1
|
Bhattacharya S, Deka J, Avallone T, Todd L. The neuroimmune interface in retinal regeneration. Prog Retin Eye Res 2025; 106:101361. [PMID: 40287050 DOI: 10.1016/j.preteyeres.2025.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/12/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Retinal neurodegeneration leads to irreversible blindness due to the mammalian nervous system's inability to regenerate lost neurons. Efforts to regenerate retina involve two main strategies: stimulating endogenous cells to reprogram into neurons or transplanting stem-cell derived neurons into the degenerated retina. However, both approaches must overcome a major barrier in getting new neurons to grow back down the optic nerve and connect to appropriate visual targets in environments that differ significantly from developmental conditions. While immune privilege has historically been associated with the central nervous system, an emerging literature highlights the active role of immune cells in shaping neurodegeneration and regeneration. This review explores the neuroimmune interface in retinal repair, dissecting how immune interactions influence glial reprogramming, transplantation outcomes, and axonal regeneration. By integrating insights from regenerative species with mammalian models, we highlight novel immunomodulatory strategies to optimize retinal regeneration.
Collapse
Affiliation(s)
- Sucheta Bhattacharya
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Jugasmita Deka
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Thomas Avallone
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Levi Todd
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
2
|
Nawabi H, Belin S. Translational machinery and translation regulation in axon regeneration. Neural Regen Res 2025; 20:1392-1394. [PMID: 39075899 PMCID: PMC11624868 DOI: 10.4103/nrr.nrr-d-24-00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 07/31/2024] Open
Affiliation(s)
- Homaira Nawabi
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Stephane Belin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| |
Collapse
|
3
|
Hu Y, Grodzki LM, Bartsch U. Survival and Axonal Regeneration of Retinal Ganglion Cells in a Mouse Optic Nerve Crush Model After a Cell-Based Intravitreal Co-Administration of Ciliary Neurotrophic Factor and Glial Cell Line-Derived Neurotrophic Factor at Different Post-Lesion Time Points. Cells 2025; 14:643. [PMID: 40358167 PMCID: PMC12071274 DOI: 10.3390/cells14090643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/24/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
We recently showed, in a mouse optic nerve crush model, that a sustained cell-based intravitreal administration of ciliary neurotrophic factor (CNTF) and glial cell line-derived neurotrophic factor (GDNF) synergistically slowed the lesion-induced degeneration of retinal ganglion cells (RGCs), resulting in the presence of approximately 35% viable RGCs eight months after the lesion. However, the combinatorial neuroprotective treatment was initiated shortly after the lesion. To mimic a more clinically relevant situation, we co-administered both factors either three or five days after an intraorbital nerve crush when approximately 35% or 57% of the RGCs were degenerated, respectively. Analyses of the retinas at different time points after the lesion consistently revealed the presence of significantly more surviving RGCs in retinas co-treated with CNTF and GDNF than in retinas treated with either factor alone. For example, when the neurotrophic factors were administered five days after the nerve crush and the animals were analyzed two months after the lesion, retinas co-treated with CNTF and GDNF contained approximately 40% of the RGCs present at the start of treatment. In comparison, monotherapy with either CNTF or GDNF protected only about 15% or 10% of the RGCs present at baseline, respectively. The number of regenerating axons in the distal nerve stumps was similar in CNTF- and CNTF/GDNF-treated animals, despite the significantly higher number of rescued RGCs in the latter group. These findings have potential implications for studies aimed at developing neuroprotective treatments for optic neuropathies such as glaucoma.
Collapse
Affiliation(s)
| | | | - Udo Bartsch
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (Y.H.); (L.M.G.)
| |
Collapse
|
4
|
Wang Z, Zhao C, Xu S, McCracken S, Apte RS, Williams PR. Energetic diversity in retinal ganglion cells is modulated by neuronal activity and correlates with resilience to degeneration. RESEARCH SQUARE 2025:rs.3.rs-5989609. [PMID: 40162221 PMCID: PMC11952644 DOI: 10.21203/rs.3.rs-5989609/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Neuronal function requires high energy expenditure that is likely customized to meet specific signaling demands. However, little is known about diversity of metabolic homeostasis among divergently-functioning types of neurons. To this end, we examined retinal ganglion cells (RGCs), a population of closely related, yet electrophysiologically distinct excitatory projection neurons. Using in vivo 2-photon imaging to measure ATP with single cell resolution, we identified differential homeostatic energy maintenance in the RGC population that correspond to distinct RGC types. In the presence of circuit activity, the most active RGC type (Alpha RGCs), had lower homeostatic ATP levels than other types and exhibited the greatest magnitude of ATP decline when ATP synthesis was inhibited. By simultaneously manipulating circuit activity and mitochondrial function, we found that while oxidative phosphorylation was required to meet ATP demands during circuit activity, it was expendable to maintain resting ATP levels. We also examined ATP signatures associated with survival and injury response after axotomy and report a correlation between low homeostatic ATP and increased survival. In addition, we observed transient ATP increases in RGCs following axon injury. Together, these findings identify diversity of energy handling capabilities of dynamically active neurons with implications for neuronal resilience.
Collapse
Affiliation(s)
- Zelun Wang
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christopher Zhao
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shelly Xu
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sean McCracken
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rajendra S. Apte
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Philip R. Williams
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, US
| |
Collapse
|
5
|
Zhao Q, Li C, Xu Y, Zhong J, Liu H, Yin Y, Liu Y, Yang C, Yu L, Liu L, Pan L, Tan B. Treadmill exercise supplemented by OPN promote axon regeneration through the IGF-1R/Akt/mTOR signaling pathway. Exp Neurol 2025; 385:115096. [PMID: 39657897 DOI: 10.1016/j.expneurol.2024.115096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
Regeneration of the corticospinal tract (CST) is considered a therapeutic target to achieve improved recovery of motor function after spinal cord injury (SCI), which is an incurable CNS damage that affects millions of people. Exercise training is effective in improving multiple functions in spinal cord-injured patients. However, the effects of exercise training on axon regeneration have not been sufficiently reported. Osteopontin (OPN) has great potential application as a neuroprotective agent for the repair of the nervous system. Studies have shown that the extent of axon regeneration strongly correlates with the expression of OPN. Our previous studies demonstrated that treadmill exercise supplemented by OPN enhances motor function recovery, but axon regeneration is still limited. Extending the treadmill exercise for 12 weeks, we observed promoted axon regeneration, motor function improvement, and signaling pathway activation in mice with SCI after supplementing OPN. Axon regeneration was observed with an anterograde tracer, motor function recovery was evaluated by animal ethology and electrophysiology, and the levels of IGF-1R/Akt/mTOR signaling pathway were evaluated. The results showed that the CST of C5 crushed mice regenerated and formed synaptic connections with neurons after treadmill exercise supplemented by OPN, the horizontal ladder and cylinder rearing test of injured limbs were improved, motor evoked potential also suggested enhanced nerve conduction, and the expression of p-IR, p-Akt, and p-S6 were increased. And the improvements were more obvious than that of the exercise group. Collectively, our study found that treadmill exercise supplemented by OPN promote axon regeneration and motor function through the IGF-1R/Akt/mTOR signaling pathways, and these improvements can be inhibited by rapamycin and Methyl-β-CD(M-B-CD).
Collapse
Affiliation(s)
- Qin Zhao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China; Department of Rehabilitation Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong province 250000, China.
| | - Ci Li
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong province 250000, China.
| | - Yangjie Xu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| | - Juan Zhong
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| | - Hongzhen Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| | - Ying Yin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| | - Yuan Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Ce Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Lehua Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| | - Li Liu
- Department of Brain, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400011, China.
| | - Lu Pan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| | - Botao Tan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| |
Collapse
|
6
|
Santos JR, Li C, Andries L, Masin L, Nuttin B, Reinhard K, Moons L, Cuntz H, Farrow K. Predicting the Regenerative Potential of Retinal Ganglion Cells Based on Developmental Growth Trajectories. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640775. [PMID: 40060504 PMCID: PMC11888416 DOI: 10.1101/2025.02.28.640775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Retinal ganglion cells in the mammalian central nervous system fail to regenerate following injury, with the capacity to survive and regrow varying by cell type. This variability may be linked to differences in developmental programs that overlap with the genetic pathways that mediate regeneration. To explore this correlation, we compared the structural changes in mouse retinal ganglion cells during development with those occurring after axonal injury. The dendritic trees of over 1,000 ganglion cells were reconstructed at different developmental stages, revealing that each cell type follows a distinct timeline. ON-sustained (sONα) cells reach maturity by P14, whereas ON-transient (tONα) cells achieve their maximum dendritic size by P10. Modeling of the dendritic changes indicate that while sONα and tONα follow similar growth programs the onset of growth was later in sONα. After optic nerve crush, the remodeling of dendritic architecture differed between the two cell-types. sONα cells exhibited rapid dendritic shrinkage, while tONα cells shrank more gradually with changes in branching features. Following injury, sONα cells reverted to an earlier developmental state than tONα cells. In addition, after co-deletion of PTEN and SOC3, neurons appeared to regress further back in developmental time. Our results provide evidence that a ganglion cell's resilience to injury and regenerative potential is predicted by its maturation timeline. Understanding these intrinsic differences could inform targeted neuroprotective interventions.
Collapse
Affiliation(s)
- Joana Rf Santos
- VIB - Neuro-Electronics Research Flanders, Leuven, Belgium
- KU Leuven, Department of Biology & Leuven Brain Institute, Leuven, Belgium
| | - Chen Li
- VIB - Neuro-Electronics Research Flanders, Leuven, Belgium
- KU Leuven, Department of Biology & Leuven Brain Institute, Leuven, Belgium
- Current address: Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Lien Andries
- KU Leuven, Department of Biology & Leuven Brain Institute, Leuven, Belgium
| | - Luca Masin
- KU Leuven, Department of Biology & Leuven Brain Institute, Leuven, Belgium
| | - Bram Nuttin
- VIB - Neuro-Electronics Research Flanders, Leuven, Belgium
- KU Leuven, Department of Biology & Leuven Brain Institute, Leuven, Belgium
| | - Katja Reinhard
- VIB - Neuro-Electronics Research Flanders, Leuven, Belgium
- Current address: SISSA, Trieste, Italy
| | - Lieve Moons
- KU Leuven, Department of Biology & Leuven Brain Institute, Leuven, Belgium
| | - Hermann Cuntz
- Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with the Max Planck Society, 60528 Frankfurt am Main, Germany
- ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Justus Liebig University Gießen, 35392 Giessen, Germany
| | - Karl Farrow
- VIB - Neuro-Electronics Research Flanders, Leuven, Belgium
- KU Leuven, Department of Biology & Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
7
|
Duda S, Block CT, Pradhan DR, Arzhangnia Y, Klaiber A, Greschner M, Puller C. Spatial distribution and functional integration of displaced retinal ganglion cells. Sci Rep 2025; 15:7123. [PMID: 40016499 PMCID: PMC11868576 DOI: 10.1038/s41598-025-91045-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
The retina contains distinct types of ganglion cells, which form mosaics with cells of each type at each position of the visual field. Displaced retinal ganglion cells (dRGCs) occur with cell bodies in the inner nuclear layer (INL), and regularly placed RGCs with cell bodies in the ganglion cell layer. An example of mammalian dRGCs are M1-type intrinsically photosensitive ganglion cells (ipRGCs). Little is known, however, about their relationship with regularly placed ipRGCs. We identified mouse ipRGC types M1, M2, and M4/sONɑ by immunohistochemistry and light microscopy. Reconstruction of immunolabeled mosaics from M1 and sONɑ RGCs indicated that dRGCs tiled the retina with their regular RGC partners. Multi-electrode array recordings revealed conventional receptive fields of displaced sONɑ RGCs which fit into the mosaic of their regular counterparts. An RGC distribution analysis showed type-specific dRGC patterns which followed neither the global density distribution of all RGCs nor the local densities of corresponding cell types. The displacement of RGC bodies into the INL occurs in a type-dependent manner, where dRGCs are positioned to form complete mosaics with their regular partners. Our data suggest that dRGCs and regular RGCs serve the same functional role within their corresponding population of RGCs.
Collapse
Affiliation(s)
- Sabrina Duda
- Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky University, 26111, Oldenburg, Germany
| | - Christoph T Block
- Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky University, 26111, Oldenburg, Germany
| | - Dipti R Pradhan
- Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky University, 26111, Oldenburg, Germany
| | - Yousef Arzhangnia
- Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky University, 26111, Oldenburg, Germany
| | - Alina Klaiber
- Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky University, 26111, Oldenburg, Germany
| | - Martin Greschner
- Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky University, 26111, Oldenburg, Germany
| | - Christian Puller
- Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky University, 26111, Oldenburg, Germany.
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany.
| |
Collapse
|
8
|
Kabdesh I, Tutova O, Akhmetzyanova E, Timofeeva A, Bilalova A, Mukhamedshina Y, Chelyshev Y. Thoracic Spinal Cord Contusion Impacts on Lumbar Enlargement: Molecular Insights. Mol Neurobiol 2025:10.1007/s12035-025-04794-9. [PMID: 40014268 DOI: 10.1007/s12035-025-04794-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Spinal cord injury (SCI) is characterized by macrostructural pathological changes in areas significantly distant from the primary injury site. The causes and mechanisms underlying these distant changes are still being explored. Identifying the causes and mechanisms of these changes in the lumbar spinal cord is particularly important for restoring motor function, especially in cases of injury to the proximal thoracic or cervical regions. This is because the lumbar region contains neural networks that play a crucial role in comprehensive locomotor outcomes. In our study, we investigated the changes in the rat lumbar spinal cord following a thoracic contusion injury. We observed an increased expression of osteopontin (OPN) in large neurons and a higher number of interneurons co-expressing parvalbumin and OPN within lamina IX of the ventral horns (VH) in the gray matter of the lumbar spinal cord post-injury. Additionally, here we noted an increased co-localization of the glial fibirillary acidic protein and S100A10 protein, a specific marker of reactive A2 astrocytes. Our findings also include changes in the expression and content of glypicans in the gray matter, a significant rise in neurotoxic M1 microglia/macrophages, alterations in the cytokine profile, and a decreased expression of the extracellular matrix molecules tenascin R and aggrecan. This research highlights the complex pathological processes occurring far from the site of SCI and attempts to provide insights into the mechanisms involving the entire spinal cord in the response to such an injury.
Collapse
Affiliation(s)
- Ilyas Kabdesh
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia.
| | - Olga Tutova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Elvira Akhmetzyanova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Anna Timofeeva
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Aizilya Bilalova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Yana Mukhamedshina
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012, Kazan, Russia
| | - Yuri Chelyshev
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012, Kazan, Russia
| |
Collapse
|
9
|
Zapadka TE, Tran NM, Demb JB. Optic nerve injury impairs intrinsic mechanisms underlying electrical activity in a resilient retinal ganglion cell. J Physiol 2025. [PMID: 39985791 DOI: 10.1113/jp286414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 01/22/2025] [Indexed: 02/24/2025] Open
Abstract
Retinal ganglion cells (RGCs) are the sole output neurons of the retina and convey visual information to the brain via their axons in the optic nerve. Following injury to the optic nerve, RGC axons degenerate and many cells die. For example, a model of axon injury, the optic nerve crush (ONC), kills ∼80% of RGCs after 2 weeks. Surviving cells are biased towards 'resilient' types, including several with sustained firing to light stimulation. RGC survival may depend on activity, and there is limited understanding of how or why activity changes following optic nerve injury. Here we quantified the electrophysiological properties of a highly resilient RGC type, the sustained ON-Alpha (AlphaONS) RGC, 7 days after ONC with extracellular and whole-cell patch clamp recording. Both light- and current-driven firing were reduced after ONC, but synaptic inputs were largely intact. Resting membrane potential and input resistance were relatively unchanged, while voltage-gated currents were impaired, including a reduction in voltage-gated sodium channel current and channel density in the axon initial segment. Hyperpolarization or chelation of intracellular calcium partially rescued firing rates. Extracellular recordings at 3 days following ONC showed normal light-evoked firing from AlphaONS RGCs and other Alpha RGCs, including susceptible types. These data suggest that an injured resilient RGC reduces its activity by 1 week after injury as a consequence of reduced voltage-gated current and downregulation of intrinsic excitability via a Ca2+-dependent mechanism. Reduced excitability may be due to degradation of the axon but could also be energetically beneficial, preserving energy for survival and regeneration. KEY POINTS: Retinal ganglion cell (RGC) types show diverse rates of survival after axon injury. A resilient RGC type (sustained ON-Alpha RGC) maintains its synaptic inputs 1 week after injury. The resilient RGC type shows diminished firing and reduced expression of axon initial segment genes 1 week after injury Activity deficits reflect dysfunction of intrinsic properties (Na+ channels, intracellular Ca2+), not changes to synaptic input. Both resilient and susceptible Alpha RGC types show intact firing at 3 days after injury, suggesting that activity at this time point does not predict resilience.
Collapse
Affiliation(s)
- Thomas E Zapadka
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Nicholas M Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan B Demb
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
10
|
Kinder L, Lindner M. Expression of Osteopontin in M2 and M4 Intrinsically Photosensitive Retinal Ganglion Cells in the Mouse Retina. Invest Ophthalmol Vis Sci 2025; 66:14. [PMID: 39908128 PMCID: PMC11804889 DOI: 10.1167/iovs.66.2.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/12/2025] [Indexed: 02/07/2025] Open
Abstract
Purpose Melanopsin-expressing intrinsically photosensitive (ip) retinal ganglion cells (RGCs) can be divided into six different subtypes (M1 - M6). Yet, specific markers exist for only some of these subtypes that could be employed to study the function of individual subtypes. Osteopontin (Spp1) marks αRGC, suggesting that, across ipRGCs, it would only mark the M4-ipRGC subtype (synonymous to ON-sustained αRGCs). Recent evidence suggests that osteopontin expression could spread to other ipRGC subtypes. Therefore, this study aims to characterize the expression pattern of osteopontin across ipRGC subtypes in mice. Methods Single-cell RNA (scRNA-seq) sequencing data from murine RGCs were analyzed to identify expression patterns of Spp1 across ipRGCs. Immunohistochemistry (IHC) was performed on retinal cryosections and flatmounts from C57BL/6J mice to characterize the localization of osteopontin across ipRGCs. Neurite tracing was employed to study dendritic morphology and identify individual ipRGC subtypes. Results scRNA-seq analysis revealed Spp1 expression in two distinct clusters of ipRGCs. IHC confirmed osteopontin colocalization with neurofilament heavy chain, an established marker for αRGCs, including M4-ipRGCs. Spp1 immunoreactivity was moreover identified in one additional group of ipRGCs. By dendritic morphology and stratification, those cells were clearly identified as M2-ipRGCs. Conclusions Our findings demonstrate that osteopontin is expressed in both M2- and M4-ipRGCs, challenging the notion of osteopontin as a marker exclusively for αRGCs. IHC double-labeling for osteopontin and melanopsin provides a novel method to identify and differentiate M2 ipRGCs from other subtypes. This will support the study of ipRGC physiology in a subtype -specific manner and may, for instance, foster research in the field of optic nerve injury.
Collapse
Affiliation(s)
- Leonie Kinder
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps-University, Marburg, Germany
| | - Moritz Lindner
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps-University, Marburg, Germany
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Department of Ophthalmology, Philipps-University, University Hospital of Giessen and Marburg GmbH, Marburg Campus, Marburg, Germany
| |
Collapse
|
11
|
Roy S. Emerging strategies targeting genes and cells in glaucoma. Vision Res 2025; 227:108533. [PMID: 39644708 PMCID: PMC11788065 DOI: 10.1016/j.visres.2024.108533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Glaucoma comprises a heterogeneous set of eye conditions that cause progressive vision loss. Glaucoma has a complex etiology, with different genetic and non-genetic risk factors that differ across populations. Although difficult to diagnose in early stages, compromised cellular signaling, dysregulation of genes, and homeostatic imbalance are common precursors to injury and subsequent death of retinal ganglion cells (RGCs). Lowering intraocular pressure (IOP) remains the primary approach for managing glaucoma but IOP alone does not explain all glaucoma risks. Orthogonal approaches such as large-scale genetic screening, combined with studies of animal models have been instrumental in identifying genes and molecular pathways involved in glaucoma pathogenesis. Cell type dependent vulnerability among RGCs can reveal genetic basis for specific visual deficits. A growing body of knowledge and availability of modern tools to perform targeted assessments of cellular health in different animal models facilitate development of effective and timely interventions for vision rescue. This review highlights recent findings on genes, molecules, and cell types in the context of glaucoma pathophysiology and treatment.
Collapse
Affiliation(s)
- Suva Roy
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
12
|
Wang X, Zhou G, Xiong J, Ye W, Gao Y, Wang H, Pan D, Luo Y, Zhou Z. H4K12 Lactylation Activated-Spp1 in Reprogrammed Microglia Improves Functional Recovery After Spinal Cord Injury. CNS Neurosci Ther 2025; 31:e70232. [PMID: 39939834 PMCID: PMC11821456 DOI: 10.1111/cns.70232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/19/2024] [Accepted: 01/14/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a severe condition leading to significant disability and high mortality. The role of the secreted phosphoprotein 1 (SPP1) signaling pathway in SCI, which is quickly activated after injury, is critical for intercellular communication but remains poorly understood. AIMS This study aimed to explore the function and regulatory mechanisms of the SPP1 signaling pathway in SCI and investigate its potential as a therapeutic target for improving functional recovery after injury. MATERIALS AND METHODS Single-cell RNA sequencing (scRNA-seq) was employed to identify ligands and receptors of the SPP1 signaling pathway, particularly in microglia/macrophages. Recombinant SPP1 (rSPP1) was used in vitro and in vivo to assess its effects on neuronal maturation, mitochondrial energy in axons, and functional recovery after SCI. Pseudotime analysis was conducted to examine the role of Spp1 in microglial activation and proliferation. DNA-pulldown and in vitro experiments were performed to investigate the upstream regulatory proteins of Spp1. RESULTS The SPP1 signaling pathway is primarily localized in microglia after SCI, with rSPP1 promoting neuronal maturation and enhancing mitochondrial function in axons. Injection of rSPP1 into the injured spinal cord resulted in significant improvement in functional recovery. Pseudotime analysis indicated that Spp1 is involved in the activation and proliferation of microglia. Histone H4 lysine 12 lactylation (H4K12la) was found to promote the transcription of Spp1 in reprogrammed microglia postinjury. DISCUSSION Our findings reveal a novel regulatory mechanism involving Spp1 in SCI, particularly its role in microglial activation, mitochondrial function, and glycolytic reprogramming. This new insight provides a deeper understanding of its contribution to the injury response. CONCLUSION This study uncovers a previously unreported mechanism of Spp1 in SCI, offering a potential therapeutic target for SCI.
Collapse
Affiliation(s)
- Xiaokun Wang
- Department of OrthopedicsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Geliang Zhou
- Department of First Clinical Medical College of Nanjing Medical UniversityNanjingJiangsuChina
| | - Junjun Xiong
- Department of OrthopedicsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Wu Ye
- Department of OrthopedicsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Yu Gao
- Department of OrthopedicsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Haofan Wang
- Department of OrthopedicsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Dishui Pan
- Department of OrthopedicsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Yongjun Luo
- Department of OrthopedicsThe Fourth Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Zheng Zhou
- Emergency and Critical Care Medicine DepartmentThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| |
Collapse
|
13
|
Kim T, Iseri E, Peng MG, Medvidovic S, Silliman T, Pahlavan P, Niu G, Huang C, Simonyan A, Pahnahad J, Yao P, Lam P, Garimella V, Shahidi M, Bienkowski MS, Lee DJ, Thomas B, Lazzi G, Gokoffski KK. Electric field stimulation directs target-specific axon regeneration and partial restoration of vision after optic nerve crush injury. PLoS One 2025; 20:e0315562. [PMID: 39787061 PMCID: PMC11717274 DOI: 10.1371/journal.pone.0315562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/27/2024] [Indexed: 01/12/2025] Open
Abstract
Failure of central nervous system (CNS) axons to regenerate after injury results in permanent disability. Several molecular neuro-protective and neuro-regenerative strategies have been proposed as potential treatments but do not provide the directional cues needed to direct target-specific axon regeneration. Here, we demonstrate that applying an external guidance cue in the form of electric field stimulation to adult rats after optic nerve crush injury was effective at directing long-distance, target-specific retinal ganglion cell (RGC) axon regeneration to native targets in the diencephalon. Stimulation was performed with asymmetric charged-balanced (ACB) waveforms that are safer than direct current and more effective than traditional, symmetric biphasic waveforms. In addition to partial anatomical restoration, ACB waveforms conferred partial restoration of visual function as measured by pattern electroretinogram recordings and local field potential recordings in the superior colliculus-and did so without the need for genetic manipulation. Our work suggests that exogenous electric field application can override cell-intrinsic and cell-extrinsic barriers to axon regeneration, and that electrical stimulation performed with specific ACB waveforms may be an effective strategy for directing anatomical and functional restoration after CNS injury.
Collapse
Affiliation(s)
- Timothy Kim
- Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America
| | - Ege Iseri
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
- Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Micalla G. Peng
- Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America
| | - Sasha Medvidovic
- Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America
| | - Timothy Silliman
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
- Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Pooyan Pahlavan
- Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Gengle Niu
- Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America
| | - Connie Huang
- Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America
| | - Anahit Simonyan
- Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America
| | - Javad Pahnahad
- Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
- Boston Scientific Neuromodulation, Valencia, California, United States of America
| | - Petcy Yao
- Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America
| | - Phillip Lam
- Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America
- Johnson & Johnson, Irvine, California, United States of America
| | - Vahini Garimella
- Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America
| | - Mahnaz Shahidi
- Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America
| | - Michael S. Bienkowski
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Darrin J. Lee
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Biju Thomas
- Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America
| | - Gianluca Lazzi
- Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
- Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Kimberly K. Gokoffski
- Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America
- Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
14
|
Lum MR, Patel SH, Graham HK, Zhao M, Yi Y, Li L, Yao M, La Torre A, Santina LD, Han Y, Hu Y, Welsbie DS, Duan X. Afadin Sorts Different Retinal Neuron Types into Accurate Cellular Layers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.24.630272. [PMID: 39763956 PMCID: PMC11703203 DOI: 10.1101/2024.12.24.630272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Neurons use cell-adhesion molecules (CAMs) to interact with other neurons and the extracellular environment: the combination of CAMs specifies migration patterns, neuronal morphologies, and synaptic connections across diverse neuron types. Yet little is known regarding the intracellular signaling cascade mediating the CAM recognitions at the cell surface across different neuron types. In this study, we investigated the neural developmental role of Afadin1-4, a cytosolic adapter protein that connects multiple CAM families to intracellular F-actin. We introduced the conditional Afadin mutant5 to an embryonic retinal Cre, Six3-Cre6-8. We reported that the mutants lead to the scrambled retinal neuron distribution, including Bipolar Cells (BCs), Amacrine Cells (ACs), and retinal ganglion cells (RGCs), across three cellular layers of the retina. This scrambled pattern was first reported here at neuron-type resolution. Importantly, the mutants do not display deficits for BCs, ACs, or RGCs in terms of neural fate specifications or survival. Additionally, the displayed RGC types still maintain synaptic partners with putative AC types, indicating that other molecular determinants instruct synaptic choices independent of Afadin. Lastly, there is a significant decline in visual function and mis-targeting of RGC axons to incorrect zones of the superior colliculus, one of the major retinorecipient areas. Collectively, our study uncovers a unique cellular role of Afadin in sorting retinal neuron types into proper cellular layers as the structural basis for orderly visual processing.
Collapse
Affiliation(s)
- Matthew R. Lum
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sachin H. Patel
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Hannah K. Graham
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mengya Zhao
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yujuan Yi
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Liang Li
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Melissa Yao
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, CA, 95616, USA
| | | | - Ying Han
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Derek S. Welsbie
- Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, CA 92037, USA
| | - Xin Duan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Physiology and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, 94158, USA
| |
Collapse
|
15
|
Matamoros JA, Rubio-Casado S, Fernández-Albarral JA, Martínez-López MA, Salobrar-García E, Marco EM, Paleo-García V, de Hoz R, López-Cuenca I, Elvira-Hurtado L, Sánchez-Puebla L, Ramírez JM, Salazar JJ, López-Gallardo M, Ramírez AI. Neuroprotective Effect of the Combination of Citicoline and CoQ10 in a Mouse Model of Ocular Hypertension. Antioxidants (Basel) 2024; 14:4. [PMID: 39857338 PMCID: PMC11761561 DOI: 10.3390/antiox14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
Glaucoma is a neurodegenerative disease characterized by the loss of retinal ganglion cells (RGCs), with intraocular pressure (IOP) being its primary risk factor. Despite controlling IOP, the neurodegenerative process often continues. Therefore, substances with neuroprotective, antioxidant, and anti-inflammatory properties could protect against RGC death. This study investigated the neuroprotective effects on RGCs and visual pathway neurons of a compound consisting of citicoline and coenzyme Q10 (CoQ10) in a mouse model of unilateral, laser-induced ocular hypertension (OHT). Four groups of mice were used: vehicle group (n = 6), citicoline + CoQ10 group (n = 6), laser-vehicle group (n = 6), and laser-citicoline + CoQ10 group (n = 6). The citicoline + CoQ10 was administered orally once a day starting 15 days before laser treatment, continuing until sacrifice (7 days post-laser). Retinas, the dorsolateral geniculate nucleus (dLGN), the superior colliculus (SC), and the visual cortex (V1) were analyzed. The citicoline + CoQ10 compound used in the laser-citicoline + CoQ10 group demonstrated (1) an ocular hypotensive effect only at 24 h post-laser; (2) prevention of Brn3a+ RGC death in OHT eyes; and (3) no changes in NeuN+ neurons in the dLGN. This study demonstrates that the oral administration of the citicoline + CoQ10 combination may exert a neuroprotective effect against RGC death in an established rodent model of OHT.
Collapse
Affiliation(s)
- José A. Matamoros
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sara Rubio-Casado
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Department of Immunology, Ophthalmology and ORL, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - José A. Fernández-Albarral
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Miguel A. Martínez-López
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Department of Immunology, Ophthalmology and ORL, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Elena Salobrar-García
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Eva M. Marco
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Department of Genetics, Microbiology and Physiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Victor Paleo-García
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Rosa de Hoz
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Inés López-Cuenca
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Lorena Elvira-Hurtado
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
| | - Lidia Sánchez-Puebla
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ORL, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - José M. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ORL, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juan J. Salazar
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Meritxell López-Gallardo
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Ana I. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
16
|
Tsai NY, Nimkar K, Zhao M, Lum MR, Yi Y, Garrett TR, Wang Y, Toma K, Caval-Holme F, Reddy N, Ehrlich AT, Kriegstein AR, Do MTH, Sivyer B, Shekhar K, Duan X. Molecular and spatial analysis of ganglion cells on retinal flatmounts: diversity, topography, and perivascularity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.15.628587. [PMID: 39763751 PMCID: PMC11702564 DOI: 10.1101/2024.12.15.628587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Diverse retinal ganglion cells (RGCs) transmit distinct visual features from the eye to the brain. Recent studies have categorized RGCs into 45 types in mice based on transcriptomic profiles, showing strong alignment with morphological and electrophysiological properties. However, little is known about how these types are spatially arranged on the two-dimensional retinal surface-an organization that influences visual encoding-and how their local microenvironments impact development and neurodegenerative responses. To address this gap, we optimized a workflow combining imaging-based spatial transcriptomics (MERFISH) and immunohistochemical co-staining on thin flatmount retinal sections. We used computational methods to register en face somata distributions of all molecularly defined RGC types. More than 75% (34/45) of types exhibited non-uniform distributions, likely reflecting adaptations of the retina's anatomy to the animal's visual environment. By analyzing the local neighborhoods of each cell, we identified perivascular RGCs located near blood vessels. Seven RGC types are enriched in the perivascular niche, including members of intrinsically photosensitive RGC (ipRGC) and direction-selective RGC (DSGC) subclasses. Orthologous human RGC counterparts of perivascular types - Melanopsin-enriched ipRGCs and ON DSGCs - were also proximal to blood vessels, suggesting their perivascularity may be evolutionarily conserved. Following optic nerve crush in mice, the perivascular M1-ipRGCs and ON DSGCs showed preferential survival, suggesting that proximity to blood vessels may render cell-extrinsic neuroprotection to RGCs through an mTOR-independent mechanism. Overall, our work offers a resource characterizing the spatial profiles of RGC types, enabling future studies of retinal development, physiology, and neurodegeneration at individual neuron type resolution across the two-dimensional space.
Collapse
Affiliation(s)
- Nicole Y Tsai
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
- These authors contributed equally
| | - Kushal Nimkar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- These authors contributed equally
| | - Mengya Zhao
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Matthew R Lum
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Yujuan Yi
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Tavita R Garrett
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Yixiao Wang
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kenichi Toma
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Franklin Caval-Holme
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School. Boston, MA, USA
| | - Nikhil Reddy
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Aliza T Ehrlich
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Arnold R Kriegstein
- Department of Neurology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Michael Tri H Do
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School. Boston, MA, USA
| | - Benjamin Sivyer
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute; Vision Sciences Graduate Program; Center for Computational Biology; Biophysics Graduate Group, University of California, Berkeley, CA, USA
- These authors contributed equally
| | - Xin Duan
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Physiology and Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA
- These authors contributed equally
- Lead contact
| |
Collapse
|
17
|
Delpech C, Schaeffer J, Vilallongue N, Delaunay A, Benadjal A, Blot B, Excoffier B, Plissonnier E, Gascon E, Albert F, Paccard A, Saintpierre A, Gasnier C, Zagar Y, Castellani V, Belin S, Chédotal A, Nawabi H. Axon guidance during mouse central nervous system regeneration is required for specific brain innervation. Dev Cell 2024; 59:3213-3228.e8. [PMID: 39353435 DOI: 10.1016/j.devcel.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 07/11/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
Reconstructing functional neuronal circuits is one major challenge of central nervous system repair. Through activation of pro-growth signaling pathways, some neurons achieve long-distance axon regrowth. Yet, functional reconnection has hardly been obtained, as these regenerating axons fail to resume their initial trajectory and reinnervate their proper target. Axon guidance is considered to be active only during development. Here, using the mouse visual system, we show that axon guidance is still active in the adult brain in regenerative conditions. We highlight that regenerating retinal ganglion cell axons avoid one of their primary targets, the suprachiasmatic nucleus (SCN), due to Slit/Robo repulsive signaling. Together with promoting regeneration, silencing Slit/Robo in vivo enables regenerating axons to enter the SCN and form active synapses. The newly formed circuit is associated with neuronal activation and functional recovery. Our results provide evidence that axon guidance mechanisms are required to reconnect regenerating axons to specific brain nuclei.
Collapse
Affiliation(s)
- Céline Delpech
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Julia Schaeffer
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Noemie Vilallongue
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Apolline Delaunay
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Amin Benadjal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Beatrice Blot
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Blandine Excoffier
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Elise Plissonnier
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Eduardo Gascon
- Aix Marseille University, CNRS, INT, Institute of Neurosci Timone, Marseille, France
| | - Floriane Albert
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Antoine Paccard
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Ana Saintpierre
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Celestin Gasnier
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Yvrick Zagar
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Valérie Castellani
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, Lyon, France
| | - Stephane Belin
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, Lyon, France; Institut de pathologie, groupe hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Homaira Nawabi
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France.
| |
Collapse
|
18
|
Masin L, Bergmans S, Van Dyck A, Farrow K, De Groef L, Moons L. Local glycolysis supports injury-induced axonal regeneration. J Cell Biol 2024; 223:e202402133. [PMID: 39352499 PMCID: PMC11451009 DOI: 10.1083/jcb.202402133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/09/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024] Open
Abstract
Successful axonal regeneration following injury requires the effective allocation of energy. How axons withstand the initial disruption in mitochondrial energy production caused by the injury and subsequently initiate regrowth is poorly understood. Transcriptomic data showed increased expression of glycolytic genes after optic nerve crush in retinal ganglion cells with the co-deletion of Pten and Socs3. Using retinal cultures in a multicompartment microfluidic device, we observed increased regrowth and enhanced mitochondrial trafficking in the axons of Pten and Socs3 co-deleted neurons. While wild-type axons relied on mitochondrial metabolism, after injury, in the absence of Pten and Socs3, energy production was supported by local glycolysis. Specific inhibition of lactate production hindered injury survival and the initiation of regrowth while slowing down glycolysis upstream impaired regrowth initiation, axonal elongation, and energy production. Together, these observations reveal that glycolytic ATP, combined with sustained mitochondrial transport, is essential for injury-induced axonal regrowth, providing new insights into the metabolic underpinnings of axonal regeneration.
Collapse
Affiliation(s)
- Luca Masin
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Steven Bergmans
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Annelies Van Dyck
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Karl Farrow
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven Brain Institute, Leuven, Belgium
- Neuro-Electronics Research Flanders, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- imec, Leuven, Belgium
| | - Lies De Groef
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Lieve Moons
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
19
|
Kosior-Jarecka E, Grzybowski A. Retinal Ganglion Cell Replacement in Glaucoma Therapy: A Narrative Review. J Clin Med 2024; 13:7204. [PMID: 39685661 DOI: 10.3390/jcm13237204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. It leads to the progressive degeneration of retinal ganglion cells (RGCs), the axons of which form the optic nerve. Enormous RGC apoptosis causes a lack of transfer of visual information to the brain. The RGC loss typical of the central nervous system is irreversible, and when glaucoma progresses, the total amount of RGCs in the retina enormously diminishes. The successful treatment in glaucoma patients is a direct neuroprotection by decreasing the intraocular pressure, which enables RGC protection but does not revive the lost ones. The intriguing new therapy for advanced glaucoma is the possibility of RGC replacement with new healthy cells. In this review article, the strategies regarding RGC replacement therapy are presented with the latest advances in the technique and the obstacles that it meets.
Collapse
Affiliation(s)
- Ewa Kosior-Jarecka
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, 20-079 Lublin, Poland
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, 60-836 Poznan, Poland
| |
Collapse
|
20
|
Obeng E, Shen B, Wang W, Xie Z, Zhang W, Li Z, Yao Q, Wu W. Engineered bio-functional material-based nerve guide conduits for optic nerve regeneration: a view from the cellular perspective, challenges and the future outlook. Regen Biomater 2024; 12:rbae133. [PMID: 39776856 PMCID: PMC11703557 DOI: 10.1093/rb/rbae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/16/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
Nerve injuries can be tantamount to severe impairment, standard treatment such as the use of autograft or surgery comes with complications and confers a shortened relief. The mechanism relevant to the regeneration of the optic nerve seems yet to be fully uncovered. The prevailing rate of vision loss as a result of direct or indirect insult on the optic nerve is alarming. Currently, the use of nerve guide conduits (NGC) to some extent has proven reliable especially in rodents and among the peripheral nervous system, a promising ground for regeneration and functional recovery, however in the optic nerve, this NGC function seems quite unfamous. The insufficient NGC application and the unabridged regeneration of the optic nerve could be a result of the limited information on cellular and molecular activities. This review seeks to tackle two major factors (i) the cellular and molecular activity involved in traumatic optic neuropathy and (ii) the NGC application for the optic nerve regeneration. The understanding of cellular and molecular concepts encompassed, ocular inflammation, extrinsic signaling and intrinsic signaling for axon growth, mobile zinc role, Ca2+ factor associated with the optic nerve, alternative therapies from nanotechnology based on the molecular information and finally the nanotechnological outlook encompassing applicable biomaterials and the use of NGC for regeneration. The challenges and future outlook regarding optic nerve regenerations are also discussed. Upon the many approaches used, the comprehensive role of the cellular and molecular mechanism may set grounds for the efficient application of the NGC for optic nerve regeneration.
Collapse
Affiliation(s)
- Enoch Obeng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Baoguo Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhenyuan Xie
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wenyi Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhixing Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Qinqin Yao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang 325000, China
| |
Collapse
|
21
|
Xiong LL, Sun YF, Niu RZ, Xue LL, Chen L, Huangfu LR, Li J, Wang YY, Liu X, Wang WY, Zuo ZF, Wang TH. Cellular Characterization and Interspecies Evolution of the Tree Shrew Retina across Postnatal Lifespan. RESEARCH (WASHINGTON, D.C.) 2024; 7:0536. [PMID: 39574940 PMCID: PMC11579486 DOI: 10.34133/research.0536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/20/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024]
Abstract
Tree shrews (TSs) possess a highly developed visual system. Here, we establish an age-related single-cell RNA sequencing atlas of retina cells from 15 TSs, covering 6 major retina cell classes and 3 glial cell types. An age effect is observed on the cell subset composition and gene expression pattern. We then verify the cell subtypes and identify specific markers in the TS retina including CA10 for bipolar cells, MEGF11 for H1 horizontal cells, and SLIT2, RUNX1, FOXP2, and SPP1 for retinal ganglion cell subpopulations. The cross-species analysis elucidates the cell type-specific transcriptional programs, different cell compositions, and cell communications. The comparisons also reveal that TS cones and subclasses of bipolar and amacrine cells exhibit the closest relationship with humans and macaques. Our results suggests that TS could be used as a better disease model to understand age-dependent cellular and genetic mechanisms of the retina, particularly for the retinal diseases associated with cones.
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Department of Anesthesiology, Research Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Anesthesiology,
The Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yi-Fei Sun
- Department of Urology,
the Second Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| | - Rui-Ze Niu
- Mental Health Center of Kunming Medical University, Kunming 650034, Yunnan, China
| | - Lu-Lu Xue
- State Key Lab of Biotherapy, West China Hospital,
Sichuan University, Chengdu 610041, Sichuan, China
| | - Li Chen
- Department of Anesthesiology, Research Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Li-Ren Huangfu
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Jing Li
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Yu-Ying Wang
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou 121001, Liaoning, China
| | - Xin Liu
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou 121001, Liaoning, China
| | - Wen-Yuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032, China
| | - Zhong-Fu Zuo
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou 121001, Liaoning, China
| | - Ting-Hua Wang
- Department of Anesthesiology, Research Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou 121001, Liaoning, China
| |
Collapse
|
22
|
Tomé D, Almeida RD. The injured axon: intrinsic mechanisms driving axonal regeneration. Trends Neurosci 2024; 47:875-891. [PMID: 39438216 DOI: 10.1016/j.tins.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Injury to the central nervous system (CNS) often results in permanent neurological impairments because axons fail to regenerate and re-establish lost synaptic contacts. By contrast, peripheral neurons can activate a pro-regenerative program and regenerate following a nerve lesion. This relies on an intricate intracellular communication system between the severed axon and the cell body. Locally activated signaling molecules are retrogradely transported to the soma to promote the epigenetic and transcriptional changes required for the injured neuron to regain growth competence. These signaling events rely heavily on intra-axonal translation and mitochondrial trafficking into the severed axon. Here, we discuss the interplay between these mechanisms and the main intrinsic barriers to axonal regeneration. We also examine the potential of manipulating these processes for driving CNS repair.
Collapse
Affiliation(s)
- Diogo Tomé
- iBiMED- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Ramiro D Almeida
- iBiMED- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
23
|
Li X, Zuo Y, Lin X, Guo B, Jiang H, Guan N, Zheng H, Huang Y, Gu X, Yu B, Wang X. Develop Targeted Protein Drug Carriers through a High-Throughput Screening Platform and Rational Design. Adv Healthc Mater 2024; 13:e2401793. [PMID: 38804201 DOI: 10.1002/adhm.202401793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Protein-based drugs offer advantages, such as high specificity, low toxicity, and minimal side effects compared to small molecule drugs. However, delivery of proteins to target tissues or cells remains challenging due to the instability, diverse structures, charges, and molecular weights of proteins. Polymers have emerged as a leading choice for designing effective protein delivery systems, but identifying a suitable polymer for a given protein is complicated by the complexity of both proteins and polymers. To address this challenge, a fluorescence-based high-throughput screening platform called ProMatch to efficiently collect data on protein-polymer interactions, followed by in vivo and in vitro experiments with rational design is developed. Using this approach to streamline polymer selection for targeted protein delivery, candidate polymers from commercially available options are identified and a polyhexamethylene biguanide (PHMB)-based system for delivering proteins to white adipose tissue as a treatment for obesity is developed. A branched polyethylenimine (bPEI)-based system for neuron-specific protein delivery to stimulate optic nerve regeneration is also developed. The high-throughput screening methodology expedites identification of promising polymer candidates for tissue-specific protein delivery systems, thereby providing a platform to develop innovative protein-based therapeutics.
Collapse
Affiliation(s)
- Xiaodan Li
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, P. R. China
- Nanhu Brain-Computer Interface Institute, Hangzhou, 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Yanming Zuo
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, P. R. China
- Nanhu Brain-Computer Interface Institute, Hangzhou, 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Xurong Lin
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, P. R. China
- Lingang Laboratory, Shanghai, 200031, China
| | - Binjie Guo
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, P. R. China
- Lingang Laboratory, Shanghai, 200031, China
| | - Haohan Jiang
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, P. R. China
- Lingang Laboratory, Shanghai, 200031, China
| | - Naiyu Guan
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, P. R. China
- Nanhu Brain-Computer Interface Institute, Hangzhou, 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Hanyu Zheng
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, P. R. China
- Lingang Laboratory, Shanghai, 200031, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu, 226001, P. R. China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu, 226001, P. R. China
| | - Xuhua Wang
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, P. R. China
- Nanhu Brain-Computer Interface Institute, Hangzhou, 311100, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
- Lingang Laboratory, Shanghai, 200031, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, P. R. China
| |
Collapse
|
24
|
Campbell GP, Amin D, Hsieh K, Hussey GS, St Leger AJ, Gross JM, Badylak SF, Kuwajima T. Immunomodulation by the combination of statin and matrix-bound nanovesicle enhances optic nerve regeneration. NPJ Regen Med 2024; 9:31. [PMID: 39461953 PMCID: PMC11513974 DOI: 10.1038/s41536-024-00374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
Modulating inflammation is critical to enhance nerve regeneration after injury. However, clinically applicable regenerative therapies that modulate inflammation have not yet been established. Here, we demonstrate synergistic effects of the combination of an HMG-CoA reductase inhibitor, statin/fluvastatin and critical components of the extracellular matrix, Matrix-Bound Nanovesicles (MBV) to enhance axon regeneration and neuroprotection after mouse optic nerve injury. Mechanistically, co-intravitreal injections of fluvastatin and MBV robustly promote infiltration of monocytes and neutrophils, which lead to RGC protection and axon regeneration. Furthermore, monocyte infiltration is triggered by elevated expression of CCL2, a chemokine, in the superficial layer of the retina after treatment with a combination of fluvastatin and MBV or IL-33, a cytokine contained within MBV. Finally, this therapy can be further combined with AAV-based gene therapy blocking anti-regenerative pathways in RGCs to extend regenerated axons. These data highlight novel molecular insights into the development of immunomodulatory regenerative therapy.
Collapse
Affiliation(s)
- Gregory P Campbell
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- The Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Dwarkesh Amin
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- The Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Kristin Hsieh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- The Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - George S Hussey
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Anthony J St Leger
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- The Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Takaaki Kuwajima
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
- The Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
25
|
Huang KC, Gomes C, Shiga Y, Belforte N, VanderWall KB, Lavekar SS, Fligor CM, Harkin J, Hetzer SM, Patil SV, Di Polo A, Meyer JS. Acquisition of neurodegenerative features in isogenic OPTN(E50K) human stem cell-derived retinal ganglion cells associated with autophagy disruption and mTORC1 signaling reduction. Acta Neuropathol Commun 2024; 12:164. [PMID: 39425218 PMCID: PMC11487784 DOI: 10.1186/s40478-024-01872-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024] Open
Abstract
The ability to derive retinal ganglion cells (RGCs) from human pluripotent stem cells (hPSCs) has led to numerous advances in the field of retinal research, with great potential for the use of hPSC-derived RGCs for studies of human retinal development, in vitro disease modeling, drug discovery, as well as their potential use for cell replacement therapeutics. Of all these possibilities, the use of hPSC-derived RGCs as a human-relevant platform for in vitro disease modeling has received the greatest attention, due to the translational relevance as well as the immediacy with which results may be obtained compared to more complex applications like cell replacement. While several studies to date have focused upon the use of hPSC-derived RGCs with genetic variants associated with glaucoma or other optic neuropathies, many of these have largely described cellular phenotypes with only limited advancement into exploring dysfunctional cellular pathways as a consequence of the disease-associated gene variants. Thus, to further advance this field of research, in the current study we leveraged an isogenic hPSC model with a glaucoma-associated mutation in the Optineurin (OPTN) protein, which plays a prominent role in autophagy. We identified an impairment of autophagic-lysosomal degradation and decreased mTORC1 signaling via activation of the stress sensor AMPK, along with subsequent neurodegeneration in OPTN(E50K) RGCs differentiated from hPSCs, and have further validated some of these findings in a mouse model of ocular hypertension. Pharmacological inhibition of mTORC1 in hPSC-derived RGCs recapitulated disease-related neurodegenerative phenotypes in otherwise healthy RGCs, while the mTOR-independent induction of autophagy reduced protein accumulation and restored neurite outgrowth in diseased OPTN(E50K) RGCs. Taken together, these results highlighted that autophagy disruption resulted in increased autophagic demand which was associated with downregulated signaling through mTORC1, contributing to the degeneration of RGCs.
Collapse
Affiliation(s)
- Kang-Chieh Huang
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cátia Gomes
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yukihiro Shiga
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Research Centre, Montreal, QC, Canada
| | - Nicolas Belforte
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Research Centre, Montreal, QC, Canada
| | - Kirstin B VanderWall
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sailee S Lavekar
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Clarisse M Fligor
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jade Harkin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shelby M Hetzer
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shruti V Patil
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Research Centre, Montreal, QC, Canada
| | - Jason S Meyer
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
26
|
Lee T, Weinberg-Wolf H, Zapadka TE, Rudenko A, Demb JB, Kim IJ. Specific retinal neurons regulate context-dependent defensive responses to visual threat. PNAS NEXUS 2024; 3:pgae423. [PMID: 39359403 PMCID: PMC11443969 DOI: 10.1093/pnasnexus/pgae423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
While encountering a visual threat, an animal assesses multiple factors to choose an appropriate defensive strategy. For example, when a rodent detects a looming aerial predator, its behavioral response can be influenced by a specific environmental context, such as the availability of a shelter. Indeed, rodents typically escape from a looming stimulus when a shelter is present; otherwise, they typically freeze. Here we report that context-dependent behavioral responses can be initiated at the earliest stage of the visual system by distinct types of retinal ganglion cells (RGCs), the retina's output neurons. Using genetically defined cell ablation in mature mice, we discovered that some RGC types were necessary for either escaping (alpha RGCs) or freezing (intrinsically photosensitive RGCs) in response to a looming stimulus but not for both behaviors; whereas other RGC types were not required for either behavior (direction-selective RGCs preferring vertical motion). Altogether, our results suggest that specific RGC types regulate distinct behavioral responses elicited by the same threatening stimulus depending on contextual signals in the environment. These findings emphasize the unique contribution of early visual pathways to evolutionally conserved behavioral reactions.
Collapse
Affiliation(s)
- Tracy Lee
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Hannah Weinberg-Wolf
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Thomas E Zapadka
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Andrii Rudenko
- Department of Biology, Graduate Programs in Biology and Biochemistry, City College and City University of New York, New York, NY 10031, USA
| | - Jonathan B Demb
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06511, USA
| | - In-Jung Kim
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
27
|
Hilton BJ, Griffin JM, Fawcett JW, Bradke F. Neuronal maturation and axon regeneration: unfixing circuitry to enable repair. Nat Rev Neurosci 2024; 25:649-667. [PMID: 39164450 DOI: 10.1038/s41583-024-00849-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
Mammalian neurons lose the ability to regenerate their central nervous system axons as they mature during embryonic or early postnatal development. Neuronal maturation requires a transformation from a situation in which neuronal components grow and assemble to one in which these components are fixed and involved in the machinery for effective information transmission and computation. To regenerate after injury, neurons need to overcome this fixed state to reactivate their growth programme. A variety of intracellular processes involved in initiating or sustaining neuronal maturation, including the regulation of gene expression, cytoskeletal restructuring and shifts in intracellular trafficking, have been shown to prevent axon regeneration. Understanding these processes will contribute to the identification of targets to promote repair after injury or disease.
Collapse
Affiliation(s)
- Brett J Hilton
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Jarred M Griffin
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - James W Fawcett
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine Czech Academy of Science (CAS), Prague, Czechia.
| | - Frank Bradke
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
28
|
Nord C, Jones I, Garcia-Maestre M, Hägglund AC, Carlsson L. Reduced mTORC1-signaling in progenitor cells leads to retinal lamination deficits. Dev Dyn 2024; 253:922-939. [PMID: 38546215 DOI: 10.1002/dvdy.707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 10/02/2024] Open
Abstract
BACKGROUND Neuronal lamination is a hallmark of the mammalian central nervous system (CNS) and underlies connectivity and function. Initial formation of this tissue architecture involves the integration of various signaling pathways that regulate the differentiation and migration of neural progenitor cells. RESULTS Here, we demonstrate that mTORC1 mediates critical roles during neuronal lamination using the mouse retina as a model system. Down-regulation of mTORC1-signaling in retinal progenitor cells by conditional deletion of Rptor led to decreases in proliferation and increased apoptosis during embryogenesis. These developmental deficits preceded aberrant lamination in adult animals which was best exemplified by the fusion of the outer and inner nuclear layer and the absence of an outer plexiform layer. Moreover, ganglion cell axons originating from each Rptor-ablated retina appeared to segregate to an equal degree at the optic chiasm with both contralateral and ipsilateral projections displaying overlapping termination topographies within several retinorecipient nuclei. In combination, these visual pathway defects led to visually mediated behavioral deficits. CONCLUSIONS This study establishes a critical role for mTORC1-signaling during retinal lamination and demonstrates that this pathway regulates diverse developmental mechanisms involved in driving the stratified arrangement of neurons during CNS development.
Collapse
Affiliation(s)
- Christoffer Nord
- Umeå Center for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | - Iwan Jones
- Umeå Center for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | | | | | - Leif Carlsson
- Umeå Center for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| |
Collapse
|
29
|
Kim H, Noristani HN, Zhai J, Manire M, Zhai J, Li S, Zhong J, Son YJ. Deleting PTEN, but not SOCS3 or myelin inhibitors, robustly boosts BRAF-elicited intraspinal regeneration of peripheral sensory axons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613685. [PMID: 39345461 PMCID: PMC11429726 DOI: 10.1101/2024.09.18.613685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Primary sensory axons fail to regenerate into the spinal cord following dorsal root injury leading to permanent sensory deficits. Re-entry is prevented at the dorsal root entry zone (DREZ), the CNS-PNS interface. Current approaches for promoting DR regeneration across the DREZ have had some success, but sustained, long-distance regeneration, particularly of large-diameter myelinated axons, still remains a formidable challenge. We have previously shown that induced expression of constitutively active B-RAF (kaBRAF) enhanced the regenerative competence of injured DRG neurons in adult mice. In this study, we investigated whether robust intraspinal regeneration can be achieved after a cervical DR injury by selective expression of kaBRAF alone or in combination with deletion of the myelin-associated inhibitors or neuron-intrinsic growth suppressors (PTEN or SOCS3). We found that kaBRAF promoted some axon regeneration across the DREZ but did not produce significant functional recovery by two months. Supplementary deletion of Nogo, MAG, and OMgp only modestly improved kaBRAF-induced regeneration. Deletion of PTEN or SOCS3 individually or in combination failed to promote any growth across the DREZ. In marked contrast, simultaneous deletion of PTEN, but not SOCS3, dramatically enhanced kaBRAF-mediated regeneration enabling many more axons to penetrate the DREZ and grow deep into the spinal cord. This study shows that dual activation of BRAF-MEK-ERK and PI3K-Akt-mTOR signaling is an effective strategy to stimulate robust intraspinal DR regeneration.
Collapse
|
30
|
Wang Q, So C, Pan F. Cell firing between ON alpha retinal ganglion cells and coupled amacrine cells in the mouse retina. Am J Physiol Cell Physiol 2024; 327:C716-C727. [PMID: 39010839 DOI: 10.1152/ajpcell.00238.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
Gap junctions are channels that allow for direct transmission of electrical signals between cells. However, the ability of one cell to be impacted or controlled by other cells through gap junctions remains unclear. In this study, heterocellular coupling between ON α retinal ganglion cells (α-RGCs) and displaced amacrine cells (ACs) in the mouse retina was used as a model. The impact of the extent of coupling of interconnected ACs on the synchronized firing between coupled ON α-RGC-AC pair was investigated using the dopamine 1 receptor (D1R) antagonist-SCH23390 and agonist-SKF38393. It was observed that the synchronized firing between the ON α-RGC-ACs pairs was increased by the D1R antagonist SCH23390, whereas it was eradicated by the agonist SKF38393. Subsequently, the signaling drive was investigated by infecting coupled ON α-RGC-AC pairs with the channelrhodopsin-2(ChR2) mutation L132C engineered to enhance light sensitivities. The results demonstrated that the spikes of ON α-RGCs (without ChR2) could be triggered by ACs (with ChR2) through the gap junction, and vice versa. Furthermore, it was observed that ON α-RGCs stimulated with 3-10 Hz currents by whole cell patch could elicit synchronous spikes in the coupled ACs, and vice versa. This provided direct evidence that the firing of one cell could be influenced by another cell through gap junctions. However, this phenomenon was not observed between OFF α-RGC pairs. The study implied that the synchronized firing between ON α-RGC-AC pairs could potentially be affected by the coupling of interconnected ACs. Additionally, one cell type could selectively control the firing of another cell type, thereby forcefully transmitting information. The key role of gap junctions in synchronizing firing and driving cells between α-RGCs and coupled ACs in the mouse retina was highlighted.NEW & NOTEWORTHY This study investigates the role of gap junctions in transmitting electrical signals between cells and their potential for cell control. Using ON α retinal ganglion cells (α-RGCs) and amacrine cells (ACs) in the mouse retina, the researchers find that the extent of coupling between ACs affects synchronized firing. Bidirectional signaling occurs between ACs and ON α-RGCs through gap junctions.
Collapse
Affiliation(s)
- Qin Wang
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, People's Republic of China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
- University of Health and Rehabilitation Sciences, No. 369 Qingdao National High-Tech Industrial Development Zone, Shandong, People's Republic of China
| | - ChungHim So
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, People's Republic of China
| | - Feng Pan
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, People's Republic of China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
31
|
Fischer I, Connors T, Bouyer J, Jin Y. The unique properties of Big tau in the visual system. Cytoskeleton (Hoboken) 2024; 81:488-499. [PMID: 38761116 DOI: 10.1002/cm.21875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024]
Abstract
Tau is a microtubule associated protein that plays important roles in regulating the properties of microtubules and axonal transport, as well as tauopathies associated with toxic aggregates leading to neurodegenerative diseases. It is encoded by the MAPT gene forming multiple isoforms (45-60 kDa) by alternative splicing which are developmentally regulated. The high molecular weight (MW) tau isoform of 105 kDa, termed Big tau, was originally discovered in the peripheral nervous system (PNS) but later found in selective CNS areas. It contains an additional large exon 4a generating a long projecting domain of about 250 amino acids. Here we investigated the properties of Big tau in the visual system of rats, its distribution in retinal ganglion cells and the optic nerve as well as its developmental regulation using biochemical, molecular and histological analyses. We discovered that Big tau is expresses as a 95 kDa protein (termed middle MW) containing exons 4a, 6 as well as exon 10 which defines a 4 microtubule-binding repeats (4R). It lacks exons 2/3 but shares the extensive phosphorylation characteristic of other tau isoforms. Importantly, early in development the visual system expresses only the low MW isoform (3R) switching to both the low and middle MW isoforms (4R) in adult retinal ganglion neurons and their corresponding axons. This is a unique structure and expression pattern of Big tau, which we hypothesize is associated with the specific properties of the visual system different from what has been previously described in the PNS and other areas of the nervous system.
Collapse
Affiliation(s)
- Itzhak Fischer
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Theresa Connors
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Julien Bouyer
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Ying Jin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
32
|
Quesnel MJ, Labonté A, Picard C, Bowie DC, Zetterberg H, Blennow K, Brinkmalm A, Villeneuve S, Poirier J, for the Alzheimer's Disease Neuroimaging Initiative, the PREVENT‐AD Research Group. Osteopontin: A novel marker of pre-symptomatic sporadic Alzheimer's disease. Alzheimers Dement 2024; 20:6008-6031. [PMID: 39072932 PMCID: PMC11497655 DOI: 10.1002/alz.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION We investigate the role of osteopontin (OPN) in participants with Pre-symptomatic Alzheimer's disease (AD), mild cognitive impairment (MCI), and in AD brains. METHODS Cerebrospinal fluid (CSF) OPN, AD, and synaptic biomarker levels were measured in 109 cognitively unimpaired (CU), parental-history positive Pre-symptomatic Evaluation of Experimental or Novel Treatments for Alzheimer's Disease (PREVENT-AD) participants, and in 167 CU and 399 participants with MCI from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. OPN levels were examined as a function of amyloid beta (Aβ) and tau positivity. Survival analyses investigated the link between OPN and rate of conversion to AD. RESULTS In PREVENT-AD, CSF OPN was positively correlated with synaptic biomarkers. In PREVENT-AD and ADNI, OPN was elevated in CSF Aβ42/40(+)/total tau(+) and CSF Aβ42/40(+)/phosphorylated tau181(+) individuals. In ADNI, OPN was increased in Aβ(+) positron emission tomography (PET) and tau(+) PET individuals, and associated with an accelerated rate of conversion to AD. OPN was elevated in autopsy-confirmed AD brains. DISCUSSION Strong associations between CSF OPN and key markers of AD pathophysiology suggest a significant role for OPN in tau neurobiology, particularly in the early stages of the disease. HIGHLIGHTS In the Pre-symptomatic Evaluation of Experimental or Novel Treatments for Alzheimer's Disease cohort, we discovered that cerebrospinal fluid (CSF) osteopontin (OPN) levels can indicate early synaptic dysfunction, tau deposition, and neuronal loss in cognitively unimpaired elderly with a parental history. CSF OPN is elevated in amyloid beta(+) positron emission tomography (PET) and tau(+) PET individuals. Elevated CSF OPN is associated with an accelerated rate of conversion to Alzheimer's disease (AD). Elevated CSF OPN is associated with an accelerated rate of cognitive decline on the Alzheimer's Disease Assessment Scale-Cognitive subscale 13, Montreal Cognitive Assessment, Mini-Mental State Examination, and Clinical Dementia Rating Scale Sum of Boxes. OPN mRNA and protein levels are significantly upregulated in the frontal cortex of autopsy-confirmed AD brains.
Collapse
Affiliation(s)
- Marc James Quesnel
- McGill UniversityMontréalQuébecCanada
- Douglas Mental Health University InstituteVerdunQuébecCanada
| | - Anne Labonté
- Douglas Mental Health University InstituteVerdunQuébecCanada
- Centre for the Studies in the Prevention of Alzheimer's DiseaseDouglas Mental Health University InstituteVerdunQuébecCanada
| | - Cynthia Picard
- Douglas Mental Health University InstituteVerdunQuébecCanada
- Centre for the Studies in the Prevention of Alzheimer's DiseaseDouglas Mental Health University InstituteVerdunQuébecCanada
| | - Daniel C. Bowie
- McGill UniversityMontréalQuébecCanada
- Douglas Mental Health University InstituteVerdunQuébecCanada
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, SU/SahlgrenskaGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University Hospital, SU/Mölndals sjukhusMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyQueen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science ParkShatin, N.T.Hong KongChina
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, SU/SahlgrenskaGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University Hospital, SU/Mölndals sjukhusMölndalSweden
- Paris Brain Institute, ICM, Pitié‐Salpêtrière Hospital, Sorbonne UniversityParisFrance
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain DisordersUniversity of Science and Technology of China and First Affiliated Hospital of USTCHefeiP.R. China
| | - Ann Brinkmalm
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, SU/SahlgrenskaGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University Hospital, SU/Mölndals sjukhusMölndalSweden
| | - Sylvia Villeneuve
- McGill UniversityMontréalQuébecCanada
- Douglas Mental Health University InstituteVerdunQuébecCanada
- Centre for the Studies in the Prevention of Alzheimer's DiseaseDouglas Mental Health University InstituteVerdunQuébecCanada
| | - Judes Poirier
- McGill UniversityMontréalQuébecCanada
- Douglas Mental Health University InstituteVerdunQuébecCanada
- Centre for the Studies in the Prevention of Alzheimer's DiseaseDouglas Mental Health University InstituteVerdunQuébecCanada
| | | | | |
Collapse
|
33
|
El Hajji S, Shiga Y, Belforte N, Solorio YC, Tastet O, D’Onofrio P, Dotigny F, Prat A, Arbour N, Fortune B, Di Polo A. Insulin restores retinal ganglion cell functional connectivity and promotes visual recovery in glaucoma. SCIENCE ADVANCES 2024; 10:eadl5722. [PMID: 39110798 PMCID: PMC11305393 DOI: 10.1126/sciadv.adl5722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Dendrite pathology and synaptic loss result in neural circuit dysfunction, a common feature of neurodegenerative diseases. There is a lack of strategies that target dendritic and synaptic regeneration to promote neurorecovery. We show that daily human recombinant insulin eye drops stimulate retinal ganglion cell (RGC) dendrite and synapse regeneration during ocular hypertension, a risk factor to develop glaucoma. We demonstrate that the ribosomal protein p70S6 kinase (S6K) is essential for insulin-dependent dendritic regrowth. Furthermore, S6K phosphorylation of the stress-activated protein kinase-interacting protein 1 (SIN1), a link between the mammalian target of rapamycin complexes 1 and 2 (mTORC1/2), is required for insulin-induced dendritic regeneration. Using two-photon microscopy live retinal imaging, we show that insulin rescues single-RGC light-evoked calcium (Ca2+) dynamics. We further demonstrate that insulin enhances neuronal survival and retina-brain connectivity leading to improved optomotor reflex-elicited behaviors. Our data support that insulin is a compelling pro-regenerative strategy with potential clinical implications for the treatment and management of glaucoma.
Collapse
Affiliation(s)
- Sana El Hajji
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Yukihiro Shiga
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Nicolas Belforte
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Yves Carpentier Solorio
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Olivier Tastet
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Philippe D’Onofrio
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Florence Dotigny
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Alexandre Prat
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Nathalie Arbour
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, OR, USA
| | - Adriana Di Polo
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| |
Collapse
|
34
|
Zhang Q, Xue J, Tang J, Wu S, Liu Z, Wu C, Liu C, Liu Y, Lin J, Han J, Liu L, Chen Y, Yang J, Li Z, Zhao L, Wei Y, Li Y, Zhuo Y. Modulating amacrine cell-derived dopamine signaling promotes optic nerve regeneration and preserves visual function. SCIENCE ADVANCES 2024; 10:eado0866. [PMID: 39093964 PMCID: PMC11296332 DOI: 10.1126/sciadv.ado0866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
As part of the central nervous system, the optic nerve, composed of axons from retinal ganglion cells (RGCs), generally fails to regenerate on its own when injured in adult mammals. An innovative approach to promoting optic nerve regeneration involves manipulating the interactions between amacrine cells (ACs) and RGCs. Here, we identified a unique AC subtype, dopaminergic ACs (DACs), that responded early after optic nerve crush by down-regulating neuronal activity and reducing retinal dopamine (DA) release. Activating DACs or augmenting DA release with levodopa demonstrated neuroprotective effects and modestly enhanced axon regeneration. Within this context, we pinpointed the DA receptor D1 (DRD1) as a critical mediator of DAC-derived DA and showed that RGC-specific Drd1 overexpression effectively overcame subtype-specific barriers to regeneration. This strategy markedly boosted RGC survival and axon regeneration after crush and preserved vision in a glaucoma model. This study unveils the crucial role of DAC-derived DA signaling in optic nerve regeneration, holding promise for therapeutic insights into neural repair.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Jingfei Xue
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Jiahui Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Siting Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhe Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Caiqing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Canying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Yidan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Jicheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Jiaxu Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Liyan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Yuze Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Jinpeng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhidong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Yantao Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Yiqing Li
- Corresponding author. (Y. Li); (Y.Z.); (Y.W.)
| | - Yehong Zhuo
- Corresponding author. (Y. Li); (Y.Z.); (Y.W.)
| |
Collapse
|
35
|
Reder AT, Goel A, Garcia T, Feng X. Alternative Splicing of RNA Is Excessive in Multiple Sclerosis and Not Linked to Gene Expression Levels: Dysregulation Is Corrected by IFN-β. J Interferon Cytokine Res 2024; 44:355-371. [PMID: 38695855 DOI: 10.1089/jir.2024.0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Affiliation(s)
- Anthony T Reder
- Department of Neurology MC-2030, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - Aika Goel
- Department of Neurology MC-2030, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - Tzintzuni Garcia
- Center for Translational Data Sciences, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - Xuan Feng
- Department of Neurology MC-2030, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| |
Collapse
|
36
|
Yang J, Lewis GP, Hsiang CH, Menges S, Luna G, Cho W, Turovets N, Fisher SK, Klassen H. Amelioration of Photoreceptor Degeneration by Intravitreal Transplantation of Retinal Progenitor Cells in Rats. Int J Mol Sci 2024; 25:8060. [PMID: 39125629 PMCID: PMC11312009 DOI: 10.3390/ijms25158060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Photoreceptor degeneration is a major cause of untreatable blindness worldwide and has recently been targeted by emerging technologies, including cell- and gene-based therapies. Cell types of neural lineage have shown promise for replacing either photoreceptors or retinal pigment epithelial cells following delivery to the subretinal space, while cells of bone marrow lineage have been tested for retinal trophic effects following delivery to the vitreous cavity. Here we explore an alternate approach in which cells from the immature neural retinal are delivered to the vitreous cavity with the goal of providing trophic support for degenerating photoreceptors. Rat and human retinal progenitor cells were transplanted to the vitreous of rats with a well-studied photoreceptor dystrophy, resulting in substantial anatomical preservation and functional rescue of vision. This work provides scientific proof-of-principle for a novel therapeutic approach to photoreceptor degeneration that is currently being evaluated in clinical trials.
Collapse
Affiliation(s)
- Jing Yang
- Gavin Herbert Eye Institute, Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Geoffrey P. Lewis
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Chin-Hui Hsiang
- Gavin Herbert Eye Institute, Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Steven Menges
- Gavin Herbert Eye Institute, Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Gabriel Luna
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - William Cho
- Gavin Herbert Eye Institute, Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Nikolay Turovets
- Gavin Herbert Eye Institute, Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Steven K. Fisher
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Henry Klassen
- Gavin Herbert Eye Institute, Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| |
Collapse
|
37
|
Fu XQ, Zhan WR, Tian WY, Zeng PM, Luo ZG. Comparative transcriptomic profiling reveals a role for Olig1 in promoting axon regeneration. Cell Rep 2024; 43:114514. [PMID: 39002126 DOI: 10.1016/j.celrep.2024.114514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/21/2024] [Accepted: 06/30/2024] [Indexed: 07/15/2024] Open
Abstract
The regenerative potential of injured axons displays considerable heterogeneity. However, the molecular mechanisms underlying the heterogeneity have not been fully elucidated. Here, we establish a method that can separate spinal motor neurons (spMNs) with low and high regenerative capacities and identify a set of transcripts revealing differential expression between two groups of neurons. Interestingly, oligodendrocyte transcription factor 1 (Olig1), which regulates the differentiation of various neuronal progenitors, exhibits recurrent expression in spMNs with enhanced regenerative capabilities. Furthermore, overexpression of Olig1 (Olig1 OE) facilitates axonal regeneration in various models, and down-regulation or deletion of Olig1 exhibits an opposite effect. By analyzing the overlapped differentially expressed genes after expressing individual Olig factor and functional validation, we find that the role of Olig1 is at least partially through the neurite extension factor 1 (Nrsn1). We therefore identify Olig1 as an intrinsic factor that promotes regenerative capacity of injured axons.
Collapse
Affiliation(s)
- Xiu-Qing Fu
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| | - Wen-Rong Zhan
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Wei-Ya Tian
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Peng-Ming Zeng
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Zhen-Ge Luo
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
38
|
Wood CA, Tran NM. Cell-type resolved transcriptomic approaches for dissecting selective vulnerability in neurodegeneration. Neural Regen Res 2024; 19:1411-1413. [PMID: 38051872 PMCID: PMC10883512 DOI: 10.4103/1673-5374.385868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 12/07/2023] Open
Affiliation(s)
- Caleb A. Wood
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Nicholas M. Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
39
|
Saijilafu, Ye LC, Zhang JY, Xu RJ. The top 100 most cited articles on axon regeneration from 2003 to 2023: a bibliometric analysis. Front Neurosci 2024; 18:1410988. [PMID: 38988773 PMCID: PMC11233811 DOI: 10.3389/fnins.2024.1410988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/04/2024] [Indexed: 07/12/2024] Open
Abstract
Objective In this study, we used a bibliometric and visual analysis to evaluate the characteristics of the 100 most cited articles on axon regeneration. Methods The 100 most cited papers on axon regeneration published between 2003 and 2023 were identified by searching the Web of Science Core Collection database. The extracted data included the title, author, keywords, journal, publication year, country, and institution. A bibliometric analysis was subsequently undertaken. Results The examined set of 100 papers collectively accumulated a total of 39,548 citations. The number of citations for each of the top 100 articles ranged from 215 to 1,604, with a median value of 326. The author with the most contributions to this collection was He, Zhigang, having authored eight papers. Most articles originated in the United States (n = 72), while Harvard University was the institution with the most cited manuscripts (n = 19). Keyword analysis unveiled several research hotspots, such as chondroitin sulfate proteoglycan, alternative activation, exosome, Schwann cells, axonal protein synthesis, electrical stimulation, therapeutic factors, and remyelination. Examination of keywords in the articles indicated that the most recent prominent keyword was "local delivery." Conclusion This study offers bibliometric insights into axon regeneration, underscoring that the United States is a prominent leader in this field. Our analysis highlights the growing relevance of local delivery systems in axon regeneration. Although these systems have shown promise in preclinical models, challenges associated with long-term optimization, agent selection, and clinical translation remain. Nevertheless, the continued development of local delivery technologies represents a promising pathway for achieving axon regeneration; however, additional research is essential to fully realize their potential and thereby enhance patient outcomes.
Collapse
Affiliation(s)
- Saijilafu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Ling-Chen Ye
- Department of Orthopaedics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jing-Yu Zhang
- Department of Orthopaedics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ren-Jie Xu
- Department of Orthopaedics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
40
|
Du R, Wang P, Tian N. CD3ζ-Mediated Signaling Protects Retinal Ganglion Cells in Glutamate Excitotoxicity of the Retina. Cells 2024; 13:1006. [PMID: 38920637 PMCID: PMC11201742 DOI: 10.3390/cells13121006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Excessive levels of glutamate activity could potentially damage and kill neurons. Glutamate excitotoxicity is thought to play a critical role in many CNS and retinal diseases. Accordingly, glutamate excitotoxicity has been used as a model to study neuronal diseases. Immune proteins, such as major histocompatibility complex (MHC) class I molecules and their receptors, play important roles in many neuronal diseases, while T-cell receptors (TCR) are the primary receptors of MHCI. We previously showed that a critical component of TCR, CD3ζ, is expressed by mouse retinal ganglion cells (RGCs). The mutation of CD3ζ or MHCI molecules compromises the development of RGC structure and function. In this study, we investigated whether CD3ζ-mediated molecular signaling regulates RGC death in glutamate excitotoxicity. We show that mutation of CD3ζ significantly increased RGC survival in NMDA-induced excitotoxicity. In addition, we found that several downstream molecules of TCR, including Src (proto-oncogene tyrosine-protein kinase) family kinases (SFKs) and spleen tyrosine kinase (Syk), are expressed by RGCs. Selective inhibition of an SFK member, Hck, or Syk members, Syk or Zap70, significantly increased RGC survival in NMDA-induced excitotoxicity. These results provide direct evidence to reveal the underlying molecular mechanisms that control RGC death under disease conditions.
Collapse
Affiliation(s)
- Rui Du
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (R.D.); (P.W.)
| | - Ping Wang
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (R.D.); (P.W.)
| | - Ning Tian
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (R.D.); (P.W.)
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84132, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84132, USA
- Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA
| |
Collapse
|
41
|
Hingorani S, Paniagua Soriano G, Sánchez Huertas C, Villalba Riquelme EM, López Mocholi E, Martínez Rojas B, Alastrué Agudo A, Dupraz S, Ferrer Montiel AV, Moreno Manzano V. Transplantation of dorsal root ganglia overexpressing the NaChBac sodium channel improves locomotion after complete SCI. Mol Ther 2024; 32:1739-1759. [PMID: 38556794 PMCID: PMC11184342 DOI: 10.1016/j.ymthe.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/21/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition currently lacking treatment. Severe SCI causes the loss of most supraspinal inputs and neuronal activity caudal to the injury, which, coupled with the limited endogenous capacity for spontaneous regeneration, can lead to complete functional loss even in anatomically incomplete lesions. We hypothesized that transplantation of mature dorsal root ganglia (DRGs) genetically modified to express the NaChBac sodium channel could serve as a therapeutic option for functionally complete SCI. We found that NaChBac expression increased the intrinsic excitability of DRG neurons and promoted cell survival and neurotrophic factor secretion in vitro. Transplantation of NaChBac-expressing dissociated DRGs improved voluntary locomotion 7 weeks after injury compared to control groups. Animals transplanted with NaChBac-expressing DRGs also possessed higher tubulin-positive neuronal fiber and myelin preservation, although serotonergic descending fibers remained unaffected. We observed early preservation of the corticospinal tract 14 days after injury and transplantation, which was lost 7 weeks after injury. Nevertheless, transplantation of NaChBac-expressing DRGs increased the neuronal excitatory input by an increased number of VGLUT2 contacts immediately caudal to the injury. Our work suggests that the transplantation of NaChBac-expressing dissociated DRGs can rescue significant motor function, retaining an excitatory neuronal relay activity immediately caudal to injury.
Collapse
Affiliation(s)
- Sonia Hingorani
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Guillem Paniagua Soriano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Carlos Sánchez Huertas
- Development and Assembly of Bilateral Neural Circuits Laboratory, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Miguel Hernández, Avenida Santiago Ramon y Cajal, s/n, 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Eva María Villalba Riquelme
- Biochemistry and Molecular Biology Department, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche-IDiBE, Avenida de la Universidad, s/n, Edificio Torregaitán, 03202 Elche, Alicante, Spain
| | - Eric López Mocholi
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Beatriz Martínez Rojas
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Ana Alastrué Agudo
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Sebastián Dupraz
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Antonio Vicente Ferrer Montiel
- Biochemistry and Molecular Biology Department, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche-IDiBE, Avenida de la Universidad, s/n, Edificio Torregaitán, 03202 Elche, Alicante, Spain
| | - Victoria Moreno Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain.
| |
Collapse
|
42
|
Smail SW, Abdulqadir SZ, Alalem LSS, Rasheed TK, Khudhur ZO, Mzury AFA, Awla HK, Ghayour MB, Abdolmaleki A. Enhancing sciatic nerve regeneration with osteopontin-loaded acellular nerve allografts in rats: Effects on macrophage polarization. Tissue Cell 2024; 88:102379. [PMID: 38678741 DOI: 10.1016/j.tice.2024.102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
Osteopontin (OPN) is a multifunctional matrix glycoprotein with neuroprotective and immunomodulatory properties. This study explored the potential of OPN-loaded acellular nerve allografts (ANAs) to repair sciatic nerves in male Wistar rats. The research also delved into the impact of OPN on macrophage phenotypes. We reconstructed a 10 mm nerve gap with ANAs containing OPN at 2 nM and 4 nM. The sciatic functional index (SFI) and paw withdrawal reflex latency (WRL) showed the significant efficacy of ANA/OPN (2 nM) in enhancement of target organ reinnervation and subsequent sensorimotor recovery compared to other groups. Electrophysiological and histomorphometric analyses further supported the regenerative properties of ANA/OPN (2 nM). Additionally, ANA/OPN (2 nM) promoted macrophage polarization towards an M2 phenotype and reduced proinflammatory cytokines at the injury site. In conclusion, the study suggested that ANA loaded with 2 nM OPN effectively repaired transected sciatic nerves in rats, potentially through enhancing axonal sprouting and exerting anti-inflammatory effects.
Collapse
Affiliation(s)
- Shukur Wasman Smail
- Department of Biology, College of Science, Salahaddin University-Erbil, Iraq; Department of Medical Microbiology, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq.
| | | | | | - Taban Kamal Rasheed
- Department of Biology, College of Science, Salahaddin University-Erbil, Iraq
| | | | | | - Harem Khdir Awla
- Department of Biology, College of Science, Salahaddin University-Erbil, Iraq
| | - Mohammad B Ghayour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran.
| |
Collapse
|
43
|
Yang Q, Liu L, He F, Zhao W, Chen Z, Wu X, Rao B, Lin X, Mao F, Qu J, Zhang J. Retinal ganglion cell type-specific expression of synuclein family members revealed by scRNA-sequencing. Int J Med Sci 2024; 21:1472-1490. [PMID: 38903914 PMCID: PMC11186421 DOI: 10.7150/ijms.95598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/30/2024] [Indexed: 06/22/2024] Open
Abstract
Synuclein family members (Snca, Sncb, and Scng) are expressed in the retina, but their precise locations and roles are poorly understood. We performed an extensive analysis of the single-cell transcriptome in healthy and injured retinas to investigate their expression patterns and roles. We observed the expression of all synuclein family members in retinal ganglion cells (RGCs), which remained consistent across species (human, mouse, and chicken). We unveiled differential expression of Snca across distinct clusters (highly expressed in most), while Sncb and Sncg displayed uniform expression across all clusters. Further, we observed a decreased expression in RGCs following traumatic axonal injury. However, the proportion of α-Syn-positive RGCs in all RGCs and α-Syn-positive intrinsically photosensitive retinal ganglion cells (ipRGCs) in all ipRGCs remained unaltered. Lastly, we identified changes in communication patterns preceding cell death, with particular significance in the pleiotrophin-nucleolin (Ptn-Ncl) and neural cell adhesion molecule signaling pathways, where communication differences were pronounced between cells with varying expression levels of Snca. Our study employs an innovative approach using scRNA-seq to characterize synuclein expression in health retinal cells, specifically focusing on RGC subtypes, advances our knowledge of retinal physiology and pathology.
Collapse
Affiliation(s)
- Qingwen Yang
- Laboratory of Retinal Physiology and Disease, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lin Liu
- Laboratory of Retinal Physiology and Disease, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Fang He
- Laboratory of Retinal Physiology and Disease, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wenna Zhao
- Laboratory of Retinal Physiology and Disease, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhongqun Chen
- Laboratory of Retinal Physiology and Disease, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaotian Wu
- Laboratory of Retinal Physiology and Disease, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bilin Rao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xin Lin
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Fangyuan Mao
- Alberta Institute, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jia Qu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jun Zhang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
44
|
Zavvarian MM, Modi AD, Sadat S, Hong J, Fehlings MG. Translational Relevance of Secondary Intracellular Signaling Cascades Following Traumatic Spinal Cord Injury. Int J Mol Sci 2024; 25:5708. [PMID: 38891894 PMCID: PMC11172219 DOI: 10.3390/ijms25115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Traumatic spinal cord injury (SCI) is a life-threatening and life-altering condition that results in debilitating sensorimotor and autonomic impairments. Despite significant advances in the clinical management of traumatic SCI, many patients continue to suffer due to a lack of effective therapies. The initial mechanical injury to the spinal cord results in a series of secondary molecular processes and intracellular signaling cascades in immune, vascular, glial, and neuronal cell populations, which further damage the injured spinal cord. These intracellular cascades present promising translationally relevant targets for therapeutic intervention due to their high ubiquity and conservation across eukaryotic evolution. To date, many therapeutics have shown either direct or indirect involvement of these pathways in improving recovery after SCI. However, the complex, multifaceted, and heterogeneous nature of traumatic SCI requires better elucidation of the underlying secondary intracellular signaling cascades to minimize off-target effects and maximize effectiveness. Recent advances in transcriptional and molecular neuroscience provide a closer characterization of these pathways in the injured spinal cord. This narrative review article aims to survey the MAPK, PI3K-AKT-mTOR, Rho-ROCK, NF-κB, and JAK-STAT signaling cascades, in addition to providing a comprehensive overview of the involvement and therapeutic potential of these secondary intracellular pathways following traumatic SCI.
Collapse
Affiliation(s)
- Mohammad-Masoud Zavvarian
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Akshat D. Modi
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Department of Biological Sciences, University of Toronto, Scarborough, ON M1C 1A4, Canada
- Department of Human Biology, University of Toronto, Toronto, ON M5S 3J6, Canada
| | - Sarah Sadat
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - James Hong
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
| | - Michael G. Fehlings
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
45
|
Toma K, Zhao M, Zhang S, Wang F, Graham HK, Zou J, Modgil S, Shang WH, Tsai NY, Cai Z, Liu L, Hong G, Kriegstein AR, Hu Y, Körbelin J, Zhang R, Liao YJ, Kim TN, Ye X, Duan X. Perivascular neurons instruct 3D vascular lattice formation via neurovascular contact. Cell 2024; 187:2767-2784.e23. [PMID: 38733989 PMCID: PMC11223890 DOI: 10.1016/j.cell.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024]
Abstract
The vasculature of the central nervous system is a 3D lattice composed of laminar vascular beds interconnected by penetrating vessels. The mechanisms controlling 3D lattice network formation remain largely unknown. Combining viral labeling, genetic marking, and single-cell profiling in the mouse retina, we discovered a perivascular neuronal subset, annotated as Fam19a4/Nts-positive retinal ganglion cells (Fam19a4/Nts-RGCs), directly contacting the vasculature with perisomatic endfeet. Developmental ablation of Fam19a4/Nts-RGCs led to disoriented growth of penetrating vessels near the ganglion cell layer (GCL), leading to a disorganized 3D vascular lattice. We identified enriched PIEZO2 expression in Fam19a4/Nts-RGCs. Piezo2 loss from all retinal neurons or Fam19a4/Nts-RGCs abolished the direct neurovascular contacts and phenocopied the Fam19a4/Nts-RGC ablation deficits. The defective vascular structure led to reduced capillary perfusion and sensitized the retina to ischemic insults. Furthermore, we uncovered a Piezo2-dependent perivascular granule cell subset for cerebellar vascular patterning, indicating neuronal Piezo2-dependent 3D vascular patterning in the brain.
Collapse
Affiliation(s)
- Kenichi Toma
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Mengya Zhao
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Shaobo Zhang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Fei Wang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Hannah K Graham
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Jun Zou
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Shweta Modgil
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Wenhao H Shang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Nicole Y Tsai
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Zhishun Cai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Liping Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Guiying Hong
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Arnold R Kriegstein
- Department of Neurology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jakob Körbelin
- ENDomics Lab, Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ruobing Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yaping Joyce Liao
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tyson N Kim
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Xin Ye
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, USA.
| | - Xin Duan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA; Department of Physiology and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
46
|
Maraslioglu-Sperber A, Pizzi E, Fisch JO, Kattler K, Ritter T, Friauf E. Molecular and functional profiling of cell diversity and identity in the lateral superior olive, an auditory brainstem center with ascending and descending projections. Front Cell Neurosci 2024; 18:1354520. [PMID: 38846638 PMCID: PMC11153811 DOI: 10.3389/fncel.2024.1354520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/15/2024] [Indexed: 06/09/2024] Open
Abstract
The lateral superior olive (LSO), a prominent integration center in the auditory brainstem, contains a remarkably heterogeneous population of neurons. Ascending neurons, predominantly principal neurons (pLSOs), process interaural level differences for sound localization. Descending neurons (lateral olivocochlear neurons, LOCs) provide feedback into the cochlea and are thought to protect against acoustic overload. The molecular determinants of the neuronal diversity in the LSO are largely unknown. Here, we used patch-seq analysis in mice at postnatal days P10-12 to classify developing LSO neurons according to their functional and molecular profiles. Across the entire sample (n = 86 neurons), genes involved in ATP synthesis were particularly highly expressed, confirming the energy expenditure of auditory neurons. Two clusters were identified, pLSOs and LOCs. They were distinguished by 353 differentially expressed genes (DEGs), most of which were novel for the LSO. Electrophysiological analysis confirmed the transcriptomic clustering. We focused on genes affecting neuronal input-output properties and validated some of them by immunohistochemistry, electrophysiology, and pharmacology. These genes encode proteins such as osteopontin, Kv11.3, and Kvβ3 (pLSO-specific), calcitonin-gene-related peptide (LOC-specific), or Kv7.2 and Kv7.3 (no DEGs). We identified 12 "Super DEGs" and 12 genes showing "Cluster similarity." Collectively, we provide fundamental and comprehensive insights into the molecular composition of individual ascending and descending neurons in the juvenile auditory brainstem and how this may relate to their specific functions, including developmental aspects.
Collapse
Affiliation(s)
- Ayse Maraslioglu-Sperber
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Erika Pizzi
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Jonas O. Fisch
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Kathrin Kattler
- Genetics/Epigenetics Group, Department of Biological Sciences, Saarland University, Saarbrücken, Germany
| | - Tamara Ritter
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
47
|
Shahraki K, Suh DW. An Update to Biomechanical and Biochemical Principles of Retinal Injury in Child Abuse. CHILDREN (BASEL, SWITZERLAND) 2024; 11:586. [PMID: 38790581 PMCID: PMC11119297 DOI: 10.3390/children11050586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Abusive head trauma (AHT) is an extreme form of physical child abuse, a subset of which is shaken baby syndrome (SBS). While traumatic injury in children is most readily observed as marks of contusion on the body, AHT/SBS may result in internal injuries that can put the life of the child in danger. One pivotal sign associated with AHT/SBS that cannot be spotted with the naked eye is retinal injury (RI), an early sign of which is retinal hemorrhage (RH) in cases with rupture of the retinal vasculature. If not addressed, RI can lead to irreversible outcomes, such as visual loss. It is widely assumed that the major cause of RI is acceleration-deceleration forces that are repeatedly imposed on the patient during abusive shaking. Still, due to the controversial nature of this type of injury, few investigations have ever sought to delve into its biomechanical and/or biochemical features using realistic models. As such, our knowledge regarding AHT-/SBS-induced RI is significantly lacking. In this mini-review, we aim to provide an up-to-date account of the traumatology of AHT-/SBS-induced RI, as well as its biomechanical and biochemical features, while focusing on some of the experimental models that have been developed in recent years for studying retinal hemorrhage in the context of AHT/SBS.
Collapse
Affiliation(s)
| | - Donny W. Suh
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine School of Medicine, Irvine, CA 92697, USA;
| |
Collapse
|
48
|
Quesnel MJ, Labonté A, Picard C, Zetterberg H, Blennow K, Brinkmalm A, Villeneuve S, Poirier J. Insulin-like growth factor binding protein-2 in at-risk adults and autopsy-confirmed Alzheimer brains. Brain 2024; 147:1680-1695. [PMID: 37992295 PMCID: PMC11068109 DOI: 10.1093/brain/awad398] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/20/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
Insulin, insulin-like growth factors (IGF) and their receptors are highly expressed in the adult hippocampus. Thus, disturbances in the insulin-IGF signalling pathway may account for the selective vulnerability of the hippocampus to nascent Alzheimer's disease (AD) pathology. In the present study, we examined the predominant IGF-binding protein in the CSF, IGFBP2. CSF was collected from 109 asymptomatic members of the parental history-positive PREVENT-AD cohort. CSF levels of IGFBP2, core AD and synaptic biomarkers were measured using proximity extension assay, ELISA and mass spectrometry. Cortical amyloid-beta (Aβ) and tau deposition were examined using 18F-NAV4694 and flortaucipir. Cognitive assessments were performed during up to 8 years of follow-up, using the Repeatable Battery for the Assessment of Neuropsychological Status. T1-weighted structural MRI scans were acquired, and neuroimaging analyses were performed on pre-specified temporal and parietal brain regions. Next, in an independent cohort, we allocated 241 dementia-free ADNI-1 participants into four stages of AD progression based on the biomarkers CSF Aβ42 and total-tau (t-tau). In this analysis, differences in CSF and plasma IGFBP2 levels were examined across the pathological stages. Finally, IGFBP2 mRNA and protein levels were examined in the frontal cortex of 55 autopsy-confirmed AD and 31 control brains from the Quebec Founder Population (QFP) cohort, a unique population isolated from Eastern Canada. CSF IGFBP2 progressively increased over 5 years in asymptomatic PREVENT-AD participants. Baseline CSF IGFBP2 was positively correlated with CSF AD biomarkers and synaptic biomarkers, and negatively correlated with longitudinal changes in delayed memory (P = 0.024) and visuospatial abilities (P = 0.019). CSF IGFBP2 was negatively correlated at a trend-level with entorhinal cortex volume (P = 0.082) and cortical thickness in the piriform (P = 0.039), inferior temporal (P = 0.008), middle temporal (P = 0.014) and precuneus (P = 0.033) regions. In ADNI-1, CSF (P = 0.009) and plasma (P = 0.001) IGFBP2 were significantly elevated in Stage 2 [CSF Aβ(+)/t-tau(+)]. In survival analyses in ADNI-1, elevated plasma IGFBP2 was associated with a greater rate of AD conversion (hazard ratio = 1.62, P = 0.021). In the QFP cohort, IGFBP2 mRNA was reduced (P = 0.049); however, IGFBP2 protein levels did not differ in the frontal cortex of autopsy-confirmed AD brains (P = 0.462). Nascent AD pathology may induce an upregulation in IGFBP2 in asymptomatic individuals. CSF and plasma IGFBP2 may be valuable markers for identifying CSF Aβ(+)/t-tau(+) individuals and those with a greater risk of AD conversion.
Collapse
Affiliation(s)
- Marc James Quesnel
- McGill University, Montréal, QC H3A 1A1, Canada
- Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
| | - Anne Labonté
- Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
| | - Cynthia Picard
- Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792-2420, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, 75646 Cedex 13, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei 230026, P.R. China
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden
| | - Sylvia Villeneuve
- McGill University, Montréal, QC H3A 1A1, Canada
- Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
| | - Judes Poirier
- McGill University, Montréal, QC H3A 1A1, Canada
- Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
- Centre for the Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health University Institute, Montréal, QC H4H 1R3, Canada
| |
Collapse
|
49
|
Lin F, Li Y, Wang J, Jardines S, King R, Chrenek MA, Wiggs JL, Boatright JH, Geisert EE. POU6F2, a risk factor for glaucoma, myopia and dyslexia, labels specific populations of retinal ganglion cells. Sci Rep 2024; 14:10096. [PMID: 38698014 PMCID: PMC11066091 DOI: 10.1038/s41598-024-60444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024] Open
Abstract
Pou6f2 is a genetic connection between central corneal thickness (CCT) in the mouse and a risk factor for developing primary open-angle glaucoma. POU6F2 is also a risk factor for several conditions in humans, including glaucoma, myopia, and dyslexia. Recent findings demonstrate that POU6F2-positive retinal ganglion cells (RGCs) comprise a number of RGC subtypes in the mouse, some of which also co-stain for Cdh6 and Hoxd10. These POU6F2-positive RGCs appear to be novel of ON-OFF directionally selective ganglion cells (ooDSGCs) that do not co-stain with CART or SATB2 (typical ooDSGCs markers). These POU6F2-positive cells are sensitive to damage caused by elevated intraocular pressure. In the DBA/2J mouse glaucoma model, heavily-labeled POU6F2 RGCs decrease by 73% at 8 months of age compared to only 22% loss of total RGCs (labeled with RBPMS). Additionally, Pou6f2-/- mice suffer a significant loss of acuity and spatial contrast sensitivity along with an 11.4% loss of total RGCs. In the rhesus macaque retina, POU6F2 labels the large parasol ganglion cells that form the magnocellular (M) pathway. The association of POU6F2 with the M-pathway may reveal in part its role in human glaucoma, myopia, and dyslexia.
Collapse
Affiliation(s)
- Fangyu Lin
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
| | - Ying Li
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
| | - Jiaxing Wang
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
| | - Sandra Jardines
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Rebecca King
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
| | - Micah A Chrenek
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
| | - Janey L Wiggs
- Massachusetts Eye and Ear, Harvard Medical School Boston, Boston, MA, USA
| | - Jeffrey H Boatright
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
- Atlanta Veterans Administration Center for Visual and Neurocognitive Rehabilitation, Decatur, GA, USA
| | - Eldon E Geisert
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA.
| |
Collapse
|
50
|
Wang T, Kaneko S, Kriukov E, Alvarez D, Lam E, Wang Y, La Manna S, Marasco D, Fernandez-Gonzalez A, Mitsialis SA, Kourembanas S, Stahl A, Chen M, Xu H, Baranov P, Cai G, von Andrian UH, Sun Y. SOCS3 regulates pathological retinal angiogenesis through modulating SPP1 expression in microglia and macrophages. Mol Ther 2024; 32:1425-1444. [PMID: 38504518 PMCID: PMC11081920 DOI: 10.1016/j.ymthe.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/18/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
Pathological ocular angiogenesis has long been associated with myeloid cell activation. However, the precise cellular and molecular mechanisms governing the intricate crosstalk between the immune system and vascular changes during ocular neovascularization formation remain elusive. In this study, we demonstrated that the absence of the suppressor of cytokine signaling 3 (SOCS3) in myeloid cells led to a substantial accumulation of microglia and macrophage subsets during the neovascularization process. Our single-cell RNA sequencing data analysis revealed a remarkable increase in the expression of the secreted phosphoprotein 1 (Spp1) gene within these microglia and macrophages, identifying subsets of Spp1-expressing microglia and macrophages during neovascularization formation in angiogenesis mouse models. Notably, the number of Spp1-expressing microglia and macrophages exhibited further elevation during neovascularization in mice lacking myeloid SOCS3. Moreover, our investigation unveiled the Spp1 gene as a direct transcriptional target gene of signal transducer and activator of transcription 3. Importantly, pharmaceutical activation of SOCS3 or blocking of SPP1 resulted in a significant reduction in pathological neovascularization. In conclusion, our study highlights the pivotal role of the SOCS3/STAT3/SPP1 axis in the regulation of pathological retinal angiogenesis.
Collapse
Affiliation(s)
- Tianxi Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Satoshi Kaneko
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Emil Kriukov
- Department of Ophthalmology, The Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - David Alvarez
- Department of Immunology and HMS Center for Immune Imaging, Harvard Medical School, Boston, MA 02115, USA
| | - Enton Lam
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yidi Wang
- Department of Immunology and HMS Center for Immune Imaging, Harvard Medical School, Boston, MA 02115, USA
| | - Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", 80138 Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80138 Naples, Italy
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andreas Stahl
- Department of Ophthalmology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Mei Chen
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Heping Xu
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Petr Baranov
- Department of Ophthalmology, The Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Guoshuai Cai
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ulrich H von Andrian
- Department of Immunology and HMS Center for Immune Imaging, Harvard Medical School, Boston, MA 02115, USA; The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Ye Sun
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|