1
|
Chari T, Hernandez A, Couto J, Portera-Cailliau C. A reduced ability to discriminate social from non-social touch at the circuit level may underlie social avoidance in autism. Nat Commun 2025; 16:4600. [PMID: 40382316 DOI: 10.1038/s41467-025-59852-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 05/02/2025] [Indexed: 05/20/2025] Open
Abstract
Social touch is critical for communication to impart emotions and intentions. However, certain autistic individuals experience aversion to social touch. Here, we used Neuropixels probes to record neural responses to social vs. non-social interactions in somatosensory cortex, tail of striatum, and basolateral amygdala. We find that wild type mice show aversion to repeated presentations of an inanimate object but not of another mouse. Cortical neurons are modulated especially by touch context (social vs. object), while striatal neurons change their preference depending on whether mice could choose or not to interact. In contrast, Fmr1 knockout (KO) mice, a model of autism, find social and non-social interactions equally aversive, especially at close proximity, and their cortical/striatal neurons are less able to discriminate social valence. A linear model shows that the encoding of certain avoidance/aversive behaviors in cortical neuron activity differed between genotypes. Thus, a reduced capacity to represent social stimuli at the circuit level may underlie social avoidance in autism.
Collapse
Affiliation(s)
- Trishala Chari
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - Ariana Hernandez
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - João Couto
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Chari T, Hernandez A, Couto J, Portera-Cailliau C. A failure to discriminate social from non-social touch at the circuit level may underlie social avoidance in autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599778. [PMID: 38948773 PMCID: PMC11212975 DOI: 10.1101/2024.06.19.599778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Social touch is critical for communication and to impart emotions and intentions. However, certain autistic individuals experience aversion to social touch, especially when it is unwanted. We used a novel social touch assay and Neuropixels probes to compare neural responses to social vs. non-social interactions in three relevant brain regions: vibrissal somatosensory cortex, tail of striatum, and basolateral amygdala. We find that wild type (WT) mice showed aversion to repeated presentations of an inanimate object but not of another mouse. Cortical neurons cared most about touch context (social vs. object) and showed a preference for social interactions, while striatal neurons changed their preference depending on whether mice could choose or not to interact. Amygdalar and striatal neurons were preferentially modulated by forced object touch, which was the most aversive. In contrast, the Fmr1 knockout (KO) model of autism found social and non-social interactions equally aversive and displayed more aversive facial expressions to social touch when it invaded their personal space. Importantly, when Fmr1 KO mice could choose to interact, neurons in all three regions did not discriminate social valence. Thus, a failure to differentially encode social from non-social stimuli at the circuit level may underlie social avoidance in autism.
Collapse
Affiliation(s)
- Trishala Chari
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
- Neuroscience Interdepartmental Program, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Ariana Hernandez
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - João Couto
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
3
|
Scheuer KS, Jansson AM, Zhao X, Jackson MB. Inter and intralaminar excitation of parvalbumin interneurons in mouse barrel cortex. PLoS One 2024; 19:e0289901. [PMID: 38870124 PMCID: PMC11175493 DOI: 10.1371/journal.pone.0289901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/29/2024] [Indexed: 06/15/2024] Open
Abstract
Parvalbumin (PV) interneurons are inhibitory fast-spiking cells with essential roles in directing the flow of information through cortical circuits. These neurons set the balance between excitation and inhibition and control rhythmic activity. PV interneurons differ between cortical layers in their morphology, circuitry, and function, but how their electrophysiological properties vary has received little attention. Here we investigate responses of PV interneurons in different layers of primary somatosensory barrel cortex (BC) to different excitatory inputs. With the genetically-encoded hybrid voltage sensor, hVOS, we recorded voltage changes in many L2/3 and L4 PV interneurons simultaneously, with stimulation applied to either L2/3 or L4. A semi-automated procedure was developed to identify small regions of interest corresponding to single responsive PV interneurons. Amplitude, half-width, and rise-time were greater for PV interneurons residing in L2/3 compared to L4. Stimulation in L2/3 elicited responses in both L2/3 and L4 with longer latency compared to stimulation in L4. These differences in latency between layers could influence their windows for temporal integration. Thus, PV interneurons in different cortical layers of BC respond in a layer specific and input specific manner, and these differences have potential roles in cortical computations.
Collapse
Affiliation(s)
- Katherine S. Scheuer
- Cellular and Molecular Biology PhD Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anna M. Jansson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xinyu Zhao
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Meyer B. Jackson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
4
|
Stevens L, Bregulla M, Scheele D. Out of touch? How trauma shapes the experience of social touch - Neural and endocrine pathways. Neurosci Biobehav Rev 2024; 159:105595. [PMID: 38373642 DOI: 10.1016/j.neubiorev.2024.105595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/20/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Trauma can shape the way an individual experiences the world and interacts with other people. Touch is a key component of social interactions, but surprisingly little is known about how trauma exposure influences the processing of social touch. In this review, we examine possible neurobiological pathways through which trauma can influence touch processing and lead to touch aversion and avoidance in trauma-exposed individuals. Emerging evidence indicates that trauma may affect sensory touch thresholds by modulating activity in the primary sensory cortex and posterior insula. Disturbances in multisensory integration and oxytocin reactivity combined with diminished reward-related and anxiolytic responses may induce a bias towards negative appraisal of touch contexts. Furthermore, hippocampus deactivation during social touch may reflect a dissociative state. These changes depend not only on the type and severity of the trauma but also on the features of the touch. We hypothesise that disrupted touch processing may impair social interactions and confer elevated risk for future stress-related disorders.
Collapse
Affiliation(s)
- Laura Stevens
- Social Neuroscience, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Medicine, Ruhr University Bochum, Germany; Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr University Bochum, Germany
| | - Madeleine Bregulla
- Social Neuroscience, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Medicine, Ruhr University Bochum, Germany; Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr University Bochum, Germany
| | - Dirk Scheele
- Social Neuroscience, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Medicine, Ruhr University Bochum, Germany; Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr University Bochum, Germany.
| |
Collapse
|
5
|
Ferrara NC, Che A, Briones B, Padilla-Coreano N, Lovett-Barron M, Opendak M. Neural Circuit Transitions Supporting Developmentally Specific Social Behavior. J Neurosci 2023; 43:7456-7462. [PMID: 37940586 PMCID: PMC10634550 DOI: 10.1523/jneurosci.1377-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 11/10/2023] Open
Abstract
Environmentally appropriate social behavior is critical for survival across the lifespan. To support this flexible behavior, the brain must rapidly perform numerous computations taking into account sensation, memory, motor-control, and many other systems. Further complicating this process, individuals must perform distinct social behaviors adapted to the unique demands of each developmental stage; indeed, the social behaviors of the newborn would not be appropriate in adulthood and vice versa. However, our understanding of the neural circuit transitions supporting these behavioral transitions has been limited. Recent advances in neural circuit dissection tools, as well as adaptation of these tools for use at early time points, has helped uncover several novel mechanisms supporting developmentally appropriate social behavior. This review, and associated Minisymposium, bring together social neuroscience research across numerous model organisms and ages. Together, this work highlights developmentally regulated neural mechanisms and functional transitions in the roles of the sensory cortex, prefrontal cortex, amygdala, habenula, and the thalamus to support social interaction from infancy to adulthood. These studies underscore the need for synthesis across varied model organisms and across ages to advance our understanding of flexible social behavior.
Collapse
Affiliation(s)
- Nicole C Ferrara
- Discipline of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Alicia Che
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Brandy Briones
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Nancy Padilla-Coreano
- Evelyn F. & William McKnight Brain Institute and Department of Neuroscience, University of Florida, Gainesville, Florida 32610
| | - Matthew Lovett-Barron
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093
| | - Maya Opendak
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Kennedy Krieger Institute, Baltimore, Maryland 21205
| |
Collapse
|
6
|
Chari T, Hernandez A, Portera-Cailliau C. A Novel Head-Fixed Assay for Social Touch in Mice Uncovers Aversive Responses in Two Autism Models. J Neurosci 2023; 43:7158-7174. [PMID: 37669860 PMCID: PMC10601375 DOI: 10.1523/jneurosci.0226-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
Social touch, an important aspect of social interaction and communication, is essential to kinship across animal species. How animals experience and respond to social touch has not been thoroughly investigated, in part because of the lack of appropriate assays. Previous studies that examined social touch in freely moving rodents lacked the necessary temporal and spatial control over individual touch interactions. We designed a novel head-fixed assay for social touch in mice, in which the experimenter has complete control to elicit highly stereotyped bouts of social touch between two animals. The user determines the number, duration, context, and type of social touch interactions, while monitoring an array of complex behavioral responses with high resolution cameras. We focused on social touch to the face because of its high translational relevance to humans. We validated this assay in two different models of autism spectrum disorder (ASD), the Fmr1 knock-out (KO) model of Fragile X syndrome (FXS) and maternal immune activation (MIA) mice. We observed higher rates of avoidance running, hyperarousal, and aversive facial expressions (AFEs) to social touch than to object touch, in both ASD models compared with controls. Fmr1 KO mice showed more AFEs to mice of the same sex but whether they were stranger or familiar mice mattered less. Because this new social touch assay for head-fixed mice can be used to record neural activity during repeated bouts of social touch it could be used to uncover underlying circuit differences.SIGNIFICANCE STATEMENT Social touch is important for communication in animals and humans. However, it has not been extensively studied and current assays to measure animals' responses to social touch have limitations. We present a novel head-fixed assay to quantify how mice respond to social facial touch with another mouse. We validated this assay in autism mouse models since autistic individuals exhibit differences in social interaction and touch sensitivity. We find that mouse models of autism exhibit more avoidance, hyperarousal, and aversive facial expressions (AFEs) to social touch compared with controls. Thus, this novel assay can be used to investigate behavioral responses to social touch and the underlying brain mechanisms in rodent models of neurodevelopmental conditions, and to evaluate therapeutic responses in preclinical studies.
Collapse
Affiliation(s)
- Trishala Chari
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Neuroscience Interdepartmental Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Ariana Hernandez
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
7
|
Scheuer KS, Judge JM, Zhao X, Jackson MB. Velocity of conduction between columns and layers in barrel cortex reported by parvalbumin interneurons. Cereb Cortex 2023; 33:9917-9926. [PMID: 37415260 PMCID: PMC10656945 DOI: 10.1093/cercor/bhad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023] Open
Abstract
Inhibitory interneurons expressing parvalbumin (PV) play critical roles throughout the brain. Their rapid spiking enables them to control circuit dynamics on a millisecond time scale, and the timing of their activation by different excitatory pathways is critical to these functions. We used a genetically encoded hybrid voltage sensor to image PV interneuron voltage changes with sub-millisecond precision in primary somatosensory barrel cortex (BC) of adult mice. Electrical stimulation evoked depolarizations with a latency that increased with distance from the stimulating electrode, allowing us to determine conduction velocity. Spread of responses between cortical layers yielded an interlaminar conduction velocity and spread within layers yielded intralaminar conduction velocities in different layers. Velocities ranged from 74 to 473 μm/ms depending on trajectory; interlaminar conduction was 71% faster than intralaminar conduction. Thus, computations within columns are more rapid than between columns. The BC integrates thalamic and intracortical input for functions such as texture discrimination and sensory tuning. Timing differences between intra- and interlaminar PV interneuron activation could impact these functions. Imaging of voltage in PV interneurons reveals differences in signaling dynamics within cortical circuitry. This approach offers a unique opportunity to investigate conduction in populations of axons based on their targeting specificity.
Collapse
Affiliation(s)
- Katherine S Scheuer
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - John M Judge
- Biophysics Program, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, United States
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Meyer B Jackson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, United States
| |
Collapse
|
8
|
Scheuer KS, Jansson AM, Zhao X, Jackson MB. Inter and Intralaminar Excitation of Parvalbumin Interneurons in Mouse Barrel Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543448. [PMID: 37398428 PMCID: PMC10312540 DOI: 10.1101/2023.06.02.543448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Parvalbumin (PV) interneurons are inhibitory fast-spiking cells with essential roles in directing the flow of information through cortical circuits. These neurons set the balance between excitation and inhibition, control rhythmic activity, and have been linked to disorders including autism spectrum and schizophrenia. PV interneurons differ between cortical layers in their morphology, circuitry, and function, but how their electrophysiological properties vary has received little attention. Here we investigate responses of PV interneurons in different layers of primary somatosensory barrel cortex (BC) to different excitatory inputs. With the genetically-encoded hybrid voltage sensor, hVOS, we recorded voltage changes simultaneously in many L2/3 and L4 PV interneurons to stimulation in either L2/3 or L4. Decay-times were consistent across L2/3 and L4. Amplitude, half-width, and rise-time were greater for PV interneurons residing in L2/3 compared to L4. Stimulation in L2/3 elicited responses in both L2/3 and L4 with longer latency compared to stimulation in L4. These differences in latency between layers could influence their windows for temporal integration. Thus PV interneurons in different cortical layers of BC show differences in response properties with potential roles in cortical computations.
Collapse
Affiliation(s)
- Kate S Scheuer
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Anna M Jansson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Meyer B Jackson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| |
Collapse
|
9
|
Lenschow C, Lima SQ. Socio-sexual touch: On the hunt for a pleasure signal in the mouse brain. Curr Biol 2023; 33:R308-R311. [PMID: 37098334 DOI: 10.1016/j.cub.2023.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Skin-to-skin contact is widespread during social interactions and essential for establishing intimate relationships. To understand the skin-to-brain circuits underlying pleasurable touch, a new study has used mouse genetic tools to specifically target and study sensory neurons that transmit social touch and their role during sexual behavior in mice.
Collapse
Affiliation(s)
- Constanze Lenschow
- Institute of Biology (House 91), Otto-von-Guericke University Magdeburg, Leipziger Straße 44, 39120 Magdeburg, Germany.
| | - Susana Q Lima
- Champalimaud Research, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal.
| |
Collapse
|
10
|
Chari T, Hernandez A, Portera-Cailliau C. A novel head-fixed assay for social touch in mice uncovers aversive responses in two autism models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523491. [PMID: 36711563 PMCID: PMC9882020 DOI: 10.1101/2023.01.11.523491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Social touch, an important aspect of social interaction and communication, is essential to kinship across animal species. How animals experience and respond to social touch has not been thoroughly investigated, in part due to the lack of appropriate assays. Previous studies that examined social touch in freely moving rodents lacked the necessary temporal and spatial control over individual touch interactions. We designed a novel head-fixed assay for social touch in mice, in which the experimenter has complete control to elicit highly stereotyped bouts of social touch between two animals. The user determines the number, duration, context, and type of social touch interactions, while monitoring with high frame rate cameras an array of complex behavioral responses. We focused on social touch to the face because of their high translational relevance to humans. We validated this assay in two different models of autism spectrum disorder (ASD), the Fmr1 knockout model of Fragile X Syndrome and maternal immune activation mice. We observed increased avoidance, hyperarousal, and more aversive facial expressions to social touch, but not to object touch, in both ASD models compared to controls. Because this new social touch assay for head-fixed mice can be used to record neural activity during repeated bouts of social touch it should be of interest to neuroscientists interested in uncovering the underlying circuits.
Collapse
|
11
|
Zhou X, Wei J, Li L, Shu Z, You L, Liu Y, Zhao R, Yao J, Wang J, Luo M, Shu Y, Yuan K, Qi H. Microglial Pten safeguards postnatal integrity of the cortex and sociability. Front Immunol 2022; 13:1059364. [PMID: 36591296 PMCID: PMC9795847 DOI: 10.3389/fimmu.2022.1059364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Microglial abnormalities may contribute to neurodevelopmental disorders. PTEN is implicated as a susceptibility gene for autism spectrum disorders and its germline ablation in mice causes behavioral abnormalities. Here we find postnatal PTEN deletion in microglia causes deficits in sociability and novel object recognition test. Mutant mice harbor markedly more activated microglia that manifest enhanced phagocytosis. Interestingly, two-week postponement of microglia PTEN ablation leads to no social interaction defects, even though mutant microglia remain abnormal in adult animals. Disturbed neurodevelopment caused by early PTEN deletion in microglia is characterized by insufficient VGLUT1 protein in synaptosomes, likely a consequence of enhanced removal by microglia. In correlation, in vitro acute slice recordings demonstrate weakened synaptic inputs to layer 5 pyramidal neurons in the developing cortex. Therefore, microglial PTEN safeguards integrity of neural substrates underlying sociability in a developmentally determined manner.
Collapse
Affiliation(s)
- Xing Zhou
- Tsinghua-Peking Center for Life Sciences, Beijing, China,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jiacheng Wei
- Tsinghua-Peking Center for Life Sciences, Beijing, China,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Liang Li
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Zhenfeng Shu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ling You
- Department of Bioengineering, School of Medicine, Tsinghua University, Beijing, China,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Yang Liu
- School of Life Sciences, Tsinghua University, Beijing, China,National Institute of Biological Science, Beijing, China
| | - Ruozhu Zhao
- Tsinghua-Peking Center for Life Sciences, Beijing, China,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jiacheng Yao
- Tsinghua-Peking Center for Life Sciences, Beijing, China,School of Life Sciences, Tsinghua University, Beijing, China
| | - Jianbin Wang
- Tsinghua-Peking Center for Life Sciences, Beijing, China,School of Life Sciences, Tsinghua University, Beijing, China
| | - Minmin Luo
- School of Life Sciences, Tsinghua University, Beijing, China,National Institute of Biological Science, Beijing, China
| | - Yousheng Shu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Kexin Yuan
- Department of Bioengineering, School of Medicine, Tsinghua University, Beijing, China,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China,*Correspondence: Hai Qi, ; Kexin Yuan,
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Beijing, China,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China,*Correspondence: Hai Qi, ; Kexin Yuan,
| |
Collapse
|
12
|
Lenschow C, Mendes ARP, Lima SQ. Hearing, touching, and multisensory integration during mate choice. Front Neural Circuits 2022; 16:943888. [PMID: 36247731 PMCID: PMC9559228 DOI: 10.3389/fncir.2022.943888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/28/2022] [Indexed: 12/27/2022] Open
Abstract
Mate choice is a potent generator of diversity and a fundamental pillar for sexual selection and evolution. Mate choice is a multistage affair, where complex sensory information and elaborate actions are used to identify, scrutinize, and evaluate potential mating partners. While widely accepted that communication during mate assessment relies on multimodal cues, most studies investigating the mechanisms controlling this fundamental behavior have restricted their focus to the dominant sensory modality used by the species under examination, such as vision in humans and smell in rodents. However, despite their undeniable importance for the initial recognition, attraction, and approach towards a potential mate, other modalities gain relevance as the interaction progresses, amongst which are touch and audition. In this review, we will: (1) focus on recent findings of how touch and audition can contribute to the evaluation and choice of mating partners, and (2) outline our current knowledge regarding the neuronal circuits processing touch and audition (amongst others) in the context of mate choice and ask (3) how these neural circuits are connected to areas that have been studied in the light of multisensory integration.
Collapse
Affiliation(s)
- Constanze Lenschow
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Ana Rita P Mendes
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Susana Q Lima
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| |
Collapse
|
13
|
de la Zerda SH, Netser S, Magalnik H, Briller M, Marzan D, Glatt S, Abergel Y, Wagner S. Social recognition in laboratory mice requires integration of behaviorally-induced somatosensory, auditory and olfactory cues. Psychoneuroendocrinology 2022; 143:105859. [PMID: 35816892 DOI: 10.1016/j.psyneuen.2022.105859] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
Abstract
In humans, discrimination between individuals, also termed social recognition, can rely on a single sensory modality, such as vision. By analogy, social recognition in rodents is thought to be based upon olfaction. Here, we hypothesized that social recognition in rodents relies upon integration of olfactory, auditory and somatosensory cues, hence requiring active behavior of social stimuli. Using distinct social recognition tests, we demonstrated that adult male mice do not exhibit recognition of familiar stimuli or learn the identity of novel stimuli that are inactive due to anesthesia. We further revealed that impairing the olfactory, somatosensory or auditory systems prevents behavioral recognition of familiar stimuli. Finally, we found that familiar and novel stimuli generate distinct movement patterns during social discrimination and that subjects react differentially to the movement of these stimuli. Thus, unlike what occurs in humans, social recognition in mice relies on integration of information from several sensory modalities.
Collapse
Affiliation(s)
- Shani Haskal de la Zerda
- Sagol Department of Neurobiology, Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Shai Netser
- Sagol Department of Neurobiology, Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Hen Magalnik
- Sagol Department of Neurobiology, Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Mayan Briller
- Sagol Department of Neurobiology, Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Dan Marzan
- Sagol Department of Neurobiology, Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Sigal Glatt
- Sagol Department of Neurobiology, Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Yasmin Abergel
- Sagol Department of Neurobiology, Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel.
| |
Collapse
|
14
|
Ebbesen CL, Froemke RC. Automatic mapping of multiplexed social receptive fields by deep learning and GPU-accelerated 3D videography. Nat Commun 2022; 13:593. [PMID: 35105858 PMCID: PMC8807631 DOI: 10.1038/s41467-022-28153-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/06/2022] [Indexed: 12/25/2022] Open
Abstract
Social interactions powerfully impact the brain and the body, but high-resolution descriptions of these important physical interactions and their neural correlates are lacking. Currently, most studies rely on labor-intensive methods such as manual annotation. Scalable and objective tracking methods are required to understand the neural circuits underlying social behavior. Here we describe a hardware/software system and analysis pipeline that combines 3D videography, deep learning, physical modeling, and GPU-accelerated robust optimization, with automatic analysis of neuronal receptive fields recorded in interacting mice. Our system ("3DDD Social Mouse Tracker") is capable of fully automatic multi-animal tracking with minimal errors (including in complete darkness) during complex, spontaneous social encounters, together with simultaneous electrophysiological recordings. We capture posture dynamics of multiple unmarked mice with high spatiotemporal precision (~2 mm, 60 frames/s). A statistical model that relates 3D behavior and neural activity reveals multiplexed 'social receptive fields' of neurons in barrel cortex. Our approach could be broadly useful for neurobehavioral studies of multiple animals interacting in complex low-light environments.
Collapse
Affiliation(s)
- Christian L Ebbesen
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, USA.
- Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA.
- Department of Otolaryngology, New York University School of Medicine, New York, NY, 10016, USA.
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA.
- Center for Neural Science, New York University, New York, NY, 10003, USA.
| | - Robert C Froemke
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, USA.
- Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA.
- Department of Otolaryngology, New York University School of Medicine, New York, NY, 10016, USA.
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA.
- Center for Neural Science, New York University, New York, NY, 10003, USA.
| |
Collapse
|
15
|
Chai AP, Chen XF, Xu XS, Zhang N, Li M, Li JN, Zhang L, Zhang D, Zhang X, Mao RR, Ding YQ, Xu L, Zhou QX. A Temporal Activity of CA1 Neurons Underlying Short-Term Memory for Social Recognition Altered in PTEN Mouse Models of Autism Spectrum Disorder. Front Cell Neurosci 2021; 15:699315. [PMID: 34335191 PMCID: PMC8319669 DOI: 10.3389/fncel.2021.699315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022] Open
Abstract
Memory-guided social recognition identifies someone from previous encounters or experiences, but the mechanisms of social memory remain unclear. Here, we find that a short-term memory from experiencing a stranger mouse lasting under 30 min interval is essential for subsequent social recognition in mice, but that interval prolonged to hours by replacing the stranger mouse with a familiar littermate. Optogenetic silencing of dorsal CA1 neuronal activity during trials or inter-trial intervals disrupted short-term memory-guided social recognition, without affecting the ability of being sociable or long-term memory-guided social recognition. Postnatal knockdown or knockout of autism spectrum disorder (ASD)-associated phosphatase and tensin homolog (PTEN) gene in dorsal hippocampal CA1 similarly impaired neuronal firing rate in vitro and altered firing pattern during social recognition. These PTEN mice showed deficits in social recognition with stranger mouse rather than littermate and exhibited impairment in T-maze spontaneous alternation task for testing short-term spatial memory. Thus, we suggest that a temporal activity of dorsal CA1 neurons may underlie formation of short-term memory to be critical for organizing subsequent social recognition but that is possibly disrupted in ASD.
Collapse
Affiliation(s)
- An-Ping Chai
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Xue-Feng Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Xiao-Shan Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Na Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Meng Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Jin-Nan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Lei Zhang
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Dai Zhang
- Institute of Mental Health, The Sixth Hospital of Peking University, Beijing, China
| | - Xia Zhang
- Department of Cellular and Molecular Medicine, Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, ON, Canada
- Department of Psychiatry, Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, ON, Canada
| | - Rong-Rong Mao
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Yu-Qiang Ding
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
| | - Qi-Xin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
16
|
Ebbesen CL, Froemke RC. Body language signals for rodent social communication. Curr Opin Neurobiol 2021; 68:91-106. [PMID: 33582455 PMCID: PMC8243782 DOI: 10.1016/j.conb.2021.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 12/15/2022]
Abstract
Integration of social cues to initiate adaptive emotional and behavioral responses is a fundamental aspect of animal and human behavior. In humans, social communication includes prominent nonverbal components, such as social touch, gestures and facial expressions. Comparative studies investigating the neural basis of social communication in rodents has historically been centered on olfactory signals and vocalizations, with relatively less focus on non-verbal social cues. Here, we outline two exciting research directions: First, we will review recent observations pointing to a role of social facial expressions in rodents. Second, we will review observations that point to a role of 'non-canonical' rodent body language: body posture signals beyond stereotyped displays in aggressive and sexual behavior. In both sections, we will outline how social neuroscience can build on recent advances in machine learning, robotics and micro-engineering to push these research directions forward towards a holistic systems neurobiology of rodent body language.
Collapse
Affiliation(s)
- Christian L Ebbesen
- Skirball Institute of Biomolecular Medicine, Neuroscience Institute, Departments of Otolaryngology, Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA; Center for Neural Science, New York University, New York, NY, 10003, USA.
| | - Robert C Froemke
- Skirball Institute of Biomolecular Medicine, Neuroscience Institute, Departments of Otolaryngology, Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA; Center for Neural Science, New York University, New York, NY, 10003, USA; Howard Hughes Medical Institute Faculty Scholar, USA.
| |
Collapse
|
17
|
Noguchi A, Ikegaya Y, Matsumoto N. In Vivo Whole-Cell Patch-Clamp Methods: Recent Technical Progress and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:1448. [PMID: 33669656 PMCID: PMC7922023 DOI: 10.3390/s21041448] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 02/01/2023]
Abstract
Brain functions are fundamental for the survival of organisms, and they are supported by neural circuits consisting of a variety of neurons. To investigate the function of neurons at the single-cell level, researchers often use whole-cell patch-clamp recording techniques. These techniques enable us to record membrane potentials (including action potentials) of individual neurons of not only anesthetized but also actively behaving animals. This whole-cell recording method enables us to reveal how neuronal activities support brain function at the single-cell level. In this review, we introduce previous studies using in vivo patch-clamp recording techniques and recent findings primarily regarding neuronal activities in the hippocampus for behavioral function. We further discuss how we can bridge the gap between electrophysiology and biochemistry.
Collapse
Affiliation(s)
- Asako Noguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (A.N.); (Y.I.)
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (A.N.); (Y.I.)
- Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (A.N.); (Y.I.)
| |
Collapse
|
18
|
Arakawa H. Dynamic regulation of oxytocin neuronal circuits in the sequential processes of prosocial behavior in rodent models. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2:100011. [PMID: 36246512 PMCID: PMC9559098 DOI: 10.1016/j.crneur.2021.100011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/08/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
|
19
|
Staiger JF, Petersen CCH. Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception. Physiol Rev 2020; 101:353-415. [PMID: 32816652 DOI: 10.1152/physrev.00019.2019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The array of whiskers on the snout provides rodents with tactile sensory information relating to the size, shape and texture of objects in their immediate environment. Rodents can use their whiskers to detect stimuli, distinguish textures, locate objects and navigate. Important aspects of whisker sensation are thought to result from neuronal computations in the whisker somatosensory cortex (wS1). Each whisker is individually represented in the somatotopic map of wS1 by an anatomical unit named a 'barrel' (hence also called barrel cortex). This allows precise investigation of sensory processing in the context of a well-defined map. Here, we first review the signaling pathways from the whiskers to wS1, and then discuss current understanding of the various types of excitatory and inhibitory neurons present within wS1. Different classes of cells can be defined according to anatomical, electrophysiological and molecular features. The synaptic connectivity of neurons within local wS1 microcircuits, as well as their long-range interactions and the impact of neuromodulators, are beginning to be understood. Recent technological progress has allowed cell-type-specific connectivity to be related to cell-type-specific activity during whisker-related behaviors. An important goal for future research is to obtain a causal and mechanistic understanding of how selected aspects of tactile sensory information are processed by specific types of neurons in the synaptically connected neuronal networks of wS1 and signaled to downstream brain areas, thus contributing to sensory-guided decision-making.
Collapse
Affiliation(s)
- Jochen F Staiger
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
20
|
Bjerre AS, Palmer LM. Probing Cortical Activity During Head-Fixed Behavior. Front Mol Neurosci 2020; 13:30. [PMID: 32180705 PMCID: PMC7059801 DOI: 10.3389/fnmol.2020.00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/10/2020] [Indexed: 01/20/2023] Open
Abstract
The cortex is crucial for many behaviors, ranging from sensory-based behaviors to working memory and social behaviors. To gain an in-depth understanding of the contribution to these behaviors, cellular and sub-cellular recordings from both individual and populations of cortical neurons are vital. However, techniques allowing such recordings, such as two-photon imaging and whole-cell electrophysiology, require absolute stability of the head, a requirement not often fulfilled in freely moving animals. Here, we review and compare behavioral paradigms that have been developed and adapted for the head-fixed preparation, which together offer the needed stability for live recordings of neural activity in behaving animals. We also review how the head-fixed preparation has been used to explore the function of primary sensory cortices, posterior parietal cortex (PPC) and anterior lateral motor (ALM) cortex in sensory-based behavioral tasks, while also discussing the considerations of performing such recordings. Overall, this review highlights the head-fixed preparation as allowing in-depth investigation into the neural activity underlying behaviors by providing highly controllable settings for precise stimuli presentation which can be combined with behavioral paradigms ranging from simple sensory detection tasks to complex, cross-modal, memory-guided decision-making tasks.
Collapse
Affiliation(s)
- Ann-Sofie Bjerre
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Lucy M Palmer
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
21
|
Lenschow C, Lima SQ. In the mood for sex: neural circuits for reproduction. Curr Opin Neurobiol 2020; 60:155-168. [DOI: 10.1016/j.conb.2019.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022]
|
22
|
Barson D, Hamodi AS, Shen X, Lur G, Constable RT, Cardin JA, Crair MC, Higley MJ. Simultaneous mesoscopic and two-photon imaging of neuronal activity in cortical circuits. Nat Methods 2019; 17:107-113. [PMID: 31686040 PMCID: PMC6946863 DOI: 10.1038/s41592-019-0625-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022]
Abstract
Spontaneous and sensory-evoked activity propagates across varying spatial scales in the mammalian cortex, but technical challenges have limited conceptual links between the function of local neuronal circuits and brain-wide network dynamics. We present a method for simultaneous cellular-resolution two-photon calcium imaging of a local microcircuit and mesoscopic widefield calcium imaging of the entire cortical mantle in awake mice. Our multi-scale approach employs an orthogonal axis design where the mesoscopic objective is oriented above the brain and the two-photon objective is oriented horizontally, with imaging performed through a microprism. We also introduce a viral method for robust and widespread gene delivery in the mouse brain. These approaches allow us to identify the behavioral state-dependent functional connectivity of pyramidal neurons and vasoactive intestinal peptide (VIP)-expressing interneurons with long-range cortical networks. Our novel imaging system provides a powerful strategy for investigating cortical architecture across a wide range of spatial scales. Further information on research design is available in the Life Sciences Reporting Summary linked to this article.
Collapse
Affiliation(s)
- Daniel Barson
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.,Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA.,MD/PhD Program, Yale School of Medicine, New Haven, CT, USA
| | - Ali S Hamodi
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Gyorgy Lur
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.,Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA.,Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.,Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Jessica A Cardin
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.,Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Michael C Crair
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA. .,Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA. .,Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT, USA.
| | - Michael J Higley
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA. .,Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA. .,Program in Cellular Neuroscience, Neurodegeneration and Repair, New Haven, CT, USA.
| |
Collapse
|
23
|
Whisking Asymmetry Signals Motor Preparation and the Behavioral State of Mice. J Neurosci 2019; 39:9818-9830. [PMID: 31666357 DOI: 10.1523/jneurosci.1809-19.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
A central function of the brain is to plan, predict, and imagine the effect of movement in a dynamically changing environment. Here we show that in mice head-fixed in a plus-maze, floating on air, and trained to pick lanes based on visual stimuli, the asymmetric movement, and position of whiskers on the two sides of the face signals whether the animal is moving, turning, expecting reward, or licking. We show that (1) whisking asymmetry is coordinated with behavioral state, and that behavioral state can be decoded and predicted based on asymmetry, (2) even in the absence of tactile input, whisker positioning and asymmetry nevertheless relate to behavioral state, and (3) movement of the nose correlates with asymmetry, indicating that facial expression of the mouse is itself correlated with behavioral state. These results indicate that the movement of whiskers, a behavior that is not instructed or necessary in the task, can inform an observer about what a mouse is doing in the maze. Thus, the position of these mobile tactile sensors reflects a behavioral and movement-preparation state of the mouse.SIGNIFICANCE STATEMENT Behavior is a sequence of movements, where each movement can be related to or can trigger a set of other actions. Here we show that, in mice, the movement of whiskers (tactile sensors used to extract information about texture and location of objects) is coordinated with and predicts the behavioral state of mice: that is, what mice are doing, where they are in space, and where they are in the sequence of behaviors.
Collapse
|
24
|
Sigl-Glöckner J, Maier E, Takahashi N, Sachdev R, Larkum M, Brecht M. Effects of Sexual Experience and Puberty on Mouse Genital Cortex revealed by Chronic Imaging. Curr Biol 2019; 29:3588-3599.e4. [PMID: 31630949 DOI: 10.1016/j.cub.2019.08.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022]
Abstract
The topographic map in layer 4 of somatosensory cortex is usually specified early postnatally and stable thereafter. Genital cortex, however, undergoes a sex-hormone- and sexual-touch-dependent pubertal expansion. Here, we image pubertal development of genital cortex in Scnn1a-Tg3-Cre mice, where transgene expression has been shown to be restricted to layer 4 neurons with primary sensory cortex identity. Interestingly, during puberty, the number of Scnn1a+ neurons roughly doubled within genital cortex. The increase of Scnn1a+ neurons was gradual and rapidly advanced by initial sexual experience. Neurons that gained Scnn1a expression comprised stellate and pyramidal neurons in layer 4. Unlike during neonatal development, pyramids did not retract their apical dendrites during puberty. Calcium imaging revealed stronger genital-touch responses in Scnn1a+ neurons in males versus females and a developmental increase in responsiveness in females. The first sexual interaction is a unique physical experience that often creates long-lasting memories. We suggest such experience uniquely alters somatosensory body maps.
Collapse
Affiliation(s)
- Johanna Sigl-Glöckner
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
| | - Eduard Maier
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
| | - Naoya Takahashi
- Institute for Biology, Humboldt-Universität zu Berlin, Charitéplatz 1, 10437 Berlin, Germany
| | - Robert Sachdev
- Institute for Biology, Humboldt-Universität zu Berlin, Charitéplatz 1, 10437 Berlin, Germany
| | - Matthew Larkum
- Institute for Biology, Humboldt-Universität zu Berlin, Charitéplatz 1, 10437 Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany.
| |
Collapse
|
25
|
Ebbesen CL, Bobrov E, Rao RP, Brecht M. Highly structured, partner-sex- and subject-sex-dependent cortical responses during social facial touch. Nat Commun 2019; 10:4634. [PMID: 31604919 PMCID: PMC6789031 DOI: 10.1038/s41467-019-12511-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022] Open
Abstract
Touch is a fundamental aspect of social, parental and sexual behavior. In contrast to our detailed knowledge about cortical processing of non-social touch, we still know little about how social touch impacts cortical circuits. We investigated neural activity across five frontal, motor and sensory cortical areas in rats engaging in naturalistic social facial touch. Information about social touch and the sex of the interaction partner (a biologically significant feature) is a major determinant of cortical activity. 25.3% of units were modulated during social touch and 8.3% of units displayed ‘sex-touch’ responses (responded differently, depending on the sex of the interaction partner). Single-unit responses were part of a structured, partner-sex- and, in some cases, subject-sex-dependent population response. Spiking neural network simulations indicate that a change in inhibitory drive might underlie these population dynamics. Our observations suggest that socio-sexual characteristics of touch (subject and partner sex) widely modulate cortical activity and need to be investigated with cellular resolution. Touch is an important sensory modality during social encounters. Here the authors report that during naturalistic social encounters in rats, the cortical activity in widespread areas at the level of single neurons is modulated by sociosexual characteristics such as the subject and partner sex.
Collapse
Affiliation(s)
- Christian L Ebbesen
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115, Berlin, Germany. .,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10115, Berlin, Germany. .,Neuroscience Institute, New York University, New York, NY, 10016, USA. .,Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, USA.
| | - Evgeny Bobrov
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.,QUEST Center for Transforming Biomedical Research, Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Rajnish P Rao
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115, Berlin, Germany. .,NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| |
Collapse
|
26
|
Ishiyama S, Kaufmann LV, Brecht M. Behavioral and Cortical Correlates of Self-Suppression, Anticipation, and Ambivalence in Rat Tickling. Curr Biol 2019; 29:3153-3164.e3. [PMID: 31564493 DOI: 10.1016/j.cub.2019.07.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 11/26/2022]
Abstract
The relationship between tickling, sensation, and laughter is complex. Tickling or its mere anticipation makes us laugh, but not when we self-tickle. We previously showed rat somatosensory cortex drives tickling-evoked vocalizations and now investigated self-tickle suppression and tickle anticipation. We recorded somatosensory cortex activity while tickling and touching rats and while rats touched themselves. Allo-touch and tickling evoked somatotopic cortical excitation and vocalizations. Self-touch induced wide-ranging inhibition and vocalization suppression. Self-touch also suppressed vocalizations and cortical responses evoked by allo-touch or cortical microstimulation. We suggest a global-inhibition model of self-tickle suppression, which operates without the classically assumed self versus other distinction. Consistent with this inhibition hypothesis, blocking cortical inhibition with gabazine abolished self-tickle suppression. We studied anticipation in a nose-poke-for-tickling paradigm. Although rats nose poked for tickling, they also showed escaping, freezing, and alarm calls. Such ambivalence ("Nervenkitzel") resembles tickle behaviors in children. We conclude that self-touch-induced GABAergic cortical inhibition prevents self-tickle, whereas anticipatory layer 5 activity drives anticipatory laughter. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Shimpei Ishiyama
- Bernstein Center for Computational Neuroscience Berlin, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 6, 10115 Berlin, Germany; Institut für Pathophysiologie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Lena V Kaufmann
- Bernstein Center for Computational Neuroscience Berlin, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 6, 10115 Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 6, 10115 Berlin, Germany; NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
27
|
Drew PJ, Winder AT, Zhang Q. Twitches, Blinks, and Fidgets: Important Generators of Ongoing Neural Activity. Neuroscientist 2019; 25:298-313. [PMID: 30311838 PMCID: PMC6800083 DOI: 10.1177/1073858418805427] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Animals and humans continuously engage in small, spontaneous motor actions, such as blinking, whisking, and postural adjustments ("fidgeting"). These movements are accompanied by changes in neural activity in sensory and motor regions of the brain. The frequency of these motions varies in time, is affected by sensory stimuli, arousal levels, and pathology. These fidgeting behaviors can be entrained by sensory stimuli. Fidgeting behaviors will cause distributed, bilateral functional activation in the 0.01 to 0.1 Hz frequency range that will show up in functional magnetic resonance imaging and wide-field calcium neuroimaging studies, and will contribute to the observed functional connectivity among brain regions. However, despite the large potential of these behaviors to drive brain-wide activity, these fidget-like behaviors are rarely monitored. We argue that studies of spontaneous and evoked brain dynamics in awake animals and humans should closely monitor these fidgeting behaviors. Differences in these fidgeting behaviors due to arousal or pathology will "contaminate" ongoing neural activity, and lead to apparent differences in functional connectivity. Monitoring and accounting for the brain-wide activations by these behaviors is essential during experiments to differentiate fidget-driven activity from internally driven neural dynamics.
Collapse
Affiliation(s)
- Patrick J Drew
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA
- Department of Neurosurgery and Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Aaron T Winder
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA
| | - Qingguang Zhang
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
28
|
Abstract
Tactile sensory information from facial whiskers provides nocturnal tunnel-dwelling rodents, including mice and rats, with important spatial and textural information about their immediate surroundings. Whiskers are moved back and forth to scan the environment (whisking), and touch signals from each whisker evoke sparse patterns of neuronal activity in whisker-related primary somatosensory cortex (wS1; barrel cortex). Whisking is accompanied by desynchronized brain states and cell-type-specific changes in spontaneous and evoked neuronal activity. Tactile information, including object texture and location, appears to be computed in wS1 through integration of motor and sensory signals. wS1 also directly controls whisker movements and contributes to learned, whisker-dependent, goal-directed behaviours. The cell-type-specific neuronal circuitry in wS1 that contributes to whisker sensory perception is beginning to be defined.
Collapse
|
29
|
Rao RP, von Heimendahl M, Bahr V, Brecht M. Neuronal Responses to Conspecifics in the Ventral CA1. Cell Rep 2019; 27:3460-3472.e3. [DOI: 10.1016/j.celrep.2019.05.081] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/05/2019] [Accepted: 05/21/2019] [Indexed: 12/27/2022] Open
|
30
|
Clemens AM, Lenschow C, Beed P, Li L, Sammons R, Naumann RK, Wang H, Schmitz D, Brecht M. Estrus-Cycle Regulation of Cortical Inhibition. Curr Biol 2019; 29:605-615.e6. [PMID: 30744972 DOI: 10.1016/j.cub.2019.01.045] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/20/2018] [Accepted: 01/15/2019] [Indexed: 01/03/2023]
Abstract
Female mammals experience cyclical changes in sexual receptivity known as the estrus cycle. Little is known about how estrus affects the cortex, although alterations in sensation, cognition and the cyclical occurrence of epilepsy suggest brain-wide processing changes. We performed in vivo juxtacellular and whole-cell recordings in somatosensory cortex of female rats and found that the estrus cycle potently altered cortical inhibition. Fast-spiking interneurons were strongly activated with social facial touch and varied their ongoing activity with the estrus cycle and estradiol in ovariectomized females, while regular-spiking excitatory neurons did not change. In situ hybridization for estrogen receptor β (Esr2) showed co-localization with parvalbumin-positive (PV+) interneurons in deep cortical layers, mirroring the laminar distribution of our physiological findings. The fraction of neurons positive for estrogen receptor β (Esr2) and PV co-localization (Esr2+PV+) in cortical layer V was increased in proestrus. In vivo and in vitro experiments confirmed that estrogen acts locally to increase fast-spiking interneuron excitability through an estrogen-receptor-β-dependent mechanism.
Collapse
Affiliation(s)
- Ann M Clemens
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 6, 10115 Berlin, Germany
| | - Constanze Lenschow
- Champalimaud Center for the Unknown, Neurosciences, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Prateep Beed
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Neuroscience Research Center, NeuroCure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany
| | - Lanxiang Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Xueyuan Boulevard, 518055 Shenzhen, China
| | - Rosanna Sammons
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Neuroscience Research Center, NeuroCure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany
| | - Robert K Naumann
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Xueyuan Boulevard, 518055 Shenzhen, China
| | - Hong Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Xueyuan Boulevard, 518055 Shenzhen, China
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Neuroscience Research Center, NeuroCure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 6, 10115 Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Neuroscience Research Center, NeuroCure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
31
|
|
32
|
Jordan R, Fukunaga I, Kollo M, Schaefer AT. Active Sampling State Dynamically Enhances Olfactory Bulb Odor Representation. Neuron 2018; 98:1214-1228.e5. [PMID: 29861286 PMCID: PMC6030445 DOI: 10.1016/j.neuron.2018.05.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/26/2018] [Accepted: 05/08/2018] [Indexed: 11/06/2022]
Abstract
The olfactory bulb (OB) is the first site of synaptic odor information processing, yet a wealth of contextual and learned information has been described in its activity. To investigate the mechanistic basis of contextual modulation, we use whole-cell recordings to measure odor responses across rapid learning episodes in identified mitral/tufted cells (MTCs). Across these learning episodes, diverse response changes occur already during the first sniff cycle. Motivated mice develop active sniffing strategies across learning that robustly correspond to the odor response changes, resulting in enhanced odor representation. Evoking fast sniffing in different behavioral states demonstrates that response changes during active sampling exceed those predicted from feedforward input alone. Finally, response changes are highly correlated in tufted cells, but not mitral cells, indicating there are cell-type-specific effects on odor representation during active sampling. Altogether, we show that active sampling is strongly associated with enhanced OB responsiveness on rapid timescales.
Collapse
Affiliation(s)
- Rebecca Jordan
- Neurophysiology of Behaviour Laboratory, Francis Crick Institute, London NW1 5AT, UK; Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - Izumi Fukunaga
- Neurophysiology of Behaviour Laboratory, Francis Crick Institute, London NW1 5AT, UK; Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - Mihaly Kollo
- Neurophysiology of Behaviour Laboratory, Francis Crick Institute, London NW1 5AT, UK; Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - Andreas T Schaefer
- Neurophysiology of Behaviour Laboratory, Francis Crick Institute, London NW1 5AT, UK; Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
33
|
Lee AK, Brecht M. Elucidating Neuronal Mechanisms Using Intracellular Recordings during Behavior. Trends Neurosci 2018; 41:385-403. [DOI: 10.1016/j.tins.2018.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 12/17/2022]
|
34
|
Socio-sexual processing in cortical circuits. Curr Opin Neurobiol 2018; 52:1-9. [PMID: 29694921 DOI: 10.1016/j.conb.2018.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/09/2018] [Accepted: 04/07/2018] [Indexed: 12/29/2022]
Abstract
How does social and sexual information processing map onto cortical circuits? Addressing this question has been difficult, because of a lack of circuit-oriented social neuroscience and an absence of measurements from interacting brains. Recent work showed social information is already differentially processed in the primary sensory cortices. Converging evidence suggests that prefrontal areas contribute to social interaction processing and determining social hierarchies. In social interactions, we identify gender in split seconds, but after centuries of anatomy we are still unable to distinguish male and female cortices. Novel data reinforce the idea of a bisexual layout of cortical anatomy. Physiological analysis, however, provided evidence for sex differences in cortical processing. Unlike other cortical circuits, sexual processing circuits undergo major rewiring and expansion during puberty and show lasting damage from childhood abuse.
Collapse
|
35
|
Barrel Cortex: What is it Good for? Neuroscience 2018; 368:3-16. [DOI: 10.1016/j.neuroscience.2017.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 12/21/2022]
|
36
|
Picardo MA, Merel J, Katlowitz KA, Vallentin D, Okobi DE, Benezra SE, Clary RC, Pnevmatikakis EA, Paninski L, Long MA. Population-Level Representation of a Temporal Sequence Underlying Song Production in the Zebra Finch. Neuron 2017; 90:866-76. [PMID: 27196976 DOI: 10.1016/j.neuron.2016.02.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/14/2016] [Accepted: 02/04/2016] [Indexed: 12/13/2022]
Abstract
The zebra finch brain features a set of clearly defined and hierarchically arranged motor nuclei that are selectively responsible for producing singing behavior. One of these regions, a critical forebrain structure called HVC, contains premotor neurons that are active at precise time points during song production. However, the neural representation of this behavior at a population level remains elusive. We used two-photon microscopy to monitor ensemble activity during singing, integrating across multiple trials by adopting a Bayesian inference approach to more precisely estimate burst timing. Additionally, we examined spiking and motor-related synaptic inputs using intracellular recordings during singing. With both experimental approaches, we find that premotor events do not occur preferentially at the onsets or offsets of song syllables or at specific subsyllabic motor landmarks. These results strongly support the notion that HVC projection neurons collectively exhibit a temporal sequence during singing that is uncoupled from ongoing movements.
Collapse
Affiliation(s)
- Michel A Picardo
- New York University Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Josh Merel
- Department of Statistics and Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA; Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10027, USA
| | - Kalman A Katlowitz
- New York University Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Daniela Vallentin
- New York University Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Daniel E Okobi
- New York University Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Sam E Benezra
- New York University Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Rachel C Clary
- New York University Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Eftychios A Pnevmatikakis
- Department of Statistics and Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA; Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10027, USA; Simons Center for Data Analysis, Simons Foundation, New York, NY 10010, USA
| | - Liam Paninski
- Department of Statistics and Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA; Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10027, USA
| | - Michael A Long
- New York University Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
37
|
Moore JJ, Ravassard PM, Ho D, Acharya L, Kees AL, Vuong C, Mehta MR. Dynamics of cortical dendritic membrane potential and spikes in freely behaving rats. Science 2017; 355:science.aaj1497. [DOI: 10.1126/science.aaj1497] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 01/31/2017] [Indexed: 11/02/2022]
|
38
|
Kurnikova A, Moore JD, Liao SM, Deschênes M, Kleinfeld D. Coordination of Orofacial Motor Actions into Exploratory Behavior by Rat. Curr Biol 2017; 27:688-696. [PMID: 28216320 DOI: 10.1016/j.cub.2017.01.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/11/2016] [Accepted: 01/09/2017] [Indexed: 11/25/2022]
Abstract
The delineation of sensorimotor circuits that guide exploration begins with an understanding of the pattern of motor outputs [1]. These motor patterns provide a clue to the form of the underlying circuits [2-4] (but see [5]). We focus on the behaviors that rodents use to explore their peripersonal space through goal-directed positioning of their nose, head, and vibrissae. Rodents sniff in response to novel odors, reward expectation, and as part of social interactions [6-12]. Sniffing serves olfaction [13, 14], while whisking synchronized to sniffing serves vibrissa-based touch [6, 15, 16]. We quantify the ethology of exploratory nose and head movements in relation to breathing. We find that sniffing is accompanied by prominent lateral and vertical deflections of the nose, i.e., twitches, which are driven by activation of the deflector nasi muscles [17]. On the timescale of individual breaths, nose motion is rhythmic and has a maximum deflection following the onset of inspiration. On a longer timescale, excursions of the nose persist for several breaths and are accompanied by an asymmetry in vibrissa positioning toward the same side of the face. Such directed deflections can be triggered by a lateralized source of odor. Lastly, bobbing of the head as the animal cranes and explores is phase-locked to sniffing and to movement of the nose. These data, along with prior results on the resetting of the whisk cycle at the onset of inspiration [15, 16, 18], reveal that the onset of each breath initiates a "snapshot" of the orofacial sensory environment. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Anastasia Kurnikova
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeffrey D Moore
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Song-Mao Liao
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Martin Deschênes
- Centre de Recherche Université Laval Robert-Giffard, Québec City, Québec G1J 2R3, Canada
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA; Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
39
|
Ishiyama S, Brecht M. Neural correlates of ticklishness in the rat somatosensory cortex. Science 2016; 354:757-760. [DOI: 10.1126/science.aah5114] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/21/2016] [Indexed: 11/02/2022]
|
40
|
Ebbesen CL, Doron G, Lenschow C, Brecht M. Vibrissa motor cortex activity suppresses contralateral whisking behavior. Nat Neurosci 2016; 20:82-89. [PMID: 27798633 PMCID: PMC6485366 DOI: 10.1038/nn.4437] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 10/04/2016] [Indexed: 12/15/2022]
Abstract
Anatomical, stimulation and lesion data implicate vibrissa motor cortex in whisker motor control. Work on motor cortex focused on movement generation, but correlations between vibrissa motor cortex activity and whisking are weak. The exact role of vibrissa motor cortex remains unknown. We recorded vibrissa motor cortex neurons during various forms of vibrissal touch, which were invariably associated with whisker protraction and movement. Free whisking, object palpation and social touch all resulted in decreased cortical activity. To understand this activity decrease, we performed juxtacellular recordings, nanostimulation and in vivo whole-cell-recordings. Social facial touch resulted in decreased spiking activity, decreased cell excitability and membrane hyperpolarization. Activation of vibrissa motor cortex by intra-cortical microstimulation elicited whisker retraction, as if to abort vibrissal touch. Various vibrissa motor cortex inactivation protocols resulted in contralateral protraction and increased whisker movements. These data collectively point to movement suppression as a prime function of vibrissa motor cortex activity.
Collapse
Affiliation(s)
- Christian Laut Ebbesen
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Guy Doron
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Constanze Lenschow
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
41
|
Kolb I, Stoy WA, Rousseau EB, Moody OA, Jenkins A, Forest CR. Cleaning patch-clamp pipettes for immediate reuse. Sci Rep 2016; 6:35001. [PMID: 27725751 PMCID: PMC5057089 DOI: 10.1038/srep35001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/22/2016] [Indexed: 01/19/2023] Open
Abstract
Patch-clamp recording has enabled single-cell electrical, morphological and genetic studies at unparalleled resolution. Yet it remains a laborious and low-throughput technique, making it largely impractical for large-scale measurements such as cell type and connectivity characterization of neurons in the brain. Specifically, the technique is critically limited by the ubiquitous practice of manually replacing patch-clamp pipettes after each recording. To circumvent this limitation, we developed a simple, fast, and automated method for cleaning glass pipette electrodes that enables their reuse within one minute. By immersing pipette tips into Alconox, a commercially-available detergent, followed by rinsing, we were able to reuse pipettes 10 times with no degradation in signal fidelity, in experimental preparations ranging from human embryonic kidney cells to neurons in culture, slices, and in vivo. Undetectable trace amounts of Alconox remaining in the pipette after cleaning did not affect ion channel pharmacology. We demonstrate the utility of pipette cleaning by developing the first robot to perform sequential patch-clamp recordings in cell culture and in vivo without a human operator.
Collapse
Affiliation(s)
- I Kolb
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA
| | - W A Stoy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA
| | - E B Rousseau
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, 12203 USA
| | - O A Moody
- Neuroscience Graduate Program, GDBBS, Emory University, Atlanta, GA, 30322 USA
| | - A Jenkins
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, 30322 USA.,Department of Anesthesiology, Emory University, Atlanta, GA, 30322 USA
| | - C R Forest
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta GA, 30332 USA
| |
Collapse
|
42
|
Primate superior colliculus neurons activated by unexpected sensation. Exp Brain Res 2016; 234:3465-3471. [DOI: 10.1007/s00221-016-4745-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
|
43
|
Rasmussen R, Nedergaard M, Petersen NC. Sulforhodamine 101, a widely used astrocyte marker, can induce cortical seizure-like activity at concentrations commonly used. Sci Rep 2016; 6:30433. [PMID: 27457281 PMCID: PMC4960645 DOI: 10.1038/srep30433] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/05/2016] [Indexed: 01/22/2023] Open
Abstract
Sulforhodamine 101 (SR101) is a preferential astrocyte marker widely used in 2-photon microscopy experiments. Here we show, that topical loading of two commonly used SR101 concentrations, 100 μM and 250 μM when incubated for 10 min, can induce seizure-like local field potential (LFP) activity in both anaesthetized and awake mouse sensori-motor cortex. This cortical seizure-like activity develops in less than ten minutes following topical loading, and when applied longer, these neuronal discharges reliably evoke contra-lateral hindlimb muscle contractions. Short duration (<1 min) incubation of 100 μM and 250 μM SR101 or application of lower concentrations 25 μM and 50 μM of SR101, incubated for 30 and 20 min, respectively, did not induce abnormal LFP activity in sensori-motor cortex, but did label astrocytes, and may thus be considered more appropriate concentrations for in vivo astrocyte labeling. In addition to label astrocytes SR101 may, at 100 μM and 250 μM, induce abnormal neuronal activity and interfere with cortical circuit activity. SR101 concentration of 50 μM or lower did not induce abnormal neuronal activity. We advocate that, to label astrocytes with SR101, concentrations no higher than 50 μM should be used for in vivo experiments.
Collapse
Affiliation(s)
- Rune Rasmussen
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York 14642, USA.,Center for Basic and Translational Neuroscience, University of Copenhagen Faculty of Medicine, 2200 Copenhagen N, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York 14642, USA.,Center for Basic and Translational Neuroscience, University of Copenhagen Faculty of Medicine, 2200 Copenhagen N, Denmark
| | - Nicolas Caesar Petersen
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York 14642, USA.,Department of Nutrition, Exercise and Sports, University of Copenhagen, 2200 Copenhagen N, Denmark.,Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
44
|
Nashaat MA, Oraby H, Sachdev RNS, Winter Y, Larkum ME. Air-Track: a real-world floating environment for active sensing in head-fixed mice. J Neurophysiol 2016; 116:1542-1553. [PMID: 27486102 DOI: 10.1152/jn.00088.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/01/2016] [Indexed: 11/22/2022] Open
Abstract
Natural behavior occurs in multiple sensory and motor modalities and in particular is dependent on sensory feedback that constantly adjusts behavior. To investigate the underlying neuronal correlates of natural behavior, it is useful to have access to state-of-the-art recording equipment (e.g., 2-photon imaging, patch recordings, etc.) that frequently requires head fixation. This limitation has been addressed with various approaches such as virtual reality/air ball or treadmill systems. However, achieving multimodal realistic behavior in these systems can be challenging. These systems are often also complex and expensive to implement. Here we present "Air-Track," an easy-to-build head-fixed behavioral environment that requires only minimal computational processing. The Air-Track is a lightweight physical maze floating on an air table that has all the properties of the "real" world, including multiple sensory modalities tightly coupled to motor actions. To test this system, we trained mice in Go/No-Go and two-alternative forced choice tasks in a plus maze. Mice chose lanes and discriminated apertures or textures by moving the Air-Track back and forth and rotating it around themselves. Mice rapidly adapted to moving the track and used visual, auditory, and tactile cues to guide them in performing the tasks. A custom-controlled camera system monitored animal location and generated data that could be used to calculate reaction times in the visual and somatosensory discrimination tasks. We conclude that the Air-Track system is ideal for eliciting natural behavior in concert with virtually any system for monitoring or manipulating brain activity.
Collapse
Affiliation(s)
- Mostafa A Nashaat
- Neurocure Cluster of Excellence, Humboldt-Universität zu Berlin, Berlin, Germany; and Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hatem Oraby
- Neurocure Cluster of Excellence, Humboldt-Universität zu Berlin, Berlin, Germany; and
| | - Robert N S Sachdev
- Neurocure Cluster of Excellence, Humboldt-Universität zu Berlin, Berlin, Germany; and
| | - York Winter
- Neurocure Cluster of Excellence, Humboldt-Universität zu Berlin, Berlin, Germany; and
| | - Matthew E Larkum
- Neurocure Cluster of Excellence, Humboldt-Universität zu Berlin, Berlin, Germany; and
| |
Collapse
|
45
|
Heckman J, McGuinness B, Celikel T, Englitz B. Determinants of the mouse ultrasonic vocal structure and repertoire. Neurosci Biobehav Rev 2016; 65:313-25. [DOI: 10.1016/j.neubiorev.2016.03.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 11/25/2022]
|
46
|
The arousing power of everyday materials: an analysis of the physiological and behavioral responses to visually and tactually presented textures. Exp Brain Res 2016; 234:1659-66. [DOI: 10.1007/s00221-016-4574-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/22/2016] [Indexed: 10/22/2022]
|
47
|
On-going computation of whisking phase by mechanoreceptors. Nat Neurosci 2016; 19:487-93. [PMID: 26780508 DOI: 10.1038/nn.4221] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/04/2015] [Indexed: 12/25/2022]
Abstract
To attribute spatial meaning to sensory information, the state of the sensory organ must be represented in the nervous system. In the rodent's vibrissal system, the whisking-cycle phase has been identified as a key coordinate, and phase-based representation of touch has been reported in the somatosensory cortex. Where and how phase is extracted in the ascending afferent pathways remains unknown. Using a closed-loop interface in anesthetized rats, we found that whisking phase is already encoded in a frequency- and amplitude-invariant manner by primary vibrissal afferents. We found that, for naturally constrained whisking dynamics, such invariant phase coding could be obtained by tuning each receptor to a restricted kinematic subspace. Invariant phase coding was preserved in the brainstem, where paralemniscal neurons filtered out the slowly evolving offset, whereas lemniscal neurons preserved it. These results demonstrate accurate, perceptually relevant, mechanically based processing at the sensor level.
Collapse
|
48
|
Aboitiz F, Montiel JF. Olfaction, navigation, and the origin of isocortex. Front Neurosci 2015; 9:402. [PMID: 26578863 PMCID: PMC4621927 DOI: 10.3389/fnins.2015.00402] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/12/2015] [Indexed: 11/23/2022] Open
Abstract
There are remarkable similarities between the brains of mammals and birds in terms of microcircuit architecture, despite obvious differences in gross morphology and development. While in reptiles and birds the most expanding component (the dorsal ventricular ridge) displays an overall nuclear shape and derives from the lateral and ventral pallium, in mammals a dorsal pallial, six-layered isocortex shows the most remarkable elaboration. Regardless of discussions about possible homologies between mammalian and avian brains, a main question remains in explaining the emergence of the mammalian isocortex, because it represents a unique phenotype across amniotes. In this article, we propose that the origin of the isocortex was driven by behavioral adaptations involving olfactory driven goal-directed and navigating behaviors. These adaptations were linked with increasing sensory development, which provided selective pressure for the expansion of the dorsal pallium. The latter appeared as an interface in olfactory-hippocampal networks, contributing somatosensory information for navigating behavior. Sensory input from other modalities like vision and audition were subsequently recruited into this expanding region, contributing to multimodal associative networks.
Collapse
Affiliation(s)
- Francisco Aboitiz
- Departamento de Psiquiatría, Escuela de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Juan F. Montiel
- Facultad de Medicina, Centro de Investigación Biomédica, Universidad Diego PortalesSantiago, Chile
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| |
Collapse
|
49
|
Urbain N, Salin PA, Libourel PA, Comte JC, Gentet LJ, Petersen CCH. Whisking-Related Changes in Neuronal Firing and Membrane Potential Dynamics in the Somatosensory Thalamus of Awake Mice. Cell Rep 2015; 13:647-656. [PMID: 26489463 DOI: 10.1016/j.celrep.2015.09.029] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 06/26/2015] [Accepted: 09/09/2015] [Indexed: 11/29/2022] Open
Abstract
The thalamus transmits sensory information to the neocortex and receives neocortical, subcortical, and neuromodulatory inputs. Despite its obvious importance, surprisingly little is known about thalamic function in awake animals. Here, using intracellular and extracellular recordings in awake head-restrained mice, we investigate membrane potential dynamics and action potential firing in the two major thalamic nuclei related to whisker sensation, the ventral posterior medial nucleus (VPM) and the posterior medial group (Pom), which receive distinct inputs from brainstem and neocortex. We find heterogeneous state-dependent dynamics in both nuclei, with an overall increase in action potential firing during active states. Whisking increased putative lemniscal and corticothalamic excitatory inputs onto VPM and Pom neurons, respectively. A subpopulation of VPM cells fired spikes phase-locked to the whisking cycle during free whisking, and these cells may therefore signal whisker position. Our results suggest differential processing of whisking comparing thalamic nuclei at both sub- and supra-threshold levels.
Collapse
Affiliation(s)
- Nadia Urbain
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland; Physiopathologie des Réseaux Neuronaux du Cycle Sommeil, Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR5292, Université Claude-Bernard-Lyon 1, 69372 Lyon, France.
| | - Paul A Salin
- Physiopathologie des Réseaux Neuronaux du Cycle Sommeil, Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR5292, Université Claude-Bernard-Lyon 1, 69372 Lyon, France
| | - Paul-Antoine Libourel
- Physiopathologie des Réseaux Neuronaux du Cycle Sommeil, Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR5292, Université Claude-Bernard-Lyon 1, 69372 Lyon, France
| | - Jean-Christophe Comte
- Integrated Physiology of Brain Arousal Systems, Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR5292, Université Claude-Bernard-Lyon 1, 69372 Lyon, France
| | - Luc J Gentet
- Integrated Physiology of Brain Arousal Systems, Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR5292, Université Claude-Bernard-Lyon 1, 69372 Lyon, France
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
50
|
Bray N. Whiskers of a good friend. Nat Rev Neurosci 2015. [DOI: 10.1038/nrn3943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|