1
|
Lian Y, Burkitt AN. Relating sparse and predictive coding to divisive normalization. PLoS Comput Biol 2025; 21:e1013059. [PMID: 40424462 PMCID: PMC12112309 DOI: 10.1371/journal.pcbi.1013059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
Sparse coding, predictive coding and divisive normalization have each been found to be principles that underlie the function of neural circuits in many parts of the brain, supported by substantial experimental evidence. However, the connections between these related principles are still poorly understood. Sparse coding and predictive coding can be reconciled into a learning framework with predictive structure and sparse responses, termed as sparse/predictive coding. However, how sparse/predictive coding (a learning model) is connected with divisive normalization (not a learning model) is still not well investigated. In this paper, we show how sparse coding, predictive coding, and divisive normalization can be described within a unified framework, and illustrate this explicitly within the context of a two-layer neural learning model of sparse/predictive coding. This two-layer model is constructed in a way that implements sparse coding with a network structure that is constructed by implementing predictive coding. We demonstrate how a homeostatic function that regulates neural responses in the model can shape the nonlinearity of neural responses in a way that replicates different forms of divisive normalization. Simulations show that the model can learn simple cells in the primary visual cortex with the property of contrast saturation, which has previously been explained by divisive normalization. In summary, the study demonstrates that the three principles of sparse coding, predictive coding, and divisive normalization can be connected to provide a learning framework based on biophysical properties, such as Hebbian learning and homeostasis, and this framework incorporates both learning and more diverse response nonlinearities observed experimentally. This framework has the potential to also be used to explain how the brain learns to integrate input from different sensory modalities.
Collapse
Affiliation(s)
- Yanbo Lian
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Anthony N. Burkitt
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Obeid D, Miller KD. Stabilized Supralinear Network Model of Responses to Surround Stimuli in Primary Visual Cortex. eNeuro 2025; 12:ENEURO.0459-24.2025. [PMID: 40228865 DOI: 10.1523/eneuro.0459-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/21/2025] [Accepted: 03/05/2025] [Indexed: 04/16/2025] Open
Abstract
In the mammalian primary visual cortex (V1), there are complex interactions between responses to stimuli present in the cell's classical receptive field (CRF) or "center" and in the surrounding region or "surround." The circuit mechanisms underlying these behaviors are likely to represent more general cortical mechanisms for integrating information. Here, we develop a circuit model that accounts for three important features of surround suppression (suppression of response to a center stimulus by addition of a surround stimulus): (1) The surround stimulus suppresses the inhibitory and excitatory currents that the cell receives; (2) The strongest suppression arises when the surround orientation matches that of the center stimulus, even when the center stimulus orientation differs from the cell's preferred orientation; and (3) A surround stimulus of a given orientation most strongly suppresses that orientation's component of the response to a plaid center stimulus ("feature-specific suppression"). We show that a stabilized supralinear network (SSN) with biologically plausible connectivity and synaptic efficacies that depend on cortical distance and orientation difference between units can consistently reproduce phenomena (1) and (3), and, qualitatively, phenomenon (2). We explain the mechanism behind each result. We argue that phenomena (2) and (3) are independent: the model with some aspects of connectivity removed still produces phenomenon (3) but not (2). The model reproduces the rapid time scale of activity decay observed in mouse V1 when thalamic input to V1 is silenced. Finally, we show that these results hold both in networks with rate-based and conductance-based spiking units.
Collapse
Affiliation(s)
- Dina Obeid
- Center for Theoretical Neuroscience and Swartz Program in Theoretical Neuroscience, College of Physicians and Surgeons and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027
- Harvard John A. Paulson School Of Engineering And Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Kenneth D Miller
- Center for Theoretical Neuroscience and Swartz Program in Theoretical Neuroscience, College of Physicians and Surgeons and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027
- Department of Neuroscience and Kavli Institute for Brain Science, College of Physicians and Surgeons and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027
| |
Collapse
|
3
|
Bos H, Miehl C, Oswald AMM, Doiron B. Untangling stability and gain modulation in cortical circuits with multiple interneuron classes. eLife 2025; 13:RP99808. [PMID: 40304591 PMCID: PMC12043317 DOI: 10.7554/elife.99808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Synaptic inhibition is the mechanistic backbone of a suite of cortical functions, not the least of which are maintaining network stability and modulating neuronal gain. In cortical models with a single inhibitory neuron class, network stabilization and gain control work in opposition to one another - meaning high gain coincides with low stability and vice versa. It is now clear that cortical inhibition is diverse, with molecularly distinguished cell classes having distinct positions within the cortical circuit. We analyze circuit models with pyramidal neurons (E) as well as parvalbumin (PV) and somatostatin (SOM) expressing interneurons. We show how, in E - PV - SOM recurrently connected networks, SOM-mediated modulation can lead to simultaneous increases in neuronal gain and network stability. Our work exposes how the impact of a modulation mediated by SOM neurons depends critically on circuit connectivity and the network state.
Collapse
Affiliation(s)
- Hannah Bos
- Department of Mathematics, University of PittsburghPittsburghUnited States
| | - Christoph Miehl
- Department of Neurobiology, University of ChicagoChicagoUnited States
- Grossman Center for Quantitative Biology and Human Behavior, University of ChicagoChicagoUnited States
| | - Anne-Marie Michelle Oswald
- Department of Neurobiology, University of ChicagoChicagoUnited States
- Grossman Center for Quantitative Biology and Human Behavior, University of ChicagoChicagoUnited States
| | - Brent Doiron
- Department of Mathematics, University of PittsburghPittsburghUnited States
- Department of Neurobiology, University of ChicagoChicagoUnited States
- Grossman Center for Quantitative Biology and Human Behavior, University of ChicagoChicagoUnited States
- Department of Neuroscience, University of PittsburghPittsburghUnited States
- Department of Statistics, University of ChicagoChicagoUnited States
| |
Collapse
|
4
|
Zhao XN, Zhang SH, Tang SM, Yu C. Surround modulation is predominantly orientation-unspecific in macaque V1. Prog Neurobiol 2025; 247:102745. [PMID: 40024278 DOI: 10.1016/j.pneurobio.2025.102745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Surround modulation is a fundamental property of V1 neurons, playing critical roles in stimulus integration and segregation. It is believed to be orientation-specific, as neurons' responses at preferred orientations are suppressed more by iso-oriented surrounds than by cross-oriented surrounds. Here, we investigated an alternative hypothesis that surround modulation is primarily orientation-unspecific, in that the observed "orientation-specific" surround effects actually reflect overall gain changes that affect neurons tuned to all orientations. We employed two-photon calcium imaging to compare V1 population orientation tuning functions under iso- and cross-surround modulation in awake, fixating macaques. While confirming "orientation-specific" surround suppression in individual neurons, our analysis of the population orientation tuning functions revealed that iso-surrounds induce a general orientation-unspecific suppression across all orientation-tuned neurons, plus weak orientation-specific suppression to neurons tuned to the center stimulus orientation. Furthermore, cross-surrounds mainly reduce orientation-unspecific suppression by scaling up responses of all orientation-tuned neurons. These findings suggest a model of population gain control where surround stimuli mostly scale the responses of the neuronal population. Further population coding analyses supported this conclusion, demonstrating that surround suppression leads to degraded target orientation information at least partially due to a reduced number of contributing neurons with diverse orientation preferences.
Collapse
Affiliation(s)
- Xing-Nan Zhao
- School of Psychological and Cognitive Sciences, Peking University, Beijing, Beijing, China; PKU-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Sheng-Hui Zhang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, Beijing, China; PKU-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Shi-Ming Tang
- School of Life Sciences, Peking University, Beijing, China; IDG-McGovern Institute for Brain Research, Peking University, Beijing, China.
| | - Cong Yu
- School of Psychological and Cognitive Sciences, Peking University, Beijing, Beijing, China; IDG-McGovern Institute for Brain Research, Peking University, Beijing, China.
| |
Collapse
|
5
|
Del Rosario J, Coletta S, Kim SH, Mobille Z, Peelman K, Williams B, Otsuki AJ, Del Castillo Valerio A, Worden K, Blanpain LT, Lovell L, Choi H, Haider B. Lateral inhibition in V1 controls neural and perceptual contrast sensitivity. Nat Neurosci 2025; 28:836-847. [PMID: 40033123 DOI: 10.1038/s41593-025-01888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/06/2025] [Indexed: 03/05/2025]
Abstract
Lateral inhibition is a central principle in sensory system function. It is thought to operate by the activation of inhibitory neurons that restrict the spatial spread of sensory excitation. However, the neurons, computations and mechanisms underlying cortical lateral inhibition remain debated, and its importance for perception remains unknown. Here we show that lateral inhibition from parvalbumin neurons in mouse primary visual cortex reduced neural and perceptual sensitivity to visual contrast in a uniform subtractive manner, whereas lateral inhibition from somatostatin neurons more effectively changed the slope (or gain) of neural and perceptual contrast sensitivity. A neural circuit model, anatomical tracing and direct subthreshold measurements indicated that the larger spatial footprint for somatostatin versus parvalbumin synaptic inhibition explains this difference. Together, these results define cell-type-specific computational roles for lateral inhibition in primary visual cortex, and establish their unique consequences on sensitivity to contrast, a fundamental aspect of the visual world.
Collapse
Affiliation(s)
- Joseph Del Rosario
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Stefano Coletta
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Soon Ho Kim
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zach Mobille
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kayla Peelman
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Brice Williams
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Alan J Otsuki
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | - Kendell Worden
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Lou T Blanpain
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Lyndah Lovell
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hannah Choi
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bilal Haider
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
6
|
Humphries MD. The Computational Bottleneck of Basal Ganglia Output (and What to Do About it). eNeuro 2025; 12:ENEURO.0431-23.2024. [PMID: 40274408 PMCID: PMC12039478 DOI: 10.1523/eneuro.0431-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 04/26/2025] Open
Abstract
What the basal ganglia do is an oft-asked question; answers range from the selection of actions to the specification of movement to the estimation of time. Here, I argue that how the basal ganglia do what they do is a less-asked but equally important question. I show that the output regions of the basal ganglia create a stringent computational bottleneck, both structurally, because they have far fewer neurons than do their target regions, and dynamically, because of their tonic, inhibitory output. My proposed solution to this bottleneck is that the activity of an output neuron is setting the weight of a basis function, a function defined by that neuron's synaptic contacts. I illustrate how this may work in practice, allowing basal ganglia output to shift cortical dynamics and control eye movements via the superior colliculus. This solution can account for troubling issues in our understanding of the basal ganglia: why we see output neurons increasing their activity during behavior, rather than only decreasing as predicted by theories based on disinhibition, and why the output of the basal ganglia seems to have so many codes squashed into such a tiny region of the brain.
Collapse
|
7
|
Becker LA, Baccelli F, Taillefumier T. Subthreshold moment analysis of neuronal populations driven by synchronous synaptic inputs. ARXIV 2025:arXiv:2503.13702v1. [PMID: 40166746 PMCID: PMC11957229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Even when driven by the same stimulus, neuronal responses are well-known to exhibit a striking level of spiking variability. In-vivo electrophysiological recordings also reveal a surprisingly large degree of variability at the subthreshold level. In prior work, we considered biophysically relevant neuronal models to account for the observed magnitude of membrane voltage fluctuations. We found that accounting for these fluctuations requires weak but nonzero synchrony in the spiking activity, in amount that are consistent with experimentally measured spiking correlations. Here we investigate whether such synchrony can explain additional statistical features of the measured neural activity, including neuronal voltage covariability and voltage skewness. Addressing this question involves conducting a generalized moment analysis of conductance-based neurons in response to input drives modeled as correlated jump processes. Technically, we perform such an analysis using fixed-point techniques from queuing theory that are applicable in the stationary regime of activity. We found that weak but nonzero synchrony can consistently explain the experimentally reported voltage covariance and skewness. This confirms the role of synchrony as a primary driver of cortical variability and supports that physiological neural activity emerges as a population-level phenomenon, especially in the spontaneous regime.
Collapse
Affiliation(s)
- Logan A. Becker
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin, Texas, USA
- Department of Neuroscience, The University of Texas at Austin, Texas, USA
| | - François Baccelli
- Department of Mathematics, The University of Texas at Austin, Texas, USA
- Departement d’informatique, Ecole Normale Supérieure, Paris, France
- Institut national de recherche en sciences et technologies du numérique, Paris, France
| | - Thibaud Taillefumier
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin, Texas, USA
- Department of Neuroscience, The University of Texas at Austin, Texas, USA
- Department of Mathematics, The University of Texas at Austin, Texas, USA
| |
Collapse
|
8
|
Becker LA, Baccelli F, Taillefumier T. Subthreshold variability of neuronal populations driven by synchronous synaptic inputs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.16.643547. [PMID: 40161748 PMCID: PMC11952518 DOI: 10.1101/2025.03.16.643547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Even when driven by the same stimulus, neuronal responses are well-known to exhibit a striking level of spiking variability. In-vivo electrophysiological recordings also reveal a surprisingly large degree of variability at the subthreshold level. In prior work, we considered biophysically relevant neuronal models to account for the observed magnitude of membrane voltage fluctuations. We found that accounting for these fluctuations requires weak but nonzero synchrony in the spiking activity, in amount that are consistent with experimentally measured spiking correlations. Here we investigate whether such synchrony can explain additional statistical features of the measured neural activity, including neuronal voltage covariability and voltage skewness. Addressing this question involves conducting a generalized moment analysis of conductance-based neurons in response to input drives modeled as correlated jump processes. Technically, we perform such an analysis using fixed-point techniques from queuing theory that are applicable in the stationary regime of activity. We found that weak but nonzero synchrony can consistently explain the experimentally reported voltage covariance and skewness. This confirms the role of synchrony as a primary driver of cortical variability and supports that physiological neural activity emerges as a population-level phenomenon, especially in the spontaneous regime.
Collapse
Affiliation(s)
- Logan A. Becker
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin, Texas, USA
- Department of Neuroscience, The University of Texas at Austin, Texas, USA
| | - François Baccelli
- Department of Mathematics, The University of Texas at Austin, Texas, USA
- Departement d’informatique, Ecole Normale Supérieure, Paris, France
- Institut national de recherche en sciences et technologies du numérique, Paris, France
| | - Thibaud Taillefumier
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin, Texas, USA
- Department of Neuroscience, The University of Texas at Austin, Texas, USA
- Department of Mathematics, The University of Texas at Austin, Texas, USA
| |
Collapse
|
9
|
Shao Y, Dahmen D, Recanatesi S, Shea-Brown E, Ostojic S. Identifying the impact of local connectivity patterns on dynamics in excitatory-inhibitory networks. ARXIV 2025:arXiv:2411.06802v3. [PMID: 39650608 PMCID: PMC11623704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Networks of excitatory and inhibitory (EI) neurons form a canonical circuit in the brain. Seminal theoretical results on dynamics of such networks are based on the assumption that synaptic strengths depend on the type of neurons they connect, but are otherwise statistically independent. Recent synaptic physiology datasets however highlight the prominence of specific connectivity patterns that go well beyond what is expected from independent connections. While decades of influential research have demonstrated the strong role of the basic EI cell type structure, to which extent additional connectivity features influence dynamics remains to be fully determined. Here we examine the effects of pairwise connectivity motifs on the linear dynamics in EI networks using an analytical framework that approximates the connectivity in terms of low-rank structures. This low-rank approximation is based on a mathematical derivation of the dominant eigenvalues of the connectivity matrix and predicts the impact on responses to external inputs of connectivity motifs and their interactions with cell-type structure. Our results reveal that a particular pattern of connectivity, chain motifs, have a much stronger impact on dominant eigenmodes than other pairwise motifs. An overrepresentation of chain motifs induces a strong positive eigenvalue in inhibition-dominated networks and generates a potential instability that requires revisiting the classical excitation-inhibition balance criteria. Examining effects of external inputs, we show that chain motifs can on their own induce paradoxical responses where an increased input to inhibitory neurons leads to a decrease in their activity due to the recurrent feedback. These findings have direct implications for the interpretation of experiments in which responses to optogenetic perturbations are measured and used to infer the dynamical regime of cortical circuits.
Collapse
|
10
|
Griswold SV, Van Hooser SD. Premature vision drives aberrant development of response properties in primary visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643139. [PMID: 40161832 PMCID: PMC11952534 DOI: 10.1101/2025.03.13.643139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Development of the mammalian visual system is thought to proceed in two stages. In the first stage, before birth in primates and before eye opening in altricial mammals, spontaneous activity generated by the retina and cortex shapes visual brain circuits in an activity-dependent but experience-independent manner. In the second stage, visual activity generated by sensory experience refines receptive fields. Here we investigated the consequences of altering this sequence of events by prematurely opening one or both eyes of ferrets and examining visual receptive fields in monocular cortex after the closure of the critical period for ocular dominance plasticity. We observed that many cells in animals with prematurely-opened eyes exhibited low-pass temporal frequency tuning and increased temporal frequency bandwidths, and these cells showed slightly increased orientation and direction selectivity index values. Spontaneous activity was greatly elevated in both hemispheres following the premature opening of one or both eyes, suggesting a global change in circuit excitability that was not restricted to cells that viewed the world through the prematurely opened eye. No major changes were noted in spatial frequency tuning. These results suggest that premature visual experience alters circuit excitability and visual receptive fields, in particular with respect to temporal processing. We speculate that closed lids in altricial mammals serve to prevent visual experience until circuits are initially established and are ready to be refined by visual experience.
Collapse
Affiliation(s)
| | - Stephen D. Van Hooser
- Department of Biology
- Volen Center for Complex Systems
- Sloan-Swartz Center for Theoretical Neurobiology, Brandeis University, Waltham, MA 02454 USA
| |
Collapse
|
11
|
Korkian Y, Nakhla N, Pack CC. Feature selectivity of corticocortical feedback along the primate dorsal visual pathway. J Neurophysiol 2025; 133:799-814. [PMID: 39813398 DOI: 10.1152/jn.00278.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/02/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025] Open
Abstract
Anatomical studies have revealed a prominent role for feedback projections in the primate visual cortex. Theoretical models suggest that these projections support important brain functions such as attention, prediction, and learning. However, these models make different predictions about the relationship between feedback connectivity and neuronal stimulus selectivity. We have therefore performed simultaneous recordings in different regions of the primate dorsal visual pathway. Specifically, we recorded neural activity from the medial superior temporal (MST) area, and one of its main feedback targets, the middle temporal (MT) area. We estimated functional connectivity from correlations in the single-neuron spike trains and performed electrical microstimulation in MST to determine its causal influence on MT. Both methods revealed that inhibitory feedback occurred more commonly when the source and target neurons had very different stimulus preferences. At the same time, the strength of feedback suppression was greater for neurons with similar preferences. Excitatory feedback projections, in contrast, showed no consistent relationship with stimulus preferences. These results suggest that corticocortical feedback could play a role in shaping sensory responses according to behavioral or environmental context.NEW & NOTEWORTHY Here, we show that corticocortical feedback influences are often determined by the selectivity of the individual neurons. A common motif is the occurrence of inhibitory feedback among neurons with very different stimulus preferences. This results in strong suppression of responses in area MT when MST is electrically stimulated. Interestingly, this feedback shows a complex interaction with ongoing visual stimulation, being powerfully suppressive when visual inputs are strong, yet excitatory when visual inputs are weak.
Collapse
Affiliation(s)
- Yavar Korkian
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Quantitative Life Sciences PhD Program, McGill University, Montreal, Quebec, Canada
| | - Nardin Nakhla
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Christopher C Pack
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Godin C, Krause MR, Vieira PG, Pack CC, Thivierge JP. Control of Inhibition-Stabilized Oscillations in Wilson-Cowan Networks with Homeostatic Plasticity. ENTROPY (BASEL, SWITZERLAND) 2025; 27:215. [PMID: 40003212 PMCID: PMC11854103 DOI: 10.3390/e27020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/23/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Interactions between excitatory and inhibitory neurons in the cerebral cortex give rise to different regimes of activity and modulate brain oscillations. A prominent regime in the cortex is the inhibition-stabilized network (ISN), defined by strong recurrent excitation balanced by inhibition. While theoretical models have captured the response of brain circuits in the ISN state, their connectivity is typically hard-wired, leaving unanswered how a network may self-organize to an ISN state and dynamically switch between ISN and non-ISN states to modulate oscillations. Here, we introduce a mean-rate model of coupled Wilson-Cowan equations, link ISN and non-ISN states to Kolmogorov-Sinai entropy, and demonstrate how homeostatic plasticity (HP) allows the network to express both states depending on its level of tonic activity. This mechanism enables the model to capture a broad range of experimental effects, including (i) a paradoxical decrease in inhibitory activity, (ii) a phase offset between excitation and inhibition, and (iii) damped gamma oscillations. Further, the model accounts for experimental work on asynchronous quenching, where an external input suppresses intrinsic oscillations. Together, findings show that oscillatory activity is modulated by the dynamical regime of the network under the control of HP, thus advancing a framework that bridges neural dynamics, entropy, oscillations, and synaptic plasticity.
Collapse
Affiliation(s)
- Camille Godin
- School of Psychology, University of Ottawa, 156 Jean-Jacques Lussier, Ottawa, ON K1N 6N5, Canada
| | - Matthew R. Krause
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Pedro G. Vieira
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Christopher C. Pack
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jean-Philippe Thivierge
- School of Psychology, University of Ottawa, 156 Jean-Jacques Lussier, Ottawa, ON K1N 6N5, Canada
- Brain and Mind Research Institute, University of Ottawa, 451 Smyth Rd., Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
13
|
Di Santo S, Dipoppa M, Keller A, Roth M, Scanziani M, Miller KD. Contextual modulation emerges by integrating feedforward and feedback processing in mouse visual cortex. Cell Rep 2025; 44:115088. [PMID: 39709599 DOI: 10.1016/j.celrep.2024.115088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/27/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
Sensory systems use context to infer meaning. Accordingly, context profoundly influences neural responses to sensory stimuli. However, a cohesive understanding of the circuit mechanisms governing contextual effects across different stimulus conditions is still lacking. Here we present a unified circuit model of mouse visual cortex that accounts for the main standard forms of contextual modulation. This data-driven and biologically realistic circuit, including three primary inhibitory cell types, sheds light on how bottom-up, top-down, and recurrent inputs are integrated across retinotopic space to generate contextual effects in layer 2/3. We establish causal relationships between neural responses, geometrical features of the inputs, and the connectivity patterns. The model not only reveals how a single canonical cortical circuit differently modulates sensory response depending on context but also generates multiple testable predictions, offering insights that apply to broader neural circuitry.
Collapse
Affiliation(s)
- Serena Di Santo
- Center for Theoretical Neuroscience and Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027, USA; Departamento de Electromagnetismo y Física de la Materia and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, 18071 Granada, Spain.
| | - Mario Dipoppa
- Center for Theoretical Neuroscience and Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Andreas Keller
- Department of Biomedicine, University of Basel, 4056 Basel, Switzerland; Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Morgane Roth
- Department of Biomedicine, University of Basel, 4056 Basel, Switzerland; Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Massimo Scanziani
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kenneth D Miller
- Center for Theoretical Neuroscience and Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027, USA; Department of Neuroscience, Swartz Program in Theoretical Neuroscience, Kavli Institute for Brain Science, College of Physicians and Surgeons and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027, USA
| |
Collapse
|
14
|
Chau HY, Miller KD, Palmigiano A. Exact linear theory of perturbation response in a space- and feature-dependent cortical circuit model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.27.630558. [PMID: 39896520 PMCID: PMC11785077 DOI: 10.1101/2024.12.27.630558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
What are the principles that govern the responses of cortical networks to their inputs and the emergence of these responses from recurrent connectivity? Recent experiments have probed these questions by measuring cortical responses to two-photon optogenetic perturbations of single cells in the mouse primary visual cortex. A robust theoretical framework is needed to determine the implications of these responses for cortical recurrence. Here we propose a novel analytical approach: a formulation of the dependence of cell-type-specific connectivity on spatial distance that yields an exact solution for the linear perturbation response of a model with multiple cell types and space- and feature-dependent connectivity. Importantly and unlike previous approaches, the solution is valid in regimes of strong as well as weak intra-cortical coupling. Analysis reveals the structure of connectivity implied by various features of single-cell perturbation responses, such as the surprisingly narrow spatial radius of nearby excitation beyond which inhibition dominates, the number of transitions between mean excitation and inhibition thereafter, and the dependence of these responses on feature preferences. Comparison of these results to existing optogenetic perturbation data yields constraints on cell-type-specific connection strengths and their tuning dependence. Finally, we provide experimental predictions regarding the response of inhibitory neurons to single-cell perturbations and the modulation of perturbation response by neuronal gain; the latter can explain observed differences in the feature-tuning of perturbation responses in the presence vs. absence of visual stimuli.
Collapse
Affiliation(s)
- Ho Yin Chau
- Center for Theoretical Neuroscience, College of Physicians and Surgeons and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
| | - Kenneth D. Miller
- Center for Theoretical Neuroscience, College of Physicians and Surgeons and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
- Dept. of Neuroscience, Swartz Program in Theoretical Neuroscience, Kavli Institute for Brain Science, College of Physicians and Surgeons and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York
| | - Agostina Palmigiano
- Center for Theoretical Neuroscience, College of Physicians and Surgeons and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
- Gatsby Computational Neuroscience Unit, University College London
| |
Collapse
|
15
|
Rawat S, Heeger DJ, Martiniani S. Unconditional stability of a recurrent neural circuit implementing divisive normalization. ARXIV 2025:arXiv:2409.18946v3. [PMID: 39398197 PMCID: PMC11469413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Stability in recurrent neural models poses a significant challenge, particularly in developing biologically plausible neurodynamical models that can be seamlessly trained. Traditional cortical circuit models are notoriously difficult to train due to expansive nonlinearities in the dynamical system, leading to an optimization problem with nonlinear stability constraints that are difficult to impose. Conversely, recurrent neural networks (RNNs) excel in tasks involving sequential data but lack biological plausibility and interpretability. In this work, we address these challenges by linking dynamic divisive normalization (DN) to the stability of "oscillatory recurrent gated neural integrator circuits" (ORGaNICs), a biologically plausible recurrent cortical circuit model that dynamically achieves DN and that has been shown to simulate a wide range of neurophysiological phenomena. By using the indirect method of Lyapunov, we prove the remarkable property of unconditional local stability for an arbitrary-dimensional ORGaNICs circuit when the recurrent weight matrix is the identity. We thus connect ORGaNICs to a system of coupled damped harmonic oscillators, which enables us to derive the circuit's energy function, providing a normative principle of what the circuit, and individual neurons, aim to accomplish. Further, for a generic recurrent weight matrix, we prove the stability of the 2D model and demonstrate empirically that stability holds in higher dimensions. Finally, we show that ORGaNICs can be trained by backpropagation through time without gradient clipping/scaling, thanks to its intrinsic stability property and adaptive time constants, which address the problems of exploding, vanishing, and oscillating gradients. By evaluating the model's performance on RNN benchmarks, we find that ORGaNICs outperform alternative neurodynamical models on static image classification tasks and perform comparably to LSTMs on sequential tasks.
Collapse
Affiliation(s)
- Shivang Rawat
- Courant Institute of Mathematical Sciences, NYU
- Center for Soft Matter Research, Department of Physics, NYU
| | - David J Heeger
- Department of Psychology, NYU
- Center for Neural Science, NYU
| | - Stefano Martiniani
- Courant Institute of Mathematical Sciences, NYU
- Center for Soft Matter Research, Department of Physics, NYU
- Simons Center for Computational Physical Chemistry, Department of Chemistry, NYU
| |
Collapse
|
16
|
Liu YH, Lin YC, Shih LC, Lin CP, Chang LH. Dissociation of focal and large-scale inhibitory functions in the older adults: A multimodal MRI study. Arch Gerontol Geriatr 2024; 127:105583. [PMID: 39059036 DOI: 10.1016/j.archger.2024.105583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND The decline of inhibitory in cognitive aging is linked to reduced cognitive and mental capacities in older adults. However, this decline often shows inconsistent clinical presentations, suggesting varied impacts on different inhibition-related tasks. Inhibitory control, a multifaceted construct, involves various types of inhibition. Understanding these components is crucial for comprehending how aging affects inhibitory functions. Our research investigates the influences of aging on large-scale and focal-scale inhibitory and examines the relationship with brain markers. METHODS We examined the impact of aging on inhibitory in 18 younger (20-35 years) and 17 older adults (65-85 years) using focal and large-scale inhibition tasks. The Gabor task assessed focal-scale inhibition, while the Stop Signal Task (SST) evaluated large-scale inhibition. Participants underwent neuropsychological assessments and MRI scans, including magnetic resonance spectroscopy (MRS) and structural and resting fMRI. RESULTS Older adults exhibited a marked decline in inhibitory function, with slower SST responses indicating compromised large-scale inhibition. Conversely, the Gabor task showed no significant age-related changes. MRS findings revealed decreased levels of GABA, glutamate, glutamine, and NAA in the pre-SMA, correlating with observed large-scale inhibition in older adults. Additionally, pre-SMA seed-based functional connectivity analysis showed reduced brain network connections in older adults, potentially contributing to inhibitory control deficits. CONCLUSIONS Our study elucidates the differential effects of aging on inhibitory functions. While large-scale inhibition is more vulnerable to aging, focal-scale inhibition is relatively preserved. These findings highlight the importance of targeted cognitive interventions and underscore the necessity of a multifaceted approach in aging research.
Collapse
Affiliation(s)
- Yi-Hsuan Liu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Cheng Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan; Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan; Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ling-Chieh Shih
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan; Deptartment of Education and Research, Taipei City Hospital, Taipei, Taiwan; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Hung Chang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Philosophy of Mind and Cognition, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
17
|
Song D, Ruff D, Cohen M, Huang C. Neuronal heterogeneity of normalization strength in a circuit model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624903. [PMID: 39605397 PMCID: PMC11601594 DOI: 10.1101/2024.11.22.624903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The size of a neuron's receptive field increases along the visual hierarchy. Neurons in higher-order visual areas integrate information through a canonical computation called normalization, where neurons respond sublinearly to multiple stimuli in the receptive field. Neurons in the visual cortex exhibit highly heterogeneous degrees of normalization. Recent population recordings from visual cortex find that the interactions between neurons, measured by spike count correlations, depend on their normalization strengths. However, the circuit mechanism underlying the heterogeneity of normalization is unclear. In this work, we study normalization in a spiking neuron network model of visual cortex. The model produces a range of neuronal heterogeneity of normalization strength and the heterogeneity is highly correlated with the inhibitory current each neuron receives. Our model reproduces the dependence of spike count correlations on normalization as observed in experimental data, which is explained by the covariance with the inhibitory current. We find that neurons with stronger normalization are more sensitive to contrast differences in images and encode information more efficiently. In addition, networks with more heterogeneity in normalization encode more information about visual stimuli. Together, our model provides a mechanistic explanation of heterogeneous normalization strengths in the visual cortex, and sheds new light on the computational benefits of neuronal heterogeneity.
Collapse
Affiliation(s)
- Deying Song
- Joint Program in Neural Computation and Machine Learning, Neuroscience Institute, and Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA
- Center for the Neural Basis of Cognition, Pittsburgh, PA
| | - Douglas Ruff
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL
| | - Marlene Cohen
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL
| | - Chengcheng Huang
- Center for the Neural Basis of Cognition, Pittsburgh, PA
- Department of Neuroscience and Department of Mathematics, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
18
|
LaFosse PK, Zhou Z, O’Rawe JF, Friedman NG, Scott VM, Deng Y, Histed MH. Cellular-resolution optogenetics reveals attenuation-by-suppression in visual cortical neurons. Proc Natl Acad Sci U S A 2024; 121:e2318837121. [PMID: 39485801 PMCID: PMC11551350 DOI: 10.1073/pnas.2318837121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 08/14/2024] [Indexed: 11/03/2024] Open
Abstract
The relationship between neurons' input and spiking output is central to brain computation. Studies in vitro and in anesthetized animals suggest that nonlinearities emerge in cells' input-output (IO; activation) functions as network activity increases, yet how neurons transform inputs in vivo has been unclear. Here, we characterize cortical principal neurons' activation functions in awake mice using two-photon optogenetics. We deliver fixed inputs at the soma while neurons' activity varies with sensory stimuli. We find that responses to fixed optogenetic input are nearly unchanged as neurons are excited, reflecting a linear response regime above neurons' resting point. In contrast, responses are dramatically attenuated by suppression. This attenuation is a powerful means to filter inputs arriving to suppressed cells, privileging other inputs arriving to excited neurons. These results have two major implications. First, somatic neural activation functions in vivo accord with the activation functions used in recent machine learning systems. Second, neurons' IO functions can filter sensory inputs-not only do sensory stimuli change neurons' spiking outputs, but these changes also affect responses to input, attenuating responses to some inputs while leaving others unchanged.
Collapse
Affiliation(s)
- Paul K. LaFosse
- Intramural Program, National Institute of Mental Health, NIH, Bethesda, MD20892
- NIH-University of Maryland Graduate Partnerships Program, NIH, Bethesda, MD20892
- Neuroscience and Cognitive Science Program, University of Maryland College Park, College Park, MD20742
| | - Zhishang Zhou
- Intramural Program, National Institute of Mental Health, NIH, Bethesda, MD20892
| | - Jonathan F. O’Rawe
- Intramural Program, National Institute of Mental Health, NIH, Bethesda, MD20892
| | - Nina G. Friedman
- Intramural Program, National Institute of Mental Health, NIH, Bethesda, MD20892
- NIH-University of Maryland Graduate Partnerships Program, NIH, Bethesda, MD20892
- Neuroscience and Cognitive Science Program, University of Maryland College Park, College Park, MD20742
| | - Victoria M. Scott
- Intramural Program, National Institute of Mental Health, NIH, Bethesda, MD20892
| | - Yanting Deng
- Intramural Program, National Institute of Mental Health, NIH, Bethesda, MD20892
| | - Mark H. Histed
- Intramural Program, National Institute of Mental Health, NIH, Bethesda, MD20892
| |
Collapse
|
19
|
Giannakakis E, Vinogradov O, Buendía V, Levina A. Structural influences on synaptic plasticity: The role of presynaptic connectivity in the emergence of E/I co-tuning. PLoS Comput Biol 2024; 20:e1012510. [PMID: 39480889 PMCID: PMC11556753 DOI: 10.1371/journal.pcbi.1012510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 11/12/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
Cortical neurons are versatile and efficient coding units that develop strong preferences for specific stimulus characteristics. The sharpness of tuning and coding efficiency is hypothesized to be controlled by delicately balanced excitation and inhibition. These observations suggest a need for detailed co-tuning of excitatory and inhibitory populations. Theoretical studies have demonstrated that a combination of plasticity rules can lead to the emergence of excitation/inhibition (E/I) co-tuning in neurons driven by independent, low-noise signals. However, cortical signals are typically noisy and originate from highly recurrent networks, generating correlations in the inputs. This raises questions about the ability of plasticity mechanisms to self-organize co-tuned connectivity in neurons receiving noisy, correlated inputs. Here, we study the emergence of input selectivity and weight co-tuning in a neuron receiving input from a recurrent network via plastic feedforward connections. We demonstrate that while strong noise levels destroy the emergence of co-tuning in the readout neuron, introducing specific structures in the non-plastic pre-synaptic connectivity can re-establish it by generating a favourable correlation structure in the population activity. We further show that structured recurrent connectivity can impact the statistics in fully plastic recurrent networks, driving the formation of co-tuning in neurons that do not receive direct input from other areas. Our findings indicate that the network dynamics created by simple, biologically plausible structural connectivity patterns can enhance the ability of synaptic plasticity to learn input-output relationships in higher brain areas.
Collapse
Affiliation(s)
- Emmanouil Giannakakis
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Oleg Vinogradov
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Victor Buendía
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Anna Levina
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
20
|
Baranauskas G, Rysevaite-Kyguoliene K, Sabeckis I, Tkatch T, Pauza DH. Local stimulation of pyramidal neurons in deep cortical layers of anesthetized rats enhances cortical visual information processing. Sci Rep 2024; 14:22862. [PMID: 39354096 PMCID: PMC11445437 DOI: 10.1038/s41598-024-73995-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
In the primary visual cortex area V1 activation of inhibitory interneurons, which provide negative feedback for excitatory pyramidal neurons, can improve visual response reliability and orientation selectivity. Moreover, optogenetic activation of one class of interneurons, parvalbumin (PV) positive cells, reduces the receptive field (RF) width. These data suggest that in V1 the negative feedback improves visual information processing. However, according to information theory, noise can limit information content in a signal, and to the best of our knowledge, in V1 signal-to-noise ratio (SNR) has never been estimated following either pyramidal or inhibitory neuron activation. Therefore, we optogenetically activated pyramidal or PV neurons in the deep layers of cortical area V1 and measured the SNR and RF area in nearby pyramidal neurons. Activation of pyramidal or PV neurons increased the SNR by 267% and 318%, respectively, and reduced the RF area to 60.1% and 77.5%, respectively, of that of the control. A simple integrate-and-fire neuron model demonstrated that an improved SNR and a reduced RF area can increase the amount of information encoded by neurons. We conclude that in V1 activation of pyramidal neurons improves visual information processing since the location of the visual stimulus can be pinpointed more accurately (via a reduced RF area), and more information is encoded by neurons (due to increased SNR).
Collapse
Affiliation(s)
- Gytis Baranauskas
- Neurophysiology Laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | | | - Ignas Sabeckis
- Anatomy Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Tatiana Tkatch
- Neurophysiology Laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Physiology, Northwestern University, Chicago, IL, USA
| | - Dainius H Pauza
- Anatomy Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
21
|
Sawada T, Iino Y, Yoshida K, Okazaki H, Nomura S, Shimizu C, Arima T, Juichi M, Zhou S, Kurabayashi N, Sakurai T, Yagishita S, Yanagisawa M, Toyoizumi T, Kasai H, Shi S. Prefrontal synaptic regulation of homeostatic sleep pressure revealed through synaptic chemogenetics. Science 2024; 385:1459-1465. [PMID: 39325885 DOI: 10.1126/science.adl3043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/28/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
Sleep is regulated by homeostatic processes, yet the biological basis of sleep pressure that accumulates during wakefulness, triggers sleep, and dissipates during sleep remains elusive. We explored a causal relationship between cellular synaptic strength and electroencephalography delta power indicating macro-level sleep pressure by developing a theoretical framework and a molecular tool to manipulate synaptic strength. The mathematical model predicted that increased synaptic strength promotes the neuronal "down state" and raises the delta power. Our molecular tool (synapse-targeted chemically induced translocation of Kalirin-7, SYNCit-K), which induces dendritic spine enlargement and synaptic potentiation through chemically induced translocation of protein Kalirin-7, demonstrated that synaptic potentiation of excitatory neurons in the prefrontal cortex (PFC) increases nonrapid eye movement sleep amounts and delta power. Thus, synaptic strength of PFC excitatory neurons dictates sleep pressure in mammals.
Collapse
Affiliation(s)
- Takeshi Sawada
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yusuke Iino
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kensuke Yoshida
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Hitoshi Okazaki
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shinnosuke Nomura
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Chika Shimizu
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tomoki Arima
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Motoki Juichi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Siqi Zhou
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Molecular Behavioral Physiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Sho Yagishita
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Taro Toyoizumi
- RIKEN Center for Brain Science, Wako, Saitama, Japan
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Haruo Kasai
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shoi Shi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
22
|
Ito S, Piet A, Bennett C, Durand S, Belski H, Garrett M, Olsen SR, Arkhipov A. Coordinated changes in a cortical circuit sculpt effects of novelty on neural dynamics. Cell Rep 2024; 43:114763. [PMID: 39288028 PMCID: PMC11563561 DOI: 10.1016/j.celrep.2024.114763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 06/03/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Recent studies have found dramatic cell-type-specific responses to stimulus novelty, highlighting the importance of analyzing the cortical circuitry at this granularity to understand brain function. Although initial work characterized activity by cell type, the alterations in cortical circuitry due to interacting novelty effects remain unclear. We investigated circuit mechanisms underlying the observed neural dynamics in response to novel stimuli using a large-scale public dataset of electrophysiological recordings in behaving mice and a population network model. The model was constrained by multi-patch synaptic physiology and electron microscopy data. We found generally weaker connections under novel stimuli, with shifts in the balance between somatostatin (SST) and vasoactive intestinal polypeptide (VIP) populations and increased excitatory influences on parvalbumin (PV) and SST populations. These findings systematically characterize how cortical circuits adapt to stimulus novelty.
Collapse
Affiliation(s)
| | - Alex Piet
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | | | | | - Hannah Belski
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | | | - Shawn R Olsen
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | | |
Collapse
|
23
|
Amsalem O, Inagaki H, Yu J, Svoboda K, Darshan R. Sub-threshold neuronal activity and the dynamical regime of cerebral cortex. Nat Commun 2024; 15:7958. [PMID: 39261492 PMCID: PMC11390892 DOI: 10.1038/s41467-024-51390-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
Cortical neurons exhibit temporally irregular spiking patterns and heterogeneous firing rates. These features arise in model circuits operating in a 'fluctuation-driven regime', in which fluctuations in membrane potentials emerge from the network dynamics. However, it is still debated whether the cortex operates in such a regime. We evaluated the fluctuation-driven hypothesis by analyzing spiking and sub-threshold membrane potentials of neurons in the frontal cortex of mice performing a decision-making task. We showed that while standard fluctuation-driven models successfully account for spiking statistics, they fall short in capturing the heterogeneity in sub-threshold activity. This limitation is an inevitable outcome of bombarding single-compartment neurons with a large number of pre-synaptic inputs, thereby clamping the voltage of all neurons to more or less the same average voltage. To address this, we effectively incorporated dendritic morphology into the standard models. Inclusion of dendritic morphology in the neuronal models increased neuronal selectivity and reduced error trials, suggesting a functional role for dendrites during decision-making. Our work suggests that, during decision-making, cortical neurons in high-order cortical areas operate in a fluctuation-driven regime.
Collapse
Affiliation(s)
- Oren Amsalem
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jianing Yu
- School of Life Sciences, Peking University, Beijing, China
| | - Karel Svoboda
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Ran Darshan
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
- The School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel.
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
24
|
Cammarata CM, Pei Y, Shields BC, Lim SSX, Hawley T, Li JY, St Amand D, Brunel N, Tadross MR, Glickfeld LL. Behavioral state and stimulus strength regulate the role of somatostatin interneurons in stabilizing network activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612138. [PMID: 39314375 PMCID: PMC11419099 DOI: 10.1101/2024.09.09.612138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Inhibition stabilization enables cortical circuits to encode sensory signals across diverse contexts. Somatostatin-expressing (SST) interneurons are well-suited for this role through their strong recurrent connectivity with excitatory pyramidal cells. We developed a cortical circuit model predicting that SST cells become increasingly important for stabilization as sensory input strengthens. We tested this prediction in mouse primary visual cortex by manipulating excitatory input to SST cells, a key parameter for inhibition stabilization, with a novel cell-type specific pharmacological method to selectively block glutamatergic receptors on SST cells. Consistent with our model predictions, we find antagonizing glutamatergic receptors drives a paradoxical facilitation of SST cells with increasing stimulus contrast. In addition, we find even stronger engagement of SST-dependent stabilization when the mice are aroused. Thus, we reveal that the role of SST cells in cortical processing gradually switches as a function of both input strength and behavioral state.
Collapse
Affiliation(s)
- Celine M Cammarata
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710 USA
| | - Yingming Pei
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710 USA
| | - Brenda C Shields
- Department of Biomedical Engineering, Duke University, Durham, NC 27701 USA
| | - Shaun S X Lim
- Department of Biomedical Engineering, Duke University, Durham, NC 27701 USA
| | - Tammy Hawley
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710 USA
| | - Jennifer Y Li
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710 USA
| | - David St Amand
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710 USA
| | - Nicolas Brunel
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710 USA
- Department of Physics, Duke University, Durham, NC 27710, USA
- Department of Computing Sciences, Bocconi University, Milan 20136, Italy
- These authors contributed equally
| | - Michael R Tadross
- Department of Biomedical Engineering, Duke University, Durham, NC 27701 USA
- These authors contributed equally
| | - Lindsey L Glickfeld
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710 USA
- Lead Contact: Lindsey Glickfeld, Department of Neurobiology, Duke University Medical Center, 311 Research Drive, BRB 401F, Durham, NC 27710
| |
Collapse
|
25
|
Xia J, Jasper A, Kohn A, Miller KD. Circuit-motivated generalized affine models characterize stimulus-dependent visual cortical shared variability. iScience 2024; 27:110512. [PMID: 39156642 PMCID: PMC11328009 DOI: 10.1016/j.isci.2024.110512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/01/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Correlated variability in the visual cortex is modulated by stimulus properties. The stimulus dependence of correlated variability impacts stimulus coding and is indicative of circuit structure. An affine model combining a multiplicative factor and an additive offset has been proposed to explain how correlated variability in primary visual cortex (V1) depends on stimulus orientations. However, whether the affine model could be extended to explain modulations by other stimulus variables or variability shared between two brain areas is unknown. Motivated by a simple neural circuit mechanism, we modified the affine model to better explain the contrast dependence of neural variability shared within either primary or secondary visual cortex (V1 or V2) as well as the orientation dependence of neural variability shared between V1 and V2. Our results bridge neural circuit mechanisms and statistical models and provide a parsimonious explanation for the stimulus dependence of correlated variability within and between visual areas.
Collapse
Affiliation(s)
- Ji Xia
- Center for Theoretical Neuroscience and Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Anna Jasper
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Adam Kohn
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kenneth D. Miller
- Center for Theoretical Neuroscience and Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neuroscience, Swartz Program in Theoretical Neuroscience, Kavli Institute for Brain Science, College of Physicians and Surgeons and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027, USA
| |
Collapse
|
26
|
Antolík J, Cagnol R, Rózsa T, Monier C, Frégnac Y, Davison AP. A comprehensive data-driven model of cat primary visual cortex. PLoS Comput Biol 2024; 20:e1012342. [PMID: 39167628 PMCID: PMC11371232 DOI: 10.1371/journal.pcbi.1012342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/03/2024] [Accepted: 07/20/2024] [Indexed: 08/23/2024] Open
Abstract
Knowledge integration based on the relationship between structure and function of the neural substrate is one of the main targets of neuroinformatics and data-driven computational modeling. However, the multiplicity of data sources, the diversity of benchmarks, the mixing of observables of different natures, and the necessity of a long-term, systematic approach make such a task challenging. Here we present a first snapshot of a long-term integrative modeling program designed to address this issue in the domain of the visual system: a comprehensive spiking model of cat primary visual cortex. The presented model satisfies an extensive range of anatomical, statistical and functional constraints under a wide range of visual input statistics. In the presence of physiological levels of tonic stochastic bombardment by spontaneous thalamic activity, the modeled cortical reverberations self-generate a sparse asynchronous ongoing activity that quantitatively matches a range of experimentally measured statistics. When integrating feed-forward drive elicited by a high diversity of visual contexts, the simulated network produces a realistic, quantitatively accurate interplay between visually evoked excitatory and inhibitory conductances; contrast-invariant orientation-tuning width; center surround interactions; and stimulus-dependent changes in the precision of the neural code. This integrative model offers insights into how the studied properties interact, contributing to a better understanding of visual cortical dynamics. It provides a basis for future development towards a comprehensive model of low-level perception.
Collapse
Affiliation(s)
- Ján Antolík
- Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, Prague 1, Czechia
- Unit of Neuroscience, Information and Complexity (UNIC), CNRS FRE 3693, Gif-sur-Yvette, France
- INSERM UMRI S 968; Sorbonne Université, UPMC Univ Paris 06, UMR S 968; CNRS, UMR 7210, Institut de la Vision, Paris, France
| | - Rémy Cagnol
- Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, Prague 1, Czechia
| | - Tibor Rózsa
- Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, Prague 1, Czechia
| | - Cyril Monier
- Unit of Neuroscience, Information and Complexity (UNIC), CNRS FRE 3693, Gif-sur-Yvette, France
- Institut des neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France
| | - Yves Frégnac
- Unit of Neuroscience, Information and Complexity (UNIC), CNRS FRE 3693, Gif-sur-Yvette, France
- Institut des neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France
| | - Andrew P. Davison
- Unit of Neuroscience, Information and Complexity (UNIC), CNRS FRE 3693, Gif-sur-Yvette, France
- Institut des neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France
| |
Collapse
|
27
|
Yang H, Han F, Wang Q. A large-scale neuronal network modelling study: Stimulus size modulates gamma oscillations in the primary visual cortex by long-range connections. Eur J Neurosci 2024; 60:4224-4243. [PMID: 38812400 DOI: 10.1111/ejn.16429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Stimulus size modulation of neuronal firing activity is a fundamental property of the primary visual cortex. Numerous biological experiments have shown that stimulus size modulation is affected by multiple factors at different spatiotemporal scales, but the exact pathways and mechanisms remain incompletely understood. In this paper, we establish a large-scale neuronal network model of primary visual cortex with layer 2/3 to study how gamma oscillation properties are modulated by stimulus size and especially how long-range connections affect the modulation as realistic neuronal properties and spatial distributions of synaptic connections are considered. It is shown that long-range horizontal synaptic connections are sufficient to produce dimensional modulation of firing rates and gamma oscillations. In particular, with increasing grating stimulus size, the firing rate increases and then decreases, the peak frequency of gamma oscillations decreases and the spectral power increases. These are consistent with biological experimental observations. Furthermore, we explain in detail how the number and spatial distribution of long-range connections affect the size modulation of gamma oscillations by using the analysis of neuronal firing activity and synaptic current fluctuations. Our results provide a mechanism explanation for size modulation of gamma oscillations in the primary visual cortex and reveal the important and unique role played by long-range connections, which contributes to a deeper understanding of the cognitive function of gamma oscillations in visual cortex.
Collapse
Affiliation(s)
- Hao Yang
- College of Information Science and Technology, Donghua University, Shanghai, China
| | - Fang Han
- College of Information Science and Technology, Donghua University, Shanghai, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing, China
| |
Collapse
|
28
|
Del Rosario J, Coletta S, Kim SH, Mobille Z, Peelman K, Williams B, Otsuki AJ, Del Castillo Valerio A, Worden K, Blanpain LT, Lovell L, Choi H, Haider B. Lateral inhibition in V1 controls neural & perceptual contrast sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.10.566605. [PMID: 38014014 PMCID: PMC10680635 DOI: 10.1101/2023.11.10.566605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Lateral inhibition is a central principle for sensory system function. It is thought to operate by the activation of inhibitory neurons that restrict the spatial spread of sensory excitation. Much work on the role of inhibition in sensory systems has focused on visual cortex; however, the neurons, computations, and mechanisms underlying cortical lateral inhibition remain debated, and its importance for visual perception remains unknown. Here, we tested how lateral inhibition from PV or SST neurons in mouse primary visual cortex (V1) modulates neural and perceptual sensitivity to stimulus contrast. Lateral inhibition from PV neurons reduced neural and perceptual sensitivity to visual contrast in a uniform subtractive manner, whereas lateral inhibition from SST neurons more effectively changed the slope (or gain) of neural and perceptual contrast sensitivity. A neural circuit model identified spatially extensive lateral projections from SST neurons as the key factor, and we confirmed this with anatomy and direct subthreshold measurements of a larger spatial footprint for SST versus PV lateral inhibition. Together, these results define cell-type specific computational roles for lateral inhibition in V1, and establish their unique consequences on sensitivity to contrast, a fundamental aspect of the visual world.
Collapse
|
29
|
Zhu V, Rosenbaum R. Learning Fixed Points of Recurrent Neural Networks by Reparameterizing the Network Model. Neural Comput 2024; 36:1568-1600. [PMID: 39028956 DOI: 10.1162/neco_a_01681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/18/2024] [Indexed: 07/21/2024]
Abstract
In computational neuroscience, recurrent neural networks are widely used to model neural activity and learning. In many studies, fixed points of recurrent neural networks are used to model neural responses to static or slowly changing stimuli, such as visual cortical responses to static visual stimuli. These applications raise the question of how to train the weights in a recurrent neural network to minimize a loss function evaluated on fixed points. In parallel, training fixed points is a central topic in the study of deep equilibrium models in machine learning. A natural approach is to use gradient descent on the Euclidean space of weights. We show that this approach can lead to poor learning performance due in part to singularities that arise in the loss surface. We use a reparameterization of the recurrent network model to derive two alternative learning rules that produce more robust learning dynamics. We demonstrate that these learning rules avoid singularities and learn more effectively than standard gradient descent. The new learning rules can be interpreted as steepest descent and gradient descent, respectively, under a non-Euclidean metric on the space of recurrent weights. Our results question the common, implicit assumption that learning in the brain should be expected to follow the negative Euclidean gradient of synaptic weights.
Collapse
Affiliation(s)
- Vicky Zhu
- Babson College, Mathematics, Analytics, Science, and Technology Division, Wellesley, MA 02481, U.S.A.
| | - Robert Rosenbaum
- University of Notre Dame, Department of Applied and Computational Mathematics and Statistics, Notre Dame, IN 46556, U.S.A.
| |
Collapse
|
30
|
Negrón A, Getz MP, Handy G, Doiron B. The mechanics of correlated variability in segregated cortical excitatory subnetworks. Proc Natl Acad Sci U S A 2024; 121:e2306800121. [PMID: 38959037 PMCID: PMC11252788 DOI: 10.1073/pnas.2306800121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 04/03/2024] [Indexed: 07/04/2024] Open
Abstract
Understanding the genesis of shared trial-to-trial variability in neuronal population activity within the sensory cortex is critical to uncovering the biological basis of information processing in the brain. Shared variability is often a reflection of the structure of cortical connectivity since it likely arises, in part, from local circuit inputs. A series of experiments from segregated networks of (excitatory) pyramidal neurons in the mouse primary visual cortex challenge this view. Specifically, the across-network correlations were found to be larger than predicted given the known weak cross-network connectivity. We aim to uncover the circuit mechanisms responsible for these enhanced correlations through biologically motivated cortical circuit models. Our central finding is that coupling each excitatory subpopulation with a specific inhibitory subpopulation provides the most robust network-intrinsic solution in shaping these enhanced correlations. This result argues for the existence of excitatory-inhibitory functional assemblies in early sensory areas which mirror not just response properties but also connectivity between pyramidal cells. Furthermore, our findings provide theoretical support for recent experimental observations showing that cortical inhibition forms structural and functional subnetworks with excitatory cells, in contrast to the classical view that inhibition is a nonspecific blanket suppression of local excitation.
Collapse
Affiliation(s)
- Alex Negrón
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL60616
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL60637
| | - Matthew P. Getz
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL60637
- Department of Neurobiology, University of Chicago, Chicago, IL60637
- Department of Statistics, University of Chicago, Chicago, IL60637
| | - Gregory Handy
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL60637
- Department of Neurobiology, University of Chicago, Chicago, IL60637
- Department of Statistics, University of Chicago, Chicago, IL60637
| | - Brent Doiron
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL60637
- Department of Neurobiology, University of Chicago, Chicago, IL60637
- Department of Statistics, University of Chicago, Chicago, IL60637
| |
Collapse
|
31
|
Eckmann S, Young EJ, Gjorgjieva J. Synapse-type-specific competitive Hebbian learning forms functional recurrent networks. Proc Natl Acad Sci U S A 2024; 121:e2305326121. [PMID: 38870059 PMCID: PMC11194505 DOI: 10.1073/pnas.2305326121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/25/2024] [Indexed: 06/15/2024] Open
Abstract
Cortical networks exhibit complex stimulus-response patterns that are based on specific recurrent interactions between neurons. For example, the balance between excitatory and inhibitory currents has been identified as a central component of cortical computations. However, it remains unclear how the required synaptic connectivity can emerge in developing circuits where synapses between excitatory and inhibitory neurons are simultaneously plastic. Using theory and modeling, we propose that a wide range of cortical response properties can arise from a single plasticity paradigm that acts simultaneously at all excitatory and inhibitory connections-Hebbian learning that is stabilized by the synapse-type-specific competition for a limited supply of synaptic resources. In plastic recurrent circuits, this competition enables the formation and decorrelation of inhibition-balanced receptive fields. Networks develop an assembly structure with stronger synaptic connections between similarly tuned excitatory and inhibitory neurons and exhibit response normalization and orientation-specific center-surround suppression, reflecting the stimulus statistics during training. These results demonstrate how neurons can self-organize into functional networks and suggest an essential role for synapse-type-specific competitive learning in the development of cortical circuits.
Collapse
Affiliation(s)
- Samuel Eckmann
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt am Main60438, Germany
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, CambridgeCB2 1PZ, United Kingdom
| | - Edward James Young
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, CambridgeCB2 1PZ, United Kingdom
| | - Julijana Gjorgjieva
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt am Main60438, Germany
- School of Life Sciences, Technical University Munich, Freising85354, Germany
| |
Collapse
|
32
|
Holt CJ, Miller KD, Ahmadian Y. The stabilized supralinear network accounts for the contrast dependence of visual cortical gamma oscillations. PLoS Comput Biol 2024; 20:e1012190. [PMID: 38935792 PMCID: PMC11236182 DOI: 10.1371/journal.pcbi.1012190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 07/10/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
When stimulated, neural populations in the visual cortex exhibit fast rhythmic activity with frequencies in the gamma band (30-80 Hz). The gamma rhythm manifests as a broad resonance peak in the power-spectrum of recorded local field potentials, which exhibits various stimulus dependencies. In particular, in macaque primary visual cortex (V1), the gamma peak frequency increases with increasing stimulus contrast. Moreover, this contrast dependence is local: when contrast varies smoothly over visual space, the gamma peak frequency in each cortical column is controlled by the local contrast in that column's receptive field. No parsimonious mechanistic explanation for these contrast dependencies of V1 gamma oscillations has been proposed. The stabilized supralinear network (SSN) is a mechanistic model of cortical circuits that has accounted for a range of visual cortical response nonlinearities and contextual modulations, as well as their contrast dependence. Here, we begin by showing that a reduced SSN model without retinotopy robustly captures the contrast dependence of gamma peak frequency, and provides a mechanistic explanation for this effect based on the observed non-saturating and supralinear input-output function of V1 neurons. Given this result, the local dependence on contrast can trivially be captured in a retinotopic SSN which however lacks horizontal synaptic connections between its cortical columns. However, long-range horizontal connections in V1 are in fact strong, and underlie contextual modulation effects such as surround suppression. We thus explored whether a retinotopically organized SSN model of V1 with strong excitatory horizontal connections can exhibit both surround suppression and the local contrast dependence of gamma peak frequency. We found that retinotopic SSNs can account for both effects, but only when the horizontal excitatory projections are composed of two components with different patterns of spatial fall-off with distance: a short-range component that only targets the source column, combined with a long-range component that targets columns neighboring the source column. We thus make a specific qualitative prediction for the spatial structure of horizontal connections in macaque V1, consistent with the columnar structure of cortex.
Collapse
Affiliation(s)
- Caleb J Holt
- Department of Physics, Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Kenneth D Miller
- Deptartment of Neuroscience, Center for Theoretical Neuroscience, Swartz Program in Theoretical Neuroscience, Kavli Institute for Brain Science, College of Physicians and Surgeons, and Morton B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
| | - Yashar Ahmadian
- Department of Engineering, Computational and Biological Learning Lab, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
33
|
Mulholland HN, Kaschube M, Smith GB. Self-organization of modular activity in immature cortical networks. Nat Commun 2024; 15:4145. [PMID: 38773083 PMCID: PMC11109213 DOI: 10.1038/s41467-024-48341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/26/2024] [Indexed: 05/23/2024] Open
Abstract
During development, cortical activity is organized into distributed modular patterns that are a precursor of the mature columnar functional architecture. Theoretically, such structured neural activity can emerge dynamically from local synaptic interactions through a recurrent network with effective local excitation with lateral inhibition (LE/LI) connectivity. Utilizing simultaneous widefield calcium imaging and optogenetics in juvenile ferret cortex prior to eye opening, we directly test several critical predictions of an LE/LI mechanism. We show that cortical networks transform uniform stimulations into diverse modular patterns exhibiting a characteristic spatial wavelength. Moreover, patterned optogenetic stimulation matching this wavelength selectively biases evoked activity patterns, while stimulation with varying wavelengths transforms activity towards this characteristic wavelength, revealing a dynamic compromise between input drive and the network's intrinsic tendency to organize activity. Furthermore, the structure of early spontaneous cortical activity - which is reflected in the developing representations of visual orientation - strongly overlaps that of uniform opto-evoked activity, suggesting a common underlying mechanism as a basis for the formation of orderly columnar maps underlying sensory representations in the brain.
Collapse
Affiliation(s)
- Haleigh N Mulholland
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Matthias Kaschube
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
- Department of Computer Science and Mathematics, Goethe University, 60054, Frankfurt am Main, Germany
| | - Gordon B Smith
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
- Optical Imaging and Brain Sciences Medical Discovery Team, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
34
|
Podlaski WF, Machens CK. Approximating Nonlinear Functions With Latent Boundaries in Low-Rank Excitatory-Inhibitory Spiking Networks. Neural Comput 2024; 36:803-857. [PMID: 38658028 DOI: 10.1162/neco_a_01658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/02/2024] [Indexed: 04/26/2024]
Abstract
Deep feedforward and recurrent neural networks have become successful functional models of the brain, but they neglect obvious biological details such as spikes and Dale's law. Here we argue that these details are crucial in order to understand how real neural circuits operate. Towards this aim, we put forth a new framework for spike-based computation in low-rank excitatory-inhibitory spiking networks. By considering populations with rank-1 connectivity, we cast each neuron's spiking threshold as a boundary in a low-dimensional input-output space. We then show how the combined thresholds of a population of inhibitory neurons form a stable boundary in this space, and those of a population of excitatory neurons form an unstable boundary. Combining the two boundaries results in a rank-2 excitatory-inhibitory (EI) network with inhibition-stabilized dynamics at the intersection of the two boundaries. The computation of the resulting networks can be understood as the difference of two convex functions and is thereby capable of approximating arbitrary non-linear input-output mappings. We demonstrate several properties of these networks, including noise suppression and amplification, irregular activity and synaptic balance, as well as how they relate to rate network dynamics in the limit that the boundary becomes soft. Finally, while our work focuses on small networks (5-50 neurons), we discuss potential avenues for scaling up to much larger networks. Overall, our work proposes a new perspective on spiking networks that may serve as a starting point for a mechanistic understanding of biological spike-based computation.
Collapse
Affiliation(s)
- William F Podlaski
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Christian K Machens
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| |
Collapse
|
35
|
Chen SCY, Chen Y, Geisler WS, Seidemann E. Neural correlates of perceptual similarity masking in primate V1. eLife 2024; 12:RP89570. [PMID: 38592269 PMCID: PMC11003749 DOI: 10.7554/elife.89570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Visual detection is a fundamental natural task. Detection becomes more challenging as the similarity between the target and the background in which it is embedded increases, a phenomenon termed 'similarity masking'. To test the hypothesis that V1 contributes to similarity masking, we used voltage sensitive dye imaging (VSDI) to measure V1 population responses while macaque monkeys performed a detection task under varying levels of target-background similarity. Paradoxically, we find that during an initial transient phase, V1 responses to the target are enhanced, rather than suppressed, by target-background similarity. This effect reverses in the second phase of the response, so that in this phase V1 signals are positively correlated with the behavioral effect of similarity. Finally, we show that a simple model with delayed divisive normalization can qualitatively account for our findings. Overall, our results support the hypothesis that a nonlinear gain control mechanism in V1 contributes to perceptual similarity masking.
Collapse
Affiliation(s)
- Spencer Chin-Yu Chen
- Center for Perceptual Systems, University of Texas at AustinAustinUnited States
- Department of Psychology, University of Texas at AustinAustinUnited States
- Center for Theoretical and Computational NeuroscienceAustinUnited States
- Department of Neuroscience, University of Texas at AustinAustinUnited States
- Department of Neurosurgery, Rutgers UniversityNew BrunswickUnited States
| | - Yuzhi Chen
- Center for Perceptual Systems, University of Texas at AustinAustinUnited States
- Department of Psychology, University of Texas at AustinAustinUnited States
- Center for Theoretical and Computational NeuroscienceAustinUnited States
- Department of Neuroscience, University of Texas at AustinAustinUnited States
| | - Wilson S Geisler
- Center for Perceptual Systems, University of Texas at AustinAustinUnited States
- Department of Psychology, University of Texas at AustinAustinUnited States
- Center for Theoretical and Computational NeuroscienceAustinUnited States
| | - Eyal Seidemann
- Center for Perceptual Systems, University of Texas at AustinAustinUnited States
- Department of Psychology, University of Texas at AustinAustinUnited States
- Center for Theoretical and Computational NeuroscienceAustinUnited States
- Department of Neuroscience, University of Texas at AustinAustinUnited States
| |
Collapse
|
36
|
Goris RLT, Coen-Cagli R, Miller KD, Priebe NJ, Lengyel M. Response sub-additivity and variability quenching in visual cortex. Nat Rev Neurosci 2024; 25:237-252. [PMID: 38374462 PMCID: PMC11444047 DOI: 10.1038/s41583-024-00795-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 02/21/2024]
Abstract
Sub-additivity and variability are ubiquitous response motifs in the primary visual cortex (V1). Response sub-additivity enables the construction of useful interpretations of the visual environment, whereas response variability indicates the factors that limit the precision with which the brain can do this. There is increasing evidence that experimental manipulations that elicit response sub-additivity often also quench response variability. Here, we provide an overview of these phenomena and suggest that they may have common origins. We discuss empirical findings and recent model-based insights into the functional operations, computational objectives and circuit mechanisms underlying V1 activity. These different modelling approaches all predict that response sub-additivity and variability quenching often co-occur. The phenomenology of these two response motifs, as well as many of the insights obtained about them in V1, generalize to other cortical areas. Thus, the connection between response sub-additivity and variability quenching may be a canonical motif across the cortex.
Collapse
Affiliation(s)
- Robbe L T Goris
- Center for Perceptual Systems, University of Texas at Austin, Austin, TX, USA.
| | - Ruben Coen-Cagli
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kenneth D Miller
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
- Dept. of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Morton B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Swartz Program in Theoretical Neuroscience, Columbia University, New York, NY, USA
| | - Nicholas J Priebe
- Center for Learning and Memory, University of Texas at Austin, Austin, TX, USA
| | - Máté Lengyel
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK
- Center for Cognitive Computation, Department of Cognitive Science, Central European University, Budapest, Hungary
| |
Collapse
|
37
|
Znamenskiy P, Kim MH, Muir DR, Iacaruso MF, Hofer SB, Mrsic-Flogel TD. Functional specificity of recurrent inhibition in visual cortex. Neuron 2024; 112:991-1000.e8. [PMID: 38244539 DOI: 10.1016/j.neuron.2023.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024]
Abstract
In the neocortex, neural activity is shaped by the interaction of excitatory and inhibitory neurons, defined by the organization of their synaptic connections. Although connections among excitatory pyramidal neurons are sparse and functionally tuned, inhibitory connectivity is thought to be dense and largely unstructured. By measuring in vivo visual responses and synaptic connectivity of parvalbumin-expressing (PV+) inhibitory cells in mouse primary visual cortex, we show that the synaptic weights of their connections to nearby pyramidal neurons are specifically tuned according to the similarity of the cells' responses. Individual PV+ cells strongly inhibit those pyramidal cells that provide them with strong excitation and share their visual selectivity. This structured organization of inhibitory synaptic weights provides a circuit mechanism for tuned inhibition onto pyramidal cells despite dense connectivity, stabilizing activity within feature-specific excitatory ensembles while supporting competition between them.
Collapse
Affiliation(s)
- Petr Znamenskiy
- Specification and Function of Neural Circuits Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Sainsbury Wellcome Centre, 25 Howland Street, London W1T 4JG, UK; Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| | - Mean-Hwan Kim
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Dylan R Muir
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | - Sonja B Hofer
- Sainsbury Wellcome Centre, 25 Howland Street, London W1T 4JG, UK; Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Thomas D Mrsic-Flogel
- Sainsbury Wellcome Centre, 25 Howland Street, London W1T 4JG, UK; Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
38
|
Russell LE, Fişek M, Yang Z, Tan LP, Packer AM, Dalgleish HWP, Chettih SN, Harvey CD, Häusser M. The influence of cortical activity on perception depends on behavioral state and sensory context. Nat Commun 2024; 15:2456. [PMID: 38503769 PMCID: PMC10951313 DOI: 10.1038/s41467-024-46484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/28/2024] [Indexed: 03/21/2024] Open
Abstract
The mechanistic link between neural circuit activity and behavior remains unclear. While manipulating cortical activity can bias certain behaviors and elicit artificial percepts, some tasks can still be solved when cortex is silenced or removed. Here, mice were trained to perform a visual detection task during which we selectively targeted groups of visually responsive and co-tuned neurons in L2/3 of primary visual cortex (V1) for two-photon photostimulation. The influence of photostimulation was conditional on two key factors: the behavioral state of the animal and the contrast of the visual stimulus. The detection of low-contrast stimuli was enhanced by photostimulation, while the detection of high-contrast stimuli was suppressed, but crucially, only when mice were highly engaged in the task. When mice were less engaged, our manipulations of cortical activity had no effect on behavior. The behavioral changes were linked to specific changes in neuronal activity. The responses of non-photostimulated neurons in the local network were also conditional on two factors: their functional similarity to the photostimulated neurons and the contrast of the visual stimulus. Functionally similar neurons were increasingly suppressed by photostimulation with increasing visual stimulus contrast, correlating with the change in behavior. Our results show that the influence of cortical activity on perception is not fixed, but dynamically and contextually modulated by behavioral state, ongoing activity and the routing of information through specific circuits.
Collapse
Affiliation(s)
- Lloyd E Russell
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Mehmet Fişek
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Zidan Yang
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Lynn Pei Tan
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Adam M Packer
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Henry W P Dalgleish
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | | | | | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| |
Collapse
|
39
|
Mulholland HN, Kaschube M, Smith GB. Self-organization of modular activity in immature cortical networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.583133. [PMID: 38464130 PMCID: PMC10925298 DOI: 10.1101/2024.03.02.583133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
During development, cortical activity is organized into distributed modular patterns that are a precursor of the mature columnar functional architecture. Theoretically, such structured neural activity can emerge dynamically from local synaptic interactions through a recurrent network with effective local excitation with lateral inhibition (LE/LI) connectivity. Utilizing simultaneous widefield calcium imaging and optogenetics in juvenile ferret cortex prior to eye opening, we directly test several critical predictions of an LE/LI mechanism. We show that cortical networks transform uniform stimulations into diverse modular patterns exhibiting a characteristic spatial wavelength. Moreover, patterned optogenetic stimulation matching this wavelength selectively biases evoked activity patterns, while stimulation with varying wavelengths transforms activity towards this characteristic wavelength, revealing a dynamic compromise between input drive and the network's intrinsic tendency to organize activity. Furthermore, the structure of early spontaneous cortical activity - which is reflected in the developing representations of visual orientation - strongly overlaps that of uniform opto-evoked activity, suggesting a common underlying mechanism as a basis for the formation of orderly columnar maps underlying sensory representations in the brain.
Collapse
Affiliation(s)
| | - Matthias Kaschube
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, 60438, Germany
| | - Gordon B. Smith
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Optical Imaging and Brain Sciences Medical Discovery Team, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
40
|
Pattadkal JJ, Zemelman BV, Fiete I, Priebe NJ. Primate neocortex performs balanced sensory amplification. Neuron 2024; 112:661-675.e7. [PMID: 38091984 PMCID: PMC10922204 DOI: 10.1016/j.neuron.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/08/2023] [Accepted: 11/07/2023] [Indexed: 01/25/2024]
Abstract
The sensory cortex amplifies relevant features of external stimuli. This sensitivity and selectivity arise through the transformation of inputs by cortical circuitry. We characterize the circuit mechanisms and dynamics of cortical amplification by making large-scale simultaneous measurements of single cells in awake primates and testing computational models. By comparing network activity in both driven and spontaneous states with models, we identify the circuit as operating in a regime of non-normal balanced amplification. Incoming inputs are strongly but transiently amplified by strong recurrent feedback from the disruption of excitatory-inhibitory balance in the network. Strong inhibition rapidly quenches responses, thereby permitting the tracking of time-varying stimuli.
Collapse
Affiliation(s)
- Jagruti J Pattadkal
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Boris V Zemelman
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ila Fiete
- Department of Brain and Cognitive Sciences, MIT, Boston, MA 02139, USA
| | - Nicholas J Priebe
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
41
|
Tring E, Dipoppa M, Ringach DL. On the contrast response function of adapted neural populations. J Neurophysiol 2024; 131:446-453. [PMID: 38264786 PMCID: PMC11305633 DOI: 10.1152/jn.00413.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 01/25/2024] Open
Abstract
The magnitude of neural responses in sensory cortex depends on the intensity of a stimulus and its probability of being observed within the environment. How these two variables combine to influence the overall response of cortical populations remains unknown. Here we show that, in primary visual cortex, the vector magnitude of the population response is described by a separable power law that factors the intensity of a stimulus and its probability. Moreover, the discriminability between two contrast levels in a cortical population is proportional to the logarithm of the contrast ratio.NEW & NOTEWORTHY The magnitude of neural responses in sensory cortex depends on the intensity of a stimulus and its probability of being observed within the environment. The authors show that, in primary visual cortex, the vector magnitude of the population response is described by a separable power law that factors the intensity of a stimulus and its probability.
Collapse
Affiliation(s)
- Elaine Tring
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Mario Dipoppa
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Dario L Ringach
- Department of Psychology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| |
Collapse
|
42
|
Oldenburg IA, Hendricks WD, Handy G, Shamardani K, Bounds HA, Doiron B, Adesnik H. The logic of recurrent circuits in the primary visual cortex. Nat Neurosci 2024; 27:137-147. [PMID: 38172437 PMCID: PMC10774145 DOI: 10.1038/s41593-023-01510-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/27/2023] [Indexed: 01/05/2024]
Abstract
Recurrent cortical activity sculpts visual perception by refining, amplifying or suppressing visual input. However, the rules that govern the influence of recurrent activity remain enigmatic. We used ensemble-specific two-photon optogenetics in the mouse visual cortex to isolate the impact of recurrent activity from external visual input. We found that the spatial arrangement and the visual feature preference of the stimulated ensemble and the neighboring neurons jointly determine the net effect of recurrent activity. Photoactivation of these ensembles drives suppression in all cells beyond 30 µm but uniformly drives activation in closer similarly tuned cells. In nonsimilarly tuned cells, compact, cotuned ensembles drive net suppression, while diffuse, cotuned ensembles drive activation. Computational modeling suggests that highly local recurrent excitatory connectivity and selective convergence onto inhibitory neurons explain these effects. Our findings reveal a straightforward logic in which space and feature preference of cortical ensembles determine their impact on local recurrent activity.
Collapse
Affiliation(s)
- Ian Antón Oldenburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, and Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA.
| | - William D Hendricks
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Gregory Handy
- Department of Neurobiology and Statistics, University of Chicago, Chicago, IL, USA.
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA.
- Department of Mathematics, University of Minnesota, Minneapolis, MN, USA.
| | - Kiarash Shamardani
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Hayley A Bounds
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Brent Doiron
- Department of Neurobiology and Statistics, University of Chicago, Chicago, IL, USA
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Hillel Adesnik
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
43
|
Becker LA, Li B, Priebe NJ, Seidemann E, Taillefumier T. Exact Analysis of the Subthreshold Variability for Conductance-Based Neuronal Models with Synchronous Synaptic Inputs. PHYSICAL REVIEW. X 2024; 14:011021. [PMID: 38911939 PMCID: PMC11194039 DOI: 10.1103/physrevx.14.011021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The spiking activity of neocortical neurons exhibits a striking level of variability, even when these networks are driven by identical stimuli. The approximately Poisson firing of neurons has led to the hypothesis that these neural networks operate in the asynchronous state. In the asynchronous state, neurons fire independently from one another, so that the probability that a neuron experience synchronous synaptic inputs is exceedingly low. While the models of asynchronous neurons lead to observed spiking variability, it is not clear whether the asynchronous state can also account for the level of subthreshold membrane potential variability. We propose a new analytical framework to rigorously quantify the subthreshold variability of a single conductance-based neuron in response to synaptic inputs with prescribed degrees of synchrony. Technically, we leverage the theory of exchangeability to model input synchrony via jump-process-based synaptic drives; we then perform a moment analysis of the stationary response of a neuronal model with all-or-none conductances that neglects postspiking reset. As a result, we produce exact, interpretable closed forms for the first two stationary moments of the membrane voltage, with explicit dependence on the input synaptic numbers, strengths, and synchrony. For biophysically relevant parameters, we find that the asynchronous regime yields realistic subthreshold variability (voltage variance ≃4-9 mV2) only when driven by a restricted number of large synapses, compatible with strong thalamic drive. By contrast, we find that achieving realistic subthreshold variability with dense cortico-cortical inputs requires including weak but nonzero input synchrony, consistent with measured pairwise spiking correlations. We also show that, without synchrony, the neural variability averages out to zero for all scaling limits with vanishing synaptic weights, independent of any balanced state hypothesis. This result challenges the theoretical basis for mean-field theories of the asynchronous state.
Collapse
Affiliation(s)
- Logan A. Becker
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Baowang Li
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Perceptual Systems, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Learning and Memory, The University of Texas at Austin, Austin, Texas 78712, USA
- Department of Psychology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Nicholas J. Priebe
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Learning and Memory, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Eyal Seidemann
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Perceptual Systems, The University of Texas at Austin, Austin, Texas 78712, USA
- Department of Psychology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Thibaud Taillefumier
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
- Department of Mathematics, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
44
|
Zhang WH. Decentralized Neural Circuits of Multisensory Information Integration in the Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1437:1-21. [PMID: 38270850 DOI: 10.1007/978-981-99-7611-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The brain combines multisensory inputs together to obtain a complete and reliable description of the world. Recent experiments suggest that several interconnected multisensory brain areas are simultaneously involved to integrate multisensory information. It was unknown how these mutually connected multisensory areas achieve multisensory integration. To answer this question, using biologically plausible neural circuit models we developed a decentralized system for information integration that comprises multiple interconnected multisensory brain areas. Through studying an example of integrating visual and vestibular cues to infer heading direction, we show that such a decentralized system is well consistent with experimental observations. In particular, we demonstrate that this decentralized system can optimally integrate information by implementing sampling-based Bayesian inference. The Poisson variability of spike generation provides appropriate variability to drive sampling, and the interconnections between multisensory areas store the correlation prior between multisensory stimuli. The decentralized system predicts that optimally integrated information emerges locally from the dynamics of the communication between brain areas and sheds new light on the interpretation of the connectivity between multisensory brain areas.
Collapse
Affiliation(s)
- Wen-Hao Zhang
- Lyda Hill Department of Bioinformatics and O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
45
|
Becker LA, Li B, Priebe NJ, Seidemann E, Taillefumier T. Exact analysis of the subthreshold variability for conductance-based neuronal models with synchronous synaptic inputs. ARXIV 2023:arXiv:2304.09280v3. [PMID: 37131877 PMCID: PMC10153295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The spiking activity of neocortical neurons exhibits a striking level of variability, even when these networks are driven by identical stimuli. The approximately Poisson firing of neurons has led to the hypothesis that these neural networks operate in the asynchronous state. In the asynchronous state neurons fire independently from one another, so that the probability that a neuron experience synchronous synaptic inputs is exceedingly low. While the models of asynchronous neurons lead to observed spiking variability, it is not clear whether the asynchronous state can also account for the level of subthreshold membrane potential variability. We propose a new analytical framework to rigorously quantify the subthreshold variability of a single conductance-based neuron in response to synaptic inputs with prescribed degrees of synchrony. Technically we leverage the theory of exchangeability to model input synchrony via jump-process-based synaptic drives; we then perform a moment analysis of the stationary response of a neuronal model with all-or-none conductances that neglects post-spiking reset. As a result, we produce exact, interpretable closed forms for the first two stationary moments of the membrane voltage, with explicit dependence on the input synaptic numbers, strengths, and synchrony. For biophysically relevant parameters, we find that the asynchronous regime only yields realistic subthreshold variability (voltage variance ≃ 4 - 9 m V 2 ) when driven by a restricted number of large synapses, compatible with strong thalamic drive. By contrast, we find that achieving realistic subthreshold variability with dense cortico-cortical inputs requires including weak but nonzero input synchrony, consistent with measured pairwise spiking correlations. We also show that without synchrony, the neural variability averages out to zero for all scaling limits with vanishing synaptic weights, independent of any balanced state hypothesis. This result challenges the theoretical basis for mean-field theories of the asynchronous state.
Collapse
Affiliation(s)
- Logan A. Becker
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin
- Department of Neuroscience, The University of Texas at Austin
| | - Baowang Li
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin
- Department of Neuroscience, The University of Texas at Austin
- Center for Perceptual Systems, The University of Texas at Austin
- Center for Learning and Memory, The University of Texas at Austin
- Department of Psychology, The University of Texas at Austin
| | - Nicholas J. Priebe
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin
- Department of Neuroscience, The University of Texas at Austin
- Center for Learning and Memory, The University of Texas at Austin
| | - Eyal Seidemann
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin
- Department of Neuroscience, The University of Texas at Austin
- Center for Perceptual Systems, The University of Texas at Austin
- Department of Psychology, The University of Texas at Austin
| | - Thibaud Taillefumier
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin
- Department of Neuroscience, The University of Texas at Austin
- Department of Mathematics, The University of Texas at Austin
| |
Collapse
|
46
|
Sanzeni A, Palmigiano A, Nguyen TH, Luo J, Nassi JJ, Reynolds JH, Histed MH, Miller KD, Brunel N. Mechanisms underlying reshuffling of visual responses by optogenetic stimulation in mice and monkeys. Neuron 2023; 111:4102-4115.e9. [PMID: 37865082 PMCID: PMC10841937 DOI: 10.1016/j.neuron.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/05/2023] [Accepted: 09/15/2023] [Indexed: 10/23/2023]
Abstract
The ability to optogenetically perturb neural circuits opens an unprecedented window into mechanisms governing circuit function. We analyzed and theoretically modeled neuronal responses to visual and optogenetic inputs in mouse and monkey V1. In both species, optogenetic stimulation of excitatory neurons strongly modulated the activity of single neurons yet had weak or no effects on the distribution of firing rates across the population. Thus, the optogenetic inputs reshuffled firing rates across the network. Key statistics of mouse and monkey responses lay on a continuum, with mice/monkeys occupying the low-/high-rate regions, respectively. We show that neuronal reshuffling emerges generically in randomly connected excitatory/inhibitory networks, provided the coupling strength (combination of recurrent coupling and external input) is sufficient that powerful inhibitory feedback cancels the mean optogenetic input. A more realistic model, distinguishing tuned visual vs. untuned optogenetic input in a structured network, reduces the coupling strength needed to explain reshuffling.
Collapse
Affiliation(s)
- Alessandro Sanzeni
- Department of Computing Sciences, Bocconi University, 20100 Milan, Italy; Center for Theoretical Neuroscience and Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Agostina Palmigiano
- Center for Theoretical Neuroscience and Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Tuan H Nguyen
- Center for Theoretical Neuroscience and Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Physics, Columbia University, New York, NY 10027, USA
| | - Junxiang Luo
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jonathan J Nassi
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - John H Reynolds
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mark H Histed
- National Institute of Mental Health Intramural Program, NIH, Bethesda, MD 20814, USA
| | - Kenneth D Miller
- Center for Theoretical Neuroscience and Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Neuroscience, Swartz Program in Theoretical Neuroscience, Kavli Institute for Brain Science, College of Physicians and Surgeons and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027, USA.
| | - Nicolas Brunel
- Department of Neurobiology, Duke University, Durham, NC 27710, USA; Department of Physics, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
47
|
Khan S, Wong A, Tripp B. Modeling the Role of Contour Integration in Visual Inference. Neural Comput 2023; 36:33-74. [PMID: 38052088 DOI: 10.1162/neco_a_01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/08/2023] [Indexed: 12/07/2023]
Abstract
Under difficult viewing conditions, the brain's visual system uses a variety of recurrent modulatory mechanisms to augment feedforward processing. One resulting phenomenon is contour integration, which occurs in the primary visual (V1) cortex and strengthens neural responses to edges if they belong to a larger smooth contour. Computational models have contributed to an understanding of the circuit mechanisms of contour integration, but less is known about its role in visual perception. To address this gap, we embedded a biologically grounded model of contour integration in a task-driven artificial neural network and trained it using a gradient-descent variant. We used this model to explore how brain-like contour integration may be optimized for high-level visual objectives as well as its potential roles in perception. When the model was trained to detect contours in a background of random edges, a task commonly used to examine contour integration in the brain, it closely mirrored the brain in terms of behavior, neural responses, and lateral connection patterns. When trained on natural images, the model enhanced weaker contours and distinguished whether two points lay on the same versus different contours. The model learned robust features that generalized well to out-of-training-distribution stimuli. Surprisingly, and in contrast with the synthetic task, a parameter-matched control network without recurrence performed the same as or better than the model on the natural-image tasks. Thus, a contour integration mechanism is not essential to perform these more naturalistic contour-related tasks. Finally, the best performance in all tasks was achieved by a modified contour integration model that did not distinguish between excitatory and inhibitory neurons.
Collapse
Affiliation(s)
- Salman Khan
- Centre for Theoretical Neuroscience, Department of System Design Engineering
- Vision and Image Processing Group, Department of System Design Engineering
- Waterloo Artificial Intelligence Institute: University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| | - Alexander Wong
- Vision and Image Processing Group, Department of System Design Engineering
- Waterloo Artificial Intelligence Institute: University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| | - Bryan Tripp
- Centre for Theoretical Neuroscience, Department of System Design Engineering
- Vision and Image Processing Group, Department of System Design Engineering
- Waterloo Artificial Intelligence Institute: University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| |
Collapse
|
48
|
Ouyang G, Wang S, Liu M, Zhang M, Zhou C. Multilevel and multifaceted brain response features in spiking, ERP and ERD: experimental observation and simultaneous generation in a neuronal network model with excitation-inhibition balance. Cogn Neurodyn 2023; 17:1417-1431. [PMID: 37969943 PMCID: PMC10640466 DOI: 10.1007/s11571-022-09889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Brain as a dynamic system responds to stimulations with specific patterns affected by its inherent ongoing dynamics. The patterns are manifested across different levels of organization-from spiking activity of neurons to collective oscillations in local field potential (LFP) and electroencephalogram (EEG). The multilevel and multifaceted response activities show patterns seemingly distinct and non-comparable from each other, but they should be coherently related because they are generated from the same underlying neural dynamic system. A coherent understanding of the interrelationships between different levels/aspects of activity features is important for understanding the complex brain functions. Here, based on analysis of data from human EEG, monkey LFP and neuronal spiking, we demonstrated that the brain response activities from different levels of neural system are highly coherent: the external stimulus simultaneously generated event-related potentials, event-related desynchronization, and variation in neuronal spiking activities that precisely match with each other in the temporal unfolding. Based on a biologically plausible but generic network of conductance-based integrate-and-fire excitatory and inhibitory neurons with dense connections, we showed that the multiple key features can be simultaneously produced at critical dynamical regimes supported by excitation-inhibition (E-I) balance. The elucidation of the inherent coherency of various neural response activities and demonstration of a simple dynamical neural circuit system having the ability to simultaneously produce multiple features suggest the plausibility of understanding high-level brain function and cognition from elementary and generic neuronal dynamics. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09889-w.
Collapse
Affiliation(s)
- Guang Ouyang
- Faculty of Education, The University of Hong Kong, Pok Fu Lam, Hong Kong China
| | - Shengjun Wang
- Department of Physics, Shaanxi Normal University, Xi’an, 710119 China
| | - Mianxin Liu
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong China
| | - Mingsha Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875 China
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong China
| |
Collapse
|
49
|
Yoshida K, Toyoizumi T. Computational role of sleep in memory reorganization. Curr Opin Neurobiol 2023; 83:102799. [PMID: 37844426 DOI: 10.1016/j.conb.2023.102799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023]
Abstract
Sleep is considered to play an essential role in memory reorganization. Despite its importance, classical theoretical models did not focus on some sleep characteristics. Here, we review recent theoretical approaches investigating their roles in learning and discuss the possibility that non-rapid eye movement (NREM) sleep selectively consolidates memory, and rapid eye movement (REM) sleep reorganizes the representations of memories. We first review the possibility that slow waves during NREM sleep contribute to memory selection by using sequential firing patterns and the existence of up and down states. Second, we discuss the role of dreaming during REM sleep in developing neuronal representations. We finally discuss how to develop these points further, emphasizing the connections to experimental neuroscience and machine learning.
Collapse
Affiliation(s)
- Kensuke Yoshida
- Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taro Toyoizumi
- Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
50
|
Zhang WH, Wu S, Josić K, Doiron B. Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons. Nat Commun 2023; 14:7074. [PMID: 37925497 PMCID: PMC10625605 DOI: 10.1038/s41467-023-41743-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/15/2023] [Indexed: 11/06/2023] Open
Abstract
Two facts about cortex are widely accepted: neuronal responses show large spiking variability with near Poisson statistics and cortical circuits feature abundant recurrent connections between neurons. How these spiking and circuit properties combine to support sensory representation and information processing is not well understood. We build a theoretical framework showing that these two ubiquitous features of cortex combine to produce optimal sampling-based Bayesian inference. Recurrent connections store an internal model of the external world, and Poissonian variability of spike responses drives flexible sampling from the posterior stimulus distributions obtained by combining feedforward and recurrent neuronal inputs. We illustrate how this framework for sampling-based inference can be used by cortex to represent latent multivariate stimuli organized either hierarchically or in parallel. A neural signature of such network sampling are internally generated differential correlations whose amplitude is determined by the prior stored in the circuit, which provides an experimentally testable prediction for our framework.
Collapse
Affiliation(s)
- Wen-Hao Zhang
- Department of Neurobiology and Statistics, University of Chicago, Chicago, IL, USA
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Si Wu
- School of Psychological and Cognitive Sciences, Peking University, Beijing, 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Center of Quantitative Biology, Peking University, Beijing, 100871, China
| | - Krešimir Josić
- Department of Mathematics, University of Houston, Houston, TX, USA.
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| | - Brent Doiron
- Department of Neurobiology and Statistics, University of Chicago, Chicago, IL, USA.
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA.
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.
| |
Collapse
|