1
|
Li E, Niu W, Lu C, Wang M, Xu X, Xu K, Xu P. Interoception and aging. Ageing Res Rev 2025; 108:102743. [PMID: 40188990 DOI: 10.1016/j.arr.2025.102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/04/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Interoception refers to the body's perception and regulation of internal physiological states and involves complex neural mechanisms and sensory systems. The current definition of interoception falls short of capturing the breadth of related research; here, we propose an updated definition. Homeostasis, a foundational principle of integrated physiology, is the process by which organisms dynamically maintain optimal balance across all conditions through neural, endocrine, and behavioral functions. This review examines the role of interoception in body homeostasis. Aging is a complex process influenced by multiple factors and involving multiple levels, including physical, psychological, and cognitive. However, interoceptive and aging interoceptive interactions are lacking. A new perspective on interoception and aging holds significant implications for understanding how aging regulates interoception and how interoception affects the aging process. Finally, we summarize that arachidonic acid metabolites show promise as biomarkers of interoception-aging. The aim of this study is to comprehensively analyze interoceptive-aging interactions, understand the aging mechanism from a novel perspective, and provide a theoretical basis for exploring anti-aging strategies.
Collapse
Affiliation(s)
- Erliang Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, China; Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an 710000, China.
| | - Wenjing Niu
- Changlefang Community Health Service Center, Xi'an 710000, China
| | - Chao Lu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, China
| | - Min Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, China; Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an 710000, China
| | - Xin Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, China
| | - Ke Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, China.
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, China; Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an 710000, China.
| |
Collapse
|
2
|
Kyritsi K, Pacholczyk R, Douglass E, Yu M, Fang H, Zhou G, Kaur B, Wang Q, Munn DH, Hong B. β-blocker suppresses both tumoral sympathetic neurons and perivascular macrophages during oncolytic herpes virotherapy. J Immunother Cancer 2025; 13:e011322. [PMID: 40187755 PMCID: PMC11973798 DOI: 10.1136/jitc-2024-011322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND The autonomic nervous system (ANS) plays a key role in regulating tumor development and therapy resistance in various solid tumors. Within the ANS, the sympathetic nervous system (SNS) is typically associated with protumor effects. However, whether the SNS influences the antitumor efficacy of intratumoral injections of oncolytic herpes simplex virus (oHSV) in solid tumors remains unknown. METHODS In this study, we examined SNS innervation and its interaction with immune cell infiltration in both human and murine triple-negative breast cancer models during intratumoral oHSV injections and SNS blockade on oHSV's antitumor activity. RESULTS Intratumor oHSV injection promotes SNS innervation accompanied by CD45+cell infiltration in both the human MDA-MB-468 orthotopic model and the murine 4T1 mammary tumor model. Mechanistically, tumor-secreted factors vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and transforming growth factor beta (TGF-β) and transcription factors (CREB, AP-1, MeCP2, and REST), which promote SNS innervation, were found to be upregulated in oHSV-treated tumors. Combining the SNS antagonist, a β-blocker, with oHSV significantly increased immune cell infiltration, particularly CD8+T cells in oHSV-treated 4T1 tumors. Single-cell messenger RNA sequencing revealed that oHSV injection upregulated a specific population of perivascular macrophages (pvMacs) expressing high levels of VEGFA, CD206, CCL3, and CCL4, which suppress T-cell activation. The use of a β-blocker reduced the infiltration of oHSV-induced pvMacs, transition to inflammatory macrophages expressing Hexb, enhancing the diversity of T-cell receptor clonotypes. Further analysis suggested that TGF-β signaling within the tumor partially mediates SNS activation in the 4T1 model. CONCLUSION Our findings demonstrate that combining a β-blocker with oHSV significantly enhances the antitumor efficacy of oHSV in breast cancer by targeting TGF-β-mediated SNS innervation and immunosuppression.
Collapse
Affiliation(s)
- Konstantina Kyritsi
- Department of Pathology, Georgia Cancer Center at Augusta University, Augusta, Georgia, USA
| | - Rafal Pacholczyk
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center at Augusta University, Augusta, Georgia, USA
| | - Eugene Douglass
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, USA
| | - Miao Yu
- Genomics core, Georgia Cancer Center at Augusta University, Augusta, Georgia, USA
| | - Hui Fang
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center at Augusta University, Augusta, Georgia, USA
| | - Gang Zhou
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center at Augusta University, Augusta, Georgia, USA
| | - Balveen Kaur
- Department of Pathology, Georgia Cancer Center at Augusta University, Augusta, Georgia, USA
| | - Qin Wang
- Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, Georgia, USA
| | - David H Munn
- Department of Pediatrics, Pediatric Immunotherapy Program, Georgia Cancer Center at Augusta University, Augusta, Georgia, USA
| | - Bangxing Hong
- Department of Pathology, Georgia Cancer Center at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
3
|
Wang G, Wang J, Yang D, Liu L, Xu P. Severe traumatic brain injury and risk for osteoporosis: a Mendelian randomization study. BMC Med Genomics 2025; 18:61. [PMID: 40165268 PMCID: PMC11959788 DOI: 10.1186/s12920-025-02127-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND The influence of nervous system activity on bone remodeling has been widely reported. Patients with traumatic brain injury (TBI) exhibit a high incidence of osteoporosis (OP). Nevertheless, the relationship between severe TBI (sTBI) and OP remains unclear. We performed Mendelian randomization (MR) analysis to assess the potential causal relationship between sTBI and OP. METHODS Data on exposure and outcomes were acquired from genome-wide association studies (GWAS). Data on OP was obtained from UK Biobank (5,266 cases of OP and 331,893 controls). Data on sTBI was obtained from FinnGen Consortium (6,687 cases and 370,590 controls). Single nucleotide polymorphisms (SNPs) that underwent strict screening were regarded as instrumental variables. We used the inverse variance weighted (IVW), constrained maximum likelihood and model averaging (CML-MA), MR-Egger, and weighted median methods for causal effect estimation. To test the reliability of the results, sensitivity analysis was performed using Cochran's Q, leave-one-out, MR-Egger intercept, and MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) tests. RESULTS The IVW analysis indicates that sTBI and OP have a suggestive association (odds ratio [OR] = 1.004, 95% confidence interval [CI] = 1.001,1.007; p = 0.002), and no heterogeneity (Q = 11.536, p = 0.241) or directional pleiotropy was observed (egger_intercept = 7.368 × 10- 5, p = 0.870). The robustness of the results was validated using a leave-one-out sensitivity test. CONCLUSION According to the MR analysis, sTBI and OP are likely suggestively related. This finding contributes to the prevention of OP in patients with sTBI and provides genetic evidence supporting the theory that the nervous system regulates bone remodeling.
Collapse
Affiliation(s)
- Guoqiang Wang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Jiachen Wang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Dinglong Yang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Lin Liu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
4
|
Zhang S, Chen X, Li J, Xu A, Bode AM, Luo X. The role of cryptochrome (CRY) in cancer: molecular mechanisms and Clock-based therapeutic strategies. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40109093 DOI: 10.3724/abbs.2025025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
The circadian rhythm is a phenomenon in which physiological, behavioral, and biochemical processes within an organism naturally fluctuate over a period of approximately 24 hours. This phenomenon is ubiquitous in living organisms. Disruption of circadian rhythms in mammals leads to different diseases, such as cancer, and neurodegenerative and metabolic disorders. In specific tissues, numerous genes have been found to have circadian oscillations, suggesting a broad role for rhythm genes in the regulation of gene expression. This review systematically summarizes the role of cryptochromes (CRYs) in the initiation and progression of different types of cancer and discusses the relationships between Clock genes and the tumor microenvironment (TME), as well as clock-based therapeutic strategies.
Collapse
Affiliation(s)
- Shuzhao Zhang
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Xue Chen
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Jiayi Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Anan Xu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Xiangjian Luo
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha 410078, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha 410078, China
| |
Collapse
|
5
|
de Rezende VL, de Aguiar da Costa M, Martins CD, Mathias K, Gonçalves CL, Barichello T, Petronilho F. Systemic Rejuvenating Interventions: Perspectives on Neuroinflammation and Blood-Brain Barrier Integrity. Neurochem Res 2025; 50:112. [PMID: 40035979 DOI: 10.1007/s11064-025-04361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
The aging process results in structural, functional, and immunological changes in the brain, which contribute to cognitive decline and increase vulnerability to neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and stroke-related complications. Aging leads to cognitive changes and also affect executive functions. Additionally, it causes neurogenic and neurochemical alterations, such as a decline in dopamine and acetylcholine levels, which also impact cognitive performance. The chronic inflammation caused by aging contributes to the impairment of the blood-brain barrier (BBB), contributing to the infiltration of immune cells and exacerbating neuronal damage. Therefore, rejuvenating therapies such as heterochronic parabiosis, cerebrospinal fluid (CSF) administration, plasma, platelet-rich plasma (PRP), and stem cell therapy have shown potential to reverse these changes, offering new perspectives in the treatment of age-related neurological diseases. This review focuses on highlighting the effects of rejuvenating interventions on neuroinflammation and the BBB.
Collapse
Affiliation(s)
- Victória Linden de Rezende
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Maiara de Aguiar da Costa
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Carla Damasio Martins
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
- Laboratory of Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, Mcgovern Medical School, The University of Texas Health Science Center at Houston (Uthealth), Houston, TX, USA
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil.
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, 1105, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
6
|
Xiwen Z, Qiyun F, Chuqiao L, Anqi J, Zhenzhen W, Qiong D, Yu P, Chunlin W. The assessment of autonomic nervous function in patients with gastrointestinal malignancies and its relationship with clinical characteristics. Front Neurosci 2025; 19:1542224. [PMID: 40092067 PMCID: PMC11906409 DOI: 10.3389/fnins.2025.1542224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction The gastrointestinal tract is the organ most extensively distributed by autonomic nerves, and researches have indicated a relationship between automatic nerves and the progression of gastrointestinal cancers. This study aimed to evaluate the autonomic nervous function in patients with gastrointestinal cancer and to explore its relationship with clinical characteristics. Methods We employed the Composite Autonomic Symptom Score 31 (COMPASS-31) questionnaire and cardiovascular autonomic reflex tests (CARTs) to evaluate autonomic nervous function, while also conducting a thorough analysis of clinical data. Results Our results showed that low white blood cell (WBC) count (OR = 0.461, 95% CI: 0.218-0.976, p = 0.043) and increased maximum tumor diameter (OR = 1.619, 95% CI: 1.025-2.555, p = 0.039) were risk factors for autonomic dysfunction according to the COMPASS-31 assessment. While hypertension (OR = 5.747, 95% CI: 1.186-27.862, p = 0.030) and elevated platelet-to-albumin ratio (PAR) (OR = 1.256, 95% CI: 1.025-1.540, p = 0.028) were identified as independent risk factors for autonomic dysfunction based on the CARTs results. Combining the findings from COMPASS-31 and CARTs revealed that older age (OR = 1.133, 95% CI: 1.015-1.264, p = 0.027) and vascular invasion (OR = 7.706, 95% CI: 1.391-42.684, p = 0.019) were also independent risk factors for autonomic dysfunction. Conclusion Our findings reveal that these specific factors related to gastrointestinal cancers significantly influence autonomic nervous function. It is essential to evaluate autonomic nervous function and its associated risk factors in patients with gastrointestinal malignancies, which provide new insights into the intervention strategies for cancer diseases.
Collapse
Affiliation(s)
- Zhang Xiwen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Geriatrics, Zaozhuang Mental Health Center, Zaozhuang, Shandong, China
| | - Feng Qiyun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Chuqiao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiang Anqi
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wu Zhenzhen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Deng Qiong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Yu
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wang Chunlin
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Zhu H, Ren J, Wang X, Qin W, Xie Y. Targeting skeletal interoception: a novel mechanistic insight into intervertebral disc degeneration and pain management. J Orthop Surg Res 2025; 20:159. [PMID: 39940003 PMCID: PMC11823264 DOI: 10.1186/s13018-025-05577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
Despite being a leading cause of chronic pain and disability, the underlying mechanisms of intervertebral disc (IVD) degeneration (IVDD) remain unclear. Emerging evidence suggests that mechanosensation (the ability of the skeletal system to perceive mechanical and biochemical signals) mediated by abnormal mechanical loading plays a critical role in the regulation of IVD health. This review examines the complex interactions amongIVDs, intraosseous sensory mechanisms, and the central nervous system (CNS), with a particular focus on the roles of pathways such as PGE2/EP4, Wnt/β-catenin, and NF-κB. This review elucidates the manner in which mechanical stress and aberrant signaling disrupt the homeostasis of the nucleus pulposus (NP), cartilaginous endplate (CEP) and annulus fibrosus (AF), thereby driving degeneration and exacerbating pain. Furthermore, targeted therapeutic strategies, including the modulation of skeletal interoception and dynamic mechanical loading, present novel avenues for reversing IVDD progression. By integrating skeletal biology with spinal pathology, this work offers a novel perspective on the pathogenesis of IVDD and identifies promising strategies for clinical intervention. These findings highlight the potential of targeting skeletal interoception to mitigate IVDD and associated pain, paving the way for innovative, mechanism-driven therapies.
Collapse
Affiliation(s)
- Houcheng Zhu
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - JianHang Ren
- Affiliated Yongchuan Hospital of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 402160, China
| | - Xiangjin Wang
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Wenjing Qin
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Yong Xie
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China.
| |
Collapse
|
8
|
Liu L, Zhang X, Chai Y, Zhang J, Deng Q, Chen X. Skull bone marrow and skull meninges channels: redefining the landscape of central nervous system immune surveillance. Cell Death Dis 2025; 16:53. [PMID: 39875352 PMCID: PMC11775313 DOI: 10.1038/s41419-025-07336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Abstract
The understanding of neuroimmune function has evolved from concepts of immune privilege and protection to a new stage of immune interaction. The discovery of skull meninges channels (SMCs) has opened new avenues for understanding central nervous system (CNS) immunity. Here, we characterize skull bone marrow and SMCs by detailing the anatomical structures adjacent to the skull, the differences between skull and peripheral bone marrow, mainstream animal processing methods, and the role of skull bone marrow in monitoring various CNS diseases. Additionally, we highlight several unresolved issues based on current research findings, aiming to guide future research directions.
Collapse
Affiliation(s)
- Liang Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Xian Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Yan Chai
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Quanjun Deng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China.
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China.
| |
Collapse
|
9
|
Wang YH, Yang X, Liu CC, Wang X, Yu KD. Unraveling the peripheral nervous System's role in tumor: A Double-edged Sword. Cancer Lett 2025; 611:217451. [PMID: 39793755 DOI: 10.1016/j.canlet.2025.217451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The peripheral nervous system (PNS) includes all nerves outside the brain and spinal cord, comprising various cells like neurons and glial cells, such as schwann and satellite cells. The PNS is increasingly recognized for its bidirectional interactions with tumors, exhibiting both pro- and anti-tumor effects. Our review delves into the complex mechanisms underlying these interactions, highlighting recent findings that challenge the conventional understanding of PNS's role in tumorigenesis. We emphasize the contradictory results in the literature and propose novel perspectives on how these discrepancies can be resolved. By focusing on the PNS's influence on tumor initiation, progression, and microenvironment remodeling, we provide a comprehensive analysis that goes beyond the structural description of the PNS. Our review suggests that a deeper comprehension of the PNS-tumor crosstalk is pivotal for developing targeted anticancer strategies. We conclude by emphasizing the need for future research to unravel the intricate dynamics of the PNS in cancer, which may lead to innovative diagnostic tools and therapeutic approaches.
Collapse
Affiliation(s)
- Yan-Hao Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China
| | - Xuan Yang
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, 030000, PR China
| | - Cui-Cui Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China
| | - Xin Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China.
| |
Collapse
|
10
|
Pierre-Jerome C. The peripheral nervous system: peripheral neuropathies in the diabetic foot. MYOPATHIES AND TENDINOPATHIES OF THE DIABETIC FOOT 2025:451-482. [DOI: 10.1016/b978-0-443-13328-2.00022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Beeraka NM, Basappa B, Nikolenko VN, Mahesh PA. Role of Neurotransmitters in Steady State Hematopoiesis, Aging, and Leukemia. Stem Cell Rev Rep 2025; 21:2-27. [PMID: 38976142 DOI: 10.1007/s12015-024-10761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Haematopoiesis within the bone marrow (BM) represents a complex and dynamic process intricately regulated by neural signaling pathways. This delicate orchestration is susceptible to disruption by factors such as aging, diabetes, and obesity, which can impair the BM niche and consequently affect haematopoiesis. Genetic mutations in Tet2, Dnmt3a, Asxl1, and Jak2 are known to give rise to clonal haematopoiesis of intermediate potential (CHIP), a condition linked to age-related haematological malignancies. Despite these insights, the exact roles of circadian rhythms, sphingosine-1-phosphate (S1P), stromal cell-derived factor-1 (SDF-1), sterile inflammation, and the complement cascade on various BM niche cells remain inadequately understood. Further research is needed to elucidate how BM niche cells contribute to these malignancies through neural regulation and their potential in the development of gene-corrected stem cells. This literature review describes the updated functional aspects of BM niche cells in haematopoiesis within the context of haematological malignancies, with a particular focus on neural signaling and the potential of radiomitigators in acute radiation syndrome. Additionally, it underscores the pressing need for technological advancements in stem cell-based therapies to alleviate the impacts of immunological stressors. Recent studies have illuminated the microheterogeneity and temporal stochasticity of niche cells within the BM during haematopoiesis, emphasizing the updated roles of neural signaling and immunosurveillance. The development of gene-corrected stem cells capable of producing blood, immune cells, and tissue-resident progeny is essential for combating age-related haematological malignancies and overcoming immunological challenges. This review aims to provide a comprehensive overview of these evolving insights and their implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA.
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia.
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India.
| | - Basappa Basappa
- Department of Studies in Organic Chemistry, Laboratory of Chemical Biology, University of Mysore, Mysore, Karnataka, 570006, India
| | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia
| | - P A Mahesh
- Department of Pulmonary Medicine, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| |
Collapse
|
12
|
Mosialou I, Kousteni S. From brain to blood and back again: Linking chronic stress, myelopoiesis, and depression. Cell Stem Cell 2024; 31:1721-1723. [PMID: 39642860 DOI: 10.1016/j.stem.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
In this issue of Cell Stem Cell, Mou et al. identified a brain-bone marrow axis reinforcing myelopoiesis and neuroinflammation during psychological stress, culminating in depression. The identification of this pathway provides insights into hematopoietic stem cell homeostasis and regulatory neuronal function with potentially significant implications for the treatment of stress-related disorders.
Collapse
Affiliation(s)
- Ioanna Mosialou
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA; Edward P. Evans for Myelodysplastic Syndromes at Columbia University Medical Center, New York, NY 10032, USA
| | - Stavroula Kousteni
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA; Edward P. Evans for Myelodysplastic Syndromes at Columbia University Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, NY 10032, USA; Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
13
|
Afzal A. Melatonin as a multifunctional modulator: emerging insights into its role in health, reproductive efficiency, and productive performance in livestock. Front Physiol 2024; 15:1501334. [PMID: 39703668 PMCID: PMC11655511 DOI: 10.3389/fphys.2024.1501334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Melatonin, a pleiotropic hormone plays a vital role in enhancing livestock performance not only by regulating circadian rhythms but also by exhibiting antioxidant, immunomodulatory, and metabolic regulatory effects that collectively improve resilience, fertility, and productivity. Melatonin's synthesis is predominantly influenced by light exposure, with increased production in darkness; however, factors such as diet and health status further modulate its levels. By helping animals adapt to environmental stressors, melatonin boosts immune responses, mitigates chronic illnesses, and optimizes production efficiency. Its regulatory influence extends to the hypothalamic-pituitary-gonadal (HPG) axis, enhancing hormone secretion, synchronizing estrous cycles, and improving embryo viability. This results in improved reproductive outcomes through the protection of gametes, increased sperm motility, and enhanced oocyte quality, all of which benefit the fertilization process. Additionally, melatonin positively impacts productive performance, promoting muscle growth, development, and optimizing milk yield and composition through its interaction with metabolic and endocrine systems. As ongoing research continues to uncover its broader physiological effects, melatonin supplementation emerges as a promising approach to improving livestock welfare, productivity, and sustainability in modern animal husbandry.
Collapse
Affiliation(s)
- Ali Afzal
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
- School of Zoology, Minhaj University Lahore, Lahore, Pakistan
| |
Collapse
|
14
|
Huang Z, Iqbal Z, Zhao Z, Liu J, Alabsi AM, Shabbir M, Mahmood A, Liang Y, Li W, Deng Z. Cellular crosstalk in the bone marrow niche. J Transl Med 2024; 22:1096. [PMID: 39627858 PMCID: PMC11613879 DOI: 10.1186/s12967-024-05900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/19/2024] [Indexed: 12/08/2024] Open
Abstract
The bone marrow niche is a special microenvironment that comprises elements, including hematopoietic stem cells, osteoblasts, and endothelial cells, and helps maintain their characteristic functions. Here, we elaborate on the crosstalk between various cellular components, hematopoietic stem cells, and other cells in the bone marrow niche. We further explain the mechanism of preserving equilibrium in the bone marrow niche, which is crucial for the directional regulation of bone reconstruction and repair. Additionally, we elucidate the intercommunication among osteocytes, the regulation of osteoblast maturation and activation by lymphocytes, the deficiency of megakaryocytes that can markedly impair osteoblast formation, and the mechanism of interaction between macrophages and mesenchymal stem cells in the bone marrow niche. Finally, we discussed the new immunotherapies for bone tumors in the BM niche. In this review, we aimed to provide a candid overview of the crosstalk among bone marrow niche cells and to highlight new concepts underlying the unknown mechanisms of hematopoiesis and bone reconstruction. Thus, this review may provide a more comprehensive understanding of the role of these niche cells in improving hematopoietic function and help identify their therapeutic potential for different diseases in the future.
Collapse
Affiliation(s)
- Zeqi Huang
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Zoya Iqbal
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Zhe Zhao
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Jianquan Liu
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - A M Alabsi
- Faculty of Dentistry, MAHSA University, Selangor, Malaysia
- School of Dentistry, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 ShahAlam, Selangor, Malaysia
| | - Maryam Shabbir
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Ayesha Mahmood
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Yujie Liang
- Faculty of Dentistry, MAHSA University, Selangor, Malaysia.
- Department of Child and Adolescent Psychiatry, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China.
| | - Wencui Li
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China.
| | - Zhiqin Deng
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China.
| |
Collapse
|
15
|
He L, Bhat K, Ioannidis A, Pajonk F. Effects of dopamine receptor antagonists and radiation on mouse neural stem/progenitor cells. Radiother Oncol 2024; 201:110562. [PMID: 39341503 PMCID: PMC11987595 DOI: 10.1016/j.radonc.2024.110562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Dopamine receptor antagonists have recently been identified as potential anti-cancer agents in combination with radiation, and a first drug of this class is in clinical trials against pediatric glioma. Radiotherapy causes cognitive impairment primarily by eliminating neural stem/progenitor cells and subsequent loss of neurogenesis, along with inducing inflammation, vascular damage, and synaptic alterations. Here, we tested the combined effects of dopamine receptor antagonists and radiation on neural stem/progenitor cells. METHODS Using transgenic mice that report the presence of neural stem/progenitor cells through Nestin promoter-driven expression of EGFP, the effects of dopamine receptor antagonists alone or in combination with radiation on neural stem/progenitor cells were assessed in sphere-formation assays, extreme limiting dilution assays, flow cytometry and real-time PCR in vitro and in vivo in both sexes. RESULTS We report that hydroxyzine and trifluoperazine exhibited sex-dependent effects on murine newborn neural stem/progenitor cells in vitro. In contrast, amisulpride, nemonapride, and quetiapine, when combined with radiation, significantly increased the number of neural stem/progenitor cells in both sexes. In vivo, trifluoperazine showed sex-dependent effects on adult neural stem/progenitor cells, while amisulpride demonstrated significant effects in both sexes. Further, amisulpride increased sphere forming capacity and stem cell frequency in both sexes when compared to controls. CONCLUSION We conclude that a therapeutic window for dopamine receptor antagonists in combination with radiation potentially exists, making it a novel combination therapy against glioblastoma. Normal tissue toxicity following this treatment scheme likely differs depending on age and sex and should be taken into consideration when designing clinical trials.
Collapse
Affiliation(s)
- Ling He
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States.
| | - Kruttika Bhat
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States
| | - Angeliki Ioannidis
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States; Jonsson Comprehensive Cancer Center at UCLA, United States; Department of Neurosurgery, David Geffen School of Medicine at UCLA, United States
| |
Collapse
|
16
|
Dong ZK, Wang YF, Li WP, Jin WL. Neurobiology of cancer: Adrenergic signaling and drug repurposing. Pharmacol Ther 2024; 264:108750. [PMID: 39527999 DOI: 10.1016/j.pharmthera.2024.108750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Cancer neuroscience, as an emerging converging discipline, provides us with new perspectives on the interactions between the nervous system and cancer progression. As the sympathetic nervous system, in particular adrenergic signaling, plays an important role in the regulation of tumor activity at every hierarchical level of life, from the tumor cell to the tumor microenvironment, and to the tumor macroenvironment, it is highly desirable to dissect its effects. Considering the far-reaching implications of drug repurposing for antitumor drug development, such a large number of adrenergic receptor antagonists on the market has great potential as one of the means of antitumor therapy, either as primary or adjuvant therapy. Therefore, this review aims to summarize the impact of adrenergic signaling on cancer development and to assess the status and prospects of intervening in adrenergic signaling as a therapeutic tool against tumors.
Collapse
Affiliation(s)
- Zi-Kai Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China
| | - Yong-Fei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China
| | - Wei-Ping Li
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Department of Urology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Wei-Lin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
17
|
Chen X, Geng Y, Wei G, He D, Lv J, Wen W, Xiang F, Tao K, Wu C. Neural Circuitries between the Brain and Peripheral Solid Tumors. Cancer Res 2024; 84:3509-3521. [PMID: 39226520 PMCID: PMC11532784 DOI: 10.1158/0008-5472.can-24-1779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
The recent discovery of the pivotal role of the central nervous system in controlling tumor initiation and progression has opened a new field of research. Increasing evidence suggests a bidirectional interaction between the brain and tumors. The brain influences the biological behavior of tumor cells through complex neural networks involving the peripheral nervous system, the endocrine system, and the immune system, whereas tumors can establish local autonomic and sensory neural networks to transmit signals into the central nervous system, thereby affecting brain activity. This review aims to summarize the latest research in brain-tumor cross-talk, exploring neural circuitries between the brain and various peripheral solid tumors, analyzing the roles in tumor development and the related molecular mediators and pathologic mechanisms, and highlighting the critical impact on the understanding of cancer biology. Enhanced understanding of reciprocal communication between the brain and tumors will establish a solid theoretical basis for further research and could open avenues for repurposing psychiatric interventions in cancer treatment.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanxin Wei
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danzeng He
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jialong Lv
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhao Wen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Xiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanqing Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Reznik E, Torjani A. Mechanisms of stress-attributed breast cancer incidence and progression. Cancer Causes Control 2024; 35:1413-1432. [PMID: 39012513 DOI: 10.1007/s10552-024-01884-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 07/17/2024]
Abstract
Breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer deaths in women, with psychosocial stress commonly cited by patients as one of its causes. While there is conflicting epidemiological evidence investigating the association between psychosocial stress and breast cancer incidence and progression, there is reason to believe that interventions aimed at reducing stress pharmacologically or psychologically may improve breast cancer outcomes. The aim of this review is to discuss the molecular and biological mechanisms of stress-attributed breast cancer incidence and progression, including the induction of the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS), as well as decreased immune function and stress hormone-induced resistance to chemotherapy. Moreover, these mechanisms have been cited as potential therapeutic targets of pharmacologic and psychological interventions that may improve the care, well-being and survival of breast cancer patients. Further research is recommended to investigate whether interventions in the primary care setting for women with risk factors for breast cancer development may lead to a decreased incidence of invasive breast tumors.
Collapse
Affiliation(s)
- Elizabeth Reznik
- Department of Internal Medicine, NewYork-Presbyterian Weill Cornell, New York, NY, USA.
| | - Ava Torjani
- Department of Ophthalmology, Keck School of Medicine of USC, Los Angeles, CA, USA
| |
Collapse
|
19
|
Ye Z, Xu Y, Zhang M, Cai C. Sympathetic nerve signals: orchestrators of mammary development and stem cell vitality. J Mol Cell Biol 2024; 16:mjae020. [PMID: 38740522 PMCID: PMC11520406 DOI: 10.1093/jmcb/mjae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/25/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024] Open
Abstract
The mammary gland is a dynamic organ that undergoes significant changes at multiple stages of postnatal development. Although the roles of systemic hormones and microenvironmental cues in mammary homeostasis have been extensively studied, the influence of neural signals, particularly those from the sympathetic nervous system, remains poorly understood. Here, using a mouse mammary gland model, we delved into the regulatory role of sympathetic nervous signaling in the context of mammary stem cells and mammary development. Our findings revealed that depletion of sympathetic nerve signals results in defective mammary development during puberty, adulthood, and pregnancy, accompanied by a reduction in mammary stem cell numbers. Through in vitro three-dimensional culture and in vivo transplantation analyses, we demonstrated that the absence of sympathetic nerve signals hinders mammary stem cell self-renewal and regeneration, while activation of sympathetic nervous signaling promotes these capacities. Mechanistically, sympathetic nerve signals orchestrate mammary stem cell activity and mammary development through the extracellular signal-regulated kinase signaling pathway. Collectively, our study unveils the crucial roles of sympathetic nerve signals in sustaining mammary development and regulating mammary stem cell activity, offering a novel perspective on the involvement of the nervous system in modulating adult stem cell function and organ development.
Collapse
Affiliation(s)
- Zi Ye
- Department of Pulmonary Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Yu Xu
- Department of Pulmonary Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Mengna Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Cheguo Cai
- Department of Pulmonary Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
20
|
Zheng Y, Li L, Shen Z, Wang L, Niu X, Wei Y, Sun S, Zhao J. Mechanisms of neural infiltration-mediated tumor metabolic reprogramming impacting immunotherapy efficacy in non-small cell lung cancer. J Exp Clin Cancer Res 2024; 43:284. [PMID: 39385213 PMCID: PMC11465581 DOI: 10.1186/s13046-024-03202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Current evidence underlines the active role of neural infiltration and axonogenesis within the tumor microenvironment (TME), with implications for tumor progression. Infiltrating nerves stimulate tumor growth and dissemination by secreting neurotransmitters, whereas tumor cells influence nerve growth and differentiation through complex interactions, promoting tumor progression. However, the role of neural infiltration in the progression of non-small cell lung cancer (NSCLC) remains unclear. METHODS This study employs the techniques of immunohistochemistry, immunofluorescence, RNA sequencing, molecular biology experiments, and a murine orthotopic lung cancer model to deeply analyze the specific mechanisms behind the differential efficacy of NSCLC immunotherapy from the perspectives of neuro-tumor signal transduction, tumor metabolism, and tumor immunity. RESULTS This study demonstrates that nerve growth factor (NGF) drives neural infiltration in NSCLC, and 5-hydroxytryptamine (5-HT), which is secreted by nerves, is significantly elevated in tumors with extensive neural infiltration. Transcriptome sequencing revealed that 5-HT enhanced glycolysis in NSCLC cells. Pathway analysis indicated that 5-HT activated the PI3K/Akt/mTOR pathway, promoting tumor metabolic reprogramming. This reprogramming exacerbated immunosuppression in the TME. Neutralizing 5-HT-mediated metabolic reprogramming in tumor immunity enhanced the efficacy of PD-1 monoclonal antibody treatment in mice. CONCLUSIONS The findings of this study provide a novel perspective on the crosstalk between nerves and lung cancer cells and provide insights into further investigations into the role of nerve infiltration in NSCLC progression.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- Internet Medical and System Applications of National Engineering Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhibo Shen
- Internet Medical and System Applications of National Engineering Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Longhao Wang
- Internet Medical and System Applications of National Engineering Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaoyu Niu
- Department of Anesthesiology, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450052, Henan, China
| | - Yujie Wei
- Internet Medical and System Applications of National Engineering Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shilong Sun
- Internet Medical and System Applications of National Engineering Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jie Zhao
- Internet Medical and System Applications of National Engineering Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
21
|
Sarfi S, Azaryan E, Naseri M. Immune System of Dental Pulp in Inflamed and Normal Tissue. DNA Cell Biol 2024; 43:369-386. [PMID: 38959180 DOI: 10.1089/dna.2024.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Teeth are vulnerable to structural compromise, primarily attributed to carious lesions, in which microorganisms originating from the oral cavity deteriorate the mineralized structures of enamel and dentin, subsequently infiltrating the underlying soft connective tissue, known as the dental pulp. Nonetheless, dental pulp possesses the necessary capabilities to detect and defend against bacteria and their by-products, using a variety of intricate defense mechanisms. The pulp houses specialized cells known as odontoblasts, which encounter harmful substances produced by oral bacteria. These cells identify pathogens at an early stage and commence the immune system response. As bacteria approach the pulp, various cell types within the pulp, such as different immune cells, stem cells, fibroblasts, as well as neuronal and vascular networks, contribute a range of defense mechanisms. Therefore, the immune system is present in the healthy pulp to restrain the initial spread of pathogens, and then in the inflamed pulp, it prepares the conditions for necrosis or regeneration, so inflammatory response mechanisms play a critical role in maintaining tissue homeostasis. This review aims to consolidate the existing literature on the immune system in dental pulp, encompassing current knowledge on this topic that explains the diverse mechanisms of recognition and defense against pathogens exhibited by dental pulp cells, elucidates the mechanisms of innate and adaptive immunity in inflamed pulp, and highlights the difference between inflamed and normal pulp tissue.
Collapse
Affiliation(s)
- Sepideh Sarfi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Immunology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ehsaneh Azaryan
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular, and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
22
|
Cîmpeanu RC, Boldeanu MV, Ahrițculesei RV, Ciobanu AE, Cristescu AM, Forțofoiu D, Siloși I, Pirici DN, Cazacu SM, Boldeanu L, Vere CC. Correlation between Neurotransmitters (Dopamine, Epinephrine, Norepinephrine, Serotonin), Prognostic Nutritional Index, Glasgow Prognostic Score, Systemic Inflammatory Response Markers, and TNM Staging in a Cohort of Colorectal Neuroendocrine Tumor Patients. Int J Mol Sci 2024; 25:6977. [PMID: 39000088 PMCID: PMC11241815 DOI: 10.3390/ijms25136977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Neuroendocrine tumors are uncommon in the gastrointestinal system but can develop in the majority of the body's epithelial organs. Our goal was to examine the presence and clinical application of serum dopamine (DA), serotonin (ST), norepinephrine (NE), and epinephrine (EPI), in addition to determining the significance of the Prognostic Nutritional Index (PNI), Glasgow Prognostic Score (GPS), and systemic inflammatory response (SIR) markers as a prognostic factor for patients with colorectal neuroendocrine tumors (CR-NETs), in various tumor-node-metastasis (TNM) stages. We also wanted to identify the possible connection between them. This study included 25 consecutive patients who were diagnosed with CR-NETs and a control group consisting of 60 patients with newly diagnosed colorectal cancer (CRC). We used the Enzyme-Linked Immunosorbent Assay (ELISA) technique. This study revealed that CR-NET patients showed significantly higher serum levels of DA compared to CRC patients. We showed that serum DA was present in the early stages of CR-NETs, with increasing levels as we advanced through the TNM stages. Moreover, we found a close relationship between the levels of DA and the inflammation and nutritional status of the CR-NET patients in this study. CR-NET patients from the PNI < 47.00 subgroup had a higher level of DA than those from the PNI ≥ 47.00 subgroup. Pearson's correlation analysis revealed correlations between DA, PNI, and the neutrophil/lymphocyte ratio (NLR) and the platelet/lymphocyte ratio (PLR). Both hematological indices were negatively correlated with albumin (ALB). Our investigation's findings relating to the PNI, GPS, SIR, and DA indicate that these tools can be markers of nutritional and systemic inflammatory status, are simple to use, and are repeatable. Further research on this topic could provide valuable insights into which biomarkers to incorporate into clinical practice for the management of CR-NET patients.
Collapse
Affiliation(s)
- Radu Cristian Cîmpeanu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.C.); (R.-V.A.); (A.E.C.); (A.-M.C.); (D.F.)
| | - Mihail Virgil Boldeanu
- Department of Immunology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Roxana-Viorela Ahrițculesei
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.C.); (R.-V.A.); (A.E.C.); (A.-M.C.); (D.F.)
| | - Alina Elena Ciobanu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.C.); (R.-V.A.); (A.E.C.); (A.-M.C.); (D.F.)
| | - Anda-Mihaela Cristescu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.C.); (R.-V.A.); (A.E.C.); (A.-M.C.); (D.F.)
| | - Dragoș Forțofoiu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (R.C.C.); (R.-V.A.); (A.E.C.); (A.-M.C.); (D.F.)
| | - Isabela Siloși
- Department of Immunology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Daniel-Nicolae Pirici
- Department of Histopathology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Sergiu-Marian Cazacu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (S.-M.C.); (C.C.V.)
| | - Lidia Boldeanu
- Department of Microbiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Cristin Constantin Vere
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (S.-M.C.); (C.C.V.)
| |
Collapse
|
23
|
Geremek M, Drozdzowska B, Łażewska D, Kieć-Kononowicz K, Jochem J. Effects of the DL76 Antagonist/Inverse Agonist of Histamine H 3 Receptors on Experimental Periodontitis in Rats: Morphological Studies. Pharmaceuticals (Basel) 2024; 17:792. [PMID: 38931459 PMCID: PMC11206559 DOI: 10.3390/ph17060792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Periodontitis preceded by gingivitis is the most common form of periodontal disease and occurs due to the interaction of microorganisms present in the complex bacterial aggregates of dental plaque biofilm and their metabolism products with periodontal tissues. Histamine is a heterocyclic biogenic amine acting via four types of receptors. Histamine H3 receptors act as presynaptic auto/heteroreceptors to regulate the release of histamine and other neurotransmitters. AIM Since the nervous system is able to regulate the progression of the inflammatory process and bone metabolism, the aim of this study was to investigate the effects of DL76, which acts as an antagonist/inverse agonist of H3 receptors, on the course of experimental periodontitis. MATERIALS AND METHODS This study was conducted in 24 mature male Wistar rats weighing 245-360 g, aged 6-8 weeks. A silk ligature was placed on the second maxillary molar of the right maxilla under general anesthesia. From the day of ligating, DL76 and 0.9% NaCl solutions were administered subcutaneously for 28 days in the experimental and control groups, respectively. After the experiment, histopathological, immunohistochemical and radiological examinations were performed. RESULTS Ligation led to the development of the inflammatory process with lymphocytic infiltration, increased epithelial RANKL and OPG expression as well as bone resorption. DL76 evoked a reduction in (1) lymphocytic infiltration, (2) RANKL and OPG expression as well as (3) bone resorption since the medians of the mesial and distal interdental spaces in the molars with induced periodontitis were 3.56-fold and 10-fold lower compared to the corresponding values in saline-treated animals with periodontitis. CONCLUSION DL76 is able to inhibit the progression of experimental periodontitis in rats, as demonstrated by a reduction in the inflammatory cell infiltration, a decrease in the RANKL/RANK OPG pathway expression and a reduction in the alveolar bone resorption.
Collapse
Affiliation(s)
- Mariusz Geremek
- Department of Public Health, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Bogna Drozdzowska
- Department of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688 Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688 Kraków, Poland
| | - Jerzy Jochem
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| |
Collapse
|
24
|
Wang C, Ni J, Zhai D, Xu Y, Wu Z, Chen Y, Liu N, Du J, Shen Y, Liu G, Yang Y, You L, Hu W. Stress-induced epinephrine promotes hepatocellular carcinoma progression via the USP10-PLAGL2 signaling loop. Exp Mol Med 2024; 56:1150-1163. [PMID: 38689092 PMCID: PMC11148159 DOI: 10.1038/s12276-024-01223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 05/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is associated with a poor prognosis. Our previous study demonstrated that Pleomorphic adenoma gene like-2 (PLAGL2) was a potential therapeutic target in HCC. However, the mechanisms that lead to the upregulation of PLAGL2 in HCC remain unclear. The present study revealed that stress-induced epinephrine increased the expression of PLAGL2, thereby promoting the progression of HCC. Furthermore, PLAGL2 knockdown inhibited epinephrine-induced HCC development. Mechanistically, epinephrine upregulated ubiquitin-specific protease 10 (USP10) to stabilize PLAGL2 via the adrenergic β-receptor-2-c-Myc (ADRB2-c-Myc) axis. Furthermore, PLAGL2 acted as a transcriptional regulator of USP10, forming a signaling loop. Taken together, these results reveal that stress-induced epinephrine activates the PLAGL2-USP10 signaling loop to enhance HCC progression. Furthermore, PLAGL2 plays a crucial role in psychological stress-mediated promotion of HCC progression.
Collapse
Affiliation(s)
- Chen Wang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jiaping Ni
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Dongqing Zhai
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yanchao Xu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, PR China
| | - Zijie Wu
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yuyuan Chen
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Ning Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, 750001, Ningxia, PR China
| | - Juan Du
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, 750001, Ningxia, PR China
| | - Yumeng Shen
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Guilai Liu
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Linjun You
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Weiwei Hu
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
- Lingang Laboratory, Shanghai, 200032, PR China.
| |
Collapse
|
25
|
Chen X, Liu C, Wang J, Du C. Hematopoietic Stem Cells as an Integrative Hub Linking Lifestyle to Cardiovascular Health. Cells 2024; 13:712. [PMID: 38667327 PMCID: PMC11049205 DOI: 10.3390/cells13080712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Despite breakthroughs in modern medical care, the incidence of cardiovascular disease (CVD) is even more prevalent globally. Increasing epidemiologic evidence indicates that emerging cardiovascular risk factors arising from the modern lifestyle, including psychosocial stress, sleep problems, unhealthy diet patterns, physical inactivity/sedentary behavior, alcohol consumption, and tobacco smoking, contribute significantly to this worldwide epidemic, while its underpinning mechanisms are enigmatic. Hematological and immune systems were recently demonstrated to play integrative roles in linking lifestyle to cardiovascular health. In particular, alterations in hematopoietic stem cell (HSC) homeostasis, which is usually characterized by proliferation, expansion, mobilization, megakaryocyte/myeloid-biased differentiation, and/or the pro-inflammatory priming of HSCs, have been shown to be involved in the persistent overproduction of pro-inflammatory myeloid leukocytes and platelets, the cellular protagonists of cardiovascular inflammation and thrombosis, respectively. Furthermore, certain lifestyle factors, such as a healthy diet pattern and physical exercise, have been documented to exert cardiovascular protective effects through promoting quiescence, bone marrow retention, balanced differentiation, and/or the anti-inflammatory priming of HSCs. Here, we review the current understanding of and progression in research on the mechanistic interrelationships among lifestyle, HSC homeostasis, and cardiovascular health. Given that adhering to a healthy lifestyle has become a mainstream primary preventative approach to lowering the cardiovascular burden, unmasking the causal links between lifestyle and cardiovascular health from the perspective of hematopoiesis would open new opportunities to prevent and treat CVD in the present age.
Collapse
Affiliation(s)
| | | | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China; (X.C.); (C.L.)
| | - Changhong Du
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China; (X.C.); (C.L.)
| |
Collapse
|
26
|
Mendes M, Monteiro AC, Neto E, Barrias CC, Sobrinho-Simões MA, Duarte D, Caires HR. Transforming the Niche: The Emerging Role of Extracellular Vesicles in Acute Myeloid Leukaemia Progression. Int J Mol Sci 2024; 25:4430. [PMID: 38674015 PMCID: PMC11050723 DOI: 10.3390/ijms25084430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Acute myeloid leukaemia (AML) management remains a significant challenge in oncology due to its low survival rates and high post-treatment relapse rates, mainly attributed to treatment-resistant leukaemic stem cells (LSCs) residing in bone marrow (BM) niches. This review offers an in-depth analysis of AML progression, highlighting the pivotal role of extracellular vesicles (EVs) in the dynamic remodelling of BM niche intercellular communication. We explore recent advancements elucidating the mechanisms through which EVs facilitate complex crosstalk, effectively promoting AML hallmarks and drug resistance. Adopting a temporal view, we chart the evolving landscape of EV-mediated interactions within the AML niche, underscoring the transformative potential of these insights for therapeutic intervention. Furthermore, the review discusses the emerging understanding of endothelial cell subsets' impact across BM niches in shaping AML disease progression, adding another layer of complexity to the disease progression and treatment resistance. We highlight the potential of cutting-edge methodologies, such as organ-on-chip (OoC) and single-EV analysis technologies, to provide unprecedented insights into AML-niche interactions in a human setting. Leveraging accumulated insights into AML EV signalling to reconfigure BM niches and pioneer novel approaches to decipher the EV signalling networks that fuel AML within the human context could revolutionise the development of niche-targeted therapy for leukaemia eradication.
Collapse
Affiliation(s)
- Manuel Mendes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana C. Monteiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Estrela Neto
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Cristina C. Barrias
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Manuel A. Sobrinho-Simões
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Clinical Haematology, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
- Clinical Haematology, Department of Medicine, Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - Delfim Duarte
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
- Unit of Biochemistry, Department of Biomedicine, Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal
- Department of Hematology and Bone Marrow Transplantation, Instituto Português de Oncologia (IPO)-Porto, 4200-072 Porto, Portugal
| | - Hugo R. Caires
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.M.); (A.C.M.); (E.N.); (C.C.B.); (M.A.S.-S.); (D.D.)
| |
Collapse
|
27
|
Yang D, Xu J, Xu K, Xu P. Skeletal interoception in osteoarthritis. Bone Res 2024; 12:22. [PMID: 38561376 PMCID: PMC10985098 DOI: 10.1038/s41413-024-00328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/02/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
The interoception maintains proper physiological conditions and metabolic homeostasis by releasing regulatory signals after perceving changes in the internal state of the organism. Among its various forms, skeletal interoception specifically regulates the metabolic homeostasis of bones. Osteoarthritis (OA) is a complex joint disorder involving cartilage, subchondral bone, and synovium. The subchondral bone undergoes continuous remodeling to adapt to dynamic joint loads. Recent findings highlight that skeletal interoception mediated by aberrant mechanical loads contributes to pathological remodeling of the subchondral bone, resulting in subchondral bone sclerosis in OA. The skeletal interoception is also a potential mechanism for chronic synovial inflammation in OA. In this review, we offer a general overview of interoception, specifically skeletal interoception, subchondral bone microenviroment and the aberrant subchondral remedeling. We also discuss the role of skeletal interoception in abnormal subchondral bone remodeling and synovial inflammation in OA, as well as the potential prospects and challenges in exploring novel OA therapies that target skeletal interoception.
Collapse
Affiliation(s)
- Dinglong Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jiawen Xu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
28
|
Tripathy S, Singh S, Banerjee M, Modi DR, Prakash A. Coagulation proteases and neurotransmitters in pathogenicity of glioblastoma multiforme. Int J Neurosci 2024; 134:398-408. [PMID: 35896309 DOI: 10.1080/00207454.2022.2107514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
Glioblastoma is an aggressive type of cancer that begins in cells called astrocytes that support nerve cells that can occur in the brain or spinal cord. It can form in the brain or spinal cord. Despite the variety of modern therapies against GBM, it is still a deadly disease. Patients usually have a median survival of approximately 14 to 15 months from the diagnosis. Glioblastoma is also known as glioblastoma multiforme. The pathogenesis contributing to the proliferation and metastasis of cancer involves aberrations of multiple signalling pathways through multiple genetic mutations and altered gene expression. The coagulant factors like thrombin and tissue factor play a noteworthy role in cancer invasion. They are produced in the microenvironment of glioma through activation of protease-activated receptors (PARs) which are activated by coagulation proteases. PARs are members of family G-protein-coupled receptors (GPCRs) that are activated by coagulation proteases. These components play a key role in tumour cell angiogenesis, migration, invasion, and interactions with host vascular cells. Further, the release of neurotransmitters is also found to regulate malignancy in gliomas. Exploration of the interplay between malignant neural circuitry with the normal conditions is also decisive in finding effective therapies for these apparently invasive tumours. The present review discusses the molecular classification of gliomas, activation of PARs by coagulation protease, and its role in metastasis of gliomas. Further, the differential involvement of neurotransmitters in the pathogenesis of gliomas has also been discussed. Targeting these molecules may present a potential therapeutic approach for the treatment of gliomas.
Collapse
Affiliation(s)
- Sukanya Tripathy
- Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sanjay Singh
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Monisha Banerjee
- Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| | - Dinesh Raj Modi
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Anand Prakash
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| |
Collapse
|
29
|
Jiang W, Jin WL, Xu AM. Cholesterol metabolism in tumor microenvironment: cancer hallmarks and therapeutic opportunities. Int J Biol Sci 2024; 20:2044-2071. [PMID: 38617549 PMCID: PMC11008265 DOI: 10.7150/ijbs.92274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/27/2024] [Indexed: 04/16/2024] Open
Abstract
Cholesterol is crucial for cell survival and growth, and dysregulation of cholesterol homeostasis has been linked to the development of cancer. The tumor microenvironment (TME) facilitates tumor cell survival and growth, and crosstalk between cholesterol metabolism and the TME contributes to tumorigenesis and tumor progression. Targeting cholesterol metabolism has demonstrated significant antitumor effects in preclinical and clinical studies. In this review, we discuss the regulatory mechanisms of cholesterol homeostasis and the impact of its dysregulation on the hallmarks of cancer. We also describe how cholesterol metabolism reprograms the TME across seven specialized microenvironments. Furthermore, we discuss the potential of targeting cholesterol metabolism as a therapeutic strategy for tumors. This approach not only exerts antitumor effects in monotherapy and combination therapy but also mitigates the adverse effects associated with conventional tumor therapy. Finally, we outline the unresolved questions and suggest potential avenues for future investigations on cholesterol metabolism in relation to cancer.
Collapse
Affiliation(s)
- Wen Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - A-Man Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
- Anhui Public Health Clinical Center, Hefei 230022, P. R. China
| |
Collapse
|
30
|
Yang D, Xu K, Xu X, Xu P. Revisiting prostaglandin E2: A promising therapeutic target for osteoarthritis. Clin Immunol 2024; 260:109904. [PMID: 38262526 DOI: 10.1016/j.clim.2024.109904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Osteoarthritis (OA) is a complex disease characterized by cartilage degeneration and persistent pain. Prostaglandin E2 (PGE2) plays a significant role in OA inflammation and pain. Recent studies have revealed the significant role of PGE2-mediated skeletal interoception in the progression of OA, providing new insights into the pathogenesis and treatment of OA. This aspect also deserves special attention in this review. Additionally, PGE2 is directly involved in pathologic processes including aberrant subchondral bone remodeling, cartilage degeneration, and synovial inflammation. Therefore, celecoxib, a commonly used drug to alleviate inflammatory pain through inhibiting PGE2, serves not only as an analgesic for OA but also as a potential disease-modifying drug. This review provides a comprehensive overview of the discovery history, synthesis and release pathways, and common physiological roles of PGE2. We discuss the roles of PGE2 and celecoxib in OA and pain from skeletal interoception and multiple perspectives. The purpose of this review is to highlight PGE2-mediated skeletal interoception and refresh our understanding of celecoxib in the pathogenesis and treatment of OA.
Collapse
Affiliation(s)
- Dinglong Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Ke Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Xin Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China.
| |
Collapse
|
31
|
Jaschke NP, Breining D, Hofmann M, Pählig S, Baschant U, Oertel R, Traikov S, Grinenko T, Saettini F, Biondi A, Stylianou M, Bringmann H, Zhang C, Yoshida TM, Weidner H, Poller WC, Swirski FK, Göbel A, Hofbauer LC, Rauner M, Scheiermann C, Wang A, Rachner TD. Small-molecule CBP/p300 histone acetyltransferase inhibition mobilizes leukocytes from the bone marrow via the endocrine stress response. Immunity 2024; 57:364-378.e9. [PMID: 38301651 PMCID: PMC10923082 DOI: 10.1016/j.immuni.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/01/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Mutations of the CBP/p300 histone acetyltransferase (HAT) domain can be linked to leukemic transformation in humans, suggestive of a checkpoint of leukocyte compartment sizes. Here, we examined the impact of reversible inhibition of this domain by the small-molecule A485. We found that A485 triggered acute and transient mobilization of leukocytes from the bone marrow into the blood. Leukocyte mobilization by A485 was equally potent as, but mechanistically distinct from, granulocyte colony-stimulating factor (G-CSF), which allowed for additive neutrophil mobilization when both compounds were combined. These effects were maintained in models of leukopenia and conferred augmented host defenses. Mechanistically, activation of the hypothalamus-pituitary-adrenal gland (HPA) axis by A485 relayed shifts in leukocyte distribution through corticotropin-releasing hormone receptor 1 (CRHR1) and adrenocorticotropic hormone (ACTH), but independently of glucocorticoids. Our findings identify a strategy for rapid expansion of the blood leukocyte compartment via a neuroendocrine loop, with implications for the treatment of human pathologies.
Collapse
Affiliation(s)
- Nikolai P Jaschke
- Division of Endocrinology, Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Department of Internal Medicine (Rheumatology, Allergy & Immunology) and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| | - Dorit Breining
- Division of Endocrinology, Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Maura Hofmann
- Division of Endocrinology, Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sophie Pählig
- Division of Endocrinology, Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Division of Endocrinology, Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Reinhard Oertel
- Institute of Clinical Pharmacology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sofia Traikov
- Max-Planck Institute of Molecular Cell Biology, Dresden, Germany
| | - Tatyana Grinenko
- Institute of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Jiao Tong University School of Medicine, Shanghai, China
| | - Francesco Saettini
- Tettamanti Research Center, University of Milano-Bicocca, University of Milano Bicocca, Monza, Italy
| | - Andrea Biondi
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy; Pediatria, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy; Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| | - Myrto Stylianou
- Biotechnology Center (Biotec) Technische Universität Dresden, Dresden, Germany
| | - Henrik Bringmann
- Biotechnology Center (Biotec) Technische Universität Dresden, Dresden, Germany
| | - Cuiling Zhang
- Department of Internal Medicine (Rheumatology, Allergy & Immunology) and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Tomomi M Yoshida
- Department of Internal Medicine (Rheumatology, Allergy & Immunology) and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Heike Weidner
- Division of Endocrinology, Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Wolfram C Poller
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Filip K Swirski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andy Göbel
- Division of Endocrinology, Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Division of Endocrinology, Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christoph Scheiermann
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel-Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Germany
| | - Andrew Wang
- Department of Internal Medicine (Rheumatology, Allergy & Immunology) and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Tilman D Rachner
- Division of Endocrinology, Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
32
|
Xu HK, Liu JX, Zhou ZK, Zheng CX, Sui BD, Yuan Y, Kong L, Jin Y, Chen J. Osteoporosis under psychological stress: mechanisms and therapeutics. LIFE MEDICINE 2024; 3:lnae009. [PMID: 39872391 PMCID: PMC11749647 DOI: 10.1093/lifemedi/lnae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/06/2024] [Indexed: 01/30/2025]
Abstract
Psychological stress has been associated with the onset of several diseases, including osteoporosis. However, the underlying pathogenic mechanism remains unknown, and effective therapeutic strategies are still unavailable. Growing evidence suggests that the sympathetic nervous system regulates bone homeostasis and vascular function under psychological stress, as well as the coupling of osteogenesis and angiogenesis in bone development, remodeling, and regeneration. Furthermore, extracellular vesicles (EVs), particularly mesenchymal stem cell extracellular vesicles (MSC-EVs), have emerged as prospecting therapies for stimulating angiogenesis and bone regeneration. We summarize the role of sympathetic regulation in bone homeostasis and vascular function in response to psychological stress and emphasize the relationship between vessels and bone. Finally, we suggest using MSC-EVs as a promising therapeutic method for treating osteoporosis in psychological stress.
Collapse
Affiliation(s)
- Hao-Kun Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Department of Oral Anatomy and Physiology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Jie-Xi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Ze-Kai Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- School of Basic Medicine, The Fourth Military Medical University, Xi’an 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Bing-Dong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Yuan Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Exercise Immunology Center, Wuhan Sports University, Wuhan 430079, China
| | - Liang Kong
- Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Yan Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Ji Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
33
|
Yu H, Qin XK, Yin KW, Li ZM, Ni ED, Yang JM, Liu XH, Zhou AJ, Li SJ, Gao TM, Li Y, Li JM. EphB6 deficiency in intestinal neurons promotes tumor growth in colorectal cancer by neurotransmitter GABA signaling. Carcinogenesis 2023; 44:682-694. [PMID: 37294054 DOI: 10.1093/carcin/bgad041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 06/10/2023] Open
Abstract
EphB6 belongs to the receptor tyrosine kinase, whose low expression is associated with shorter survival of colorectal cancer (CRC) patients. But the role and mechanism of EphB6 in the progression of CRC need further study. In addition, EphB6 was mainly expressed in intestinal neurons. But how EphB6 is involved in functions of intestinal neurons has not been known. In our study, we constructed a mouse xenograft model of CRC by injecting CMT93 cells into the rectum of EphB6-deficient mice. We found that the deletion of EphB6 in mice promoted tumor growth of CMT93 cells in a xenograft model of CRC, which was independent of changes in the gut microbiota. Interestingly, inhibition of intestinal neurons by injecting botulinum toxin A into rectum of EphB6-deficient mice could eliminate the promotive effect of EphB6 deficiency on tumor growth in the xenograft model of CRC. Mechanically, the deletion of EphB6 in mice promoted the tumor growth in CRC by increasing GABA in the tumor microenvironment. Furthermore, EphB6 deficiency in mice increased the expression of synaptosomal-associated protein 25 in the intestinal myenteric plexus, which mediated the release of GABA. Our study concluded that EphB6 knockout in mice promotes tumor growth of CMT93 cells in a xenograft model of CRC by modulating GABA release. Our study found a new regulating mechanism of EphB6 on the tumor progression in CRC that is dependent on intestinal neurons.
Collapse
Affiliation(s)
- Hao Yu
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, People's Republic of China
| | - Xiao-Kang Qin
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, People's Republic of China
| | - Kai-Wen Yin
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, People's Republic of China
| | - Zi-Ming Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - En-De Ni
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, People's Republic of China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Xun-Hua Liu
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, People's Republic of China
| | - Ai-Jun Zhou
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, People's Republic of China
| | - Shu-Ji Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Ying Li
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, People's Republic of China
| | - Jian-Ming Li
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, People's Republic of China
- Department of Pathology, Soochow University Medical School, Suzhou 215123, People's Republic of China
| |
Collapse
|
34
|
Li J, Che M, Zhang B, Zhao K, Wan C, Yang K. The association between the neuroendocrine system and the tumor immune microenvironment: Emerging directions for cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2023; 1878:189007. [PMID: 37907132 DOI: 10.1016/j.bbcan.2023.189007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/13/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023]
Abstract
This review summarizes emerging evidence that the neuroendocrine system is involved in the regulation of the tumor immune microenvironment (TIME) to influence cancer progression. The basis of the interaction between the neuroendocrine system and cancer is usually achieved by the infiltration of nerve fibers into the tumor tissue, which is called neurogenesis; the migration of cancer cells toward nerve fibers, which is called perineural invasion (PNI), and the neurotransmitters. In addition to the traditional role of neurotransmitters in neural communications, neurotransmitters are increasingly recognized as mediators of crosstalk between the nervous system, cancer cells, and the immune system. Recent studies have revealed that not only nerve fibers but also cancer cells and immune cells within the TIME can secrete neurotransmitters, exerting influence on both neurons and themselves. Furthermore, immune cells infiltrating the tumor environment have been found to express a wide array of neurotransmitter receptors. Hence, targeting these neurotransmitter receptors may promote the activity of immune cells in the tumor microenvironment and exert anti-tumor immunity. Herein, we discuss the crosstalk between the neuroendocrine system and tumor-infiltrating immune cells, which may provide feasible cancer immunotherapy options.
Collapse
Affiliation(s)
- Jie Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengjie Che
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bin Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kewei Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
35
|
Rodrigues AF, Bader M. The contribution of the AT1 receptor to erythropoiesis. Biochem Pharmacol 2023; 217:115805. [PMID: 37714274 DOI: 10.1016/j.bcp.2023.115805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The renin-angiotensin system (RAS) comprises a broad set of functional peptides and receptors that play a role in cardiovascular homeostasis and contribute to cardiovascular pathologies. Angiotensin II (Ang II) is the most potent peptide hormone produced by the RAS due to its high abundance and its strong and pleiotropic impact on the cardiovascular system. Formation of Ang II takes place in the bloodstream and additionally in tissues in the so-called local RAS. Of the two Ang II receptors (AT1 and AT2) that Ang II binds to, AT1 is the most expressed throughout the mammalian body. AT1 expression is not restricted to cells of the cardiovascular system but in fact AT1 protein is found in nearly all organs, hence, Ang II takes part in several modulatory physiological processes one of which is erythropoiesis. In this review, we present multiple evidence supporting that Ang II modulates physiological and pathological erythropoiesis processes trough the AT1 receptor. Cumulative evidence indicates that Ang II by three distinct mechanisms influences erythropoiesis: 1) stimulation of renal erythropoietin synthesis; 2) direct action on bone marrow precursor cells; and 3) modulation of sympathetic nerve activity to the bone marrow. The text highlights clinical and preclinical evidence focusing on mechanistic studies using rodent models.
Collapse
Affiliation(s)
- André F Rodrigues
- Max Delbrück Center (MDC), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany.
| | - Michael Bader
- Max Delbrück Center (MDC), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany; Charité Universitätsmedizin Berlin, Berlin, Germany; Institute for Biology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
36
|
Sukhtankar DD, Fung JJ, Kim MN, Cayton T, Chiou V, Caculitan NG, Zalicki P, Kim S, Jo Y, Kim S, Lee JM, Choi J, Mun S, Chin A, Jang Y, Lee JY, Kim G, Kim EH, Huh WK, Jeong JY, Seen DS, Cardarelli PM. GPC-100, a novel CXCR4 antagonist, improves in vivo hematopoietic cell mobilization when combined with propranolol. PLoS One 2023; 18:e0287863. [PMID: 37878624 PMCID: PMC10599528 DOI: 10.1371/journal.pone.0287863] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/27/2023] [Indexed: 10/27/2023] Open
Abstract
Autologous Stem Cell Transplant (ASCT) is increasingly used to treat hematological malignancies. A key requisite for ASCT is mobilization of hematopoietic stem cells into peripheral blood, where they are collected by apheresis and stored for later transplantation. However, success is often hindered by poor mobilization due to factors including prior treatments. The combination of G-CSF and GPC-100, a small molecule antagonist of CXCR4, showed potential in a multiple myeloma clinical trial for sufficient and rapid collection of CD34+ stem cells, compared to the historical results from the standards of care, G-CSF alone or G-CSF with plerixafor, also a CXCR4 antagonist. In the present study, we show that GPC-100 has high affinity towards the chemokine receptor CXCR4, and it potently inhibits β-arrestin recruitment, calcium flux and cell migration mediated by its ligand CXCL12. Proximity Ligation Assay revealed that in native cell systems with endogenous receptor expression, CXCR4 co-localizes with the beta-2 adrenergic receptor (β2AR). Co-treatment with CXCL12 and the β2AR agonist epinephrine synergistically increases β-arrestin recruitment to CXCR4 and calcium flux. This increase is blocked by the co-treatment with GPC-100 and propranolol, a non-selective beta-adrenergic blocker, indicating a functional synergy. In mice, GPC-100 mobilized more white blood cells into peripheral blood compared to plerixafor. GPC-100 induced mobilization was further amplified by propranolol pretreatment and was comparable to mobilization by G-CSF. Addition of propranolol to the G-CSF and GPC-100 combination resulted in greater stem cell mobilization than the G-CSF and plerixafor combination. Together, our studies suggest that the combination of GPC-100 and propranolol is a novel strategy for stem cell mobilization and support the current clinical trial in multiple myeloma registered as NCT05561751 at www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Devki D. Sukhtankar
- GPCR Therapeutics USA, Inc., Redwood City, California, United States of America
| | - Juan José Fung
- GPCR Therapeutics USA, Inc., Redwood City, California, United States of America
| | - Mi-na Kim
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | - Thomas Cayton
- GPCR Therapeutics USA, Inc., Redwood City, California, United States of America
| | - Valerie Chiou
- GPCR Therapeutics USA, Inc., Redwood City, California, United States of America
| | - Niña G. Caculitan
- GPCR Therapeutics USA, Inc., Redwood City, California, United States of America
| | - Piotr Zalicki
- GPCR Therapeutics USA, Inc., Redwood City, California, United States of America
| | - Sujeong Kim
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | - Yoonjung Jo
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | - SoHui Kim
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | - Jae Min Lee
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | - Junhee Choi
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | | | - Ashley Chin
- GPCR Therapeutics USA, Inc., Redwood City, California, United States of America
| | - Yongdae Jang
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | - Ji Yeong Lee
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | - Gowoon Kim
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | - Eun Hee Kim
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | - Won-Ki Huh
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Jae-Yeon Jeong
- GPCR Therapeutics Inc., Gwanak-gu, Seoul, Republic of Korea
| | | | - Pina M. Cardarelli
- GPCR Therapeutics USA, Inc., Redwood City, California, United States of America
| |
Collapse
|
37
|
Chan KL, Poller WC, Swirski FK, Russo SJ. Central regulation of stress-evoked peripheral immune responses. Nat Rev Neurosci 2023; 24:591-604. [PMID: 37626176 PMCID: PMC10848316 DOI: 10.1038/s41583-023-00729-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/27/2023]
Abstract
Stress-linked psychiatric disorders, including anxiety and major depressive disorder, are associated with systemic inflammation. Recent studies have reported stress-induced alterations in haematopoiesis that result in monocytosis, neutrophilia, lymphocytopenia and, consequently, in the upregulation of pro-inflammatory processes in immunologically relevant peripheral tissues. There is now evidence that this peripheral inflammation contributes to the development of psychiatric symptoms as well as to common co-morbidities of psychiatric disorders such as metabolic syndrome and immunosuppression. Here, we review the specific brain and spinal regions, and the neuronal populations within them, that respond to stress and transmit signals to peripheral tissues via the autonomic nervous system or neuroendocrine pathways to influence immunological function. We comprehensively summarize studies that have employed retrograde tracing to define neurocircuits linking the brain to the bone marrow, spleen, gut, adipose tissue and liver. Moreover, we highlight studies that have used chemogenetic or optogenetic manipulation or intracerebroventricular administration of peptide hormones to control somatic immune responses. Collectively, this growing body of literature illustrates potential mechanisms through which stress signals are conveyed from the CNS to immune cells to regulate stress-relevant behaviours and comorbid pathophysiology.
Collapse
Affiliation(s)
- Kenny L Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Wolfram C Poller
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Filip K Swirski
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
38
|
Boahen A, Hu D, Adams MJ, Nicholls PK, Greene WK, Ma B. Bidirectional crosstalk between the peripheral nervous system and lymphoid tissues/organs. Front Immunol 2023; 14:1254054. [PMID: 37767094 PMCID: PMC10520967 DOI: 10.3389/fimmu.2023.1254054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The central nervous system (CNS) influences the immune system generally by regulating the systemic concentration of humoral substances (e.g., cortisol and epinephrine), whereas the peripheral nervous system (PNS) communicates specifically with the immune system according to local interactions/connections. An imbalance between the components of the PNS might contribute to pathogenesis and the further development of certain diseases. In this review, we have explored the "thread" (hardwiring) of the connections between the immune system (e.g., primary/secondary/tertiary lymphoid tissues/organs) and PNS (e.g., sensory, sympathetic, parasympathetic, and enteric nervous systems (ENS)) in health and disease in vitro and in vivo. Neuroimmune cell units provide an anatomical and physiological basis for bidirectional crosstalk between the PNS and the immune system in peripheral tissues, including lymphoid tissues and organs. These neuroimmune interactions/modulation studies might greatly contribute to a better understanding of the mechanisms through which the PNS possibly affects cellular and humoral-mediated immune responses or vice versa in health and diseases. Physical, chemical, pharmacological, and other manipulations of these neuroimmune interactions should bring about the development of practical therapeutic applications for certain neurological, neuroimmunological, infectious, inflammatory, and immunological disorders/diseases.
Collapse
Affiliation(s)
- Angela Boahen
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri-Kembangan, Selangor, Malaysia
| | - Dailun Hu
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Murray J. Adams
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Philip K. Nicholls
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Wayne K. Greene
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
39
|
Wang Y, Wang P, Zhang Z, Zhou J, Fan J, Sun Y. Dissecting the tumor ecosystem of liver cancers in the single-cell era. Hepatol Commun 2023; 7:e0248. [PMID: 37639704 PMCID: PMC10461950 DOI: 10.1097/hc9.0000000000000248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/24/2023] [Indexed: 08/31/2023] Open
Abstract
Primary liver cancers (PLCs) are a broad class of malignancies that include HCC, intrahepatic cholangiocarcinoma, and combined hepatocellular and intrahepatic cholangiocarcinoma. PLCs are often associated with a poor prognosis due to their high relapse and low therapeutic response rates. Importantly, PLCs exist within a dynamic and complex tumor ecosystem, which includes malignant, immune, and stromal cells. It is critical to dissect the PLC tumor ecosystem to uncover the underlying mechanisms associated with tumorigenesis, relapse, and treatment resistance to facilitate the discovery of novel therapeutic targets. Single-cell and spatial multi-omics sequencing techniques offer an unprecedented opportunity to elucidate spatiotemporal interactions among heterogeneous cell types within the complex tumor ecosystem. In this review, we describe the latest advances in single-cell and spatial technologies and review their applications with respect to dissecting liver cancer tumor ecosystems.
Collapse
|
40
|
Liu C, Zhou R, Peng X, Zhu T, Wei W, Hao X. Relationship between depressive symptoms and anemia among the middle-aged and elderly: a cohort study over 4-year period. BMC Psychiatry 2023; 23:572. [PMID: 37553590 PMCID: PMC10408197 DOI: 10.1186/s12888-023-05047-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND The association between anemia and depression has been demonstrated in previous studies, but it's still unclear whether depressive symptoms as a hazard factor for anemia. The findings of a large-scale cross-sectional and longitudinal examination of such an association of among the middle-aged and elderly individuals in China were presented in our study. METHODS The data from China Health and Retirement Longitudinal Study in 2011 and 2015 were evaluated. 10,179 and 5,887 participants were included in cross-sectional and longitudinal study, respectively. According to the World Health Organization, hemoglobin concentrations below 13 g/dL for males and 12 g/dL for females are considered anemia. The research population was separated into two groups based on scores of the 10-item short form of the Center for Epidemiologic Studies Depression Scale (CES-D-10): the group with depressed symptoms had a score of more than 10 points, and the group with depressive disorder had a score of more than 20 points. Multilevel logistic regression analyses were conducted to explore the relationship between anemia and varying degrees of depressive symptoms, utilizing three models based on adjusting for different types of covariates. RESULTS In our cross-sectional investigation, depression disorders were more likely to link to the occurrence of anemia (OR, 1.34; 95% CI, 1.02-1.77; P = 0.035). Additionally, there seems a linear connection between depression questionnaire scores and hemoglobin concentrations (r = - 0.053, P < 0.001). Depressive symptom was significantly associated with anemia over 4 years of follow-up, and the more intense the depressive symptoms, the greater the danger of anemia (depressive symptoms group: OR, 1.27; 95% CI, 1.02-1.57, P = 0.032; depressive disorder group: OR, 1.59; 95% CI, 1.12-2.25, P = 0.010). CONCLUSIONS Our findings suggest that depression symptoms seem related to anemia in the middle-aged and elderly in China cross-sectionally and longitudinally, and that the risk of anemia increases with the severity of depressive symptoms.
Collapse
Affiliation(s)
- Congqi Liu
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District Chengdu, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District Chengdu, Chengdu, China
| | - Ruihao Zhou
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District Chengdu, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District Chengdu, Chengdu, China
| | - Xilin Peng
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District Chengdu, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District Chengdu, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District Chengdu, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District Chengdu, Chengdu, China
| | - Wei Wei
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District Chengdu, Chengdu, China.
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District Chengdu, Chengdu, China.
| | - Xuechao Hao
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District Chengdu, Chengdu, China.
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District Chengdu, Chengdu, China.
| |
Collapse
|
41
|
Gui H, Chen X, Li L, Zhu L, Jing Q, Nie Y, Zhang X. Psychological distress influences lung cancer: Advances and perspectives on the immune system and immunotherapy. Int Immunopharmacol 2023; 121:110251. [PMID: 37348230 DOI: 10.1016/j.intimp.2023.110251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 06/24/2023]
Abstract
Lung cancer has the highest incidence rate and mortality worldwide. Moreover, multiple factors may cause heterogeneity in the efficacy of immunotherapy for lung cancer, and preclinical studies have gradually uncovered the promotive effects of psychological distress (PD) on tumor hallmarks. Therefore, treatment targeted at PD may be a vital factor in adjusting and improving immunotherapy for lung cancer. Here, by focusing on the central nervous system, as well as stress-related crucial neurotransmitters and hormones, we highlight the effects of PD on the lung immune system, the lung tumor microenvironment (TME) and immunotherapy, which brings a practicable means and psychosocial perspective to lung cancer treatment.
Collapse
Affiliation(s)
- Huan Gui
- Department of Hyperbaric Oxygen, People`s Hospital of Qianxinan Buyi and Miao Minority Autonomous Prefecture, Xingyi 562400, China; School of Medicine, Guizhou University, Guiyang 550025, China
| | - Xulong Chen
- School of Medicine, Guizhou University, Guiyang 550025, China; Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Linzhao Li
- School of Medicine, Guizhou University, Guiyang 550025, China
| | - Lan Zhu
- School of Medicine, Guizhou University, Guiyang 550025, China
| | - Qianyu Jing
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Yingjie Nie
- School of Medicine, Guizhou University, Guiyang 550025, China; NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, China.
| | - Xiangyan Zhang
- School of Medicine, Guizhou University, Guiyang 550025, China; NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, China.
| |
Collapse
|
42
|
Bou Antoun N, Chioni AM. Dysregulated Signalling Pathways Driving Anticancer Drug Resistance. Int J Mol Sci 2023; 24:12222. [PMID: 37569598 PMCID: PMC10418675 DOI: 10.3390/ijms241512222] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
One of the leading causes of death worldwide, in both men and women, is cancer. Despite the significant development in therapeutic strategies, the inevitable emergence of drug resistance limits the success and impedes the curative outcome. Intrinsic and acquired resistance are common mechanisms responsible for cancer relapse. Several factors crucially regulate tumourigenesis and resistance, including physical barriers, tumour microenvironment (TME), heterogeneity, genetic and epigenetic alterations, the immune system, tumour burden, growth kinetics and undruggable targets. Moreover, transforming growth factor-beta (TGF-β), Notch, epidermal growth factor receptor (EGFR), integrin-extracellular matrix (ECM), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphoinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR), wingless-related integration site (Wnt/β-catenin), Janus kinase/signal transducers and activators of transcription (JAK/STAT) and RAS/RAF/mitogen-activated protein kinase (MAPK) signalling pathways are some of the key players that have a pivotal role in drug resistance mechanisms. To guide future cancer treatments and improve results, a deeper comprehension of drug resistance pathways is necessary. This review covers both intrinsic and acquired resistance and gives a comprehensive overview of recent research on mechanisms that enable cancer cells to bypass barriers put up by treatments, and, like "satellite navigation", find alternative routes by which to carry on their "journey" to cancer progression.
Collapse
Affiliation(s)
| | - Athina-Myrto Chioni
- School of Life Sciences Pharmacy and Chemistry, Biomolecular Sciences Department, Kingston University London, Kingston-upon-Thames KT1 2EE, UK;
| |
Collapse
|
43
|
Junet V, Matos‐Filipe P, García‐Illarramendi JM, Ramírez E, Oliva B, Farrés J, Daura X, Mas JM, Morales R. A decision support system based on artificial intelligence and systems biology for the simulation of pancreatic cancer patient status. CPT Pharmacometrics Syst Pharmacol 2023; 12:916-928. [PMID: 37002678 PMCID: PMC10349189 DOI: 10.1002/psp4.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/23/2023] [Accepted: 03/13/2023] [Indexed: 04/04/2023] Open
Abstract
Oncology treatments require continuous individual adjustment based on the measurement of multiple clinical parameters. Prediction tools exploiting the patterns present in the clinical data could be used to assist decision making and ease the burden associated to the interpretation of all these parameters. The goal of this study was to predict the evolution of patients with pancreatic cancer at their next visit using information routinely recorded in health records, providing a decision-support system for clinicians. We selected hematological variables as the visit's clinical outcomes, under the assumption that they can be predictive of the evolution of the patient. Multivariate models based on regression trees were generated to predict next-visit values for each of the clinical outcomes selected, based on the longitudinal clinical data as well as on molecular data sets streaming from in silico simulations of individual patient status at each visit. The models predict, with a mean prediction score (balanced accuracy) of 0.79, the evolution trends of eosinophils, leukocytes, monocytes, and platelets. Time span between visits and neutropenia were among the most common factors contributing to the predicted evolution. The inclusion of molecular variables from the systems-biology in silico simulations provided a molecular background for the observed variations in the selected outcome variables, mostly in relation to the regulation of hematopoiesis. In spite of its limitations, this study serves as a proof of concept for the application of next-visit prediction tools in real-world settings, even when available data sets are small.
Collapse
Affiliation(s)
- Valentin Junet
- Anaxomics Biotech SLBarcelonaSpain
- Institute of Biotechnology and BiomedicineUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
| | - Pedro Matos‐Filipe
- Anaxomics Biotech SLBarcelonaSpain
- Structural Bioinformatics (GRIB‐IMIM), Departament de Ciències Experimentals i de la SalutUniversitat Pompeu FabraBarcelonaSpain
| | - Juan Manuel García‐Illarramendi
- Anaxomics Biotech SLBarcelonaSpain
- Institute of Biotechnology and BiomedicineUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
| | | | - Baldo Oliva
- Structural Bioinformatics (GRIB‐IMIM), Departament de Ciències Experimentals i de la SalutUniversitat Pompeu FabraBarcelonaSpain
| | | | - Xavier Daura
- Institute of Biotechnology and BiomedicineUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)Instituto de Salud Carlos IIICerdanyola del VallèsSpain
| | | | | |
Collapse
|
44
|
Mizuno Y, Nakanishi Y, Kumanogoh A. Pathophysiological functions of semaphorins in the sympathetic nervous system. Inflamm Regen 2023; 43:30. [PMID: 37291626 DOI: 10.1186/s41232-023-00281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
Upon exposure to external stressors, the body senses them and activates the sympathetic nervous system (SNS) to maintain the homeostasis, which is known as the "fight-or-flight" response. Recent studies have revealed that the SNS also plays pivotal roles in regulating immune responses, such as hematopoiesis, leukocyte mobilization, and inflammation. Indeed, overactivation of the SNS causes many inflammatory diseases, including cardiovascular diseases, metabolic disorders, and autoimmune diseases. However, the molecular basis essential for SNS-mediated immune regulation is not completely understood. In this review, we focus on axon guidance cues, semaphorins, which play multifaceted roles in neural and immune systems. We summarize the functions of semaphorins in the crosstalk between the SNS and the immune system, exploring its pathophysiological roles.
Collapse
Affiliation(s)
- Yumiko Mizuno
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan
| | - Yoshimitsu Nakanishi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Department of Immunopathology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan.
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan.
- Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Suita, Osaka, Japan.
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
45
|
Cui Q, Jiang D, Zhang Y, Chen C. The tumor-nerve circuit in breast cancer. Cancer Metastasis Rev 2023; 42:543-574. [PMID: 36997828 PMCID: PMC10349033 DOI: 10.1007/s10555-023-10095-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/16/2023] [Indexed: 04/01/2023]
Abstract
It is well established that innervation is one of the updated hallmarks of cancer and that psychological stress promotes the initiation and progression of cancer. The breast tumor environment includes not only fibroblasts, adipocytes, endothelial cells, and lymphocytes but also neurons, which is increasingly discovered important in breast cancer progression. Peripheral nerves, especially sympathetic, parasympathetic, and sensory nerves, have been reported to play important but different roles in breast cancer. However, their roles in the breast cancer progression and treatment are still controversial. In addition, the brain is one of the favorite sites of breast cancer metastasis. In this review, we first summarize the innervation of breast cancer and its mechanism in regulating cancer growth and metastasis. Next, we summarize the neural-related molecular markers in breast cancer diagnosis and treatment. In addition, we review drugs and emerging technologies used to block the interactions between nerves and breast cancer. Finally, we discuss future research directions in this field. In conclusion, the further research in breast cancer and its interactions with innervated neurons or neurotransmitters is promising in the clinical management of breast cancer.
Collapse
Affiliation(s)
- Qiuxia Cui
- Affiliated Hospital of Guangdong Medical University Science & Technology of China, Zhanjiang, 524000, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yuanqi Zhang
- Affiliated Hospital of Guangdong Medical University Science & Technology of China, Zhanjiang, 524000, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China.
- The Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China.
| |
Collapse
|
46
|
Hsu YT, Chen LH, Liu YH, Chu SK, Chen TY, Tsai KJ, Shen MR, Liu W. Electrical Sympathetic Neuromodulation Protects Bone Marrow Niche and Drives Hematopoietic Regeneration during Chemotherapy. SMALL METHODS 2023; 7:e2201300. [PMID: 36843214 DOI: 10.1002/smtd.202201300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/24/2023] [Indexed: 06/09/2023]
Abstract
The sympathetic nervous system (SNS) of the bone marrow regulates the regeneration and mobilization of hematopoietic stem cells. Chemotherapy can damage bone marrow SNS, which impairs hematopoietic regeneration and aggravates hematologic toxicities. This leads to long-term bone marrow niche damage and increases mortality in patients undergoing chemotherapy. Electrical neuromodulation has been used to improve functional recovery after peripheral nerve injury. This study demonstrates that electrical sympathetic neuromodulation (ESN) of bone marrow can protect the bone marrow niche from chemotherapy-induced injury. Using carboplatin-treated rats, the SNS via the sciatic nerve innervating the femoral marrow with the effective protocol for bone marrow sympathetic activation is electrically stimulated. ESN can mediate several hematopoietic stem cells maintenance factors and promote hematopoietic regeneration after chemotherapy. It also activates adrenergic signals and reduces the release of pro-inflammatory cytokines, particularly interleukin-1 β, which contribute to chemotherapy-related nerve injury. Consequently, the severity of chemotherapy-related leukopenia, thrombocytopenia, and mortality can be reduced by ESN. As a result, in contrast to current drug-based treatment, such as granulocyte colony-stimulating factor, ESN can be a disruptive adjuvant treatment by protecting and modulating bone marrow function to reduce hematologic toxicity during chemotherapy.
Collapse
Affiliation(s)
- Ya-Ting Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
- Division of Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan
| | - Li-Hsien Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
| | - Ya-Hui Liu
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan
| | - Shih-Kai Chu
- Clinical Medicine Research Center, National Cheng Kung University Hospital, Tainan, 704302, Taiwan
| | - Tsai-Yun Chen
- Division of Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
- Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine National Cheng Kung University, Tainan, 704302, Taiwan
| | - Meng-Ru Shen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan
| | - Wentai Liu
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, 90095, USA
- Brain Research Institute, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
47
|
Zheng Y, Wang N, Wang S, Zhang J, Yang B, Wang Z. Chronic psychological stress promotes breast cancer pre-metastatic niche formation by mobilizing splenic MDSCs via TAM/CXCL1 signaling. J Exp Clin Cancer Res 2023; 42:129. [PMID: 37210553 DOI: 10.1186/s13046-023-02696-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Emerging studies have identified chronic psychological stress as an independent risk factor influencing breast cancer growth and metastasis. However, the effects of chronic psychological stress on pre-metastatic niche (PMN) formation and the underlying immunological mechanisms remain largely unknown. METHODS The effects and molecular mechanisms of chronic unpredictable mild stress (CUMS) on modulating tumor-associated macrophages (TAMs) and PMN formation were clarified by multiplex immunofluorescence technique, cytokine array, chromatin immunoprecipitation, the dual-luciferase reporter assay, and breast cancer xenografts. Transwell and CD8+ T cytotoxicity detection were used to analyze the mobilization and function of myeloid-derived suppressor cells (MDSCs). mCherry-labeled tracing strategy and bone marrow transplantation were applied to explore the crucial role of splenic CXCR2+/+ MDSCs facilitating PMN formation under CUMS. RESULTS CUMS significantly promoted breast cancer growth and metastasis, accompanied by TAMs accumulation in the microenvironment. CXCL1 was identified as a crucial chemokine in TAMs facilitating PMN formation in a glucocorticoid receptor (GR)-dependent manner. Interestingly, the spleen index was significantly reduced under CUMS, and splenic MDSCs were validated as a key factor mediating CXCL1-induced PMN formation. The molecular mechanism study revealed that TAM-derived CXCL1 enhanced the proliferation, migration, and anti-CD8+ T cell functions of MDSCs via CXCR2. Moreover, CXCR2 knockout and CXCR2-/-MDSCs transplantation significantly impaired CUMS-mediated MDSC elevation, PMN formation, and breast cancer metastasis. CONCLUSION Our findings shed new light on the association between chronic psychological stress and splenic MDSC mobilization, and suggest that stress-related glucocorticoid elevation can enhance TAM/CXCL1 signaling and subsequently recruit splenic MDSCs to promote PMN formation via CXCR2.
Collapse
Affiliation(s)
- Yifeng Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Neng Wang
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Shengqi Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Juping Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Bowen Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Zhiyu Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
48
|
Millet A, Jendzjowsky N. Pathogen recognition by sensory neurons: hypotheses on the specificity of sensory neuron signaling. Front Immunol 2023; 14:1184000. [PMID: 37207232 PMCID: PMC10189129 DOI: 10.3389/fimmu.2023.1184000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
Sensory neurons cooperate with barrier tissues and resident immune cells to form a significant aspect of defensive strategies in concert with the immune system. This assembly of neuroimmune cellular units is exemplified across evolution from early metazoans to mammalian life. As such, sensory neurons possess the capability to detect pathogenic infiltrates at barrier surfaces. This capacity relies on mechanisms that unleash specific cell signaling, trafficking and defensive reflexes. These pathways exploit mechanisms to amplify and enhance the alerting response should pathogenic infiltration seep into other tissue compartments and/or systemic circulation. Here we explore two hypotheses: 1) that sensory neurons' potential cellular signaling pathways require the interaction of pathogen recognition receptors and ion channels specific to sensory neurons and; 2) mechanisms which amplify these sensing pathways require activation of multiple sensory neuron sites. Where possible, we provide references to other apt reviews which provide the reader more detail on specific aspects of the perspectives provided here.
Collapse
Affiliation(s)
- Antoine Millet
- Respiratory & Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor University of California Los Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Nicholas Jendzjowsky
- Respiratory & Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor University of California Los Angeles (UCLA) Medical Center, Torrance, CA, United States
- Division of Respiratory and Critical Care Medicine and Physiology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| |
Collapse
|
49
|
Ostrovsky O, Beider K, Magen H, Leiba M, Sanderson RD, Vlodavsky I, Nagler A. Effect of HPSE and HPSE2 SNPs on the Risk of Developing Primary Paraskeletal Multiple Myeloma. Cells 2023; 12:913. [PMID: 36980254 PMCID: PMC10047783 DOI: 10.3390/cells12060913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy that is accompanied by hypercalcemia, renal failure, anemia, and lytic bone lesions. Heparanase (HPSE) plays an important role in supporting and promoting myeloma progression, maintenance of plasma cell stemness, and resistance to therapy. Previous studies identified functional single nucleotide polymorphisms (SNPs) located in the HPSE gene. In the present study, 5 functional HPSE SNPs and 11 novel HPSE2 SNPs were examined. A very significant association between two enhancer (rs4693608 and rs4693084), and two insulator (rs4364254 and rs4426765) HPSE SNPs and primary paraskeletal disease (PS) was observed. SNP rs657442, located in intron 9 of the HPSE2 gene, revealed a significant protective association with primary paraskeletal disease and lytic bone lesions. The present study demonstrates a promoting (HPSE gene) and protective (HPSE2 gene) role of gene regulatory elements in the development of paraskeletal disease and bone morbidity. The effect of signal discrepancy between myeloma cells and normal cells of the tumor microenvironment is proposed as a mechanism for the involvement of heparanase in primary PS. We suggest that an increase in heparanase-2 expression can lead to effective suppression of heparanase activity in multiple myeloma accompanied by extramedullary and osteolytic bone disease.
Collapse
Affiliation(s)
- Olga Ostrovsky
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer 5266202, Israel
| | - Katia Beider
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer 5266202, Israel
| | - Hila Magen
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer 5266202, Israel
| | - Merav Leiba
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer 5266202, Israel
| | - Ralph D. Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa 3525433, Israel
| | - Arnon Nagler
- Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer 5266202, Israel
| |
Collapse
|
50
|
de Almeida LB, Laterza MC, Rondon MUPB, Toschi-Dias E, de Matos LDNJ, Oliveira CC, Trevizan PF, Martinez DG. High-dose Chemotherapy Impairs Cardiac Autonomic Control of Hospitalized Cancer Patients Undergoing Autologous Hematopoietic Stem Cell Transplantation. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:e131-e138. [PMID: 36604245 DOI: 10.1016/j.clml.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Autologous hematopoietic stem cell transplantation (HSCT) patients have intermediary and late cardiac autonomic dysfunction, which is an independent mortality predictor. However, it is unknown when this HSCT-related autonomic dysfunction begins during hospitalization for HSCT and whether cardiac autonomic control (CAC) is related to cardiotoxicity in these patients. PATIENTS AND METHODS CAC was assessed in 36 autologous-HSCT inpatients (HSCT group) and 23 cancer-free outpatients (CON group) using heart rate variability analysis. The HSCT group was assessed at five time-points from admission to hospital discharge during hospitalization period. The CON group was assessed once. The severity of cardiotoxicity (CTCAE 5.0) and cardiac troponin I were recorded. RESULTS The CAC was significantly reduced after high-dose chemotherapy (HDC) (reduction of MNN, SDNN, RMSSD, LFms2 and HFnu, and increase of LFnu and LF/HF; P<0.05). At the onset of neutropenia, pNN50 and HFms2 were also reduced (P<0.05) compared to the admission ones. Although both groups were similar regarding CAC at hospital admission, the HSCT patients showed impaired CAC at hospital discharge (P<0.05). The LF/HF was positively associated with cardiac troponin I and RMSSD was inversely associated with the severity of cardiotoxicity (P≤0.05). CONCLUSION CAC worsened during hospitalization for autologous-HSCT, mainly after HDC. In addition, it seems associated to early signs of cardiotoxicity in these patients.
Collapse
Affiliation(s)
- Leonardo Barbosa de Almeida
- Cardiovascular Research Unit and Exercise Physiology, Federal University of Juiz de Fora, Juiz de Fora, Brazil.
| | - Mateus Camaroti Laterza
- Cardiovascular Research Unit and Exercise Physiology, Federal University of Juiz de Fora, Juiz de Fora, Brazil; Master´s Program on Rehabilitation Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | | | | | | | | | - Daniel Godoy Martinez
- Cardiovascular Research Unit and Exercise Physiology, Federal University of Juiz de Fora, Juiz de Fora, Brazil; Master´s Program on Rehabilitation Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|