1
|
Jiang S, Hijazi S, Sarkany B, Gautsch VG, LaChance PA, Hasselmo ME, Bannerman D, Viney TJ. Pathological tau alters head direction signaling and induces spatial disorientation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.07.622548. [PMID: 39574637 PMCID: PMC11581017 DOI: 10.1101/2024.11.07.622548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Spatial disorientation, an early symptom of dementia, is emerging as an early and reliable cognitive biomarker predicting future memory problems associated with Alzheimer's disease, but the underlying neural mechanisms have yet to be fully defined. The anterodorsal thalamic nucleus (ADn) exhibits early and selective vulnerability to pathological misfolded forms of tau, a major hallmark of Alzheimer's disease and ageing. The ADn contains a high density of head direction (HD) cells, which contribute to spatial navigation and orientation. Hence, their disruption may contribute to spatial disorientation. To test this, we virally expressed human mutant tau (htau) in the ADn of adult mice. HD-tau mice were defined by phosphorylated and oligomeric forms of htau in ADn somata and in axon terminals in postsynaptic target regions. Compared to controls, HD-tau mice exhibited increased looping behavior during spatial learning, and made a greater number of head turns during memory recall, indicative of spatial disorientation. Using in vivo extracellular recordings, we identified htau-expressing ADn cells and found a lower proportion of HD cells in the ADn from HD-tau mice, along with reduced directionality and altered burst firing. These findings provide evidence that expression of pathological human tau can alter HD signaling, leading to impairments in spatial orientation.
Collapse
|
2
|
Capilla-López MD, Deprada A, Andrade-Talavera Y, Martínez-Gallego I, Coatl-Cuaya H, Sotillo P, Rodríguez-Alvarez J, Rodríguez-Moreno A, Parra-Damas A, Saura CA. Synaptic vulnerability to amyloid-β and tau pathologies differentially disrupts emotional and memory neural circuits. Mol Psychiatry 2025:10.1038/s41380-025-02901-9. [PMID: 39885298 DOI: 10.1038/s41380-025-02901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 12/22/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Alzheimer's disease (AD) is characterized by memory loss and neuropsychiatric symptoms associated with cerebral amyloid-β (Aβ) and tau pathologies, but whether and how these factors differentially disrupt neural circuits remains unclear. Here, we investigated the vulnerability of memory and emotional circuits to Aβ and tau pathologies in mice expressing mutant human amyloid precursor protein (APP), Tau or both APP/Tau in excitatory neurons. APP/Tau mice develop age- and sex-dependent Aβ and phosphorylated tau pathologies, the latter exacerbated at early stages, in vulnerable brain regions. Early memory deficits were associated with hippocampal tau pathology in Tau and APP/Tau mice, whereas anxiety and fear appeared linked to intracellular Aβ in the basolateral amygdala (BLA) of APP and APP/Tau mice. Transcriptome hippocampal profiling revealed gene changes affecting myelination and RNA processing in Tau mice, and inflammation and synaptic-related pathways in APP/Tau mice at 6 months. At 9 months, we detected common and region-specific changes in astrocytic, microglia and 63 AD-associated genes in the hippocampus and BLA of APP/Tau mice. Spatial learning deficits were associated with synaptic tau accumulation and synapse disruption in the hippocampus of Tau and APP/Tau mice, whereas emotional disturbances were linked to Aβ pathology but not synaptic tau in the BLA. Interestingly, Aβ and tau exhibited synergistic detrimental effects in long-term potentiation (LTP) in the hippocampus but they counteract with each other to mitigate LTP impairments in the amygdala. These findings indicate that Aβ and tau pathologies cause region-specific effects and synergize to induce synaptic dysfunction and immune responses, contributing to the differing vulnerability of memory and emotional neural circuits in AD.
Collapse
Affiliation(s)
- Maria Dolores Capilla-López
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Angel Deprada
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Irene Martínez-Gallego
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Sevilla, Spain
| | - Heriberto Coatl-Cuaya
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Sevilla, Spain
| | - Paula Sotillo
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José Rodríguez-Alvarez
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonio Rodríguez-Moreno
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Sevilla, Spain
| | - Arnaldo Parra-Damas
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Carlos A Saura
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
3
|
Weir JS, Hanssen KS, Winter-Hjelm N, Sandvig A, Sandvig I. Evolving alterations of structural organization and functional connectivity in feedforward neural networks after induced P301L tau mutation. Eur J Neurosci 2024; 60:7228-7248. [PMID: 39622242 DOI: 10.1111/ejn.16625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/29/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
Reciprocal structure-function relationships underlie both healthy and pathological behaviours in complex neural networks. Thus, understanding neuropathology and network dysfunction requires a thorough investigation of the complex interactions between structural and functional network reconfigurations in response to perturbation. Such adaptations are often difficult to study in vivo. For example, subtle, evolving changes in synaptic connectivity, transmission and the electrophysiological shift from healthy to pathological states, for example alterations that may be associated with evolving neurodegenerative disease, such as Alzheimer's, are difficult to study in the brain. Engineered in vitro neural networks are powerful models that enable selective targeting, manipulation and monitoring of dynamic neural network behaviour at the micro- and mesoscale in physiological and pathological conditions. In this study, we engineered feedforward cortical neural networks using two-nodal microfluidic devices with controllable connectivity interfaced with microelectrode arrays (mMEAs). We induced P301L mutated tau protein to the presynaptic node of these networks and monitored network dynamics over three weeks. Induced perturbation resulted in altered structural organization and extensive axonal retraction starting in the perturbed node. Perturbed networks also exhibited functional changes in intranodal activity, which manifested as an overall decline in both firing rate and bursting activity, with a progressive increase in synchrony over time and a decrease in internodal signal propagation between pre- and post-synaptic nodes. These results provide insights into dynamic structural and functional reconfigurations at the micro- and mesoscale as a result of evolving pathology and illustrate the utility of engineered networks as models of network function and dysfunction.
Collapse
Affiliation(s)
- Janelle S Weir
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Katrine Sjaastad Hanssen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Nicolai Winter-Hjelm
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
- Department of Neurorehabilitation, Umeå University Hospital, Umeå, Sweden
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
4
|
McGregor JN, Farris CA, Ensley S, Schneider A, Fosque LJ, Wang C, Tilden EI, Liu Y, Tu J, Elmore H, Ronayne KD, Wessel R, Dyer EL, Bhaskaran-Nair K, Holtzman DM, Hengen KB. Failure in a population: Tauopathy disrupts homeostatic set-points in emergent dynamics despite stability in the constituent neurons. Neuron 2024; 112:3567-3584.e5. [PMID: 39241778 PMCID: PMC11560743 DOI: 10.1016/j.neuron.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 06/24/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024]
Abstract
Homeostatic regulation of neuronal activity is essential for robust computation; set-points, such as firing rate, are actively stabilized to compensate for perturbations. The disruption of brain function central to neurodegenerative disease likely arises from impairments of computationally essential set-points. Here, we systematically investigated the effects of tau-mediated neurodegeneration on all known set-points in neuronal activity. We continuously tracked hippocampal neuronal activity across the lifetime of a mouse model of tauopathy. We were unable to detect effects of disease in measures of single-neuron firing activity. By contrast, as tauopathy progressed, there was disruption of network-level neuronal activity, quantified by measuring neuronal pairwise interactions and criticality, a homeostatically controlled, ideal computational regime. Deviations in criticality correlated with symptoms, predicted underlying anatomical pathology, occurred in a sleep-wake-dependent manner, and could be used to reliably classify an animal's genotype. This work illustrates how neurodegeneration may disrupt the computational capacity of neurobiological systems.
Collapse
Affiliation(s)
- James N McGregor
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Clayton A Farris
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Sahara Ensley
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Aidan Schneider
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Leandro J Fosque
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Chao Wang
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in Saint Louis, St. Louis, MO, USA; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing 400016, China
| | - Elizabeth I Tilden
- Department of Neuroscience, Washington University in Saint Louis, St. Louis, MO, USA
| | - Yuqi Liu
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Jianhong Tu
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Halla Elmore
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Keenan D Ronayne
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Ralf Wessel
- Department of Physics, Washington University in Saint Louis, St. Louis, MO, USA
| | - Eva L Dyer
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in Saint Louis, St. Louis, MO, USA
| | - Keith B Hengen
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA.
| |
Collapse
|
5
|
Ji C, Yang X, Eleish M, Jiang Y, Tetlow AM, Song SC, Martín‐Ávila A, Wu Q, Zhou Y, Gan W, Lin Y, Sigurdsson EM. Neuronal hypofunction and network dysfunction in a mouse model at an early stage of tauopathy. Alzheimers Dement 2024; 20:7954-7970. [PMID: 39368113 PMCID: PMC11567809 DOI: 10.1002/alz.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 10/07/2024]
Abstract
INTRODUCTION It is unclear how early neuronal deficits occur in tauopathies, if these are associated with changes in neuronal network activity, and if they can be alleviated with therapies. METHODS To address this, we performed in vivo two-photon Ca2+ imaging in tauopathy mice at 6 versus 12 months, compared to controls, and treated the younger animals with a tau antibody. RESULTS Neuronal function was impaired at 6 months but did not deteriorate further at 12 months, presumably because cortical tau burden was comparable at these ages. At 6 months, neurons were mostly hypoactive, with enhanced neuronal synchrony, and had dysregulated responses to stimulus. Ex vivo, electrophysiology revealed altered synaptic transmission and enhanced excitability of motor cortical neurons, which likely explains the altered network activity. Acute tau antibody treatment reduced pathological tau and gliosis and partially restored neuronal function. DISCUSSION Tauopathies are associated with early neuronal deficits that can be attenuated with tau antibody therapy. HIGHLIGHTS Neuronal hypofunction in awake and behaving mice in early stages of tauopathy. Altered network activity disrupted local circuitry engagement in tauopathy mice. Enhanced neuronal excitability and altered synaptic transmission in tauopathy mice. Tau antibody acutely reduced soluble phospho-tau and improved neuronal function.
Collapse
Affiliation(s)
- Changyi Ji
- Department of Neuroscience and PhysiologyNeuroscience Institute, New York University Grossman School of MedicineNew YorkUSA
| | - Xiaofeng Yang
- Department of Neuroscience and PhysiologyNeuroscience Institute, New York University Grossman School of MedicineNew YorkUSA
| | - Mohamed Eleish
- Department of Neuroscience and PhysiologyNeuroscience Institute, New York University Grossman School of MedicineNew YorkUSA
| | - Yixiang Jiang
- Department of Neuroscience and PhysiologyNeuroscience Institute, New York University Grossman School of MedicineNew YorkUSA
| | - Amber M. Tetlow
- Department of Neuroscience and PhysiologyNeuroscience Institute, New York University Grossman School of MedicineNew YorkUSA
| | - Soomin C. Song
- Department of PathologyNew York University Grossman School of MedicineNew YorkUSA
- IonLabNew York University Grossman School of MedicineNew YorkUSA
| | - Alejandro Martín‐Ávila
- Department of Neuroscience and PhysiologyNeuroscience Institute, New York University Grossman School of MedicineNew YorkUSA
| | - Qian Wu
- Department of Neuroscience and PhysiologyNeuroscience Institute, New York University Grossman School of MedicineNew YorkUSA
| | - Yanmei Zhou
- Skirball InstituteNew York University Grossman School of MedicineNew YorkUSA
| | - Wenbiao Gan
- Skirball InstituteNew York University Grossman School of MedicineNew YorkUSA
| | - Yan Lin
- Department of Neuroscience and PhysiologyNeuroscience Institute, New York University Grossman School of MedicineNew YorkUSA
| | - Einar M. Sigurdsson
- Department of Neuroscience and PhysiologyNeuroscience Institute, New York University Grossman School of MedicineNew YorkUSA
- Department of PsychiatryNew York University Grossman School of MedicineNew YorkUSA
| |
Collapse
|
6
|
Maksour S, Finol-Urdaneta RK, Hulme AJ, Cabral-da-Silva MEC, Targa Dias Anastacio H, Balez R, Berg T, Turner C, Sanz Muñoz S, Engel M, Kalajdzic P, Lisowski L, Sidhu K, Sachdev PS, Dottori M, Ooi L. Alzheimer's disease induced neurons bearing PSEN1 mutations exhibit reduced excitability. Front Cell Neurosci 2024; 18:1406970. [PMID: 39444394 PMCID: PMC11497635 DOI: 10.3389/fncel.2024.1406970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative condition that affects memory and cognition, characterized by neuronal loss and currently lacking a cure. Mutations in PSEN1 (Presenilin 1) are among the most common causes of early-onset familial AD (fAD). While changes in neuronal excitability are believed to be early indicators of AD progression, the link between PSEN1 mutations and neuronal excitability remains to be fully elucidated. This study examined iPSC-derived neurons (iNs) from fAD patients with PSEN1 mutations S290C or A246E, alongside CRISPR-corrected isogenic cell lines, to investigate early changes in excitability. Electrophysiological profiling revealed reduced excitability in both PSEN1 mutant iNs compared to their isogenic controls. Neurons bearing S290C and A246E mutations exhibited divergent passive membrane properties compared to isogenic controls, suggesting distinct effects of PSEN1 mutations on neuronal excitability. Additionally, both PSEN1 backgrounds exhibited higher current density of voltage-gated potassium (Kv) channels relative to their isogenic iNs, while displaying comparable voltage-gated sodium (Nav) channel current density. This suggests that the Nav/Kv imbalance contributes to impaired neuronal firing in fAD iNs. Deciphering these early cellular and molecular changes in AD is crucial for understanding disease pathogenesis.
Collapse
Affiliation(s)
- Simon Maksour
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Rocio K. Finol-Urdaneta
- School of Medical and Indigenous Health Science and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Amy J. Hulme
- School of Medical and Indigenous Health Science and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | | | - Helena Targa Dias Anastacio
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Rachelle Balez
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Tracey Berg
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Calista Turner
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Sonia Sanz Muñoz
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Martin Engel
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Predrag Kalajdzic
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
- Australian Genome Therapeutics Centre, Children’s Medical Research Institute and Sydney Children’s Hospitals Network, Westmead, NSW, Australia
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine – National Research Institute, Warsaw, Poland
| | - Kuldip Sidhu
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Mirella Dottori
- School of Medical and Indigenous Health Science and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Lezanne Ooi
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
7
|
Dando O, McGeachan R, McQueen J, Baxter P, Rockley N, McAlister H, Prasad A, He X, King D, Rose J, Jones PB, Tulloch J, Chandran S, Smith C, Hardingham G, Spires-Jones TL. Synaptic gene expression changes in frontotemporal dementia due to the MAPT 10 + 16 mutation. Neuropathol Appl Neurobiol 2024; 50:e13006. [PMID: 39164997 DOI: 10.1111/nan.13006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024]
Abstract
AIMS Mutations in the MAPT gene encoding tau protein can cause autosomal dominant neurodegenerative tauopathies including frontotemporal dementia (often with Parkinsonism). In Alzheimer's disease, the most common tauopathy, synapse loss is the strongest pathological correlate of cognitive decline. Recently, Positron Emission Tomography (PET) imaging with synaptic tracers revealed clinically relevant loss of synapses in primary tauopathies; however, the molecular mechanisms leading to synapse degeneration in primary tauopathies remain largely unknown. In this study, we examined post-mortem brain tissue from people who died with frontotemporal dementia with tau pathology (FTDtau) caused by the MAPT intronic exon 10 + 16 mutation, which increases splice variants containing exon 10 resulting in higher levels of tau with four microtubule-binding domains. METHODS We used RNA sequencing and histopathology to examine temporal cortex and visual cortex, to look for molecular phenotypes compared to age, sex and RNA integrity matched participants who died without neurological disease (n = 12 FTDtau10 + 16 and 13 controls). RESULTS Bulk tissue RNA sequencing reveals substantial downregulation of gene expression associated with synaptic function. Upregulated biological pathways in human MAPT 10 + 16 brain included those involved in transcriptional regulation, DNA damage response and neuroinflammation. Histopathology confirmed increased pathological tau accumulation in FTDtau10 + 16 cortex as well as a loss of presynaptic protein staining and region-specific increased colocalization of phospho-tau with synapses in temporal cortex. CONCLUSIONS Our data indicate that synaptic pathology likely contributes to pathogenesis in FTDtau10 + 16 caused by the MAPT 10 + 16 mutation.
Collapse
Affiliation(s)
- Owen Dando
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Robert McGeachan
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Jamie McQueen
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Paul Baxter
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Nathan Rockley
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Hannah McAlister
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Adharsh Prasad
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Xin He
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Declan King
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Jamie Rose
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | | | - Jane Tulloch
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
- Queen Square Institute of Neurology, University College London, London, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Giles Hardingham
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Tara L Spires-Jones
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Hole KL, Zhu B, Huggon L, Brown JT, Mason JM, Williams RJ. Tau P301L disengages from the proteosome core complex and neurogranin coincident with enhanced neuronal network excitability. Cell Death Dis 2024; 15:429. [PMID: 38890273 PMCID: PMC11189525 DOI: 10.1038/s41419-024-06815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Tauopathies are characterised by the pathological accumulation of misfolded tau. The emerging view is that toxic tau species drive synaptic dysfunction and potentially tau propagation before measurable neurodegeneration is evident, but the underlying molecular events are not well defined. Human non-mutated 0N4R tau (tauWT) and P301L mutant 0N4R tau (tauP301L) were expressed in mouse primary cortical neurons using adeno-associated viruses to monitor early molecular changes and synaptic function before the onset of neuronal loss. In this model tauP301L was differentially phosphorylated relative to tauwt with a notable increase in phosphorylation at ser262. Affinity purification - mass spectrometry combined with tandem mass tagging was used to quantitatively compare the tauWT and tauP301L interactomes. This revealed an enrichment of tauP301L with ribosomal proteins but a decreased interaction with the proteasome core complex and reduced tauP301L degradation. Differences in the interaction of tauP301L with members of a key synaptic calcium-calmodulin signalling pathway were also identified, most notably, increased association with CaMKII but reduced association with calcineurin and the candidate AD biomarker neurogranin. Decreased association of neurogranin to tauP301L corresponded with the appearance of enhanced levels of extracellular neurogranin suggestive of potential release or leakage from synapses. Finally, analysis of neuronal network activity using micro-electrode arrays showed that overexpression of tauP301L promoted basal hyperexcitability coincident with these changes in the tau interactome and implicating tau in specific early alterations in synaptic function.
Collapse
Affiliation(s)
- Katriona L Hole
- Department of Life Sciences, University of Bath, Bath, UK
- The Francis Crick Institute, London, UK
| | - Bangfu Zhu
- Department of Life Sciences, University of Bath, Bath, UK
| | - Laura Huggon
- Department of Life Sciences, University of Bath, Bath, UK
- UK Dementia Research Institute at King's College London, London, UK
| | - Jon T Brown
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Jody M Mason
- Department of Life Sciences, University of Bath, Bath, UK
| | | |
Collapse
|
9
|
Nabizadeh F. Disruption in functional networks mediated tau spreading in Alzheimer's disease. Brain Commun 2024; 6:fcae198. [PMID: 38978728 PMCID: PMC11227975 DOI: 10.1093/braincomms/fcae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/27/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Alzheimer's disease may be conceptualized as a 'disconnection syndrome', characterized by the breakdown of neural connectivity within the brain as a result of amyloid-beta plaques, tau neurofibrillary tangles and other factors leading to progressive degeneration and shrinkage of neurons, along with synaptic dysfunction. It has been suggested that misfolded tau proteins spread through functional connections (known as 'prion-like' properties of tau). However, the local effect of tau spreading on the synaptic function and communication between regions is not well understood. I aimed to investigate how the spreading of tau aggregates through connections can locally influence functional connectivity. In total, the imaging data of 211 participants including 117 amyloid-beta-negative non-demented and 94 amyloid-beta-positive non-demented participants were recruited from the Alzheimer's Disease Neuroimaging Initiative. Furthermore, normative resting-state functional MRI connectomes were used to model tau spreading through functional connections, and functional MRI of the included participants was used to determine the effect of tau spreading on functional connectivity. I found that lower functional connectivity to tau epicentres is associated with tau spreading through functional connections in both amyloid-beta-negative and amyloid-beta-positive participants. Also, amyloid-beta-PET in tau epicentres mediated the association of tau spreading and functional connectivity to epicentres suggesting a partial mediating effect of amyloid-beta deposition in tau epicentres on the local effect of tau spreading on functional connectivity. My findings provide strong support for the notion that tau spreading through connection is locally associated with disrupted functional connectivity between tau epicentre and non-epicentre regions independent of amyloid-beta pathology. Also, I defined several groups based on the relationship between tau spreading and functional disconnection, which provides quantitative assessment to investigate susceptibility or resilience to functional disconnection related to tau spreading. I showed that amyloid-beta, other copathologies and the apolipoprotein E epsilon 4 allele can be a leading factor towards vulnerability to tau relative functional disconnection.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran 441265421414, Iran
| |
Collapse
|
10
|
Khalilpour J, Zangbar HS, Alipour MR, Pakdel FQ, Zavari Z, Shahabi P. Chronic Sustained Hypoxia Leads to Brainstem Tauopathy and Declines the Power of Rhythms in the Ventrolateral Medulla: Shedding Light on a Possible Mechanism. Mol Neurobiol 2024; 61:3121-3143. [PMID: 37976025 DOI: 10.1007/s12035-023-03763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Hypoxia, especially the chronic type, leads to disruptive results in the brain that may contribute to the pathogenesis of some neurodegenerative diseases such as Alzheimer's disease (AD). The ventrolateral medulla (VLM) contains clusters of interneurons, such as the pre-Bötzinger complex (preBötC), that generate the main respiratory rhythm drive. We hypothesized that exposing animals to chronic sustained hypoxia (CSH) might develop tauopathy in the brainstem, consequently changing the rhythmic manifestations of respiratory neurons. In this study, old (20-22 months) and young (2-3 months) male rats were subjected to CSH (10 ± 0.5% O2) for ten consecutive days. Western blotting and immunofluorescence (IF) staining were used to evaluate phosphorylated tau. Mitochondrial membrane potential (MMP or ∆ψm) and reactive oxygen species (ROS) production were measured to assess mitochondrial function. In vivo diaphragm's electromyography (dEMG) and local field potential (LFP) recordings from preBötC were employed to assess the respiratory factors and rhythmic representation of preBötC, respectively. Findings showed that ROS production increased significantly in hypoxic groups, associated with a significant decline in ∆ψm. In addition, tau phosphorylation elevated in the brainstem of hypoxic groups. On the other hand, the power of rhythms declined significantly in the preBötC of hypoxic rats, parallel with changes in the respiratory rate, total respiration time, and expiration time. Moreover, there was a positive and statistically significant correlation between LFP rhythm's power and inspiration time. Our data showed that besides CSH, aging also contributed to mitochondrial dysfunction, tau hyperphosphorylation, LFP rhythms' power decline, and changes in respiratory factors.
Collapse
Affiliation(s)
- Jamal Khalilpour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, Iran.
| | - Mohammad Reza Alipour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, Iran
| | - Firouz Qaderi Pakdel
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zohre Zavari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, Iran
| | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, Iran.
| |
Collapse
|
11
|
Penny LK, Lofthouse R, Arastoo M, Porter A, Palliyil S, Harrington CR, Wischik CM. Considerations for biomarker strategies in clinical trials investigating tau-targeting therapeutics for Alzheimer's disease. Transl Neurodegener 2024; 13:25. [PMID: 38773569 PMCID: PMC11107038 DOI: 10.1186/s40035-024-00417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/24/2024] [Indexed: 05/24/2024] Open
Abstract
The use of biomarker-led clinical trial designs has been transformative for investigating amyloid-targeting therapies for Alzheimer's disease (AD). The designs have ensured the correct selection of patients on these trials, supported target engagement and have been used to support claims of disease modification and clinical efficacy. Ultimately, this has recently led to approval of disease-modifying, amyloid-targeting therapies for AD; something that should be noted for clinical trials investigating tau-targeting therapies for AD. There is a clear overlap of the purpose of biomarker use at each stage of clinical development between amyloid-targeting and tau-targeting clinical trials. However, there are differences within the potential context of use and interpretation for some biomarkers in particular measurements of amyloid and utility of soluble, phosphorylated tau biomarkers. Given the complexities of tau in health and disease, it is paramount that therapies target disease-relevant tau and, in parallel, appropriate assays of target engagement are developed. Tau positron emission tomography, fluid biomarkers reflecting tau pathology and downstream measures of neurodegeneration will be important both for participant recruitment and for monitoring disease-modification in tau-targeting clinical trials. Bespoke design of biomarker strategies and interpretations for different modalities and tau-based targets should also be considered.
Collapse
Affiliation(s)
- Lewis K Penny
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Scottish Biologics Facility, University of Aberdeen, Aberdeen, UK
- TauRx Therapeutics Ltd, Aberdeen, UK
| | - Richard Lofthouse
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Scottish Biologics Facility, University of Aberdeen, Aberdeen, UK
| | - Mohammad Arastoo
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Scottish Biologics Facility, University of Aberdeen, Aberdeen, UK
| | - Andy Porter
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Scottish Biologics Facility, University of Aberdeen, Aberdeen, UK
| | - Soumya Palliyil
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Scottish Biologics Facility, University of Aberdeen, Aberdeen, UK
| | - Charles R Harrington
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- GT Diagnostics (UK) Ltd, Aberdeen, UK
- TauRx Therapeutics Ltd, Aberdeen, UK
| | - Claude M Wischik
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
- GT Diagnostics (UK) Ltd, Aberdeen, UK.
- TauRx Therapeutics Ltd, Aberdeen, UK.
| |
Collapse
|
12
|
Ji C, Yang X, Eleish M, Jiang Y, Tetlow A, Song S, Martín-Ávila A, Wu Q, Zhou Y, Gan W, Lin Y, Sigurdsson EM. Neuronal hypofunction and network dysfunction in a mouse model at an early stage of tauopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591735. [PMID: 38746288 PMCID: PMC11092661 DOI: 10.1101/2024.04.29.591735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
We previously reported altered neuronal Ca 2+ dynamics in the motor cortex of 12-month-old JNPL3 tauopathy mice during quiet wakefulness or forced running, with a tau antibody treatment significantly restoring the neuronal Ca 2+ activity profile and decreasing pathological tau in these mice 1 . Whether neuronal functional deficits occur at an early stage of tauopathy and if tau antibody treatment is effective in younger tauopathy mice needed further investigation. In addition, neuronal network activity and neuronal firing patterns have not been well studied in behaving tauopathy models. In this study, we first performed in vivo two-photon Ca 2+ imaging in JNPL3 mice in their early stage of tauopathy at 6 months of age, compared to 12 month old mice and age-matched wild-type controls to evaluate neuronal functional deficits. At the animal level, frequency of neuronal Ca 2+ transients decreased only in 6 month old tauopathy mice compared to controls, and only when animals were running on a treadmill. The amplitude of neuronal transients decreased in tauopathy mice compared to controls under resting and running conditions in both age groups. Total neuronal activity decreased only in 6 month old tauopathy mice compared to controls under resting and running conditions. Within either tauopathy or wild-type group, only total activity decreased in older wild-type animals. The tauopathy mice at different ages did not differ in neuronal Ca 2+ transient frequency, amplitude or total activity. In summary, neuronal function did significantly attenuate at an early age in tauopathy mice compared to controls but interestingly did not deteriorate between 6 and 12 months of age. A more detailed populational analysis of the pattern of Ca 2+ activity at the neuronal level in the 6 month old cohort confirmed neuronal hypoactivity in layer 2/3 of primary motor cortex, compared to wild-type controls, when animals were either resting or running on a treadmill. Despite reduced activity, neuronal Ca 2+ profiles exhibited enhanced synchrony and dysregulated responses to running stimulus. Further ex vivo electrophysiological recordings revealed reduction of spontaneous excitatory synaptic transmission onto and in pyramidal neurons and enhanced excitability of inhibitory neurons in motor cortex, which were likely responsible for altered neuronal network activity in this region. Lastly, tau antibody treatment reduced pathological tau and gliosis partially restored the neuronal Ca 2+ activity deficits but failed to rescue altered network changes. Taken together, substantial neuronal and network dysfunction occurred in the early stage of tauopathy that was partially alleviated with acute tau antibody treatment, which highlights the importance of functional assessment when evaluating the therapeutic potential of tau antibodies. Highlights Layer 2/3 motor cortical neurons exhibited hypofunction in awake and behaving mice at the early stage of tauopathy.Altered neuronal network activity disrupted local circuitry engagement in tauopathy mice during treadmill running.Layer 2/3 motor cortical neurons in tauopathy mice exhibited enhanced neuronal excitability and altered excitatory synaptic transmissions.Acute tau antibody treatment reduced pathological tau and gliosis, and partially restored neuronal hypofunction profiles but not network dysfunction.
Collapse
|
13
|
Dando O, McGeachan R, McQueen J, Baxter P, Rockley N, McAlister H, Prasad A, He X, King D, Rose J, Jones PB, Tulloch J, Chandran S, Smith C, Hardingham G, Spires-Jones TL. Synaptic gene expression changes in frontotemporal dementia due to the MAPT 10+16 mutation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.09.24305501. [PMID: 38645146 PMCID: PMC11030522 DOI: 10.1101/2024.04.09.24305501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Mutations in the MAPT gene encoding tau protein can cause autosomal dominant neurodegenerative tauopathies including frontotemporal dementia (often with Parkinsonism). In Alzheimer's disease, the most common tauopathy, synapse loss is the strongest pathological correlate of cognitive decline. Recently, PET imaging with synaptic tracers revealed clinically relevant loss of synapses in primary tauopathies; however, the molecular mechanisms leading to synapse degeneration in primary tauopathies remain largely unknown. In this study, we examined post-mortem brain tissue from people who died with frontotemporal dementia with tau pathology (FTDtau) caused by the MAPT intronic exon 10+16 mutation, which increases splice variants containing exon 10 resulting in higher levels of tau with four microtubule binding domains. We used RNA sequencing and histopathology to examine temporal cortex and visual cortex, to look for molecular phenotypes compared to age, sex, and RNA integrity matched participants who died without neurological disease (n=12 per group). Bulk tissue RNA sequencing reveals substantial downregulation of gene expression associated with synaptic function. Upregulated biological pathways in human MAPT 10+16 brain included those involved in transcriptional regulation, DNA damage response, and neuroinflammation. Histopathology confirmed increased pathological tau accumulation in FTDtau cortex as well as a loss of presynaptic protein staining, and region-specific increased colocalization of phospho-tau with synapses in temporal cortex. Our data indicate that synaptic pathology likely contributes to pathogenesis in FTDtau caused by the MAPT 10+16 mutation.
Collapse
Affiliation(s)
- Owen Dando
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| | - Robert McGeachan
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| | - Jamie McQueen
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| | - Paul Baxter
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| | - Nathan Rockley
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| | - Hannah McAlister
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| | - Adharsh Prasad
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| | - Xin He
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| | - Declan King
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| | - Jamie Rose
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| | | | - Jane Tulloch
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| | - Siddharthan Chandran
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Colin Smith
- Centre for Clinical Brain Sciences School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| | - Giles Hardingham
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| | - Tara L Spires-Jones
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, United Kingdom
| |
Collapse
|
14
|
Zhong MZ, Peng T, Duarte ML, Wang M, Cai D. Updates on mouse models of Alzheimer's disease. Mol Neurodegener 2024; 19:23. [PMID: 38462606 PMCID: PMC10926682 DOI: 10.1186/s13024-024-00712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/14/2024] [Indexed: 03/12/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the United States (US). Animal models, specifically mouse models have been developed to better elucidate disease mechanisms and test therapeutic strategies for AD. A large portion of effort in the field was focused on developing transgenic (Tg) mouse models through over-expression of genetic mutations associated with familial AD (FAD) patients. Newer generations of mouse models through knock-in (KI)/knock-out (KO) or CRISPR gene editing technologies, have been developed for both familial and sporadic AD risk genes with the hope to more accurately model proteinopathies without over-expression of human AD genes in mouse brains. In this review, we summarized the phenotypes of a few commonly used as well as newly developed mouse models in translational research laboratories including the presence or absence of key pathological features of AD such as amyloid and tau pathology, synaptic and neuronal degeneration as well as cognitive and behavior deficits. In addition, advantages and limitations of these AD mouse models have been elaborated along with discussions of any sex-specific features. More importantly, the omics data from available AD mouse models have been analyzed to categorize molecular signatures of each model reminiscent of human AD brain changes, with the hope to guide future selection of most suitable models for specific research questions to be addressed in the AD field.
Collapse
Affiliation(s)
- Michael Z Zhong
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Biology, College of Arts and Science, Boston University, Boston, MA, 02215, USA
| | - Thomas Peng
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Science Research Program, Scarsdale High School, New York, NY, 10583, USA
| | - Mariana Lemos Duarte
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Research & Development, James J Peters VA Medical Center, Bronx, NY, 10468, USA.
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Dongming Cai
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Research & Development, James J Peters VA Medical Center, Bronx, NY, 10468, USA.
- Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neurology, N. Bud Grossman Center for Memory Research and Care, The University of Minnesota, Minneapolis, MN, 55455, USA.
- Geriatric Research Education & Clinical Center (GRECC), The Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
| |
Collapse
|
15
|
García-Carlos CA, Basurto-Islas G, Perry G, Mondragón-Rodríguez S. Meta-Analysis in Transgenic Alzheimer's Disease Mouse Models Reveals Opposite Brain Network Effects of Amyloid-β and Phosphorylated Tau Proteins. J Alzheimers Dis 2024; 99:595-607. [PMID: 38669540 DOI: 10.3233/jad-231365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Background Cognitive deficits observed in Alzheimer's disease (AD) patients have been correlated with altered hippocampal activity. Although the mechanism remains under extensive study, neurofibrillary tangles and amyloid plaques have been proposed as responsible for brain activity alterations. Aiming to unveil the mechanism, researchers have developed several transgenic models of AD. Nevertheless, the variability in hippocampal oscillatory alterations found in different genetic backgrounds and ages remains unclear. Objective To assess the oscillatory alterations in relation to animal developmental age and protein inclusion, amyloid-β (Aβ) load, and abnormally phosphorylated tau (pTau), we reviewed and analyzed the published data on peak power, frequency, and quantification of theta-gamma cross-frequency coupling (modulation index values). Methods To ensure that the search was as current as possible, a systematic review was conducted to locate and abstract all studies published from January 2000 to February 2023 that involved in vivo hippocampal local field potential recording in transgenic mouse models of AD. Results The presence of Aβ was associated with electrophysiological alterations that are mainly reflected in power increases, frequency decreases, and lower modulation index values. Concomitantly, pTau accumulation was associated with electrophysiological alterations that are mainly reflected in power decreases, frequency decreases, and no significant alterations in modulation index values. Conclusions In this study, we showed that electrophysiological parameters are altered from prodromal stages to the late stages of pathology. Thus, we found that Aβ deposition is associated with brain network hyperexcitability, whereas pTau deposition mainly leads to brain network hypoexcitability in transgenic models.
Collapse
Affiliation(s)
- Carlos Antonio García-Carlos
- UNAM Division of Neurosciences, Institute of Cellular Physiology, National Autonomous University of México, México City, México
| | | | - George Perry
- UTSA Neuroscience Institute and Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Siddhartha Mondragón-Rodríguez
- UAQ Centre for Applied Biomedical Research - CIBA, School of Medicine, Autonomous University of Querétaro, Querétaro, México
- CONAHCYT National Council for Science and Technology, México City, México
| |
Collapse
|
16
|
Chen L, Christenson Wick Z, Vetere LM, Vaughan N, Jurkowski A, Galas A, Diego KS, Philipsberg PA, Soler I, Feng Y, Cai DJ, Shuman T. Progressive Excitability Changes in the Medial Entorhinal Cortex in the 3xTg Mouse Model of Alzheimer's Disease Pathology. J Neurosci 2023; 43:7441-7454. [PMID: 37714705 PMCID: PMC10621765 DOI: 10.1523/jneurosci.1204-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by memory loss and progressive cognitive impairments. In mouse models of AD pathology, studies have found neuronal and synaptic deficits in hippocampus, but less is known about changes in medial entorhinal cortex (MEC), which is the primary spatial input to the hippocampus and an early site of AD pathology. Here, we measured neuronal intrinsic excitability and synaptic activity in MEC layer II (MECII) stellate cells, MECII pyramidal cells, and MEC layer III (MECIII) excitatory neurons at 3 and 10 months of age in the 3xTg mouse model of AD pathology, using male and female mice. At 3 months of age, before the onset of memory impairments, we found early hyperexcitability in intrinsic properties of MECII stellate and pyramidal cells, but this was balanced by a relative reduction in synaptic excitation (E) compared with inhibition (I; E/I ratio), suggesting intact homeostatic mechanisms regulating MECII activity. Conversely, MECIII neurons had reduced intrinsic excitability at this early time point with no change in synaptic E/I ratio. By 10 months of age, after the onset of memory deficits, neuronal excitability of MECII pyramidal cells and MECIII excitatory neurons was largely normalized in 3xTg mice. However, MECII stellate cells remained hyperexcitable, and this was further exacerbated by an increased synaptic E/I ratio. This observed combination of increased intrinsic and synaptic hyperexcitability suggests a breakdown in homeostatic mechanisms specifically in MECII stellate cells at this postsymptomatic time point, which may contribute to the emergence of memory deficits in AD.SIGNIFICANCE STATEMENT AD causes cognitive deficits, but the specific neural circuits that are damaged to drive changes in memory remain unknown. Using a mouse model of AD pathology that expresses both amyloid and tau transgenes, we found that neurons in the MEC have altered excitability. Before the onset of memory impairments, neurons in layer 2 of MEC had increased intrinsic excitability, but this was balanced by reduced inputs onto the cell. However, after the onset of memory impairments, stellate cells in MEC became further hyperexcitable, with increased excitability exacerbated by increased synaptic inputs. Thus, it appears that MEC stellate cells are uniquely disrupted during the progression of memory deficits and may contribute to cognitive deficits in AD.
Collapse
Affiliation(s)
- Lingxuan Chen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697
| | - Zoé Christenson Wick
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Lauren M Vetere
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Nick Vaughan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Albert Jurkowski
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Hunter College, City University of New York, New York, New York 10065
| | - Angelina Galas
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- New York University, New York, New York 10012
| | - Keziah S Diego
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Paul A Philipsberg
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ivan Soler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Yu Feng
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Denise J Cai
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Tristan Shuman
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
17
|
McGregor JN, Farris CA, Ensley S, Schneider A, Wang C, Liu Y, Tu J, Elmore H, Ronayne KD, Wessel R, Dyer EL, Bhaskaran-Nair K, Holtzman DM, Hengen KB. Tauopathy severely disrupts homeostatic set-points in emergent neural dynamics but not in the activity of individual neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555947. [PMID: 37732214 PMCID: PMC10508737 DOI: 10.1101/2023.09.01.555947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The homeostatic regulation of neuronal activity is essential for robust computation; key set-points, such as firing rate, are actively stabilized to compensate for perturbations. From this perspective, the disruption of brain function central to neurodegenerative disease should reflect impairments of computationally essential set-points. Despite connecting neurodegeneration to functional outcomes, the impact of disease on set-points in neuronal activity is unknown. Here we present a comprehensive, theory-driven investigation of the effects of tau-mediated neurodegeneration on homeostatic set-points in neuronal activity. In a mouse model of tauopathy, we examine 27,000 hours of hippocampal recordings during free behavior throughout disease progression. Contrary to our initial hypothesis that tauopathy would impact set-points in spike rate and variance, we found that cell-level set-points are resilient to even the latest stages of disease. Instead, we find that tauopathy disrupts neuronal activity at the network-level, which we quantify using both pairwise measures of neuron interactions as well as measurement of the network's nearness to criticality, an ideal computational regime that is known to be a homeostatic set-point. We find that shifts in network criticality 1) track with symptoms, 2) predict underlying anatomical and molecular pathology, 3) occur in a sleep/wake dependent manner, and 4) can be used to reliably classify an animal's genotype. Our data suggest that the critical set-point is intact, but that homeostatic machinery is progressively incapable of stabilizing hippocampal networks, particularly during waking. This work illustrates how neurodegenerative processes can impact the computational capacity of neurobiological systems, and suggest an important connection between molecular pathology, circuit function, and animal behavior.
Collapse
Affiliation(s)
- James N McGregor
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Clayton A Farris
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Sahara Ensley
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Aidan Schneider
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Chao Wang
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in Saint Louis, St. Louis, MO, USA
- Institute for Brain Science and Disease, Chongqing Medical University, 400016, Chongqing, China
| | - Yuqi Liu
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Jianhong Tu
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Halla Elmore
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Keenan D Ronayne
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Ralf Wessel
- Department of Physics, Washington University in Saint Louis, St. Louis, MO, USA
| | - Eva L Dyer
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in Saint Louis, St. Louis, MO, USA
| | - Keith B Hengen
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| |
Collapse
|
18
|
Chen XL, Fortes JM, Hu YT, van Iersel J, He KN, van Heerikhuize J, Balesar R, Swaab D, Bao AM. Sexually dimorphic age-related molecular differences in the entorhinal cortex of cognitively intact elderly: Relation to early Alzheimer's changes. Alzheimers Dement 2023; 19:3848-3857. [PMID: 36960685 DOI: 10.1002/alz.13037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 03/25/2023]
Abstract
INTRODUCTION Women are more vulnerable to Alzheimer's disease (AD) than men. The entorhinal cortex (EC) is one of the earliest structures affected in AD. We identified in cognitively intact elderly different molecular changes in the EC in relation to age. METHODS Changes in 12 characteristic molecules in relation to age were determined by quantitative immunohistochemistry or in situ hybridization in the EC. They were arbitrarily grouped into sex steroid-related molecules, markers of neuronal activity, neurotransmitter-related molecules, and cholinergic activity-related molecules. RESULTS The changes in molecules indicated increasing local estrogenic and neuronal activity accompanied by a higher and faster hyperphosphorylated tau accumulation in women's EC in relation to age, versus a mainly stable local estrogenic/androgenic and neuronal activity in men's EC. DISCUSSION EC employs a different neurobiological strategy in women and men to maintain cognitive function, which seems to be accompanied by an earlier start of AD in women. HIGHLIGHTS Local estrogen system is activated with age only in women's entorhinal cortex (EC). EC neuronal activity increased with age only in elderly women with intact cognition. Men and women have different molecular strategies to retain cognition with aging. P-tau accumulation in the EC was higher and faster in cognitively intact elderly women.
Collapse
Affiliation(s)
- Xin-Lu Chen
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Jennifer Monteiro Fortes
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Yu-Ting Hu
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Juliet van Iersel
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Kang-Ning He
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Joop van Heerikhuize
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Rawien Balesar
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Dick Swaab
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Ai-Min Bao
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Kam K, Vetter K, Tejiram RA, Pettibone WD, Shim K, Audrain M, Yu L, Daehn IS, Ehrlich ME, Varga AW. Effect of Aging and a Dual Orexin Receptor Antagonist on Sleep Architecture and Non-REM Oscillations Including an REM Behavior Disorder Phenotype in the PS19 Mouse Model of Tauopathy. J Neurosci 2023; 43:4738-4749. [PMID: 37230765 PMCID: PMC10286944 DOI: 10.1523/jneurosci.1828-22.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
The impact of tau pathology on sleep microarchitecture features, including slow oscillations, spindles, and their coupling, has been understudied, despite the proposed importance of these electrophysiological features toward learning and memory. Dual orexin receptor antagonists (DORAs) are known to promote sleep, but whether and how they affect sleep microarchitecture in the setting of tauopathy is unknown. In the PS19 mouse model of tauopathy MAPT (microtubule-associated protein tau) P301S (both male and female), young PS19 mice 2-3 months old show a sleep electrophysiology signature with markedly reduced spindle duration and power and elevated slow oscillation (SO) density compared with littermate controls, although there is no significant tau hyperphosphorylation, tangle formation, or neurodegeneration at this age. With aging, there is evidence for sleep disruption in PS19 mice, characterized by reduced REM duration, increased non-REM and REM fragmentation, and more frequent brief arousals at the macrolevel and reduced spindle density, SO density, and spindle-SO coupling at the microlevel. In ∼33% of aged PS19 mice, we unexpectedly observed abnormal goal-directed behaviors in REM, including mastication, paw grasp, and forelimb/hindlimb extension, seemingly consistent with REM behavior disorder (RBD). Oral administration of DORA-12 in aged PS19 mice increased non-REM and REM duration, albeit with shorter bout lengths, and increased spindle density, spindle duration, and SO density without change to spindle-SO coupling, power in either the SO or spindle bands, or the arousal index. We observed a significant effect of DORA-12 on objective measures of RBD, thereby encouraging future exploration of DORA effects on sleep-mediated cognition and RBD treatment.SIGNIFICANCE STATEMENT The specific effect of tauopathy on sleep macroarchitecture and microarchitecture throughout aging remains unknown. Our key findings include the following: (1) the identification of a sleep EEG signature constituting an early biomarker of impending tauopathy; (2) sleep physiology deteriorates with aging that are also markers of off-line cognitive processing; (3) the novel observation that dream enactment behaviors reminiscent of RBD occur, likely the first such observation in a tauopathy model; and (4) a dual orexin receptor antagonist is capable of restoring several of the sleep macroarchitecture and microarchitecture abnormalities.
Collapse
Affiliation(s)
- Korey Kam
- Catherine and Henry J. Gaisman Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Kenny Vetter
- Catherine and Henry J. Gaisman Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Rachel A Tejiram
- Catherine and Henry J. Gaisman Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ward D Pettibone
- Catherine and Henry J. Gaisman Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Kaitlyn Shim
- Catherine and Henry J. Gaisman Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Liping Yu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ilse S Daehn
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Andrew W Varga
- Catherine and Henry J. Gaisman Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
20
|
Li B, Shi K, Ren C, Kong M, Ba M. Detection of Tau-PET Positivity in Clinically Diagnosed Mild Cognitive Impairment with Multidimensional Features. J Alzheimers Dis 2023:JAD230180. [PMID: 37334600 DOI: 10.3233/jad-230180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
BACKGROUND The way to evaluate brain tau pathology in vivo is tau positron emission tomography (tau-PET) or cerebrospinal fluid (CSF) analysis. In the clinically diagnosed mild cognitive impairment (MCI), a significant proportion of tau-PET are negative. Interest in less expensive and convenient ways to detect tau pathology in Alzheimer's disease has increased due to the high cost of tau-PET and the invasiveness of lumbar puncture, which typically slows down the cost and enrollment of clinical trials. OBJECTIVE We aimed to investigate one simple and effective method in predicting tau-PET status in MCI individuals. METHODS The sample included 154 individuals which were dichotomized into tau-PET (+) and tau-PET (-) using a cut-off of >1.33. We used stepwise regression to select the unitary or combination of variables that best predicted tau-PET. The receiver operating characteristic curve was used to assess the accuracy of single and multiple clinical markers. RESULTS The combined performance of three variables [Alzheimer's Disease Assessment Scale-Cognitive Subscale 13 (ADAS-Cog13), Mini-Mental State Examination (MMSE), ADNI-Memory summary score (ADNI-MEM)] in neurocognitive measures demonstrated good predictive accuracy of tau-PET status [accuracy = 85.7%, area under the curve (AUC) = 0.879]. The combination of clinical markers model (APOEɛ4, neurocognitive measures and structural MRI imaging of middle temporal) had the best discriminative power (AUC = 0.946). CONCLUSION As a noninvasive test, the combination of APOEɛ4, neurocognitive measures and structural MRI imaging of middle temporal accurately predicts tau-PET status. The finding may provide a non-invasive, cost-effective tool for clinical application in predicting tau pathology among MCI individuals.
Collapse
Affiliation(s)
- Bingyu Li
- Department of Neurology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Kening Shi
- Department of Neurology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Chao Ren
- Department of Neurology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Min Kong
- Department of Neurology, Yantaishan Hospital, Yantai, Shandong, China
| | - Maowen Ba
- Department of Neurology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- Yantai Regional Sub Center of National Center for Clinical Medical Research of Neurological Diseases, Shandong, China
| |
Collapse
|
21
|
Chen L, Wick ZC, Vetere LM, Vaughan N, Jurkowski A, Galas A, Diego KS, Philipsberg P, Cai DJ, Shuman T. Progressive excitability changes in the medial entorhinal cortex in the 3xTg mouse model of Alzheimer's disease pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542838. [PMID: 37398359 PMCID: PMC10312508 DOI: 10.1101/2023.05.30.542838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is characterized by memory loss and progressive cognitive impairments. In mouse models of AD pathology, studies have found neuronal and synaptic deficits in the hippocampus, but less is known about what happens in the medial entorhinal cortex (MEC), which is the primary spatial input to the hippocampus and an early site of AD pathology. Here, we measured the neuronal intrinsic excitability and synaptic activity in MEC layer II (MECII) stellate cells, MECII pyramidal cells, and MEC layer III (MECIII) excitatory neurons at early (3 months) and late (10 months) time points in the 3xTg mouse model of AD pathology. At 3 months of age, prior to the onset of memory impairments, we found early hyperexcitability in MECII stellate and pyramidal cells' intrinsic properties, but this was balanced by a relative reduction in synaptic excitation (E) compared to inhibition (I), suggesting intact homeostatic mechanisms regulating activity in MECII. Conversely, MECIII neurons had reduced intrinsic excitability at this early time point with no change in the synaptic E/I ratio. By 10 months of age, after the onset of memory deficits, neuronal excitability of MECII pyramidal cells and MECIII excitatory neurons was largely normalized in 3xTg mice. However, MECII stellate cells remained hyperexcitable and this was further exacerbated by an increased synaptic E/I ratio. This observed combination of increased intrinsically and synaptically generated excitability suggests a breakdown in homeostatic mechanisms specifically in MECII stellate cells at this post-symptomatic time point. Together, these data suggest that the breakdown in homeostatic excitability mechanisms in MECII stellate cells may contribute to the emergence of memory deficits in AD.
Collapse
Affiliation(s)
- Lingxuan Chen
- Icahn School of Medicine at Mount Sinai, New York NY
- University of California Irvine, Irvine CA
| | | | | | - Nick Vaughan
- Icahn School of Medicine at Mount Sinai, New York NY
| | - Albert Jurkowski
- Icahn School of Medicine at Mount Sinai, New York NY
- CUNY Hunter College, New York NY
| | - Angelina Galas
- Icahn School of Medicine at Mount Sinai, New York NY
- New York University, New York NY
| | | | | | - Denise J. Cai
- Icahn School of Medicine at Mount Sinai, New York NY
| | | |
Collapse
|
22
|
Morrone CD, Raghuraman R, Hussaini SA, Yu WH. Proteostasis failure exacerbates neuronal circuit dysfunction and sleep impairments in Alzheimer's disease. Mol Neurodegener 2023; 18:27. [PMID: 37085942 PMCID: PMC10119020 DOI: 10.1186/s13024-023-00617-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/29/2023] [Indexed: 04/23/2023] Open
Abstract
Failed proteostasis is a well-documented feature of Alzheimer's disease, particularly, reduced protein degradation and clearance. However, the contribution of failed proteostasis to neuronal circuit dysfunction is an emerging concept in neurodegenerative research and will prove critical in understanding cognitive decline. Our objective is to convey Alzheimer's disease progression with the growing evidence for a bidirectional relationship of sleep disruption and proteostasis failure. Proteostasis dysfunction and tauopathy in Alzheimer's disease disrupts neurons that regulate the sleep-wake cycle, which presents behavior as impaired slow wave and rapid eye movement sleep patterns. Subsequent sleep loss further impairs protein clearance. Sleep loss is a defined feature seen early in many neurodegenerative disorders and contributes to memory impairments in Alzheimer's disease. Canonical pathological hallmarks, β-amyloid, and tau, directly disrupt sleep, and neurodegeneration of locus coeruleus, hippocampal and hypothalamic neurons from tau proteinopathy causes disruption of the neuronal circuitry of sleep. Acting in a positive-feedback-loop, sleep loss and circadian rhythm disruption then increase spread of β-amyloid and tau, through impairments of proteasome, autophagy, unfolded protein response and glymphatic clearance. This phenomenon extends beyond β-amyloid and tau, with interactions of sleep impairment with the homeostasis of TDP-43, α-synuclein, FUS, and huntingtin proteins, implicating sleep loss as an important consideration in an array of neurodegenerative diseases and in cases of mixed neuropathology. Critically, the dynamics of this interaction in the neurodegenerative environment are not fully elucidated and are deserving of further discussion and research. Finally, we propose sleep-enhancing therapeutics as potential interventions for promoting healthy proteostasis, including β-amyloid and tau clearance, mechanistically linking these processes. With further clinical and preclinical research, we propose this dynamic interaction as a diagnostic and therapeutic framework, informing precise single- and combinatorial-treatments for Alzheimer's disease and other brain disorders.
Collapse
Affiliation(s)
- Christopher Daniel Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
| | - Radha Raghuraman
- Taub Institute, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
| | - S Abid Hussaini
- Taub Institute, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
| | - Wai Haung Yu
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Geriatric Mental Health Research Services, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
23
|
Pockes S, Walters MA, Ashe KH. Targeting caspase-2 interactions with tau in Alzheimer's disease and related dementias. Transl Res 2023; 254:34-40. [PMID: 36343883 PMCID: PMC9991976 DOI: 10.1016/j.trsl.2022.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Targeting amyloid-β plaques and tau tangles has failed to provide effective treatments for Alzheimer's disease and related dementias (ADRD). A more fruitful pathway to ADRD therapeutics may be the development of therapies that target common signaling pathways that disrupt synaptic connections and impede communication between neurons. In this review, we present our characterization of a signaling pathway common to several neurological diseases featuring dementia including Alzheimer's disease, frontotemporal dementia, Lewy body dementia, and Huntington's disease. This signaling pathway features the cleavage of tau by caspase-2 (Casp2) yielding Δtau314 (Casp2/tau/Δtau314). Through a not yet fully delineated mechanism, Δtau314 catalyzes the mislocalization and accumulation of tau to dendritic spines leading to the internalization of AMPA receptors and the concomitant weakening of synaptic transmission. Here, we review the accumulated evidence supporting Casp2 as a druggable target and its importance in ADRD. Additionally, we provide a brief overview of our initial medicinal chemistry explorations aimed at the preparation of novel, brain penetrant Casp2 inhibitors. We anticipate that this review will spark broader interest in Casp2 as a target for restoring synaptic dysfunction in ADRD.
Collapse
Affiliation(s)
- Steffen Pockes
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany; Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota; Department of Neurology, University of Minnesota, Minneapolis, Minnesota.
| | - Michael A Walters
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota.
| | - Karen H Ashe
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
24
|
Parka A, Volbracht C, Hall B, Bastlund JF, Nedergaard M, Laursen B, Botta P, Sotty F. Visual Evoked Potentials as an Early-Stage Biomarker in the rTg4510 Tauopathy Mouse Model. J Alzheimers Dis 2023; 93:247-262. [PMID: 37005884 DOI: 10.3233/jad-220964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Background: Tauopathies such as Alzheimer’s disease (AD) and frontotemporal dementia (FTD) are characterized by formation of neurofibrillary tangles consisting of hyperphosphorylated tau protein. Early pathophysiological and functional changes related to neurofibrillary tangles formation are considered to occur prior to extensive neurodegeneration. Hyperphosphorylated tau has been detected in postmortem retinas of AD and FTD patients, and the visual pathway is an easily accessible system in a clinical setting. Hence, assessment of the visual function may offer the potential to detect consequences of early tau pathology in patients. Objective: The aim of this study was to evaluate visual function in a tauopathy mouse model in relation to tau hyperphosphorylation and neurodegeneration. Methods: In this study we explored the association between the visual system and functional consequences of tau pathology progression using a tauopathy rTg4510 mouse model. To this end, we recorded full-field electroretinography and visual evoked potentials in anesthetized and awake states at different ages. Results: While retinal function remained mostly intact within all the age groups investigated, we detected significant changes in amplitudes of visual evoked potential responses in young rTg4510 mice exhibiting early tau pathology prior to neurodegeneration. These functional alterations in the visual cortex were positively correlated with pathological tau levels. Conclusion: Our findings suggest that visual processing could be useful as a novel electrophysiological biomarker for early stages of tauopathy.
Collapse
Affiliation(s)
- Aleksandra Parka
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
- H. Lundbeck A/S, Research, Valby, Denmark
| | | | | | | | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
25
|
Lanza M, Cuzzocrea S, Oddo S, Esposito E, Casili G. The Role of miR-128 in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:6024. [PMID: 37046996 PMCID: PMC10093830 DOI: 10.3390/ijms24076024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Several neurodegenerative disorders are characterized by the accumulation of misfolded proteins and are collectively known as proteinopathies. Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) represent some of the most common neurodegenerative disorders whose steady increase in prevalence is having a major socio-economic impact on our society. Multiple laboratories have reported hundreds of changes in gene expression in selective brain regions of AD, PD, and HD brains. While the mechanisms underlying these changes remain an active area of investigation, alterations in the expression of noncoding RNAs, which are common in AD, PD, and HD, may account for some of the changes in gene expression in proteinopathies. In this review, we discuss the role of miR-128, which is highly expressed in mammalian brains, in AD, PD, and HD. We highlight how alterations in miR-128 may account, at least in part, for the gene expression changes associated with proteinopathies. Indeed, miR-128 is involved, among other things, in the regulation of neuronal plasticity, cytoskeletal organization, and neuronal death, events linked to various proteinopathies. For example, reducing the expression of miR-128 in a mouse model of AD ameliorates cognitive deficits and reduces neuropathology. Overall, the data in the literature suggest that targeting miR-128 might be beneficial to mitigate the behavioral phenotype associated with these diseases.
Collapse
Affiliation(s)
| | | | - Salvatore Oddo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | | |
Collapse
|
26
|
Meftah S, Gan J. Alzheimer's disease as a synaptopathy: Evidence for dysfunction of synapses during disease progression. Front Synaptic Neurosci 2023; 15:1129036. [PMID: 36970154 PMCID: PMC10033629 DOI: 10.3389/fnsyn.2023.1129036] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
The synapse has consistently been considered a vulnerable and critical target within Alzheimer's disease, and synapse loss is, to date, one of the main biological correlates of cognitive decline within Alzheimer's disease. This occurs prior to neuronal loss with ample evidence that synaptic dysfunction precedes this, in support of the idea that synaptic failure is a crucial stage within disease pathogenesis. The two main pathological hallmarks of Alzheimer's disease, abnormal aggregates of amyloid or tau proteins, have had demonstrable effects on synaptic physiology in animal and cellular models of Alzheimer's disease. There is also growing evidence that these two proteins may have a synergistic effect on neurophysiological dysfunction. Here, we review some of the main findings of synaptic alterations in Alzheimer's disease, and what we know from Alzheimer's disease animal and cellular models. First, we briefly summarize some of the human evidence to suggest that synapses are altered, including how this relates to network activity. Subsequently, animal and cellular models of Alzheimer's disease are considered, highlighting mouse models of amyloid and tau pathology and the role these proteins may play in synaptic dysfunction, either in isolation or examining how the two pathologies may interact in dysfunction. This specifically focuses on neurophysiological function and dysfunction observed within these animal models, typically measured using electrophysiology or calcium imaging. Following synaptic dysfunction and loss, it would be impossible to imagine that this would not alter oscillatory activity within the brain. Therefore, this review also discusses how this may underpin some of the aberrant oscillatory patterns seen in animal models of Alzheimer's disease and human patients. Finally, an overview of some key directions and considerations in the field of synaptic dysfunction in Alzheimer's disease is covered. This includes current therapeutics that are targeted specifically at synaptic dysfunction, but also methods that modulate activity to rescue aberrant oscillatory patterns. Other important future avenues of note in this field include the role of non-neuronal cell types such as astrocytes and microglia, and mechanisms of dysfunction independent of amyloid and tau in Alzheimer's disease. The synapse will certainly continue to be an important target within Alzheimer's disease for the foreseeable future.
Collapse
Affiliation(s)
- Soraya Meftah
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jian Gan
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
27
|
Early impairments of visually-driven neuronal ensemble dynamics in the rTg4510 tauopathy mouse model. Neurobiol Dis 2023; 178:106012. [PMID: 36696792 DOI: 10.1016/j.nbd.2023.106012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023] Open
Abstract
Tau protein pathology is a hallmark of many neurodegenerative diseases, including Alzheimer's Disease or frontotemporal dementia. Synaptic dysfunction and abnormal visual evoked potentials have been reported in murine models of tauopathy, but little is known about the state of the network activity on a single neuronal level prior to brain atrophy. In the present study, oscillatory rhythms and single-cell calcium activity of primary visual cortex pyramidal neuron population were investigated in basal and light evoked states in the rTg4510 tauopathy mouse model prior to neurodegeneration. We found a decrease in their responsivity and overall activity which was insensitive to GABAergic modulation. Despite an enhancement of basal state coactivation of cortical pyramidal neurons, a loss of input-output synchronicity was observed. Dysfunction of cortical pyramidal function was also reflected in a reduction of basal theta oscillations and enhanced susceptibility to a sub-convulsive dose of pentylenetetrazol in rTg4510 mice. Our results unveil impairments in visual cortical pyramidal neuron processing and define aberrant oscillations as biomarker candidates in early stages of neurodegenerative tauopathies.
Collapse
|
28
|
Yoon JH, Hwang J, Son SU, Choi J, You SW, Park H, Cha SY, Maeng S. How Can Insulin Resistance Cause Alzheimer's Disease? Int J Mol Sci 2023; 24:3506. [PMID: 36834911 PMCID: PMC9966425 DOI: 10.3390/ijms24043506] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with cognitive decline. Despite worldwide efforts to find a cure, no proper treatment has been developed yet, and the only effective countermeasure is to prevent the disease progression by early diagnosis. The reason why new drug candidates fail to show therapeutic effects in clinical studies may be due to misunderstanding the cause of AD. Regarding the cause of AD, the most widely known is the amyloid cascade hypothesis, in which the deposition of amyloid beta and hyperphosphorylated tau is the cause. However, many new hypotheses were suggested. Among them, based on preclinical and clinical evidence supporting a connection between AD and diabetes, insulin resistance has been pointed out as an important factor in the development of AD. Therefore, by reviewing the pathophysiological background of brain metabolic insufficiency and insulin insufficiency leading to AD pathology, we will discuss how can insulin resistance cause AD.
Collapse
Affiliation(s)
- Ji Hye Yoon
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - JooHyun Hwang
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Sung Un Son
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Junhyuk Choi
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Seung-Won You
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Hyunwoo Park
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
- Health Park Co., Ltd., Seoul 02447, Republic of Korea
| | - Seung-Yun Cha
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Sungho Maeng
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| |
Collapse
|
29
|
Alexandersen CG, de Haan W, Bick C, Goriely A. A multi-scale model explains oscillatory slowing and neuronal hyperactivity in Alzheimer's disease. J R Soc Interface 2023; 20:20220607. [PMID: 36596460 PMCID: PMC9810432 DOI: 10.1098/rsif.2022.0607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease is the most common cause of dementia and is linked to the spreading of pathological amyloid-β and tau proteins throughout the brain. Recent studies have highlighted stark differences in how amyloid-β and tau affect neurons at the cellular scale. On a larger scale, Alzheimer's patients are observed to undergo a period of early-stage neuronal hyperactivation followed by neurodegeneration and frequency slowing of neuronal oscillations. Herein, we model the spreading of both amyloid-β and tau across a human connectome and investigate how the neuronal dynamics are affected by disease progression. By including the effects of both amyloid-β and tau pathology, we find that our model explains AD-related frequency slowing, early-stage hyperactivation and late-stage hypoactivation. By testing different hypotheses, we show that hyperactivation and frequency slowing are not due to the topological interactions between different regions but are mostly the result of local neurotoxicity induced by amyloid-β and tau protein.
Collapse
Affiliation(s)
| | - Willem de Haan
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Christian Bick
- Mathematical Institute, University of Oxford, Oxford, UK,Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands,Amsterdam Neuroscience—Systems and Network Neuroscience, Amsterdam, The Netherlands
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Tzioras M, McGeachan RI, Durrant CS, Spires-Jones TL. Synaptic degeneration in Alzheimer disease. Nat Rev Neurol 2023; 19:19-38. [PMID: 36513730 DOI: 10.1038/s41582-022-00749-z] [Citation(s) in RCA: 194] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/15/2022]
Abstract
Alzheimer disease (AD) is characterized by progressive cognitive decline in older individuals accompanied by the presence of two pathological protein aggregates - amyloid-β and phosphorylated tau - in the brain. The disease results in brain atrophy caused by neuronal loss and synapse degeneration. Synaptic loss strongly correlates with cognitive decline in both humans and animal models of AD. Indeed, evidence suggests that soluble forms of amyloid-β and tau can cause synaptotoxicity and spread through neural circuits. These pathological changes are accompanied by an altered phenotype in the glial cells of the brain - one hypothesis is that glia excessively ingest synapses and modulate the trans-synaptic spread of pathology. To date, effective therapies for the treatment or prevention of AD are lacking, but understanding how synaptic degeneration occurs will be essential for the development of new interventions. Here, we highlight the mechanisms through which synapses degenerate in the AD brain, and discuss key questions that still need to be answered. We also cover the ways in which our understanding of the mechanisms of synaptic degeneration is leading to new therapeutic approaches for AD.
Collapse
Affiliation(s)
- Makis Tzioras
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Robert I McGeachan
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK.,The Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Claire S Durrant
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK. .,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
31
|
Lanskey JH, Kocagoncu E, Quinn AJ, Cheng YJ, Karadag M, Pitt J, Lowe S, Perkinton M, Raymont V, Singh KD, Woolrich M, Nobre AC, Henson RN, Rowe JB. New Therapeutics in Alzheimer's Disease Longitudinal Cohort study (NTAD): study protocol. BMJ Open 2022; 12:e055135. [PMID: 36521898 PMCID: PMC9756184 DOI: 10.1136/bmjopen-2021-055135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/01/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION With the pressing need to develop treatments that slow or stop the progression of Alzheimer's disease, new tools are needed to reduce clinical trial duration and validate new targets for human therapeutics. Such tools could be derived from neurophysiological measurements of disease. METHODS AND ANALYSIS The New Therapeutics in Alzheimer's Disease study (NTAD) aims to identify a biomarker set from magneto/electroencephalography that is sensitive to disease and progression over 1 year. The study will recruit 100 people with amyloid-positive mild cognitive impairment or early-stage Alzheimer's disease and 30 healthy controls aged between 50 and 85 years. Measurements of the clinical, cognitive and imaging data (magnetoencephalography, electroencephalography and MRI) of all participants will be taken at baseline. These measurements will be repeated after approximately 1 year on participants with Alzheimer's disease or mild cognitive impairment, and clinical and cognitive assessment of these participants will be repeated again after approximately 2 years. To assess reliability of magneto/electroencephalographic changes, a subset of 30 participants with mild cognitive impairment or early-stage Alzheimer's disease will also undergo repeat magneto/electroencephalography 2 weeks after baseline. Baseline and longitudinal changes in neurophysiology are the primary analyses of interest. Additional outputs will include atrophy and cognitive change and estimated numbers needed to treat each arm of simulated clinical trials of a future disease-modifying therapy. ETHICS AND DATA STATEMENT The study has received a favourable opinion from the East of England Cambridge Central Research Ethics Committee (REC reference 18/EE/0042). Results will be disseminated through internal reports, peer-reviewed scientific journals, conference presentations, website publication, submission to regulatory authorities and other publications. Data will be made available via the Dementias Platform UK Data Portal on completion of initial analyses by the NTAD study group.
Collapse
Affiliation(s)
| | - Ece Kocagoncu
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Andrew J Quinn
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Yun-Ju Cheng
- Lilly Corporate Center, Indianapolis, Indiana, USA
| | - Melek Karadag
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Jemma Pitt
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Stephen Lowe
- Lilly Centre for Clinical Pharmacology, Singapore
| | | | | | - Krish D Singh
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Mark Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Anna C Nobre
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Richard N Henson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - James B Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| |
Collapse
|
32
|
Viney TJ, Sarkany B, Ozdemir AT, Hartwich K, Schweimer J, Bannerman D, Somogyi P. Spread of pathological human Tau from neurons to oligodendrocytes and loss of high-firing pyramidal neurons in aging mice. Cell Rep 2022; 41:111646. [PMID: 36384116 PMCID: PMC9681663 DOI: 10.1016/j.celrep.2022.111646] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 08/23/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Intracellular aggregation of hyperphosphorylated Tau (pTau) in the brain is associated with cognitive and motor impairments, and ultimately neurodegeneration. We investigate how human pTau affects cells and network activity in the hippocampal formation of the THY-Tau22 tauopathy model mice in vivo. We find that pTau preferentially accumulates in deep-layer pyramidal neurons, leading to neurodegeneration, and we establish that pTau spreads to oligodendrocytes. During goal-directed virtual navigation in aged transgenic mice, we detect fewer high-firing prosubicular pyramidal cells, but the firing population retains its coupling to theta oscillations. Analysis of network oscillations and firing patterns of pyramidal and GABAergic neurons recorded in head-fixed and freely moving mice suggests preserved neuronal coordination. In spatial memory tests, transgenic mice have reduced short-term familiarity, but spatial working and reference memory are surprisingly normal. We hypothesize that unimpaired subcortical network mechanisms maintain cortical neuronal coordination, counteracting the widespread pTau aggregation, loss of high-firing cells, and neurodegeneration.
Collapse
Affiliation(s)
- Tim J Viney
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK.
| | - Barbara Sarkany
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - A Tugrul Ozdemir
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Katja Hartwich
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Judith Schweimer
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - David Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Peter Somogyi
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
33
|
Rodrigues FR, Papanikolaou A, Holeniewska J, Phillips KG, Saleem AB, Solomon SG. Altered low-frequency brain rhythms precede changes in gamma power during tauopathy. iScience 2022; 25:105232. [PMID: 36274955 PMCID: PMC9579020 DOI: 10.1016/j.isci.2022.105232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/22/2022] [Accepted: 09/25/2022] [Indexed: 11/12/2022] Open
Abstract
Neurodegenerative disorders are associated with widespread disruption to brain activity and brain rhythms. Some disorders are linked to dysfunction of the membrane-associated protein Tau. Here, we ask how brain rhythms are affected in rTg4510 mouse model of tauopathy, at an early stage of tauopathy (5 months), and at a more advanced stage (8 months). We measured brain rhythms in primary visual cortex in presence or absence of visual stimulation, while monitoring pupil diameter and locomotion to establish behavioral state. At 5 months, we found increased low-frequency rhythms during resting state in tauopathic animals, associated with periods of abnormally increased neural synchronization. At 8 months, this increase in low-frequency rhythms was accompanied by a reduction of power in the gamma range. Our results therefore show that slower rhythms are impaired earlier than gamma rhythms in this model of tauopathy, and suggest that electrophysiological measurements can track the progression of tauopathic neurodegeneration.
Collapse
Affiliation(s)
- Fabio R. Rodrigues
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Amalia Papanikolaou
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Joanna Holeniewska
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | | | - Aman B. Saleem
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Samuel G. Solomon
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| |
Collapse
|
34
|
Vanderlinden G, Ceccarini J, Vande Casteele T, Michiels L, Lemmens R, Triau E, Serdons K, Tournoy J, Koole M, Vandenbulcke M, Van Laere K. Spatial decrease of synaptic density in amnestic mild cognitive impairment follows the tau build-up pattern. Mol Psychiatry 2022; 27:4244-4251. [PMID: 35794185 DOI: 10.1038/s41380-022-01672-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
Next to amyloid and tau, synaptic loss is a key pathological hallmark in Alzheimer's disease, closely related to cognitive dysfunction and neurodegeneration. Tau is thought to cause synaptic loss, but this has not been experimentally verified in vivo. In a 2-year follow-up study, dual tracer PET-MR was performed in 12 amnestic MCI patients using 18F-MK-6240 for tau and 11C-UCB-J for SV2A as a proxy for synaptic density. Tau already accumulated in the neocortex at baseline with progression in Braak V/VI at follow-up. While synaptic loss was limited to limbic regions at baseline, it followed the specific tau pattern to stage IV/V regions two years later, indicating that tau spread might drive synaptic vulnerability. Moreover, synaptic density changes correlated to changes in cognitive function. This study shows for the first time in vivo that synaptic loss regionally follows tau accumulation after two years, providing a disease-modifying window of opportunity for (combined) tau-targeting therapies.
Collapse
Affiliation(s)
- Greet Vanderlinden
- Nuclear Medicine and Molecular Imaging, Imaging Pathology, KU Leuven, Leuven, Belgium.
| | - Jenny Ceccarini
- Nuclear Medicine and Molecular Imaging, Imaging Pathology, KU Leuven, Leuven, Belgium
| | - Thomas Vande Casteele
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Laura Michiels
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,Department of Neurology, University Hospitals UZ Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Robin Lemmens
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,Department of Neurology, University Hospitals UZ Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Eric Triau
- Private Practice Neurology, Leuven, Belgium
| | - Kim Serdons
- Department of Nuclear Medicine, University Hospitals UZ Leuven, Leuven, Belgium
| | - Jos Tournoy
- Department of Geriatric Medicine, University Hospitals UZ Leuven, Leuven, Belgium.,Department of Public Health and Primary Care, Gerontology and Geriatrics, KU Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Imaging Pathology, KU Leuven, Leuven, Belgium
| | - Mathieu Vandenbulcke
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Department of Old-Age Psychiatry, University Hospitals UZ Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Imaging Pathology, KU Leuven, Leuven, Belgium.,Department of Nuclear Medicine, University Hospitals UZ Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Deng Y, Bi M, Delerue F, Forrest SL, Chan G, van der Hoven J, van Hummel A, Feiten AF, Lee S, Martinez-Valbuena I, Karl T, Kovacs GG, Morahan G, Ke YD, Ittner LM. Loss of LAMP5 interneurons drives neuronal network dysfunction in Alzheimer's disease. Acta Neuropathol 2022; 144:637-650. [PMID: 35780436 PMCID: PMC9467963 DOI: 10.1007/s00401-022-02457-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/30/2022] [Accepted: 06/21/2022] [Indexed: 01/28/2023]
Abstract
In Alzheimer's disease (AD), where amyloid-β (Aβ) and tau deposits in the brain, hyperexcitation of neuronal networks is an underlying disease mechanism, but its cause remains unclear. Here, we used the Collaborative Cross (CC) forward genetics mouse platform to identify modifier genes of neuronal hyperexcitation. We found LAMP5 as a novel regulator of hyperexcitation in mice, critical for the survival of distinct interneuron populations. Interestingly, synaptic LAMP5 was lost in AD brains and LAMP5 interneurons degenerated in different AD mouse models. Genetic reduction of LAMP5 augmented functional deficits and neuronal network hypersynchronicity in both Aβ- and tau-driven AD mouse models. To this end, our work defines the first specific function of LAMP5 interneurons in neuronal network hyperexcitation in AD and dementia with tau pathology.
Collapse
Affiliation(s)
- Yuanyuan Deng
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Mian Bi
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Fabien Delerue
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shelley L Forrest
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Gabriella Chan
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Julia van der Hoven
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Annika van Hummel
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Astrid F Feiten
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Tim Karl
- School of Medicine, Western Sydney University, Sydney, NSW, 2560, Australia
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, M5S 2S1, Canada
| | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, Perth, WA, 6150, Australia
| | - Yazi D Ke
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Lars M Ittner
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
36
|
Otero-Garcia M, Mahajani SU, Wakhloo D, Tang W, Xue YQ, Morabito S, Pan J, Oberhauser J, Madira AE, Shakouri T, Deng Y, Allison T, He Z, Lowry WE, Kawaguchi R, Swarup V, Cobos I. Molecular signatures underlying neurofibrillary tangle susceptibility in Alzheimer's disease. Neuron 2022; 110:2929-2948.e8. [PMID: 35882228 PMCID: PMC9509477 DOI: 10.1016/j.neuron.2022.06.021] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 03/08/2022] [Accepted: 06/27/2022] [Indexed: 01/01/2023]
Abstract
Tau aggregation in neurofibrillary tangles (NFTs) is closely associated with neurodegeneration and cognitive decline in Alzheimer's disease (AD). However, the molecular signatures that distinguish between aggregation-prone and aggregation-resistant cell states are unknown. We developed methods for the high-throughput isolation and transcriptome profiling of single somas with NFTs from the human AD brain, quantified the susceptibility of 20 neocortical subtypes for NFT formation and death, and identified both shared and cell-type-specific signatures. NFT-bearing neurons shared a marked upregulation of synaptic transmission-related genes, including a core set of 63 genes enriched for synaptic vesicle cycling. Oxidative phosphorylation and mitochondrial dysfunction were highly cell-type dependent. Apoptosis was only modestly enriched, and the susceptibilities of NFT-bearing and NFT-free neurons for death were highly similar. Our analysis suggests that NFTs represent cell-type-specific responses to stress and synaptic dysfunction. We provide a resource for biomarker discovery and the investigation of tau-dependent and tau-independent mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Marcos Otero-Garcia
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sameehan U Mahajani
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Debia Wakhloo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Weijing Tang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yue-Qiang Xue
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Samuel Morabito
- Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Jie Pan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jane Oberhauser
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Angela E Madira
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tamara Shakouri
- Department of Pathology, University of California, Los Angeles, CA 90095, USA
| | - Yongning Deng
- Department of Pathology, University of California, Los Angeles, CA 90095, USA; Department of Neurology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Thomas Allison
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095, USA
| | - Zihuai He
- Department Neurology and Neurological Sciences and Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - William E Lowry
- Department of Molecular Cell and Developmental Biology, Broad Center for Regenerative Medicine and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Riki Kawaguchi
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Vivek Swarup
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Inma Cobos
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
37
|
Tichko P, Kim JC, Large E, Loui P. Integrating music-based interventions with Gamma-frequency stimulation: Implications for healthy ageing. Eur J Neurosci 2022; 55:3303-3323. [PMID: 33236353 PMCID: PMC9899516 DOI: 10.1111/ejn.15059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
In recent years, music-based interventions (MBIs) have risen in popularity as a non-invasive, sustainable form of care for treating dementia-related disorders, such as Mild Cognitive Impairment (MCI) and Alzheimer's disease (AD). Despite their clinical potential, evidence regarding the efficacy of MBIs on patient outcomes is mixed. Recently, a line of related research has begun to investigate the clinical impact of non-invasive Gamma-frequency (e.g., 40 Hz) sensory stimulation on dementia. Current work, using non-human-animal models of AD, suggests that non-invasive Gamma-frequency stimulation can remediate multiple pathophysiologies of dementia at the molecular, cellular and neural-systems scales, and, importantly, improve cognitive functioning. These findings suggest that the efficacy of MBIs could, in theory, be enhanced by incorporating Gamma-frequency stimulation into current MBI protocols. In the current review, we propose a novel clinical framework for non-invasively treating dementia-related disorders that combines previous MBIs with current approaches employing Gamma-frequency sensory stimulation. We theorize that combining MBIs with Gamma-frequency stimulation could increase the therapeutic power of MBIs by simultaneously targeting multiple biomarkers of dementia, restoring neural activity that underlies learning and memory (e.g., Gamma-frequency neural activity, Theta-Gamma coupling), and actively engaging auditory and reward networks in the brain to promote behavioural change.
Collapse
Affiliation(s)
- Parker Tichko
- Department of Music, Northeastern University, Boston, MA, USA
| | - Ji Chul Kim
- Perception, Action, Cognition (PAC) Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Edward Large
- Perception, Action, Cognition (PAC) Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA,Center for the Ecological Study of Perception & Action (CESPA), Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA,Department of Physics, University of Connecticut, Storrs, CT, USA
| | - Psyche Loui
- Department of Music, Northeastern University, Boston, MA, USA
| |
Collapse
|
38
|
Theta and gamma oscillatory dynamics in mouse models of Alzheimer's disease: A path to prospective therapeutic intervention. Neurosci Biobehav Rev 2022; 136:104628. [PMID: 35331816 DOI: 10.1016/j.neubiorev.2022.104628] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/26/2022]
Abstract
Understanding the neural basis of cognitive deficits, a key feature of Alzheimer's disease (AD), is imperative for achieving the therapy of the disease. Rhythmic oscillatory activities in neural systems are a fundamental mechanism for diverse brain functions, including cognition. In several neurological conditions like AD, aberrant neural oscillations have been shown to play a central role. Furthermore, manipulation of brain oscillations in animals has confirmed their impact on cognition and disease. In this article, we review the evidence from mouse models that shows how synchronized oscillatory activity is intricately linked to AD machinery. We primarily focus on recent reports showing abnormal oscillatory activities at theta and gamma frequencies in AD condition and their influence on cellular disturbances and cognitive impairments. A thorough comprehension of the role that neuronal oscillations play in AD pathology should pave the way to therapeutic interventions that can curb the disease.
Collapse
|
39
|
Düzel E, Ziegler G, Berron D, Maass A, Schütze H, Cardenas-Blanco A, Glanz W, Metzger C, Dobisch L, Reuter M, Spottke A, Brosseron F, Fliessbach K, Heneka MT, Laske C, Peters O, Priller J, Spruth EJ, Ramirez A, Speck O, Schneider A, Teipel S, Kilimann I, Jens W, Schott BH, Preis L, Gref D, Maier F, Munk MH, Roy N, Ballarini T, Yakupov R, Haynes JD, Dechent P, Scheffler K, Wagner M, Jessen F. Amyloid pathology but not APOE ε4 status is permissive for tau-related hippocampal dysfunction. Brain 2022; 145:1473-1485. [PMID: 35352105 PMCID: PMC9128811 DOI: 10.1093/brain/awab405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
We investigated whether the impact of tau-pathology on memory performance and on hippocampal/medial temporal memory function in non-demented individuals depends on the presence of amyloid pathology, irrespective of diagnostic clinical stage. We conducted a cross-sectional analysis of the observational, multicentric DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE). Two hundred and thirty-five participants completed task functional MRI and provided CSF (92 cognitively unimpaired, 100 experiencing subjective cognitive decline and 43 with mild cognitive impairment). Presence (A+) and absence (A−) of amyloid pathology was defined by CSF amyloid-β42 (Aβ42) levels. Free recall performance in the Free and Cued Selective Reminding Test, scene recognition memory accuracy and hippocampal/medial temporal functional MRI novelty responses to scene images were related to CSF total-tau and phospho-tau levels separately for A+ and A− individuals. We found that total-tau and phospho-tau levels were negatively associated with memory performance in both tasks and with novelty responses in the hippocampus and amygdala, in interaction with Aβ42 levels. Subgroup analyses showed that these relationships were only present in A+ and remained stable when very high levels of tau (>700 pg/ml) and phospho-tau (>100 pg/ml) were excluded. These relationships were significant with diagnosis, age, education, sex, assessment site and Aβ42 levels as covariates. They also remained significant after propensity score based matching of phospho-tau levels across A+ and A− groups. After classifying this matched sample for phospho-tau pathology (T−/T+), individuals with A+/T+ were significantly more memory-impaired than A−/T+ despite the fact that both groups had the same amount of phospho-tau pathology. ApoE status (presence of the E4 allele), a known genetic risk factor for Alzheimer’s disease, did not mediate the relationship between tau pathology and hippocampal function and memory performance. Thus, our data show that the presence of amyloid pathology is associated with a linear relationship between tau pathology, hippocampal dysfunction and memory impairment, although the actual severity of amyloid pathology is uncorrelated. Our data therefore indicate that the presence of amyloid pathology provides a permissive state for tau-related hippocampal dysfunction and hippocampus-dependent recognition and recall impairment. This raises the possibility that in the predementia stage of Alzheimer’s disease, removing the negative impact of amyloid pathology could improve memory and hippocampal function even if the amount of tau-pathology in CSF is not changed, whereas reducing increased CSF tau-pathology in amyloid-negative individuals may not proportionally improve memory function.
Collapse
Affiliation(s)
- Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany.,Institute of Cognitive Neuroscience, University College London, London, UK
| | - Gabriel Ziegler
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany
| | - David Berron
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany
| | - Hartmut Schütze
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany
| | - Arturo Cardenas-Blanco
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany
| | - Wenzel Glanz
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany.,Clinic for Neurology, Medical Faculty, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Coraline Metzger
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Faculty, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany
| | - Martin Reuter
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany.,Department of Neurology, University of Bonn, 53127 Bonn, Germany
| | - Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076 Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, 10117 Berlin, Germany.,Clinic for Psychiatry and Psychotherapy, Charité, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, 10117 Berlin, Germany.,Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Eike Jakob Spruth
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alfredo Ramirez
- Department of Psychiatry, Medical Faculty, University of Cologne, 50924 Cologne, Germany
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, 18147 Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, 18147 Rostock, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, 18147 Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, 18147 Rostock, Germany
| | - Wiltfang Jens
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, 37075 Goettingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, 37075 Goettingen, Germany
| | - Björn-Hendrik Schott
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, 37075 Goettingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, 37075 Goettingen, Germany
| | - Lukas Preis
- German Center for Neurodegenerative Diseases (DZNE), Berlin, 10117 Berlin, Germany.,Clinic for Psychiatry and Psychotherapy, Charité, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Daria Gref
- German Center for Neurodegenerative Diseases (DZNE), Berlin, 10117 Berlin, Germany.,Clinic for Psychiatry and Psychotherapy, Charité, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Franziska Maier
- Department of Psychiatry, Medical Faculty, University of Cologne, 50924 Cologne, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076 Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany.,Department of Neurology, University of Bonn, 53127 Bonn, Germany
| | - Tomasso Ballarini
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany
| | - John Dylan Haynes
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Peter Dechent
- Department of Cognitive Neurology, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
| | - Klaus Scheffler
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany.,Department of Psychiatry, Medical Faculty, University of Cologne, 50924 Cologne, Germany
| |
Collapse
|
40
|
Xolalpa-Cueva L, García-Carlos CA, Villaseñor-Zepeda R, Orta-Salazar E, Díaz-Cintra S, Peña-Ortega F, Perry G, Mondragón-Rodríguez S. Hyperphosphorylated Tau Relates to Improved Cognitive Performance and Reduced Hippocampal Excitability in the Young rTg4510 Mouse Model of Tauopathy. J Alzheimers Dis 2022; 87:529-543. [PMID: 35342085 DOI: 10.3233/jad-215186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Tau hyperphosphorylation at several sites, including those close to its microtubule domain (MD), is considered a key pathogenic event in the development of tauopathies. Nevertheless, we recently demonstrated that at the very early disease stage, tau phosphorylation (pTau) at MD sites promotes neuroprotection by preventing seizure-like activity. OBJECTIVE To further support the notion that very early pTau is not detrimental, the present work evaluated the young rTg4510 mouse model of tauopathy as a case study. Thus, in mice at one month of age (PN30-35), we studied the increase of pTau within the hippocampal area as well as hippocampal and locomotor function. METHODS We used immunohistochemistry, T-maze, nesting test, novel object recognition test, open field arena, and electrophysiology. RESULTS Our results showed that the very young rTg4510 mouse model has no detectable changes in hippocampal dependent tasks, such as spontaneous alternation and nesting, or in locomotor activity. However, at this very early stage the hippocampal neurons from PN30-35 rTg4510 mice accumulate pTau protein and exhibit changes in hippocampal oscillatory activity. Moreover, we found a significant reduction in the somatic area of pTau positive pyramidal and granule neurons in the young rTg4510 mice. Despite this, improved memory and increased number of dendrites per cell in granule neurons was found. CONCLUSION Altogether, this study provides new insights into the early pathogenesis of tauopathies and provides further evidence that pTau remodels hippocampal function and morphology.
Collapse
Affiliation(s)
- Lorena Xolalpa-Cueva
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, Querétaro, México
| | - Carlos Antonio García-Carlos
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, Querétaro, México
| | - Rocío Villaseñor-Zepeda
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, Querétaro, México
| | - Erika Orta-Salazar
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, Querétaro, México
| | - Sofia Díaz-Cintra
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, Querétaro, México
| | - Fernando Peña-Ortega
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, Querétaro, México
| | - George Perry
- UTSA Neuroscience Institute and Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Siddhartha Mondragón-Rodríguez
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, Querétaro, México.,CONACYT National Council for Science and Technology, México, México
| |
Collapse
|
41
|
Trease AJ, George JW, Roland NJ, Lichter EZ, Emanuel K, Totusek S, Fox HS, Stauch KL. Hyperphosphorylated Human Tau Accumulates at the Synapse, Localizing on Synaptic Mitochondrial Outer Membranes and Disrupting Respiration in a Mouse Model of Tauopathy. Front Mol Neurosci 2022; 15:852368. [PMID: 35359570 PMCID: PMC8960727 DOI: 10.3389/fnmol.2022.852368] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Neurogenerative disorders, such as Alzheimer’s disease (AD), represent a growing public health challenge in aging societies. Tauopathies, a subset of neurodegenerative disorders that includes AD, are characterized by accumulation of fibrillar and hyperphosphorylated forms of microtubule-associated protein tau with coincident mitochondrial abnormalities and neuronal dysfunction. Although, in vitro, tau impairs axonal transport altering mitochondrial distribution, clear in vivo mechanisms associating tau and mitochondrial dysfunction remain obscure. Herein, we investigated the effects of human tau on brain mitochondria in vivo using transgenic htau mice at ages preceding and coinciding with onset of tauopathy. Subcellular proteomics combined with bioenergetic assessment revealed pathologic forms of tau preferentially associate with synaptic over non-synaptic mitochondria coinciding with changes in bioenergetics, reminiscent of an aged synaptic mitochondrial phenotype in wild-type mice. While mitochondrial content was unaltered, mitochondrial maximal respiration was impaired in synaptosomes from htau mice. Further, mitochondria-associated tau was determined to be outer membrane-associated using the trypsin protection assay and carbonate extraction. These findings reveal non-mutant human tau accumulation at the synapse has deleterious effects on mitochondria, which likely contributes to synaptic dysfunction observed in the context of tauopathy.
Collapse
|
42
|
Peña-Ortega F, Robles-Gómez ÁA, Xolalpa-Cueva L. Microtubules as Regulators of Neural Network Shape and Function: Focus on Excitability, Plasticity and Memory. Cells 2022; 11:cells11060923. [PMID: 35326374 PMCID: PMC8946818 DOI: 10.3390/cells11060923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
Neuronal microtubules (MTs) are complex cytoskeletal protein arrays that undergo activity-dependent changes in their structure and function as a response to physiological demands throughout the lifespan of neurons. Many factors shape the allostatic dynamics of MTs and tubulin dimers in the cytosolic microenvironment, such as protein–protein interactions and activity-dependent shifts in these interactions that are responsible for their plastic capabilities. Recently, several findings have reinforced the role of MTs in behavioral and cognitive processes in normal and pathological conditions. In this review, we summarize the bidirectional relationships between MTs dynamics, neuronal processes, and brain and behavioral states. The outcomes of manipulating the dynamicity of MTs by genetic or pharmacological approaches on neuronal morphology, intrinsic and synaptic excitability, the state of the network, and behaviors are heterogeneous. We discuss the critical position of MTs as responders and adaptative elements of basic neuronal function whose impact on brain function is not fully understood, and we highlight the dilemma of artificially modulating MT dynamics for therapeutic purposes.
Collapse
|
43
|
Bresinsky M, Strasser JM, Vallaster B, Liu P, McCue WM, Fuller J, Hubmann A, Singh G, Nelson KM, Cuellar ME, Wilmot CM, Finzel BC, Ashe KH, Walters MA, Pockes S. Structure-Based Design and Biological Evaluation of Novel Caspase-2 Inhibitors Based on the Peptide AcVDVAD-CHO and the Caspase-2-Mediated Tau Cleavage Sequence YKPVD314. ACS Pharmacol Transl Sci 2022; 5:20-40. [PMID: 35059567 PMCID: PMC8762753 DOI: 10.1021/acsptsci.1c00251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) was first described by Alois Alzheimer over 100 years ago, but there is still no overarching theory that can explain its cause in detail. There are also no effective therapies to treat either the cause or the associated symptoms of this devastating disease. A potential approach to better understand the pathogenesis of AD could be the development of selective caspase-2 (Casp2) probes, as we have shown that a Casp2-mediated cleavage product of tau (Δtau314) reversibly impairs cognitive and synaptic function in animal models of tauopathies. In this article, we map out the Casp2 binding site through the preparation and assay of a series of 35 pentapeptide inhibitors with the goal of gaining selectivity against caspase-3 (Casp3). We also employed computational docking methods to understand the key interactions in the binding pocket of Casp2 and the differences predicted for binding at Casp3. Moreover, we crystallographically characterized the binding of selected pentapeptides with Casp3. Furthermore, we engineered and expressed a series of recombinant tau mutants and investigated them in an in vitro cleavage assay. These studies resulted in simple peptidic inhibitors with nanomolar affinity, for example, AcVDV(Dab)D-CHO (24) with up to 27.7-fold selectivity against Casp3. Our findings provide a good basis for the future development of selective Casp2 probes and inhibitors that can serve as pharmacological tools in planned in vivo studies and as lead compounds for the design of bioavailable and more drug-like small molecules.
Collapse
Affiliation(s)
- Merlin Bresinsky
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Jessica M. Strasser
- Department
of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Bernadette Vallaster
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Peng Liu
- Department
of Neurology, University of Minnesota, 2101 6th Street SE, Minneapolis 55455, United States
| | - William M. McCue
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Jessica Fuller
- Department
of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Alexander Hubmann
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Gurpreet Singh
- Department
of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Kathryn M. Nelson
- Department
of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Matthew E. Cuellar
- Department
of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Carrie M. Wilmot
- Department
of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Barry C. Finzel
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Karen H. Ashe
- Department
of Neurology, University of Minnesota, 2101 6th Street SE, Minneapolis 55455, United States
| | - Michael A. Walters
- Department
of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States,
| | - Steffen Pockes
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg 93053, Germany,Department
of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States,Department
of Neurology, University of Minnesota, 2101 6th Street SE, Minneapolis 55455, United States,
| |
Collapse
|
44
|
Ranasinghe KG, Petersen C, Kudo K, Mizuiri D, Rankin KP, Rabinovici GD, Gorno-Tempini ML, Seeley WW, Spina S, Miller BL, Vossel K, Grinberg LT, Nagarajan SS. Reduced synchrony in alpha oscillations during life predicts post mortem neurofibrillary tangle density in early-onset and atypical Alzheimer's disease. Alzheimers Dement 2021; 17:2009-2019. [PMID: 33884753 PMCID: PMC8528895 DOI: 10.1002/alz.12349] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/04/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Neurophysiological manifestations selectively associated with amyloid beta and tau depositions in Alzheimer's disease (AD) are useful network biomarkers to identify peptide specific pathological processes. The objective of this study was to validate the associations between reduced neuronal synchrony within alpha oscillations and neurofibrillary tangle (NFT) density in autopsy examination, in patients with AD. METHODS In a well-characterized clinicopathological cohort of AD patients (n = 13), we quantified neuronal synchrony within alpha (8-12 Hz) and delta-theta (2-8 Hz) oscillations, using magnetoencephalography during the disease course, within six selected neocortical and hippocampal regions, including angular gyrus, superior temporal gurus, middle frontal gyrus, primary motor cortex, CA1, and subiculum, and correlated these with regional NFT density quantified at histopathological examination. RESULTS Abnormal synchrony in alpha, but not in delta-theta, significantly predicted the NFT density at post mortem neuropathological examination. DISCUSSION Reduced alpha synchrony is a sensitive neurophysiological index associated with pathological tau, and a potential network biomarker for clinical trials, to gauge the extent of network dysfunction and the degree of rescue in treatments targeting tau pathways in AD.
Collapse
Affiliation(s)
- Kamalini G. Ranasinghe
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Cathrine Petersen
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Kiwamu Kudo
- Department Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA,Medical Imaging Business Center, Ricoh Company, Ltd., Kanazawa, Japan
| | - Danielle Mizuiri
- Department Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Katherine P. Rankin
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Gil D. Rabinovici
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA,Department Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - William W. Seeley
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA,Department of Pathology, University of California, San Francisco, San Francisco, California, USA
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Bruce L. Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Keith Vossel
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA,Mary S. Easton Center for Alzheimer’s Disease Research, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Lea T. Grinberg
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA,Department of Pathology, University of California, San Francisco, San Francisco, California, USA,Department of Pathology, LIM22, University of Sao Paulo, Sao Paulo, Brazil
| | - Srikantan S. Nagarajan
- Department Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
45
|
Chang CW, Evans MD, Yu X, Yu GQ, Mucke L. Tau reduction affects excitatory and inhibitory neurons differently, reduces excitation/inhibition ratios, and counteracts network hypersynchrony. Cell Rep 2021; 37:109855. [PMID: 34686344 PMCID: PMC8648275 DOI: 10.1016/j.celrep.2021.109855] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/04/2021] [Accepted: 09/27/2021] [Indexed: 11/27/2022] Open
Abstract
The protein tau has been implicated in many brain disorders. In animal models, tau reduction suppresses epileptogenesis of diverse causes and ameliorates synaptic and behavioral abnormalities in various conditions associated with excessive excitation-inhibition (E/I) ratios. However, the underlying mechanisms are unknown. Global genetic ablation of tau in mice reduces the action potential (AP) firing and E/I ratio of pyramidal cells in acute cortical slices without affecting the excitability of these cells. Tau ablation reduces the excitatory inputs to inhibitory neurons, increases the excitability of these cells, and structurally alters their axon initial segments (AISs). In primary neuronal cultures subjected to prolonged overstimulation, tau ablation diminishes the homeostatic response of AISs in inhibitory neurons, promotes inhibition, and suppresses hypersynchrony. Together, these differential alterations in excitatory and inhibitory neurons help explain how tau reduction prevents network hypersynchrony and counteracts brain disorders causing abnormally increased E/I ratios.
Collapse
Affiliation(s)
- Che-Wei Chang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Mark D Evans
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Xinxing Yu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
46
|
Khan AF, Adewale Q, Baumeister TR, Carbonell F, Zilles K, Palomero-Gallagher N, Iturria-Medina Y. Personalized brain models identify neurotransmitter receptor changes in Alzheimer's disease. Brain 2021; 145:1785-1804. [PMID: 34605898 DOI: 10.1093/brain/awab375] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/12/2022] Open
Abstract
Alzheimer's disease (AD) involves many neurobiological alterations from molecular to macroscopic spatial scales, but we currently lack integrative, mechanistic brain models characterizing how factors across different biological scales interact to cause clinical deterioration in a way that is subject-specific or personalized. Neurotransmitter receptors, as important signaling molecules and potential drug targets, are key mediators of interactions between many neurobiological processes altered in AD. We present a neurotransmitter receptor-enriched multifactorial brain model, which integrates spatial distribution patterns of 15 neurotransmitter receptors from post-mortem autoradiography with multiple in-vivo neuroimaging modalities (tau, amyloid-β and glucose PET, and structural, functional and arterial spin labeling MRI) in a personalized, generative, whole-brain formulation. Applying this data-driven model to a heterogeneous aged population (N = 423, ADNI data), we observed that personalized receptor-neuroimaging interactions explained about 70% (± 20%) of the across-population variance in longitudinal changes to the six neuroimaging modalities, and up to 39.7% (P < 0.003, FWE-corrected) of inter-individual variability in AD cognitive deterioration via an axis primarily affecting executive function. Notably, based on their contribution to the clinical severity in AD, we found significant functional alterations to glutamatergic interactions affecting tau accumulation and neural activity dysfunction, and GABAergic interactions concurrently affecting neural activity dysfunction, amyloid and tau distributions, as well as significant cholinergic receptor effects on tau accumulation. Overall, GABAergic alterations had the largest effect on cognitive impairment (particularly executive function) in our AD cohort (N = 25). Furthermore, we demonstrate the clinical applicability of this approach by characterizing subjects based on individualized 'fingerprints' of receptor alterations. This study introduces the first robust, data-driven framework for integrating several neurotransmitter receptors, multi-modal neuroimaging and clinical data in a flexible and interpretable brain model. It enables further understanding of the mechanistic neuropathological basis of neurodegenerative progression and heterogeneity, and constitutes a promising step towards implementing personalized, neurotransmitter-based treatments.
Collapse
Affiliation(s)
- Ahmed Faraz Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada H3A 2B4.,McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada H3A 2B4.,Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada H3A 2B4
| | - Quadri Adewale
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada H3A 2B4.,McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada H3A 2B4.,Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada H3A 2B4
| | - Tobias R Baumeister
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada H3A 2B4.,McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada H3A 2B4.,Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada H3A 2B4
| | | | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany.,Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany.,Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, 52074 Aachen, Germany.,JARA, Translational Brain Medicine, 52074 Aachen, Germany
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada H3A 2B4.,McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada H3A 2B4.,Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada H3A 2B4
| | | |
Collapse
|
47
|
Wang W, Cao Q, Tan T, Yang F, Williams JB, Yan Z. Epigenetic treatment of behavioral and physiological deficits in a tauopathy mouse model. Aging Cell 2021; 20:e13456. [PMID: 34547169 PMCID: PMC8520711 DOI: 10.1111/acel.13456] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/08/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Epigenetic abnormality is implicated in neurodegenerative diseases associated with cognitive deficits, such as Alzheimer's disease (AD). A common feature of AD is the accumulation of neurofibrillary tangles composed of hyperphosphorylated tau. Transgenic mice expressing mutant P301S human tau protein develop AD‐like progressive tau pathology and cognitive impairment. Here, we show that the euchromatic histone‐lysine N‐methyltransferase 2 (EHMT2) is significantly elevated in the prefrontal cortex (PFC) of P301S Tau mice (5–7 months old), leading to the increased repressive histone mark, H3K9me2, which is reversed by treatment with the selective EHMT inhibitor UNC0642. Behavioral assays show that UNC0642 treatment induces the robust rescue of spatial and recognition memory deficits in P301S Tau mice. Concomitantly, the diminished PFC neuronal excitability and glutamatergic synaptic transmission in P301S Tau mice are also normalized by UNC0642 treatment. In addition, EHMT inhibition dramatically attenuates the hyperphosphorylated tau level in PFC of P301S Tau mice. Transcriptomic analysis reveals that UNC0642 treatment of P301S Tau mice has normalized a number of dysregulated genes in PFC, which are enriched in cytoskeleton and extracellular matrix organization, ion channels and transporters, receptor signaling, and stress responses. Together, these data suggest that targeting histone methylation enzymes to adjust gene expression could be used to treat cognitive and synaptic deficits in neurodegenerative diseases linked to tauopathies.
Collapse
Affiliation(s)
- Wei Wang
- Department of Physiology and Biophysics Jacobs School of Medicine and Biomedical Sciences State University of New York at Buffalo Buffalo New York USA
| | - Qing Cao
- Department of Physiology and Biophysics Jacobs School of Medicine and Biomedical Sciences State University of New York at Buffalo Buffalo New York USA
| | - Tao Tan
- Department of Physiology and Biophysics Jacobs School of Medicine and Biomedical Sciences State University of New York at Buffalo Buffalo New York USA
| | - Fengwei Yang
- Department of Physiology and Biophysics Jacobs School of Medicine and Biomedical Sciences State University of New York at Buffalo Buffalo New York USA
| | - Jamal B. Williams
- Department of Physiology and Biophysics Jacobs School of Medicine and Biomedical Sciences State University of New York at Buffalo Buffalo New York USA
| | - Zhen Yan
- Department of Physiology and Biophysics Jacobs School of Medicine and Biomedical Sciences State University of New York at Buffalo Buffalo New York USA
| |
Collapse
|
48
|
Düzel E, Costagli M, Donatelli G, Speck O, Cosottini M. Studying Alzheimer disease, Parkinson disease, and amyotrophic lateral sclerosis with 7-T magnetic resonance. Eur Radiol Exp 2021; 5:36. [PMID: 34435242 PMCID: PMC8387546 DOI: 10.1186/s41747-021-00221-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/07/2021] [Indexed: 12/18/2022] Open
Abstract
Ultra-high-field (UHF) magnetic resonance (MR) scanners, that is, equipment operating at static magnetic field of 7 tesla (7 T) and above, enable the acquisition of data with greatly improved signal-to-noise ratio with respect to conventional MR systems (e.g., scanners operating at 1.5 T and 3 T). The change in tissue relaxation times at UHF offers the opportunity to improve tissue contrast and depict features that were previously inaccessible. These potential advantages come, however, at a cost: in the majority of UHF-MR clinical protocols, potential drawbacks may include signal inhomogeneity, geometrical distortions, artifacts introduced by patient respiration, cardiac cycle, and motion. This article reviews the 7 T MR literature reporting the recent studies on the most widespread neurodegenerative diseases: Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Emrah Düzel
- Otto-von-Guericke University Magdeburg, Magdeburg, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany. .,University College London, London, UK.
| | - Mauro Costagli
- IRCCS Stella Maris, Pisa, Italy.,University of Genoa, Genova, Italy
| | - Graziella Donatelli
- Fondazione Imago 7, Pisa, Italy.,Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Oliver Speck
- Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Mirco Cosottini
- Azienda Ospedaliero Universitaria Pisana, Pisa, Italy.,University of Pisa, Pisa, Italy
| |
Collapse
|
49
|
Holland N, Malpetti M, Rittman T, Mak EE, Passamonti L, Kaalund SS, Hezemans FH, Jones PS, Savulich G, Hong YT, Fryer TD, Aigbirhio FI, O'Brien JT, Rowe JB. Molecular pathology and synaptic loss in primary tauopathies: an 18F-AV-1451 and 11C-UCB-J PET study. Brain 2021; 145:340-348. [PMID: 34398211 PMCID: PMC8967099 DOI: 10.1093/brain/awab282] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/02/2021] [Accepted: 07/10/2021] [Indexed: 12/02/2022] Open
Abstract
The relationship between in vivo synaptic density and molecular pathology in primary tauopathies is key to understanding the impact of tauopathy on functional decline and in informing new early therapeutic strategies. In this cross-sectional observational study, we determine the in vivo relationship between synaptic density and molecular pathology in the primary tauopathies of progressive supranuclear palsy and corticobasal degeneration as a function of disease severity. Twenty-three patients with progressive supranuclear palsy and 12 patients with corticobasal syndrome were recruited from a tertiary referral centre. Nineteen education-, sex- and gender-matched control participants were recruited from the National Institute for Health Research ‘Join Dementia Research’ platform. Cerebral synaptic density and molecular pathology, in all participants, were estimated using PET imaging with the radioligands 11C-UCB-J and 18F-AV-1451, respectively. Patients with corticobasal syndrome also underwent amyloid PET imaging with 11C-PiB to exclude those with likely Alzheimer’s pathology—we refer to the amyloid-negative cohort as having corticobasal degeneration, although we acknowledge other underlying pathologies exist. Disease severity was assessed with the progressive supranuclear palsy rating scale; regional non-displaceable binding potentials of 11C-UCB-J and 18F-AV-1451 were estimated in regions of interest from the Hammersmith Atlas, excluding those with known off-target binding for 18F-AV-1451. As an exploratory analysis, we also investigated the relationship between molecular pathology in cortical brain regions and synaptic density in subcortical areas. Across brain regions, there was a positive correlation between 11C-UCB-J and 18F-AV-1451 non-displaceable binding potentials (β = 0.4, t = 3.6, P = 0.001), independent of age or time between PET scans. However, this correlation became less positive as a function of disease severity in patients (β = −0.02, t = −2.9, P = 0.007, R = −0.41). Between regions, cortical 18F-AV-1451 binding was negatively correlated with synaptic density in subcortical areas (caudate nucleus, putamen). Brain regions with higher synaptic density are associated with a higher 18F-AV-1451 binding in progressive supranuclear palsy/corticobasal degeneration, but this association diminishes with disease severity. Moreover, higher cortical 18F-AV-1451 binding correlates with lower subcortical synaptic density. Longitudinal imaging is required to confirm the mediation of synaptic loss by molecular pathology. However, the effect of disease severity suggests a biphasic relationship between synaptic density and molecular pathology with synapse-rich regions vulnerable to accrual of pathological aggregates, followed by a loss of synapses in response to the molecular pathology. Given the importance of synaptic function for cognition and action, our study elucidates the pathophysiology of primary tauopathies and may inform the design of future clinical trials.
Collapse
Affiliation(s)
- Negin Holland
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, UK.,Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, UK.,Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Elijah E Mak
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge Biomedical Campus, CB2 0QQ, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, UK.,Istituto di Bioimmagini e Fisiologia Molecolare (IBFM), Consiglio Nazionale delle Ricerche (CNR), 20090, Milano, Italy
| | - Sanne S Kaalund
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - Frank H Hezemans
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, UK.,Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, CB2 7EF, UK
| | - P Simon Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - George Savulich
- Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge Biomedical Campus, CB2 0QQ, UK
| | - Young T Hong
- Wolfson Brain Imaging Centre, University of Cambridge, CB2 0QQ, UK
| | - Tim D Fryer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, UK.,Wolfson Brain Imaging Centre, University of Cambridge, CB2 0QQ, UK
| | - Franklin I Aigbirhio
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - John T O'Brien
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK.,Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge Biomedical Campus, CB2 0QQ, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0SZ, UK.,Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK.,Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, CB2 7EF, UK
| |
Collapse
|
50
|
Pelkmans W, Ossenkoppele R, Dicks E, Strandberg O, Barkhof F, Tijms BM, Pereira JB, Hansson O. Tau-related grey matter network breakdown across the Alzheimer's disease continuum. Alzheimers Res Ther 2021; 13:138. [PMID: 34389066 PMCID: PMC8364121 DOI: 10.1186/s13195-021-00876-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Changes in grey matter covariance networks have been reported in preclinical and clinical stages of Alzheimer's disease (AD) and have been associated with amyloid-β (Aβ) deposition and cognitive decline. However, the role of tau pathology on grey matter networks remains unclear. Based on previously reported associations between tau pathology, synaptic density and brain structural measures, tau-related connectivity changes across different stages of AD might be expected. We aimed to assess the relationship between tau aggregation and grey matter network alterations across the AD continuum. METHODS We included 533 individuals (178 Aβ-negative cognitively unimpaired (CU) subjects, 105 Aβ-positive CU subjects, 122 Aβ-positive patients with mild cognitive impairment, and 128 patients with AD dementia) from the BioFINDER-2 study. Single-subject grey matter networks were extracted from T1-weighted images and graph theory properties including degree, clustering coefficient, path length, and small world topology were calculated. Associations between tau positron emission tomography (PET) values and global and regional network measures were examined using linear regression models adjusted for age, sex, and total intracranial volume. Finally, we tested whether the association of tau pathology with cognitive performance was mediated by grey matter network disruptions. RESULTS Across the whole sample, we found that higher tau load in the temporal meta-ROI was associated with significant changes in degree, clustering, path length, and small world values (all p < 0.001), indicative of a less optimal network organisation. Already in CU Aβ-positive individuals associations between tau burden and lower clustering and path length were observed, whereas in advanced disease stages elevated tau pathology was progressively associated with more brain network abnormalities. Moreover, the association between higher tau load and lower cognitive performance was only partly mediated (9.3 to 9.5%) through small world topology. CONCLUSIONS Our data suggest a close relationship between grey matter network disruptions and tau pathology in individuals with abnormal amyloid. This might reflect a reduced communication between neighbouring brain areas and an altered ability to integrate information from distributed brain regions with tau pathology, indicative of a more random network topology across different AD stages.
Collapse
Affiliation(s)
- Wiesje Pelkmans
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Ellen Dicks
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Joana B Pereira
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|