1
|
Chen Z, He J, Guo Y, Hao Y, Lv W, Chen Z, Wang J, Yang Y, Wang K, Liu Z, Ouyang Q, Su Z, Hu P, Xiao G. Adherent junctions: Physiology, role in hydrocephalus and potential therapeutic targets. IBRO Neurosci Rep 2025; 18:283-292. [PMID: 39995568 PMCID: PMC11849119 DOI: 10.1016/j.ibneur.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/14/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
In all epithelial cells, the adherent junctions (AJs) with cadherin as the core play an important role in the maintenance of the connection and the formation of apical-basal polarity. The ependymal cells close to the ventricular system rely on AJs with N-cadherin at the core to maintain their normal morphology and function. Therefore, it has an important impact on the function and disease of the central nervous system. Hydrocephalus is a pathological phenomenon of excessive cerebrospinal fluid accumulating in the ventricular system accompanied by continuous ventricular dilatation, which can be divided into obstructive hydrocephalus and communicating hydrocephalus according to the pathogenesis. Obstructive hydrocephalus is often associated with excessive ependymal cells produced by differentiation of radial glial cells. The etiology of communicating hydrocephalus is mainly related to the dyskinesia of cerebrospinal fluid. In addition, the damage of the brain barrier can lead to brain edema and aggravate the symptoms. At present, the researches on the pathogenesis of hydrocephalus are mainly focused on the development of ependymal cells and cilia, while less attention has been paid to molecules such as AJs, which play an important role in maintaining the polarity of ependymal cells. This paper discusses the formation and function of AJs and their role in preventing hydrocephalus by preserving the polarity of ependymal cilia, regulating the number of ependymal cells, and upholding the brain barrier integrity to impede hydrocephalus exacerbation, which provides a new direction for the study of hydrocephalus.
Collapse
Affiliation(s)
- Zhiye Chen
- Department of Diagnostic Radiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, PR China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Jian He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yating Guo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yue Hao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Wentao Lv
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zexin Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Junqiang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yijian Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Kaiyue Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhikun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Qian Ouyang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Department of Neurosurgery, Zhuzhou Hospital, Central South University Xiangya School of Medicine, Zhuzhou, Hunan 412000, PR China
| | - Zhangjie Su
- Department of Neurosurgery, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB21 2QQ, UK
| | - Pingsheng Hu
- Department of Diagnostic Radiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, PR China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| |
Collapse
|
2
|
Mao S, Song R, Jin S, Pang S, Jovanovic A, Zimmerman A, Li P, Wu X, Wendland MF, Lin K, Chen WC, Choksi SP, Chen G, Holtzman MJ, Reiter JF, Wan Y, Xuan Z, Xiang YK, Xu CS, Upadhyayula S, Hess HF, He L. Multicilia dynamically transduce Sonic Hedgehog signaling to regulate choroid plexus functions. Cell Rep 2025; 44:115383. [PMID: 40057957 DOI: 10.1016/j.celrep.2025.115383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/17/2024] [Accepted: 02/11/2025] [Indexed: 03/29/2025] Open
Abstract
The choroid plexus is a major site for cerebrospinal fluid (CSF) production, characterized by a multiciliated epithelial monolayer that regulates CSF production. We demonstrate that defective choroid plexus ciliogenesis or intraflagellar transport yields neonatal hydrocephalus, at least in part due to increased water channel Aqp1 and ion transporter Atp1a2 expression. We demonstrate choroid plexus multicilia as sensory cilia, transducing both canonical and non-canonical Sonic Hedgehog (Shh) signaling. Interestingly, it is the non-canonical Shh signaling that represses Aqp1 and Atp1a2 expression by the Smoothened (Smo)/Gαi/cyclic AMP (cAMP) pathway. Choroid plexus multicilia exhibit unique ciliary ultrastructure, carrying features of both primary and motile cilia. Unlike most cilia that elongate during maturation, choroid plexus ciliary length decreases during development, causing a decline of Shh signaling intensity in the developing choroid plexus, a derepression of Aqp1 and Atp1a2, and, ultimately, increased CSF production. Hence, the developmental dynamics of choroid plexus multicilia dampens the Shh signaling intensity to promote CSF production.
Collapse
Affiliation(s)
- Suifang Mao
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Rui Song
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Shibo Jin
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Song Pang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Aleksandra Jovanovic
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Adam Zimmerman
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Peng Li
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Xinying Wu
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Michael F Wendland
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Kerry Lin
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Wei-Chi Chen
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Semil P Choksi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gang Chen
- Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Ying Wan
- Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Zhenyu Xuan
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, CA 95616, USA; VA Northern California Health Care System, Mather, CA 95655, USA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Srigokul Upadhyayula
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Lin He
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
3
|
Conti B, Di Napoli C, Hafdaoui S, Nicotra V, Cesaretti C, Runza L, Accurti V, Boito S, Iascone M, Marchetti D, Silipigni R, Finelli P, Natacci F. CTNND1-Related Disorder: New Insight on Prenatal Phenotype. Am J Med Genet A 2025; 197:e63921. [PMID: 39487033 DOI: 10.1002/ajmg.a.63921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/08/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
CTNND1 is a gene located in 11q12.1, encoding for p120 catenin, a protein involved in maintaining adherent junctions, regulating the epithelial-mesenchymal transition, and transcriptional signaling of different cellular pathways. Pathogenic variants in CTNND1 are classically associated with isolated cleft palate and Blefaro-cheilo-dontic syndrome, an autosomal dominant condition characterized by abnormalities of the eyelid. Considering different signs and symptoms associated first with Blefaro-cheilo-dontic syndrome and later specifically with CTNND1, Ahlaratani and colleagues proposed a wider developmental role for CTNND1 than previously described, associating a broader phenotypic spectrum. This report describes a prenatal case in which a CTNND1 pathogenic variant and reverse phenotyping allowed a diagnosis of Blefaro-cheilo-dontic syndrome associated with characteristics never related to Blefaro-cheilo-dontic syndrome or CTNND1, such as hydrocephalus. This report is the first detailed fetal case of Blefaro-cheilo-dontic syndrome, and the new feature reported is consistent with CTNND1 developmental role and may add new insights into the phenotype spectrum that is being defined.
Collapse
Affiliation(s)
- B Conti
- Biomedical and Clinical Science Department, University of Milan, Milan, Italy
| | - C Di Napoli
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - S Hafdaoui
- Biomedical and Clinical Science Department, University of Milan, Milan, Italy
| | - V Nicotra
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - C Cesaretti
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - L Runza
- Division of Pathology, Fondazione IRCCS ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - V Accurti
- Fetal Medicine and Surgery Service, Fondazione IRCCS ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - S Boito
- Fetal Medicine and Surgery Service, Fondazione IRCCS ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - M Iascone
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - D Marchetti
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - R Silipigni
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - P Finelli
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - F Natacci
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
4
|
Chen Q, Zhao H, Pan X, Fang C, Qiu B, Guo J, Yan X, Zhu X. A polarized multicomponent foundation upholds ciliary central microtubules. J Mol Cell Biol 2025; 16:mjae031. [PMID: 39165107 PMCID: PMC11781205 DOI: 10.1093/jmcb/mjae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/03/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024] Open
Abstract
Cilia's back-and-forth beat pattern requires a central pair (CP) of microtubules. However, the mechanism by which the CP is upheld above the transition zone (TZ) remains unclear. Here, we showed that a rod-like substructure marked by Cep131 and ciliary Centrin serves as a polarized CP-supporting foundation. This CP-foundation (CPF) was assembled independently of the CP during ciliogenesis in mouse ependymal cells. It protruded from the distal end of the basal body out of the TZ to enwrap the proximal end of the CP. Through proximity labeling, we identified 26 potential CPF components, among which Ccdc148 specifically localized at the proximal region of Centrin-decorated CPF and was complementary to the Cep131-enriched distal region. Cep131 deficiency abolished the CPF, resulting in CP penetration into the TZ. Consequently, cilia became prone to ultrastructural abnormality and paralysis, and Cep131-deficient mice were susceptible to late-onset hydrocephalus. In addition to Centrin, phylogenetic analysis also indicated conservations of Ccdc131 and Ccdc148 from protists to mammals, suggesting that the CPF is an evolutionarily conserved multicomponent CP-supporting platform in cilia.
Collapse
Affiliation(s)
- Qingxia Chen
- Ministry of Education–Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huijie Zhao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Xinwen Pan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuyu Fang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Benhua Qiu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingting Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiumin Yan
- Ministry of Education–Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
5
|
Mao S, Song R, Jin S, Pang S, Jovanovic A, Zimmerman A, Li P, Wu X, Wendland MF, Lin K, Chen WC, Choksi SP, Chen G, Holtzman MJ, Reiter JF, Wan Y, Xuan Z, Xiang YK, Xu CS, Upadhyayula S, Hess HF, He L. Multicilia dynamically transduce Shh signaling to regulate choroid plexus functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.633415. [PMID: 39896593 PMCID: PMC11785054 DOI: 10.1101/2025.01.21.633415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Choroid plexus is a major site for cerebrospinal fluid (CSF) production, characterized by a multiciliated epithelial monolayer that regulates CSF production. We demonstrate that defective choroid plexus ciliogenesis or Intraflagellar transport yields neonatal hydrocephalus, at least in part, due to increased water channel Aqp1 and ion transporter Atp1a2 expression. We demonstrate choroid plexus multicilia as sensory cilia, transducing both canonical and non-canonical Shh signaling. Interestingly, it is the non-canonical Shh signaling that represses Aqp1 and Atp1a2 expression by Smo/Gαi/cAMP pathway. Choroid plexus multicilia exhibit unique ciliary ultrastructure, carrying features of both primary and motile cilia. Unlike most cilia that elongate during maturation, choroid plexus ciliary length decreases during development, causing a decline of Shh signaling intensity in developing choroid plexus, a derepression of Aqp1 and Atp1a2, and ultimately, an increased CSF production. Hence, developmental dynamics of choroid plexus multicilia dampens the Shh signaling intensity to promote CSF production.
Collapse
|
6
|
Deng X, Chen Y, Duan Q, Ding J, Wang Z, Wang J, Chen X, Zhou L, Zhao L. Genetic and molecular mechanisms of hydrocephalus. Front Mol Neurosci 2025; 17:1512455. [PMID: 39839745 PMCID: PMC11746911 DOI: 10.3389/fnmol.2024.1512455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
Hydrocephalus is a neurological condition caused by aberrant circulation and/or obstructed cerebrospinal fluid (CSF) flow after cerebral ventricle abnormal dilatation. In the past 50 years, the diagnosis and treatment of hydrocephalus have remained understudied and underreported, and little progress has been made with respect to prevention or treatment. Further research on the pathogenesis of hydrocephalus is essential for developing new diagnostic, preventive, and therapeutic strategies. Various genetic and molecular abnormalities contribute to the mechanisms of hydrocephalus, including gene deletions or mutations, the activation of cellular inflammatory signaling pathways, alterations in water channel proteins, and disruptions in iron metabolism. Several studies have demonstrated that modulating the expression of key proteins, including TGF-β, VEGF, Wnt, AQP, NF-κB, and NKCC, can significantly influence the onset and progression of hydrocephalus. This review summarizes and discusses key mechanisms that may be involved in the pathogenesis of hydrocephalus at both the genetic and molecular levels. While obstructive hydrocephalus can often be addressed by removing the obstruction, most cases require treatment strategies that involve merely slowing disease progression by correcting CSF circulation patterns. There have been few new research breakthroughs in the prevention and treatment of hydrocephalus.
Collapse
Affiliation(s)
- Xuehai Deng
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Yiqian Chen
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Qiyue Duan
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Jianlin Ding
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Zhong Wang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Junchi Wang
- School of Dentistry, North Sichuan Medical College, Nanchong, China
| | - Xinlong Chen
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Long Zhao
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
7
|
Pan X, Fang C, Shen C, Li X, Xie L, Li L, Huang S, Yan X, Zhu X. Directional ciliary beats across epithelia require Ccdc57-mediated coupling between axonemal orientation and basal body polarity. Nat Commun 2024; 15:10249. [PMID: 39592607 PMCID: PMC11599927 DOI: 10.1038/s41467-024-54766-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Motile cilia unify their axonemal orientations (AOs), or beat directions, across epithelia to drive liquid flows. This planar polarity results from cytoskeleton-driven swiveling of basal foot (BF), a basal body (BB) appendage coincident with the AO, in response to regulatory cues. How and when the BF-AO relationship is established, however, are unaddressed. Here, we show that the BF-AO coupling occurs during rotational polarizations of BBs and requires Ccdc57. Ccdc57 localizes on BBs as a rotationally-asymmetric punctum, which polarizes away from the BF in BBs having achieved the rotational polarity to probably fix the BF-AO relationship. Consistently, Ccdc57-deficient ependymal multicilia lack the BF-AO coupling and display directional beats at only single cell level. Ccdc57 -/- tracheal multicilia also fail to fully align their BFs. Furthermore, Ccdc57 -/- mice manifest severe hydrocephalus, due to impaired cerebrospinal fluid flow, and high mortality. These findings unravel mechanisms governing the planar polarity of epithelial motile cilia.
Collapse
Affiliation(s)
- Xinwen Pan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chuyu Fang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chuan Shen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xixia Li
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lele Xie
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Luan Li
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shan Huang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiumin Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xueliang Zhu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
8
|
Fang C, Pan X, Li D, Chen W, Huang Y, Chen Y, Li L, Gao Q, Liang X, Li D, Zhu X, Yan X. Distinct roles of Kif6 and Kif9 in mammalian ciliary trafficking and motility. J Cell Biol 2024; 223:e202312060. [PMID: 39158699 PMCID: PMC11334332 DOI: 10.1083/jcb.202312060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/27/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Ciliary beat and intraflagellar transport depend on dynein and kinesin motors. The kinesin-9 family members Kif6 and Kif9 are implicated in motile cilia motilities across protists and mammals. How they function and whether they act redundantly, however, remain unclear. Here, we show that Kif6 and Kif9 play distinct roles in mammals. Kif6 forms puncta that move bidirectionally along axonemes, whereas Kif9 appears to oscillate regionally on the ciliary central apparatus. Consistently, only Kif6 displays microtubule-based motor activity in vitro, and its ciliary localization requires its ATPase activity. Kif6 deficiency in mice disrupts coordinated ciliary beat across ependymal tissues and impairs cerebrospinal fluid flow, resulting in severe hydrocephalus and high mortality. Kif9 deficiency causes mild hydrocephalus without obviously affecting the ciliary beat or the lifespan. Kif6-/- and Kif9-/- males are infertile but exhibit oligozoospermia with poor sperm motility and defective forward motion of sperms, respectively. These results suggest Kif6 as a motor for cargo transport and Kif9 as a central apparatus regulator.
Collapse
Affiliation(s)
- Chuyu Fang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinwen Pan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Di Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Chen
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Huang
- Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yawen Chen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Luan Li
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Liang
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xueliang Zhu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Xiumin Yan
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Groh AMR, Song YL, Tea F, Lu B, Huynh S, Afanasiev E, Bigotte M, Del Bigio MR, Stratton JA. Multiciliated ependymal cells: an update on biology and pathology in the adult brain. Acta Neuropathol 2024; 148:39. [PMID: 39254862 DOI: 10.1007/s00401-024-02784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024]
Abstract
Mature multiciliated ependymal cells line the cerebral ventricles where they form a partial barrier between the cerebrospinal fluid (CSF) and brain parenchyma and regulate local CSF microcirculation through coordinated ciliary beating. Although the ependyma is a highly specialized brain interface with barrier, trophic, and perhaps even regenerative capacity, it remains a misfit in the canon of glial neurobiology. We provide an update to seminal reviews in the field by conducting a scoping review of the post-2010 mature multiciliated ependymal cell literature. We delineate how recent findings have either called into question or substantiated classical views of the ependymal cell. Beyond this synthesis, we document the basic methodologies and study characteristics used to describe multiciliated ependymal cells since 1980. Our review serves as a comprehensive resource for future investigations of mature multiciliated ependymal cells.
Collapse
Affiliation(s)
- Adam M R Groh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Yeji Lori Song
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Fiona Tea
- Department of Neuroscience, University of Montreal, Montréal, QC, Canada
| | - Brianna Lu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Stephanie Huynh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Elia Afanasiev
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Maxime Bigotte
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Marc R Del Bigio
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada.
| |
Collapse
|
10
|
Wright AM, Wu YC, Feng L, Wen Q. Diffusion magnetic resonance imaging of cerebrospinal fluid dynamics: Current techniques and future advancements. NMR IN BIOMEDICINE 2024; 37:e5162. [PMID: 38715420 PMCID: PMC11303114 DOI: 10.1002/nbm.5162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/20/2024] [Accepted: 03/30/2024] [Indexed: 05/22/2024]
Abstract
Cerebrospinal fluid (CSF) plays a critical role in metabolic waste clearance from the brain, requiring its circulation throughout various brain pathways, including the ventricular system, subarachnoid spaces, para-arterial spaces, interstitial spaces, and para-venous spaces. The complexity of CSF circulation has posed a challenge in obtaining noninvasive measurements of CSF dynamics. The assessment of CSF dynamics throughout its various circulatory pathways is possible using diffusion magnetic resonance imaging (MRI) with optimized sensitivity to incoherent water movement across the brain. This review presents an overview of both established and emerging diffusion MRI techniques designed to measure CSF dynamics and their potential clinical applications. The discussion offers insights into the optimization of diffusion MRI acquisition parameters to enhance the sensitivity and specificity of diffusion metrics on underlying CSF dynamics. Lastly, we emphasize the importance of cautious interpretations of diffusion-based imaging, especially when differentiating between tissue- and fluid-related changes or elucidating structural versus functional alterations.
Collapse
Affiliation(s)
- Adam M. Wright
- Department of Radiology and Imaging Sciences, Indiana
University School of Medicine, Indianapolis, Indiana, USA
- Weldon School of Biomedical Engineering Department, Purdue
University, West Lafayette, Indiana, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana
University School of Medicine, Indianapolis, Indiana, USA
- Weldon School of Biomedical Engineering Department, Purdue
University, West Lafayette, Indiana, USA
- Stark Neurosciences Research Institute, Indiana University
School of Medicine, Indianapolis, Indiana, USA
| | - Li Feng
- Center for Advanced Imaging Innovation and Research
(CAI2R), New York University Grossman School of Medicine, New York, New York,
USA
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana
University School of Medicine, Indianapolis, Indiana, USA
- Weldon School of Biomedical Engineering Department, Purdue
University, West Lafayette, Indiana, USA
| |
Collapse
|
11
|
Luo W, Fu X, Huang H, Wu P, Wang Y, Liu Z, He S, Pang L, Ren D, Cui Y. Planar Cell Polarity in the Multiciliated Epithelial Lining of the Mouse Eustachian Tube. Laryngoscope 2024; 134:3795-3801. [PMID: 38613460 DOI: 10.1002/lary.31451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
OBJECTIVES Planar cell polarity (PCP) signaling, essential for uniform alignment and directional beating of motile cilia, has been investigated in multiciliated epithelia. As a complex structure connecting the middle ear to the nasopharynx, the eustachian tube (ET) is important in the onset of ear-nose-throat diseases. However, PCP signaling, including the orientation that is important for ciliary motility and clearance function in the ET, has not been studied. We evaluated PCP in the ET epithelium. STUDY DESIGN Morphometric examination of the mouse ET. METHODS We performed electron microscopy to assess ciliary polarity in the mouse ET, along with immunohistochemical analysis of PCP protein localization in the ET epithelium. RESULTS We discovered PCP in the ET epithelium. Motile cilia were aligned in the same direction in individual and neighboring cells; this alignment manifested as ciliary polarity in multiciliated cells. Additionally, PCP proteins were asymmetrically localized between adjacent cells in the plane of the ET. CONCLUSIONS The multiciliated ET epithelium exhibits polarization, suggesting novel structural features that may be critical for ET function. LEVEL OF EVIDENCE NA Laryngoscope, 134:3795-3801, 2024.
Collapse
Affiliation(s)
- Wenwei Luo
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiao Fu
- Department of Otolaryngology-Head and Neck Surgery, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Hongming Huang
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Peina Wu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yanmei Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhifeng Liu
- Department of Otolaryngology, Longgang E.N.T hospital & Institute of E.N.T, Shenzhen, China
| | - Shiqi He
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Limin Pang
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Dongdong Ren
- Department of Otolaryngology-Head and Neck Surgery, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Yong Cui
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
DeSpenza T, Singh A, Allington G, Zhao S, Lee J, Kiziltug E, Prina ML, Desmet N, Dang HQ, Fields J, Nelson-Williams C, Zhang J, Mekbib KY, Dennis E, Mehta NH, Duy PQ, Shimelis H, Walsh LK, Marlier A, Deniz E, Lake EMR, Constable RT, Hoffman EJ, Lifton RP, Gulledge A, Fiering S, Moreno-De-Luca A, Haider S, Alper SL, Jin SC, Kahle KT, Luikart BW. Pathogenic variants in autism gene KATNAL2 cause hydrocephalus and disrupt neuronal connectivity by impairing ciliary microtubule dynamics. Proc Natl Acad Sci U S A 2024; 121:e2314702121. [PMID: 38916997 PMCID: PMC11228466 DOI: 10.1073/pnas.2314702121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/30/2024] [Indexed: 06/27/2024] Open
Abstract
Enlargement of the cerebrospinal fluid (CSF)-filled brain ventricles (cerebral ventriculomegaly), the cardinal feature of congenital hydrocephalus (CH), is increasingly recognized among patients with autism spectrum disorders (ASD). KATNAL2, a member of Katanin family microtubule-severing ATPases, is a known ASD risk gene, but its roles in human brain development remain unclear. Here, we show that nonsense truncation of Katnal2 (Katnal2Δ17) in mice results in classic ciliopathy phenotypes, including impaired spermatogenesis and cerebral ventriculomegaly. In both humans and mice, KATNAL2 is highly expressed in ciliated radial glia of the fetal ventricular-subventricular zone as well as in their postnatal ependymal and neuronal progeny. The ventriculomegaly observed in Katnal2Δ17 mice is associated with disrupted primary cilia and ependymal planar cell polarity that results in impaired cilia-generated CSF flow. Further, prefrontal pyramidal neurons in ventriculomegalic Katnal2Δ17 mice exhibit decreased excitatory drive and reduced high-frequency firing. Consistent with these findings in mice, we identified rare, damaging heterozygous germline variants in KATNAL2 in five unrelated patients with neurosurgically treated CH and comorbid ASD or other neurodevelopmental disorders. Mice engineered with the orthologous ASD-associated KATNAL2 F244L missense variant recapitulated the ventriculomegaly found in human patients. Together, these data suggest KATNAL2 pathogenic variants alter intraventricular CSF homeostasis and parenchymal neuronal connectivity by disrupting microtubule dynamics in fetal radial glia and their postnatal ependymal and neuronal descendants. The results identify a molecular mechanism underlying the development of ventriculomegaly in a genetic subset of patients with ASD and may explain persistence of neurodevelopmental phenotypes in some patients with CH despite neurosurgical CSF shunting.
Collapse
Affiliation(s)
- Tyrone DeSpenza
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT06510
- Medical Scientist Training Program, Yale School of Medicine, Yale University, New Haven, CT06510
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Amrita Singh
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Garrett Allington
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT06510
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02115
| | - Shujuan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, MO63110
| | - Junghoon Lee
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Emre Kiziltug
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Mackenzi L. Prina
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Nicole Desmet
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Huy Q. Dang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Jennifer Fields
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Carol Nelson-Williams
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Junhui Zhang
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Kedous Y. Mekbib
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Evan Dennis
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02115
| | - Neel H. Mehta
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02115
| | - Phan Q. Duy
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Hermela Shimelis
- Autism and Developmental Medicine Institute, Geisinger, Danville, PA17821
| | - Lauren K. Walsh
- Autism and Developmental Medicine Institute, Geisinger, Danville, PA17821
| | - Arnaud Marlier
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Engin Deniz
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT06510
| | - Evelyn M. R. Lake
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT06520-8042
| | - R. Todd Constable
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT06520-8042
| | - Ellen J. Hoffman
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT06510
- Child Study Center, Yale School of Medicine, New Haven, CT06510
| | - Richard P. Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY10065
| | - Allan Gulledge
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | - Andres Moreno-De-Luca
- Autism and Developmental Medicine Institute, Geisinger, Danville, PA17821
- Department of Radiology, Diagnostic Medicine Institute, Geisinger, Danville, PA17821
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, LondonWC1N 1AX, United Kingdom
| | - Seth L. Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA02215
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO63110
| | - Kristopher T. Kahle
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT06510
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02115
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA02115
| | - Bryan W. Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| |
Collapse
|
13
|
Yamada S, Otani T, Ii S, Ito H, Iseki C, Tanikawa M, Watanabe Y, Wada S, Oshima M, Mase M. Modeling cerebrospinal fluid dynamics across the entire intracranial space through integration of four-dimensional flow and intravoxel incoherent motion magnetic resonance imaging. Fluids Barriers CNS 2024; 21:47. [PMID: 38816737 PMCID: PMC11138021 DOI: 10.1186/s12987-024-00552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Bidirectional reciprocal motion of cerebrospinal fluid (CSF) was quantified using four-dimensional (4D) flow magnetic resonance imaging (MRI) and intravoxel incoherent motion (IVIM) MRI. To estimate various CSF motions in the entire intracranial region, we attempted to integrate the flow parameters calculated using the two MRI sequences. To elucidate how CSF dynamics deteriorate in Hakim's disease, an age-dependent chronic hydrocephalus, flow parameters were estimated from the two MRI sequences to assess CSF motion in the entire intracranial region. METHODS This study included 127 healthy volunteers aged ≥ 20 years and 44 patients with Hakim's disease. On 4D flow MRI for measuring CSF motion, velocity encoding was set at 5 cm/s. For the IVIM MRI analysis, the diffusion-weighted sequence was set at six b-values (i.e., 0, 50, 100, 250, 500, and 1000 s/mm2), and the biexponential IVIM fitting method was adapted. The relationships between the fraction of incoherent perfusion (f) on IVIM MRI and 4D flow MRI parameters including velocity amplitude (VA), absolute maximum velocity, stroke volume, net flow volume, and reverse flow rate were comprehensively evaluated in seven locations in the ventricles and subarachnoid spaces. Furthermore, we developed a new parameter for fluid oscillation, the Fluid Oscillation Index (FOI), by integrating these two measurements. In addition, we investigated the relationship between the measurements and indices specific to Hakim's disease and the FOIs in the entire intracranial space. RESULTS The VA on 4D flow MRI was significantly associated with the mean f-values on IVIM MRI. Therefore, we estimated VA that could not be directly measured on 4D flow MRI from the mean f-values on IVIM MRI in the intracranial CSF space, using the following formula; e0.2(f-85) + 0.25. To quantify fluid oscillation using one integrated parameter with weighting, FOI was calculated as VA × 10 + f × 0.02. In addition, the FOIs at the left foramen of Luschka had the strongest correlations with the Evans index (Pearson's correlation coefficient: 0.78). The other indices related with Hakim's disease were significantly associated with the FOIs at the cerebral aqueduct and bilateral foramina of Luschka. FOI at the cerebral aqueduct was also elevated in healthy controls aged ≥ 60 years. CONCLUSIONS We estimated pulsatile CSF movements in the entire intracranial CSF space in healthy individuals and patients with Hakim's disease using FOI integrating VA from 4D flow MRI and f-values from IVIM MRI. FOI is useful for quantifying the CSF oscillation.
Collapse
Affiliation(s)
- Shigeki Yamada
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Science, Kawasumi 1, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi, 467-8601, Japan.
- Interfaculty Initiative in Information Studies/Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
| | - Tomohiro Otani
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Satoshi Ii
- Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, Tokyo, Japan
- Faculty of System Design, Tokyo Metropolitan University, Tokyo, Japan
| | - Hirotaka Ito
- Medical System Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Chifumi Iseki
- Department of Behavioural Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Division of Neurology and Clinical Neuroscience, Department of Internal Medicine III, Yamagata University School of Medicine, Yamagata, Japan
| | - Motoki Tanikawa
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Science, Kawasumi 1, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi, 467-8601, Japan
| | - Yoshiyuki Watanabe
- Department of Radiology, Shiga University of Medical Science, Shiga, Japan
| | - Shigeo Wada
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Marie Oshima
- Interfaculty Initiative in Information Studies/Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Mitsuhito Mase
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Science, Kawasumi 1, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi, 467-8601, Japan
| |
Collapse
|
14
|
Xie S, Xie X, Tang J, Luo B, Chen J, Wen Q, Zhou J, Chen G. Cerebral furin deficiency causes hydrocephalus in mice. Genes Dis 2024; 11:101009. [PMID: 38292192 PMCID: PMC10825277 DOI: 10.1016/j.gendis.2023.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 02/01/2024] Open
Abstract
Furin is a pro-protein convertase that moves between the trans-Golgi network and cell surface in the secretory pathway. We have previously reported that cerebral overexpression of furin promotes cognitive functions in mice. Here, by generating the brain-specific furin conditional knockout (cKO) mice, we investigated the role of furin in brain development. We found that furin deficiency caused early death and growth retardation. Magnetic resonance imaging showed severe hydrocephalus. In the brain of furin cKO mice, impaired ciliogenesis and the derangement of microtubule structures appeared along with the down-regulated expression of RAB28, a ciliary vesicle protein. In line with the widespread neuronal loss, ependymal cell layers were damaged. Further proteomics analysis revealed that cell adhesion molecules including astrocyte-enriched ITGB8 and BCAR1 were altered in furin cKO mice; and astrocyte overgrowth was accompanied by the reduced expression of SOX9, indicating a disrupted differentiation into ependymal cells. Together, whereas alteration of RAB28 expression correlated with the role of vesicle trafficking in ciliogenesis, dysfunctional astrocytes might be involved in ependymal damage contributing to hydrocephalus in furin cKO mice. The structural and molecular alterations provided a clue for further studying the potential mechanisms of furin.
Collapse
Affiliation(s)
- Shiqi Xie
- Nursing College, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoyong Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Jing Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Biao Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Jian Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Qixin Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Jianrong Zhou
- Nursing College, Chongqing Medical University, Chongqing 400016, China
| | - Guojun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| |
Collapse
|
15
|
Castaneyra-Ruiz L, Ledbetter J, Lee S, Rangel A, Torres E, Romero B, Muhonen M. Intraventricular dimethyl sulfoxide (DMSO) induces hydrocephalus in a dose-dependent pattern. Heliyon 2024; 10:e27295. [PMID: 38486744 PMCID: PMC10937698 DOI: 10.1016/j.heliyon.2024.e27295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction Dimethyl sulfoxide (DMSO), a widely utilized solvent in the medical industry, has been associated with various adverse effects, even at low concentrations, including damage to mitochondrial integrity, altered membrane potentials, caspase activation, and apoptosis. Notably, therapeutic molecules for central nervous system treatments, such as embolic agents or some chemotherapy drugs that are dissolved in DMSO, have been associated with hydrocephalus as a secondary complication. Our study investigated the potential adverse effects of DMSO on the brain, specifically focusing on the development of hydrocephalus and the effect on astrocytes. Methods Varied concentrations of DMSO were intraventricularly injected into 3-day-old mice, and astrocyte cultures were exposed to similar concentrations of DMSO. After 14 days of injection, magnetic resonance imaging (MRI) was employed to quantify the brain ventricular volumes in mice. Immunofluorescence analysis was conducted to delineate DMSO-dependent effects in the brain. Additionally, astrocyte cultures were utilized to assess astrocyte viability and the effects of cellular apoptosis. Results Our findings revealed a dose-dependent induction of ventriculomegaly in mice with 2%, 10%, and 100% DMSO injections (p < 0.001). The ciliated cells of the ventricles were also proportionally affected by DMSO concentration (p < 0.0001). Furthermore, cultured astrocytes exhibited increased apoptosis after DMSO exposure (p < 0.001). Conclusion Our study establishes that intraventricular administration of DMSO induces hydrocephalus in a dose-dependent manner. This observation sheds light on a potential explanation for the occurrence of hydrocephalus as a secondary complication in intracranial treatments utilizing DMSO as a solvent.
Collapse
Affiliation(s)
| | | | - Seunghyun Lee
- CHOC Children's Research Institute, Orange, CA, 92868, USA
| | - Anthony Rangel
- CHOC Children's Research Institute, Orange, CA, 92868, USA
| | - Evelyn Torres
- CHOC Children's Research Institute, Orange, CA, 92868, USA
| | - Bianca Romero
- Neurosurgery Department at CHOC Children's Hospital, Orange, CA, 92868, USA
| | - Michael Muhonen
- Neurosurgery Department at CHOC Children's Hospital, Orange, CA, 92868, USA
| |
Collapse
|
16
|
Shin M, Lee J, Lee H, Kumar V, Kim J, Park S. Deup1 Expression Interferes with Multiciliated Differentiation. Mol Cells 2023; 46:746-756. [PMID: 38052490 PMCID: PMC10701303 DOI: 10.14348/molcells.2023.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/01/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023] Open
Abstract
A recent study revealed that the loss of Deup1 expression does not affect either centriole amplification or multicilia formation. Therefore, the deuterosome per se is not a platform for amplification of centrioles. In this study, we examine whether gain-of-function of Deup1 affects the development of multiciliated ependymal cells. Our time-lapse study reveals that deuterosomes with an average diameter of 300 nm have two different fates during ependymal differentiation. In the first instance, deuterosomes are scattered and gradually disappear as cells become multiciliated. In the second instance, deuterosomes self-organize into a larger aggregate, called a deuterosome cluster (DC). Unlike scattered deuterosomes, DCs possess centriole components primarily within their large structure. A characteristic of DC-containing cells is that they tend to become primary ciliated rather than multiciliated. Our in utero electroporation study shows that DCs in ependymal tissue are mostly observed at early postnatal stages, but are scarce at late postnatal stages, suggesting the presence of DC antagonists within the differentiating cells. Importantly, from our bead flow assay, ectopic expression of Deup1 significantly impairs cerebrospinal fluid flow. Furthermore, we show that expression of mouse Deup1 in Xenopus embryos has an inhibitory effect on differentiation of multiciliated cells in the epidermis. Taken together, we conclude that the DC formation of Deup1 in multiciliated cells inhibits production of multiple centrioles.
Collapse
Affiliation(s)
- Miram Shin
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Jiyeon Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Haeryung Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| |
Collapse
|
17
|
Song S, Cho B, Weiner AT, Nissen SB, Ojeda Naharros I, Sanchez Bosch P, Suyama K, Hu Y, He L, Svinkina T, Udeshi ND, Carr SA, Perrimon N, Axelrod JD. Protein phosphatase 1 regulates core PCP signaling. EMBO Rep 2023; 24:e56997. [PMID: 37975164 PMCID: PMC10702827 DOI: 10.15252/embr.202356997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Planar cell polarity (PCP) signaling polarizes epithelial cells within the plane of an epithelium. Core PCP signaling components adopt asymmetric subcellular localizations within cells to both polarize and coordinate polarity between cells. Achieving subcellular asymmetry requires additional effectors, including some mediating post-translational modifications of core components. Identification of such proteins is challenging due to pleiotropy. We used mass spectrometry-based proximity labeling proteomics to identify such regulators in the Drosophila wing. We identified the catalytic subunit of protein phosphatase1, Pp1-87B, and show that it regulates core protein polarization. Pp1-87B interacts with the core protein Van Gogh and at least one serine/threonine kinase, Dco/CKIε, that is known to regulate PCP. Pp1-87B modulates Van Gogh subcellular localization and directs its dephosphorylation in vivo. PNUTS, a Pp1 regulatory subunit, also modulates PCP. While the direct substrate(s) of Pp1-87B in control of PCP is not known, our data support the model that cycling between phosphorylated and unphosphorylated forms of one or more core PCP components may regulate acquisition of asymmetry. Finally, our screen serves as a resource for identifying additional regulators of PCP signaling.
Collapse
Affiliation(s)
- Song Song
- Department of PathologyStanford University School of MedicineStanfordCAUSA
- Present address:
GenScriptPiscatawayNJUSA
| | - Bomsoo Cho
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Alexis T Weiner
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Silas Boye Nissen
- Department of PathologyStanford University School of MedicineStanfordCAUSA
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW)University of CopenhagenCopenhagenDenmark
| | - Irene Ojeda Naharros
- Department of OphthalmologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | | | - Kaye Suyama
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolHarvard UniversityBostonMAUSA
| | - Li He
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolHarvard UniversityBostonMAUSA
- Present address:
School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
| | | | | | | | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolHarvard UniversityBostonMAUSA
- Howard Hughes Medical InstituteBostonMAUSA
| | - Jeffrey D Axelrod
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| |
Collapse
|
18
|
Hou CC, Li D, Berry BC, Zheng S, Carroll RS, Johnson MD, Yang HW. Heterozygous FOXJ1 Mutations Cause Incomplete Ependymal Cell Differentiation and Communicating Hydrocephalus. Cell Mol Neurobiol 2023; 43:4103-4116. [PMID: 37620636 PMCID: PMC10661798 DOI: 10.1007/s10571-023-01398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Heterozygous mutations affecting FOXJ1, a transcription factor governing multiciliated cell development, have been associated with obstructive hydrocephalus in humans. However, factors that disrupt multiciliated ependymal cell function often cause communicating hydrocephalus, raising questions about whether FOXJ1 mutations cause hydrocephalus primarily by blocking cerebrospinal fluid (CSF) flow or by different mechanisms. Here, we show that heterozygous FOXJ1 mutations are also associated with communicating hydrocephalus in humans and cause communicating hydrocephalus in mice. Disruption of one Foxj1 allele in mice leads to incomplete ependymal cell differentiation and communicating hydrocephalus. Mature ependymal cell number and motile cilia number are decreased, and 12% of motile cilia display abnormal axonemes. We observed decreased microtubule attachment to basal bodies, random localization and orientation of basal body patches, loss of planar cell polarity, and a disruption of unidirectional CSF flow. Thus, heterozygous FOXJ1 mutations impair ventricular multiciliated cell differentiation, thereby causing communicating hydrocephalus. CSF flow obstruction may develop secondarily in some patients harboring FOXJ1 mutations. Heterozygous FOXJ1 mutations impair motile cilia structure and basal body alignment, thereby disrupting CSF flow dynamics and causing communicating hydrocephalus.
Collapse
Affiliation(s)
- Connie C Hou
- Department of Neurological Surgery, University of Massachusetts Chan Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA
| | - Danielle Li
- Department of Neurological Surgery, University of Massachusetts Chan Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA
| | - Bethany C Berry
- Department of Neurological Surgery, University of Massachusetts Chan Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA
| | - Shaokuan Zheng
- Department of Neurological Surgery, University of Massachusetts Chan Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA
| | - Rona S Carroll
- Department of Neurological Surgery, University of Massachusetts Chan Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA
| | - Mark D Johnson
- Department of Neurological Surgery, University of Massachusetts Chan Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA.
- UMass Memorial Health, Worcester, MA, 01655, USA.
| | - Hong Wei Yang
- Department of Neurological Surgery, University of Massachusetts Chan Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA.
| |
Collapse
|
19
|
Song S, Cho B, Weiner AT, Nissen SB, Naharros IO, Bosch PS, Suyama K, Hu Y, He L, Svinkina T, Udeshi ND, Carr SA, Perrimon N, Axelrod JD. Protein phosphatase 1 regulates core PCP signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.556998. [PMID: 37745534 PMCID: PMC10515792 DOI: 10.1101/2023.09.12.556998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
PCP signaling polarizes epithelial cells within the plane of an epithelium. Core PCP signaling components adopt asymmetric subcellular localizations within cells to both polarize and coordinate polarity between cells. Achieving subcellular asymmetry requires additional effectors, including some mediating post-translational modifications of core components. Identification of such proteins is challenging due to pleiotropy. We used mass spectrometry-based proximity labeling proteomics to identify such regulators in the Drosophila wing. We identified the catalytic subunit of Protein Phosphatase1, Pp1-87B, and show that it regulates core protein polarization. Pp1-87B interacts with the core protein Van Gogh and at least one Serine/Threonine kinase, Dco/CKIε, that is known to regulate PCP. Pp1-87B modulates Van Gogh subcellular localization and directs its dephosphorylation in vivo. PNUTS, a Pp1 regulatory subunit, also modulates PCP. While the direct substrate(s) of Pp1-87B in control of PCP is not known, our data support the model that cycling between phosphorylated and unphosphorylated forms of one or more core PCP components may regulate acquisition of asymmetry. Finally, our screen serves as a resource for identifying additional regulators of PCP signaling.
Collapse
Affiliation(s)
- Song Song
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Present Address: GenScript, 860 Centennial Avenue, Piscataway, NJ, 08854, USA
| | - Bomsoo Cho
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexis T. Weiner
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Silas Boye Nissen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Irene Ojeda Naharros
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143-3120, USA
| | - Pablo Sanchez Bosch
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kaye Suyama
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Li He
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Present Address: School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | | | | | | | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02138, USA
| | - Jeffrey D. Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
20
|
Zhang H, Yang M, Zhang J, Li L, Guan T, Liu J, Gong X, Yang F, Shen S, Liu M, Han Y. The putative protein kinase Stk36 is essential for ciliogenesis and CSF flow by associating with Ulk4. FASEB J 2023; 37:e23138. [PMID: 37584603 DOI: 10.1096/fj.202300481r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/28/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
Motile cilia lining on the ependymal cells are crucial for cerebrospinal fluid (CSF) flow and its dysfunction is often associated with hydrocephalus. Unc51-like-kinase 4 (Ulk4) was previously linked to CSF flow and motile ciliogenesis in mice, as the hypomorph mutant of Ulk4 (Ulk4tm1a/tm1a ) developed hydrocephalic phenotype resulted from defective ciliogenesis and disturbed ciliary motility, while the underling mechanism is largely obscure. Here, we report that serine/threonine kinase 36 (STK36), a paralog of ULK4, directly interacts with ULK4 and this was demonstrated by yeast two-hybrid (Y2H) in yeast and coimmunoprecipitation (co-IP) assays in HEK293T cells, respectively. The interaction region was confined to their respective N-terminal kinase domain. The hypomorph mutant of Stk36 (Stk36tmE4-/- ) also developed progressive hydrocephalus postnatally and dysfunctional CSF flow, with multiple defects of motile cilia, including reduced ciliary number, disorganized ciliary orientation, defected axonemal structure and inconsistent base body (BB) orientation. Stk36tmE4-/- also disturbed the expression of Foxj1 transcription factor and a range of other ciliogenesis-related genes. All these morphological changes, motile cilia defects and transcriptional dysregulation in the Stk36tmE4-/- are practically copied from that in Ulk4tm1a/tm1a mice. Taken together, we conclude that both Stk36 and Ulk4 are crucial for CSF flow, they cooperate by direct binding with their kinase domain to regulate the Foxj1 transcription factor pathways for ciliogenesis and cilia function, not limited to CSF flow. The underlying molecular mechanism probably conserved in evolution and could be extended to other metazoans.
Collapse
Affiliation(s)
- Hongye Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Meimei Yang
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Jianhua Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Li Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Tianyuan Guan
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Jiaxin Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xuanwei Gong
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Fan Yang
- Department of Neurology, Hebei Children's Hospital, Shijiazhuang, China
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Min Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yongfeng Han
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
21
|
Nualart F, Cifuentes M, Ramírez E, Martínez F, Barahona MJ, Ferrada L, Saldivia N, Bongarzone ER, Thorens B, Salazar K. Hyperglycemia increases SCO-spondin and Wnt5a secretion into the cerebrospinal fluid to regulate ependymal cell beating and glucose sensing. PLoS Biol 2023; 21:e3002308. [PMID: 37733692 PMCID: PMC10513282 DOI: 10.1371/journal.pbio.3002308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
Hyperglycemia increases glucose concentrations in the cerebrospinal fluid (CSF), activating glucose-sensing mechanisms and feeding behavior in the hypothalamus. Here, we discuss how hyperglycemia temporarily modifies ependymal cell ciliary beating to increase hypothalamic glucose sensing. A high level of glucose in the rat CSF stimulates glucose transporter 2 (GLUT2)-positive subcommissural organ (SCO) cells to release SCO-spondin into the dorsal third ventricle. Genetic inactivation of mice GLUT2 decreases hyperglycemia-induced SCO-spondin secretion. In addition, SCO cells secrete Wnt5a-positive vesicles; thus, Wnt5a and SCO-spondin are found at the apex of dorsal ependymal cilia to regulate ciliary beating. Frizzled-2 and ROR2 receptors, as well as specific proteoglycans, such as glypican/testican (essential for the interaction of Wnt5a with its receptors) and Cx43 coupling, were also analyzed in ependymal cells. Finally, we propose that the SCO-spondin/Wnt5a/Frizzled-2/Cx43 axis in ependymal cells regulates ciliary beating, a cyclic and adaptive signaling mechanism to control glucose sensing.
Collapse
Affiliation(s)
- Francisco Nualart
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Center for Advanced Microscopy CMA BIO BIO, University of Concepcion, Concepcion, Chile
| | - Manuel Cifuentes
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga Biomedical Research Institute and Nanomedicine Platform (IBIMA-BIONAND Platform), Malaga, Spain
| | - Eder Ramírez
- Center for Advanced Microscopy CMA BIO BIO, University of Concepcion, Concepcion, Chile
| | - Fernando Martínez
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - María José Barahona
- Center for Advanced Microscopy CMA BIO BIO, University of Concepcion, Concepcion, Chile
| | - Luciano Ferrada
- Center for Advanced Microscopy CMA BIO BIO, University of Concepcion, Concepcion, Chile
| | - Natalia Saldivia
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Ernesto R. Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Katterine Salazar
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| |
Collapse
|
22
|
Humphries AC, Molina-Pelayo C, Sil P, Hazelett CC, Devenport D, Mlodzik M. A Van Gogh/Vangl tyrosine phosphorylation switch regulates its interaction with core Planar Cell Polarity factors Prickle and Dishevelled. PLoS Genet 2023; 19:e1010849. [PMID: 37463168 PMCID: PMC10381084 DOI: 10.1371/journal.pgen.1010849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 07/28/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
Epithelial tissues can be polarized along two axes: in addition to apical-basal polarity they are often also polarized within the plane of the epithelium, known as planar cell polarity (PCP). PCP depends upon the conserved Wnt/Frizzled (Fz) signaling factors, including Fz itself and Van Gogh (Vang/Vangl in mammals). Here, taking advantage of the complementary features of Drosophila wing and mouse skin PCP establishment, we dissect how Vang/Vangl phosphorylation on a specific conserved tyrosine residue affects its interaction with two cytoplasmic core PCP factors, Dishevelled (Dsh/Dvl1-3 in mammals) and Prickle (Pk/Pk1-3). We demonstrate that Pk and Dsh/Dvl bind to Vang/Vangl in an overlapping region centered around this tyrosine. Strikingly, Vang/Vangl phosphorylation promotes its binding to Prickle, a key effector of the Vang/Vangl complex, and inhibits its interaction with Dishevelled. Thus phosphorylation of this tyrosine appears to promote the formation of the mature Vang/Vangl-Pk complex during PCP establishment and conversely it inhibits the Vang interaction with the antagonistic effector Dishevelled. Intriguingly, the phosphorylation state of this tyrosine might thus serve as a switch between transient interactions with Dishevelled and stable formation of Vang-Pk complexes during PCP establishment.
Collapse
Affiliation(s)
- Ashley C. Humphries
- Dept. of Cell, Developmental, & Regenerative Biology,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Claudia Molina-Pelayo
- Dept. of Cell, Developmental, & Regenerative Biology,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Parijat Sil
- Dept. of Molecular Biology Princeton University, Princeton, New Jersey, United States of America
| | - C. Clayton Hazelett
- Dept. of Molecular Biology Princeton University, Princeton, New Jersey, United States of America
| | - Danelle Devenport
- Dept. of Molecular Biology Princeton University, Princeton, New Jersey, United States of America
| | - Marek Mlodzik
- Dept. of Cell, Developmental, & Regenerative Biology,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
23
|
Ma XY, Yang TT, Liu L, Peng XC, Qian F, Tang FR. Ependyma in Neurodegenerative Diseases, Radiation-Induced Brain Injury and as a Therapeutic Target for Neurotrophic Factors. Biomolecules 2023; 13:754. [PMID: 37238624 PMCID: PMC10216700 DOI: 10.3390/biom13050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The neuron loss caused by the progressive damage to the nervous system is proposed to be the main pathogenesis of neurodegenerative diseases. Ependyma is a layer of ciliated ependymal cells that participates in the formation of the brain-cerebrospinal fluid barrier (BCB). It functions to promotes the circulation of cerebrospinal fluid (CSF) and the material exchange between CSF and brain interstitial fluid. Radiation-induced brain injury (RIBI) shows obvious impairments of the blood-brain barrier (BBB). In the neuroinflammatory processes after acute brain injury, a large amount of complement proteins and infiltrated immune cells are circulated in the CSF to resist brain damage and promote substance exchange through the BCB. However, as the protective barrier lining the brain ventricles, the ependyma is extremely vulnerable to cytotoxic and cytolytic immune responses. When the ependyma is damaged, the integrity of BCB is destroyed, and the CSF flow and material exchange is affected, leading to brain microenvironment imbalance, which plays a vital role in the pathogenesis of neurodegenerative diseases. Epidermal growth factor (EGF) and other neurotrophic factors promote the differentiation and maturation of ependymal cells to maintain the integrity of the ependyma and the activity of ependymal cilia, and may have therapeutic potential in restoring the homeostasis of the brain microenvironment after RIBI or during the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin-Yu Ma
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Ting-Ting Yang
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Lian Liu
- Department of Pharmacology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Feng Qian
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Feng-Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
24
|
Duy PQ, Rakic P, Alper SL, Robert SM, Kundishora AJ, Butler WE, Walsh CA, Sestan N, Geschwind DH, Jin SC, Kahle KT. A neural stem cell paradigm of pediatric hydrocephalus. Cereb Cortex 2023; 33:4262-4279. [PMID: 36097331 PMCID: PMC10110448 DOI: 10.1093/cercor/bhac341] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 12/25/2022] Open
Abstract
Pediatric hydrocephalus, the leading reason for brain surgery in children, is characterized by enlargement of the cerebral ventricles classically attributed to cerebrospinal fluid (CSF) overaccumulation. Neurosurgical shunting to reduce CSF volume is the default treatment that intends to reinstate normal CSF homeostasis, yet neurodevelopmental disability often persists in hydrocephalic children despite optimal surgical management. Here, we discuss recent human genetic and animal model studies that are shifting the view of pediatric hydrocephalus from an impaired fluid plumbing model to a new paradigm of dysregulated neural stem cell (NSC) fate. NSCs are neuroprogenitor cells that comprise the germinal neuroepithelium lining the prenatal brain ventricles. We propose that heterogenous defects in the development of these cells converge to disrupt cerebrocortical morphogenesis, leading to abnormal brain-CSF biomechanical interactions that facilitate passive pooling of CSF and secondary ventricular distention. A significant subset of pediatric hydrocephalus may thus in fact be due to a developmental brain malformation leading to secondary enlargement of the ventricles rather than a primary defect of CSF circulation. If hydrocephalus is indeed a neuroradiographic presentation of an inborn brain defect, it suggests the need to focus on optimizing neurodevelopment, rather than CSF diversion, as the primary treatment strategy for these children.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Seth L Alper
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Stephanie M Robert
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - William E Butler
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Daniel H Geschwind
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
25
|
Yamada S, Hiratsuka S, Otani T, Ii S, Wada S, Oshima M, Nozaki K, Watanabe Y. Usefulness of intravoxel incoherent motion MRI for visualizing slow cerebrospinal fluid motion. Fluids Barriers CNS 2023; 20:16. [PMID: 36899412 PMCID: PMC9999497 DOI: 10.1186/s12987-023-00415-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND In the cerebrospinal fluid (CSF) dynamics, the pulsations of cerebral arteries and brain is considered the main driving force for the reciprocating bidirectional CSF movements. However, measuring these complex CSF movements on conventional flow-related MRI methods is difficult. We tried to visualize and quantify the CSF motion by using intravoxel incoherent motion (IVIM) MRI with low multi-b diffusion-weighted imaging. METHODS Diffusion-weighted sequence with six b values (0, 50, 100, 250, 500, and 1000 s/mm2) was performed on 132 healthy volunteers aged ≥ 20 years and 36 patients with idiopathic normal pressure hydrocephalus (iNPH). The healthy volunteers were divided into three age groups (< 40, 40 to < 60, and ≥ 60 years). In the IVIM analysis, the bi-exponential IVIM fitting method using the Levenberg-Marquardt algorithm was adapted. The average, maximum, and minimum values of ADC, D, D*, and fraction of incoherent perfusion (f) calculated by IVIM were quantitatively measured in 45 regions of interests in the whole ventricles and subarachnoid spaces. RESULTS Compared with healthy controls aged ≥ 60 years, the iNPH group had significantly lower mean f values in all the parts of the lateral and 3rd ventricles, whereas significantly higher mean f value in the bilateral foramina of Luschka. In the bilateral Sylvian fossa, which contain the middle cerebral bifurcation, the mean f values increased gradually with increasing age, whereas those were significantly lower in the iNPH group. In the 45 regions of interests, the f values in the bilateral foramina of Luschka were the most positively correlated with the ventricular size and indices specific to iNPH, whereas that in the anterior part of the 3rd ventricle was the most negatively correlated with the ventricular size and indices specific to iNPH. Other parameters of ADC, D, and D* were not significantly different between the two groups in any locations. CONCLUSIONS The f value on IVIM MRI is useful for evaluating small pulsatile complex motion of CSF throughout the intracranial CSF spaces. Patients with iNPH had significantly lower mean f values in the whole lateral ventricles and 3rd ventricles and significantly higher mean f value in the bilateral foramina of Luschka, compared with healthy controls aged ≥ 60 years.
Collapse
Affiliation(s)
- Shigeki Yamada
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi, 467-8601, Japan. .,Department of Neurosurgery, Shiga University of Medical Science, Shiga, Japan. .,Normal Pressure Hydrocephalus Center, Rakuwakai Otowa Hospital, Kyoto, Japan. .,Interfaculty Initiative in Information Studies/Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
| | | | - Tomohiro Otani
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Satoshi Ii
- Faculty of System Design, Tokyo Metropolitan University, Tokyo, Japan
| | - Shigeo Wada
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Marie Oshima
- Interfaculty Initiative in Information Studies/Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Shiga, Japan
| | - Yoshiyuki Watanabe
- Department of Radiology, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
26
|
Xie H, Kang Y, Liu J, Huang M, Dai Z, Shi J, Wang S, Li L, Li Y, Zheng P, Sun Y, Han Q, Zhang J, Zhu Z, Xu L, Yelick PC, Cao M, Zhao C. Ependymal polarity defects coupled with disorganized ciliary beating drive abnormal cerebrospinal fluid flow and spine curvature in zebrafish. PLoS Biol 2023; 21:e3002008. [PMID: 36862758 PMCID: PMC10013924 DOI: 10.1371/journal.pbio.3002008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/14/2023] [Accepted: 01/20/2023] [Indexed: 03/03/2023] Open
Abstract
Idiopathic scoliosis (IS) is the most common spinal deformity diagnosed in childhood or early adolescence, while the underlying pathogenesis of this serious condition remains largely unknown. Here, we report zebrafish ccdc57 mutants exhibiting scoliosis during late development, similar to that observed in human adolescent idiopathic scoliosis (AIS). Zebrafish ccdc57 mutants developed hydrocephalus due to cerebrospinal fluid (CSF) flow defects caused by uncoordinated cilia beating in ependymal cells. Mechanistically, Ccdc57 localizes to ciliary basal bodies and controls the planar polarity of ependymal cells through regulating the organization of microtubule networks and proper positioning of basal bodies. Interestingly, ependymal cell polarity defects were first observed in ccdc57 mutants at approximately 17 days postfertilization, the same time when scoliosis became apparent and prior to multiciliated ependymal cell maturation. We further showed that mutant spinal cord exhibited altered expression pattern of the Urotensin neuropeptides, in consistent with the curvature of the spine. Strikingly, human IS patients also displayed abnormal Urotensin signaling in paraspinal muscles. Altogether, our data suggest that ependymal polarity defects are one of the earliest sign of scoliosis in zebrafish and disclose the essential and conserved roles of Urotensin signaling during scoliosis progression.
Collapse
Affiliation(s)
- Haibo Xie
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
- Fang Zongxi Center, Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yunsi Kang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Fang Zongxi Center, Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Junjun Liu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Fang Zongxi Center, Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Min Huang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhicheng Dai
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing China
| | - Jiale Shi
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Fang Zongxi Center, Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shuo Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Fang Zongxi Center, Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lanqin Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Fang Zongxi Center, Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yuan Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Fang Zongxi Center, Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Pengfei Zheng
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Fang Zongxi Center, Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yi Sun
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Fang Zongxi Center, Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qize Han
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Fang Zongxi Center, Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing China
| | - Leilei Xu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing China
| | - Pamela C. Yelick
- Department of Orthodontics, Tufts University School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Muqing Cao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengtian Zhao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Fang Zongxi Center, Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
27
|
Li J, Godoy MI, Zhang AJ, Diamante G, Ahn IS, Cebrian-Silla A, Alvarez-Buylla A, Yang X, Novitch BG, Zhang Y. Prdm16 and Vcam1 regulate the postnatal disappearance of embryonic radial glia and the ending of cortical neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528567. [PMID: 36824905 PMCID: PMC9949035 DOI: 10.1101/2023.02.14.528567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Embryonic neural stem cells (NSCs, i.e., radial glia) in the ventricular-subventricular zone (V-SVZ) generate the majority of neurons and glia in the forebrain. Postnatally, embryonic radial glia disappear and a subpopulation of radial glia transition into adult NSCs. As this transition occurs, widespread neurogenesis in brain regions such as the cerebral cortex ends. The mechanisms that regulate the postnatal disappearance of radial glia and the ending of embryonic neurogenesis remain poorly understood. Here, we show that PR domain-containing 16 (Prdm16) promotes the disappearance of radial glia and the ending of neurogenesis in the cerebral cortex. Genetic deletion of Prdm16 from NSCs leads to the persistence of radial glia in the adult V-SVZ and prolonged postnatal cortical neurogenesis. Mechanistically, Prdm16 induces the postnatal reduction in Vascular Cell Adhesion Molecule 1 (Vcam1). The postnatal disappearance of radial glia and the ending of cortical neurogenesis occur normally in Prdm16-Vcam1 double conditional knockout mice. These observations reveal novel molecular regulators of the postnatal disappearance of radial glia and the ending of embryonic neurogenesis, filling a key knowledge gap in NSC biology.
Collapse
Affiliation(s)
- Jiwen Li
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), USA
| | - Marlesa I. Godoy
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), USA
| | - Alice J. Zhang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), USA
| | | | - In Sook Ahn
- Department of Integrative Biology and Physiology, UCLA
| | - Arantxa Cebrian-Silla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, Department of Neurological Surgery, University of California, San Francisco, San Francisco, USA
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, Department of Neurological Surgery, University of California, San Francisco, San Francisco, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, UCLA
- Brain Research Institute at UCLA
- Institute for Quantitative and Computational Biosciences at UCLA
- Molecular Biology Institute at UCLA
| | - Bennett G. Novitch
- Brain Research Institute at UCLA
- Molecular Biology Institute at UCLA
- Department of Neurobiology, UCLA
- Intellectual and Developmental Disabilities Research Center at UCLA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA
| | - Ye Zhang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), USA
- Brain Research Institute at UCLA
- Molecular Biology Institute at UCLA
- Intellectual and Developmental Disabilities Research Center at UCLA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA
| |
Collapse
|
28
|
LRP2 contributes to planar cell polarity-dependent coordination of motile cilia function. Cell Tissue Res 2023; 392:535-551. [PMID: 36764939 PMCID: PMC10172251 DOI: 10.1007/s00441-023-03757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/04/2022] [Indexed: 02/12/2023]
Abstract
Motile cilia are protruding organelles on specialized epithelia that beat in a synchronous fashion to propel extracellular fluids. Coordination and orientation of cilia beating on individual cells and across tissues is a complex process dependent on planar cell polarity (PCP) signaling. Asymmetric sorting of PCP pathway components, essential to establish planar polarity, involves trafficking along the endocytic path, but the underlying regulatory processes remain incompletely understood. Here, we identified the endocytic receptor LRP2 as regulator of PCP component trafficking in ependyma, a multi-ciliated cell type that is involved in facilitating flow of the cerebrospinal fluid in the brain ventricular system. Lack of receptor expression in gene-targeted mice results in a failure to sort PCP core proteins to the anterior or posterior cell side and, consequently, in the inability to coordinate cilia arrangement and to aligned beating (loss of rotational and translational polarity). LRP2 deficiency coincides with a failure to sort NHERF1, a cytoplasmic LRP2 adaptor to the anterior cell side. As NHERF1 is essential to translocate PCP core protein Vangl2 to the plasma membrane, these data suggest a molecular mechanism whereby LRP2 interacts with PCP components through NHERF1 to control their asymmetric sorting along the endocytic path. Taken together, our findings identified the endocytic receptor LRP2 as a novel regulator of endosomal trafficking of PCP proteins, ensuring their asymmetric partition and establishment of translational and rotational planar cell polarity in the ependyma.
Collapse
|
29
|
Zhang K, Da Silva F, Seidl C, Wilsch-Bräuninger M, Herbst J, Huttner WB, Niehrs C. Primary cilia are WNT-transducing organelles whose biogenesis is controlled by a WNT-PP1 axis. Dev Cell 2023; 58:139-154.e8. [PMID: 36693320 DOI: 10.1016/j.devcel.2022.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/18/2022] [Accepted: 12/19/2022] [Indexed: 01/24/2023]
Abstract
WNT signaling is important in development, stem cell maintenance, and disease. WNT ligands typically signal via receptor activation across the plasma membrane to induce β-catenin-dependent gene activation. Here, we show that in mammalian primary cilia, WNT receptors relay a WNT/GSK3 signal that β-catenin-independently promotes ciliogenesis. Characterization of a LRP6 ciliary targeting sequence and monitoring of acute WNT co-receptor activation (phospho-LRP6) support this conclusion. Ciliary WNT signaling inhibits protein phosphatase 1 (PP1) activity, a negative regulator of ciliogenesis, by preventing GSK3-mediated phosphorylation of the PP1 regulatory inhibitor subunit PPP1R2. Concordantly, deficiency of WNT/GSK3 signaling by depletion of cyclin Y and cyclin-Y-like protein 1 induces primary cilia defects in mouse embryonic neuronal precursors, kidney proximal tubules, and adult mice preadipocytes.
Collapse
Affiliation(s)
- Kaiqing Zhang
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Fabio Da Silva
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Carina Seidl
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Michaela Wilsch-Bräuninger
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraβe 108, 01307 Dresden, Germany
| | - Jessica Herbst
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraβe 108, 01307 Dresden, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| |
Collapse
|
30
|
Coordination of Cilia Movements in Multi-Ciliated Cells. J Dev Biol 2022; 10:jdb10040047. [PMID: 36412641 PMCID: PMC9680496 DOI: 10.3390/jdb10040047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple motile cilia are formed at the apical surface of multi-ciliated cells in the epithelium of the oviduct or the fallopian tube, the trachea, and the ventricle of the brain. Those cilia beat unidirectionally along the tissue axis, and this provides a driving force for directed movements of ovulated oocytes, mucus, and cerebrospinal fluid in each of these organs. Furthermore, cilia movements show temporal coordination between neighboring cilia. To establish such coordination of cilia movements, cilia need to sense and respond to various cues, including the organ's orientation and movements of neighboring cilia. In this review, we discuss the mechanisms by which cilia movements of multi-ciliated cells are coordinated, focusing on planar cell polarity and the cytoskeleton, and highlight open questions for future research.
Collapse
|
31
|
Harkins D, Harvey TJ, Atterton C, Miller I, Currey L, Oishi S, Kasherman M, Davila RA, Harris L, Green K, Piper H, Parton RG, Thor S, Cooper HM, Piper M. Hydrocephalus in Nfix−/− Mice Is Underpinned by Changes in Ependymal Cell Physiology. Cells 2022; 11:cells11152377. [PMID: 35954220 PMCID: PMC9368351 DOI: 10.3390/cells11152377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Nuclear factor one X (NFIX) is a transcription factor required for normal ependymal development. Constitutive loss of Nfix in mice (Nfix−/−) is associated with hydrocephalus and sloughing of the dorsal ependyma within the lateral ventricles. Previous studies have implicated NFIX in the transcriptional regulation of genes encoding for factors essential to ependymal development. However, the cellular and molecular mechanisms underpinning hydrocephalus in Nfix−/− mice are unknown. To investigate the role of NFIX in hydrocephalus, we examined ependymal cells in brains from postnatal Nfix−/− and control (Nfix+/+) mice using a combination of confocal and electron microscopy. This revealed that the ependymal cells in Nfix−/− mice exhibited abnormal cilia structure and disrupted localisation of adhesion proteins. Furthermore, we modelled ependymal cell adhesion using epithelial cell culture and revealed changes in extracellular matrix and adherens junction gene expression following knockdown of NFIX. Finally, the ablation of Nfix from ependymal cells in the adult brain using a conditional approach culminated in enlarged ventricles, sloughing of ependymal cells from the lateral ventricles and abnormal localisation of adhesion proteins, which are phenotypes observed during development. Collectively, these data demonstrate a pivotal role for NFIX in the regulation of cell adhesion within ependymal cells of the lateral ventricles.
Collapse
Affiliation(s)
- Danyon Harkins
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Tracey J. Harvey
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Cooper Atterton
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Ingrid Miller
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Laura Currey
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Sabrina Oishi
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Maria Kasherman
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Raul Ayala Davila
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Lucy Harris
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane 4072, Australia; (L.H.); (K.G.); (R.G.P.)
| | - Kathryn Green
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane 4072, Australia; (L.H.); (K.G.); (R.G.P.)
| | - Hannah Piper
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Robert G. Parton
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane 4072, Australia; (L.H.); (K.G.); (R.G.P.)
- Institute for Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Stefan Thor
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Helen M. Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia;
| | - Michael Piper
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia;
- Correspondence:
| |
Collapse
|
32
|
Yoshida H, Ishida S, Yamamoto T, Ishikawa T, Nagata Y, Takeuchi K, Ueno H, Imai Y. Effect of cilia-induced surface velocity on cerebrospinal fluid exchange in the lateral ventricles. JOURNAL OF THE ROYAL SOCIETY, INTERFACE 2022; 19:20220321. [PMID: 35919976 PMCID: PMC9346361 DOI: 10.1098/rsif.2022.0321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ciliary motility disorders are known to cause hydrocephalus. The instantaneous velocity of cerebrospinal fluid (CSF) flow is dominated by artery pulsation, and it remains unclear why ciliary dysfunction results in hydrocephalus. In this study, we investigated the effects of cilia-induced surface velocity on CSF flow using computational fluid dynamics. A geometric model of the human ventricles was constructed using medical imaging data. The CSF produced by the choroid plexus and cilia-induced surface velocity were given as the velocity boundary conditions at the ventricular walls. We developed healthy and reduced cilia motility models based on experimental data of cilia-induced velocity in healthy wild-type and Dpcd-knockout mice. The results indicate that there is almost no difference in intraventricular pressure between healthy and reduced cilia motility models. Additionally, it was found that newly produced CSF from the choroid plexus did not spread to the anterior and inferior horns of the lateral ventricles in the reduced cilia motility model. These findings suggest that a ciliary motility disorder could delay CSF exchange in the anterior and inferior horns of the lateral ventricles.
Collapse
Affiliation(s)
- Haruki Yoshida
- Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| | - Shunichi Ishida
- Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| | - Taiki Yamamoto
- Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Takayuki Ishikawa
- Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Yuichi Nagata
- Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Kazuhito Takeuchi
- Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Hironori Ueno
- Aichi University of Education, Kariya 448-8542, Japan
| | - Yohsuke Imai
- Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
33
|
Ji W, Tang Z, Chen Y, Wang C, Tan C, Liao J, Tong L, Xiao G. Ependymal Cilia: Physiology and Role in Hydrocephalus. Front Mol Neurosci 2022; 15:927479. [PMID: 35903173 PMCID: PMC9315228 DOI: 10.3389/fnmol.2022.927479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/20/2022] [Indexed: 01/10/2023] Open
Abstract
Cerebrospinal fluid (CSF), a colorless liquid that generally circulates from the lateral ventricles to the third and fourth ventricles, provides essential nutrients for brain homeostasis and growth factors during development. As evidenced by an increasing corpus of research, CSF serves a range of important functions. While it is considered that decreased CSF flow is associated to the development of hydrocephalus, it has recently been postulated that motile cilia, which line the apical surfaces of ependymal cells (ECs), play a role in stimulating CSF circulation by cilia beating. Ependymal cilia protrude from ECs, and their synchronous pulsing transports CSF from the lateral ventricle to the third and fourth ventricles, and then to the subarachnoid cavity for absorption. As a result, we postulated that malfunctioning ependymal cilia could disrupt normal CSF flow, raising the risk of hydrocephalus. This review aims to demonstrate the physiological functions of ependymal cilia, as well as how cilia immobility or disorientation causes problems. We also conclude conceivable ways of treatment of hydrocephalus currently for clinical application and provide theoretical support for regimen improvements by investigating the relationship between ependymal cilia and hydrocephalus development.
Collapse
Affiliation(s)
- Weiye Ji
- Department of Neurosurgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Tang
- Department of Neurosurgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yibing Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chuansen Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Changwu Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Junbo Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Tong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Gelei Xiao,
| |
Collapse
|
34
|
Bramall AN, Anton ES, Kahle KT, Fecci PE. Navigating the ventricles: Novel insights into the pathogenesis of hydrocephalus. EBioMedicine 2022; 78:103931. [PMID: 35306341 PMCID: PMC8933686 DOI: 10.1016/j.ebiom.2022.103931] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Congenital hydrocephalus occurs in one in 500-1000 babies born in the United States and acquired hydrocephalus may occur as the consequence of stroke, intraventricular and subarachnoid hemorrhage, traumatic brain injuries, brain tumors, craniectomy or may be idiopathic, as in the case of normal pressure hydrocephalus. Irrespective of its prevalence and significant impact on quality of life, neurosurgeons still rely on invasive cerebrospinal fluid shunt systems for the treatment of hydrocephalus that are exceptionally prone to failure and/or infection. Further understanding of this process at a molecular level, therefore, may have profound implications for improving treatment and quality of life for millions of individuals worldwide. The purpose of this article is to review the current research landscape on hydrocephalus with a focus on recent advances in our understanding of cerebrospinal fluid pathways from an evolutionary, genetics and molecular perspective.
Collapse
Affiliation(s)
- Alexa N Bramall
- Department of Neurosurgery, Duke University Hospital, 2301 Erwin Rd., Durham, NC 27710, United States.
| | - E S Anton
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States
| | - Peter E Fecci
- Department of Neurosurgery, Duke University Hospital, 2301 Erwin Rd., Durham, NC 27710, United States
| |
Collapse
|
35
|
Herranz-Pérez V, Nakatani J, Ishii M, Katada T, García-Verdugo JM, Ohata S. Ependymoma associated protein Zfta is expressed in immature ependymal cells but is not essential for ependymal development in mice. Sci Rep 2022; 12:1493. [PMID: 35087169 PMCID: PMC8795269 DOI: 10.1038/s41598-022-05526-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
The fusion protein of uncharacterised zinc finger translocation associated (ZFTA) and effector transcription factor of tumorigenic NF-κB signalling, RELA (ZFTA-RELA), is expressed in more than two-thirds of supratentorial ependymoma (ST-EPN-RELA), but ZFTA's expression profile and functional analysis in multiciliated ependymal (E1) cells have not been examined. Here, we showed the mRNA expression of mouse Zfta peaks on embryonic day (E) 17.5 in the wholemount of the lateral walls of the lateral ventricle. Zfta was expressed in the nuclei of FoxJ1-positive immature E1 (pre-E1) cells in E18.5 mouse embryonic brain. Interestingly, the transcription factors promoting ciliogenesis (ciliary TFs) (e.g., multicilin) and ZFTA-RELA upregulated luciferase activity using a 5' upstream sequence of ZFTA in cultured cells. Zftatm1/tm1 knock-in mice did not show developmental defects or abnormal fertility. In the Zftatm1/tm1 E1 cells, morphology, gene expression, ciliary beating frequency and ependymal flow were unaffected. These results suggest that Zfta is expressed in pre-E1 cells, possibly under the control of ciliary TFs, but is not essential for ependymal development or flow. This study sheds light on the mechanism of the ZFTA-RELA expression in the pathogenesis of ST-EPN-RELA: Ciliary TFs initiate ZFTA-RELA expression in pre-E1 cells, and ZFTA-RELA enhances its own expression using positive feedback.
Collapse
Affiliation(s)
- Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Institute Cavanilles of Biodiversity and Evolutionary Biology, CIBERNED, University of Valencia, 46980, Paterna, Spain
- Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, 46100, Burjassot, Spain
| | - Jin Nakatani
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Masaki Ishii
- Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, 202-8585, Japan
| | - Toshiaki Katada
- Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, 202-8585, Japan
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan
| | - Jose Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Institute Cavanilles of Biodiversity and Evolutionary Biology, CIBERNED, University of Valencia, 46980, Paterna, Spain
- Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, 46100, Burjassot, Spain
| | - Shinya Ohata
- Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, 202-8585, Japan.
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
36
|
Cole E, Gaertig J. Anterior-posterior pattern formation in ciliates. J Eukaryot Microbiol 2022; 69:e12890. [PMID: 35075744 PMCID: PMC9309198 DOI: 10.1111/jeu.12890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
As single cells, ciliates build, duplicate, and even regenerate complex cortical patterns by largely unknown mechanisms that precisely position organelles along two cell‐wide axes: anterior–posterior and circumferential (left–right). We review our current understanding of intracellular patterning along the anterior–posterior axis in ciliates, with emphasis on how the new pattern emerges during cell division. We focus on the recent progress at the molecular level that has been driven by the discovery of genes whose mutations cause organelle positioning defects in the model ciliate Tetrahymena thermophila. These investigations have revealed a network of highly conserved kinases that are confined to either anterior or posterior domains in the cell cortex. These pattern‐regulating kinases create zones of cortical inhibition that by exclusion determine the precise placement of organelles. We discuss observations and models derived from classical microsurgical experiments in large ciliates (including Stentor) and interpret them in light of recent molecular findings in Tetrahymena. In particular, we address the involvement of intracellular gradients as vehicles for positioning organelles along the anterior‐posterior axis.
Collapse
Affiliation(s)
- Eric Cole
- Biology Department, St. Olaf College, Northfield, MN, USA
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
37
|
Li J, Zhang X, Guo J, Yu C, Yang J. Molecular Mechanisms and Risk Factors for the Pathogenesis of Hydrocephalus. Front Genet 2022; 12:777926. [PMID: 35047005 PMCID: PMC8762052 DOI: 10.3389/fgene.2021.777926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/03/2021] [Indexed: 12/22/2022] Open
Abstract
Hydrocephalus is a neurological condition due to the aberrant circulation and/or obstruction of cerebrospinal fluid (CSF) flow with consequent enlargement of cerebral ventricular cavities. However, it is noticed that a lot of patients may still go through symptomatic progression despite standard shunting procedures, suggesting that hydrocephalus is far more complicated than a simple CSF circulative/obstructive disorder. Growing evidence indicates that genetic factors play a fundamental role in the pathogenesis of some hydrocephalus. Although the genetic research of hydrocephalus in humans is limited, many genetic loci of hydrocephalus have been defined in animal models. In general, the molecular abnormalities involved in the pathogenesis of hydrocephalus include brain development and ependymal cell dysfunction, apoptosis, inflammation, free radical generation, blood flow, and cerebral metabolism. Moreover, recent studies have indicated that the molecular abnormalities relevant to aberrant cerebral glymphatic drainage turn into an attractive subject in the CSF circulation disorder. Furthermore, the prevalent risk factors could facilitate the development of hydrocephalus. In this review, we elicited some possible fundamental molecular mechanisms and facilitating risk factors involved in the pathogenesis of hydrocephalus, and aimed to widen the diagnosis and therapeutic strategies for hydrocephalus management. Such knowledge could be used to improve patient care in different ways, such as early precise diagnosis and effective therapeutic regimens.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Neurosurgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xinjie Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jian Guo
- Department of Neurosurgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Chen Yu
- Department of Neurosurgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jun Yang
- Department of Neurosurgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
38
|
Kondoh D, Nakamura T, Tsuji E, Hosotani M, Ichii O, Irie T, Mishima T, Nagasaki KI, Kon Y. Cotton rats (Sigmodon hispidus) with a high prevalence of hydrocephalus without clinical symptoms. Neuropathology 2021; 42:16-27. [PMID: 34957592 DOI: 10.1111/neup.12776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/01/2022]
Abstract
Normal-pressure hydrocephalus (NPH) is a condition in which the ventricle is enlarged without elevated cerebrospinal fluid pressure, and it generally develops in later life and progresses slowly. A complete animal model that mimics human idiopathic NPH has not yet been established, and the onset mechanisms and detailed pathomechanisms of NPH are not fully understood. Here, we demonstrate a high spontaneous prevalence (34.6%) of hydrocephalus without clinical symptoms in inbred cotton rats (Sigmodon hispidus). In all 46 hydrocephalic cotton rats, the severity was mild or moderate and not severe. The dilation was limited to the lateral ventricles, and none of the hemorrhage, ventriculitis, meningitis, or tumor formation was found in hydrocephalic cotton rats. These findings indicate that the type of hydrocephalus in cotton rats is similar to that of communicating idiopathic NPH. Histopathological examinations revealed that the inner granular and pyramidal layers (layers IV and V) of the neocortex became thinner in hydrocephalic brains. A small number of pyramidal cells were positive for Fluoro-Jade C (a degenerating neuron marker) and ionized calcium-binding adaptor molecule 1 (Iba1)-immunoreactive microglia were in contact with the degenerating neurons in the hydrocephalic neocortex, suggesting that hydrocephalic cotton rats are more or less impaired projections from the neocortex. This study highlights cotton rats as a candidate for novel models to elucidate the pathomechanism of idiopathic NPH. Additionally, cotton rats have some noticeable systemic pathological phenotypes, such as chronic kidney disease and metabolic disorders. Thus, this model might also be useful for researching the comorbidities of NPH to other diseases.
Collapse
Affiliation(s)
- Daisuke Kondoh
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Teppei Nakamura
- Laboratory of Anatomy, Department of Basic Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Biological Safety Research, Chitose Laboratory, Japan Food Research Laboratories, Chitose, Japan
| | - Erika Tsuji
- Department of Biological Safety Research, Chitose Laboratory, Japan Food Research Laboratories, Chitose, Japan
| | - Marina Hosotani
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Takao Irie
- Medical Zoology Group, Department of Infectious Diseases, Hokkaido Institute of Public Health, Sapporo, Japan.,Laboratory of Veterinary Parasitic Diseases, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Takashi Mishima
- Department of Biological Safety Research, Chitose Laboratory, Japan Food Research Laboratories, Chitose, Japan
| | - Ken-Ichi Nagasaki
- Department of Biological Safety Research, Tama Laboratory, Japan Food Research Laboratories, Tama, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
39
|
Garcia-Bonilla M, McAllister JP, Limbrick DD. Genetics and Molecular Pathogenesis of Human Hydrocephalus. Neurol India 2021; 69:S268-S274. [PMID: 35102976 DOI: 10.4103/0028-3886.332249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Hydrocephalus is a neurological disorder with an incidence of 80-125 per 100,000 live births in the United States. The molecular pathogenesis of this multidimensional disorder is complex and has both genetic and environmental influences. This review aims to discuss the genetic and molecular alterations described in human hydrocephalus, from well-characterized, heritable forms of hydrocephalus (e.g., X-linked hydrocephalus from L1CAM variants) to those affecting cilia motility and other complex pathologies such as neural tube defects and Dandy-Walker syndrome. Ventricular zone disruption is one key pattern among congenital and acquired forms of hydrocephalus, with abnormalities in cadherins, which mediate neuroepithelium/ependymal cell junctions and contribute to the pathogenesis and severity of the disease. Given the relationship between hydrocephalus pathogenesis and neurodevelopment, future research should elucidate the genetic and molecular mechanisms that regulate ventricular zone integrity and stem cell biology.
Collapse
Affiliation(s)
- Maria Garcia-Bonilla
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - James P McAllister
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - David D Limbrick
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
40
|
Basta LP, Hill-Oliva M, Paramore SV, Sharan R, Goh A, Biswas A, Cortez M, Little KA, Posfai E, Devenport D. New mouse models for high resolution and live imaging of planar cell polarity proteins in vivo. Development 2021; 148:271988. [PMID: 34463728 DOI: 10.1242/dev.199695] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/24/2021] [Indexed: 01/10/2023]
Abstract
The collective polarization of cellular structures and behaviors across a tissue plane is a near universal feature of epithelia known as planar cell polarity (PCP). This property is controlled by the core PCP pathway, which consists of highly conserved membrane-associated protein complexes that localize asymmetrically at cell junctions. Here, we introduce three new mouse models for investigating the localization and dynamics of transmembrane PCP proteins: Celsr1, Fz6 and Vangl2. Using the skin epidermis as a model, we characterize and verify the expression, localization and function of endogenously tagged Celsr1-3xGFP, Fz6-3xGFP and tdTomato-Vangl2 fusion proteins. Live imaging of Fz6-3xGFP in basal epidermal progenitors reveals that the polarity of the tissue is not fixed through time. Rather, asymmetry dynamically shifts during cell rearrangements and divisions, while global, average polarity of the tissue is preserved. We show using super-resolution STED imaging that Fz6-3xGFP and tdTomato-Vangl2 can be resolved, enabling us to observe their complex localization along junctions. We further explore PCP fusion protein localization in the trachea and neural tube, and discover new patterns of PCP expression and localization throughout the mouse embryo.
Collapse
Affiliation(s)
- Lena P Basta
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Michael Hill-Oliva
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA.,Department of Medicine, Columbia University, New York, NY 10032USA
| | - Sarah V Paramore
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Rishabh Sharan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Audrey Goh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Abhishek Biswas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA.,Research Computing, Office of Information Technology, Princeton University, Princeton, NJ 08544, USA
| | - Marvin Cortez
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Katherine A Little
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| |
Collapse
|
41
|
Ma L, Du Y, Xu X, Feng H, Hui Y, Li N, Jiang G, Zhang X, Li X, Liu L. β-Catenin Deletion in Regional Neural Progenitors Leads to Congenital Hydrocephalus in Mice. Neurosci Bull 2021; 38:81-94. [PMID: 34460072 PMCID: PMC8782971 DOI: 10.1007/s12264-021-00763-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/05/2021] [Indexed: 01/03/2023] Open
Abstract
Congenital hydrocephalus is a major neurological disorder with high rates of morbidity and mortality; however, the underlying cellular and molecular mechanisms remain largely unknown. Reproducible animal models mirroring both embryonic and postnatal hydrocephalus are also limited. Here, we describe a new mouse model of congenital hydrocephalus through knockout of β-catenin in Nkx2.1-expressing regional neural progenitors. Progressive ventriculomegaly and an enlarged brain were consistently observed in knockout mice from embryonic day 12.5 through to adulthood. Transcriptome profiling revealed severe dysfunctions in progenitor maintenance in the ventricular zone and therefore in cilium biogenesis after β-catenin knockout. Histological analyses also revealed an aberrant neuronal layout in both the ventral and dorsal telencephalon in hydrocephalic mice at both embryonic and postnatal stages. Thus, knockout of β-catenin in regional neural progenitors leads to congenital hydrocephalus and provides a reproducible animal model for studying pathological changes and developing therapeutic interventions for this devastating disease.
Collapse
Affiliation(s)
- Lin Ma
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China ,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, 200092 China ,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120 China ,Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Yanhua Du
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiangjie Xu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China ,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, 200092 China ,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120 China
| | - Hexi Feng
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China ,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, 200092 China ,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120 China
| | - Yi Hui
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China ,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, 200092 China ,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120 China
| | - Nan Li
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China ,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, 200092 China ,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120 China
| | - Guanyu Jiang
- Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Xiaoqing Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China ,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, 200065 China ,Brain and Spinal Cord Innovative Research Center, School of Medicine, Tongji University, Shanghai, 200092 China ,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071 China ,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120 China
| | - Xiaocui Li
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Ling Liu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China ,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, 200092 China ,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120 China ,Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092 China
| |
Collapse
|
42
|
Maeso-Alonso L, López-Ferreras L, Marques MM, Marin MC. p73 as a Tissue Architect. Front Cell Dev Biol 2021; 9:716957. [PMID: 34368167 PMCID: PMC8343074 DOI: 10.3389/fcell.2021.716957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
The TP73 gene belongs to the p53 family comprised by p53, p63, and p73. In response to physiological and pathological signals these transcription factors regulate multiple molecular pathways which merge in an ensemble of interconnected networks, in which the control of cell proliferation and cell death occupies a prominent position. However, the complex phenotype of the Trp73 deficient mice has revealed that the biological relevance of this gene does not exclusively rely on its growth suppression effects, but it is also intertwined with other fundamental roles governing different aspects of tissue physiology. p73 function is essential for the organization and homeostasis of different complex microenvironments, like the neurogenic niche, which supports the neural progenitor cells and the ependyma, the male and female reproductive organs, the respiratory epithelium or the vascular network. We propose that all these, apparently unrelated, developmental roles, have a common denominator: p73 function as a tissue architect. Tissue architecture is defined by the nature and the integrity of its cellular and extracellular compartments, and it is based on proper adhesive cell-cell and cell-extracellular matrix interactions as well as the establishment of cellular polarity. In this work, we will review the current understanding of p73 role as a neurogenic niche architect through the regulation of cell adhesion, cytoskeleton dynamics and Planar Cell Polarity, and give a general overview of TAp73 as a hub modulator of these functions, whose alteration could impinge in many of the Trp73 -/- phenotypes.
Collapse
Affiliation(s)
- Laura Maeso-Alonso
- Departamento de Biología Molecular, Instituto de Biomedicina (IBIOMED), University of León, León, Spain
| | - Lorena López-Ferreras
- Departamento de Biología Molecular, Instituto de Biomedicina (IBIOMED), University of León, León, Spain
| | - Margarita M Marques
- Departamento de Producción Animal, Instituto de Desarrollo Ganadero y Sanidad Animal, University of León, León, Spain
| | - Maria C Marin
- Departamento de Biología Molecular, Instituto de Biomedicina (IBIOMED), University of León, León, Spain
| |
Collapse
|
43
|
Kumar V, Umair Z, Kumar S, Goutam RS, Park S, Kim J. The regulatory roles of motile cilia in CSF circulation and hydrocephalus. Fluids Barriers CNS 2021; 18:31. [PMID: 34233705 PMCID: PMC8261947 DOI: 10.1186/s12987-021-00265-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/25/2021] [Indexed: 11/10/2022] Open
Abstract
Background Cerebrospinal fluid (CSF) is an ultra-filtrated colorless brain fluid that circulates within brain spaces like the ventricular cavities, subarachnoid space, and the spine. Its continuous flow serves many primary functions, including nourishment, brain protection, and waste removal. Main body The abnormal accumulation of CSF in brain cavities triggers severe hydrocephalus. Accumulating evidence had indicated that synchronized beats of motile cilia (cilia from multiciliated cells or the ependymal lining in brain ventricles) provide forceful pressure to generate and restrain CSF flow and maintain overall CSF circulation within brain spaces. In humans, the disorders caused by defective primary and/or motile cilia are generally referred to as ciliopathies. The key role of CSF circulation in brain development and its functioning has not been fully elucidated. Conclusions In this review, we briefly discuss the underlying role of motile cilia in CSF circulation and hydrocephalus. We have reviewed cilia and ciliated cells in the brain and the existing evidence for the regulatory role of functional cilia in CSF circulation in the brain. We further discuss the findings obtained for defective cilia and their potential involvement in hydrocephalus. Furthermore, this review will reinforce the idea of motile cilia as master regulators of CSF movements, brain development, and neuronal diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea
| | - Zobia Umair
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Shiv Kumar
- School of Psychology and Neuroscience, University of St. Andrews, St. Mary's Quad, South Street. St. Andrews, Fife, KY16 9JP, UK
| | - Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Gangwon-Do, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
44
|
Liu T, Liu B, Liu Y, Feng X, Jiang X, Long J, Gao Q, Yang Z. Vesicle transporter GOLT1B mediates the cell membrane localization of DVL2 and PD-L2 and promotes colorectal cancer metastasis. Cancer Cell Int 2021; 21:287. [PMID: 34059062 PMCID: PMC8166103 DOI: 10.1186/s12935-021-01991-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022] Open
Abstract
Background Colorectal cancer (CRC) is the third most diagnosed and second leading cause of cancer death worldwide. Hallmark proteins processing is usually dysregulated in cancers. Finding key regulatory molecules is of great importance for CRC metastasis intervention. GOLT1B is a vesicle transport protein which is involved in cytosolic proteins trafficking. However, its role in cancer has never been addressed. Methods CRC cell lines and subcutaneous xenograft animal model were utilized to investigate the biological function of GOLT1B. Patients samples were used to validate the correlation between GOLT1B and clinical outcome. In vivo targeted delivery of GOLT1B-siRNA was investigated in PDX (Patient derived tumor xenograft) model. Results We found that GOLT1B was highly expressed in CRC, and was an independent prognostic marker of overall survival (OS) and progression free survival (PFS). GOLT1B could promote CRC metastasis in vitro and in vivo. GOLT1B overexpression could increase DVL2 level and enhance its plasma membrane translocation, which subsequently activated downstream Wnt/β-catenin pathway and increase the nuclear β-catenin level, hence induce epithelial-mesenchymal transition (EMT). In addition, GOLT1B could also interact with PD-L2 and increase its membrane level. Co-culture of GOLT1B-overexpresed CRC cells with Jurkat cells significantly induced T cells apoptosis, which might further promote cancer cell the migration and invasion. Further, targeted delivery of GOLT1B siRNA could significantly inhibit tumor progression in GOLT1B highly expressed PDX model. Conclusion Taken together, our findings suggest that the vesicle transporter GOLT1B could promote CRC metastasis not only by assisting DVL2 translocation and activating Wnt/β-catenin pathway, but also facilitating PD-L2 membrane localization to induce immune suppression. Targeted inhibition of GOLT1B could be a potential therapeutic strategy for CRC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01991-z.
Collapse
Affiliation(s)
- Tengfei Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Binbin Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Yiting Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Xingzhi Feng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Xuefei Jiang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Jiahui Long
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Qianling Gao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Zihuan Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China.
| |
Collapse
|
45
|
Nakayama S, Yano T, Namba T, Konishi S, Takagishi M, Herawati E, Nishida T, Imoto Y, Ishihara S, Takahashi M, Furuta K, Oiwa K, Tamura A, Tsukita S. Planar cell polarity induces local microtubule bundling for coordinated ciliary beating. J Cell Biol 2021; 220:212042. [PMID: 33929515 PMCID: PMC8094116 DOI: 10.1083/jcb.202010034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Multiciliated cells (MCCs) in tracheas generate mucociliary clearance through coordinated ciliary beating. Apical microtubules (MTs) play a crucial role in this process by organizing the planar cell polarity (PCP)-dependent orientation of ciliary basal bodies (BBs), for which the underlying molecular basis remains elusive. Herein, we found that the deficiency of Daple, a dishevelled-associating protein, in tracheal MCCs impaired the planar polarized apical MTs without affecting the core PCP proteins, causing significant defects in the BB orientation at the cell level but not the tissue level. Using live-cell imaging and ultra-high voltage electron microscope tomography, we found that the apical MTs accumulated and were stabilized by side-by-side association with one side of the apical junctional complex, to which Daple was localized. In vitro binding and single-molecule imaging revealed that Daple directly bound to, bundled, and stabilized MTs through its dimerization. These features convey a PCP-related molecular basis for the polarization of apical MTs, which coordinate ciliary beating in tracheal MCCs.
Collapse
Affiliation(s)
- Shogo Nakayama
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Integrative Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tomoki Yano
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Toshinori Namba
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Konishi
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Maki Takagishi
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX
| | - Elisa Herawati
- Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Tomoki Nishida
- Japan Textile Products Quality and Technology Center, Hyogo, Japan
| | - Yasuo Imoto
- Japan Textile Products Quality and Technology Center, Hyogo, Japan
| | - Shuji Ishihara
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Masahide Takahashi
- Department of Pathology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
| | - Ken'ya Furuta
- Advanced Information and Communications Technology Research Institute, National Institute of Information and Communications Technology, Hyogo, Japan
| | - Kazuhiro Oiwa
- Advanced Information and Communications Technology Research Institute, National Institute of Information and Communications Technology, Hyogo, Japan
| | - Atsushi Tamura
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Department of Pharmacology, School of Medicine, Teikyo University, Tokyo, Japan.,Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| | - Sachiko Tsukita
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| |
Collapse
|
46
|
Neupane S, Goto J, Berardinelli SJ, Ito A, Haltiwanger RS, Holdener BC. Hydrocephalus in mouse B3glct mutants is likely caused by defects in multiple B3GLCT substrates in ependymal cells and subcommissural organ. Glycobiology 2021; 31:988-1004. [PMID: 33909046 DOI: 10.1093/glycob/cwab033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 12/22/2022] Open
Abstract
Peters plus syndrome, characterized by defects in eye and skeletal development with isolated cases of ventriculomegaly/hydrocephalus, is caused by mutations in the β3-glucosyltransferase (B3GLCT) gene. In the endoplasmic reticulum, B3GLCT adds glucose to O-linked fucose on properly folded Thrombospondin Type 1 Repeats (TSRs). The resulting glucose-fucose disaccharide is proposed to stabilize the TSR fold and promote secretion of B3GLCT substrates, with some substrates more sensitive than others to loss of glucose. Mouse B3glct mutants develop hydrocephalus at high frequency. In this study, we demonstrated that B3glct mutant ependymal cells had fewer cilia basal bodies and altered translational polarity compared to controls. Localization of mRNA encoding A Disintegrin and Metalloproteinase with ThromboSpondin type 1 repeat 20 (ADAMTS20) and ADAMTS9, suggested that reduced function of these B3GLCT substrates contributed to ependymal cell abnormalities. In addition, we showed that multiple B3GLCT substrates (Adamts3, Adamts9, and Adamts20) are expressed by the subcommissural organ, that subcommissural organ-spondin (SSPO) TSRs were modified with O-linked glucose-fucose, and that loss of B3GLCT reduced secretion of SSPO in cultured cells. In the B3glct mutant subcommissural organ intracellular SSPO levels were reduced and BiP levels increased, suggesting a folding defect. Secreted SSPO colocalized with BiP, raising the possibility that abnormal extracellular assembly of SSPO into Reissner's fiber also contributed to impaired CSF flow in mutants. Combined, these studies underscore the complexity of the B3glct mutant hydrocephalus phenotype and demonstrate that impaired cerebrospinal fluid (CSF) flow likely stems from the collective effects of the mutation on multiple processes.
Collapse
Affiliation(s)
- Sanjiv Neupane
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY
| | - June Goto
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Steven J Berardinelli
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Atsuko Ito
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Bernadette C Holdener
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY
| |
Collapse
|
47
|
Yamada S, Ishikawa M, Nozaki K. Exploring mechanisms of ventricular enlargement in idiopathic normal pressure hydrocephalus: a role of cerebrospinal fluid dynamics and motile cilia. Fluids Barriers CNS 2021; 18:20. [PMID: 33874972 PMCID: PMC8056523 DOI: 10.1186/s12987-021-00243-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/13/2021] [Indexed: 11/15/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is considered an age-dependent chronic communicating hydrocephalus associated with cerebrospinal fluid (CSF) malabsorption; however, the aetiology of ventricular enlargement in iNPH has not yet been elucidated. There is accumulating evidence that support the hypothesis that various alterations in CSF dynamics contribute to ventricle dilatation in iNPH. This review focuses on CSF dynamics associated with ventriculomegaly and summarises the current literature based on three potential aetiology factors: genetic, environmental and hydrodynamic. The majority of gene mutations that cause communicating hydrocephalus were associated with an abnormal structure or dysfunction of motile cilia on the ventricular ependymal cells. Aging, alcohol consumption, sleep apnoea, diabetes and hypertension are candidates for the risk of developing iNPH, although there is no prospective cohort study to investigate the risk factors for iNPH. Alcohol intake may be associated with the dysfunction of ependymal cilia and sustained high CSF sugar concentration due to uncontrolled diabetes increases the fluid viscosity which in turn increases the shear stress on the ventricular wall surface. Sleep apnoea, diabetes and hypertension are known to be associated with the impairment of CSF and interstitial fluid exchange. Oscillatory shear stress to the ventricle wall surfaces is considerably increased by reciprocating bidirectional CSF movements in iNPH. Increased oscillatory shear stress impedes normal cilia beating, leading to motile cilia shedding from the ependymal cells. At the lack of ciliary protection, the ventricular wall is directly exposed to increased oscillatory shear stress. Additionally, increased oscillatory shear stress may be involved in activating the flow-mediated dilation signalling of the ventricular wall. In conclusion, as the CSF stroke volume at the cerebral aqueduct increases, the oscillatory shear stress increases, promoting motor cilia shedding and loss of ependymal cell coverage. These are considered to be the leading causes of ventricular enlargement in iNPH.
Collapse
Affiliation(s)
- Shigeki Yamada
- Department of Neurosurgery, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan. .,Department of Neurosurgery and Normal Pressure Hydrocephalus Center, Rakuwakai Otowa Hospital, Kyoto, Japan. .,Interfaculty Initiative in Information Studies, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
| | - Masatsune Ishikawa
- Department of Neurosurgery and Normal Pressure Hydrocephalus Center, Rakuwakai Otowa Hospital, Kyoto, Japan.,Rakuwa Villa Ilios, Kyoto, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
48
|
Usami FM, Arata M, Shi D, Oka S, Higuchi Y, Tissir F, Takeichi M, Fujimori T. Intercellular and intracellular cilia orientation is coordinated by CELSR1 and CAMSAP3 in oviduct multi-ciliated cells. J Cell Sci 2021; 134:jcs.257006. [PMID: 33468623 DOI: 10.1242/jcs.257006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
The molecular mechanisms by which cilia orientation is coordinated within and between multi-ciliated cells (MCCs) are not fully understood. In the mouse oviduct, MCCs exhibit a characteristic basal body (BB) orientation and microtubule gradient along the tissue axis. The intracellular polarities were moderately maintained in cells lacking CELSR1 (cadherin EGF LAG seven-pass G-type receptor 1), a planar cell polarity (PCP) factor involved in tissue polarity regulation, although the intercellular coordination of the polarities was disrupted. However, CAMSAP3 (calmodulin-regulated spectrin-associated protein 3), a microtubule minus-end regulator, was found to be critical for determining the intracellular BB orientation. CAMSAP3 localized to the base of cilia in a polarized manner, and its mutation led to the disruption of intracellular coordination of BB orientation, as well as the assembly of microtubules interconnecting BBs, without affecting PCP factor localization. Thus, both CELSR1 and CAMSAP3 are responsible for BB orientation but in distinct ways; their cooperation should therefore be critical for generating functional multi-ciliated tissues.
Collapse
Affiliation(s)
- Fumiko Matsukawa Usami
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan.,Department of Basic Biology, School of Life Science, SOKENDAI, The Graduate University for Advanced Studies, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan
| | - Masaki Arata
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan.,Graduate School of Science, Nagoya University, Nagoya, 464-8601 Japan
| | - Dongbo Shi
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan
| | - Sanae Oka
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan
| | - Yoko Higuchi
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan
| | - Fadel Tissir
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology Unit, Avenue Mounier 73, Box B1.73.16, Brussels 1200, Belgium
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan .,Department of Basic Biology, School of Life Science, SOKENDAI, The Graduate University for Advanced Studies, 5-1 Higashiyama, Myodaiji-cho, Okazaki, 444-8787 Japan
| |
Collapse
|
49
|
Ryu H, Lee H, Lee J, Noh H, Shin M, Kumar V, Hong S, Kim J, Park S. The molecular dynamics of subdistal appendages in multi-ciliated cells. Nat Commun 2021; 12:612. [PMID: 33504787 PMCID: PMC7840914 DOI: 10.1038/s41467-021-20902-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 12/24/2020] [Indexed: 11/09/2022] Open
Abstract
The motile cilia of ependymal cells coordinate their beats to facilitate a forceful and directed flow of cerebrospinal fluid (CSF). Each cilium originates from a basal body with a basal foot protruding from one side. A uniform alignment of these basal feet is crucial for the coordination of ciliary beating. The process by which the basal foot originates from subdistal appendages of the basal body, however, is unresolved. Here, we show FGFR1 Oncogene Partner (FOP) is a useful marker for delineating the transformation of a circular, unpolarized subdistal appendage into a polarized structure with a basal foot. Ankyrin repeat and SAM domain-containing protein 1A (ANKS1A) interacts with FOP to assemble region I of the basal foot. Importantly, disruption of ANKS1A reduces the size of region I. This produces an unstable basal foot, which disrupts rotational polarity and the coordinated beating of cilia in young adult mice. ANKS1A deficiency also leads to severe degeneration of the basal foot in aged mice and the detachment of cilia from their basal bodies. This role of ANKS1A in the polarization of the basal foot is evolutionarily conserved in vertebrates. Thus, ANKS1A regulates FOP to build and maintain the polarity of subdistal appendages.
Collapse
Affiliation(s)
- Hyunchul Ryu
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea
- Department of Life Science, University of Seoul, Seoul, 02504, Korea
| | - Haeryung Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea
| | - Jiyeon Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea
| | - Hyuna Noh
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea
| | - Miram Shin
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Sejeong Hong
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea.
| |
Collapse
|
50
|
Yoshida A, Kawata D, Shinotsuka N, Yoshida M, Yamaguchi Y, Miura M. Evidence for the involvement of caspases in establishing proper cerebrospinal fluid hydrodynamics. Neurosci Res 2021; 170:145-153. [PMID: 33417971 DOI: 10.1016/j.neures.2020.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 11/19/2022]
Abstract
A large number of cells undergo apoptosis via caspase activation during and after neural tube closure (NTC) in mammals. Apoptosis is executed by either intrinsic or extrinsic apoptotic pathways, and inhibition of each pathway causes developmental defects around NTC stages, which hampers the physiological roles of apoptosis and caspases after NTC. We generated transgenic mice in which a broad spectrum of caspases could be suppressed in a spatiotemporal manner by pan-caspase inhibitor protein p35 originating from baculovirus. Mice with nervous system-specific expression of p35 (Nestin-Cre (NCre);p35V mice) exhibited postnatal lethality within 1 month after birth. They were born at the expected Mendelian ratio, but demonstrated severe postnatal growth retardation and hydrocephalus. The flow of cerebrospinal fluid (CSF) between the third and fourth ventricles was disturbed, whereas neither stenosis nor abnormality in ciliary morphology was observed in the pathway of CSF flow. Hydrocephalus and growth retardation of NCre;p35V mice were not rescued by the deletion of RIPK3, an essential factor for necroptosis which occurs in the absence of caspase-8 activation during development. The CSF of NCre;p35V mice contained a larger amount of secreted proteins than that of the controls. These findings suggest that the establishment of proper CSF dynamics requires caspase activity during brain development after NTC.
Collapse
Affiliation(s)
- Ayako Yoshida
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daisuke Kawata
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naomi Shinotsuka
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mariko Yoshida
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshifumi Yamaguchi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; Hibernation Metabolism, Physiology, and Development Group, Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan; Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan.
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|