaptic cleft or guide axonal sprouts to innervate other NMJs. We next profiled the transcriptome of PSCs and other Schwann cells (SCs) to identify mechanisms altered in aged PSCs. This analysis revealed that aged PSCs acquire a transcriptional pattern previously shown to promote phagocytosis that is absent in other SCs. It also showed that aged PSCs upregulate unique pro-inflammatory molecules compared to other aged SCs. Interestingly, neither synaptogenesis genes nor genes that are typically upregulated by repair SCs were induced in aged PSCs or other SCs. These findings provide insights into cellular and molecular mechanisms that could be targeted in PSCs to stave off the deleterious effects of aging on NMJs.
Collapse
Affiliation(s)
- Robert Louis Hastings
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | | | - Emma Suneby
- Molecular Biology, Cell Biology, & Biochemistry Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Devin Juros
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Anson O'Young
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Jason Peres da Silva
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Gregorio Valdez
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science, and Center on the Biology of Aging, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
33
|
Helbing DL, Kirkpatrick JM, Reuter M, Bischoff J, Stockdale A, Carlstedt A, Cirri E, Bauer R, Morrison H. Proteomic analysis of peripheral nerve myelin during murine aging. Front Cell Neurosci 2023; 17:1214003. [PMID: 37964793 PMCID: PMC10642449 DOI: 10.3389/fncel.2023.1214003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Aging of the peripheral nervous system (PNS) is associated with structural and functional changes that lead to a reduction in regenerative capacity and the development of age-related peripheral neuropathy. Myelin is central to maintaining physiological peripheral nerve function and differences in myelin maintenance, degradation, formation and clearance have been suggested to contribute to age-related PNS changes. Recent proteomic studies have elucidated the complex composition of the total myelin proteome in health and its changes in neuropathy models. However, changes in the myelin proteome of peripheral nerves during aging have not been investigated. Here we show that the proteomes of myelin fractions isolated from young and old nerves show only subtle changes. In particular, we found that the three most abundant peripheral myelin proteins (MPZ, MBP, and PRX) do not change in old myelin fractions. We also show a tendency for high-abundance myelin proteins other than these three to be downregulated, with only a small number of ribosome-related proteins significantly downregulated and extracellular matrix proteins such as collagens upregulated. In addition, we illustrate that the peripheral nerve myelin proteome reported in this study is suitable for assessing myelin degradation and renewal during peripheral nerve degeneration and regeneration. Our results suggest that the peripheral nerve myelin proteome is relatively stable and undergoes only subtle changes in composition during mouse aging. We proffer the resultant dataset as a resource and starting point for future studies aimed at investigating peripheral nerve myelin during aging. Said datasets are available in the PRIDE archive under the identifier PXD040719 (aging myelin proteome) and PXD041026 (sciatic nerve injury proteome).
Collapse
Affiliation(s)
- Dario Lucas Helbing
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Mental Health (DZPG), Jena, Germany
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | | | - Michael Reuter
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Julia Bischoff
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Amy Stockdale
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | | | - Emilio Cirri
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
34
|
Dahlin LB. The Dynamics of Nerve Degeneration and Regeneration in a Healthy Milieu and in Diabetes. Int J Mol Sci 2023; 24:15241. [PMID: 37894921 PMCID: PMC10607341 DOI: 10.3390/ijms242015241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Appropriate animal models, mimicking conditions of both health and disease, are needed to understand not only the biology and the physiology of neurons and other cells under normal conditions but also under stress conditions, like nerve injuries and neuropathy. In such conditions, understanding how genes and different factors are activated through the well-orchestrated programs in neurons and other related cells is crucial. Knowledge about key players associated with nerve regeneration intended for axonal outgrowth, migration of Schwann cells with respect to suitable substrates, invasion of macrophages, appropriate conditioning of extracellular matrix, activation of fibroblasts, formation of endothelial cells and blood vessels, and activation of other players in healthy and diabetic conditions is relevant. Appropriate physical and chemical attractions and repulsions are needed for an optimal and directed regeneration and are investigated in various nerve injury and repair/reconstruction models using healthy and diabetic rat models with relevant blood glucose levels. Understanding dynamic processes constantly occurring in neuropathies, like diabetic neuropathy, with concomitant degeneration and regeneration, requires advanced technology and bioinformatics for an integrated view of the behavior of different cell types based on genomics, transcriptomics, proteomics, and imaging at different visualization levels. Single-cell-transcriptional profile analysis of different cells may reveal any heterogeneity among key players in peripheral nerves in health and disease.
Collapse
Affiliation(s)
- Lars B. Dahlin
- Department of Translational Medicine—Hand Surgery, Lund University, SE-205 02 Malmö, Sweden; ; Tel.: +46-40-33-17-24
- Department of Hand Surgery, Skåne University Hospital, SE-205 02 Malmö, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
35
|
Mutschler C, Fazal SV, Schumacher N, Loreto A, Coleman MP, Arthur-Farraj P. Schwann cells are axo-protective after injury irrespective of myelination status in mouse Schwann cell-neuron cocultures. J Cell Sci 2023; 136:jcs261557. [PMID: 37642648 PMCID: PMC10546878 DOI: 10.1242/jcs.261557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
Myelinating Schwann cell (SC)-dorsal root ganglion (DRG) neuron cocultures are an important technique for understanding cell-cell signalling and interactions during peripheral nervous system (PNS) myelination, injury, and regeneration. Although methods using rat SCs and neurons or mouse DRG explants are commonplace, there are no established protocols for compartmentalised myelinating cocultures with dissociated mouse cells. There consequently is a need for a coculture protocol that allows separate genetic manipulation of mouse SCs or neurons, or use of cells from different transgenic animals to complement in vivo mouse experiments. However, inducing myelination of dissociated mouse SCs in culture is challenging. Here, we describe a new method to coculture dissociated mouse SCs and DRG neurons in microfluidic chambers and induce robust myelination. Cocultures can be axotomised to study injury and used for drug treatments, and cells can be lentivirally transduced for live imaging. We used this model to investigate axon degeneration after traumatic axotomy and find that SCs, irrespective of myelination status, are axo-protective. At later timepoints after injury, live imaging of cocultures shows that SCs break up, ingest and clear axonal debris.
Collapse
Affiliation(s)
- Clara Mutschler
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Shaline V. Fazal
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Nathalie Schumacher
- Laboratory of Nervous System Disorders and Therapies, GIGA Neurosciences, University of Liège, 4000 Liège, Belgium
| | - Andrea Loreto
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Michael P. Coleman
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| |
Collapse
|
36
|
Garcia E, Buzoianu-Anguiano V, Silva-Garcia R, Esparza-Salazar F, Arriero-Cabañero A, Escandon A, Doncel-Pérez E, Ibarra A. Use of Cells, Supplements, and Peptides as Therapeutic Strategies for Modulating Inflammation after Spinal Cord Injury: An Update. Int J Mol Sci 2023; 24:13946. [PMID: 37762251 PMCID: PMC10531377 DOI: 10.3390/ijms241813946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Spinal cord injury is a traumatic lesion that causes a catastrophic condition in patients, resulting in neuronal deficit and loss of motor and sensory function. That loss is caused by secondary injury events following mechanical damage, which results in cell death. One of the most important events is inflammation, which activates molecules like proinflammatory cytokines (IL-1β, IFN-γ, and TNF-α) that provoke a toxic environment, inhibiting axonal growth and exacerbating CNS damage. As there is no effective treatment, one of the developed therapies is neuroprotection of the tissue to preserve healthy tissue. Among the strategies that have been developed are the use of cell therapy, the use of peptides, and molecules or supplements that have been shown to favor an anti-inflammatory environment that helps to preserve tissue and cells at the site of injury, thus favoring axonal growth and improved locomotor function. In this review, we will explain some of these strategies used in different animal models of spinal cord injury, their activity as modulators of the immune system, and the benefits they have shown.
Collapse
Affiliation(s)
- Elisa Garcia
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| | - Vinnitsa Buzoianu-Anguiano
- Grupo Regeneración Neural, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (V.B.-A.); (A.A.-C.)
| | - Raúl Silva-Garcia
- Unidad de Investigación Médica en Inmunología Hospital de Pediatría, CMN-SXXI, IMSS, Mexico City 06720, Mexico;
| | - Felipe Esparza-Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| | - Alejandro Arriero-Cabañero
- Grupo Regeneración Neural, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (V.B.-A.); (A.A.-C.)
| | - Adela Escandon
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| | - Ernesto Doncel-Pérez
- Grupo Regeneración Neural, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (V.B.-A.); (A.A.-C.)
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| |
Collapse
|
37
|
Wang X, Li W, Zhang J, Li J, Zhang X, Wang M, Wei Z, Feng S. Discovery of therapeutic targets for spinal cord injury based on molecular mechanisms of axon regeneration after conditioning lesion. J Transl Med 2023; 21:511. [PMID: 37507810 PMCID: PMC10385911 DOI: 10.1186/s12967-023-04375-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Preinjury of peripheral nerves triggers dorsal root ganglia (DRG) axon regeneration, a biological change that is more pronounced in young mice than in old mice, but the complex mechanism has not been clearly explained. Here, we aim to gain insight into the mechanisms of axon regeneration after conditioning lesion in different age groups of mice, thereby providing effective therapeutic targets for central nervous system (CNS) injury. METHODS The microarray GSE58982 and GSE96051 were downloaded and analyzed to identify differentially expressed genes (DEGs). The protein-protein interaction (PPI) network, the miRNA-TF-target gene network, and the drug-hub gene network of conditioning lesion were constructed. The L4 and L5 DRGs, which were previously axotomized by the sciatic nerve conditioning lesions, were harvested for qRT-PCR. Furthermore, histological and behavioral tests were performed to assess the therapeutic effects of the candidate drug telmisartan in spinal cord injury (SCI). RESULTS A total of 693 and 885 DEGs were screened in the old and young mice, respectively. Functional enrichment indicates that shared DEGs are involved in the inflammatory response, innate immune response, and ion transport. QRT-PCR results showed that in DRGs with preinjury of peripheral nerve, Timp1, P2ry6, Nckap1l, Csf1, Ccl9, Anxa1, and C3 were upregulated, while Agtr1a was downregulated. Based on the bioinformatics analysis of DRG after conditioning lesion, Agtr1a was selected as a potential therapeutic target for the SCI treatment. In vivo experiments showed that telmisartan promoted axonal regeneration after SCI by downregulating AGTR1 expression. CONCLUSION This study provides a comprehensive map of transcriptional changes that discriminate between young and old DRGs in response to injury. The hub genes and their related drugs that may affect the axonal regeneration program after conditioning lesion were identified. These findings revealed the speculative pathogenic mechanism involved in conditioning-dependent regenerative growth and may have translational significance for the development of CNS injury treatment in the future.
Collapse
Affiliation(s)
- Xiaoxiong Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
- University of Health and Rehabilitation Sciences, No.17, Shandong Road, Shinan District, Qingdao, 266071, Shandong, People's Republic of China
| | - Wenxiang Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Jianping Zhang
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Jinze Li
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Xianjin Zhang
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Min Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Zhijian Wei
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.
- Department of Orthopedics, Tianjin Medical University General Hospital, No154. Anshan Rd, He Ping Dist, Tianjin, 300052, China.
| | - Shiqing Feng
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.
- Department of Orthopedics, Tianjin Medical University General Hospital, No154. Anshan Rd, He Ping Dist, Tianjin, 300052, China.
| |
Collapse
|
38
|
Zhang H, Zhang Z, Lin H. Research progress on the reduced neural repair ability of aging Schwann cells. Front Cell Neurosci 2023; 17:1228282. [PMID: 37545880 PMCID: PMC10398339 DOI: 10.3389/fncel.2023.1228282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Peripheral nerve injury (PNI) is associated with delayed repair of the injured nerves in elderly patients, resulting in loss of nerve function, chronic pain, muscle atrophy, and permanent disability. Therefore, the mechanism underlying the delayed repair of peripheral nerves in aging patients should be investigated. Schwann cells (SCs) play a crucial role in repairing PNI and regulating various nerve-repair genes after injury. SCs also promote peripheral nerve repair through various modalities, including mediating nerve demyelination, secreting neurotrophic factors, establishing Büngner bands, clearing axon and myelin debris, and promoting axon remyelination. However, aged SCs undergo structural and functional changes, leading to demyelination and dedifferentiation disorders, decreased secretion of neurotrophic factors, impaired clearance of axonal and myelin debris, and reduced capacity for axon remyelination. As a result, aged SCs may result in delayed repair of nerves after injury. This review article aimed to examine the mechanism underlying the diminished neural repair ability of aging SCs.
Collapse
|
39
|
Drewry MD, Rothermund K, Syed-Picard FN. Topographical and Chemical Inductive Cues Synergistically Enhance the Schwann Cell Differentiation of Aligned Dental Pulp Stem Cell Sheets. J Tissue Eng Regen Med 2023; 2023:7958770. [PMID: 40226400 PMCID: PMC11918939 DOI: 10.1155/2023/7958770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 04/15/2025]
Abstract
Peripheral nerves have an inherent capacity for regeneration, but these Schwann cell-mediated mechanisms are insufficient for severe injuries. With current clinical treatments, slow regeneration and aberrant reinnervation result in poor functional outcomes. Dental pulp stem cells (DPSCs) offer a promising source of therapeutic neurotrophic factors (NTFs), growth factors that stimulate axon regeneration. Previously, we established that DPSCs can generate scaffold-free sheets with a linearly aligned extracellular matrix (ECM). These sheets provide trophic cues via the DPSCs and directional cues through the aligned ECM to both accelerate and orient axon outgrowth, thus providing a biomaterial capable of addressing the current clinical challenges. DPSCs have a propensity for differentiating into Schwann cells (SC-DPSCs), further enhancing their endogenous NTF expression. Here, we evaluated the effect of inducing SC differentiation on the neuroregenerative bioactivity of our DPSC sheets. These sheets were formed on substrates with linear microgrooves to direct the cells to deposit an aligned ECM. Inducing differentiation using an SC differentiation medium (SCDM) increased NTF expression 2-fold compared to unaligned uDPSC sheets, and this effect was amplified in linearly oriented SC-DPSC sheets by up to 8-fold. Furthermore, these aligned SC-DPSC sheets remodeled the sheet ECM to more closely emulate a regenerative neural microenvironment, expressing 8-fold and 2 × 107-fold more collagen IV and laminin, respectively, than unaligned uDPSC sheets. These data demonstrate that the chemical cues of the SCDM and the mechanotransductive cues of the aligned cell sheet synergistically enhanced the differentiation of DPSCs into repair SC-like cells. To evaluate their functional effects on neuritogenesis, the DPSC sheets were directly cocultured with neuronally differentiated neuroblastoma SH-SY5Y cells. In this in vitro culture system, the aligned SC-DPSC sheets promoted oriented neurite-like outgrowth similar to aligned uninduced DPSC sheets and increased collateral branching, which may emulate stages associated with natural SC-mediated repair processes. Therefore, linearly aligned SC-DPSC sheets have the potential to both promote nerve regeneration and reduce aberrant reinnervation, thus providing a promising biomaterial for applications to improve the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Michelle D. Drewry
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kristi Rothermund
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fatima N. Syed-Picard
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| |
Collapse
|
40
|
Suzuki T, Kadoya K, Endo T, Iwasaki N. Molecular and Regenerative Characterization of Repair and Non-repair Schwann Cells. Cell Mol Neurobiol 2023; 43:2165-2178. [PMID: 36222946 PMCID: PMC11412190 DOI: 10.1007/s10571-022-01295-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/02/2022] [Indexed: 11/29/2022]
Abstract
Although evidence has accumulated to indicate that Schwann cells (SCs) differentiate into repair SCs (RSCs) upon injury and that the unique phenotype of these cells allow them to provide support for peripheral nerve regeneration, the details of the RSCs are not fully understood. The findings of the current study indicate that the RSCs have enhanced adherent properties and a greater capability to promote neurite outgrowth and axon regeneration after peripheral nerve injury, compared to the non-RSCs. Further, transcriptome analyses have demonstrated that the molecular signature of the RSCs is distinctly different from that of the non-RSCs. The RSCs upregulate a group of genes that are related to inflammation, repair, and regeneration, whereas non-RSCs upregulate genes related to myelin maintenance, Notch, and aging. These findings indicate that the RSCs have markedly different cellular, regenerative, and molecular characteristics compared to the non-RSCs, even though the RSCs were just derived from non-RSCs upon injury, thus providing the basis for understanding the mechanisms related to SC mediated repair after peripheral nerve injury.
Collapse
Affiliation(s)
- Tomoaki Suzuki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Ken Kadoya
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.
| | - Takeshi Endo
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
41
|
Comfort N, Gade M, Strait M, Merwin SJ, Antoniou D, Parodi C, Marcinczyk L, Jean‐Francois L, Bloomquist TR, Memou A, Rideout HJ, Corti S, Kariya S, Re DB. Longitudinal transcriptomic analysis of mouse sciatic nerve reveals pathways associated with age-related muscle pathology. J Cachexia Sarcopenia Muscle 2023; 14:1322-1336. [PMID: 36905126 PMCID: PMC10235898 DOI: 10.1002/jcsm.13204] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Sarcopenia, the age-associated decline in skeletal muscle mass and strength, has long been considered a disease of muscle only, but accumulating evidence suggests that sarcopenia could originate from the neural components controlling muscles. To identify early molecular changes in nerves that may drive sarcopenia initiation, we performed a longitudinal transcriptomic analysis of the sciatic nerve, which governs lower limb muscles, in aging mice. METHODS Sciatic nerve and gastrocnemius muscle were obtained from female C57BL/6JN mice aged 5, 18, 21 and 24 months old (n = 6 per age group). Sciatic nerve RNA was extracted and underwent RNA sequencing (RNA-seq). Differentially expressed genes (DEGs) were validated using quantitative reverse transcription PCR (qRT-PCR). Functional enrichment analysis of clusters of genes associated with patterns of gene expression across age groups (adjusted P-value < 0.05, likelihood ratio test [LRT]) was performed. Pathological skeletal muscle aging was confirmed between 21 and 24 months by a combination of molecular and pathological biomarkers. Myofiber denervation was confirmed with qRT-PCR of Chrnd, Chrng, Myog, Runx1 and Gadd45ɑ in gastrocnemius muscle. Changes in muscle mass, cross-sectional myofiber size and percentage of fibres with centralized nuclei were analysed in a separate cohort of mice from the same colony (n = 4-6 per age group). RESULTS We detected 51 significant DEGs in sciatic nerve of 18-month-old mice compared with 5-month-old mice (absolute value of fold change > 2; false discovery rate [FDR] < 0.05). Up-regulated DEGs included Dbp (log2 fold change [LFC] = 2.63, FDR < 0.001) and Lmod2 (LFC = 7.52, FDR = 0.001). Down-regulated DEGs included Cdh6 (LFC = -21.38, FDR < 0.001) and Gbp1 (LFC = -21.78, FDR < 0.001). We validated RNA-seq findings with qRT-PCR of various up- and down-regulated genes including Dbp and Cdh6. Up-regulated genes (FDR < 0.1) were associated with the AMP-activated protein kinase signalling pathway (FDR = 0.02) and circadian rhythm (FDR = 0.02), whereas down-regulated DEGs were associated with biosynthesis and metabolic pathways (FDR < 0.05). We identified seven significant clusters of genes (FDR < 0.05, LRT) with similar expression patterns across groups. Functional enrichment analysis of these clusters revealed biological processes that may be implicated in age-related changes in skeletal muscles and/or sarcopenia initiation including extracellular matrix organization and an immune response (FDR < 0.05). CONCLUSIONS Gene expression changes in mouse peripheral nerve were detected prior to disturbances in myofiber innervation and sarcopenia onset. These early molecular changes we report shed a new light on biological processes that may be implicated in sarcopenia initiation and pathogenesis. Future studies are warranted to confirm the disease modifying and/or biomarker potential of the key changes we report here.
Collapse
Affiliation(s)
- Nicole Comfort
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNYUSA
| | - Meethila Gade
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNYUSA
| | - Madeleine Strait
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNYUSA
| | - Samantha J. Merwin
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNYUSA
| | - Daphne Antoniou
- Center for Basic ResearchBiomedical Research Foundation of the Academy of AthensAthensGreece
| | - Chiara Parodi
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNYUSA
| | - Lina Marcinczyk
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNYUSA
| | - Lea Jean‐Francois
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNYUSA
| | - Tessa R. Bloomquist
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNYUSA
| | - Anna Memou
- Center for Clinical, Experimental Surgery, and Translational ResearchBiomedical Research Foundation of the Academy of AthensAthensGreece
| | - Hardy J. Rideout
- Center for Clinical, Experimental Surgery, and Translational ResearchBiomedical Research Foundation of the Academy of AthensAthensGreece
| | - Stefania Corti
- Neuroscience Section, Dino Ferrari Centre, Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Shingo Kariya
- Department of Neurology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
| | - Diane B. Re
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNYUSA
- Center for Motor Neuron Biology and DiseaseColumbia UniversityNew YorkNYUSA
- NIEHS Center for Environmental Health Sciences in Northern ManhattanColumbia UniversityNew YorkNYUSA
| |
Collapse
|
42
|
Kim B, Zhang S, Huang Y, Ko KP, Zou G, Zhang J, Jun S, Kim KB, Jung YS, Park KS, Park JI. CRACD suppresses neuroendocrinal plasticity of lung adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537576. [PMID: 37131761 PMCID: PMC10153265 DOI: 10.1101/2023.04.19.537576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Tumor cell plasticity contributes to intratumoral heterogeneity and therapy resistance. Through cell plasticity, lung adenocarcinoma (LUAD) cells transform into neuroendocrinal (NE) tumor cells. However, the mechanisms of NE cell plasticity remain unclear. CRACD, a capping protein inhibitor, is frequently inactivated in cancers. CRACD knock-out (KO) de-represses NE-related gene expression in the pulmonary epithelium and LUAD cells. In LUAD mouse models, Cracd KO increases intratumoral heterogeneity with NE gene expression. Single-cell transcriptomic analysis showed that Cracd KO-induced NE plasticity is associated with cell de-differentiation and activated stemness-related pathways. The single-cell transcriptomes of LUAD patient tumors recapitulate that the distinct LUAD NE cell cluster expressing NE genes is co-enriched with SOX2, OCT4, and NANOG pathway activation, and impaired actin remodeling. This study reveals an unexpected role of CRACD in restricting NE cell plasticity that induces cell de-differentiation, providing new insights into cell plasticity of LUAD.
Collapse
Affiliation(s)
- Bongjun Kim
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shengzhe Zhang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuanjian Huang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kyung-Pil Ko
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gengyi Zou
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sohee Jun
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kee-Beom Kim
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Youn-Sang Jung
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Kwon-Sik Park
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
43
|
Maita KC, Garcia JP, Avila FR, Ricardo A TG, Ho OA, Claudia C S C, Eduardo N C, Forte AJ. Evaluation of the Aging Effect on Peripheral Nerve Regeneration: A Systematic Review. J Surg Res 2023; 288:329-340. [PMID: 37060859 DOI: 10.1016/j.jss.2023.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/18/2023] [Accepted: 03/16/2023] [Indexed: 04/17/2023]
Abstract
INTRODUCTION Peripheral nerve injuries have been associated with increased healthcare costs and decreased patients' quality of life. Aging represents one factor that slows the speed of peripheral nervous system (PNS) regeneration. Since cellular homeostasis imbalance associated with aging lead to an increased failure in nerve regeneration in mammals of advanced age, this systematic review aims to determine the main molecular and cellular mechanisms involved in peripheral nerve regeneration in aged murine models after a peripheral nerve injuries. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a literature search of 4 databases was conducted in July 2022 for studies comparing the peripheral nerve regeneration capability between young and aged murine models. RESULTS After the initial search yielded 744 publications, ten articles fulfilled the inclusion criteria. These studies show that age-related changes such as chronic inflammatory state, delayed macrophages' response to injury, dysfunctional Schwann Cells (SCs), and microenvironment alterations cause a reduction in the regenerative capability of the PNS in murine models. Furthermore, identifying altered gene expression patterns of SC after nerve damage can contribute to the understanding of physiological modifications produced by aging. CONCLUSIONS The interaction between macrophages and SC plays a crucial role in the nerve regeneration of aged models. Therefore, studies aimed at developing new and promising therapies for nerve regeneration should focus on these cellular groups to enhance the regenerative capabilities of the PNS in elderly populations.
Collapse
Affiliation(s)
- Karla C Maita
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida
| | - John P Garcia
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida
| | | | | | - Olivia A Ho
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida
| | - Chini Claudia C S
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida
| | - Chini Eduardo N
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida
| | - Antonio J Forte
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida.
| |
Collapse
|
44
|
Hara M, Kadoya K, Endo T, Iwasaki N. Peripheral nerve-derived fibroblasts promote neurite outgrowth in adult dorsal root ganglion neurons more effectively than skin-derived fibroblasts. Exp Physiol 2023; 108:621-635. [PMID: 36852508 PMCID: PMC10103893 DOI: 10.1113/ep090751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023]
Abstract
NEW FINDINGS What is the central question of this study? Although fibroblasts are involved in the regenerative process associated with peripheral nerve injury, detailed information regarding their characteristics is largely lacking. What is the main finding and its importance? Nerve-derived fibroblasts have a greater neurite-promoting effect than skin-derived fibroblasts, and epineurium-derived fibroblasts can promote neurite outgrowth more effectively than parenchyma-derived fibroblasts. The epineurium-derived fibroblasts and parenchyma-derived fibroblasts have distinctly different molecular profiles, including genes of soluble factors to promote axonal growth. Fibroblasts are molecularly and functionally different depending on their localization in nerve tissue, and epineurium-derived fibroblasts might be involved in axon regeneration after peripheral nerve injury more than previously thought. ABSTRACT Although fibroblasts (Fb) are components of a peripheral nerve involved in the regenerative process associated with peripheral nerve injury, detailed information regarding their characteristics is largely lacking. The objective of the present study was to investigate the capacity of Fb derived from peripheral nerves to stimulate the outgrowth of neurites from adult dorsal root ganglion neurons and to clarify their molecular characteristics. Fibroblasts were prepared from the epineurium and parenchyma of rat sciatic nerves and skin. The Fb derived from epineurium showed the greatest effect on neurite outgrowth, followed by the Fb derived from parenchyma, indicating that Fb derived from nerves promote neurite outgrowth more effectively than skin-derived Fb. Although both soluble and cell-surface factors contributed evenly to the neurite-promoting effect of nerve-derived Fb, in crush and transection injury models, Fb were not closely associated with regenerating axons, indicating that only soluble factors from Fb are available to regenerating axons. A transcriptome analysis revealed that the molecular profiles of these Fb were distinctly different and that the gene expression profiles of soluble factors that promote axonal growth are unique to each Fb. These findings indicate that Fb are molecularly and functionally different depending on their localization in nerve tissue and that Fb derived from epineurium might be involved more than was previously thought in axon regeneration after peripheral nerve injury.
Collapse
Affiliation(s)
- Masato Hara
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Ken Kadoya
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Takeshi Endo
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|
45
|
Huang J, Zhang G, Li S, Li J, Wang W, Xue J, Wang Y, Fang M, Zhou N. Endothelial cell-derived exosomes boost and maintain repair-related phenotypes of Schwann cells via miR199-5p to promote nerve regeneration. J Nanobiotechnology 2023; 21:10. [PMID: 36624511 PMCID: PMC9827708 DOI: 10.1186/s12951-023-01767-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Schwann cells (SCs) respond to nerve injury by transforming into the repair-related cell phenotype, which can provide the essential signals and spatial cues to promote axonal regeneration and induce target reinnervation. Endothelial cells (ECs) contribute to intraneural angiogenesis contributing to creating a permissive microenvironment. The coordination between ECs and SCs within injury sites is crucial in the regeneration process, however, it still unclear. As the intercellular vital information mediators in the nervous system, exosomes have been proposed to take a significant role in regulating regeneration. Thus, the main purpose of this study is to determine the facilitative effect of ECs-derived exosomes on SCs and to seek the underlying mechanism. RESULTS In the present study, we collected exosomes from media of ECs. We demonstrated that exosomes derived from ECs possessed the favorable neuronal affinity both in vitro and in vivo. Further research indicated that EC-exosomes (EC-EXO) could boost and maintain repair-related phenotypes of SCs, thereby enhancing axonal regeneration, myelination of regenerated axons and neurologically functional recovery of the injured nerve. MiRNA sequencing in EXO-treated SCs and control SCs indicated that EC-EXO significantly up-regulated expression of miR199-5p. Furthermore, this study demonstrated that EC-EXO drove the conversion of SC phenotypes in a PI3K/AKT/PTEN-dependent manner. CONCLUSION In conclusion, our research indicates that the internalization of EC-EXO in SCs can promote nerve regeneration by boosting and maintaining the repair-related phenotypes of SCs. And the mechanism may be relevant to the up-regulated expression of miR199-5p and activation of PI3K/AKT/PTEN signaling pathway.
Collapse
Affiliation(s)
- Jinsheng Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Geyi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Senrui Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Jiangnan Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Wengang Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Jiajia Xue
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Yuanyi Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Jilin Engineering Research Center For Spine and Spinal Cord Injury, 1 Xinmin St, Changchun, 130021, China.
| | - Mengyuan Fang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
46
|
Micheo WF, Foy CA, Kuffler DP. A Novel Technique Restores Function while Eliminating Intractable Neuropathic Pain in a 71-Year-Old Diabetic Patient under Challenging Injury Conditions. JOURNAL OF RECONSTRUCTIVE MICROSURGERY OPEN 2023. [DOI: 10.1055/s-0042-1757323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Abstract
Background The extent of functional recovery induced in healthy patients by sensory nerve grafts, the clinical “gold standard” technique for repairing peripheral nerves with a gap, is significantly limited by increasing gap length, time between trauma and repair, and patient age. When the values of any two, or all three, variables increase simultaneously, there is little to no recovery. For diabetic patients, even under the best of conditions and without any large variables, the extent of axon regeneration and functional recovery is significantly less, but generally none. Therefore, novel techniques are required that enhance recovery in diabetic patients.
Methods A 12-cm long median nerve gap in the wrist/palm of a 71-year-old male long-term diabetic patient was bridged 1.3 years post nerve injury with a sural nerve graft within a platelet-rich plasma-filled collagen tube.
Results By 2 months post-repair, the patient's level 6 chronic neuropathic pain was permanently eliminated. By 6.75 months, the palm had recovered good sensitivity to stimuli of all sensory modalities, including 4.56 g pressure and less than 15 mm two-point discrimination. Each finger had good motor function of M3–5, with partial to complete sensitivity to stimuli of all sensory modalities and an overall recovery of S3.
Conclusion This technique permanently eliminates severe chronic neuropathic pain while simultaneously inducing good motor and sensory recovery in a long-term diabetic patient, under conditions where recovery is rarely, if ever, seen, even in non-diabetic patients. This technique holds great promise of restoring function to diabetic patients, for whom it is otherwise not possible.
Collapse
Affiliation(s)
- William F. Micheo
- Department of Physical Medicine and Rehabilitation, University of Puerto Rico, San Juan, Puerto Rico
| | - Christian A. Foy
- Section of Orthopedic Surgery, University of Puerto Rico, San Juan, Puerto Rico
| | - Damien P. Kuffler
- Institute of Neurobiology, Medical School, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
47
|
Zhou S, Wan L, Liu X, Hu D, Lu F, Chen X, Liang F. Diminished schwann cell repair responses play a role in delayed diabetes-associated wound healing. Front Physiol 2022; 13:814754. [PMID: 36620211 PMCID: PMC9813439 DOI: 10.3389/fphys.2022.814754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Diabetes mellitus is the most common metabolic disease associated with impaired wound healing. Recently, Schwann cells (SCs), the glia of the peripheral nervous system, have been suggested to accelerate normal skin wound healing. However, the roles of SCs in diabetic wound healing are not fully understood. In this study, Full-thickness wounds were made in the dorsal skin of C57/B6 mice and db/db (diabetic) mice. Tissue samples were collected at different time points, and immunohistochemical and immunofluorescence analyses were performed to detect markers of de-differentiated SCs, including myelin basic protein, Sox 10, p75, c-Jun, and Ki67. In addition, in vitro experiments were performed using rat SC (RSC96) and murine fibroblast (L929) cell lines to examine the effects of high glucose conditions (50 mM) on the de-differentiation of SCs and the paracrine effects of SCs on myofibroblast formation. Here, we found that, compared with that in normal mice, wound healing was delayed and SCs failed to rapidly activate a repair program after skin wound injury in diabetic mice. Furthermore, we found that SCs from diabetic mice displayed functional impairments in cell de-differentiation, cell-cycle re-entry, and cell migration. In vitro, hyperglycemia impaired RSC 96 cell de-differentiation, cell-cycle re-entry, and cell migration, as well as their paracrine effects on myofibroblast formation, including the secretion of TGF-β and Timp1. These results suggest that delayed wound healing in diabetes is due in part to a diminished SC repair response and attenuated paracrine effects on myofibroblast formation.
Collapse
Affiliation(s)
- Shaolong Zhou
- Aesthetic Medical School, Yichun University, Yichun, China
| | - Lingling Wan
- School of Chemical and Biological Engineering, Yichun University, Yichun, China,Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xu Liu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Delin Hu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Feng Lu, ; Fangguo Liang, ; Xihang Chen,
| | - Xihang Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Feng Lu, ; Fangguo Liang, ; Xihang Chen,
| | - Fangguo Liang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Feng Lu, ; Fangguo Liang, ; Xihang Chen,
| |
Collapse
|
48
|
Dingwall CB, Strickland A, Yum SW, Yim AK, Zhu J, Wang PL, Yamada Y, Schmidt RE, Sasaki Y, Bloom AJ, DiAntonio A, Milbrandt J. Macrophage depletion blocks congenital SARM1-dependent neuropathy. J Clin Invest 2022; 132:e159800. [PMID: 36287209 PMCID: PMC9711884 DOI: 10.1172/jci159800] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Axon loss contributes to many common neurodegenerative disorders. In healthy axons, the axon survival factor NMNAT2 inhibits SARM1, the central executioner of programmed axon degeneration. We identified 2 rare NMNAT2 missense variants in 2 brothers afflicted with a progressive neuropathy syndrome. The polymorphisms resulted in amino acid substitutions V98M and R232Q, which reduced NMNAT2 NAD+-synthetase activity. We generated a mouse model to mirror the human syndrome and found that Nmnat2V98M/R232Q compound-heterozygous CRISPR mice survived to adulthood but developed progressive motor dysfunction, peripheral axon loss, and macrophage infiltration. These disease phenotypes were all SARM1-dependent. Remarkably, macrophage depletion therapy blocked and reversed neuropathic phenotypes in Nmnat2V98M/R232Q mice, identifying a SARM1-dependent neuroimmune mechanism as a key driver of disease pathogenesis. These findings demonstrate that SARM1 induced inflammatory neuropathy and highlight the potential of immune therapy as a treatment for this rare syndrome and other neurodegenerative conditions associated with NMNAT2 loss and SARM1 activation.
Collapse
Affiliation(s)
- Caitlin B. Dingwall
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sabrina W. Yum
- Division of Neurology, Children’s Hospital of Philadelphia, Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Aldrin K.Y. Yim
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jian Zhu
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Peter L. Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yurie Yamada
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert E. Schmidt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - A. Joseph Bloom
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, Missouri, USA
| | - Aaron DiAntonio
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, Missouri, USA
| |
Collapse
|
49
|
Negro S, Pirazzini M, Rigoni M. Models and methods to study Schwann cells. J Anat 2022; 241:1235-1258. [PMID: 34988978 PMCID: PMC9558160 DOI: 10.1111/joa.13606] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Schwann cells (SCs) are fundamental components of the peripheral nervous system (PNS) of all vertebrates and play essential roles in development, maintenance, function, and regeneration of peripheral nerves. There are distinct populations of SCs including: (1) myelinating SCs that ensheath axons by a specialized plasma membrane, called myelin, which enhances the conduction of electric impulses; (2) non-myelinating SCs, including Remak SCs, which wrap bundles of multiple axons of small caliber, and perysinaptic SCs (PSCs), associated with motor axon terminals at the neuromuscular junction (NMJ). All types of SCs contribute to PNS regeneration through striking morphological and functional changes in response to nerve injury, are affected in peripheral neuropathies and show abnormalities and a diminished plasticity during aging. Therefore, methodological approaches to study and manipulate SCs in physiological and pathophysiological conditions are crucial to expand the present knowledge on SC biology and to devise new therapeutic strategies to counteract neurodegenerative conditions and age-derived denervation. We present here an updated overview of traditional and emerging methodologies for the study of SCs for scientists approaching this research field.
Collapse
Affiliation(s)
- Samuele Negro
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
| | - Marco Pirazzini
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| | - Michela Rigoni
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| |
Collapse
|
50
|
Transcriptional Control of Peripheral Nerve Regeneration. Mol Neurobiol 2022; 60:329-341. [PMID: 36261692 DOI: 10.1007/s12035-022-03090-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/10/2022] [Indexed: 10/24/2022]
Abstract
Transcription factors are master regulators of various cellular processes under diverse physiological and pathological conditions. Many transcription factors that are differentially expressed after injury to peripheral nerves play important roles in nerve regeneration. Considering that rapid and timely regrowth of injured axons is a prerequisite for successful target reinnervation, here, we compile transcription factors that mediates axon elongation, including axon growth suppressor Klf4 and axon growth promoters c-Myc, Sox11, STAT3, Atf3, c-Jun, Smad1, C/EBPδ, and p53. Besides neuronal changes, Schwann cell phenotype modulation is also critical for nerve regeneration. The activation of Schwann cells at early time points post injury provides a permissive microenvironment whereas the re-differentiation of Schwann cells at later time points supports myelin sheath formation. Hence, c-Jun and Sox2, two critical drivers for Schwann cell reprogramming, as well as Krox-20 and Sox10, two essential regulators of Schwann cell myelination, are reviewed. These transcription factors may serve as promising targets for promoting the functional recovery of injured peripheral nerves.
Collapse
|